当前位置: 仪器信息网 > 行业主题 > >

多导生理仪

仪器信息网多导生理仪专题为您提供2024年最新多导生理仪价格报价、厂家品牌的相关信息, 包括多导生理仪参数、型号等,不管是国产,还是进口品牌的多导生理仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多导生理仪相关的耗材配件、试剂标物,还有多导生理仪相关的最新资讯、资料,以及多导生理仪相关的解决方案。

多导生理仪相关的资讯

  • 清华大学梁琼麟团队: 类器官/器官芯片-肠道病理生理学模型前沿进展
    研究简介类器官/器官芯片为肠道病理生理学研究提供了新的前沿模型。类器官基于干细胞的自组织过程,能一定程度重现体内的功能特性;器官芯片利用微流控技术,引入生物材料,模拟肠道关键特征,构建仿生模型。而将二者结合,肠道类器官芯片比肠类器官具有更长的培养寿命,能更好重现肠道的结构和功能。近年来,随着基因编辑、3D 打印和类器官生物库等的迅速发展和交叉结合,类器官/器官芯片能更好地模拟肠道的稳态和疾病。在这里,我们总结了当前这些模型面临的挑战以及未来的发展趋势。该成果以 “Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models” (《类器官/器官芯片:肠道病理生理学模型的前沿进展》) 发表于 Lab on a Chip 上,并被选为合作封面文章。论文信息Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological modelsL. Wu, Y. Ai, R. Xie, J. Xiong, Y. Wang* and Q. Liang*Lab Chip, 2023, 23,1192-1212https://doi.org/10.1039/D2LC00804A作者简介吴磊 博士生清华大学化学系本文第一作者,本科毕业于武汉大学,目前于清华大学化学系梁琼麟教授课题组攻读博士学位。他的研究方向为:肠道类器官/器官芯片模型的开发及在溃疡性结肠炎中的应用研究。王玉 助理研究员清华大学本文通讯作者,清华大学化学系助理研究员,从事器官芯片/类器官芯片的研究。目前,主持国家自然科学基金青年科学基金项目,作为骨干参与国家重点研发计划、国家自然科学基金面上项目等。主要研究方向为基于微流控芯片平台的器官仿生模型的构建与机制研究,并应用于药物分析、新药开发等领域,以器官结构和微环境的模拟、形态建成和生物功能的体外重现为目标,进行体外仿生技术的开发。梁琼麟 教授清华大学本文通讯作者,清华大学化学系长聘教授,教育部长江学者特聘教授,研究方向以微流控芯片及其与质谱、光谱联用分析技术为基础,发展生命分析与药物分析新方法,开发生物医用新材料新器件,发明器官类器官芯片新模型,致力于服务国家药品质量与安全、新药创制以及中药现代化研究与开发。近年来重点聚焦于器官类器官芯片、单细胞亚细胞分析及基于质谱的多组学分析等。曾主持完成国家重大科技专项第一个微流控芯片药物研发关键技术项目,在器官芯片核心关键技术及血管、肝、肾、肠等器官芯片模型研究方面取得重要进展。以通讯作者在 Nat. Protoc., Adv. Mater., Anal. Chem., Lab Chip 等重要学术期刊上发表 SCI 论文 200 多篇,发明专利 30 余项。部分研究成果已在制药企业、临床医院得到广泛应用,曾合作获得国家科技进步二等奖 3 项。相关期刊
  • CRISPR世纪争夺战: 张锋取得决定性胜利
    美东时间2月15日,美国专利局审查与上诉委员会作出裁决,判定张锋及MIT和Harvard的Broad Institute所申请的CRISPR基因编辑专利,与加州大学伯克利分校Dougna和欧洲合作者Charpentier的CRISPR发现,并不存在冲突,"no interference in fact"。也就是说,两家发现并不重复,张锋与Broad Institute得以保留其CRISPR专利权。这场天价的专利争夺战,至少在当前已经结束,张锋取得巨大胜利。  这场官司由加州大学伯克利分校作为原告提出,挑战张锋与Broad Institute的十余项CRISPR基因编辑专利。而作为被告的Broad Institute则坚称,两者"no interference"。美国专利局今天的裁决,支持了Broad Institute的诉求。  Dougna与Charpentier在2012年发表论文,率先报道CRISPR这一自然细菌中的基因编辑系统,能够在试管中精确切割DNA。她们作为CRISPR的第一发明人,被广泛认为将会获得诺贝尔奖,而这一技术,也被认为是世纪性的生物技术发明。  但是,是张锋在2013年1月首次发表论文,介绍如何将CRISPR基因编辑技术用于植物、动物、与人类细胞。因此,该专利争夺的核心,是谁应该获得CRISPR在植物与动物中使用的专利权。是CRISPR基因编辑技术的第一发明人,还是将CRIPSR发展到更有意思、更有意义的系统,从而开启CRISPR用于人类基因疗法、转基因作物、以及基因工程动物的大门。  在今天的裁决中,法官们断定,在张锋之前,没有研究人员能够绝对确认,CRISPR能用于有核细胞,如人类细胞,而张锋的发明,并非简单扩展。因此,他们判定,张锋得以保留其专利。  在听取裁决后,加大伯克利分校发表声明,称尊重裁决,但也坚持认为是Dougna与Charpentier首先发明CRISPR系统:  We continue to maintain that the evidence overwhelmingly supports our position that the Doudna/Charpentier team was the first group to invent this technology for use in all settings and all cell types, and was the first to publish and file patent applications directed toward that invention, and that the Broad Institute’s patents directed toward use of the CRISPR-Cas9 system in particular cell types are not patentably distinct from the Doudna/Charpentier invention. For that reason, UC will carefully consider all options for possible next steps in this legal process, including the possibility of an appeal of the PTAB’s decision  因此法律纠纷可能并不会就此了结,加大伯克利分校很有可能会上诉至美国联邦巡回上诉法院。而下面的审议和裁决,可能会持续一年时间。而届时的裁决,很可能是最终裁决,纽约大学法律教授Jacob Sherkow说:  That will probably be the conclusive statement on the case. Fornow, Berkeley is the loser.  而Dougna在裁决后,则说自己将继续自己的专利申请,而且很可能会成功。她称,自己的专利将覆盖所有的细胞,而张锋的只是覆盖植物和动物细胞。因此,两者最终和解的可能性也是很大的。  此外,Broad Institute也将面临其他的一些挑战。洛克菲勒大学研究者称帮助发现了CRISPR,但被排除在专利之外。而韩国学者也有自己的CRISPR专利申请,也会加入争夺。当然,中国读者非常清楚,CRISPR之外,还有争议巨大的NgAgo。  专利战的背后,是巨大的商业利益。裁决后,Editas Medicine股价大涨20%以上。他们拥有Broad Institute CRISPR专利用于开发疾病疗法的独家使用权,而且去年花费了1100万美金帮助Broad Institute应对所面临的法律挑战。今年,他们会将此技术用于治疗罕见的眼疾病。  而另外两家融资数亿美元的公司,Intellia Therapeutic和CRISPR Therapeutics,则是这个裁决的大输家。他们赌伯克利会赢,因而购买了伯克利发明的使用权,虽然其专利尚未获得授权。  迄今为止,美国专利局已经授予50项与CRISPR有关的专利,其中Broad Institute和MIT拥有15项。Broad Institute称,全世界的科研人员,可以用他们的技术做学术研究,但是厂商必须付费使用。
  • 从木乃伊到古遗传学,PCR技术弄潮儿万特帕博获2022年诺贝尔生理学或医学奖|盘点近10年得主
    仪器信息网讯 10月3日电 据诺贝尔奖官网消息,北京时间10月3日下午,2022年诺贝尔生理学或医学奖率先揭晓,科学家Svante Pääbo获奖,以表彰他“在已灭绝的古人类基因组和人类进化方面的发现”。图源:诺贝尔奖官网关于遗传学家斯万特帕博(Svante Pääbo)斯万特帕博1955年出生于瑞典的斯德哥尔摩,他的母亲是从爱沙尼亚流亡到瑞典的化学家凯琳帕博(Karin Pääbo),父亲为1982年的诺贝尔生理学或医学奖得主、瑞典生物化学家苏恩伯格斯特龙(Sune Bergström)。从木乃伊到古遗传学(paleogenetics),PCR技术弄潮儿在科学家试图还原人类演化历史的过程中,进化遗传学家斯万特帕博(Svante Pääbo)不仅绘制出人类的近亲尼安德特人的基因组图谱,还为古人类的研究贡献了宝贵的方法和技术,比如古DNA超净实验室。利用分子生物学的方法研究古人类和其他古生物,这使得古人类学研究增加了一个全新而重要的视角,甚至在一定程度上开创了一个新的领域——古遗传学(paleogenetics)。在很小的时候,帕博就表现出对考古研究的兴趣,他的房间堆满了史前瑞典人制作的陶器碎片。十三年岁那年,帕博和母亲一起到埃及度假,第一次接触到木乃伊,萌生了研究木乃伊的想法。1985年4月18日,帕博的论文“对古代埃及木乃伊DNA的分子克隆”(Molecular cloning of Ancient Egyptian mummy DNA)登上《自然》封面,引发学界轰动,很多主流科学媒体都给予了报道。1987年,帕博开始跟随威尔森在加州大学伯克利分校做博士后做研究。当时,扩增特定DNA片段的聚合酶连锁反应(Polymerase chain reaction,PCR)技术刚刚兴起。在PCR技术的帮助下,帕博从威尔森实验室剩余的斑驴样品中提取出DNA并进行分析,测序的结果显示与1985年发表的结果相似。这意味着,古DNA的测序不仅可以更高效地进行,而且实验的结果能够被重复验证。点击查看PCR仪器仪器优选,与诺贝尔获奖者一起做PCR技术弄潮儿诺贝尔生理学或医学奖于1901年首次颁发。截至2021年,累计颁发了112次。以下为近10年诺贝尔生理学或医学奖得主及其成就:盘点回顾近年获奖者2021年美国科学家戴维• 朱利叶斯和阿德姆• 帕塔普蒂安因在发现温度与触碰“感受器”方面所做出的贡献,获诺贝尔生理或医学奖。2020年美国科学家哈维• 阿尔特、查尔斯• 赖斯以及英国科学家迈克尔• 霍顿,因在发现丙型肝炎病毒方面所做出的贡献,分享诺贝尔生理或医学奖。2019年美国科学家威廉• 凯林、格雷格• 塞门扎以及英国科学家彼得• 拉特克利夫,因在“发现细胞如何感知和适应氧气供应”方面所做出的贡献获奖。2018年美国科学家詹姆斯• 艾利森和日本科学家本庶佑因“发现负性免疫调节治疗癌症的疗法”方面的贡献,荣获诺贝尔生理或医学奖。2017年美国科学家杰弗里• 霍尔、迈克尔• 罗斯巴什和迈克尔• 扬因解释了许多动植物和人类是如何让生物节律适应随地球自转而来的昼夜变换的,获得诺贝尔生理或医学奖。2016年日本分子细胞生物学家大隅良典因发现细胞自噬的机制,荣获2016年诺贝尔生理学或医学奖。2015年中国科学家屠呦呦因为“中药和中西药结合研究提出了青蒿素和双氢青蒿素的疗法”获得诺贝尔生理或医学奖;同时,爱尔兰科学家威廉• 坎贝尔和日本科学家大村智因“发现对一种由蛔虫寄生病引发的感染采取了新的疗法”同获该奖。2014年英国科学家约翰• 奥基夫和挪威两位科学家爱德华• 莫索尔和梅• 布莱特• 莫索尔因“发现构成大脑定位系统的细胞”获得诺贝尔生理或医学奖。2013年美国科学家詹姆斯• E• 罗斯曼和兰迪-W。谢克曼,以及德国科学家托马斯-C。苏德霍夫因“在细胞内运输系统领域的新发现,三人发现了细胞囊泡交通的运行与调节机制”获得诺贝尔生理或医学奖。2012年英国科学家约翰• 格登爵士和日本科学家山中伸弥因“发现成熟细胞可被重写成多功能细胞”获得诺贝尔生理或医学奖。
  • 癌症免疫疗法获得 2018 诺贝尔生理或医学奖
    北京时间 2018 年 10 月 1 日,诺贝尔官方委员会宣布,James P Allison、Tasuku Honjo 共同获得今年的诺贝尔生理学奖及医学奖,以表彰他们在癌症免疫学领域的杰出贡献。???学者简介詹姆斯 艾利森,美国免疫学家,美国科学院院士,美国德克萨斯大学安德森癌症中心免疫学系教授兼主任。 其在德州大学奥斯汀分校获得微生物学学士学位,后又获生命科学博士学位。其研究方向主要针对 T 细胞的发展和活动机制,和肿瘤免疫治疗的新策略的发展。艾利森发现了一种名为 CTLA-4 的蛋白起到了「分子刹车」的作用,从而终止免疫反应。抑制 CTLA-4 分子,则能使 T 细胞大量增殖、攻击肿瘤细胞。基于该机理,第一款癌症免疫药物伊匹单抗(ipilimumab,用于治疗黑色素瘤)问世。他的发现为那些最致命的癌症提供了新的治疗方向。 本庶佑,日本医学家,美国国家科学院外籍院士,日本学士院会员,德国自然科学学会会员。本庶佑于 1992 年发现 T 细胞抑制受体 PD-1,2013 年依此开创了癌症免疫疗法,功绩名列《Science》年度十大科学突破之首。值得一提的是,本庶佑 2014 年与詹姆斯 艾利森共同获得首届唐奖生技医药奖、2016 年 9 月 21 日,两人又一同获得 2016 年引文桂冠奖,而在 2018 年,两人又一起喜获诺贝尔生理学奖!???研究内容免疫系统是由人体内的免疫器官和细胞以及一些分子物质组成的防御体系,这个防御体系保证人体不受病毒、细菌等病原体的侵害。癌症是由正常细胞分裂过程中产生的错误或者 DNA 损伤等,人体内自身反应错误的不断积累产生的病变。癌细胞也是病原体的一种。但是与其他病原体不同的是,癌细胞要比其他病原体难搞定的多。癌细胞会产生一些伪装,比如在表明会分泌一些糖蛋白或者黏多糖,躲过免疫系统的审查。而且,不同癌细胞被识别出来的难易程度不同,最终造成一种选择效应——跟自然界物种的自然选择一样——导致癌细胞的不断进化,使得免疫系统更难识别。此外,癌细胞超强的繁殖速度,也是免疫细胞难以清除癌细胞的原因之一。癌症免疫疗法的设计思想就是通过增强人体本身的免疫系统,清除体内的肿瘤细胞。目前的癌症免疫疗法主要分为四大类,过继细胞疗法,免疫检查点阻断剂,非特异性免疫激活剂与癌症疫苗。本次获奖的就是免疫检查点阻断疗法。20 世纪 80 年代后期詹姆斯阐述了 T 细胞的反应机制,表明 CTLA-4 可作为抑制 T 细胞反应的抑制分子。 1996 年,Allison 首次证明抗体阻断T 细胞抑制分子(称为 CTLA-4)可导致增强的抗肿瘤免疫反应和肿瘤排斥。这种阻断T细胞抑制途径作为释放抗肿瘤免疫反应和引发临床益处的方法的概念为其他靶向T细胞抑制途径的药物的开发奠定了基础,这些药物已经被标记为「免疫检查点治疗」。
  • 2011诺贝尔生理学奖得主被前同事质疑
    12月16日,《科学》网站发表文章称,2011年诺贝尔生理学或医学奖得主之一、法国科学家Jules Hoffmann受到其实验室前研究人员Bruno Lemaitre的质疑。   Lemaitre上周建立了一个网站(www.behinddiscoveries.com) 他在上面声称,自己上世纪90年代在Hoffmann实验室工作的时候,正是Hoffmann获诺奖的成果完成的时候,而且事实上是他完成了所有研究工作,他是1996年体现该成果的《细胞》文章的第一作者。Hoffmann本人当时对此工作几乎没有兴趣,但是当工作的重要性显现的时候,Hoffmann就声称这全是他自己的成果。   Science Insider于16日联系Hoffmann,Hoffmann拒绝对此评论,因为他觉得“不会感到一点内疚”。   今年诺贝尔生理学或医学奖公布以来已经受到诸多质疑,包括在公布之前就已经逝世的 Ralph Steinman是否应该继续获奖 另外,26位免疫学家上个月致信《自然》称今年诺奖没有适当考虑Charles A. Janeway Jr. 和Ruslan Medzhitov的贡献。
  • 三位科学家获2013年诺贝尔生理学或医学奖
    James E. Rothman Randy W. Schekman Thomas C. Sü dhof   北京时间10月7日下午5点30分,2013年诺贝尔生理学或医学奖揭晓,美国、德国3位科学家James E. Rothman, Randy W. Schekman和Thomas C. Sü dhof获奖。获奖理由是&ldquo 发现细胞内的主要运输系统&mdash &mdash 囊泡运输的调节机制&rdquo 。   James E. Rothman于1950年出生于美国麻省Haverhill,1976年从哈佛医学院获得博士学位,曾在MIT做过博后。1978年他进入斯坦福大学,开始了对细胞囊泡的研究。他曾任职的研究机构还包括普林斯顿大学、纪念斯隆-凯特灵癌症研究所和哥伦比亚大学。2008年,他加入耶鲁大学,目前为该校教授和细胞生物学系主席。   Randy W. Schekman于1948年出生于美国明尼苏达州St Paul,曾就学于加州大学洛杉矶分校和斯坦福大学,1974年从斯坦福大学获得博士学位,导师为1959年诺奖得主Arthur Kornberg,所在院系正是几年后Rothman加入的系。1976年,Schekman加入加州大学伯克利分校,目前为该校分子与细胞生物学系教授。他同时也是霍华德&bull 休斯医学研究院研究人员。   Thomas C. Sü dhof于1955年出生于德国Gö ttingen,他曾就学于哥廷根大学,1982年从该校获得MD学位并于同年获得该校神经化学博士学位。1983年,他加入美国德州大学西南医学中心,作为Michael Brown和Joseph Goldstein的博后(二人于1985年获得诺贝尔生理学或医学奖)。Sü dhof于1991年成为霍华德&bull 休斯医学研究院研究人员,2008年成为斯坦福大学分子与细胞生理学教授。   2013年诺贝尔生理学或医学奖授予了三位解开细胞如何组织其运输系统之谜的科学家。每个细胞如同一座工厂,制造和输出着各类分子比如胰岛素产生后释放到血液中,而被称为神经传递素的化学信号则通过一个神经细胞传递到另外一个神经细胞。这些分子都被运输到细胞周围的被称为囊泡的小&ldquo 包裹&rdquo 中。这次获奖的三位科学家解开了调控运输物在正确时间投递到细胞中正确位置的分子原理。   Randy Schekman发现了囊泡传输所需的一组基因 James Rothman阐明了囊泡是如何与目标融合并传递的蛋白质机器 Thomas Sü dhof则揭示了信号是如何引导囊泡精确释放被运输物的。   通过研究,Rothman, Schekman和Sü dhof揭开了细胞物质运输和投递的精确控制系统的面纱。该系统的失调会带来有害影响,并可导致诸如神经学疾病、糖尿病和免疫学疾病等的发生。   物质是如何传递到细胞内   对于一个庞大且繁忙的港口,需要一套运行体制保证正确的货物在正确的时间运送到正确的地点。细胞,有着被称为细胞器的不同&ldquo 隔间&rdquo ,也面临着类似问题:细胞产生分子物质如荷尔蒙、神经传递素、细胞因子、酶等,然后将这些物质在正确的时间里传送到细胞中其他地方或者细胞外。时间和地点决定一切。囊泡体积微小、呈泡状,外面包裹着膜,或在细胞器之间来回运输物质、或与细胞外膜融合将物质释放在外。这一过程十分重要,因为该过程可在有递质的条件下触发神经活动,或在有荷尔蒙的条件下控制代谢。囊泡又如何知道何时何地&ldquo 发货&rdquo 呢?   &ldquo 交通堵塞&rdquo 揭示遗传控制   Randy Schekman醉心于研究细胞如何组织其运输系统,他在上个世纪70年代决定利用酵母菌作为模型系统来从遗传原理上研究该系统。通过遗传筛查,他发现酵母菌的运输机制有缺陷,其运输系统很差劲,囊泡在细胞的特定区域堆积。他发现导致这种&ldquo 堵塞&rdquo 的原因是遗传的,便继续研究,试图找到变异的基因。Schekman发现三类基因能够控制细胞运输系统的不同方面,从而为了解细胞囊泡运输的精密调控机制提供一种新认识。   精确&ldquo 停靠&rdquo   James Rothman同样着迷于研究细胞运输系统的本质。当Rothman在上个世纪80至90年代研究哺乳动物细胞内的囊泡运输时,他发现一种蛋白复合物能让囊泡进入并融合目标膜。在融合过程中,囊泡上的蛋白质与目标膜如同拉链一般相互结合。这样的蛋白质数量很多且只以特定方式结合,如此使得运输物质能够投递到精确位置。同样的原理也在细胞内运行着,当囊泡与细胞外膜结合时便释放其内容物。   后来人们发现,Schekman在酵母菌中发现的基因一部分可编码Rothman在哺乳动物中找到的那些蛋白,从而揭开了这种运输系统的古老进化起源。他们一同绘制出了这种细胞运输机制的关键部分。   时机就是一切   Thomas Sü dhof对于脑中的神经细胞如何相互交流很感兴趣。信号分子&mdash &mdash 神经递质从囊泡中释放,通过Rothman和Schekman发现的机制,与神经细胞的外膜融合。不过,只有当神经细胞向其&ldquo 邻居&rdquo 发信号时,这些囊泡才被&ldquo 允许&rdquo 释放其内容物。这种控制方式为何如此精确?已知的是,钙离子参与其中,在1990年代,Sü dhof在神经细胞中搜索钙敏感蛋白。他鉴别出这种分子机制,即响应钙离子流入,指导临近蛋白快速将囊泡绑定至神经细胞外膜。&ldquo 拉链&rdquo 开启,信号物质释放出来。Sü dhof的发现解释了短暂的精确如何实现,以及囊泡内容物如何按指令释放。   囊泡运输有助理解疾病过程   三位诺奖得主发现了细胞生理学的一个基础性过程。这些发现对于我们理解&ldquo 货物&rdquo 如何以完美的时机和精确性在细胞内外进行转运具有重大的影响。在从酵母到人类的众多有机体中,囊泡运输和融合采用的是相同的原理。这一系统对于众多的生理学过程极为重要,在这些生理学过程中,囊泡融合必须被控制,包括在脑中发信号以及释放荷尔蒙和免疫因子。缺陷性囊泡运输发生于许多疾病中,包括大量神经性和免疫性疾病,以及糖尿病。若是没有这一奇妙的精确组织,细胞将会堕入混乱的深渊。
  • 女性更容易获得诺贝尔生理学或医学奖!
    p   诺贝尔奖从1901年到2015年,共有575人荣获科学奖(生理学或医学奖、物理学奖、化学奖)。其中仅有17位女性共获得18次奖(居里夫人两次获奖),女性占科学奖获奖总人数的比例不到3% 而女性物理学奖获得者仅有2人(居里夫人和迈耶),占科学奖获奖总人数的比例约为0.35%。在女性诺贝奖获奖者中,有11人获得生理学或者医学奖,占全部女性获奖者的比例为64%。可见,女性更容易获得生理学或医学奖。 /p p strong   物理学奖:2 /strong /p p   1903年,马丽亚· 居里,波兰,对放射性现象所作出的卓越研究工作 /p p   1963年,马丽亚· 古博特· 迈耶,美国,发现原子核的壳层结构 /p p   strong  化学奖:5 /strong /p p   1911年,马丽亚· 居里,波兰,发现放射性元素镭和钚 /p p   1935年,依琳· 约里奥· 居里,法国,在放射性元素合成方面的贡献 /p p   1964年,多萝西· 霍奇金,英国,发现青霉素和维生素B12的结构 /p p   2009年,阿达· 约纳特,以色列,研究核糖体的结构和功能 /p p   2009年,卡罗尔· 格雷德,美国,发现端粒和端粒酶如何保护染色体 /p p strong   生理学或医学奖:11 /strong /p p   1947年,盖提· 拉尼兹· 考瑞,美国,发现糖元的催化转化机理 /p p   1977年,罗莎琳· 苏斯曼· 亚娄,美国,创立对多肽类激素的放射免疫分析 /p p   1983年,巴巴拉· 麦克林斯托克,美国,发现转座子即基因是可以移动的 /p p   1986年,瑞塔· 莱维· 蒙塔尔西尼,美国,发现生长因子 /p p   1988年,格特鲁德· 艾琳,美国,发现糖尿病治疗的重要药理学机制 /p p   1995年,克里斯丁· 瓦哈德,德国,发现早期胚胎发育的控制机制 /p p   2004年,琳达· 巴克,美国,在嗅觉方面的卓越研究 /p p   2008年,弗朗索瓦丝· 巴尔-西诺西,法国,在人类免疫缺陷病毒(HIV)的发现过程中做出重要贡献 /p p   2009年,伊丽莎白· 海伦· 布莱克本,澳-美,端粒和端粒酶研究领域的先驱 /p p   2014年,梅· 布莱特,挪威,发现构成大脑定位系统的细胞 /p p   2015年,屠呦呦,中国,发现治疗疟疾的青蒿素。 /p p style=" text-align: center " img width=" 600" height=" 390" title=" 01.jpg" style=" width: 600px height: 390px " src=" http://img1.17img.cn/17img/images/201512/noimg/4e8ecde2-dfbc-470b-b024-541821a0f56c.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 诺奖典礼现场 /p p    strong 1911年诺贝尔化学奖授奖辞 /strong /p p   (1911.12.10) /p p   瑞典皇家科学院院长、国家图书馆馆长E· W· 达尔格伦博士 /p p   陛下、殿下、女士们、先生们: /p p   皇家科学院于今年11月1日决定,将1911年诺贝尔化学奖授予巴黎大学理学院的教授玛丽· 斯科罗多夫斯卡· 居里女士,以表彰她在化学发展中所作的贡献: /p p   发现了化学元素镭和钋 /p p   确定了镭的特性并分离出纯金属镭 /p p   最后,研究了这个著名元素的化合物。 /p p style=" text-align: center " img width=" 600" height=" 403" title=" 02.jpg" style=" width: 600px height: 403px " src=" http://img1.17img.cn/17img/images/201512/noimg/69fee540-6865-465c-8934-2a08775a30ba.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   居里夫人1903年与丈夫、贝克勒尔共同获得诺贝尔物理学奖时的证书 /p p   1896年,贝克勒尔发现铀元素的化合物中放出射线。这射线使照相底片感光,使空气导电。这一现象被称为放射性现象,导致这现象的物质被称为放射性物质。 /p p   稍后,人们发现化合物中的另一种元素,即由伯齐里乌斯(Berzelius)发现的钍元素,也具有相同的特性。 /p p style=" text-align: center " img width=" 600" height=" 455" title=" 03.jpg" style=" width: 600px height: 455px " src=" http://img1.17img.cn/17img/images/201512/insimg/e96f0336-1451-40bb-ba45-a79bf08dedaa.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 居里夫妇纪念邮票 /p p   因为发现和研究这种被称为铀射线或者贝克勒尔射线,皇家科学院把1903年的诺贝尔物理奖授给了贝克勒尔和居里夫妇。 /p p   在研究许多含铀和钍的化合物的过程中,居里夫人发现放射性强度与这些元素在化合物中的比例成正比。但是,某些天然矿石,例如沥青铀矿石,却表现出意外情况:它的放射性强度大大超出了其中铀放射性所能达到的预期值,实际上甚至比铀元素自身的放射性还要强。 br/ /p p style=" text-align: center " img width=" 300" height=" 448" title=" 04.jpg" style=" width: 300px height: 448px " src=" http://img1.17img.cn/17img/images/201512/noimg/7f4675bf-53e4-4923-8e0f-70bf6a12908a.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 青年居里夫人 /p p   合理的结论是,这些矿石中一定含有一种那时还未知的元素,且该元素有极强的放射性。的确,经过系统地利用十分复杂的化学程序,玛丽和皮埃尔· 居里从几吨的沥青矿石中,最终成功地提炼出——坦白地说是少量的——两种新的放射性强的元素的盐,他们称这两种元素分别为钋和镭。 /p p style=" text-align: center " img width=" 300" height=" 330" title=" 05.jpg" style=" width: 300px height: 330px " src=" http://img1.17img.cn/17img/images/201512/noimg/f191c18c-236f-4569-b0af-f2283987e5c5.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 葛丽亚· 嘉逊凭电影《居里夫人》赢得一生演艺事业的顶峰 /p p   其中之一的镭元素,化学性质与金属钡相似,能够通过一条特征光谱而识别,一直被认为是可以分离成纯金属态的。它的原子量由居里夫人确定为226.45。直到去年(1910年),在一个合作者的帮助下,居里女士才成功地分离出纯金属镭。尽管有各种相反的假说,她还是一劳永逸地确定了镭作为一个元素的位置。 br/ /p p style=" text-align: center " img title=" 06.jpg" src=" http://img1.17img.cn/17img/images/201512/noimg/48ed2ba2-87e0-44a6-8eb0-e37997a00f5c.jpg" / /p p style=" text-align: center " 电影《居里夫人》剧照 /p p   镭是一种银白色且发光的金属,能剧烈地分解水,当与有机物例如纸接触时,它能使之烧焦。它的熔点是700℃,比钡更易挥发。 /p p   根据化学家的观点,镭和它的衍生物最显著的特点是,在不受外界条件影响下,它们将不断地释放出一种射气(emanation),这是一种放射性气体,在低温下可以凝聚成液体。这种被建议称为氡的气体,似乎在各方面都具有元素的特性,化学性质与所谓的惰性气体非常相似,它的发现者当时就获得了诺贝尔化学奖。事情还没有结束,这种气体还不断地自行分裂,在它的产物中,诺贝尔奖获得者拉姆塞爵士发现了气态的氦元素,后来其他著名的科学家也发现了氦。这种元素曾经在太阳的光谱中被观察到,在地球上也可少量地找到。 /p p   这个事实在化学史上首次表明,一种元素真的可以转变成另一种元素。而且,正是由于这一原因使镭的发现有了更为重大的意义:它引起了化学革命,开创了化学的新篇章。 /p p style=" text-align: center " img title=" 07.jpg" src=" http://img1.17img.cn/17img/images/201512/noimg/c4f1f830-c9ce-4c4f-8c64-c75715438942.jpg" / /p p style=" text-align: center " 电影《居里夫人》海报 /p p   化学元素绝对不变的理论不再有效了,因为科学家已经揭开了一些至今还遮盖着的元素演变的秘密。 /p p   炼金术士最感亲切的嬗变理论,意外地死而复生,不过这次是以一种精确的形式,排除了任何神秘的要素。具有这种嬗变功能的点金石不再是一种神秘而费解的炼金药液,而是现代科学所称的能量。 /p p   可以假定,由镭原子构成的粒子系统中一定包含着巨大的能量。当原子分裂时,这些能量以光和热的形式不断释放出来。这正是镭的特征。 /p p   由于以上成就,我们论及的不再仅仅是个别或者特殊的现象了。放射性更强的镭和钋元素的发现,已经导致许多其他寿命或长或短的放射性元素的发现。通过这些发现,我们的化学知识以及我们对自然界物质的了解得到很大的扩展。 /p p   的确,镭的研究近年来导致科学的一个新分支的诞生,即放射学(radiology)的诞生。在巨大的科学王国里,放射学已经拥有自己的研究机构与杂志。 /p p    p style=" text-align: center " img width=" 300" height=" 385" title=" 08.jpg" style=" width: 300px height: 385px " src=" http://img1.17img.cn/17img/images/201512/noimg/03c058ca-ce03-4278-ba21-41bef00bf20d.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 电影《居里夫人》海报 /p p   由于和其他自然科学,例如物理学、金属学、地质学和生理学有许多结合点,这个自身很重要的学科又具有更多的重要性。我们知道,因为镭的生理作用,镭在医疗方面找到了应用。许多应用者认为,放射性治疗法在治疗癌症和狼疮方面有良好的效果。 /p p   镭的发现,首先对于化学,接着对人类知识的许多其他分支和人类活动,都有巨大的意义。有鉴于此,皇家科学院有理由认为,应当将诺贝尔化学奖授予两位发现者的唯一幸存者——玛丽· 斯科罗多夫斯卡· 居里夫人。 /p p   居里夫人,1903年瑞典皇家科学院荣幸地把诺贝尔物理奖部分地授给了您和您的丈夫,以表彰你们在放射性方面的发现。 /p p   今年,皇家科学院决定授予您化学奖,以表示对您为这个学科付出巨大劳动的赞赏。您发现了镭和钋,您描述了镭的特性和它的分离,您研究了这一著名元素的化合物。在诺贝尔奖颁发的11个年头里,这是第一次将此殊荣赐给以前的获奖者。现在,夫人,请您允许我在这种场合下,用我们科学院对您近年来发现的关注,表明您的发现的重要性。请您接收国王陛下的授奖。 br/ /p p /p p /p /p
  • 易科泰受邀参加第十七次中国作物生理学术研讨会
    2022年8月1日至3日,第十七次中国作物生理学术研讨会在新疆石河子胜利召开。会议由中国作物学会栽培专业委员会主办,石河子大学农学院、新疆生产建设兵团作物学会、绿洲生态农业兵团重点实验室承办,会议的主题是“作物生理• 优质丰产• 绿色高效”。 北京易科泰生态技术有限公司作为赞助方,应邀躬临盛会,向参会学者介绍了当今作物生理研究的热点前沿技术,包括:叶绿素荧光成像测量、高光谱成像测量、红外热成像测量、形态学分析等;研究范围涉及从细胞到无人机遥感的各种尺度,从种子活力到植物整个生长周期的全自动跟踪分析,从根到叶,从培养环境到植物生理和形态表型特征等全方位解决方案助力科研和生产。 易科泰在作物生理学研究领域提供如下技术方案:“工欲善其事,必先利其器”,北京易科泰生态技术有限公司秉承“利其器,善其事”的经营理念,为植物生理与植物分子生物学领域的研究者提供最优的技术⽅案。易科泰生态技术公司设有 EcoLab 实验室、生态健康研究中心及 SpectrAPP 光谱成像创 新应用项目,欢迎合作!
  • 文献解读 | 利用仿生性肺微生理系统监测肺部病理及炎症反应
    肺,作为呼吸和免疫防御的关键战场,在体外建立模拟感染和炎症反应的仿生肺模型一直是生物医学研究人员面临的一项重要但具有挑战性的任务。 长久以来,二维细胞培养模型为我们提供了肺上皮研究的初步平台,然而,这些模型却难以捕捉到肺部复杂多变的三维结构和免疫互动的丰富性。动物模型虽然有三维结构,但与人类肺组织的结构差异增加了制备过程的难度。直接培养人体组织则有免疫细胞丢失、体外维持时间不足等问题。 东南大学团队2023年1月在《Biosensors and Bioelectronics》(影响因子:12.6)期刊上发表了题为“A storm in a teacup -- A biomimetic lung microphysiological system in conjunction with a deep-learning algorithm to monitor lung pathological and inflammatory reactions”的文章(第一作者:东南大学青年至善学者、艾玮得生物CTO陈早早副教授,通讯作者:巢杰教授,浦跃朴教授和顾忠泽教授),介绍了体外肺微生理系统模型的构建方法与应用。该模型不仅在芯片上建立了肺泡-支气管复杂器官模型,而且在模型中引入了多种免疫细胞,增强了模型的仿真性,可以在模型上模拟肺脏病理和炎症级联反应,再现气溶胶微滴在肺中的传播,研究阻断病原传播的方法。该模型对于评价肺泡和支气管的通透性、粘液分泌、炎症反应等功能、开展高风险传染性肺疾病研究有重要作用。 体外肺微生理系统的设计与构建研究人员选择了多种肺上皮细胞系,如BEAS-2B(支气管上皮细胞)、NCI-H441(2型肺泡上皮细胞)、A549和Calu-3,人单核细胞系(THP-1)和人内皮细胞系(HUVEC),并将它们接种到膜式芯片上。芯片由支气管和肺泡腔组成,每个腔室由多孔膜分割为上下两个独立空间,上层接种肺上皮或支气管上皮细胞,下层接种肺血管内皮细胞,这些细胞在芯片内形成了致密的上皮层,模拟了肺部的自然结构。芯片使用多通道流控系统进行液体灌注。B)肺mps的典型构建时间C)上皮和内皮形态分析(I)肺- mps transwell样膜上的肺上皮(BEAS2b)和内皮(HUVEC)示意图。(II)肺- mps的冷冻切片和H&E染色显示在低(上)和高(下)放大下膜两侧存在上皮和内皮(第5天)(III)扫描电镜(SEM)图像显示内皮和上皮在膜上生长(第5天)(IV)芯片腔内内皮和上皮的活/死染色,显示肺- mps细胞的高活力(第7天) 肺微生理系统芯片的应用 1 在肺微生理系统芯片上模拟炎症级联反应巨噬细胞受免疫原性物质如PAMP和DAMP激活,进而分泌炎症因子、活化内皮细胞,造成更多单核细胞粘附并聚集于内皮层,引发炎症级联反应,而炎症级联反应通常用来描述炎症反应的放大。 为了模拟肺炎症反应,研究人员构建了一套器官芯片流路灌注系统,将肺微生理系统先后用组织定居巨噬细胞和循环单核细胞进行灌注,并用脂多糖(LPS)处理模型上腔,激活巨噬细胞,诱发炎症反应。通过连续观测芯片中流动的单核细胞,可以观察到LPS刺激后内皮细胞层有大量单核细胞粘附。炎症因子(如TNF-α、IL-6、MCP1)、跨上皮电阻(TEER)值、肺泡腔粘液分泌等指标的变化也证明了模型的炎症状态。肺器官芯片模拟早期炎症反应A)巨噬细胞在上皮上的播种B)灌注过程中LPS (10 μg/ml)对内皮细胞附着的单核细胞的影响C)在经LPS预处理的肺mps中,红色箭头表示内皮上原有的单核细胞,绿色箭头表示新的单核细胞附着D)扫描电镜图像显示单核细胞附着在内皮与不处理LPSE)肺- mps w/或w/o LPS组内皮上单核细胞粘附的定量比较 2肺微生理系统芯片上用于液滴与空气传播疾病的研究飞沫通过说话、呼吸和咳嗽传播是空气传播疾病的典型传播方式。为了构建能够模拟液滴扩散的体外模型,研究人员设计了一个全面的集成系统,整合了传播链上游的肺器官芯片、雾化器、防护口罩、下游的肺器官芯片以及泵和辅助设备。上游肺芯片肺泡室内的培养液通过雾化器产生液滴或气溶胶,经泵导入下游肺芯片。 在佩戴外科口罩与不戴口罩的情况下,追踪上游形成的色素微滴和荧光微珠扩散至下游介质的情况。结果显示,佩戴口罩能将两者的传播数量减少至5%以下,证明了防护口罩的预防效果。用这一系统也可以观察到伪病毒从病毒感染的上游肺器官向下游的传播,而口罩几乎完全阻止了伪病毒的感染。A)模拟液滴在人体肺部之间扩散的肺器官芯片集成系统B)肺器官芯片流路灌注系统,包括:两个控制系统口罩阻断伪病毒传播。 在空气传播的感染性疾病尤其是呼吸系统疾病领域,构建一个能够全面反映肺部感染和炎症反应的仿生模型,不仅需要技术的革新,更需要对生命本质的深刻理解和对病理过程的精准把握。体外肺器官芯片模型的研究与构建,使得仿生肺模型更加完整,更能模拟真实世界的人体组织内的复杂情况,致力于填补现有科学技术的空缺。 文献索引:Chen Z, Huang J, Zhang J, Xu Z, Li Q, Ouyang J, et al. A storm in a teacup -- A biomimetic lung microphysiological system in conjunction with a deep-learning algorithm to monitor lung pathological and inflammatory reactions. Biosens Bioelectron. 2023 Jan 1 219:114772. doi: 10.1016/j.bios.2022.114772. PMID: 36272347 江苏艾玮得生物科技有限公司(AVATARGET)是一家专注于提供人体器官芯片产品与解决方案的创新型科技公司,致力于器官芯片、智能装备及生物试剂等产品和服务的研发生产,构建器官芯片全产业链生态体系,创新突破传统动物模型与2D细胞模型的限制,解决种属差异难题、实现体外模型3D动态培养,构建高仿真的人体微环境、提高实验数据的准确性,为肿瘤精准诊疗、疾病建模、药物筛选、药物评价、化妆品评价、再生医学研究、航天医学研究等领域用户提供精准高效的产品与解决方案。 本期文献提及的肺器官芯片与肺器官芯片流路灌注系统已在艾玮得生物实现量产转化。单腔膜式芯片可用于构建体外肺模型、肠道模型、肝脏模型、皮肤模型、肾脏模型与血脑屏障模型。高通量膜式屏障芯片可用于构建体外肺模型、肠道模型、肝脏模型、皮肤模型、肾脏模型、血脑屏障模型与免疫共培养模型。器官芯片流路控制系统可实现细胞空间结构排布,模拟细胞生长的流体环境和气体-液体界面环境,实现自动化培养,节省人力,减少误差和人为操作失误,并大大降低实验的复杂性。 欢迎咨询详情:电话:0512-65367666邮箱:bd@avatarget.com.cn
  • 诺德泰科携DN2000杜马斯定氮仪参加2016年全国青年作物栽培与生理学术研讨会
    10月26-28日,由中国作物学会主办、中国作物学会栽培专业委员会及农业部作物生理生态与耕作学科群协办、山东农业大学承办的2016年全国青年作物栽培与生理学术研讨会在山东省泰安市召开。学科群首席专家中国工程院院士于振文,中国工程院院士张洪程,中国作物学会秘书长杜鹃,以及来自全国21个省区科研院所和高校的260余位专家、学者和研究生参加会议。会议以“作物可持续生产与现代农业”为主题,分作物高产高效协同的理论与技术、作物节本增效耕作的理论与技术、作物抗逆稳产及对环境适应机制、作物轻简化生产的原理与技术等4个子专题进行交流研讨。张洪程院士、中国农业大学陈阜教授、中国农业科学院作物所赵明研究员、山东农业大学贺明荣教授和南京农业大学程涛教授分别作专题报告;另有28位科研人员及博士研究生作学术报告,内容涵盖我国目前作物生理生态与栽培耕作学科的研究热点、研究进展以及未来的发展方向。氮元素是作物生长所需要的大量元素之一,是作物生长过程中的重要元素。氮元素在作物体内的转移现象是非常有趣:作物生长前期和中期,氮元素存在于茎叶中;等作物结实以后就大部分进入果实中去。所以说作物籽实中含氮元素一半是从茎叶储存并转移而来的,其余部分是籽实形成当时根系从土壤中吸收的。作物前期和中期生长好坏对氮元素的吸收,直接影响作物的产量。因此,氮元素的含量测定是农作物研究最重要的基础数据。作为国产杜马斯定氮仪的先行者,诺德泰科推出了DN2000杜马斯定氮仪,和传统的凯氏定氮相比,DN2000的优势可以用“多快好省”来概括:多:60位全自动进样器,分析样品更多快:分析速度从几小时降为几分钟好:无需腐蚀性和污染环境的化学试剂省:更低的安装要求和运行费用其突出的特点引起了众多青年学者的极大兴趣,纷纷就感兴趣的内容和我们的与会人员展开了热烈讨论,相关人员也就大家关心的问题积极予以解答,并虚心听取了各位专家的意见和建议。这些意见和建议也将激励我们做出更优秀的产品,为农作物栽培等领域的研究献上一份绵薄之力。
  • 岛津女子网球队勇夺日本网球联赛三连冠
    在第30届日本网球联赛总决赛中,岛津制作所女子网球队勇夺冠军,创造了建队以来首个三连冠的佳绩。 日本网球联赛总决赛于2月15日在位于日本東京涩谷区的东京体育馆举行。在与桥本总业队的对战中,岛津制作所网球队的桑田宽子与今西美晴在单打项目中击败对手,而大前綾希子、米村明子组则在双打项目中获胜,最终岛津制作所网球队以3比0的战绩获得胜利。 基于本赛季的精彩表现,桑田宽子被授予最佳卓越功勋选手奖、今西美晴被授予优秀选手奖。除此之外还授予米村明子、森友香特别奖,以表彰其对日本联赛作出的贡献。 岛津制作所网球队从1990年开始出战日本联赛,2014年终于实现了多年来的夙愿,在日本网球联赛中首次夺冠,并于去年举办的第29届联赛中再度摘得金牌。 实现建队以来首个三连冠的岛津网球队队员 左起 森 友香、大前 綾希子、今西 美晴、小森 广子(教练)、米村 明子、桑田 宽子 岛津制作所女子网球队除每年都参加日本网球联赛之外,还积极参加全日本网球锦标赛、岛津全日本锦标赛等国内主要赛事以及WTA排名国际大赛。另外,还通过举办青少年网球培训等活动,积极投身于社会公益事业中。 截止至2016年2月15日,岛津制作所女子网球队现有公司职员选手1名和专业签约选手4名,共5名在籍选手。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 石墨烯 “新材料之 王”竟成为神经电生理研究新选择,为什么它拥有无限潜力?
    “新材料之 王”是什么? 石墨是的一种同素异形体,质软,黑灰色,有油腻感。高定向热解石墨(highly oriented pyrolytic graphite)是指热解石墨,经高温处理使性能接近单晶石墨的一种新型石墨,简称HOPG。在2004年来自英国曼彻斯特大学的科学家们从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,把石墨片一分为二,不断重复操作,于是薄片越来越薄,最 后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。(▲三层碳原子构成的石墨结构分子示意图)在分离出单层石墨烯之前,大多数物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。所以,石墨烯的发现立即震撼了凝聚体物理学界。但是实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是一层甚至几层石墨烯。(▲由石墨烯构成的铅笔芯,图片取自央广网科普|习主席访英为何青睐&ldquo 奇迹材料&rdquo 石墨烯?2015-10-23) 石墨烯结构特点碳原子有4个价电子,石墨烯内部碳原子的3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成&pi 键,新形成的&pi 键呈半填满状态。形成的石墨烯为复式六角形晶格,每个元胞中有两个碳原子,每个原子与最近邻的 3个原子间形成3个&sigma 键,剩余的一个p电子垂直于石墨烯平面,与周围原子形成&pi 键。(▲石墨烯结构示意图,石墨烯的蜂窝状晶格包括两层互相透入的三角形晶格,每个子晶格A的格点都位于其他子晶格B确定的三角形中央,共同形成石墨烯的蜂窝状晶格)(▲石墨烯结构的波失空间,石墨烯的晶体结构与倒格子,所谓倒格子是与晶格空间相对应傅里叶变换出来的波矢空间,或称动量空间)(▲石墨烯能带结构图)我们可以看出在 K 和 K&rsquo 点附近,费米面附近的电子能量E与波矢 k成线性的关系,E= F|hk|v , 其中k为准粒子动量,Vf =106 m/s,为费米速度。色散关系是近似线性的,这等效于动量与能量的关系为线性,这也就表明电子的速度为常量,并不受动量与动能的影响。在这种情况下,薛定谔方程来描述粒子的运动已经无效了,我们需要运用引入了相对论效应的狄拉克方程来描述。关于石墨烯非常高的电子迁移率的原因也是由于狄拉克点的存在,由于量子隧穿效应的影响,电子有概率穿过高于自身能量的势场。石墨烯的优势有什么?由于存在这样的特殊结构,石墨烯具备了超高的载流子迁移性,也就具备了良好的导电性和极高的信噪比以及时间分辨率。所有性能都基于结构,所以,石墨烯同样还具备轻盈,高导热性,做同样的功所消耗电力少,化学反应性强,强度高,比表面积大,高弹性高硬度等特点,发热少等优点。这么多优点又如此应用广泛,难怪石墨烯被称为&ldquo 黑金&rdquo ,是&ldquo 新材料之 王&rdquo !2004年被发现,发现者2010年就获得了诺贝尔物理学奖,连我们的习大大都去参观了曼彻斯特大学的石墨烯研究所呢!在笔者看来最重要的一个特点是,单层的石墨烯近乎透明,对于应用场景的限制大大减少了。石墨烯如何制备?石墨烯之父采用的是机械剥离法,这个方法较为简便,将天然石墨块放在干净的二氧化硅SiO2上,上方用透明胶带反复剥离,从而得到石墨薄片。根据菲涅尔定律,在外部光源照射下,石墨烯与SiO2基底之间会因反射光强不同呈现光学反差,并且这种光学反差随着石墨样品厚度增加有着明显改变,借此办法来确定石墨烯是否为单层或多层。这个方法虽然简便,但不适合大规模生产。除此之外还有氧化还原法, 取向附生法, 碳化硅外延法, 赫默法以及化学气相沉积法(CVD)。CVD法简单说来就是用含碳有机气体为原料进行气相沉积制得石墨烯薄膜的方法,这也是目前科研机构制备石墨烯常用的方法。(▲化学气相沉积法CVD示意图)例如以铜Cu或镍Ni为基底,高温加热,并辅以甲烷作为碳源补充,使甲烷中的碳原子脱去氢,在基底上形成石墨烯。不同材质的基底对于碳原子溶解性不同,所以会产生&ldquo 石墨烯岛&rdquo 或&ldquo 石墨烯膜&rdquo ,通过控制气压高低可以获得单层石墨烯或多层石墨烯。 石墨烯的应用极高的信噪比和时间分辨率让石墨烯在生物电信号采集时具有极大的优势。目前的生物电传感器主要集中在膜片钳和微电极阵列,前者具备较高的空间分辨率,信噪比较好,但对生物体有损伤;后者没有损伤且可长时间记录生物体膜外信号,但是信噪比和空间分辨率相对较低。场效应晶体管是一种很好的代替微电极阵列的记录工具,利用场效应晶体管可以很好的记录小鼠大脑皮层或者海马区的神经电生理信号,也可以将其刺穿细胞膜来记录膜内电势差。这种技术信噪比较高,集成度也不错。石墨烯场效应晶体管和传统的场效应晶体管类似,但需要在石墨烯的表面做相应的修饰,使其能特异性识别某种分子或物质这样就既可以提高生物相容性和灵敏度,又能把石墨烯载流子迁移率高和载流子浓度高的特点发挥得淋漓尽致。上图为60通道石墨烯微电极阵列示意图,PI:1-&mu m-thick light-sensitive polyimide,即1微米厚光敏聚酰亚胺1,以此装置记录大鼠胚胎分离的神经细胞电生理活动。上图为石墨烯晶体管进行细胞电信号记录示意图,在柔性聚酰亚胺基底和透明基底(蓝宝石,玻璃,SiO2 /Si) 上制备了石墨烯液栅晶体管器件如上图所示,并用其记录小鼠初级海马神经元的神经信号2,因石墨烯材料透明的特点,同时结合倒置光学显微镜,观察细胞的光学特征。上图是石墨烯晶体管上培养的神经元细胞图,培养21天后的神经元进行免疫荧光染色2,DAPI(红色)和anti-Synapsin(绿色)染色,分别胞体和突触囊泡)机械剥离的石墨烯对心肌细胞电生理信号的记录3,A:在不同water gate potentias下记录的数据。蓝色、绿色和红色分别代表在 +0.05、+0.10 和 +0.15 V 下所记录。相应的灵敏度分别为 2020、398 和 2290 &mu S/V。B:所选栅极电位的代表性扩展峰值。蓝色类似于在石墨烯 FET 的 p 型器件极性处记录的结果,红色峰代表在n型器件极性处记录的结果,绿色峰代表在Gra-FET的狄拉克点附近记录的结果。上图为16通道石墨烯晶体管阵列记录HL-1细胞电生理信号4, 比例尺为100 &mu m。一个石墨烯场效应晶体管阵列中8个晶体管在数十秒(h)和数百秒(i)内同时记录电流的情况。图:细胞相容性测试,37摄氏度下,不同浓度纯石墨烯(上)和氧化石墨烯(下)处理Vero细胞后的存活率情况5。 石墨烯最 新应用研究近日,来自曼彻斯特大学的纳米医学实验室的研究者们利用利用石墨烯近乎透明的特点,监测脑缺血小鼠大脑皮层的电信号,并同时监测皮层血流灌注量变化情况,因为石墨烯近乎透明的性质,在激光成像下不会产生激光伪影(如下图所示)。(▲利用石墨烯透明的特点,监测脑缺血小鼠大脑皮层的电信号,并同时监测皮层血流灌注量变化情况,由RWD RFLSI Ⅲ激光散斑血流成像系统采集)总结石墨烯具备了许多神经电极活性材料的特性,如良好的相容性、化学稳定性、柔韧性、光学透明性和高导电性等,为更精 准的神经电生理研究提供了新的选择。识别下方二维码快来免费申请试用吧* 敬请期待下期内容,脑卒模型下的神经电生理相关特点。【参考文献】1:Du X, Wu L, Cheng J, Huang S, Cai Q, Jin Q, Zhao J. Graphene microelectrode arrays for neural activity detection. J Biol Phys. 2015 Sep 41(4):339-47.2. Veliev F, Han Z, Kalita D, Brianç on-Marjollet A, Bouchiat V, Delacour C. Recording Spikes Activity in Cultured Hippocampal Neurons Using Flexible or Transparent Graphene Transistors. Front Neurosci. 2017 11:466.3. Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010 Mar 10 10(3):1098-102.4. Hess LH, Jansen M, Maybeck V, Hauf MV, Seifert M, Stutzmann M, Sharp ID, Offenhä usser A, Garrido JA. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv Mater. 2011 Nov 16 23(43):5045-9, 4968. 5. Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 2011 Jun 3(6):2461-4.
  • 日立LA8080蛋白水解法&生理体液法分析氨基酸
    氨基酸是组成生物体中蛋白质的基本单元,主要以下列两种形式存在:一种是以结合态存在于肽和蛋白质中,被称为标准氨基酸,这类氨基酸约有20种,分析这类氨基酸的方法被称为“蛋白水解法(标准分析法)”;另一种是以游离态存在于生理体液(如血浆,尿液等)、食品(如肉制品,饮料等)中,这些氨基酸包含氨基酸代谢物和前体,被称为游离氨基酸,因其直接影响食品的口感与风味,近年来备受关注。游离氨基酸比标准氨基酸的种类丰富,至今已知主要有约40种,分析这类氨基酸的方法被称为“生理体液法”。高效液相色谱柱后衍生法是氨基酸分析最常用的方法,一般通过色谱柱分离后,进行柱后衍生再测定。茚三酮柱后衍生法是通过离子交换色谱柱分离氨基酸后,与茚三酮试剂混合发生化学反应(显色),可在可见光区进行检测,此方法可靠性与稳定性高,被广泛应用。下面使用日立全自动氨基酸分析仪LA8080,分别采用蛋白水解法&生理体液法测定样品中的标准氨基酸和多种游离氨基酸。缓冲液和衍生试剂可使用市售配件,适用于品质管理等常规分析。蛋白水解(PH)法日立全自动氨基酸分析仪LA8080采用长寿命高理论塔板数3 μm分离柱,可在30 min内实现标准氨基酸分离度全部大于1.2分离。并且通过调整洗脱程序,还可把分析时间从30 min更进一步缩短到24 min,实现氨基酸的超高速分析。生理体液(PF)法日立全自动氨基酸分析仪LA8080采用第三代衍生技术—TDE3,填充高效热传导材料,提高传热效率,检出限进一步提高到2.5 pmol,使用寿命是第二代的2.5倍。从上述结果中可见,对于复杂的生理体液,LA8080仍然能够实现高灵敏度和分离度的检测。日立全自动氨基酸分析仪LA8080采用日立独家的长寿命高灵敏度的第三代TDE3尖端衍生技术,以及长寿命高理论塔板数3 μm分离柱使氨基酸的分析进入超高速全自动分析的时代。
  • 细数近12年诺贝尔生理学或医学奖
    p   诺贝尔奖是根据诺贝尔遗嘱所设基金提供的奖项(1969年起由5个奖项增加到6个),每年由4个机构 (瑞典3个,挪威1个)评选。1901年12月10日即诺贝尔逝世5周年时首次颁发。诺贝尔在其遗瞩中规定,该奖应授予在物理学、化学、生理学或医学、文学与和平领域内“在前一年中对人类作出最大贡献的人”。 /p p   诺贝尔生理医学奖的评选由瑞典的医科大学卡罗琳学院(也叫做卡罗琳斯卡医学院)负责。根据诺贝尔基金会的相关章程,评选由卡罗琳医学院诺贝尔大会(Nobel Assembly)负责,大会由50名选举出来的卡罗琳医学院名教授组成。 /p p style=" text-indent: 2em " span style=" text-indent: 2em " 小编为大家盘点了生理学或医学自2007年来诺贝尔奖的获奖情况,供读者阅览、思考。 /span /p p style=" text-indent: 2em text-align: center " strong style=" color: rgb(0, 112, 192) text-indent: 2em " 2018& nbsp 免疫调节治疗癌症 /strong br/ /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/1a18bb9f-f362-4adb-a3a5-9edf28be128d.jpg" title=" 2018nuo.png" alt=" 2018nuo.png" width=" 283" height=" 212" style=" text-align: center width: 283px height: 212px " / /p p style=" text-indent: 2em " 美国的詹姆斯艾利森(James Allison)与日本的本庶佑(Tasuku Honjo) ,以表彰他们“发现负性免疫调节治疗癌症的疗法方面的贡献”。 br/ /p p   艾利森被认为是分离出T细胞抗原(T-cell antigen)复合物蛋白的第一人,他同时发现,如果可以暂时抑制T细胞表面表达的CTLA-4这一免疫系统“分子刹车”的活性,就能提高免疫系统对肿瘤细胞的攻击性,从而缩小肿瘤的体积。他对T细胞发育和激活,以及及免疫系统“刹车”的卓越研究,为癌症治疗开创了全新的免疫治疗思路——释放免疫系统自身的能力来攻击肿瘤。 /p p   本庶教授建立了免疫球蛋白类型转换的基本概念框架,他提出了一个解释抗体基因在模式转换中变化的模型。1992年,本庶首先鉴定PD-1为活化T淋巴细胞上的诱导型基因,这一发现为PD-1阻断建立癌症免疫治疗原理做出了重大贡献,曾在2013年被《Science》评为年度十大科学突破之首。 /p p style=" text-align: center " strong style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 112, 192) " 2017 发现控制昼夜节律的分子机制 /span /strong /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/d67d767e-d3b5-496e-8dfc-5607e5389ea1.jpg" title=" 2017诺贝尔奖.jpg" alt=" 2017诺贝尔奖.jpg" style=" text-align: center width: 288px height: 293px " width=" 288" height=" 293" / /p p style=" text-indent: 2em " 2017年诺贝尔生理学或医学奖授予杰弗理· 霍尔(Jeffrey C Hall)、迈克尔· 罗斯巴希(Michael Rosbash)、迈克尔· 杨(Michael W Young)。 br/ /p p   三位科学家的获奖理由是:发现控制昼夜节律的分子机制。 /p p style=" text-indent: 2em " 研究人员对生物钟进行了深入研究,阐明了其内在工作机制,相关的研究发现解释了植物、动物以及人类如何适应自身的昼夜规律,一边能够和地球的旋转同步。研究人员以果蝇作为模式动物,分离到了一种能够控制动物日常正常生物节律的特殊基因,这种基因能够编码一种特殊的蛋白,此种蛋白在夜间积累、白天降解;此外他们还发现了一种额外的蛋白组分,同时还阐明了指导细胞内部自我维持时钟(self-sustaining clockwork)的特殊机制。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2016& nbsp 细胞自噬 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/6e3c6a0e-c088-486e-af4a-39c0d4ba0c64.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-indent: 2em " 2016年的诺贝尔生理学或医学奖授予了日本科学家大隅良典(Yoshinori Ohsumi),获奖理由是“发现了细胞自噬机制。” br/ /p p   尽管人类认知自体吞噬过程已经超过50年了,但自20世纪90年代研究者大隅良典发现自噬作用后,其在生理学和医学研究中的关键角色和作用才被发现。自噬能够消灭外来入侵的细菌和病毒,对胚胎发育和细胞分化也很关键,自噬基因的突变会引发多种疾病发生。 br/ /p p   这项成果目前在产业方面的应用前景主要包括:帕金森疾病、2型糖尿病、癌症及衰老等领域。相关研究正在紧密展开中,以期开发相关标靶自噬药物治疗多种疾病。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2015& nbsp 寄生虫疾病 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/598b0719-3bc6-4743-b54c-3cbac2d13026.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " 2015年的诺贝尔生理学或医学奖授予了爱尔兰科学家威廉· 坎贝尔、日本科学家大村智和中国药学家屠呦呦。 /p p   这其中,一半共同授予威廉· 坎贝尔和大村智,以表彰他们发现针对蛔虫感染的新疗法(伊维菌素和阿维菌素的发现) 另一半则授予屠呦呦,以表彰她发现针对疟疾的新疗法(青蒿素的发现)。 br/ /p p   如今,伊维菌素广泛被用于牛、羊、马、猪的胃肠道线虫、肺线虫和寄生节肢动物,犬的肠道线虫,耳螨、疥螨、心丝虫和微丝蚴以及家禽胃肠线虫和体外寄生虫的预防和治疗 阿维菌素则被广泛作为农用或兽用杀菌、杀虫、杀螨剂 青篙素被开发成治疗肿瘤、黑热病、红斑狼疮等疾病的衍生新药,并正在探索其治疗艾滋病、恶性肿瘤、利氏曼、血吸虫、涤虫、弓形虫等疾病以及戒毒的新用途。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2014& nbsp 大脑GPS /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/df0d7258-2e18-480e-af30-a01a2ab8f43a.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-indent: 2em " 2014年的诺贝尔生理学或医学奖授予了美国及挪威三位科学家约翰· 欧基夫、迈-布里特· 莫泽和爱德华· 莫索尔获奖。获奖理由是“发现构成大脑定位系统的细胞”。他们发现,大鼠海马区形成的回路在大脑中构成了一个广泛的定位系统——大脑GPS。 /p p   这一研究促进了脑成像系统的进展,以及阿尔茨海默症等神经疾病的治疗提供了新思路,为理解记忆、思考、计划等认知过程,开辟了新的途径。 br/ /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2013& nbsp 细胞囊泡运输调控机制 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/02549e22-d115-4faf-9c5d-20ad6bf124e8.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-indent: 2em " 2013年的诺贝尔生理学或医学奖授予了美国科学家詹姆斯-E. 罗斯曼和兰迪- W. 谢克曼、德国科学家托马斯- C. 苏德霍夫,以表彰他们发现细胞内部囊泡运输调控机制。 /p p   该研究揭示了“囊泡”周围细胞货物如何在正确的时间被运送到正确的细胞靶点。如果没有囊泡这个精确而奇妙的组织,细胞会陷入一片混乱,患者的囊泡转运都出现缺陷,从而会导致上述疾病。 br/ /p p   目前,该研究被运用于神经系统疾病、糖尿病、免疫疾病等疾病的病程生理调控。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2012& nbsp 体细胞重编程技术 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f57529db-f511-4336-8bfa-23f7a8416efb.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-indent: 2em " 2012年的诺贝尔生理学或医学奖授予了英国科学家约翰· 格登和日本医学教授山中伸弥,以表彰他们在“体细胞重编程技术”领域做出的革命性贡献。其中,山中伸弥利用基因技术,通过对小鼠的成熟细胞重编程,诱导成功具有分化能力的诱导多能干细胞。 /p p   这项技术的价值在于建立长期稳定传代的患者特异细胞系,用以进行个体化药物筛选 以及将从患者体细胞获得的干细胞作为细胞治疗的材料,在疾病模拟、药物筛选和细胞治疗中有着巨大的应用前景,被人们视为细胞疗法的新希望。 br/ /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2011& nbsp 免疫系统激活的关键原理 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7d7870f0-8d78-4bc0-831a-0834976a593a.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-indent: 2em " 2011年的诺贝尔生理学或医学奖一半归于布鲁斯· 巴特勒和朱尔斯· 霍夫曼,理由是“先天免疫激活方面的发现” 另一半归于拉尔夫· 斯坦曼,理由是“发现树枝状细胞及其在获得性免疫中的作用”。 /p p   免疫系统是人体和动物健康“防线”,用以抵御细菌和其他微生物。他们发现了免疫系统激活的关键原理,从而彻底革新了我们对免疫系统的认识,为驱使人体自身细胞和免疫进程来阻止传染病、自体免疫紊乱、过敏、癌症和器官移植排异提供了可能性,例如癌症治疗疫苗的开发。 span style=" text-align: center "    /span /p p style=" text-align: center " strong style=" text-align: center " span style=" color: rgb(0, 112, 192) " 2010& nbsp 试管婴儿技术 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/0158c112-8ec9-4f2b-8e88-67b73d0a95ef.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-indent: 2em " 2010年的诺贝尔生理学或医学奖授予了被誉为“试管婴儿之父”的英国科学家罗伯特· 爱德华兹,因其“在试管受精技术方面的发展”。 br/ /p p   罗伯特· 爱德华兹让治疗不育症成为可能,全球超过10%的夫妇因此获益匪浅。1978年7月25日,世界上第一例试管婴儿的诞生,就是对爱德华兹的不懈努力的最好表彰。他的贡献代表着现代医学史上的又一座里程碑。 br/ /p p   如今,试管婴儿技术不断创新,从一代试管婴儿、二代试管婴儿迈向三代试管婴儿,造福千万家庭。 strong style=" text-align: center " span style=" color: rgb(0, 112, 192) "   /span /strong /p p style=" text-align: center " strong style=" text-align: center " span style=" color: rgb(0, 112, 192) " 2009& nbsp 端粒和端粒酶保护染色体 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/b471b1ce-986d-44fc-b4ea-213850889547.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-indent: 2em " 2009年的诺贝尔生理学或医学奖授予了美国加利福尼亚旧金山大学的伊丽莎白· 布莱克本、美国巴尔的摩约翰· 霍普金医学院的卡罗尔-格雷德、美国哈佛医学院的杰克· 绍斯塔克,以表彰他们发现了端粒和端粒酶保护染色体的机理。 /p p   他们解决了生物学的一个重大问题:在细胞分裂时染色体如何完整地自我复制以及染色体如何受到保护以免于退化。解决办法存在于染色体末端—端粒,以及形成端粒的酶—端粒酶。 br/ /p p   这项细胞基本机制的发现,提高了人们对于细胞的理解的深度,阐明了疾病机制,有助于新兴治疗措施的发展,尤其是在抗衰老和抗癌方面的疗法开发。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2008& nbsp HPV和HIV病毒的发现 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e894ec77-8930-4cd8-9298-fba357252691.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-indent: 2em " 2008年的诺贝尔生理学或医学奖授予了发现给发现宫颈癌的人乳头状瘤病毒(HPV)的德国科学家Harald zur Hausen以及发现艾滋病病毒(HIV)的法国科学家Franç oise Barré -Sinoussi和Luc Montagnier。 /p p   HPV病毒的发现是进行疫苗研究的基础,为人类攻克宫颈癌提供了更为明确的“靶点”,如今科学家们在这一基础上研制出宫颈癌疫苗,这不仅是为全球女性送上的一份“科学礼物”,也对今后人类防治其他癌症具有重要借鉴意义。目前,全球共有3种HPV疫苗上市,分别是二价、四价和九价。 br/ /p p   正是因为HIV病毒的发现,才开发出了用于诊断艾滋病的血液检查新方法和试剂,并开发出抗HIV病毒的药物,进而极大延长了艾滋病患者的生存期。 span style=" text-align: center "   /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong style=" text-align: center " 2007& nbsp 利用胚胎干细胞引入“基因打靶”技术 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/580a1953-7a57-4e88-aaad-c721aa058162.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-indent: 2em " 2007年的诺贝尔生理学或医学奖授予了在“小鼠基因打靶”技术研究的三位科学家,美国犹他大学Eccles人类遗传学研究所科学家Mario R. Capecchi 、美国北卡罗来纳州大学教会山分校医学院教授Oliver Smithies 与英国科学家卡迪夫大学卡迪夫生命科学学院Martin J. Evans因在胚胎干细胞和哺乳动物的DNA重组方面的开创性成绩而获奖。 /p p   这项在老鼠身上进行的“基因打靶”技术,极大地影响了人类对疾病的认识,已被广泛应用在几乎所有生物医学领域。 br/ /p p   科学家几乎能实现所有小鼠基因的敲除,构建许多不同类型的人类疾病小鼠模型,为心血管疾病、糖尿病、癌症、囊肿性纤维化等疾病的对症下药提供了证据。 /p p   以上就是2007年来诺贝尔生理学或医学奖在临床应用中的进展。明年它将会花落谁家呢?让我们拭目以待。 /p
  • 岛津推出《应对全国城镇污水处理及再生利用设施建设规划解决方案》
    日前,发改委和住建部联合发布《“十三五”全国城镇污水处理及再生利用设施建设规划(征求意见稿)》。规划中提出,“十三五”期间将投资45亿元完善国家、省、市三级排水监管平台,形成全国统一、全面覆盖的城镇排水与污水处理监管体系。 从本次发布的规划细则来看,此次的建设重点为“地方网”,即省级排水监测站和市级排水监测站。目前住建部要求建设的排水监测站应具备《污水排入城镇下水道水质标准》《城镇污水处理厂污染物排放标准》等有关标准规范规定项目的检测能力。《污水排入城镇下水道水质标准》的最新版本为GB/T31962-2015,2016年8月1日正式实施。标准规定厂污水排人城镇下水道的水质、取样与监测要求。该标准适用于向城镇下水道排放污水的排水户和个人的排水安全管理。全检测指标共46项,主要涉及仪器包括:温度计、天平、红外分光光度计、紫外可见分光光度计、pH计、COD消解仪、滴定仪、蒸馏装置、高效液相色谱仪、离子色谱仪、离子计、原子荧光光谱仪、测汞仪、石墨炉原子吸收光谱仪、火焰原子吸收光谱仪、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪、气相色谱仪、气质联用仪等。《城镇污水处理厂污染物排放标准》的最新版本为GB18918-2002,标准规定了城镇污水处理厂出水、废气排放和污泥处置(控制)的污染物限值。全检测指标共62项,其中基本控制指标12项,一类污染物指标7项,选择控制项目43项。 岛津公司作为全球著名的分析仪器厂商,秉承“以科学技术向社会做贡献”的宗旨,自进入中国以来,一直关注国内外各行业政策法规的颁布与实施,积极应对,及时提供全面、有效的解决方案。针对城镇排水与污水处理监管体系的建设,岛津分析中心参考检测法规与标准,积极开发了相关分析应用方法,并汇编了《应对全国城镇污水处理及再生利用设施建设规划解决方案》。 有关详情,请您向“岛津全球应用技术开发支持中心”咨询。咨询电话:021-22013542 期待我们的工作会给您带来有益的帮助! 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 2016植物生理生态及表型技术研讨会(上海)开幕 座无虚席
    2016年11月24日,继北京会场成功举办后,2016植物生理生态及表型技术研讨会移师上海举行。会议期间的上海正遭受年度最强寒潮的蹂躏,但严寒阻挡不了求知的欲望!上海会场参会嘉宾对新知识、新技术的热情不输北京,研讨会首日,100多人的会场即座无虚席。 与北京一样,上海会场的内容包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养等。多位植物生理生态及表型研究领域的中外专家与参会嘉宾现场面对面,专家讲嘉宾听,嘉宾问专家答,频繁的互动极大的活跃了会场交流的气氛。 为了让参会嘉宾对会上讲到的新技术及应用有更深的认识,泽泉科技在会场设置了展台,展示了WALZ公司、LemnaTec公司、CID公司等公司的产品,演示了部分产品的的操作和应用技巧,吸引了大量嘉宾的关注。 11月25日还将有7场报告,亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察也将在25日进行,精彩不容错过(请见后文研讨会日程)。泽泉科技携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,欢迎随时与我们交流。 上海会场会议日程:上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-9:45 Phyto-PAM-II 藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家)9:45-10:15 从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司)10:30-12:00 气体交换光合仪基本原理、实验技巧与日常维护 (主讲人:郭峰,上海泽泉科技股份有限公司) 午餐(青松城大酒店四楼 紫罗兰厅)13:00-14:00 超高通量园艺物流与 LemnaTec 最新植物表型测量技术介绍 (主讲人:李涛,上海泽泉科技股份有限公司)14:15-15:30 CID生理生态仪器介绍、实验技巧及日常维护 (主讲人:陈彦昌,上海泽泉科技股份有限公司)15:30-17:30 植物生理仪器使用现场交流,样机演示14:00-16:00 参观行程 AgriPheno™ 植物基因型-表型-育种平台参观注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 相关信息:?2016植物生理生态及表型技术研讨会开幕 首日百人参会?2016植物生理生态及表型技术研讨会第三轮通知
  • 泽泉科技2016植物生理生态及表型技术研讨会成功举办
    2016年11月21日至11月25日,由上海泽泉科技股份有限公司主办的“2016植物生理生态及表型技术研讨会”分别在北京和上海成功召开。来自全国各地90多家科研单位以及公司的近200位专家学者出席此次研讨会。本次会议旨在更好地服务全国的科研用户,为全国高校、研究所的科研工作提供技术保障,让植物科研领域研究人员更深入地了解最新的产品及测量技术。 北京会场 研讨会期间恰逢年度最强寒潮来袭,但严寒阻挡不了求知的欲望!北京上海两地会场,首日皆有百人与会。多位植物生理生态及表型研究领域的中外专家与参会嘉宾围绕叶绿素荧光测量技术、CID产品技术、气体交换光合仪的原理及实验技巧、植物表型测量技术等内容,进行了深入的沟通和交流。德国WALZ公司应用科学家Oliver Meyerhoff以“植物3D荧光成像技术介绍及样机演示”为题,专业地阐述了3D荧光成像技术的原理、使用技巧及最新应用。果实采后生理是目前研究热点之一,美国CID公司总裁Leonard Felix报告的“美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用”就引起了与会嘉宾的极大关注,由产品公司总裁亲自讲解不仅保证了报告的专业性、可靠性,而且更体现了泽泉科技对技术提供与售后保障的负责态度。上海慧算生物技术有限公司的张国斌博士带来的讲座“从分子到表型——高通量测序与表型关联分析”,则将与会嘉宾的目光从生理生态研究成功转移到了表型研究上,深入浅出的讲解,让基因研究与表型研究的关系变得更加直观明了。 北京会场参会嘉宾 作为东道主,泽泉科技的技术专家也实力不俗。本次研讨会上,泽泉科技技术专家带来的“CT等新技术在根系研究中的应用”,“种子选育技术”,“CONVIRON植物培养解决方案”,“调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术”,“LemnaTec最新植物表型测量技术”,“气体交换光合仪基本原理、实验技巧及日常维护”等报告内容,不仅专业,而且贴近实际,完美的解决了与会嘉宾遇到的各种科研问题。 上海会场 研讨会期间,泽泉科技在两个会场都设置了展台,不仅展示WALZ、LemnaTec、CID等公司的产品,还为与会嘉宾提供现场仪器体验、讲解与维护保养服务。不论新老客户都得其所需,疑问与困惑由公司技术与国外专程远道而来的专家讲解答疑,已购买的仪器也可以现场调试安装,泽泉科技完美的客户服务受到一致好评。 上海会场 研讨会的最后一项活动是亚洲第一个开放式高通量植物基因型-表型-育种平台——AgriPheno的参观考察。50多位老师在AgriPheno平台专业团队的带领下兴致勃勃地参观了德国LemnaTec植物表型平台(Scanalyzer 3D、HTS、PL)、植物生理生态测量平台、农业云物联网监测平台、荷兰Priva温室精准灌溉系统、专业的数据库平台、步入式培养箱和人工气候室等。一系列的参观项目引起了老师的强烈兴趣,原定的参观时间不得不一次次的延长。AgriPheno平台科研人员专业、详细的讲解获得了老师的交口称赞,许多老师表示平台这种服务模式先进化、人性化,对科研的推动具有不可或缺的价值! 与会嘉宾参观AgriPheno平台 上海会场参会嘉宾 本次研讨会受到全国科研单位老师同学的大力支持,会议获得圆满成功。通过本次植物生理生态及表型技术研讨会,泽泉科技进一步加强了与广大专家学者的合作,将一如既往的为广大客户提供优质的产品和完善的服务。
  • 即插即用可定制 多器官芯片演绎人体原理
    美国哥伦比亚大学工程系和医学中心的一组研究人员报告说,他们已经开发出一种多器官芯片形式的人体生理模型,该芯片由经过工程改造的人体心脏、骨骼、肝脏和皮肤组成,通过循环免疫细胞的血管流动,以重现相互依赖的器官功能。研究人员创造的这种即插即用的多器官芯片,大小与显微镜载玻片相当,可为患者定制。由于疾病进展和对治疗的反应因人而异,因此这种芯片最终将为每位患者提供个性化的治疗。这项研究刊载于4月27日出版的《自然生物医学工程》杂志上。灵感来自人体工程组织已成为疾病建模和在人体环境中测试药物疗效和安全性的关键组成部分。研究人员面临的一个主要挑战,是如何使用多种可进行生理交流的工程组织来模拟身体功能和全身性疾病,就像它们在体内所做的那样。然而,必须为每个工程组织提供自己的环境,以便特定的组织表型可维持数周至数月,符合生物学和生物医学研究的要求。使挑战变得更为复杂的是,必须将组织模块连接在一起以促进它们的生理交流,这是对涉及多个器官系统的建模所必需的。从人体的工作原理中汲取灵感,研究团队构建了一个人体组织芯片系统,在该系统中,他们通过循环血管流动将成熟的心脏、肝脏、骨骼和皮肤组织模块连接起来,让相互依赖的器官能够像在人类的身体里。研究人员之所以选择这些组织,是因为它们具有明显不同的胚胎起源、结构和功能特性,并且受到癌症治疗药物的影响。“在保持其个体表型的同时提供组织之间的交流一直是一项重大挑战,”该研究的主要作者、哥伦比亚大学干细胞和组织工程实验室副研究科学家凯西罗纳德森-博查得说,“因为我们专注于使用源自患者的组织模型,我们必须单独使每个组织成熟,以便它以模仿患者身上的反应方式发挥作用,我们不想在连接多个组织时牺牲这种先进的功能。在体内,每个器官都维持着自己的环境,同时通过携带循环细胞和生物活性因子的血管流动,与其他器官相互作用。因此,我们选择通过血管循环连接组织,同时保留维持其生物保真度所必需的每个单独的组织生态位,模仿我们的器官在体内连接的方式。”组织模块可维持一个月以上研究团队创建了组织模块,每个模块都在优化的环境中,并通过选择性渗透的内皮屏障将它们与常见的血管流分开。个体组织环境能够跨越内皮屏障并通过血管循环进行交流。研究人员还将产生巨噬细胞的单核细胞引入血管循环,因为它们在指导组织对损伤、疾病疗效的反应方面发挥着重要作用。所有组织均来自同一系人类诱导多能干细胞,从少量血液样本中获得,以证明个体化、患者特异性研究的能力。而且,为了证明该模型可用于长期研究,该团队将已经生长和成熟4到6周的组织在通过血管灌注连接后又维持了4周。研究人员还证明了该模型如何用于研究人类环境中的重要疾病,并检查抗癌药物的副作用。他们研究了多柔比星(一种广泛使用的抗癌药物)对心脏、肝脏、骨骼、皮肤和脉管系统的影响。他们表明,测试效果概括了使用相同药物进行癌症治疗的临床研究报告的效果。使用该模型研究抗癌药物该团队同时开发了一种新的多器官芯片计算模型,用于对药物的吸收、分布、代谢和分泌进行数学模拟。该模型正确地预测了阿霉素代谢成阿霉素醇并扩散到芯片中。在未来其他药物的药代动力学和药效学研究中,多器官芯片与计算方法的结合为临床前到临床外推提供了改进的基础,同时改进了药物开发流程。研究人员称,新技术能识别出一些心脏毒性的早期分子标志物,这是限制药物广泛使用的主要因素。最值得注意的是,多器官芯片准确地预测了心脏毒性和心肌病,这通常需要临床医生减少阿霉素的治疗剂量,甚至停止治疗。研究小组目前正在使用这种芯片的变体进行研究,所有这些都在个体化的患者特定环境中进行。如乳腺癌转移、前列腺癌转移、白血病、辐射对人体组织的影响、新冠病毒对多器官的影响、缺血对心脏和大脑的影响,以及药物的安全性和有效性。研究团队还在为学术和临床实验室开发一种用户友好的标准化芯片,以帮助充分利用其推进生物和医学研究的潜力。研究人员说:“我们对这种方法的潜力感到兴奋。它专为研究与损伤或疾病相关的全身性疾病而设计,将使我们能够保持工程人体组织的生物学特性及其交流。一次一个病人,从炎症到癌症。”
  • 科技抗疫 | 至精至准,天隆智造助力厦门疫情防控取得胜利
    10月7日,厦门官方宣布全市无中高风险地区,当天21时,同安区新民镇、祥平街道凤岗社区等四个区域卡口解封。从9月23日最后一名确诊病例送入定点医院开始计算,厦门已经连续14天无新增本土确诊病例。厦门当地疫情防控取得胜利,离不开医护人员及社会各界的共同努力。天隆科技作为国内核酸检测、分子诊断的领军企业,也在疫情发生后,积极响应,紧急驰援,发挥了关键作用。此次厦门疫情防控,天隆科技第一时间派遣50余名技术人员携天隆产品赶赴当地,并在疫情最为严重的同安区迅速投入气膜方舱实验室的建设,助力当地快速提升核酸检测能力。在当地疫情管控期间,天隆科技建设的气膜方舱实验室24小时全天候运行,人员三班轮值,不辞辛劳,每天完成数万管样本的新冠核酸检测。厦门市同安区作为疫情重灾区,采用1:1、5:1、10:1多种样本采集方式,进行了多轮全员核酸检测。天隆人坚守20余天,在天隆科技近百台设备及配套试剂的加持下,助力当地完成近百万人群的新冠核酸检测,对厦门疫情最终得到控制发挥了至关重要的作用。目前当地疫情防控工作已经取得胜利,居民生活正逐渐回到正轨,天隆科技建设的气膜方舱实验室也正在逐一被拆除,天隆支援当地的技术人员也即将凯旋!天隆智造,至精至准。匠心坚守,科技抗疫。目前,国内其他地方仍有散发疫情,作为国内核酸检测领域的主力供应企业,天隆科技会继续坚守企业使命,保障疫情防控物资供应,与社会各界联手抗疫,共同守护人民健康!我们坚信疫情终将过去,春天必会到来。
  • 1712万!河南省医学科学院电生理研究所科研仪器设备采购项目
    一、项目基本情况1、项目编号:豫财招标采购-2024-4602、项目名称:河南省医学科学院电生理研究所科研仪器设备采购项目二项目3、采购方式:公开招标4、预算金额:17,120,800.00元最高限价:17120800元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20240555-1河南省医学科学院电生理研究所科研仪器设备采购项目二项目包一315110031511002豫政采(2)20240555-2河南省医学科学院电生理研究所科研仪器设备采购项目二项目包二447970044797003豫政采(2)20240555-3河南省医学科学院电生理研究所科研仪器设备采购项目二项目包三9800009800004豫政采(2)20240555-4河南省医学科学院电生理研究所科研仪器设备采购项目二项目包四493000049300005豫政采(2)20240555-5河南省医学科学院电生理研究所科研仪器设备采购项目二项目包五358000035800005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1 采购内容:电生理研究所科研仪器设备一批(详见采购清单);5.2 交货期:国产设备合同签订后 30 日历天;进口设备合同签订后 90 日历天;5.3 交货地点:河南省医学科学院电生理研究所;5.4 质量要求:合格(符合现行国家、行业、地方相关规范要求);5.5 质保期:国产设备为三年; 进口设备为一年;5.6 供应商可同时参与多个标包投标;6、合同履行期限:至质保期结束7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2024年05月24日 至 2024年05月30日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心网站(http://www.hnggzy.net/)。3.方式:投标人需要完成信息登记及 CA 数字证书办理后,凭 CA 数字证书(CA 密钥)登录市场主体系统按网上提示自行下载招标文件及相关资料(详见http://www.hnggzy.net/公共服务-办事指南),未按规定在网上下载招标文件的,其投标将被拒绝。4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南省医学科学院地址:郑州市新郑市黄海路郑州临空生物医药园联系人:郑斌联系方式:0371-612665702.采购代理机构信息(如有)名称:大成工程咨询有限公司地址:郑州市金水区经三路15号1号楼A区12层1202号联系人:杨永丽、史岩岩联系方式:0371-655859063.项目联系方式项目联系人:杨永丽、史岩岩联系方式:0371-65585906
  • 北京易科泰受邀独家赞助参加第七届动物生理生态学学术会议并合作创办第一届动物生理生态研究技术和方法技术
    2017年9月15-18日,由中国生态学会动物生态学专业委员会主办、北京师范大学生命科学学院承办的“第七届动物生理生态学学术会议暨孙儒泳院士学术思想研讨会”在北京师范大学成功召开。来自全国的动物生态相关研究的科研工作者齐聚一堂,围绕动物生理生态研究的相关课题进行了深入的探讨。北京易科泰生态技术有限公司作为国内知名的动物生理生态研究高新技术专业公司,应邀独家赞助此次会议,并在会议上展示了一系列国际前沿上的动物呼吸代谢测量技术仪器,受到了研究人员的广泛关注。北京易科泰生态技术有限公司作为美国Sable Systems International公司在中国指定的唯一技术推广与售后服务的高新技术专业公司,领航国内最先进的动物能量代谢测量技术,占据国内动物能量代谢测量市场80%以上的份额。培训班现场:中科院动物所王德华教授做能量代谢技术理论及应用报告会议期间,易科泰公司与动物生理生态学术会议联合举办了第一届动物生理生态学研究技术和方法讲座。邀请中国科学院动物研究所的王德华研究员做了题为《能量代谢测量技术理论及应用》的报告,并特别邀请Sable公司总裁兼首席科学家John R.B. Lighton教授做了题为《Constraints and Solutions in Metabolic Measurement》的精彩报告;另外杜卫国研究员做了《两栖爬行类生理生态研究技术与方法》、北京师范大学牛翠娟教授做了《水生动物研究方法》、迟庆生博士做了《代谢仪器测定使用中的一些问题》等报告。本次培训班受到了大家的热烈响应,到场参加的人达到100人左右。易科泰生态技术公司从事动物能量代谢仪器技术服务已有十余年,为国内科研院校提供了上百套动物能量代谢仪器设备和相应技术服务,包括大小鼠等实验动物能量代谢与行为观测系统、牛羊等家畜家禽能量代谢测量系统、两爬类能量代谢测量系统、果蝇及昆虫能量代谢测量系统、斑马鱼及水生动物能量代谢与行为观测系统、人类能量代谢测量系统等,应用领域涵盖动物生理生态学研究、生物医学、家畜家禽营养与能量代谢研究、动物遗传与生物技术(能量代谢表型分析)、生态毒理学等,仪器设备采用国际先进的间接测热法( indirectcalorimetry),并结合行为观测、环境调控(如温度调控等)、体温心率监测、红外热成像等技术;除实验室测量仪器外,还提供了大量FMS、FoxBox等便携式能量代谢测量仪器。公司还通过Ecolab 生态实验室平台,与中科院动物所(动物生理生态与能量代谢)、农科院畜牧所(家禽呼吸代谢)、农科院植保所(蚜虫呼吸代谢)、疾控中心、北京实验动物中心等保持密切合作关系。易科泰展台易科泰展台前科研人员与我司技术人员热烈讨论 中科院动物所杜卫国教授做两栖爬行类技术方法报告John R.B. Lighton教授做学术报告 易科泰展台及能量代谢技术团队
  • 解密:药物创新中的尖端武器-PBPK(药代生理模型)
    第五届国际药代学会亚太地区年会(Asia Pacific ISSX Meeting 2014)于2014年5月9-12日在天津滨海一号温泉度假村酒店举行。会议展示近年来亚太地区在药物及化学异物代谢动力学方面的最新成果,来自全国高等学校、科研院所、医院及CRO等制药企业从事药物代谢动力学及其相关领域研究的学者、专家等业内人士约535人参加了本次会议。 会议现场   药物代谢动力学及药物代谢性/转运性相互作用的研究是药物创新中的关键之一。近十年的技术发展,特别代谢酶和转运体相互作用的基因型和表现型,从计算机、体外、动物到临床的技术路线,尤其是中药和其它药物的相互作用的研究,有力地推动了药物创新。此次会议介绍了相关的国际先进技术、方法和策略,对于促进同行间的互相交流学习,以及提高我国&ldquo 十二五&rdquo 新药重大专项研究和研发队伍的研究水平,具有显著的学术意义和现实意义。   本届会议主要关注了12个主题:药物相互作用的药政管理 药物转运体 PBPK模型及其应用 中药药物代谢的研究 药物代谢的基因多态性研究 活性代谢产物的研究 药物相互作用的预测机制研究 II相代谢酶的研究 药物代谢的结构功能研究 药物分析方法的进展 药物相互作用及其分子结构优化 药物代谢研究的新模型。   从本质上看,药物研发是一个逐步的过程,即想办法减少不确定性。传统的新药研发通常历经三个阶段:药物发现、临床前研究及临床研究,而许多候选化合物往往在很后期才被宣告失败,有的甚至到了III期或上市后才发现并不合适。   从2014年3月10日FDA举办的PBPK Workshop上了解到,制药企业和法规部门均认为,在药物研发的不同阶段,尤其是研发早期进行PBPK(药代生理模型)模型预测候选化合物的安全及有效性的实验具有越来越重要的实际意义。   借APISSX 2014召开之际,会议参展企业美国Simulations Plus及上海PharmoGo(凡默谷)两家公司于2014年5月11日联合举办了名为&ldquo PBPK accelerating the process of Drug Discovery & Clinical&rdquo 的专题讲座,与业内人士共同探讨PBPK在药物研发过程中的重要性。   美国Simulations Plus副总裁John DiBella以与Bayer公司的合作使得QSAR模型越来越精准和完美为实例,表述了QSAR和ACAT、PBPK的联合使用对基于模型的药物开发方法带了的新曙光,John DiBella表示此种建模和模拟的方法不仅能帮助企业节约资源并且还可减轻法相关规部门的负担。 Simulations Plus公司副总裁 John DiBella   凡默谷公司产品经理陈涛分享了其在GastroPlus建模方面的经验,通过实例演示,阐述了如何利用已有的in vitro和in vivo的数据搭建模型,深入分析了如何对模型进行优化和精制。 PharmoGo公司产品经理 陈涛   来自复旦大学胡卓汉教授介绍了如何通过QSAR模型利用in silicon和in vitro两种方法评估中草药与药物的相互作用。 复旦大学教授 胡卓汉   本次讲座的内容覆盖了药物发现到临床研发不同阶段,吸引了国内外近150名参会代表。与会人员表示,在当今国内外会议兴起了建模与模拟、特别是PBPK已成为重要趋势的形势下,通过本次讲座对该尖端技术有了更深入的认识,并对今后在自己的研究中增加该方向的应用表达了意愿。 互动交流   此外,在5月12日举办的&ldquo 药物创新发展论坛-药物代谢研究的挑战和策略&rdquo 上,Simulations Plus和上海PharmoGo两家公司与会人员重申了计算机模拟在药物创新和审评中的具体应用及其贡献环节中的重要性,来自 FDA的Shiew-Mei Huang博士、Hutchison的Yang Sai博士、Sheffield大学 的Geoff Tucker教授以及GSK的Jiansong Yang 博士对于建模与模拟可更好地理解在研药物机制、降低风险的作用进行了充分肯定,呼吁国内同行为中国的制药创新思路及知识普及共同努力,让更合理的思路及体制在企业及审评中逐步发生! 药物创新发展论坛现场   会后,我们有幸采访了在美国Simulations Plus公司工作11年的副总John DiBella,通过与他的谈话,希望业内人士对建模与模拟有更深的理解。   Q:为什么您认为虚拟预测(In Silico)及药代生理模型(PBPK)对制药企业及法规部门是很重要的?   A John:建模与模拟预测工具因可协助减少药物研究与发展的不同方面中的不确定性正变得越来越普遍,如QSAR与PBPK方法 对制药企业、法规部门的具体应用表现在药物PK的研究、制剂发展、人群变量考察(健康人群与疾病人群)、药物相互作用几大方面。   Q:您觉得怎样才能更好地推动建模与模拟的应用?   A John:以下几个因素将会推动更多人更广地应用建模与模拟,增加对学生及企业中研究人员的教育与培训商业软件制造商对机理算法及参数的改进以及法规部门的鼓励都将推动整个制药行业往更好的方向发展,从而降低制药企业R&D成本、减轻法规部门负担。Simulations Plus公司一直对每年因我们的新技术能给制药领域带来贡献而感到骄傲和荣幸。   此外,为了更好地了解国内情况,我们还采访了上海PharmoGo的 Linda Lin女士。   Q:目前国内对建模与模拟的看法是怎样的?   A Linda :目前国内这个方向起步相对较晚,通常制药中新技术的发展基本是先美国,接着欧洲、日本,最后中国。但随着CFDA的中检院、安评中心、GSK、Roche、Novartis、Lilly、Hutchison,药明康德等法规部门及制药企业的应用,上海药物所、协和药物所、中国药科大学等学术单位的教育,我坚信越来越多的同行会认识到、喜欢上建模与模拟。   Q:那您觉得怎样才能让建模与模拟更好地在中国生根发芽,发挥更大的价值?   A Linda :建模与模拟想在中国更好地生根发芽,我想提升中国客户的使用体验,并为其提供细致的解决方案与服务,如联合国内外专家举办深入的WorkShop,专业的技术支持,定期的网络培训,技术服务等。这不但能降低客户的业务成本,也能扩大我们公司的业务,推动行业发展,这是多赢的!随着技术创新及服务细化在发生,制药行业也将变得更加先进。
  • 重磅!2023年诺贝尔生理学或医学奖揭晓|你不知道的冷知识
    10月2日,瑞典卡罗琳医学院宣布,将诺贝尔生理学或医学奖授予Katalin Karikó、Drew Weissman,以表彰他们在核苷碱基修饰方面的发现,这些发现使得针对COVID-19的有效mRNA疫苗得以开发。他们将平均分享1100万瑞典克朗的奖金。诺贝尔官网表示,这两位诺贝尔奖获得者的发现对于在2020年初开始的新冠肺炎大流行期间开发有效的mRNA疫苗至关重要。通过他们的突破性发现,从根本上改变了人们对信使核糖核酸如何与免疫系统相互作用的理解,获奖者为疫苗开发的空前速度做出了贡献。卡塔琳卡里科 (Katalin Karikó) 1955 年出生于匈牙利索尔诺克。她于1982年在塞格德大学获得博士学位,并在塞格德的匈牙利科学院从事博士后研究直至1985年。随后,她在费城坦普尔大学和贝塞斯达健康科学大学进行博士后研究。1989年,她被任命为宾夕法尼亚大学助理教授,并一直任职到2013年。之后,她成为BioNTech RNA Pharmaceuticals的副总裁,后来又担任高级副总裁。自2021年起,她一直担任塞格德大学教授和宾夕法尼亚大学佩雷尔曼医学院兼职教授。德鲁魏斯曼 (Drew Weissman) 1959 年出生于美国马萨诸塞州列克星敦。1987年,他在波士顿大学获得医学博士、博士学位。他在哈佛医学院贝斯以色列女执事医疗中心接受临床培训,并在美国国立卫生研究院进行博士后研究。1997年,魏斯曼在宾夕法尼亚大学佩雷尔曼医学院成立了他的研究小组。他是罗伯茨家族疫苗研究教授和宾夕法尼亚大学RNA创新研究所所长。近三年诺贝尔生理学或医学奖获奖者盘点2022年,瑞典遗传学家斯万特帕博(Svante Pbo)获得诺贝尔生理学或医学奖,因为他关于已灭绝人类基因组和人类演化的发现揭示了所有现存人类与已灭绝古人类之间的基因差异,并建立了古基因组学这一崭新的科学领域。2021年,美国生理学家戴维朱利叶斯(David Julius)和美国分子生物学家、神经学家阿登帕塔普蒂安(Ardem Patapoutian)共享诺贝尔生理学或医学奖,因为他们发现了温度和触觉感受器。2020年,美国病毒学家哈维奥尔特(Harvey J. Alter)、英国生物学家迈克尔霍顿(Michael Houghton)和美国病毒学家查尔斯赖斯(Charles M. Rice)共享诺贝尔生理学或医学奖,因为他们发现了丙型肝炎(Hepatitis C)病毒。关于诺贝尔生理学或医学奖!你知道吗?获奖者破百自1901年以来,共颁发了114项诺贝尔生理学或医学奖。巾帼不让须眉获奖者到目前为止,已有13名女性获得了医学奖。最“萌”年龄差,获奖者32岁的弗雷德里克G班廷是有史以来最年轻的医学奖获得者,他因发现胰岛素而获1923年医学奖。1966年,佩顿劳斯因发现肿瘤诱导病毒而获得医学奖,87岁是他有史以来最年长的医学奖获得者的年龄。上阵父子兵!获奖者在诺贝尔奖的百年历史中,已经出现了7对父子获得过诺贝尔奖,他们分别是:父亲亨利布拉格和儿子劳伦斯布拉格(共同获得1915年诺贝尔物理学奖);父亲约瑟夫汤姆逊(1906年获得诺贝尔物理学奖)和儿子乔治汤姆逊(1937年获得诺贝尔物理学奖);父亲奥伊勒凯尔平(1929年获得诺贝尔化学奖)和儿子乌尔夫奥伊勒(1970年获得诺贝尔生理学或医学奖);父亲尼尔斯玻尔(1922年获得诺贝尔物理学奖)和儿子阿格玻尔(1975年获得诺贝尔物理学奖);父亲曼内西格巴恩(1924年获得诺贝尔物理学奖)和儿子凯西格巴恩(1981年获得诺贝尔物理学奖);父亲亚瑟科恩伯格(1959年获得诺贝尔医学和生理学奖)和儿子罗杰科恩伯格(2006年获得诺贝尔化学奖)父亲苏恩伯格斯特龙(1982年获得诺贝尔生理学或医学奖)和儿子斯万特帕博(2022年获得诺贝尔生理学或医学奖)
  • 2010年诺贝尔生理学或医学奖揭晓
    2008年7月12日,罗伯特爱德华兹、莉沙布朗、世界上第一个“试管婴儿”路易丝布朗,以及路易丝的儿子。(图片来源:诺贝尔奖基金会网站)   获奖当天,安德烈海姆、康斯坦丁诺沃肖洛夫在曼切斯特大学。(图片来源:《纽约时报》)   铃木章在北海道大学举行的新闻会上回答记者提问   在菲律宾的家中,理查德赫克向来访的记者展示以往的奖状   10月6日颁奖当天,根岸英一在得知获奖消息后,依然到普渡大学上他的化学课(图片来源:《纽约时报》)   10月6日,随着诺贝尔化学奖的颁发,本年度诺贝尔三大自然科学奖项:生理学或医学奖、物理学奖、化学奖尘埃落定。   与往年相同的是,三大奖无一例外地再次颁给了为全世界人们带来福祉的科研成果。“试管婴儿之父”爱德华兹再次成为世界焦点、世界上最薄的碳薄片在科学界激起千层浪、钯催化交叉偶联反应的发现为化学家再次找到一个有力的工具……   不同的是每项成果背后的曲折故事,但无论是罗伯特爱德华兹的“遗憾”、两位物理学家的“星期五夜实验”,还是化学家一个世纪的努力,都彰显着科学家们伟大而又平凡的探索历程。   值得肯定的还有科学家们对诺奖和科学研究的理性认知,正是所有科学家不懈的探索和努力,使得这些科学成果再次向人们的福祉延伸。   以下为聚焦详细内容:   2010年诺贝尔生理学或医学奖:试管婴儿技术改变人类生育方式   2010年诺贝尔物理学奖:最薄材料展现应用神奇   2010年诺贝尔化学奖:众望所归的圆梦之旅   400万新生命验证非凡科学成就   大胆的研究 谨慎的应用   英国生理学家罗伯特爱德华兹:一路坎坷的人类体外受精技术   俄裔英国物理学家安德烈海姆、康斯坦丁诺沃肖洛夫:世界最薄碳片是如何被发现的   赫克反应、根岸反应和铃木反应:给化学家们一个有力工具
  • 锐拓RT7流池法溶出系统应用案例——生理条件下的药物溶出研究
    固体制剂口服给药后, 药物的吸收取决于药物从制剂中的溶出或释放、药物在生理条件下的溶解以及在胃肠道的渗透。所以,a如果体外溶出度试验能够模拟人体胃肠道的生理环境,那么该溶出方法将拥有更好的区分力,而且能够更好地预测药物体内行为。在这次应用案例中,我们将分享为某客户开展的某BCS II 类产品在生理条件下的溶出研究,希望能够给您带来启发和帮助。研究方法溶出装置:锐拓RT7流池法溶出系统流通池:22.6mm内径 药典标准流通池溶出介质:模拟人体餐前胃肠道pH环境的多种溶出介质(具体种类和配方:技术保密)流速:技术保密模式:开环过滤系统:锐拓专利流通池在线过滤装置生理条件下的溶出研究分别将客户自研样品和参比制剂置于流通池中,按照拟定的研究方法开始溶出测试,在开环模式下的每个取样时间点收集样品溶液,利用HPLC检测主药浓度,并绘制浓度-时间曲线。浓度-时间曲线根据测试结果,我们可以地发现:(1)自研样品和参比制剂在模拟胃部阶段都基本上没有溶出。(2)进入模拟小肠阶段后,自研样品达到浓度的峰值高于参比制剂,且自研样品达到浓度峰值的时间比参比略有提前。基于实验结果,我们可以有理由推断,自研样品和参比制剂经过胃排空进入小肠后的释放行为是存在差异的。进一步地,计算每个取样时间点的累积溶出率,绘制溶出率-时间曲线。溶出率-时间曲线选取模拟小肠阶段的溶出数据,计算各区间内两者的相似因子(f2)=41.5,表示在当前的实验条件下,自研样品和参比制剂在模拟餐前小肠环境下的体外释放行为不具有相似性。QC溶出方法的开发为了满足QC阶段对产品品质的有效监控,我们根据上述生理条件下的溶出研究结果,对相关流池法的溶出参数和溶出介质配方进行精简和优化,以缩短测试时间,简化溶出介质配制和溶出测试步骤。使用精简优化后的流通池溶出方法对自研样品和参比制剂进行检测,并对比两者的溶出率-时间曲线: 在溶出度度超过85%的时间点不超过1个的前提下,计算两者的相似因子(f2)=37.8。证明该方法依然拥有极好的区分力。另外,同步执行的重复性测试结果显示,自研样品和参比制剂的最终溶出率的相对标准偏差(RSD)均小于2%,且两者各自平行测试的溶出曲线基本重合。证明该方法拥有良好的重复性。上述结果显示,流池法拥有开发为QC溶出方法的潜力,特别在区分力方面,拥有远超传统溶出方法的巨大优势。结论流池法溶出装置能够在溶出试验过程中自由切换不同种类的溶出介质,且流体力学更加接近人体胃肠道环境。得益于这些设计优势,使得流池法溶出装置能够更好地模拟人体胃肠道的生理环境,测试结果拥有更好的区分力,而且能够更好地预测药物体内行为。
  • 1982年/2022年,父子先后获诺贝尔生理学或医学奖!
    今天(北京时间17时30分),2022年诺贝尔生理学或医学奖获奖名单揭晓。瑞典科学家斯万特帕博(Svante Pääbo)获奖。斯万特帕博的获奖理由是“在灭绝古人类基因组和人类进化方面的发现”。奖金为1000万瑞典克朗(约合642.8万元人民币)。斯万特帕博1955年出生于瑞典的斯德哥尔摩。他的父亲为1982年的诺贝尔生理学或医学奖得主、瑞典生物化学家苏恩伯格斯特龙(Sune Bergström)。斯万特帕博苏恩伯格斯特龙诺贝尔生理学或医学奖从1901年到2021年,诺贝尔生理学或医学奖共颁发了112次。没有颁发的9年分别是1915、1916、1917、1918、1921、1925、1940、1941、1942年。从1901年至2021年,共224人获奖。112次颁奖中,39次为单独获奖者,34次为2人共享,39次为3人共享。最年轻和最年长的生理学或医学奖得主最年轻的获奖者是加拿大科学家弗雷德里克班廷(Frederick G. Banting),1923年因“发现胰岛素”获奖,时年32岁。最年长的获奖者是美国科学家佩顿劳斯(Peyton Rous),1966年因“发现肿瘤诱导病毒”获奖,时年87岁。父子均获诺奖,太少见在诺贝尔奖一百余年的历程中,共有两对父子先后获得了诺贝尔奖,在斯万特帕博教授获奖后,他和他的父亲苏恩伯格斯特龙成为第三对“父子诺奖”组合。斯万特帕博教授的父亲苏恩伯格斯特龙是瑞典生物化学家,他发现“前列腺素及其相关的生物活性物质”,与萨米尔松以及约翰范恩共同获得诺贝尔生理学与医学奖。
  • 2016植物生理生态及表型技术研讨会开幕 首日百人参会
    2016年11月21日,由上海泽泉科技股份有限公司主办的2016植物生理生态及表型技术研讨会(北京会场)正式开幕。会期恰遇年度最强寒潮来袭,北京天寒地冻,但挡不住与会嘉宾求知的欲望与热情,开幕首日即已吸引百人参会。 本次研讨会包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养以及亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察等内容。多位植物生理生态及表型研究领域的中外专家与参会嘉宾现场面对面,学术交流气氛热烈。 报告间隙,泽泉科技样机展台很受关注,前来咨询交流的嘉宾络绎不绝。通过跟技术工程师的深入交流,结合样机的实际操作,与会嘉宾进一步的理解和消化了讲座中提到的新技术和新应用。 11月22日还将有7场报告,精彩不容错过(请见后文研讨会日程)。 泽泉科技携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,欢迎您报名参会,免费听讲座! 更多会议信息请点击:2016植物生理生态及表型技术研讨会第三轮通知。 会议时间与地点: 北京:2016年11月21日至11月22日 地点:北京市海淀区增光路55号北京紫玉饭店 上海:2016年11月24日至11月25日 地点:上海市徐汇区肇嘉浜路777号青松城大酒店 会议日程:北京紫玉饭店(玉澜楼二层多功能厅)(11月21日至11月22日)11月21日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店正门) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(紫玉饭店一层自助餐厅)11月22日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型) (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护(主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)11月23日 泽泉科技北京分公司办公地址现场答疑及仪器免费维护上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型)(主讲人:张弘,上海泽泉科技应用科学家,擅长领域:植物表型测量,分子生物学)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护 (主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析 (主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)14:00-16:00 参观行程 AgriPheno™ 植物基因型-表型-育种平台参观注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 参会二维码
  • 2017泽泉植物表型育种及生理生态研讨会第一轮通知
    上海泽泉科技股份有限公司多年来秉承推进中国生态环境改善、农业兴国的理念,服务涉及植物表型育种,植物生理生态,水文水利,农业工程等领域的科研和技术支持。为更好地服务全国科研用户,促进植物表型育种、生理生态领域的研究,整合有效资源,同时促进相关研究设施和平台的建设,上海泽泉科技股份有限公司将于2017年12月7日至12月9日在上海举办2017泽泉植物表型育种及生理生态研讨会。 研讨会内容包括植物表型与分子育种、植物生理生态环境研究、农业物联网等。邀请的演讲嘉宾有国家重点高校、科研院所,植物遗传育种、基因表型等领域专家;世界先进植物生理生态、植物培养等仪器制造商科学家团队;泽泉公司资深科研技术团队。结合讲座内容,会议期间将安排实地参观考察,亚洲第一个开放式高通量植物基因型-表型-育种服务平台——AgriPheno™ 。另外,为了感谢广大客户长久以来的支持和合作,本次研讨会特别设置,生理生态设备的免费检测与保养服务。 上海泽泉科技股份有限公司现向各单位植物研究、农业建设领域科研人员发出诚挚邀请,欢迎您出席本次会议与参会者交流领域内的科研进展,期待您的光临。 一、主办单位:上海泽泉科技股份有限公司 二、会议时间与地点时间:2017年12月7日至12月9日,7日早上报道,7日全天研讨会,8日上午研讨会,下午参观,9日离会地点:上海青松城大酒店(黄山厅),上海市徐汇区肇嘉浜路777号 三、会议主题主题1. 植物表型与分子育种主题2. 植物生理生态环境研究主题3. 农业物联网 四、参会须知1、参会回执:请参会人员于10月31日前回传参会回执,我们将根据参会回执协助推荐住宿和安排参会事宜。2、参观考察回执:本次会议将安排于2017年12月8日下午前往位于上海浦东孙桥现代农业产业园区的AgriPheno™ 高通量植物基因型-表型-育种平台参观考察,如您需参加,请在参观考察回执中填写参观人数,我们会根据您的回执租赁车辆负责接送。 3、会议费用:参会免费。交通、食宿自理。会议期间提供工作午餐。 4、仪器维护:本次会议期间将提供生理生态仪器的免费检测与保养,请需要仪器检测的参会人员在参会回执中注明是否携带仪器参会并填写“仪器设备维修服务单”,与参会回执一同发至会务组;如不方便随身携带仪器参会,可提前将仪器寄至我司上海总部,邮寄前请填写并打印“仪器设备维修服务单”随仪器寄出,并请提前与会务组联系确认。仪器维护工作如无法在会议期间全部完成,我司将在仪器全面维护完成后将其寄回。如涉及更换配件,视仪器质保情况,可能收取配件成本费用。 五、会务组联系人徐静萍 六、会议日程12月7日8:00-8:30现场注册、报到8:30-12:00研讨会12:00-13:30午餐13:30-17:30研讨会12月8日9:00-12:00研讨会12:00-13:30午餐13:30-17:30高通量植物基因型-表型-育种服务平台AgriPheno™ 参观或者会议室生理生态设备的免费检测与保养12月9日离会
  • 2012年诺贝尔生理学或医学奖揭晓
    北京时间10月8日下午5点30分,2012年诺贝尔生理学或医学奖揭晓,英国科学家约翰戈登(John B. Gurdon)和日本科学家山中伸弥(Shinya Yamanaka)获奖,获奖理由为“发现成熟细胞可被重编程变为多能性”。   John B. Gurdon,1933年出生于英国的Dippenhall。1960年他从牛津大学获得博士学位,曾在加州理工学院做博士后。他于1972年加入剑桥大学,成为细胞生物学教授。目前他供职于剑桥Gurdon研究所。   Shinya Yamanaka,1962年出生于日本大阪。1987年他从神户大学获得MD。在转向基础研究之前,他曾受训为整形外科医生。1993年他从大阪大学获得博士学位,之后他曾供职于美国旧金山Gladstone研究所和日本奈良先端科学技术大学院大学。目前他于日本京都大学担任教授。   今年的诺贝尔生理学或医学奖颁给两位发现“成熟、特化的细胞能够被重编程为可发育成身体组织的非成熟细胞”的科学家。他们的发现革新了我们对细胞和有机生命体发育的理解。   1962年,约翰戈登发现细胞的特化(specialisation)是可逆转的。在一项经典实验中,他将一个青蛙卵细胞的细胞核替换为成熟肠细胞的细胞核。这个改变了的卵细胞发育成为一只正常的蝌蚪。该成熟细胞的DNA仍含有发育成青蛙所需的全部信息。   40多年后,山中伸弥在2006年发现了小鼠的完整成熟细胞是如何能够被重编程为非成熟干细胞。令人惊讶的是,通过导入仅仅少量的基因,就可以将成熟细胞重编程为多能干细胞,即可发育成为身体各种组织的非成熟细胞。   这两项突破性的发现彻底改变了我们对于发育和细胞特化的看法。现在,我们知道成熟细胞并不需要永远局限在它的特化功能里。历史被改写,新的研究领域产生。通过重编程人体细胞,疾病研究的新机遇获得实现,诊断与治疗的新方法获得发展。   生命——一次不断特化的旅程   我们所有人都是由受精卵细胞发育而来。在受精后的第一天里,这些组成胚胎的非成熟细胞,每一个都具有发育成成熟生命体中各种细胞类型的能力,这一类细胞被称为多能干细胞。随着胚胎的进一步发育,这些细胞发育成神经细胞、肌肉细胞、肝脏细胞以及其他各类细胞——每一种细胞都肩负起成熟身体内的一项特定使命。之前,这趟从非成熟细胞到特化细胞的旅程被认为是单一方向的。人们曾以为,细胞在成熟过程中是以这样的方式发生着改变,不可能回到非成熟、多能的阶段。   青蛙的逆发育   特化细胞功能的不可逆转一度被当成是教条,约翰戈登向它发出挑战。他曾假设,细胞的基因组或许仍然含有其发育成生命体各种类型的细胞的所需要的全部信息。1962年,为了验证他的这种假设,他用蝌蚪肠道的成熟特化细胞的细胞核替换掉青蛙卵细胞的细胞核。该卵细胞发育成一只功能完全的克隆蝌蚪并最终长成如同实验培养出的成体青蛙。成熟细胞的细胞核并未丢失功能完全的生命体发育所需的能力。   戈登这次里程碑式的发现一开始是受到质疑的,但经过其他科学家的确认,人们接受了他的发现。这项发现引起研究热潮,相关技术获得进一步发展,最终发展到哺乳动物的克隆。戈登的研究告诉我们,一个成熟特化细胞的细胞核是可以被逆转到非成熟、多能化的状态。但是他的实验是将一些细胞的细胞核抽出,然后引入另外一些细胞的细胞核。有没有可能让一个完整的细胞回退到多能干细胞呢?   往返旅程——成熟细胞返回干细胞状态   在戈登的发现40余年后,山中伸弥在一项突破性的研究中回答了这个问题。他的研究有关胚胎干细胞,分离自胚胎并在实验室中培养的诱导多能干细胞。这些干细胞最初是由Martin Evans(2007年诺奖得主)从小鼠身上分离得到。山中伸弥试图发现保持它们未成熟的基因。当几个这样的基因被鉴别出来后,他进行了测试,以确定它们是否能够重编程成熟细胞变成多能干细胞。   山中伸弥与合作者用不同的组合方式向成熟细胞中引入了这些基因,这些成熟细胞来自于结缔组织和纤维原细胞。他们在显微镜下检测了结果,最终发现其中的一个组合起作用,而其“处方”是惊人的简单。通过同时引入四个基因,他们可以重编程纤维原细胞变成未成熟干细胞!   由此得到的诱导多能干细胞(iPS细胞)能够发育成多种成熟细胞,例如纤维原细胞、神经细胞以及肠细胞等。完整、成熟的细胞可被重编程成多能干细胞这一发现在2006年一经发表,立即被认为是一个重大的突破。   从惊人发现到医学应用   戈登和山中伸弥的发现显示,在某种情况下,特化的细胞能够回拨发育的时钟。虽然它们的基因组在发育中经受了修改,但这些修改并不是不可逆的。我们就此获得了对于细胞和有机体发育的一种新观点。   近年的研究显示,iPS细胞能够生成机体所有不同种类的细胞。这些发现也为全球科学家提供了新工具,使得他们在医学的许多领域做出了非凡的成就。iPS细胞也能从人体细胞中获得。   例如,可从罹患各种疾病的病人身上获得皮肤细胞,进行重编程,并在实验室进行检测以确定它们与健康人体细胞的不同。这些细胞对于理解疾病机制提供了无价的工具,从而为开发医学疗法提供了新机会。   诺贝尔奖网站官方公告(英文)
  • 胜利仪器产品推荐:远距离成像热像仪
    胜利仪器产品推荐——手机式长焦超远夜视红外热成像仪,镜头焦距10mm,256×192分辨率。产品特点• 970米,超远距离夜视;• 镜头焦距10mm,高精度快速响应;• 256*192分辨率,画质清晰,效果出色;• 1×-4×无极放大,双指轻滑,随心变倍;• 温度追踪,可选择开启或关闭实时画面中最高温、最低温,红色为最高温,蓝色为最低温;• GPS定位与电子罗盘,GPS可提供当前的经纬度、速度和海拔信息;• 多范围应用,广泛应用于地暖查漏、电气维修及更适合户外远距离平原使用(如露营探险、野外求生/救援、夜跑徒步、动物观察)等领域。技术指标分辨率256×192工作波长8~14μm帧率25HzNETD电子放大1x-4x无极放大(通过屏幕手势)色板铁红、彩虹、白热、黑热、冷蓝、红热热点追踪支持GPS可在App中显示手机GPS信息电子罗盘可在App中显示手机电子罗盘信息屏幕旋转支持拍照支持录像支持语言中文、英文工作温度-20°C~60°C存储温度-40°C~85°C防水防尘IP54电源配合手机使用、即插即用显示屏尺寸无显示屏、配合手机APP使用机身尺寸36×29.5×27.5mm标准配件便携收纳包、支架、数据延长线、说明书
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制