当前位置: 仪器信息网 > 行业主题 > >

描成像分析

仪器信息网描成像分析专题为您提供2024年最新描成像分析价格报价、厂家品牌的相关信息, 包括描成像分析参数、型号等,不管是国产,还是进口品牌的描成像分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合描成像分析相关的耗材配件、试剂标物,还有描成像分析相关的最新资讯、资料,以及描成像分析相关的解决方案。

描成像分析相关的论坛

  • 2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30原创:李响、杨文振、薜立强、冀石磊、郑文京 工程师,北京翠海佳诚磁电科技有限责任公司推荐:陆俊 工程师,中科院物理所磁学室2016年10月28日一句话推荐理由:国产半导体器件的骄傲之作应用在中强磁场测量上的好仪器。一、引言 磁场无形,但又无处不在,无时无刻不在直接或间接的影响着我们的生活,比如地磁、磁卡、电机、变压充电器、电磁炉、微波炉、手机、磁盘、钞票、耳麦、磁悬浮列车、核磁共振成像仪这些让我们每天都在和各种各样的磁场打交道,然而对于磁场如何衡量,如何产生如何测量恐怕较少有人去关注,简单概括几点:一是磁场的单位,常用的单位是奥斯特,国际单位安每米比较小(1 Oe ~ 79.6 A/m),注意严格来讲不要将单位表达成高斯或特斯拉这两个磁感应强度单位,因为磁场强度和磁感应强度概念上完全不同,尽管二者可根据(经常以空气或真空的)磁导率相互变换,即1奥斯特磁场在真空或空气中诱导的磁感应强度为1高斯或万分之一特斯拉。二是磁场的产生,首先地球是跟我们关系最密切的磁场源,地表磁场大约为0.5奥斯特,随纬度升高有缓慢增强趋势;其次是为了产生变化磁场,可以通过永磁体机械组装的方式,也可以使用线圈中通过电流的方式,根据线圈材料或结构的不同可以形成不同类型的通电线圈磁场源,比如超导线圈在不消耗能量情况下维持100kOe以上的磁场,高强度导电材料及结构制成的1MOe以上的脉冲强磁场;还有一种和磁场产生相反,要尽可能减少磁场,以防止地球磁场或其他干扰磁场对精密传感器造成不利影响,破坏极端条件探索、精密标定测量等任务,这时要用到消磁措施,可以使用主动电流对消与被动屏蔽两种方法,综合利用消磁技术,我们可以获得比地磁场弱10个数量级的洁净磁场环境。三是磁场的测量,相比产生技术方法,磁场测量要复杂得多,其类型有电磁感应、霍尔、磁阻、磁电、磁光、磁致伸缩、磁共振及非线性磁效应等基本原理,其中值得一提的几个包括最通用且测量范围最广的感应线圈磁探测器、前沿科学探索中常用的超导量子干涉仪(SQUID)、地磁或空间磁场探测中常用的磁通门或原子光泵磁力仪、智能手机里植入的各向异性磁阻AMR芯片、磁场计量常用的核磁共振磁力仪以及跟电磁相关的生产及科研任务中常见的中等强度磁场(地磁场上下四个数量级之间)测量上最常见最常用的霍尔磁场计。以上关于磁场的量级、产生与测量方法比较汇总于图1,在中等磁场强度测量应用最广泛的为霍尔传感器,虽然它没有核磁共振磁力仪ppm级的高精度,但它同时具备足够的精密度(通常约千分之一)、高空间分辨、高线性度、单一传感器宽测量范围、成本又相对较低等明显优势,因而市面上高斯计、特斯拉计等中等强度磁场测量仪绝大多数基于霍尔传感器,本文介绍的磁测量产品也基于霍尔磁场计,在前述磁相关的器件及应用产品的质量控制、监护与升级过程中扮演着不可缺少的角色。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616260_0_3.png图1 磁场的量级、不同产生与测量方法比较概览图二、背景中科院半导体所从20世纪80年代始研究高迁移率砷化镓(GaAs)霍尔器件,后来经过两代人的薪火传承克服半导体材料制备、内置温度补偿器件设计与测量数字化采样及软件优化上的技术难题逐渐发展成熟,最终落地北京翠海公司,形成CH-1800,CH3600等被用户认可的高斯计产品。近些年为了配合电磁制造业质量提升的业界需求,为电机磁体、核磁共振磁体空间均匀性、多级磁体分布提供系统的测量方案,翠海公司在高斯计的基础上增加无磁运动机构和软件集成,开发出F-30磁场测量扫描成像仪,照片如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616259_0_3.jpg图2 F-30 型磁场测量扫描成像设备照片三、简介F-30由上位机(装有控制软件)、高精度高斯计(一维或者三维)、与高斯计搭配的探头、多维电控位移台以及位移台的控制器组成,如图3所示。简单来说可以分为两个部分,一部分只是用来采集数据,另一部分只是位移,两个部分搭配起来就组成了这个位移采集系统。位移模块由多维电控位移台和位移台控制器组成,通过操作上位机软件给控制器下命令,控制器就根据命令带动电控位移台各个轴运动,这个电控位移台的参数(台面大小、运动轴长度、运动方式、多少维度)用户可定制,即实现在允许范围内的各个角度、各种形状的扫描。 数据采集模块由高精度高斯计和与高斯计配套的探头组成,电控位移台的轴上有固定的探头夹持位置,采集数据时将探头放在夹持位置上,探头测量的数据实时上传到高斯计上,而高斯计与上位机软件通信连接,上位机则根据需要选择是否记录当前位置的数据。通过上位机软件控制位移台控制器和高斯计,可以将位移台上某个位置与高斯计读到的数据值相关联,一维高斯计读到的就是运动到的点对应的某个方向的数据值,三维高斯计则是一个点上 X 方向的值、Y 方向的值、Z 方向的值、此点上的温度(根据需要探头和高斯计中可有温度补偿功能)及三轴中两两矢量和、总矢量和的数值大小和方向夹角,扫描的数据可以导出保存在 EXCEl 中,根据位置和数据值可由软件绘制出各种需要的示意图:二维标准图、二维颠倒图、二维雷达图、三维曲线图、三维网状图、三维立体图、矢量图、圆柱展开图及多条曲线或多个立体图放在同一张图中进行对照比较。软件中还对常见的几种形状(空间磁场分布、矩形图、磁环、同心圆等)的扫描进行了集成化,只需设置几个参数便可以自动进行扫描,自由度高,精准度高,无需看管。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616261_0_3.png图3 F-30型磁场测量扫描成像仪组成框图F-30根据不同的测量件需求可以定制,磁场测量部件的主要技术指标如表1,传感器照片如图4,其测量方向、维度以及尺寸都可以根据需要定制。 关于磁场扫描成像时间,(1)常规扫描:每点扫描时间可设置,一般为保证数据的稳定性,在每点的停留时间为1~2s,总时间由测试工件尺寸和扫描步长决定;(2)快速扫描模式:在位移台运动过程中不做停留,通过高速数据采集获得每点磁场值每点测量可小于0.1s。表1: F-30磁场测量部件主要指标http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616269_0_3.jpg运动部件有三个平移与两个旋转自由度,大致示意图如图5,典型测试场景及系统软件照片如图6所示,运动部件指标表2。表2 F-30运动学指标列表http://ng1.17img.cn/bbsfiles/images

  • 有关扫描电镜的扫描成像问题

    扫描电镜号称扫描与成像是同步的,就是扫一个点存一个点,但它成像后的图像存储又有1024、3072、甚至32k等多种分辨率,那究竟电镜的扫描分辨率是多少

  • 正确选择适合的实验室成像仪

    作为实验室里最为常用的仪器之一,成像设备直接为您的论文提供影像。而这些影像质量的好坏,有时候甚至决定着您的论文能否发表。当然,拥有一台好的、运行稳定的设备也是老板和技术主管的心愿。那么,如何从纷繁的市场上选择到一款好的成像设备呢?很多号称“王牌”的设备是否真的能够打满分呢?下面的文章就向您介绍选择成像系统的“四项基本原则”。有了这些原则,您在选择成像仪时自然成竹在胸,无往不胜。原则一:“只选对的,不选贵的”市场上各品牌、各型号的成像仪林林种种,但是从成像原理上可以分成两大类,分别是拍照成像和扫描成像。拍照成像简单说就是样品和相机的相对位置不动,可以进行单次成像或多次成像;而扫描成像则是相机对样品进行局部成像,然后通过样品或相机的移动对整个样品进行成像。拍照成像目前主要采用CCD相机成像,由于可以设置不同的曝光时间,常被用来进行微弱的化学发光及生物发光的成像。而扫描成像则由于精度高、重复性好被广泛用于大型样品以及多通道成像中。可以说,对于大型样品或多通道应用,能选择扫描成像的,尽量不要选择拍照成像。原理搞清楚了,选择起来就简单了。不同的原理导致了不同应用的最佳选择,所以千万不要相信什么“全能王”之类的鬼话,没有任何一款机器可以通吃所有应用领域。下面就实验室最常见的一些应用简单的说明选择的依据:核酸电泳凝胶:一般此类凝胶都采用EB染色、紫外激发,而且凝胶较小。推荐采用一般的凝胶成像设备即可完成。蛋白电泳凝胶:一般此类凝胶采用考染或银染,白光透射成像。对于小型凝胶您可以选择一般的凝胶成像设备,但是对于大型凝胶,特别是双向电泳凝胶,由于CCD拍照成像会有几何扭曲,而且透镜效应也会导致不同区域的信号强度差异,另外CCD拍照也无法保证不同凝胶的成像参数保持一致,因此扫描成像是最好选择。转印膜:这个稍微有些复杂。一般转印膜有比色法显色、同位素、化学发光和荧光等不同检测手段。比色法显色就是产生有颜色的条带或斑点,一般采用普通的凝胶成像设备即可;同位素可以采用压胶片曝光的方法,但是费时、费力而且容易过饱和,比较通用的方法是由FujiFilm在1981年发明的磷屏成像技术,获得信号潜影的磷屏通过激光扫描就可以获取同位素的信号。而化学发光是目前最常用的蛋白印迹的检测手段,无疑,冷CCD拍照成像对这种微弱的光信号是最合适的。荧光是所有这些检测手段中最令人赞叹的和最有前景的。这不仅仅是因为荧光染料具有最宽的动态范围,而且还在于它能够为我们提供多通路的检测途径(同样适用于凝胶,通用电气公司的2D DIGE技术就是采用三种荧光染料标记蛋白而形成多通路检测的)。当然,您可以使用单一荧光检测,这时您对凝胶成像设备的要求就包括了新的激光光源和相应的滤光片。如果您是一个完美主义者,或者您需要对邻近或重叠的目标分子进行成像,那么多通道荧光检测是您的不二之选。这时扫描成像绝对是最佳选择,这样选择不仅仅是因为扫描成像能够带来更高的灵敏度和分辨率,更重要的是,不同通道之间没有几何扭曲,拟合性好。微孔板及其他特殊需求:对于拍照成像而言,由于几何扭曲的问题,对微孔板成像就变得比较复杂了,一般必须一个专用的校正装置才可完成。当然,如果采用扫描成像一般不需要任何额外附件。很多实验室现在都对小动物成像非常感兴趣,然而对小动物进行真的不是一件简单的事,一方面小动物需要进行麻醉和固定;另一方面还需要对信号位置进行三维定位。因此,能同时提供功能、代谢和解剖图像的PET/CT是进行这类成像的最有力的工具。限于篇幅,这部分将不做更多介绍。原则二:实践是检验真理的唯一标准这可不是在上政治课,每个厂家都对自己的产品是“王婆卖瓜,自卖自夸”,经常给您上两个小时课中间还不用休息,什么“专利技术”、“人性化设计”、“生命科学产业大奖”。只有您想不到的,没有他做不到的。可是,这些东西对用户到底有什么意义?就没有几个人说得清了。好用才是硬道理。任凭你说得天花乱坠,拿来我试试,不就什么都清楚了。现在多数厂商都提供Demo机服务,还有技术人员现场答疑解惑,那就请各位上场,真刀真枪的拼一下,谁的性能好,价格优,那我就要谁的。当然,我们的实际测试结果仅仅是针对我们自己的样品和现场demo的机器而已。我们不能据此对相关品牌和相关型号做太多评判。由于具体应用的限制、操作技巧的差异以及可能的仪器状态的区别,我们有可能没有给出公允的评价。但无论如何,这些讯息对我们采购者和使用者来说都是非常重要的。

  • STEM成像原理

    只知道它是束斑逐步扫描成像区域,百度搜了下资料大部分是HAADF-STEM成像原理,主要介绍的是Z衬度成像。那如果只是单纯的STEM,它的衬度和信号是什么?扫描式的相比TEM有什么好处吗?束斑在扫描时与试样表面成一定角度还是近乎垂直的?恳请大神不吝赐教或者推荐一些学习资料,谢谢!

  • 三维光声超声成像系统特点

    [b][url=http://www.f-lab.cn/vivo-imaging/nexus128.html]三维光声超声成像系统Nexus128[/url][/b]是全球首款成熟商用的[b]3D光声成像系统[/b]和[b]3D光声CT系统[/b]和[b]3D光声断层扫描成像系统[/b],具有更高灵敏度和各向同性分辨率,提高光声图像质量,具有更快的扫描时间和更高光声成像处理能力。三维光声超声成像系统利用内源性或外源性对比产生层析吸收的断层图像,适用于近红外吸收染料或荧光探针进行对比度增强和分子成像应用。三维光声超声成像系统应用分子探针的吸收和分布肿瘤血管-血红蛋白浓度肿瘤缺氧-二氧化硫[img=三维光声超声成像系统]http://www.f-lab.cn/Upload/photo-acoustic-CT-Nexus128.png[/img]三维光声超声成像系统Nexus128特点预定义的肿瘤生物学和探头吸收协议先进灵活的研究模式的扫描参数先进的重建算法易于使用的图形用户界面紧凑,方便的现场系统强大的查看和分析软件易于使用的图形用户界面数据可视化与分析三维光声数据从三维光声超声成像系统传输到工作站进行观察和分析。工作站上的数据具有与三维光声超声成像系统相同的结构/组织。独立的工作站允许调查员分析数据,而另一个操作员正在获取数据。前置像头具有强大的内置工具Endra 可以为特殊定量数据应用提供OsiriX 插件三维光声超声成像系统Nexus128:[url]http://www.f-lab.cn/vivo-imaging/nexus128.html[/url]

  • 【原创大赛】扫描电镜中扫描旋转及对非导电样品的成像应用探讨

    【原创大赛】扫描电镜中扫描旋转及对非导电样品的成像应用探讨

    扫描电镜是材料学研究中的常用仪器,通过入射电子轰击样品,激发和收集二次电子以获得样品表面形貌像。虽然扫描电镜相对透射电镜对样品要求不高且制样简单,但为保证在真空条件下获得清晰的样品表面形貌像,对待测样品的基本要求为不挥发且易导电。不导电的样品因在电子束轰击区域易产生荷电形成电场,影响二次电子成像效果,因此对此类样品往往采用溅射一层非常薄的导电膜C或金属(如Au、Pt)提高导电性,改善成像效果。但对于样品表面起伏较大,以及需拍摄截面外侧的样品往往效果有限,主要会通过改变加速电压(Accelerating voltage),改变束流(Beam current)以及工作距离(Work distance)的方式进行成像调整,有时调整效果也是非常有限。通过日常的积累探索,本文以容易被忽略的扫描旋转(Scan rotation)对非导电样品的扫描电镜成像应用进行探讨。一、什么是扫描旋转? 电子束从极靴中出射后汇聚到样品为一个仅有数纳米的大小的束斑,再通过逐点移动实现对样品整个目标区域的扫描成像。逐点移动的方向由扫描线圈控制,可在平面内360度旋转可调。由于扫描线圈调整电子束偏转使得扫描方向发生改变,但成像时仍然按照水平的方式给与图像展现,直接体现为图像以中心为轴,进行了一定角度的旋转,此即为扫描旋转。扫描旋转感觉似乎是样品在旋转,实际上此时样品位置并未移动,仅仅是成像的视角发生了角度的改变。以图1中系类示意图为例:图1-1中的五角星以及四个方向的4个三角形为一个样品。扫描电镜在成像时往往会按照一定的长宽比进行某个区域的成像,如图1-2所示的方框为成像区域,即在电脑屏幕上可见的图像。图中示意的绿色的点为逐点扫描的起点,箭头为扫描方向,红色点为图像的中心。当扫描角度改变时,以90度为例,如图1-3所示。此时是仍以红色为中心点,扫描的起始点(绿色)和扫描方向发生了改变,但仍然按照固定的长宽比进行扫描区域成像,即虚线框范围,成像仍然按照水平方向展示,即在电脑屏幕上展现的图像为图1-4所示,与图1-2中方框内图像相比似乎旋转的90度。[img=,690,563]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241611580279_4828_1613111_3.jpg!w690x563.jpg[/img]二、扫描旋转在样品表面形貌成像中应用 扫描旋转方向的改变基本应用是为获得某个好看的目标物的图像,例如使得目标物的图像横平竖直,或者沿一定角度的趋势。在特殊情况下如当样品导电性差形成荷电,成像时容易产生明或暗条纹时,有时通过调整扫描方向,改变荷电分布区域,可以对成像效果有一定的改善。如下列图2系列图为同一位置不同扫描旋转角度的成像图。其中图2-1,图2-2,图2-3均在不同位置不同深浅度的黑色条纹,图2-4相对成像效果较好。由于荷电分布完全由所观测的样品的成像区域特性决定,即使同一样品不同区域荷电分布也不一致,难以总结出特定的一致规律,因此扫描旋转的改变对于成像的效果目前只能通过不同角度进行不断的尝试。[img=,690,522]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241612532956_154_1613111_3.jpg!w690x522.jpg[/img]三、扫描旋转在截面样品形貌成像中应用 在特殊样品的情况下,尤其对导电性差的截面外侧成像时,通过扫描旋转方向的改变可以显著提升成像效果。当侧面为水平时与扫描点移动方向一致,在侧面边缘易形成荷电场,对图像的扭曲非常明显。如下列图3系列图所示。图3-1中黄色标记线上侧为样品截面外侧,可见有一定的拉伸。进一步通过轻微角度调整,如图3-2和图3-3黄色线标记指示区,两者为同一样品区域,可见截面外侧的一层膜,由于荷电的作用造成图像扭曲非常明显。当将扫描方向调整为90度(图3-4),此时扫描点移动方向与样品截面外侧垂直,局部荷电得到一定改善,因此得到的图像未拉伸。如图3-1和图3-4两图绿色指示区为同一区域,可见图3-1中外侧区域成像时受到了严重压缩,经调整扫描方向得到了图3-4样品截面外侧的真实形貌图。[img=,690,604]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241614424860_7131_1613111_3.jpg!w690x604.jpg[/img] 又如下列组合图(图4),以样品截面水平为0度,分别逆时针旋转角度(30,60,90)和顺时针旋转角度(-30,-60)。可见在截面垂直(90)时为无变形成像。[img=,690,351]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241616295560_4109_1613111_3.jpg!w690x351.jpg[/img]四、结论 通过简单的扫描旋转改变电子束移动方向,对非导电性样品来说,有时可以获得意向不到的成像效果。

  • 全自动菌落计数仪选购有哪些原则或标准

    全自动菌落计数仪因其使用的自动化程度高、分析结果可核对、样品信息可留存等,已逐渐被越来越多的科研院所、卫生疾控部分所喜爱。如何选型,才能获得性能卓越的菌落计数仪,并取得高性价比呢?这得从该类仪器的原理来解释。现今面市的所有全自动菌落计数仪器均是采用成像分析法实现自动计数的,即由【成像硬件+分析软件】所组成,这二块内容的任何一块上出现失分,都会严重影响计数分析结果的稳定性。  一、成像硬件的选型  成像硬件用于获得清晰有效的菌落图像,以便分析计数。现今的成像硬件有拍照成像的、扫描成像的。由摄像头拍照成像的优点是:成像速度快,能确保在0.5秒内获得菌落图像。由单反相机、卡片机拍照成像的优点是:能自动对焦、且像素分辨率一般更高,但其成像需要3~4秒的时间。然而,拍照成像的致命弱点是:成像环境中的光线强度,无论是暗视野,还是背光,想要做到图像中心与边缘保持完全一致,是不可能的。从而引起平皿上亮度的不一致,这就严重干扰了菌落目标的自动识别。因此,如果要选购拍照成像的,其分析软件就一定要具有背景矫正功能,以便自动改善成像的效果。扫描成像与在灯箱中营造均匀面光源不同,是将线光源通过移动变成面光源的,因此光线强度非常均匀,其均匀度通常比拍照灯箱的面光源要高一个数量级,从成像硬件的根本上解决了菌落目标的亮度不匀问题,因此计数分析非常稳定。目前,以300dpi分辨率(3482×2396像素成像)扫描6个90mm直径平皿的速度,暗视野成像约12秒、背光成像约20秒,就其成像速度而言,与单反相机、卡片机拍照成像的速度相当。由于扫描成像的光线均匀度远远高于拍照成像,为获得高质量的成像效果,以便实现“傻瓜式”分析。扫描成像的另一优点是:成像分辨率可调,单平皿成像最高可达4800dpi(即:25.4/4800=0.00529mm/像素),是任何拍照成像远不及的。可以预期:扫描成像将很快成为主流选择。  二、分析软件的选型  分析软件是全自动菌落计数仪的另一块核心成分。因为菌落生物的存在多样性,在培养基上的表现或显像不可能大体一致,针对这类变化,在分析软件选型上要考虑:对于各类成像干扰的自动排出能力。比如:是否能自动矫正背景,等等。另外,对于严重粘连在一起的团装、链状分布菌落,将其自动分割开来的水平,也是评价分析软件的考量指标。尤其是:对于同类菌落的“一键”化的智能分类计数能力,以及对于菌落计数分类的自动识别学习能力,更是评价分析软件的关键考量指标。现在比较好的分析软件,还集成了对6个90mm直径平皿的抑菌圈全自动测量功能,以及对抗生素效价分析、药敏分析功能,可避免用户重复购置成像用的硬件。一般分析软件都具应具备对于分析结果和标记图像的保存、查看功能。  三、精准、稳定的傻瓜式操作  全自动菌落计数仪就是为了减轻工作人员工作强度的,在现今的高技术下,若还需要估算才能测出菌落数的话,应是比较落后了。最好的是:能“不变应变”精准、稳定地傻瓜式操作的分析软件,其对于菌落形态和样品状态的不确定性,能够自动适应,以避免不断地调节菌落分割参数,其最多由对话交互来擦除那些个污染部分,即可。

  • 对电泳胶上的斑点做定量,用凝胶成像分析系统好,还是用薄层扫描仪好?

    我在做一个课题,将糖类用琼脂糖凝胶电泳分离后,染色,再定量。现在的问题是到底用凝胶成像系统准确些,还是用薄层扫描仪效果好些?看国外的文献,用的是一种叫做“光密度计”的设备,国内难以找到。我的老板曾去相关实验室访问,他说对方用的是薄层扫描仪。我在想是否凝胶成像系统会更好些。不知各位高人有无好的建议给我?

  • 【电镜视频大赛】+全新智能扫描电镜Axia+欧波同

    [url=https://www.instrument.com.cn/zt/DJSPZJ][img=,610,90]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011810066266_2432_5531796_3.gif!w610x90.jpg[/img][/url]Axia ChemiSEM智能化扫描电镜,可实现样品形貌信息及成分信息的实时快速采集和处理。Axia的先进电子光学设计,可让系统一直处于良好的运行状态,轻松实现图像的高质量拍摄;对于不同类型样品,Axia均可提供全面的样品信息;全开门式大样品仓设计,灵活兼容不同尺寸样品,提供了充足的升级空间;全彩导航相机与红外CCD双导航配置,直观定位,快速检测;搭载高效的软件和智能化系统,可实现一键自动对焦、消像散等功能;自动大面积拼图功能,可快速连续扫描样品表面的不同部分,并自动进行拼接,实现样品更大面积的分析;操作简单,只需简单培训即可轻松掌握。Axia ChemiSEM,分析快速全面,操作轻松自如。[b]特点介绍:实时元素分析:[/b]在扫描成像的同时进行元素分析,获取多种信号,同时得到样品形貌信息与成分分析结果;[b]一键式操作体验:[/b]快速获取检测结果,一键自动化聚焦消像散、且无需合轴,让图像获取更快更优;[b]直观导航:[/b]全彩导航相机与红外CCD配置,双重导航,操作更安全,更直观,让您随时对样品仓内情况了如指掌;[b]成像平台即时可用:[/b]中文操作语言,让电镜操作变得更简单;您只需关心检测结果,无需费心电镜操作;[b]兼容的样品仓设计:[/b]全开门式大仓室,轻松加载不同种类样品,承重达10kg; [b]灵活成像:[/b]针对不适宜镀膜的不导电样品,提供低真空模式和电子束减速模式用于消除荷电效应。

  • 【转帖】扫描电子显微镜(Scanning Electron Microscope)基础知识

    [color=#00008B]一、 扫描电子显微镜的工作原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要 的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度 和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺 序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物 理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的 显像管亮度,得到反映试样表面形貌的二次电子像。[/color]

  • 英开发质谱成像技术新方法 推动癌组织分析数字化

    原标题:英开发出质谱成像技术运用新方法 推动癌组织分析进入数字时代 在癌症研究领域,质谱成像(MSI)是一种非常有前途的技术,但目前该技术的运用还受原始数据预处理、图像精确度及图像识别能力等问题限制。英国帝国理工学院近日发布新闻公报称,该校研究人员开发出一种新方法,可有效解决上述问题。新方法将改变病体组织的检测方式,从而推动癌症组织分析进入数字时代。相关研究成果刊发在最新一期《美国国家科学院院刊》上。 质谱成像技术主要是利用质谱直接扫描生物样品,分析化学成分在细胞或组织中的结构、空间与时间分布信息。这种成像方法不局限于特异的一种或几种蛋白质分子,可在生物组织样本中找到每一种蛋白质分子,并提供它们在组织中空间分布的精确信息。早在几年前,就有科学家提出利用该技术来确定生物组织类型的构想,但却一直没有设计出实用有效的方法。 新方法利用解吸电喷雾电离技术来优化数据预处理,提高图像精确度,并通过提取生物组织特定的分子印记来强化不同生物组织类型的生化特性,以增强图像识别能力。研究人员称,利用新开发的集成生物学信息平台,可将质谱成像技术获得的大量人体组织的具体信息数据,用于构建各种类型的组织数据库。通过多样本分析,并与传统的组织学分析结果进行比较,计算机就可以学习识别不同类型的组织,从而使癌变组织的解析变得相对简单高效。他们将自己设计的工作流程用于直肠结肠癌组织的检测,效果良好。 与标准组织学动辄几周才会得出完整结果的检测手段相比,利用质谱成像技术进行单一检测,仅需几小时即可获得更详尽的信息,不仅会显示组织是否发生癌变,还会显示癌症是哪一种类型和亚型。这些信息对于医生选择最有效的治疗方法十分重要。 研究人员指出,自19世纪后期染色技术用于显示组织结构以来,对组织病理学样本的分析方法鲜有变化。直到今天,染色法依然是医院组织学分析的主流手段,并且变得越来越复杂,耗费也越来越高。而质谱成像技术可能改变组织学的基本范式,科学家将不再根据组织的结构,而是根据它们的化学成分来定义组织类型。将来的检测不再依靠专家的眼睛,而是以海量数据为基础,仅一个检测所得到的信息就远比多个传统组织学检测所得到的更多。他们表示,新研究克服了一些质谱成像技术实际应用所遇到的障碍,将成为创建下一代完全自动化的组织学分析手段的第一步。 总编辑圈点 这是用互联网思维改造传统检测方法的一种尝试,它首先选取了质谱成像方法中最容易快速成像的解吸电喷雾电离技术,实现了数据快速采集;其次,通过将质谱成像得到的结果数字化,建立样本库,提高了数据规模,保证了分析精度;最后,与大数据、云计算等结合,可不断提高检测的准确性,为可靠应用提供保证。新思维已经提高了单个样本的检测精度,我们对它在群体和地区性疾病的检测预防方面也应有所期待。

  • 现代分析技术 用文物“说话“ 让历史“发声”

    文物保护,是对具有历史价值、文化价值、科学价值的历史遗留物通过现代科技手段采取的一系列防止其受到损害的措施。从一把洛阳铲,纵横考古界的“泰斗级”工具,于泥土之间可打出数米的深孔;一颗遥感卫星,飞行于浩瀚苍穹,可拍摄跨越山川河海的图景、从“手铲释天书”到“慧眼览古幽”,科技赋予考古的能量越来越大。计算机、生物学、化学、地学等前沿学科的最新技术被引入到遗址发掘、研究分析、文物修复、展示传播等考古“全链条”,发挥着日益显著的支撑推动作用。现化分析技术在考古中的应用,为文物安装“慧眼“,让文物”说话“,让历史”发声“。现代分析技术针对文物材质、表面形貌、化学成分、内部结构等利用现代技术手段全方面开展研究。常用分析仪器技术包括红外成像、红外光谱、拉曼光谱、X射线荧光能谱、X射线荧光扫描成像、质谱、核磁等。随着科学技术的飞速发展,现代分析仪技术在文物科学保护、科技考古领域的应用日益深入,为文物的鉴定、分析与保护提供了科学依据,即使那些人类肉眼无法可见的“存在”,科技之光也有可能将其照亮,科技助力解开更多历史谜团。仪器信息网为广大文物分析及保护工作者策划组织了本次“现代分析测试技术在文物科学保护中的应用”主题网络研讨会将于12月6日以网络会议的形式召开,会议将围绕瓷器、铁器、染物、漆器、陶器等现代分析方法,为广大用户群体提供交流学习的平台。[align=center]会议日程[img=1.png]https://img1.17img.cn/17img/images/202212/uepic/1c2a48fa-15ea-4a7b-9206-39e402222c38.jpg[/img][/align][align=center][font=等线][size=14px] [img=2.png]https://img1.17img.cn/17img/images/202212/uepic/4d476b40-b000-4362-83a4-ec2a057b6784.jpg[/img][/size][/font][/align][align=center]扫码免费参会[/align]

  • 【原创】清华大学—日本ULVAC-PHI公司联合分析实验室揭牌暨技术讲座材料

    “清华大学—日本ULVAC-PHI公司联合分析实验室揭牌暨技术讲座”在清华大学隆重举行在科技部和清华大学“211”经费的共同支持下,分析中心在原有的能谱实验室设备和人员基础上,于2005年3月建立了国家级大型仪器中心“北京电子能谱中心”;日本真空(ULVAC-PHI)公司为中心以及其优惠的价格提供了两台价值200余万美元的表面分析仪器:“纳米扫描俄歇系统(PHI 700)”和“扫描成像X射线光电子能谱(PHI Quantera)”及部分运行经费,共同建立联合分析实验室。2006年4月12日在清华大学理学院报告厅隆重举行了“清华大学—日本ULVAC-PHI公司联合分析实验室揭牌暨技术讲座”,会议由清华大学化学系副主任、分析中心主任张新荣教授主持。清华大学校务会副主任、原副校长郑燕康教授,ULVAC-PHI株式会社社长大桥 善治先生,国家纳米科学中心副主任王琛教授,科技日报社副社长、中国青年科技工作者协会副会长汤东宁先生分别致辞。均表示清华大学与日本ULVAC-PHI公司本着强强联合、继续合作的原则, 此次同时引入代表了实用纳米表面分析仪器最高水平的“纳米扫描俄歇系统(PHI 700)”和“扫描成像X射线光电子能谱(PHI Quantera),必将大幅度提升清华大学乃至我国材料领域的分析水平。清华大学校务会副主任、原副校长郑燕康教授ULVAC-PHI株式会社社长大桥 善治先生共同为联合分析实验室剪彩。会上“北京电子能谱中心”主任朱永法教授介绍了中心的概况及联合分析实验室的筹备情况,ULVAC-PHI株式会社亚洲课课长王道元博士宣布了2006年联合分析实验室工作约定协议。清华大学科研院副院长嵇世山教授,清华大学实验室与设备处李明处长,ISO/TC201中国组主任沈电洪教授,人民日报社海外版副主编陈树荣先生,日本真空中国办事处杨秉君先生,台湾博精仪器股份有限公司陈文徽先生,以及我校和国家纳米科学中心、中科院物理所、中科院化学所、北京大学、北京理工大学、北京工业大学、北京师范大学、北京化工大学、钢铁研究总院、南开大学、西安理工大学、天津大学、上海宝钢研究院、四川材料研究所、天津四十六所、中国建筑材料科学研究院等单位的同行近百人也出席了此次盛大活动。朱永法2006.4.18

  • 背散射图片拍摄扫描位错原因探讨

    机型:JSM-6510A拍背散射图片时,偶尔出现扫描位错,但最终图片是合适的,不知道出现位错的原因是啥?是不是扫描成像系统有故障,还是其他原因。请各位大神赐教。[img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108200553103129_3950_4117239_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108200553104886_2962_4117239_3.png[/img]

  • 新X光乳腺成像法可使辐射剂量降低25倍

    中国科技网讯 据物理学家组织网10月22日报道,一个国际研究小组开创了一种新型X光乳腺成像方式,能够以比现在常用的二维放射摄影术低出约25倍的辐射剂量拍摄乳房的三维X光图像。同时,新方法还能使生成的三维高能X射线计算机断层扫描(CT)诊断图像的空间分辨率提升2倍至3倍。相关研究论文发表在同日的美国《国家科学院学报》在线版上。 目前常用的乳腺癌扫描技术是“双重视图数字乳腺摄影术”,它的缺陷在于只能提供两幅乳腺组织的图像,这就解释了为何10%至20%的乳腺肿瘤都无法被探测到。此外,这种摄影术偶尔也会出现异常,造成乳腺癌的误诊。 而CT这种X射线技术虽能生成精确的人体器官三维可视图像,但却不能经常应用于乳腺癌的诊断之中,因为其对于乳房等对辐射敏感的器官而言,可能造成长期影响的风险过高。 新技术则有望克服上述限制。目前科研人员正在利用同步加速器X光对这一技术进行测试,其一旦在医院投入使用,将使CT扫描成为能够补充双重视图数字乳腺摄影术的诊断工具之一。 高能X射线和相衬成像技术的使用,再加上复杂的新型EST数学算法,能够基于X光数据重建CT图像,使CT扫描有望用于早期的乳腺癌排查,成为抗击乳腺癌的强大工具。身体组织将在高能X射线的照射下变得更加透明,因此所需的辐射剂量能够显著降低6倍左右。相衬成像也允许在拍摄同样的照片时使用更少的X射线,EST算法也可在降低4倍辐射的情况下获得相同的图像质量。研究团队以这种方式从多个不同角度拍摄了512张乳房图片,并据此形成了比传统乳腺摄影清晰度、对比度和整体图像品质更高的三维图像。 科研人员称,这些高质量的高能X射线CT图像是欧洲同步加速器辐射源(ESRF)研究中心10年的奋斗成果,同样付出努力的还有德国慕尼黑大学以及美国加州大学洛杉矶分校。他们还表示,下一步的研究目标是基于此项技术实现其他人类疾病的早期可视化,并开发出大小适合的X射线源,力图早日实现该技术的临床应用。(张巍巍) 《科技日报》(2012-10-24 二版)

  • 转载:磁共振成像中的生物指纹

    转载:磁共振成像中的生物指纹

    来自凯斯西储大学和凯斯西储大学医院医学中心的研究人员在《自然》(Nature)杂志上报告称,他们开发了一种磁共振成像(MRI)新方法,可以早期常规筛查某些特异的癌症、多发性硬化症、心脏病及其他疾病。http://ng1.17img.cn/bbsfiles/images/2013/03/201303191704_431210_2698941_3.jpg科学家们说,每个身体组织和疾病都具有一种独特的指纹,可用于快速诊断问题。利用新的MRI技术可以同时扫描不同的物理特性,研究小组在12秒钟的时间内区分出了大脑中的白质、灰质和脑脊髓液,有希望在不久的将来更快速地完成这一工作。作者们认为,该技术有潜力使得MRI扫描成为年度体检的标准程序。全身扫描仅需几分钟,将提供更多的信息,且无需放射科医师注释这些数据,相比于现在的扫描,其可使诊断变得更加便宜。“我们的总目标在于明确鉴别个体的组织和疾病,有望在它们变成问题之前看到及定量一些东西。然而要试图达到这一目标,我们不得不放弃我们所知道的一切关于MRI的东西,重新开始,”凯斯西储大学医学院和凯斯西储大学医院医学中心放射学教授Mark Griswold说。10年来,Griswold和凯斯西储大学的放射性助理教授Vikas Gulani,以及生物医学工程学助理教授Nicole Seiberlich一直致力于实现这一目标。在过去的3年里,他们与协作者们开发了这一技术,并证实了概念。磁共振成像仪是利用磁场和无线电波脉冲来生成身体组织和结构的图像。相比于传统的MRI,磁共振指纹法(Magnetic resonance fingerprinting,,MRF)每次测量可以获取更多的信息。Griswold将技术中的差异比作两个不同的合唱队。“传统的MRI,是每个人都唱着同一首歌,你可以说出谁唱得更响亮,谁跑调了,谁唱得更柔和。但也就是这样。”大声、柔和和跑调的歌声由扫描中的黑点、轻微的亮点和明亮点表示,放射科医生必须对其进行注释。例如,生化试剂中MRI显示肿胀为明亮区。但亮度并不一定等同于严重或病因。Griswold说:“利用MRF,我们希望能够一步告知疾病的严重程度,以及在这些区域确切发生的事件。”因此,身体内的每个组织、每种疾病以及每种物质的指纹就是一首不同的歌。在MRF中,每个合唱队成员都同时唱着不同的歌。“整个听起来就像随机一团糟。”研究人员通过同时改变标记组织的输入电磁场的不同部分,生成一些独特的歌曲。这些变化生成了对随组织而异的4种物理特性敏感的接收信号。当在面孔识别软件中利用数学模式识别程序时,这些差异会变得明显。随后这些模式被制成图表。Griswold说,检测的不是来自图像的相对测量值,而是通过定量评估区分一种组织与另一种。随着这一技术不断进步,这些结果将确定组织是否健康,严重程度以及凭据。科学家们相信他们将能够查询总共8个或9个物理特性,使得他们能够推导出来自大量组织、疾病和物质的歌曲。对于患者而言,MRF看起来就像一个快速MRI。当完成扫描后,将患者的所有歌曲与乐曲库相比较,就可以为医生提供一套诊断信息。“如果结肠癌是‘生日快乐’歌,我们没有听到‘生日快乐’,就意味着患者没有结肠癌,”Griswold说。其他一些研究人员曾尝试利用MRI的多个参数,而研究人员能够比以前尝试做到的更敏感及快速地进行扫描。“这一研究给予了我们希望,我们可以看到MRI有可能能够看到各种东西。”研究小组期望在接下来的几年里,能够减少扫描时间,继续建设乐曲库,或是指纹库

  • 什么是高内涵细胞成像分析技术?

    高内涵技术优势高内涵细胞成像分析系统由三个部分组成:全自动高速显微成像,全自动图像分析和数据管理。全自动高速显微成像在短时间内生成大量的图像,全自动图像分析从这些图像中提取大量的数据,数据管理软件负责建档存储、注释比较、检索分享这些图像和数据。高内涵,意味着丰富的信息。这些信息包括:单个细胞图像和各项指标,细胞群体的统计分析结果,细胞数量和形态的改变,亚细胞结构的变化,荧光信号随时间的变化,荧光信号空间分布的改变等等。人们往往因为特定的问题去设计实验,在图像中找到答案的同时,其他的信息会带来意外的新发现。

  • 科瑞恩特(北京)科技有限公司刚刚发布了细胞成像/分析产品经理-北京市职位,坐标北京市,速来围观!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-85710.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]细胞成像/分析产品经理-北京市[b]职位描述/要求:[/b]岗位职责:1、主要负责协助管理和推动公司细胞成像、细胞分析产品线业务 并协助其他产品推广;2、追踪行业发展动态,制定整个产品线销售计划,协助销售经理达成销售目标。3、负责协助市场部,对产品进行定位、制定推广计划、培训前线销售人员等;4、根据产品特性和应用找出推进市场的切入点;5、负责制定和开发产品解决方案 6、与销售人员一起拜访客户,在技术和应用层面上根据客户需要,引领销售推荐适合产品;7、与潜在客户进行技术交流,做PPT技术讲解;举办技术交流会,组织市场推广活动等协助技术支持工作。任职要求:1、分子生物学,细胞生物学,组织病理学等相关专业硕士;有高内涵、共聚焦、细胞成像类设备相关经验优先考虑;有细胞培养和分析实验相关经验优先考虑2、有较强的专业知识和文献解读以及研究能力 3、对科研仪器市场有认识和工作学习经验者优先;4、英语水平良好,英语听、说、读、写熟练,可以独立阅读及翻译专业文献及彩页资料;5、严谨好学,有较强的分析问题能力与沟通能力;6、良好的执行力,诚实,谦虚,具有高度的热情和吃苦耐劳的精神;7、优秀的交流技巧,积极主动,具有高度责任感,乐观开朗,独立性强;8、经验较少者或会被考虑担任“助理产品经理” (Assistant Product Manager) 9、欢迎有志应届生;[b]公司介绍:[/b] 科瑞恩特(北京)科技有限公司成立于2012年,办公室设在北京市经开区天骥智谷园区,毗邻国药、京东方,Corning,GE,Bayer等世界五百强科技企业中国研发中心;公司内部设有质谱成像检测、细胞成像检测分析实验室和样机展示区。科瑞恩特公司是一家基于前沿生物成像(质谱成像、细胞成像、动植物活体成像)?和细胞分析(流式细胞技术、RTCA技术、细胞能量代谢技术)并具有清晰的企业定位,明...[url=https://www.instrument.com.cn/job/position-85710.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 通过对人面部温度进行测量对比 热成像扫描仪可快速找出醉酒者

    中国科技网讯 过度饮酒不但会损害自身健康,也会危害公共安全,当醉酒者出现在飞机上或是其他公共场所时就更是如此,因此,安保人员一直在寻找一种能够快速准确地从人群中发现醉酒者的方法。据物理学家组织网近日报道,日前,希腊的科学家开发出一种新技术,能够借助红外线热成像扫描仪实现这一目的,帮助执法者和工作人员轻松地从人群中发现那些过度饮酒的人。相关论文发表在《电子安保和数字取证》杂志上。 负责该项研究的希腊帕特雷大学电子学实验室乔治亚·库克和瓦西里斯·阿纳斯塔索普洛斯解释说,该技术主要通过对人们面部的温度进行测量对比发现醉酒者。目前他们已经开发出两种算法,只需通过红外线热成像仪对人脸进行扫描就能确定他们是否过量饮酒。 第一种算法会对人脸特定的点进行扫描,以获取其图像和温度信息,而后在数据库中将其与未饮酒的人进行对比。由于酒精能够引起皮肤表面的血管膨胀,借助红外线热成像设备,很容易就能发现醉酒者。类似的技术目前已经在边界巡查等领域获得应用,以确定一个人是否感染流感或SARS等病毒。 第二种算法能计算出脸部不同部位的热差值,并对其进行评估。通过对红外图像的分析,研究人员发现醉酒者往往鼻部温度较高,而额头较为冰凉。这种算法能够帮助计算机“理解”红外线热成像图像中不同的脸部部位。与第一种方法相比,其优势在于不需要通过对数据库中未饮酒的人脸进行对比就能发现醉酒者。研究人员称,这两种算法既可以单独工作也可以并行工作,而在并行运行时其效率更高,识别速度更快。 这种技术为执法和管理人员从公共场所中发现醉酒者提供了一种更为准确的判断手段,此外,相对于主观判断,这种方法更为快捷,作为证据也更为可靠。(王小龙) 《科技日报》(2012-9-11 二版)

  • 新加坡研制出便携式新扫描电子显微镜

    新加坡研制出便携式新扫描电子显微镜 -------------------------------------------------------------------- 2005年2月4日 日前,新加坡国立大学工程系研制出新的轻便型扫描电子显微镜系统,重量仅有现有系统的十分之一。传统的扫描电子显微镜系统体积大,重量达1000公斤,非常占地,也不容易搬动。这些仪器价格也高达50万美元。国大研制的这个新扫描电镜,功能和清晰程度不逊于传统系统,价格却不到10万美元,总重量也不到100公斤,整个系统还可拆成几个各不到20公斤的部分,方便携带。  研制这个产品的国大电子工程系的安岩教授指出,扫描电镜是用聚焦电子束在试样表面逐点扫描成像,和光学显微镜相比,扫描电镜可以把影像放大多300倍。即使只有头发厚度5万分之一这么小的样本,扫描电镜还是可以将样本的细节显示成清晰的画面。  他说:“扫描电镜的用途很广泛,包括辨认病毒、药物制造、检查微晶片等。我们的扫描电镜系统集中在一个推车上,可以推进电梯、小货车,很方便携带,要在微晶片厂进行检查工作也可以轻易地从一层楼搬到另一层楼,疾病专家也可以把它带到传染病现场,不必把病毒样本带会实验室。” [em05]

  • 【创新】SSRM用一个扫描探针二维成像和大规模集成电路领域取得突破

    日本东芝公司(Toshiba Corp.)于4月16日宣布,他们在电子载体通道以及半导体中的杂质成像方面取得了重大突破,这使得在1纳米尺度上的分析技术首次变得可能。这一基于扫描电阻显微镜(SSRM)的技术是实现下一代45纳米级别大规模集成芯片(LSI)等的关键性一步。  东芝公司将在国际可靠性物理年会(IRPS)上宣布他们的这一发现,这是目前正在美国Arizona凤凰城举行的国际半导体可靠性的大型会议。东芝计划在会议最后一天,当地时间4月19日发表这一突破性成果。  扫描电子显微镜是一种用来分析半导体表面的局域性二维电阻的理想方法,它能用于分析电子载体以及杂质。目前对于45纳米级别LSI的需求使得了解载体通道内的电子载体密度非常重要,而且需要能达到1纳米级别的精度,这是由于电特性方面的微小改变都会导致泄露和短路。  SSRM用一个扫描探针对半导体器件的载体进行二维成像。这些图像反映了导致电阻变化的杂质,并使得对电流路径分析变得可能。但是通过传统探针的高分辨SSRM精度只能维持在5纳米左右。  问题来源于两个方面:样品的水蒸气将影响成像精度,而且维持样品和探针间的稳定也很困难。为了克服以上问题,东芝将SSRM置于真空中,并精确定位了探针位置。这使得东芝公司达到了目前最高的分析精度:1纳米,这将用于45纳米LSI制造。教育部科技发展中心

  • 信号探测器对扫描电镜成像效果的影响

    扫描电镜因其分辨率高、制样简单、扩展性强等 特点,是常用的显微成像设备之一。电镜利用电子与 物质相互作用产生的信号,经计算拟合后模拟出样品 形貌。因此,电镜成像效果受捕获信号的类型影响。本作品介绍了扫描

  • 扫描电镜电子束穿透成像效应

    [align=center]作者:驰奔仪器 Microexplore[/align] 扫描电镜信号出射深度或信号从样品表面发射的面积大小,决定了扫描电镜探测样品信息的空间分辨率。电子束样品相互作用区和被测信号取样区这两个概念对于图像解释和定量x射线显微分析都很重要。 评估电子束样品作用区的三个主要变量1)平均原子序数Z ,原子序数高作用区越小;2)束电子能量Kev ,束电子能量越低,作用区越小;3)倾斜角度θ,倾斜角越大作用区越小在精细电子显微分析中,往往通过蒙特卡洛模拟来判定电子束样品作用区及各种散射信号取样空间。[url=http://photo.blog.sina.com.cn/showpic.html#blogid=149e935230102xgu1&url=http://album.sina.com.cn/pic/0062Af6Pzy7nyjRvaG24e][img=扫描电镜电子束穿透成像效应,690,481]http://s15.sinaimg.cn/mw690/0062Af6Pzy7nyjRvaG24e&690[/img][/url] 为表征微观表面真实形貌,往往采用低的加速电压或低的电子束着陆电压,减小作用区,降低信号出射深度。 二次电子(SE)信号常用于表征形貌,逃逸深度一般在几个纳米到几十纳米,然而SE信号来源非常复杂,有来自入射束产生的SE1,很大一部分是背散射电子逃逸出表面过程中产生的SE2,还有背散射电子撞机样品室的表面产生的SE3,这些SE可能同时被探测器接收,那么我们就会看到如下两个较为极端情况下,SE信号样品取样区分布和成像效果。事实上只有SE1才能精细表征表面形貌. SE2/3产额与BSE信号产额正相关,因此携带了较为粗糙的形貌信息和成分信息。 当使用高束能量,由于作用区增大,SE的绝大部分是SE2/3,30nm碳膜表层SE1信号反差已经微不足道,电子束成像就几乎无视其存在了,因此图像变得透明,直接看到下面光栅。这种效应可以称为电子束穿透成像效应。[url=http://photo.blog.sina.com.cn/showpic.html#blogid=149e935230102xgu1&url=http://album.sina.com.cn/pic/0062Af6Pzy7nymqSHeq5a][img=扫描电镜电子束穿透成像效应,690,624]http://s11.sinaimg.cn/mw690/0062Af6Pzy7nymqSHeq5a&690[/img][/url] 我们使用北京的DEMO(驰奔Genesis-I型钨丝枪扫描电镜),[url=http://photo.blog.sina.com.cn/showpic.html#blogid=149e935230102xgu1&url=http://album.sina.com.cn/pic/0062Af6Pzy7nyq1nmYj0b][img=扫描电镜电子束穿透成像效应,690,545]http://s12.sinaimg.cn/mw690/0062Af6Pzy7nyq1nmYj0b&690[/img][/url]采用3kv、5kv、10kv、15kv、20kv、25kv、30kv,更为连续的加速电压,观察金属表面碳物质附着物,印证电子束穿透成像效应。 [url=http://photo.blog.sina.com.cn/showpic.html#blogid=149e935230102xgu1&url=http://album.sina.com.cn/pic/0062Af6Pzy7nyoNoWAK1e][img=扫描电镜电子束穿透成像效应,690,517]http://s15.sinaimg.cn/mw690/0062Af6Pzy7nyoNoWAK1e&690[/img][/url] [url=http://photo.blog.sina.com.cn/showpic.html#blogid=149e935230102xgu1&url=http://album.sina.com.cn/pic/0062Af6Pzy7nyoNyg6bbf][img=扫描电镜电子束穿透成像效应,690,517]http://s16.sinaimg.cn/mw690/0062Af6Pzy7nyoNyg6bbf&690[/img][/url][url=http://photo.blog.sina.com.cn/showpic.html#blogid=149e935230102xgu1&url=http://album.sina.com.cn/pic/0062Af6Pzy7nyoNCbBk16][img=扫描电镜电子束穿透成像效应,690,517]http://s7.sinaimg.cn/mw690/0062Af6Pzy7nyoNCbBk16&690[/img][/url][url=http://photo.blog.sina.com.cn/showpic.html#blogid=149e935230102xgu1&url=http://album.sina.com.cn/pic/0062Af6Pzy7nyoNx1va98][img=扫描电镜电子束穿透成像效应,690,517]http://s9.sinaimg.cn/mw690/0062Af6Pzy7nyoNx1va98&690[/img][/url][url=http://photo.blog.sina.com.cn/showpic.html#blogid=149e935230102xgu1&url=http://album.sina.com.cn/pic/0062Af6Pzy7nyoNGcLx73][img=扫描电镜电子束穿透成像效应,690,517]http://s4.sinaimg.cn/mw690/0062Af6Pzy7nyoNGcLx73&690[/img][/url][url=http://photo.blog.sina.com.cn/showpic.html#blogid=149e935230102xgu1&url=http://album.sina.com.cn/pic/0062Af6Pzy7nyoNKIywac][img=扫描电镜电子束穿透成像效应,690,517]http://s13.sinaimg.cn/mw690/0062Af6Pzy7nyoNKIywac&690[/img][/url][url=http://photo.blog.sina.com.cn/showpic.html#blogid=149e935230102xgu1&url=http://album.sina.com.cn/pic/0062Af6Pzy7nyoNFnpc3e][img=扫描电镜电子束穿透成像效应,690,517]http://s15.sinaimg.cn/mw690/0062Af6Pzy7nyoNFnpc3e&690[/img][/url]图像解释:3-5kv下表现出良好碳质结构形态,此时电子束的穿透深度大约为500nm ~ 1微米 ,不足以穿透样品且碳质结构表面SE信号为反差主导。10kv,电子束穿透深度大约为2微米,应该没有穿透中心的炭黑部位,此时SE2/3为主导,几无形貌反差,成分反差明显。15kv以上,电子束开始穿透碳黑部位,SE2/3为反差主导,且基底的BSE出现一定形貌反差,加速电压越高,来自基底的SE2/3主导反差越来越高,越来越无视炭黑存在。

  • 加速电压对扫描电镜成像影响

    加速电压对扫描电镜成像影响

    [color=#ff0000][b]此为分享引用,所有权归原微信公众号,原文链接:[url]https://mp.weixin.qq.com/s/lDVTic2etkUd7drsNrdJNw[/url][/b][/color][font=&]扫描电镜是材料学研究中的常用仪器设备,通过入射电子轰击样品,激发和收集二次电子获得样品表面形貌像,以及通过特征X射线进行样品成分分析。在仪器测试使用时,加速电压(HV/ETH)为常用参数中调节最为普遍的一个。那么加速电压是如何影响成像的效果呢?本短文将以我校常见样品的实际图片结合简短的原理来与大家共同分享和探讨一下在扫描电镜成像中应如何调整加速电压。[/font][size=17px]入射电子影响的范围[/size][font=&]加速电压越高,入射电子的能量能越高,在样品中可穿透和散射的范围越大,伴随着产生的信号范围也越大。如下图模拟,入射电子在1kV加速电压时,在硅中散射范围主要在20nm区域内;在5kV时,散射的主要范围扩大到300nm区域,因此5kV时二次电子可产生的范围从入射点扩大到数百纳米。[/font][align=center][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171507293110_4689_1613111_3.jpg!w690x223.jpg[/img][/align][size=17px]样品表面细节的分辨[/size][align=left]如上模拟所示,由于加速电压增加,入射电子散射的范围增加,使得产生的二次电子区域扩大,样品表面细节分辨率降低。如下图对比,在1kV条件下颗粒表面附着的碳纳米管比5kV条件下更加显著可见。[/align][align=center][font=&] [/font][img=,690,222]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171508305861_6609_1613111_3.jpg!w690x222.jpg[/img][/align][align=center][/align][font=&]如下图在1kV下可见颗粒表面为更小的颗粒组成,而在5kV时仅能看到大颗粒的宏观轮廓。因此对追求纳米级的表面细节分辨建议选择低电压比较合适。[/font][align=center][img=,690,250]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171513118873_2060_1613111_3.jpg!w690x250.jpg[/img][/align][size=17px]辐射损伤[/size]有些样品易受辐射损伤,如有机高分子,金属有机框架,生物组织等。辐射损伤的机理比较复杂原因也多,本短文不再深入探讨。在扫描电镜成像时,有没有简单的办法判断当前加速电压有没有造成辐射损伤?在实践发现,采用较低的加速电压,例如5kV及以下的电压,拍一张图后,原地再拍一张即可,对比前后两张图有没有裂纹、收缩等。如下图,原地再拍一张后的样品前后图明显出现了收缩,说明在此加速电压下样品受到了损伤,应当降低入射电子能量。[align=center][font=&][img=,690,233]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171514256752_1419_1613111_3.jpg!w690x233.jpg[/img] [/font][/align][font=&]加速电压越高,所携带能量越高,热损伤和轰击损伤都会增加。因此对于易受辐射损伤的样品建议使用较低电压。如下图所示在1kV下,PMMA球体表面圆润饱满,在2kV球体出现了收缩的凹陷;在1kV下,MOF表面平滑,在2kV条件表面出现收缩。[/font][align=center][font=&] [img=,690,514]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171515150790_4421_1613111_3.jpg!w690x514.jpg[/img][/font][/align][size=17px]非导电样品的荷电[/size][font=&]为避免非导电样品出现荷电影响成像效果,对于此类样品一般会在表面溅射一层几纳米厚的导电薄膜,如C,Au,Pt等,但对于有的样品效果也有限。出现荷电的直接体现为成像时明暗度明显失调或者出现条纹,根本原因在于电子输入和逸出的数量不平衡。不同的样品有不同的平衡电压,但对于大部分绝缘样品平衡电压[i]E[sub]2[/sub][/i]在1-3kV内,因此可以通过在此低电压范围内适当尝试。此外,采用低电压同时也减少了电子输入,对减弱和改善区域范围内的荷电有较好的效果。如下图所示,在1kV时图像明暗度较均匀,在5kV时存在明显异常亮的荷电影响区域。[/font][align=center][img=,690,234]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171515420931_1042_1613111_3.jpg!w690x234.jpg[/img][/align][size=17px]成像的信噪比[/size][font=&]加速电压越高,入射电子所携带的能量越高,因此轰击到样品产生的二次电子越多,信号越强,信噪比得到提高,成像的直观感觉图像更清楚了。如下图在5kV时,相对1kV图像的成像视觉效果更为清楚。对于微米级的较大颗粒,在不追求表面细节时,提高加速电压有利于提高信噪比,获得成像效果更为清楚的图片。[/font][font=&] [/font][align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516056033_5181_1613111_3.jpg!w690x255.jpg[/img][/align][font=&] [/font][size=17px]混嵌的样品[/size]如果所要观察的目标物包裹或者嵌入在其他物质里面,一般建议高加速电压以提高测试深度。此仅针对高原子序数目标物质有效,且一般范围在1-2um深度以内。如下图,1kV仅能看见高分子样品表面有颗粒起伏,在15kV下明显可见包裹的Fe氧化物颗粒。但如果两物质原子序数接近或者目标物原子序数较低则很难实现成像区分,如在有机高聚物里添加纳米薄层石墨烯。[align=center][img=,690,259]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516295430_4956_1613111_3.jpg!w690x259.jpg[/img][/align][align=center][/align][font=&] 以上加速电压选择简单整理为下表:[/font][align=center][img=,690,319]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516468545_8504_1613111_3.jpg!w690x319.jpg[/img][/align][font=&]本短文抛开了复杂的机理讨论,以简洁的方式分享了我校常测样品对加速电压高低选择的一般原则。[/font][font=&]由于样品的不同及分析目标不同,在测试中需要根据实际情况配合其他参数进行调整,感兴趣的读者可以参阅以下文中引用的参考资料。[/font]参考文献[font=Optima-Regular, PingFangTC-light]1. 李超.电子束辐照致荷电效应的Monte Carlo模拟研究.中国科学技术大学博士学位论文,2020[/font][font=Optima-Regular, PingFangTC-light][size=14px]2. 周莹,王虎,吴伟,刘紫微, 林初城,华佳捷.加速电压的选择对 FESEM 图像的影响.实验室研究与探索,2012,31(10):227-230.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]3. 吴东晓,张大同,郭莉萍.扫描电镜低电压条件下的应用,2003,电子显微学报,22(6):[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]655-656.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]4. 曹水良,梁志红,尹平河.不同加速电压对不导电样品扫描电镜图像的影响.暨南大学学报( 自然科学与医学版),2014,35(4):357-360.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]5. 华佳捷,刘紫微,林初城,吴伟,曾毅.场发射扫描电镜中荷电现象研究.电子显微学报,2014,33(3):226-232.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]6[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]. 程彬杰,刘学东,唐天同,王莉萍.电子束中Boersch效应的实验研究.真空科学与技术,1998,18(5):364-368.[/size][/font]

  • ChampGel™全自动凝胶成像分析系统

    ChampGel™全自动凝胶成像分析系统

    ChampGel 全自动凝胶成像分析系统产品详细描述http://ng1.17img.cn/bbsfiles/images/2014/08/201408261531_511710_2925070_3.jpg性能特点:①采用高分辨率高灵敏度CCD,可轻松获得高质量图像,特别适用于高通量电泳凝胶的拍摄和分析。②最新一代密闭式自动控制暗箱结构紧凑,配有各种波长光源,功能强大。③可应用于各种紫外线和蓝光激发样品的拍摄,如:EB、GoldView、GeneFinder、SYBR Green、TLC等;可见光激发样品,如:银染胶、考染胶、菌落、抑菌圈、微孔板、斑点杂交、胶片、物体切片等。④LANE 1D软件可对各种凝胶电泳、克隆计数、微孔板、抑菌圈、抗生素效价、物体切片图像进行计算和分析。所有数据、图像、图形均可导出至Excel、Word、粘贴板等软件或其他文件中。产品广泛服务于世界各地科研机构 ChampGel系列全自动凝胶成像分析系统已被世界各地众多科研机构所采用,如:Northwestern University Feinberg School of Medicine、Department of Pathology and Immunology in University of Chicago、中科院生物物理研究所、北京大学、清华大学、中国医学科学院肿瘤研究所、上海交通大学、中山大学等。其优异的性能、先进的配置和低廉的价格获得了使用者的一致好评。强大的拍摄和分析功能http://www.bioon.com.cn/ewebeditor/fckup/2014/7/20140721143946304319.jpg;计数指标及配置表:http://www.bioon.com.cn/ewebeditor/fckup/2014/7/20140721142817765164.jpg

  • SEM中的面扫描与XPS中的成像XPS

    在SEM中作扫描时是否存在几何因素,也就是说电子束斑的入射角度与出射角度以及束斑的大小等这些因素影响面扫的成像,出现不能很真实反映样品的元素分布情况?成像XPS是否也类似?

  • 材料表征仪器之扫描电镜

    材料表征仪器之扫描电镜

    扫描电子显微镜(scanning electron microscope),简称扫描电镜(SEM)。是一种利用电子束扫描样品表面从而获得样品信息的电子显微镜。它能产生样品表面的高分辨率图像,且图像呈三维,扫描电子显微镜能被用来鉴定样品的表面结构。http://ng1.17img.cn/bbsfiles/images/2013/09/201309221547_465885_2063536_3.jpg扫描电镜是利用细聚焦电子束在样品表面扫描时激发出来的各种物理信号来调制成像的扫描电镜主要有真空系统,电子束系统以及成像系统。1、真空系统  真空系统主要包括真空泵和真空柱两部分。  真空柱是一个密封的柱形容器。  真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。成象系统和电子束系统均内置在真空柱中。真空柱底端即为右图所示的密封室,用于放置样品。之所以要用真空,主要基于以下两点原因:电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以除了在使用扫描电镜时需要用真空以外,平时还需要以纯氮气或惰性气体充满整个真空柱。  为了增大电子的平均自由程,从而使得用于成象的电子更多。2、电子束系统  电子束系统由电子枪和电磁透镜两部分组成,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成象。  电子枪:用于产生电子,主要有两大类,共三种。一类是利用场致发射效应产生电子,称为场致发射电子枪。这种电子枪极其昂贵,在十万美元以上,且需要小于10-10torr的极高真空。但它具有至少1000小时以上的寿命,且不需要电磁透镜系统。另一类则是利用热发射效应产生电子,有钨枪和六硼化镧枪两种。钨枪寿命在30~100小时之间,价格便宜,但成象不如其他两种明亮,常作为廉价或标准扫描电镜配置。六硼化镧枪寿命介于场致发射电子枪与钨枪之间,为200~1000小时,价格约为钨枪的十倍,图像比钨枪明亮5~10倍,需要略高于钨枪的真空,一般在10-7torr以上;但比钨枪容易产生过度饱和和热激发问题。  电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。通常会装配两组:  汇聚透镜:顾名思义,汇聚透镜用汇聚电子束,装配在真空柱中,位于电子枪之下。通常不止一个,并有一组汇聚光圈与之相配。但汇聚透镜仅仅用于汇聚电子束,与成象会焦无关。  物镜:物镜为真空柱中最下方的一个电磁透镜,它负责将电子束的焦点汇聚到样品表面。3、成像系统  电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生次级电子、背散射电子、欧革电子以及X射线等一系列信号。所以需要不同的探测器譬如次级电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。  有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用次级电子探测器代替,但需要设定一个偏压电场以筛除次级电子工作原理  下图是扫描电镜的原理示意图。由最上边电子枪发射出来的电子束,经栅极聚焦后,在加速电压作用下,经过二至三个电磁透镜所组成的电子光学系统,电子束会聚成一个细的电子束聚焦在样品表面。在末级透镜上边装有扫描线圈,在它的作用下使电子束在样品表面扫描。http://ng1.17img.cn/bbsfiles/images/2013/09/201309221549_465886_2063536_3.jpg  由于高能电子束与样品物质的交互作用,结果产生了各种信息:二次电子、背反射电子、吸收电子、X射线、俄歇电子、阴极发光和透射电子等。这些信号被相应的接收器接收,经放大后送到显像管的栅极上,调制显像管的亮度。由于经过扫描线圈上的电流是与显像管相应的亮度一一对应,也就是说,电子束打到样品上一点时,在显像管荧光屏上就出现一个亮点。扫描电镜就是这样采用逐点成像的方法,把样品表面不同的特征,按顺序,成比例地转换为视频信号,完成一帧图像,从而使我们在荧光屏上观察到样品表面的各种特征图像性能参数放大倍数  扫描电镜的放大倍数M定义为:在显像管中电子束在荧光屏上最大扫描距离和在镜筒中电子束针在试样上最大扫描距离的比值 M=l/L式中l指荧光屏长度;L是指电子束在试样上扫过的长度。这个比值是通过调节扫描线圈上的电流来改变的。景深  扫描电镜的景深比较大,成像富有立体感,所以它特别适用于粗糙样品表面的观察和分析。分辨率  分辨本领是扫描电镜的主要性能指标之一。在理想情况下,二次电子像分辨率等于电子束斑直径。场深  在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。作用体积  电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。  作用体积的厚度因信号的不同而不同:  欧革电子:0.5~2纳米。  次级电子:5λ,对于导体,λ=1纳米;对于绝缘体,λ=10纳米。  背散射电子:10倍于次级电子。  特征X射线:微米级。  X射线连续谱:略大于特征X射线,也在微米级。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制