当前位置: 仪器信息网 > 行业主题 > >

描成像分析

仪器信息网描成像分析专题为您提供2024年最新描成像分析价格报价、厂家品牌的相关信息, 包括描成像分析参数、型号等,不管是国产,还是进口品牌的描成像分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合描成像分析相关的耗材配件、试剂标物,还有描成像分析相关的最新资讯、资料,以及描成像分析相关的解决方案。

描成像分析相关的仪器

  • 背景介绍—瞬态吸收光谱和瞬态吸收成像的应用基于泵浦探测(Pump-Probe)原理的瞬态吸收光谱,在频率维度和时间维度上提供了丰富的光谱和动力学信息,过去的几十年应用于物理、化学、材料、能源、生物等广泛领域。当今,许多领域科学研究的范式和需求都在不断更新。尤其是随着钙钛矿光伏、二维材料、量子器件、高温超导等前沿领域的发展,科学家迫亟需在空间维度上揭示载流子等微观离子的迁移和演化规律,研究微纳米材料的物理态在空间分布上的异质性。瞬态吸收成像,可在空间和时间维度上研究微观粒子和能量的运动和演化,是研究微观粒子和能量的时空演化、阐释微观机制的重要工具。瞬态吸收成像,一般有两种实现方式,点扫描成像和宽场成像。相对点扫描成像,宽场成像模式具有速度快、通量高,成像质量更加细腻的特点。Omni-TAM900为北京卓立汉光仪器有限公司全新推出的一款宽场飞秒瞬态吸收成像系统。该系统集成像和动力学于一体,联合飞秒泵浦-探测技术和显微技术,通过自主知识产权的干涉放大技术增强图像信噪比,可获得高质量的成像效果并大幅度缩短测试时间。仪器基本功能和性能:仪器具有点泵浦-宽场探测,和宽场泵浦-宽场探测两种工作模式。分点泵浦模式可用于测量载流子迁移和热导率等;宽场泵浦模式可用于测量载流子分布和物理态的空间异质性等。仪器特点和创新高灵敏、高通量,可测量到单个纳米颗粒、单层石墨烯乃至单层分子晶体的瞬态吸收信号。仪器原理和实现方式Omni-TAM900宽场飞秒瞬态吸收成像系统原理如下图所示,经过飞秒激光器和光学参量放大器(OPA)之后出来的飞秒激光,通过显微镜的光学系统进入,并作为泵浦光源激发样品,而另一束经过空间调制的探测光在一定的时间延迟之后也经过显微系统到达样品,样品在激发态对探测光产生的吸收情况会被显微镜上的sCMOS 相机记录下来。通过调节光学延迟线(Optical Delay Line),得到样品在不同延迟时间下的sCMOS图像。Omni-TAM900 可以有两种成像模式(如下图所示): 聚焦泵浦光模式(点泵浦,宽场探测)和宽场泵浦光模式(宽场泵浦、宽场探测),前者主要用于研究载流子的迁移,后者用于检测载流子的空间分布状况。软件软件可进行同步采集,自动控制和处理,载流子的寿命、载流子的迁移速率、载流子的分布、动力学等信息均可以通过软件得到。应用方向及实测数据 Omni-TAM900宽场飞秒瞬态吸收成像系统是测量载流子时空演化的强大工具,可广泛应用于物理、材料及器件的前沿研究,比如:太阳能电池、低维材料、量子器件、超导材料、新型半导体、纳米催化、生物传感等,对纳米尺度和飞秒时空尺度中的超快的物理、化学及生物过程进行监测。 金属镀膜中的载流子迁移和热扩散10 nm厚金属薄膜上的超快热载流子和热扩散,采用仪器的点激发,宽场探测模式。半导体中的载流子迁移和热扩散同时监测Si基半导体中的载流子迁移和热扩散(可测量半导体材料的热导率),采用仪器的点激发,宽场探测模式。光伏材料中的载流子迁移和演化钙钛矿CsPbBr3载流子成像,迁移动力学及边缘态动力学研究。采用仪器的宽场激发,宽场探测模式催化材料中的热载流子分布和“热点”局部热电子密度高、寿命长,可能具有更高的催化活性。采用仪器的宽场激发,宽场探测模式。新型二维材料中的边缘物理态研究二维WS2中激子分布情况,激子寿命研究。可以看到,多层的边缘具有更高激子密度和更长激子寿命技术参数 光源飞秒激光 +OPA,激光波长范围取决于应用场景检测器sCMOS成像空间分辨率500 nm载流子迁移定位精度30nm时间分辨率500 fs (100 fs 激光脉冲条件下)时间延迟线0-4 ns/0-8 ns显微镜模块倒置显微镜,上方为开放空间,后期可兼容低温模块、探针台、电学调控、磁场等特殊实验场景。测量模式点泵浦 + 宽场探测(载流子迁移)宽场泵浦 + 宽场探测(载流子分布)仪器工作模式反射 / 散射已发表文献:J. Am. Chem. Soc. 2022, 144, 13928专利:202110510123.X(以上展示的所有实测数据均为本型号仪器测得,并已公开发表,更多细节请查阅以上文献)。更多参考文献:(为了方便用户参考研究前沿,如下列出一些国际上利用瞬态吸收成像方法的研究案例。这些数据并非用该型号仪器获得,但是卓立Omni-TAM900仪器可实现这些应用场景中的绝大多数功能。如有特殊需求,欢迎与卓立汉光联系。)Science 2017, 356, 59 (钙钛矿超长热载流子)Nat. Mater. 2020, 19, 617 (转角二维量子异质结)Science 2021, 371, 371 (超导材料电荷密度波)Science 2022, 377, 437 (立方砷化硼超高载流子)Nat. Mater. 2020 , 9, 56 (材料中的携能载流子)
    留言咨询
  • 磁粒子成像(MPI)系统是面向临床前成像的崭新技术。作为适用于疾病研究、移植研究和药物研制的配套临床前成像技术,新增的磁粒子成像很有可能帮助研究人员从器官、细胞和分子层面,对病程产生新的深刻认识。 全新布鲁克临床前MPI扫描仪是与飞利浦电子公司合作开发的。合作中双方各展所长,布鲁克发挥了其在磁共振分析仪器和临床前磁共振成像(MRI)领域的领先优势,而飞利浦则充分运用了其在医疗成像领域的优势。磁粒子成像是一项由飞利浦公司科学家发明并发展的新型医疗成像技术,其可行性论证于2005年首次在《自然》杂志上发表。MPI断层扫描成像技术通过探测注入血液循环中的磁性氧化铁纳米颗粒,来生成三维图像。这项技术用于医疗和工业研究以及最终用于治疗患者的潜力,业已在若干研究中得到证明,譬如,MPI技术已经被用于生成实时图像,精确捕捉了小鼠心血管系统活动情况。事实上,这种在短短数毫秒之内采集高时间分辨率图像的能力,为旨在利用时间分辨率来解决令许多现有成像技术束手无策的问题的创新应用奠定了基础。
    留言咨询
  • PSC公司成立于2004年,2年后其首款产品植物根系X-光扫描成像分析系统RootViz FS面世,并于今年6月获得2006年度美国R&D 100大奖。RootViz FS是在美国能源部创新项目资助下研发成功的一套新型、高效率、高精度、非破坏性的测量系统,用于对盆栽植物的根系进行原位成像分析,可以拍摄根系的立体X-光照片。是继根视系统后植物根系研究领域最激动人心的发明。美国R&D 100大奖被称为"发明界的奥斯卡奖",RootViz FS刚一面世即获此大奖,足见其影响力之大。这套系统是植物根系研究领域继根视(rhizotron)系统(如加拿大Regent WinRHIZO根系分析系统)后最激动人心的发明。根视系统需要将根取出清洗后,借助扫描仪进行分析,这个过程往往会折断植物的根尖等脆弱部分,而且属于离体分析,不能进行动态监测。而植物根系X-光扫描分析系统是非破坏性的原位分析系统,可以全方位分析植物根系所有部分(包括根尖等),并且可以在植物生长的不同阶段对根系的生长进行长期动态监测。这套系统非常适合于研究植物根系对胁迫的动态响应。根系X-光成像的特性* 高分辨率的X-光立体成像* 进行长期动态监测* 获得原位根系角度信息* 完全可控条件下的生理、病理实验* 大规模快速筛选根系突变株根系X-光扫描成像系统的主要技术参数* X-射线发生器: 25KeV@800uA* X-射线数码相机: 2002 x 2054 CMOS;GdOs Scintillator* 精确的三维调节工作台* 速度:平面图25株/h;立体图15株/h* 范围:最大根长0.6 m;最大高度2.1 m* 分辨率:2002× 2054像素
    留言咨询
  • 一、 用途:SpectraScan-R是一套专用于离体(ex-situ)根系VIS-NIR波段光谱扫描成像分析的仪器系统,完整植物根系取土后可直接进行可见光近红外高光谱扫描成像分析,还可以进一步经过洗根后扫描成像然后通过专业软件进行根系分析,可以分析根系长度、直径、面积、体积、根尖记数等,还可以分析新生根系、根系水分分布、根系生化结构二维时空分布成像等,甚至可以通过高光谱技术二维成像分析根系土壤基质有机碳、水分含量等时空动态变化。功能强大,操作简单,软件可分析植物根系的形态,色彩、分级伸展分析及根系的整体结构分布等等。可广泛应用于植物根系动态、植物表型分析、植物胁迫、土壤生态修复、湿地监测等领域。 二、 原理:SpectraScan-R根系分析系统利用高质量RGB图形扫描仪及高光谱成像系统,获取高分辨率植物根系可见光图像及高分辨率光谱数据,然后通过专业分析软件对根系形态结构、光谱特征、生化组成等进行分析。扫描仪在扫描面板下方和上盖中安装有专门的双光源照明系统,并且在扫面板上预留了双光源校准区域。扫描时,扫面板下的光源和上盖板中的光源同时扫过高透明度根盘中的根系样品,这样可以避免根系扫描时容易产生的阴影和不均匀等现象的影响,有效地保证了获取的图像质量。 WinRHIZO软件可以读取TIFF,JPEG标准格式的图像。针对获取的图像,利用插入加密狗解密的软件,同时配合厂家针对扫描仪配置的Scanner.cal校准文件,对扫描获得的高质量根系图像进行分析。采用非统计学方法测量计算出交叉重叠部分根系长度、直径、面积、体积、根尖等基本的形态学参数;利用软件的色彩等级分析功能、高光谱成像分析,还可以对根系RGB、近红外光谱进行分析,从而进行根系存活数量、水分、根系生长和营养状况、土壤基质等方面进行分析研究;利用软件的高级分析功能,还可以对完整的植物根系图像进行根系连接分析(研究根系分支角度、连通性等形态特征)、根系拓扑分析(研究根系连接数量、路径长度)和根系分级伸展分析(记录根系整体等级分布情况)。从而满足研究者针对植物根系不同类别和层次的研究。 三、 组成:1、 图像扑捉系统:经过厂家调试的标准根系扫描设备,匹配专门的光源、具有永久校正特点、根系固定装置等2、 高光谱成像分析单元,对根系及土壤基质进行高光谱成像3、 根系分析系统:基本版 /标准版 /专业版WinRHIZO分析软件4、 电脑(最低配置:Pentium III / 64 MB内存 / 17"显示器)用户自备 光谱扫描设备类型及区别见下表:STD4800LA2400**VIS-NIRNIR描述RGB高质量高速扫描仪RGB多功能、高速扫描面积大的扫描仪400-1000nm波段高光谱扫描成像900-1700nm近红外波段高光谱扫描成像可否在野外使用NNYY是否需要电脑操作YYY分辨率DPI(点/英寸)48002400512x512,或1024x,可选配更高分辨率640x扫描速度较快快330fps670fps最大扫描面积cm21.6x2830x43可局部或任意大小完整根系是否可对土壤基质扫描YY是否适合WinFoliaYY是否适合 WinRHIZOYY是否适合 WinSEEDLEYY是否适合 WinDENDROYY**WinRhizo Pro版本包括蓝色背景板 四、 基本技术指标:1、不同版本WinRhizo主要技术指标:整体参数基本版标准版专业版拟南芥版*总长YesYesYesYes平均直径YesYesYesYes总面积YesYesYesYes总体积YesYesYesYes根尖、分叉和交叠计数YesYesYesYes根直径等级分布参数长度NoYesYesYes面积NoYesYesYes体积NoYesYesYes根尖计数NoYesYesYes* 拟南芥版具有专业版所有功能,另外还可针对拟南芥类植物的细小、交叉根系进行测量 2、VIS-NIR光谱扫描成像分析:1) 高光谱扫描成像分析波段:400-1000nm(标配),可选配900-1700nm或1000-2500nm短波红外波段2) 智能一体式高光谱扫描成像技术(标配),内置自动推扫系统、取景器相机等,高度便携,集光谱成像数据采集、可视化数据处理、触摸屏与控制键等于一体,采用图形用户界面(GUI)3) 高光谱分析软件采用SAM算法及Savitzky-Golay滤波器技术,可创建类别或分级模型并建立App直接导入高光谱成像仪使用,建议同时选配ENVI软件4) 取景器相机分辨率5Mpix,高光谱成像空间分辨率512x512(标配),可选配1024x或其它分辨率高光谱成像分析5) 4.3”触摸屏、13操作键(标配)6) 光谱分辨率7nm(标配),波段数204(标配)7) 标配视野31度,成像距离15cm至无穷远,1m距离成像视野55x55cm8) 具备默认模式、自动筛选模式、客户定义APP模式及自动时间间隔记录模式9) 根系RGB颜色分析(专业版RGB扫描分析软件):根的长度、面积、体积、根尖计数、根系存活数量等研究(对根系或者根系附着菌种颜色进行分类,如健康根、浅程度受害根、重程度受害根等,软件可计算每种颜色根系的总长、总表面积、总体积、总根尖数量;每种颜色根系的平均长度、平均表面积、平均直径等)10) 根系连接(link)分析(专业版RGB扫描分析软件):用于根系分支角度、连通性等形态研究(与拓扑和发育分析最大的区别是,link分析可以针对非完整根系!软件给出的结果有分析对象的根系平均直径、平均长度、平均表面积、每个分叉角度的平均值;分叉的总数量;每个分叉的长度、表面积、平均直径、角度、级别等)11) 根系拓扑(Topology)分析(专业版RGB扫描分析软件):连接数量、路径长度等研究(需要根系完整)(必须是要完整的根系扫描图像。软件可计算主根的长度、所有次级根的总长度、平均长度、平均直径、平均表面积;每一级分叉的下级总分叉数量;每一级分叉的总数量等)12) 根系发育(Development)分析:记录根系整体等级分布情况(可通过专业版分析软件需要要完整的根系扫描图像。软件可计算每一个分级根系总长、总表面积,平均长度、平均直径、平均表面积等) 五、 产地:客户定制集成技术
    留言咨询
  • 来自英国OPUS INSTRUMENT公司的Apollo(阿波罗)Apollo(阿波罗)是世界上新一代采用红外短波反射扫描成像技术的专业分析仪器,被广泛用于各种材料的鉴定和分析。www.ast-bj.com我们的用户:英国国家美术馆,荷兰国立博物馆,美国大都会博物馆,古根海姆博物馆, 俄罗斯赫米蒂奇博物馆洛杉矶盖蒂博物馆,日耳曼国家博物馆,美国印第安纳波利斯艺术博物馆Infrared Reflectography红外反射成像技术:“一种非破坏性的无损检测技术,它利用红外线穿透研究对象表层(颜料或漆层),对表层下面的详细纹理细节进行成像,从而获得有关这些研究对象的原始信息。用红外反射扫描成像进行检测,通常会发现研究对象一些在损坏、填充和修饰的细节变化,是一种广泛应用的红外成像技术。Apollo(阿波罗)是红外反射成像的新标准。 在世界闻名的Osiris扫描系统的基础上,Apollo(阿波罗)使用先进的内部扫描机构和红外面阵列传感器生成高质量,高对比度,分辨率达到5100×5100的红外反射图像,其图像清晰度和细节展现无与伦比。拍摄大画幅壁画和油画,唐卡作品,图像不需要后期繁琐软件处理。 Apollo红外反射成像扫描系统可以用于研究绘画作品的各个方面。不仅可以研究绘画作品的底稿,素描草图和笔迹变化(经过修改或颜料遮盖的原来笔画再现),识别后期修复及补色的微观变化,并且当使用我们提供的滤光片套装时,可以在不同红外波段对底色和颜料进行透射分析。如果您想采集到用于艺术品保护和修复等应用高对比度和高分辨率的红外图像,Apollo(阿波罗)是非常适合您的红外反射成像系统。Apollo无以伦比的优势在于:1. 可以拍摄高达26 Megapixel的图像图片,分辨率5100×5100,传感器像素间距20um微米2. 新款软件控制系统,提供柱状图分析,可以捕捉更多光线暗处的细节。3. 采用卓越的红外面阵列成像传感器,可进行大画幅作品的扫描,提供成像预览,节省您的分析时间。4. 快速捕捉画面,拍摄整幅画作需要5-15分钟5. 先进的冷却系统,减少了成像噪音,提供更高质量的画面。6. 16位图像输出格式可选TIFF和 PNG格式,方便在任何终端设备上进行对比分析。7. 拍摄图像自动拼接功能,解决研究人员后期图像处理的困扰,非常实用。8. 体积紧凑,方便携带,可装入航空旅行箱。
    留言咨询
  • Sapphire 激光扫描成像系统是新一代基于激光光源的扫描成像系统,通过其无与伦比的灵敏度、超高的分辨率、宽广的动态范围为客户提供高质量数据。仪器可搭载四个固态激光器作为激发光源,国际首创融合PMT、APD和CCD三种检测器于一体,不仅能够进行高灵敏度宽动态范围的RGB荧光成像、近红外NIR荧光成像、磷屏成像(放射性同位素自显影成像),还可进行传统的化学发光成像、凝胶成像和可见光成像等。本产品型号为Sapphire NIR,搭载有685nm和784nm两个固态激光器作为近红外波段激发光源,仪器可选配PI模块用于磷屏成像(放射性同位素自显影成像),也可选配CCD模块,用于传统化学发光成像。同时,仪器还可选配Q模块,加配520nm通道激光器,升级为Sapphire NIR-Q,用于总蛋白染色成像和绿色荧光通道成像。 产品特点● 强大的多重荧光检测,可同时扫描,也可逐通道扫描● 宽广的动态范围,动态范围≥6OD● 高分辨率,分辨率可达10微米● 化学发光成像,fg级检测灵敏度● 直观友好的软件操作界面,易于使用● 强大的分析软件,轻松高效地分析多种实验数据 应用Sapphire NIR激光扫描成像系统广泛适用于多种分子生物学实验的结果分析,如荧光Western、In-Cell Western、In-Gel Western、近红外荧光EMSA、蛋白芯片、核酸芯片、二维电泳、DNA凝胶、考马斯亮蓝染色凝胶、荧光组织切片等等。通过选配CCD模块、PI模块和Q模块,仪器应用范围将拓展到化学发光成像、可见光成像、磷屏成像(放射性同位素自显影成像)以及总蛋白染色成像等。 Sapphire激光扫描成像系统信息由Azure Biosystems(中国)公司为您提供。如您想了解更多Sapphire激光扫描成像系统相关报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • Sapphire 激光扫描成像系统是新一代基于激光光源的扫描成像系统,通过其无与伦比的灵敏度、超高的分辨率、宽广的动态范围为客户提供高质量数据。仪器可搭载四个固态激光器作为激发光源,国际首创融合PMT、APD和CCD三种检测器于一体,不仅能够进行高灵敏度宽动态范围的RGB荧光成像、近红外NIR荧光成像、磷屏成像(放射性同位素自显影成像),还可进行传统的化学发光成像、凝胶成像和可见光成像等。本产品型号为Sapphire RGB,搭载有488nm、520nm和658nm/685nm(选配)三个固态激光器作为RGB可见荧光波段激发光源,仪器可选配PI模块用于磷屏成像(放射性同位素自显影成像),也可选配CCD模块,用于传统化学发光成像。 产品特点● 强大的多重荧光检测,可同时扫描,也可逐通道扫描● 宽广的动态范围,动态范围≥6OD● 高分辨率,分辨率可达10微米● 化学发光成像,fg级检测灵敏度● 直观友好的软件操作界面,易于使用● 强大的分析软件,轻松高效地分析多种实验数据 应用Sapphire RGB激光扫描成像系统广泛适用于多种分子生物学实验的结果分析,如荧光Western、In-Cell Western、In-Gel Western、蛋白芯片、核酸芯片、二维电泳、DNA凝胶、考马斯亮蓝染色凝胶、荧光组织切片等等。仪器可搭配CCD模块,用于化学发光成像和可见光成像。通过选配PI模块,仪器可用于磷屏成像(放射性同位素自显影成像)。 Sapphire激光扫描成像系统信息由Azure Biosystems(中国)公司为您提供。如您想了解更多Sapphire激光成像系统相关报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • Sapphire FL 从分子检测到活体成像是专为应用灵活性研发的终极激光扫描成像系统。基于定制化、用户可自主更换的激光器和滤光片模块,Sapphire FL可轻松满足客户多样化、深入的科研需求。Sapphire FL具有定制化的、用户可自主更换的光学模块,5-1000μm的扫描分辨率,-1.0 至+6 mm的Z轴扫描功能,用于活体成像的5个麻醉输出端口以及化学发光检测模块等。 产品特点应用灵活,兼容多种样本类型:高分辨率成像、超大样品仓设计,支持从分子检测到活体成像样品类型。 定制化,可升级,颠覆传统设计理念:可根据需求选择合适的模块。可轻松替换激光器及滤光片,兼容更多种类的荧光染料。可升级化学发光模块配置。 超宽动态范围(EDR)模式分辨细微表达差异:可将动态范围扩展至24bit,在保证强信号不过饱和的前提下,极大提高同时获取强弱信号的能力。 高灵敏荧光检测:支持常规荧光染料的飞克级检测灵度。助力客户获取高质量的定量数据。 应用Sapphire FL激光扫描成像系统广泛适用于多种分子生物学实验的结果分析,如荧光Western、In-Cell Western、In-Gel Western、蛋白芯片、核酸芯片、二维电泳、DNA凝胶、考马斯亮蓝染色凝胶、荧光组织切片,活体成像等等。仪器支持近红外荧光,可见光,磷屏成像(放射性同位素自显影成像),同时可升级化学发光模块。
    留言咨询
  • 小动物低温荧光断层扫描成像系统适用于各种研究领域:药物传递、神经生物学、癌症生物学、免疫学、纳米医学等领域研究。可以对细胞簇、孤立器官甚至整个动物进行高分辨率可视化。整体动物连续切片且实时荧光成像也是全球首台,它基于带有现成荧光成像、重建和分析的连续切片,可从 2D 图像提供全面的 3D 荧光和 3D 解剖图像。其他常用的成像方式只能聚焦于亚细胞结构或生成全身或特定区域的低分辨率图像。除了生成 3D 图像外,还可以进行选择性地识别和转移高价值样本切片以进行额外的组织学和成像。弥补MRI和CT的分辨率不足,更好的确定肿瘤位置和大小。冷冻成像的过程中,成像的信噪比会大幅度降低,成像质量和分辨率会大大提升,对于荧光探针的示踪可以做一个很好的补充。特点:1. 整体动物连续切片2. 整体动物3D成像及体内器官成像3. 荧光探针体内定位及定量分析4. 肿瘤位置和大小定位
    留言咨询
  • Sapphire RGBNIR激光扫描成像系统是新一代基于激光光源的扫描成像系统,通过其无与伦比的灵敏度、超高的分辨率、宽广的动态范围为客户提供高质量数据。仪器搭载四个固态激光器作为激发光源,国际首创融合PMT、APD和CCD三种检测器于一体,不仅能够进行高灵敏度宽动态范围的RGB荧光成像、近红外NIR荧光成像、磷屏成像(放射性同位素自显影成像),还可进行传统的化学发光成像、凝胶成像和可见光成像等。 产品特点● 强大的多重荧光检测,可同时进行四通道扫描● 宽广的动态范围,动态范围≥6OD● 高分辨率,分辨率可达10微米● 化学发光成像,fg级检测灵敏度● 直观友好的软件操作界面,易于使用● 强大的分析软件,轻松高效地分析多种实验数据 应用Sapphire RGBNIR激光扫描成像系统广泛适用于多种分子生物学实验的结果分析,如荧光Western、In-Cell Western、In-Gel Western、近红外荧光EMSA、蛋白芯片、核酸芯片、二维电泳、DNA凝胶、考马斯亮蓝染色凝胶、荧光组织切片等等。仪器可搭配CCD模块,用于化学发光成像和可见光成像。通过选配PI模块,仪器可用于磷屏成像(放射性同位素自显影成像)。 Sapphire激光扫描成像系统信息由Azure Biosystems(中国)公司为您提供。如您想了解更多Sapphire激光扫描成像系统相关报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • 前言CoreScanner芯体密度X-光扫描成像与元素分析系统结合了X-射线荧光分析(X-ray Fluorescence)、数字X-射线密度成像(digital x-ray micro radiography)和高分辨率数字光学成像技术,实现多种样芯的非接触式测量,用于土壤、土芯、海洋或湖底的沉积物、岩石、洞穴堆积物(如钟乳石),泥炭块、岩芯等的密度和元素分析。可测量的元素有Al、Si、S、Cl、K、Ca、Cr、Mn、Fe、Cu、Zn、As、Hg、Pb等,其中许多可测至痕量水平以下,对灵敏度和分辨率要求较高的研究尤其适合。系统可应用于土壤分析,环境污染调查、地质勘探、海洋研究等领域。 原理土壤元素分析系统采用XRF、数字X-射线密度成像和高分辨率数字光学成像技术,非破坏性测量,获得样品高分辨率的数码图像,然后利用系统软件对所得图像信息进行分析。系统特点l 结合了XRF、数字X-射线密度成像、数字光学成像技术l X射线荧光分析,提供Al以上的多种元素的浓度数据(Al – U)l 数字X射线密度成像用于样品的高级分析l 可扫描分析土芯等样品l 实现多种元素同时检测l XRF灵敏度达PPM级l 检测效率高,10分钟即可完成1米样品的扫描分析l 稳定,可靠,重现性好l 灵敏度和精确度高l 非接触式分析,不破坏样品l 可超负荷工作,每年可工作几千小时系统组成u X-射线发生器u X-射线管u X-射线安全防护系统u X-光束准直仪u X-射线成像检测系统u XRF元素分析仪u 光学摄像头u 机动样品台及样芯固定装置u U-型样品槽u 2台工作站u 软件及驱动u X-光箔u UPS(不间断电源)u 设备冷却装置技术指标1. 测量原理:X-射线荧光分析、数字X-射线成像技术、高分辨率光学成像技术。2. 分辨率:X-射线:2 扁平光管光束0.2x20mm,其中0.2对应沉积物的长度方向。2 X-射线荧光光束:常规分辨率0.2mm,最高分辨率0.1mm(需定制)2 X-射线成像分析,最高分辨率20μm3. X-射线发生器功率:60 kV,55 mA,最大功率3.3 kW4. X-射线管:铬管或钼管,最大功率2.2 kW(铬管)和3.0 kW(钼管),质保寿命为2000h,期望寿命为3000~5000h。5. X-射线检测器:用于X-射线数字密度成像,含有1000个感应元件,每个感应元件拍摄20μm宽的样品图像,动态范围达数十倍,样品最大成像厚度60mm。6. SDD硅漂移检测器:电子冷却,用于XRF检测,可以记录Al – U的任何元素的标识辐射,5.9 keV时,能量分辨率大约140 eV。单次扫描即可完成所有元素的检测。7. 增强型光学成像单元:3x16bit数字RGB彩色CCD光学摄像头和光学图像信息采集软件,采用正交偏振滤光片技术和眩光降低技术,可以获得非常高的图像质量。摄像头光学分辨率为50μm,以两种模式扫描,快速模式(分辨率200μm)和高分辨率模式(分辨率50μm),扫描图像宽约100mm。8. X-射线防护装置:测量过程中,打开仪器时,X-射线自动关闭。9. 样品台:自动样品台长1800mm,最小步进20μm,温度稳定时重现性好。10. 样品槽:样品槽带手动调节装置,可在据样品横截面中心线的五个不同的固定位置调整。五个位置是:中心,距中心10mm (左和右),距中心20mm (左和右)。11. 样品大小和形状:2 有效测量长度最长1750mm , 宽度120mm2 劈开的、水平放置的沉积物样品,最大外径可达120mm2 厚板状沉积物样品,厚度1-60mm, 宽度120mm2 U形样品槽2 木材生长锥样品、平板样品或圆盘样品,厚度1-60mm, 宽度120mm2 洞穴堆积物(如钟乳石)样品,厚度1-50mm, 宽度120mm12. 工作站:负责扫描控制及数据处理软件。包括Core Scanner Navigator(扫描控制软件)、Qspec(XRF光谱分析和元素浓度计算软件)、ReDiCore(数据显示软件)及所有其他硬件驱动程序。13. 冷却装置:冷却水泵14. 电源:230v/50Hz/三相,建议配UPS(选配)15. 规格:4500×820×1570mm16. 重量:800kg 深海沉积物样芯,从上到下曲线代表元素的浓度变化:Fe, Ca, K, Si, Al 应用案例一英国海洋中心和南安普顿大学地球化学领域科研人员,将土壤元素分析系统应用于东部地中海沉积泥的研究分析。 应用案例二法国格勒诺布尔阿尔卑斯大学的Kévin Jacq等利用SPECIM高光谱成像技术与CoreScanner样芯元素扫描分析技术对法国布尔吉湖底沉积物样芯进行了分析研究,结果发表于2019年《Science of the Total Environment》(High-resolution prediction of organic matter concentration with hyperspectral imaging on a sediment core)。有机物(OM)含量常用于海洋湖泊沉积分析,以重建不同年代的碳通量等,550 °C 烧失量法(Loss on ignition,LOI)被广泛用于古气候相关研究,但LOI具有费时、费力、对样本有损坏、空间分辨率低(0.5-1cm)等缺点。为建立可靠、准确的模型,以进行高通量、快速、无损、高空间分辨率沉积物样芯成分分析,作者综合运用SPECIM高光谱成像技术、XRF CORESCANNER元素扫描分析技术,并以传统LOI550烧失量法作为参照,对54 cm长沉积样芯进行了分析研究。SWIR短波红外高光谱(1000-2500nm)可以在15分钟内完成样品扫描分析,空间分辨率200 μm。XRF CoreScanner分辨率为 200 μm,采用康普顿(非相干,incoherent)和瑞利(相干,coherent)散射数据的比值(inc/coh)作为有机物的表征量。结果表明,LOI550 参考值与XRF inc/coh 比值及高光谱值均具备显著的相关性,高光谱成像技术可以高通量、非损伤、高空间分辨率分析沉积样芯有机物含量分布。该方法还可转用于自然界的其它样芯分析,如钟乳石、土壤、冰芯、树芯,并可用于推断古环境,古气候,土壤健康和污染等。 产地瑞典选配技术方案l SisuCHEMA高光谱成像分析系统l SisuSCS单样芯高光谱成像扫描分析系统l SisuROCK多样芯高通量高光谱成像扫描分析系统l SpectraScan高光谱成像扫描分析系统部分参考文献列表1) Croudace, I. W., Teasdale, P. A. & Cundy, A. B. 200-year industrial archaeological record preserved in an Isle of Man saltmarsh sediment sequence: Geochemical and radiochronological evidence. Quaternary International 514, 195–203 (2019).2) Ladlow, C., Woodruff, J. D., Cook, T. L., Baranes, H. & Kanamaru, K. A fluvially derived flood deposit dating to the Kamikaze typhoons near Nagasaki, Japan. Nat Hazards 99, 827–841 (2019).3) Gregory, B. R. B., Patterson, R. T., Reinhardt, E. G., Galloway, J. M. & Roe, H. M. An evaluation of methodologies for calibrating Itrax X-ray fluorescence counts with ICP-MS concentration data for discrete sediment samples. Chemical Geology 521, 12–27 (2019).4) López Pérez, A. E., Rey, D., Martins, V., Plaza-Morlote, M. & Rubio, B. Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: A case study in the Galician Continental Margin. Quaternary International 514, 152–160 (2019).5) Gopi, K. et al. Combined use of stable isotope analysis and elemental profiling to determine provenance of black tiger prawns (Penaeus monodon). Food Control 95, 242–248 (2019).6) Croudace, I. W., L?wemark, L., Tjallingii, R. & Zolitschka, B. Current perspectives on the capabilities of high resolution XRF core scanners. Quaternary International 514, 5–15 (2019).7) Croudace, I. W., L?wemark, L., Tjallingii, R. & Zolitschka, B. High resolution XRF core scanners: A key tool for the environmental and palaeoclimate sciences. Quaternary International 514, 1–4 (2019).8) Seki, A., Tada, R., Kurokawa, S. & Murayama, M. High-resolution Quaternary record of marine organic carbon content in the hemipelagic sediments of the Japan Sea from bromine counts measured by XRF core scanner. Prog Earth Planet Sci 6, 1 (2019).9) Li, T., Zuo, R. & Chen, G. Investigating fluid-rock interaction at the hand-specimen scale via ITRAX. Journal of Geochemical Exploration 204, 57–65 (2019).10) Gopi, K. et al. Isotopic and elemental profiling to trace the geographic origins of farmed and wild-caught Asian seabass (Lates calcarifer). Aquaculture 502, 56–62 (2019).11) Peti, L., Gadd, P. S., Hopkins, J. L. & Augustinus, P. C. Itrax μ‐XRF core scanning for rapid tephrostratigraphic analysis: a case study from the Auckland Volcanic Field maar lakes. J. Quaternary Sci. 35, 54–65 (2020).12) Jones, G., Adamopoulos, S., Liziniewicz, M. & Lindeberg, J. Nondestructive Wood Density Testing in Downy Birch and Silver Birch Genetics Field Trial, Southern Sweden. 9.13) Jones, A. F., Turner, J. N., Daly, J. S., Francus, P. & Edwards, R. J. Signal-to-noise ratios, instrument parameters and repeatability of Itrax XRF core scan measurements of floodplain sediments. Quaternary International 514, 44–54 (2019).14) Peti, L. & Augustinus, P. C. Stratigraphy and sedimentology of the Orakei maar lake sediment sequence (Auckland Volcanic Field, New Zealand). Sci. Dril. 25, 47–56 (2019).15) Gregory, B. R. B., Patterson, R. T., Reinhardt, E. G. & Galloway, J. M. The iBox-FC: A new containment vessel for Itrax X-ray fluorescence core-scanning of freeze cores. Quaternary International 514, 76–84 (2019).16) Peti, L., Augustinus, P. C., Gadd, P. S. & Davies, S. J. Towards characterising rhyolitic tephra layers from New Zealand with rapid, non-destructive μ-XRF core scanning. Quaternary International 514, 161–172 (2019).17) Profe, J. & Ohlendorf, C. X-ray fluorescence scanning of discrete samples – An economical perspective. Quaternary International 514, 68–75 (2019).
    留言咨询
  • 小动物冷冻荧光断层扫描成像系统,简称CFT(Cryo-Fluorescence Tomography)。它通过捕获连续切片的二维荧光和白光图像,并且编译成三维图像,它可以对小动物整体,动物组织,人体组织等生成三维各向同性数据集 最大分辨率为20um。相比PE, MRI ,CT等成像模式,CFT系统信号识别灵敏度较好,能够获得较细致准确的荧光信号,且分辨率可以达到20um.与传统的体外成像相比,传统体外成像只关注小样本量,做大样本量的3D成像要求比较高,也足够复杂,也没有标准化的流程,同时满足高分辨率和高灵敏度对设备本身的要求也是比较高。CFT成像作为体内和体外成像的最好的桥梁,既弥补了体内成像因为体内环境复杂,导致灵敏度较低,无法完全显示所有荧光信号,充分的为组织学深入研究提供多维度数据。又为下游显微镜成像做了精准的定位和补充。以下在药物发现、肿瘤学、纳米技术和神经科学领域的研究应用1、 药物发现因为它可以帮助识别和表征在器官、组织、细胞和分子水平上的基本过程。CFT有助于疾病过程的知识和在临床前或临床研究设计中评估药物效应。此外,通过允许分子事件的可视化和量化,CFT是发展诊断和治疗应用的一个有价值的工具。使用CFT,候选药物的三维生物分布和定位,如小分子、抗体药物偶联物、诊断抗体、基于肽的治疗,可以在整个样本或特定器官中可视化。CFT还可以阐明一种潜在的药物药效学数据,包括其对其靶点的亲和力和选择性,以及在动物模型中的稳定性。2、 肿瘤学CFT可用于研究肿瘤模型,包括微环境、肿瘤异质性、转移扩散和特异性生物标志物的表达。对于转移性肿瘤进展,CFT可以检测转移性疾病,并提供肿瘤负荷的高分辨率和扩散的3D分子数据,在可比的图像模式中通常无法可视化。并可用于评估肿瘤代谢对遗传操作、药物和癌症化疗药物的反应。一些例子包括动物模型的3D渲染,阐明了作用基因及其对行为和疾病表型的表达,如癌症。3、 纳米科技并通过CFT等成像方式对组织进行详细成像。例如具有免疫调节特性的纳米佐剂;纳米刀,一种几乎非侵入性的高压电抗癌方法;还有碳纳米管,一种修复受损组织的流行方法。纳米材料与荧光报告组相结合,允许用CFT可视化这些过程与对照组肝脏归一化后,LNP-2组的tdTomato信号比LNP-1组高2倍,说明LNP-2可能比LNP-1具有更好的mRNA传递效率4、 神经科学CFT也可以用于研究大脑的生理学、解剖学和分子生物学。神经退行性疾病和其他病理学影响大脑的不同区域,以及负责疾病病因学的特定神经通路。这些神经通路可以用CFT来绘制。使用荧光报告基因,这些组的3D CFT图可以帮助可视化细胞跟踪、药物传递和大脑中药物的药效学。CFT可视化是不可或缺的,可以提供深入了解器官特异性的退行性疾病,以及突出几种疾病过程的有希望的动物模型,和有希望的治疗途径.CFT数据集显示,iRFP的表达发生在椎体外。从同一样本中收集的切片在组织水平上进行成像。结果显示,iRFP在椎体外的肌肉组织中表达5、 临床应用前景CFT是一种定量和敏感的临床成像方法,需要研究病变组织的细胞和分子功能。CFT的浆片切片特征允许检测在不同组织深度产生的光信号。光信号可以是内源性对比,可以捕获不同组织的异质性和生物学状态,包括肿瘤,或外部显像剂或选择性地在组织或肿瘤中积累的药物。在临床研究中,CFT提供了一个高度控制的切片环境,微米级的切片和精确的重建,使MR图像和Brock组研究的组织学之间的准确配准。组织学识别的组织MR信号的有统计学意义的差异被作为MRI和组织学体积之间相关性特异性的指标。CFT提供了精细切片和组织病理学处理的结合,可以支持其工作所需的冷冻膜带转移,这将通过重建高分辨率的三维组织学体积.CFT作为补充成像模式,把体内成像和组织成像密切连接,数据的可视化,结构化,3D三维成像,能够很好的还原细胞和分子的功能。
    留言咨询
  • 仪器简介:外延片PL谱扫描成像仪用于快速在线检测发光二极管外延片的质量,主要用于发光二极管外延片和芯片生产线.生成高分辨率的图谱和测定薄膜厚度等。本仪器为外延片生产工艺优化控制提供快速可靠的数据反馈.为高效高质量生产提供可靠保证。本成像仪现已成功应用于多条LED外延片生产线上。逐点扫描检测计算机分析计算外延片的积分光强,主波长,峰值波长,光谱半宽等参数以绘图形式显示分布和数据截面分布囤,显示单点光谱显示各个参数的统计结果显示选择范围的各项统计参数可进行局部扫描,并对扫描结果进行去孤立点和去边处理采用白光反射谱测量薄膜厚度并以绘图形式显示分布和数据配备离线数据处理软件本成像仪可靠。结构紧凑。全部检测和数据处理由计算机自动完成。采用用户友好的窗口界面,操作简便。用户仅需最小的培训就可使用。另外可根据不同外延片,选配不同的激光器。技术参数:1 、光致发光样品腔 10x M-Plan镜头颜色修正,波长范围:350-1800nm 工作距离:30.5mm, 20mm FL, z轴可调 系统空间分辨率:10微米(1微米选配) 镜子带孔洞作为激光束及PL信号的通道 Iris光圈用于激光束的调整 可变ND过滤器用于激光能量的控制(99% to 2%) 10毫米孔洞PL信号校准镜头 马达控制的XY台,最大速度30毫米/秒,1微米扫描分辨率 2 & 4外延晶片样品盘 包括高分辨控制器和电缆 2、IG512近红外光谱仪,900-1700nm, 512像素, InGaAs阵列 25um x 500um像素尺寸,14bits, 2.5MHz数字转换器, f/4, 40mm FL 探测范围:900nm全谱,300gr/mm, 1um blaze grating 包括SMA905, 400um多模光纤,1米长 3、EPP2000-VIS(350-1150nm)用于紫外-可见光,衍射光栅光谱仪 f/4, symX-Czerny-turner类型 分辨率:1.6nm (50um狭缝,@600gr/mm grating) 包括2048像素CCD探测器,12bit数字转换器 600gr/mm grating 接口:USB-2&平行 SMA905光纤光学输入,0.22NA,400um多模光纤,1米长主要特点:仪器特点 高品质及中等价位的PL扫描系统(高性价比); 波长范围宽广(UV-VIS-NIR, 350nm to 2.2um); 噪声低,高PL信号探测; 设计紧凑,易于调谐; 各种激发激光源可选; 易于发现峰及FWHM;
    留言咨询
  • 高速太赫兹扫描成像仪高速(5000帧/秒)、高分辨率(1.5mm)太赫兹成像扫描系统基于先进技术研制出一套高速(5000帧/秒)、高分辨率(1.5 mm)太赫兹成像扫描系统,主要用于工业检测领域应用。该系统主要包含线性太赫兹高速相机和太赫兹源(100GHz)设备,二者可同步协调工作成像速度高达5000帧每秒,紧凑的体积设计适于集成便于工业应用的需求。除此之外,该系统满足于绝大多数传送带的要求,扫描速度高达15m/s。系统里集成的超快线性传感传感器满足了大多数工业无损检测和质量控制等应用的需求。关键词:太赫兹高速相机,太赫兹源,太赫兹成像系统,高速太赫兹成像系统,太赫兹扫描系统u 该套设备的主要特点如下:成像速度高达5KHz扫描速度高达15m/s成像频率为100 GHz像素:256 x 1专用软件(TeraFast)可提供定制化方案u 该套系统涵盖的产品主要如下:A. 太赫兹高速相机(基于先进技术研制的半导体阵列芯片)参数如下:Number of pixels: 256 (256 x 1)Image acquisition rate: 5000 fps (5KHz)Piel size: 1.5 x 3 mm2Responsivity: 8000 v/wImaging area: 384 x 3 mm2Min detectable power/pixel: 100nw (at 5000 fps) 45nw (at 1000 fps) 14nw (at 100 fps) Dimensions of device: 450 x 160 x 44 mm3Sync out : TTL (+5 V)Included software: TeraFast ViewerInterface: mini-USBPower supply: 24V/20W太赫兹源(基于IMPATT 技术)参数信息:Type IType ⅡFrequency100 GHz100 GHzPower per pixel20 uw140 uwImaging system dynamic range24 d B30 d BOptical systemPTFE opticsReflection opticsTechnologyIMPATTSuper-Hero IMPATT 详情请见如下链接:Type I / Type II THz wave sources for High Speed Linear scanneru 该套高性价比的太赫兹成像扫描系统,应用领域广泛,主要覆盖药学、化妆品、木材加工、食品、快速消费品包装、建筑材料、汽车工业、农业、安检等众多领域。
    留言咨询
  • 1、概览:测量小型植物根系的X射线CT系统。可以对植物根系进行透射成像和断层扫描成像。用于对盆栽植物的根系进行原位成像分析,可以拍摄根系的立体X-光照片和断层图像。可以在植物生长的不同阶段对根系的生长进行长期动态监测。PMT-ROOT-XCT非常适合于研究植物根系对胁迫的动态响应。并且拥有世界上最先进的GPU加速算法,使断层重建速度提高3倍。该系统的成像部分与计算机控制部分分离,可以实现远程控制及射线拍摄,并且带有门机安全联锁装置与工作状态警示装置,可以有效保障实验人员的身体辐射要求及误操作。2.规格:【工作条件】l 环境温度:-10~+45℃;l 相对湿度:0-90%;l 适用电源:220-240 VAC;【技术规格与要求】1.2m系统:l 主机:1.900(高)x 1.000(长)x 0.700(宽)m;l X射线发射器 (50 kVp, 钨靶, 光斑直径~35μm,工作强度25kVp,0.3mA);l 数码X射线相机 ( 2940 x 2304像素);l 植物样品定位系统(垂直方向1.2m可调,水平方向42cm可调,可360度旋转);l X射线防护装置 (内锁和指示灯,中/英/德文标签);l 主控电脑:Win7 64位英文(中文可选)系统,2000 G数据存储,X射线系统控制及图像获取系统;l 图形图像分析电脑:Windows 64位操作系统,32G内存,图像处理系统;l 速度:平面图≥22株/h;立体图≥16株/h;l 测量范围:最大根长≤1.2 m;最大植物高度≤2.2m;l “R”型固定架,45x200x1200 mm培养盆和相应培养介质;l “Q”型固定架,45x200x600 mm培养盆和相应培养介质;0.6m系统:l 主机: 1.900(高)x 1.000(长)x 0.700(宽)m;l X射线发射器 (50 kVp, 钨靶, 光斑直径~35μm,工作强度25kVp,0.3mA);l 数码X射线相机 ( 2940 x 2304像素);l 植物样品定位系统(垂直方向0.6m可调,水平方向42cm可调,可360度旋转);l X射线防护装置 (内锁和指示灯);l 主控电脑:Win7 64位英文系统,2000 G数据存储,X射线系统控制及图像获取系统;l 图形图像分析电脑:Windows 64位操作系统,32G内存,图像处理系统;l 速度:平面图≥22株/h;立体图≥16株/h;l 测量范围:最大根长≤0.6 m;最大植物高度≤2.2m;l “Q”型固定架45x200x600 mm培养盆和相应培养介质;3.配置清单l 主机1台;l X射线发射器1台;l 数码X射线相机1台;l 植物样品定位系统1套;l X射线防护装置1套;l 主控电脑1台;l 图形图像分析电脑1台;l “R”型固定架1套;l “Q”型固定架1套;
    留言咨询
  • 单级联单色仪模块HORIBA Scientific OEM 开发了一种基于像差校正凹面全息光栅的高通量成像扫描单色仪,具有低杂散光和高衍射效率。 这种具有单一光学设计的布局非常适合弱光应用的成像。 它具有 3 位外部滤光轮、TTL 驱动电子设备、4 相步进电机和相关的蜗轮/齿轮 按照 90:1 比率机构在工厂进行编码、对齐和聚焦。该仪器可用作可调激发光源和荧光发射扫描单色仪,这要归功于在一级和二级衍射中的高光栅衍射效率。 它还配备了两个光电传感器和校准的相关硬件。产品特色具有出色成像的扫描单色仪覆盖波段:紫外-近红外高光通量和低杂散光快速、可靠且重复性好4 相步进电机和相关的蜗轮/齿轮 90:1 比率机构3 位外部滤光轮和 TTL 驱动电子设备多种光栅可选典型应用工业应用吸收,荧光和发射等应用,例如生命科学(读板机)化学分析高效液相色谱(HPLC)终点检测衍射测量环境,农业,食品等选型指南
    留言咨询
  • 双级联单色仪模块HORIBA Scientific OEM 开发了一种基于像差校正凹面全息光栅的高通量成像扫描单色仪,具有低杂散光和高衍射效率。 这种具有单一光学设计的布局非常适合弱光应用的成像。 它具有 3 位外部滤光轮、TTL 驱动电子设备、4 相步进电机和相关的蜗轮/齿轮 按照 90:1 比率机构在工厂进行编码、对齐和聚焦。该仪器可用作可调激发光源和荧光发射扫描单色仪,这要归功于在一级和二级衍射中的高光栅衍射效率。 它还配备了两个光电传感器和校准的相关硬件。产品特色具有出色成像的扫描单色仪覆盖波段:紫外-近红外高光通量和低杂散光快速、可靠且重复性好4 相步进电机和相关的蜗轮/齿轮 90:1 比率机构3 位外部滤光轮和 TTL 驱动电子设备多种光栅可选典型应用工业应用吸收,荧光和发射等应用,例如生命科学(读板机)化学分析高效液相色谱(HPLC)终点检测衍射测量环境,农业,食品等选型指南
    留言咨询
  • PlantScreen样带扫描式植物表型成像平台 PlantScreen样带扫描式植物表型成像平台为温室或大型培养室用植物表型成像分析系统,用于植物样带叶绿素荧光扫描成像、RGB彩色成像分析及红外热成像分析等,可用于植物沿样带梯度胁迫实验研究分析、梯度植物耐受性检测研究、作物遗传育种、基因组学与表型组学研究、不同植物的光合生理特性研究、植物高通量Phenotyping、生物多样性检测分析及污染生态学和生态毒理学研究检测等。功能特点:1) 具备世界上单幅成像面积最 大的叶绿素荧光成像系统,成像面积达35×35cm2) 可进行叶绿素荧光成像分析和RGB彩色成像分析,还可选配红外热成像分析等 3) 可选配小型蒸渗仪用于栽培作物控制实验测量4) 样带扫描成像位置精确定位、定时、程序控制,一次可对12个约30cm直径的植物培养盆或SoilTron多功能小型蒸渗仪依次扫描成像分析5) 具备7位绿波轮和相应滤波器组合,可进行GFP或其它选配的稳态荧光成像检测,从而用于转基因表达检测分析6) 整套系统装配在具备4个轮子的支架上,成像高度可调、可定制,非损伤原位对植物进行叶绿素荧光成像、GFP荧光成像和RGB成像分析等研究 7) 在线数据分析8) 根据客户需求,可定制高速以太网远程控制功能9) 在没有交流电的情况下,可选配直流供电单元供电技术指标:1) 具移动轮方便移到,可进行叶绿素荧光成像分析、RGB植物彩色成像分析、GFP(绿色荧光蛋白)成像,还可选配红外热成像等,单幅成像面积可达35×35cm2) 成像平台440cm长,由两部分组成(每部分2.2m长)以便于运输和组装等,镜头及光源等高度60cm–110cm可调,可客户定制其它高度范围,从而适于不同生长类型不同高度植物的原位非损伤成像分析测量3) 扫描样带区域(样带长度)400cm,可精确定位、定时、程序可调,定位精度可达0.1mm,成像平台运行速度可达150mm/s4) 1分钟之内即可对直径约30cm的12盆植物扫描成像完毕5) 叶绿素荧光成像:a) 高灵敏度CCD传感器镜头(如选配同时测量GFP稳态荧光,采样频率达50fps,有效像素720x560,A/D 12比特(4096灰阶),具备视频模式和快照模式 b) 可选配高分辨率叶绿素荧光与GFP荧光镜头,2/3”CCD,最 高可达1360x1024像素(20fps)c) 620nm红色LED脉冲调制测量光源d) 红色与蓝色或红色与冷白色LED双色光化学光e) 735nm LED红外光源用于测量Fo’等f) 参数包括Fo,Fo’,Fs,Fm,Fm’,Fp,FtDn,FtLn,Fv,NPQ_Dn,NPQ_Ln,Qp_Dn,Qp_Ln,qN,QY,QY_Ln,Rfd等50多个叶绿素荧光参数,用于分析植物光合效率、适合度、生物与非生物胁迫及作物抗性、恢复力等g) 叶绿素荧光数据在线分析,包括柱状图、测量参数图、数据表格等,具备自定义图像分割等功能6) RGB成像测量分析:高灵敏度成像传感器1/2.5”,分辨率2560×1920像素,像素大小2.2μm,自动或手动曝光和白平衡等,测量参数包括:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、相对生长速率等,可进行颜色分割分析、植物适合度评价、实验生长期叶面积动态变化比较分析、绿度指数、颜色分级分析(健康绿色、亮绿色、暗绿色、其他颜色)等表型参数7) 红外热成像单元(选配):包括认证校准的红外热成像传感器镜头、热成像适配LED光源,分辨率640×480像素,温度范围20-120°C,灵敏度NETD0.05°C@30°C/50mK,成像面积35×35cm,用于气孔动态、干旱胁迫及病害胁迫研究分析等8) 系统自动控制与数据采集分析系统:a) 组成:控制调度服务器、应用服务器、数据库服务器、可编程序逻辑控制器及专用表型大数据分析软件等b) 自动控制与分析功能:具备用户定义、可编辑自动测量程序(protocols),根据用户设定程序自动完成全部实验。数据结果自动存储并分析,分析的数据结果可自动以动态曲线的形式显示。c) 用户可通过互联网远程访问,进行数据处理、下载及更改实验设计d) 具备用户权限分级功能,防止其他人员误操作影响实验e) 专家远程故障诊断,软件终身免费升级9) FS-WI步入式大型植物生长室(选配)a) 光源:冷白LED(6500K)+远红LED(735nm),其他光源如RGB三色光源板可定制,可0-100 %调控,专用光源制冷气流通道,可编程模拟昼夜周期变化、日升日落等自然界中光环境变化以及其他各种任意变化b) 均质光强:1000μmol(photons)/m2.s,可定制更高光强 c) 控温范围:10℃-40℃(控制效果与光强和环境温度有关,室温最 高为30℃),可定制更大控温范围,可编程模拟昼夜周期变化、日升日落等自然界中温度变化以及其他各种任意变化d) 控湿范围:40-80%±7%(控制效果与光强有关),可编程模拟昼夜周期变化、日升日落等自然界中湿度变化以及其他各种任意变化产地:欧洲PSI
    留言咨询
  • PhenoPlot 轻便型作物/植物表型成像分析系统由轻便型表型扫描成像台架、表型光谱成像传感器及分析软件等构成,采用STP(sensor-to-plant)技术,成像单元可沿台架横轴左右自动定位成像(样带式),高度可调。可用于野外原位(in-situ)植物/作物表型成像分析、盆栽植物或蒸渗仪系统植物/作物表型成像分析及植物-土壤光谱成像分析等。主要功能特点: 1.模块式快速拆装结构,轻便、可折叠、可扩展,单人即可拿到大田内对 Plot 样地作物/植物进行表型成像测量分析,或对基于Soiltron蒸渗仪专利技术的iPOT培养盆、miniPlot样方进行扫描成像分析2.标配400-1000nm高光谱成像、900-1700nm高光谱成像,可选配其它波段高光谱成像、RGB 成像、多光谱成像、红外热成像、Thermo-RGB融合成像、叶绿素荧光成像等不同作物表型成像传感器3.标配为单轴样带式扫描成像分析,高度可调,可客户定制XY双轴表型成像分析平台4.采用星型组网物联网技术,兼容5G通讯技术,可实现远程控制等功能5.内置温湿度、光照度、GPS、时钟(时钟可根据GPS信息自动校准),可扩展增加传感器如土壤水分、土壤温度、空气CO2、太阳辐射、冠层温度等6.支持组合命令(Protocols),实现自动运行protocols7.内置大容量锂电,双路并联,可野外运行8小时以上8.可选配侧面(垂直)光谱成像分析,还可选配旋转式高光谱扫描成像平台9.应用于植物/作物表型监测分析、植物/作物生理生态测量研究、作物胁迫与抗性评估、种质资源研究检测、N含量评估等 主要技术指标: 1.单轴(X轴)标配跨度(扫描幅度)1.5m,可选配2m跨度,扫描定位精度 1cm ?2.标配最大高度180cm,高度80-180cm可调整3.支持组合命令,可设置10条命令protocols,实现系统自动运行4.高分辨率 RGB 成像(选配),分辨率达 18MPixels,10 倍光学变焦 可选配同等分辨率多光谱 NDVI 成像镜头5.科研级红外热成像(选配):分辨率 640x512 像素,温度范围-25~150摄氏度,温度分辨率 0.03 摄氏度具视频模式和快照模式NUC功能以获得高质量高稳定性热成像图,插值功能可形成平滑热成像图(除去马赛克效果)具备热成像自动分级分级功能14种调色板,可随意选配不同假彩成像USB-3接口或网络接口多点温度及黑体校准并具校准证书专业温度分析软件,可形成温度分布曲线、IOR点线区域温度分析、频率直方图、3D温度分布图等6.Thermo-RGB红外热成像与RGB真彩成像融合技术(选配),可测量阳光照射叶片的温度和覆盖度等,以精确反映作物气孔导度动态,使作物冠层温度测量精准区分阳光照射叶片、阴影叶片及土壤背景,并可进行ROI选区分析、频率直方图分析显示等7.VNIR 高光谱成像分析单元波段范围400-1000nm,波段数224光谱分辨率 FWHM:5.5nm空间分辨率:1024像素视野38度,信噪比600:1可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、健康指数、覆盖度、胁迫等20多个参数8.SWIR高光谱成像分析单元波段范围900-1700nm,波段数224光谱分辨率 FWHM:8nm空间分辨率:640像素视野38度信噪比1000:1可成像分析评估作物N素含量、水分含量指标与水分胁迫等9.内置空气温湿度、光照度、GPS、时钟,可选配扩展PAR、土壤水分、土壤温度等传感器10.内置大容量可充电电池,不低于14000mAh,可在野外运行8小时以上11.可选配植物生理生态监测(客户定制):包括叶面温度、叶面湿度、茎流、茎杆生长、果实生长、叶片叶绿素荧光监测及光合作用监测等
    留言咨询
  • PhenoTron-YZ植物表型与种质资源成像分析系统,是由易科泰生态技术公司最新推出的一款基于光谱成像与机器视觉技术的多功能、高通量实验室表型性状分析系统,采用国际先进的光谱成像传感器技术和易科泰光谱成像与无人机遥感研究中心设计研发的STP(Sensor-To-Plant)全自动作物表型XYZ扫描成像分析平台技术,可用于实验室高通量植物表型成像分析、作物种质资源检测鉴定、作物遗传育种、作物胁迫与抗性筛选、高通量考种等。系统采用STP技术,由主机系统和光谱成像系统组成,主机系统包括主机箱、控制单元、触摸显示屏、数据处理服务器等组成;光谱成像系统由光谱成像传感器、光源系统、自动扫描Y轴及Z轴同步升降双轴系统等组成。主要技术特点:1) 标配400-1000nm高光谱成像,或400-1000与900-1700nm双镜头高光谱成像,可选配1000-2500nm高光谱成像2) 选配Thermo-RGB红外热成像与RGB成像分析3) 选配叶绿素荧光成像分析4) 选配3D激光扫描5) 称重式360度旋转平台(选配),可实现植株顶部和侧面(Z轴)全方位成像分析6) 全自动样带式扫描(Y轴)成像,可同时对多盆植株成像分析,还可对样品盘内的根系、叶片、果实、种子进行高通量成像分析7) 模块式结构,主机系统采用5G通信技术,星型组网物联网模块,可任意扩展增加传感器和控制模块如光源、秤重、旋转平台、温湿度监测等8) 可远程控制、自动运行数据采集存储等功能9) 系统自动保护功能,发生短路、过载、欠压时自动紧急断电,避免设备损坏10) 系统平台具万向脚轮,方便移动主要技术指标:1) 控制单元为嵌入式操作系统,全中文触控屏,方便系统调试、试运行等2) 用户可通过PC端全中文GUI软件实现远程操控相机及平台3) 10英寸触摸显示屏,集移动扫描、同步升降、相机控制、光源开关、快门触发、一键秤重及显示于一体4) 支持组合命令:最高可设置10条命令,实现无人值守工作5) 模块式结构,5G无线通信技术,传感器及控制单元星型组网,具备强大的扩展功能6) Y轴自动移动扫描行程1.2m,Z轴同步升降行程60cm,安全负载高达40kg7) 移动速度与精度:1-40mm/s可调,移动及定位精度1mm8) 有效扫描成像范围:120cm×60cm9) VNIR高光谱成像:a) 波段范围:400-1000nmb) 波段数:224通道c) 光谱分辨率:FWHM 5.5nmd) 空间分辨率:不低于1024×1024e) 信噪比600:1f) 分析参数:可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、健康指数、覆盖度、胁迫等20多个参数10) SWIR近红外高光谱成像:a) 波段范围:900-1700nmb) 波段数:224通道c) 光谱分辨率:FWHM 8nmd) 空间分辨率:不低于640×640e) 信噪比:1000:1f) 分析参数:可成像测量分析NDNI归一化N指数、NDWI归一化水指数、MSI水分胁迫指数等 11) 红外热成像:a) 分辨率:640×512像素b) 测量温度范围:-25℃-150℃c) 灵敏度:0.03℃(30mK)@30℃d) 光谱范围:7.5-13.5μme) 传感器:非制冷红外焦平面感应器,已多点校准(具校准证书)f) 1-14倍数码变焦g) 软件具备调色板(自然、彩虹、灰度、梯度等14种颜色组合)、差值技术、温度范围设置(以改变颜色分布或突出选择范围等)、等温线模式、选区分析(点、线、多边形等)、温度扫描(显示所选线的温度分布曲线等)、剖面温度、时间图等;可显示图片信息;具备报告模式等;可进行控制设置12) RGB彩色成像:高分辨率 RGB 成像,分辨率达 18MPixels,10 倍光学变焦,可选配其它分辨率镜头,配备专业形态测量与颜色分析软件13) 叶绿素荧光成像单元(选配):a) 专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720x×560像素,像素大小8.6×8.3μmb) 光化学光最大1000μmol.m-2. s-1可调,饱和脉冲3900μmol.m-2. s-1c) 可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocolsd) 50多个叶绿素荧光自动测量分析参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图e) 自动同步显示叶绿素荧光参数及参数图、叶绿素荧光动态曲线、叶绿素荧光参数频率直方图14) 可选配ENVIS环境因子监测模块,如空气温湿度监测及CO监测等15) 系统平台规格:标配约190cm×170cm×60cm(长×宽×高)
    留言咨询
  • 该系统作为我们新一代眼科光学相干断层扫描成像系统,可以实现角膜、虹膜、视网膜、脉络膜全面的在体三维断层组织成像、微血管无造影成像及眼轴的准确测量。角膜与视网膜微血管检查可实现各层微血管的单独输出并量化分析。眼轴测量功能的加入使设备更加强大,准确的测量对眼睛生长发育、远近视等提供了可靠的数据。这些强大的功能为眼科疾病提供直观的诊断依据,从而更好地理解眼底疾病的病理生理机制以辅助治疗。对以后的基因治疗、干细胞治疗研制和新药的研发都有非常巨大的帮助。特色灵敏度更高,高清晰的微血管成像质量穿透性更强,极大的降低了屈光介质对成像质量的影响成像深度更深,可实现高精度的眼轴测量脉络膜微血管成像,为脉络膜疾病提供更好的依据大视野视网膜微血管成像效果图视网膜微血管大视野效果图应用实例
    留言咨询
  • 微区X射线荧光光谱分析技术是对不均匀样品、不规则样品、甚至小件样品和包裹物进行高灵敏度的、非破坏性的元素分析方法。M4 TORNADO采用了技术,为各种用户提供了佳的分析性能和方便的操控性。 采用多导毛细管聚焦镜,照射光斑小,空间分辨率高。 涡轮增速X-Y-Z样品台,借助放大倍数可变的摄像系统获得的样品影像,可在“飞行中”进行元素分布分析。 通过可选的双X射线光管和多6个滤光片进行灵活的激发。 使用XFlash探测器高速地获取样品图谱,另外,使用多个探测器可以进一步提高测量速度。 基于无标样分析法准确定量分析块状样品,准确分析多层膜样品。 具有便捷进样功能的可抽真空的样品室行业应用:1.地球科学(岩心、岩石、沉淀物、微体化石、年轮等多元素分布成像、行扫描与相序分析。)2.司法鉴定、法医及痕量分析(弹孔射击残留物GSR分析等)3.艺术与考古(对文物进行颜料、色料的成分分析,修复文物)4.生命科学(植入材料扩散材料分析,生物体内的生物矿化,水凝胶质检,树木横断面/叶子/树根年轮)5.材料科学(三元梯度薄膜分析,锂电池正极材料异物分析,水泥钢材腐蚀检验)6.环境科学(土壤重金属、污水污泥重金属分析、空气和城市废物)7.质量控制与故障分析仪(电子和电子部件元素分析,ROHS分析)
    留言咨询
  • PhenoPlot悬浮双轨式表型成像分析系统,由悬浮双轨式表型扫描成像台架、表型光谱成像传感器及分析软件构成。本系统采用STP(sensor-to-plant)技术及“双轨式”Y轴设计方案,X轴横跨“双轨式”Y轴并可沿Y轴平稳滑行,带动表型光谱成像传感器扫描成像,高度可通过Z轴升降精准调控,从而实现XYZ三轴全方位无死角扫描成像。可用于大田原位(in-situ)作物/植物表型成像分析、盆栽植物或蒸渗仪系统植物/作物表型成像分析及植物-土壤光谱成像分析等。主要功能特点:1.悬浮轨道设计,安装成本低,占地空间小,有效避免“龙门吊”(需铺设地面轨道)由于笨重和地面轨道铺设工程造成的农田污染、破坏和耕地占用2.可对大田Plot 样地作物/植物,或对基于Soiltron蒸渗仪专利技术的iPOT培养盆、大型Plot样方进行原位表型成像测量分析、生理生态研究、胁迫与抗性评估、种质资源研究检测、N含量评估等3.配备400-1000nm高光谱成像、900-1700nm高光谱成像、红外热成像等光谱成像传感器4.配备表型监测系统,包括NDVI/PRI监测、冠层温度监测、空气温湿度及PAR监测5.XYZ三轴全自动扫描成像分析,确保大田样方无死角覆盖6.系统集成表型大数据管理服务器及数据库,可远程采集、传输、管理光谱成像表型大数据,与用户现有数据管理平台实现对接7.触摸屏控制,嵌入式操作系统,全中文地面站软件,可无线操控平台运行8.采用星型组网物联网技术,兼容5G通讯技术,可实现异地远程控制等功能9.内置温湿度、光照度、GPS、时钟(时钟可根据GPS信息自动校准)10.支持组合命令(Protocols),可实现自动运行protocols11.可选配全波段光源,适用于温室内模拟太阳光对作物/植物进行表型光谱成像监测 主要技术指标:1.悬浮轨道跨度(X轴):5m(可客户定制其它规格),长度(Y轴)20m(可客户定制其它长度),高度2m2.平台移动参数:速度1-40mm/s可调,精度优于1cm3.组合命令:可设置10条命令protocols,可实现系统自动运行4.控制系统:嵌入式操作系统,PC端全中文操作软件,可无线操控平台运行5.触控屏:10英寸触摸显示屏,集移动扫描、同步升降、光源开关、快门触发及温湿度、光照度等显示于一体6.内置传感器:温湿度、光照度、GPS、时钟(时钟可根据GPS信息自动校准)实时显示并记录存储,可上传服务器数据库,用于事后分析及追溯管理7.通信及遥控:CAN总线通讯,兼容5G技术,可实现异地远程操控系统运行8.传感器网络:采用星型组网物联网技术,实现内置传感器、GPS、光源和自动浇灌(选配)等模块与主控系统无线互联,可自由扩展其他传感器9.400-1000nm高光谱成像分析单元光谱波段:400-1000nm,通道数224,MROI功能(可自由选择波段)光谱分辨率FWHM:5.5nm空间像素:1024像素信噪比及帧频:600:1、330FPS(满帧)测量参数:可成像测量分析作物生化、生理指标、光利用效率、健康指数、覆盖度、胁迫等多种参数,如:归一化植被指数NDVI、NDVI705、mNDVI705、GNDVI,光化学指数PRI,脱镁作用指数NPQI,叶绿素相关指数MCARI、TCARI、NPCI、GCI、LCI,花青素指数ARI1、ARI2,类胡萝卜素指数CRI1、CRI2,盐胁迫指数LSI,水波段指数WBI,增强植被指数EVI,红边指数VOG1、VOG2、VOG3、REPI,Carter指数CI,Lichtenhaler指数LI,优化土壤调整指数OSAVI、GSAVI、GOSAVI,绿度指数GI、SGI,绿叶指数GLI,比值指数SR、mSR705、SRPI、RGRI、GRVI、IPVI,差值指数DVI、GDVI,大气阻抗指数ARVI、GARI,三角植被指数TVI,Zarco-Miller指数ZMI。10.900-1700nm高光谱成像分析单元光谱波段:900-1700nm,通道数224,MROI功能(可自由选择波段)光谱分辨率FWHM:8nm空间像素:1024像素信噪比:1000:1帧率: 670FPS(满帧)测量参数:可成像分析评估作物N素含量、水分含量指标与水分胁迫等,如归一化氮指数NDNI、归一化木质素指数NDLI,叶面积检测指数LAIDI,水分胁迫指数MSI,归一化水指数NDWI等11.科研级红外热成像分辨率 640x512 像素温度范围-25~150℃,温度分辨率 0.03℃具视频模式和快照模式NUC功能以获得高质量高稳定性热成像图,插值功能可形成平滑热成像图具备热成像自动分级分级功能14种调色板,可随意选配不同假彩成像多点温度及黑体校准并具校准证书专业温度分析软件,可形成温度分布曲线、IOR点线区域温度分析、频率直方图、3D温度分布图等12.叶绿素荧光成像:FluorCam叶绿素荧光成像技术,通过XYZ三维自动扫描定位,可原位(in-situ)监测作物叶绿素荧光,分析其光合生理、光合效率(有效光量子产量等)、胁迫及抗性等可在线成像分析叶绿素荧光参数、无人值守自动运行叶绿素荧光成像分析精准定位FC叶绿素荧光成像分析,单次叶绿素荧光成像分析面积35x45mm3色4组LED激发光源:620nm脉冲调制测量光,620nm红色、5700K白色双色光化学光源,735nm远红光用于测量Fo’等光化学光最大1000μmol.m-2. s-1可调,饱和脉冲3900μmol.m-2. s-1可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocols50多个叶绿素荧光自动测量分析参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图自动同步显示叶绿素荧光参数及参数图、叶绿素荧光动态曲线、叶绿素荧光参数频率直方图可对植物叶片、果实等不同组织进行叶绿素荧光成像分析专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720x560像素,像素大小8.6x8.3μm13.表型监测系统(选配):包括NDVI/PRI监测、冠层温度监测、空气温湿度及PAR监测14.可选配植物生理生态监测(客户定制):包括叶面温度、叶面湿度、茎流、茎杆生长、果实生长、叶片叶绿素荧光监测及光合作用监测等 应用领域大田作物原位生长监测、产量评估植物表型与形态学研究作物干旱胁迫监测及灌溉管理病虫害监测与防治作物育种及抗性筛选生物多样性及种质资源调查
    留言咨询
  • 详细信息一、产品简介VX9000系列光学扫描成像测量机以光学成像测量系统为基础,配合高精度运动机构和花岗岩龙门式底座,实现了测量精度、速度、稳定的完美结合;结合高精度图像分析算法,并融入闪测原理,在测量范围内,任意摆放工件位置、方向、角度,仪器都可自动定位测量对象、匹配模板、测量评价、报表生成,真正实现快速精准测量。二、产品优势传统测量仪器如投影仪、影像测量仪、工具显微镜、轮廓仪、游标卡尺、千分尺等,在测量时面临诸多问题,如:测量对象的定位、原点定位费时,批量测量操作时间长,不同测量人员导致测量结果不同,数据统计管理繁杂等。VX9000系列光学扫描成像测量机将解决传统测量仪器在检测方面的难题。大行程高速龙门结构平台:◆超大测量行程(620x540mm~920x840mm),测量速度200mm/s,移动速度500mm/s;◆高精度花岗岩基座和横梁,整体结构稳定、可靠;◆关键运动机构采用高精度直线导轨导引、AC伺服直驱电机驱动,搭配分辨率0.1μm的光栅系统,保证设备的高精度、高效率。高分辨率大视场扫描影像系统:◆高分辨率线阵扫描相机,检测精度可达微米级;◆高远心度的双侧远心镜头,提升数倍测量精度;◆配置底光、表面光、同轴光多种程控光源,适应不同测量需求。一键闪测,批量更快:◆在测量视野内,产品任意放置,无需治具或夹具,即可实现测量;◆在测量视野内,任意放置同规格多个产品,可同时对各产品进行测量;◆支持CAD图纸导入,一键自动匹配测量。操作简单,轻松无忧:◆软件操作简单,易上手,具有测量及数据统计分析功能,帮助客户分析及改善制程;◆气缸专用式压板机构避免工件发生移动,省却繁琐的人工操作,降低人工作业强度;◆三轴全自动可编程检测,实现复杂特征批量检测。配置丰富,一机多用:◆可选配CCD面阵相机+可变倍率镜头,以提高局部或微小物体的测量精度和速度;◆可选配激光位移传感器,以实现工件在Z向高度、高度差、平面度的测量。三、优势特点标准载台常用于PCB、平板金属、片状零部件、光刻图样等;可定制载台(治具),用于机械、电子、模具、注塑、五金、精密冲压、接插件、连接器、端子、3C、家电、刀具等领域。四、测量软件1.提供单件测量、批量测量和自动测量三种测量模式。自动测量模式下,可实现自动搜索已设定的测量模板,快速精确地进行自动批量测量。2.提供多达80种提取分析工具,包括基本几何量和形位公差测量,如:点、线、圆(圆心坐标、半径、直径)、圆弧、中心、交叉点、直线度、平行度、角度、位置度、线距、线宽、孔位、孔径、孔数、孔到孔的距离、孔到边的距离、弧线中心到孔的距离、弧线中心到边的距离、弧线高点到弧线高点的距离、交叉点到交叉点的距离等。3.自动输出SPC分析报告,可输出统计值(如CA、PPK、CPK、PP等)及控制图(如均值与极差图、均值与标准差图、中位数与极差图、单值与移动极差图)。
    留言咨询
  • 本设备利用激光、显微镜、精密扫描组件、时间分辨数据采集技术和图像处理技术获得样品不同位置的荧光强度及寿命。利用定点激发技术,可以观测载流子迁移。是一种高性能、高扫描速度、高灵敏度的荧光成像仪器。一、系统主要技术指标1.激光扫描振镜模块1) 激光光纤输入,配电控光阑系统2)激光扫描成像范围∶最高4096x4096像素点3)成像放大倍数(zoom)∶1-32倍4)激光扫描波长范围:400-750nm 2.TCSPC模块1) 时间精度7ps 2) Bin通道数∶40963) 时间窗口50ps-5μs 4) 仪器响应函数(IRF)∶≤:300ps 5) 时间分辨率∶≤50ps 3.高灵敏度单光子检测器模块1) 检测面直径100μm 2) 光谱检测范围400-1000nm 3) 时间分辨率∶50ps(FWHM)4) 量子效率∶45%@550nm 4.稳态光谱检测模块光谱仪(配置可根据客户需求调整)1) 焦长200mm 2) 光谱仪内置两块光栅3) 出口耦合PMT检测器或CCD相机光谱检测模式∶波长扫描采集或CCD采集波长探测范围350-900nm 5.倒置显微镜模块1) 含照明光源、双色片、滤光片等基本配置2) 物镜一套(空气镜)∶100x、60x、20x 3) 最高空间分辨率≤500nm(取决于物镜和激光/荧光波长)6.激光器(可按客户需求选配)1) 单波长皮秒半导体激光器2) 皮秒超连续白光激光器二、应用实例1、荧光强度成像、荧光寿命成像样品:MAPbI3单晶纳米片和MAPbI3纳米线实验条件∶100X objective,pinhole 40μm,Exc∶400 nm,成像模式:共聚焦扫描成像模式样品:二维 SnSe2(微弱荧光材料)实验条件:100X(油镜),激发波长:405nm成像模式:共聚焦激光扫描成像模式 参考文献:Xing Zhou ,et al.,Tianyou Zhai*,Adv. Mater. 2015, 27, 8035–80412、低温舱内的荧光成像样品:MAPbI3 纳米线实验条件:100X,空间分辨率 1μm成像模式:共聚焦激光扫描成像模式 观测到钙钛矿纳米先低温相变过程的空间分布和演化状况3、高压舱内的荧光成像样品:MAPbI3单晶纳米片和MAPbI3纳米线MAPbI3 纳米线不同压力下激光扫描荧光成像 不同压力下荧光动力学曲线 MAPbI3 纳米线不同压力下载流子迁移荧光成像 不同压力下载流子迁移动力学曲线 参考文献:YanfengYin,WenmingTian,*etal.,JimingBian,*andShengyeJin*ACS Energy Lett.2022,7,154&minus 1614、载流子迁移成像实验条件∶100× objective,pinhole 40μm,Exc∶400 nm 样品:钙钛矿纳米片成像模式∶激光定点激发,荧光扫描成像,可获得样品荧光动态演化图5、电致发光成像样品:CdSe量子点LED 6、光电流成像实验条件∶405nm连续激光器,激光强度调至最弱,60x物镜下测量结果2D(ITO/SnO2/QW/Spiro-Au)结构的太阳能电池光电流成像图
    留言咨询
  • PhenoTron-SR植物表型成像分析系统可同时对作物根系及苗、作物冠层进行表型成像分析。系统由主机系统和光谱成像系统组成:主机系统包括系统平台(主机箱)、控制单元、样品托、数据处理服务器等组成;光谱成像系统由光谱成像单元(包括成像传感器、光源、云台等)和自动扫描轴组成。其主要技术特点如下:Phenotyping from shoot to root: 可对植物地上部分(shoot)和地下根系(特制RhizoTron植物根系观测培养盒RhizoBox)进行表型性状成像分析标配为60度倾斜自动扫描成像,同时对RhizoBox根系和幼苗进行高光谱成像分析和RGB成像分析,可选配其它角度如45度、70度和90度(垂直扫描成像)可选配顶部冠层RGB成像分析、红外热成像分析、高光谱成像分析、叶绿素荧光成像分析(可选配适于正常培养盆的样品托)可选配iPOT数字化植物培养盆或RhizoBox根系培养盒,持续监测土壤水分温度、重量、植物生长、光合效率、PI(performance Index)、茎流等生理生态指标,可自动采集土壤渗漏水并进行土壤营养盐分析模块式结构,具备强大的系统扩展功能,系统平台自动万向脚轮,方便移动可远程控制、自动运行数据采集存储等功能 自左至右依次为:系统透视图、系统内部结构图(包括侧面倾斜自动扫描轴、RhizoBox、顶部成像传感器等)、棉花根系RGB成像、棉花根系高光谱成像分析(900-1700nm) 技术指标:控制单元为嵌入式操作系统,全中文触控屏,方便系统调试、试运行等用户可通过PC端全中文GUI软件实现远程操控相机及平台支持组合命令:最高可设置10条命令,实现无人值守工作串口通信和TCP/IP协议,实现与单片机的通信控制和远程通信协议标配自动扫描轴60度倾斜,可防止倾斜根系培养盒的土壤扰动影响自动扫描轴推扫速度与精度:1-90mm/s可调,移动精度1mm有效扫描范围:标配120cm样品托:标配RhizoBox根盒40cm宽(宽度可调,40cm为标配最大宽度)、最大高度可达100cm,可选配其它规格样品托盘适配于单个大培养盆或多个小培养盆,可根据客户需求定制VNIR高光谱成像:波段范围:400-1000nm波段数:224通道光谱分辨率:FWHM 5.5nm空间分辨率:不低于1024x1024信噪比600:1分析参数:可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、健康指数、覆盖度、胁迫等20多个参数SWIR近红外高光谱成像:波段范围:900-1700nm波段数:224通道光谱分辨率:FWHM 8nm空间分辨率:不低于640x640nm信噪比:1000:1分析参数:可成像测量分析NDNI归一化N指数、NDWI归一化水指数、MSI水分胁迫指数等红外热成像(选配):分辨率:640x512像素测量温度范围:-25°C-150°C灵敏度:0.03°C(30mK)@30°C光谱范围:7.5-13.5μm传感器:非制冷红外焦平面感应器,已多点校准(具校准证书)1-14倍数码变焦软件具备调色板(自然、彩虹、灰度、梯度等14种颜色组合)、差值技术、温度范围设置(以改变颜色分布或突出选择范围等)、等温线模式、选区分析(点、线、多边形等)、温度扫描(显示所选线的温度分布曲线等)、剖面温度、时间图等;可显示图片信息;具备报告模式等;可进行控制设置 RGB彩色成像:高分辨率 RGB 成像,分辨率达 18MPixels,10 倍光学变焦,可选配其它分辨率镜头,配备专业植物根系和shoots分析软件叶绿素荧光成像单元(选配):专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720x560像素,像素大小8.6x8.3μm光化学光最大1000μmol.m-2. s-1可调,饱和脉冲3900μmol.m-2. s-1可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocols50多个叶绿素荧光自动测量分析参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图自动同步显示叶绿素荧光参数及参数图、叶绿素荧光动态曲线、叶绿素荧光参数频率直方图可选配空气温湿度、光照及顶部激光测距模块系统平台规格:标配约120cm x 60cm x160cm(长x宽x高)、重量约50kg 左图为顶部冠层高光谱成像(NDVI),右图为根系成像提取(易科泰生态技术公司Ecolab实验室提供)
    留言咨询
  • 背景介绍—瞬态吸收光谱和瞬态吸收成像的应用基于泵浦探测(Pump-Probe)原理的瞬态吸收光谱,在频率维度和时间维度上提供了丰富的光谱和动力学信息,过去的几十年应用于物理、化学、材料、能源、生物等广泛领域。当今,许多领域科学研究的范式和需求都在不断更新。尤其是随着钙钛矿光伏、二维材料、量子器件、高温超导等前沿领域的发展,科学家迫亟需在空间维度上揭示载流子等微观离子的迁移和演化规律,研究微纳米材料的物理态在空间分布上的异质性。瞬态吸收成像,可在空间和时间维度上研究微观粒子和能量的运动和演化,是研究微观粒子和能量的时空演化、阐释微观机制的重要工具。瞬态吸收成像,一般有两种实现方式,点扫描成像和宽场成像。相对点扫描成像,宽场成像模式具有速度快、通量高,成像质量更加细腻的特点。Omni-TAM900为北京卓立汉光仪器有限公司全新推出的一款宽场飞秒瞬态吸收成像系统。该系统集成像和动力学于一体,联合飞秒泵浦-探测技术和显微技术,通过自主知识产权的干涉放大技术增强图像信噪比,可获得高质量的成像效果并大幅度缩短测试时间。仪器基本功能和性能:仪器具有点泵浦-宽场探测,和宽场泵浦-宽场探测两种工作模式。分点泵浦模式可用于测量载流子迁移和热导率等;宽场泵浦模式可用于测量载流子分布和物理态的空间异质性等。仪器特点和创新高灵敏、高通量,可测量到单个纳米颗粒、单层石墨烯乃至单层分子晶体的瞬态吸收信号。仪器原理和实现方式Omni-TAM900宽场飞秒瞬态吸收成像系统原理如下图所示,经过飞秒激光器和光学参量放大器(OPA)之后出来的飞秒激光,通过显微镜的光学系统进入,并作为泵浦光源激发样品,而另一束经过空间调制的探测光在一定的时间延迟之后也经过显微系统到达样品,样品在激发态对探测光产生的吸收情况会被显微镜上的sCMOS 相机记录下来。通过调节光学延迟线(Optical Delay Line),得到样品在不同延迟时间下的sCMOS图像。Omni-TAM900 可以有两种成像模式(如下图所示): 聚焦泵浦光模式(点泵浦,宽场探测)和宽场泵浦光模式(宽场泵浦、宽场探测),前者主要用于研究载流子的迁移,后者用于检测载流子的空间分布状况。软件软件可进行同步采集,自动控制和处理,载流子的寿命、载流子的迁移速率、载流子的分布、动力学等信息均可以通过软件得到。应用方向及实测数据Omni-TAM900宽场飞秒瞬态吸收成像系统是测量载流子时空演化的强大工具,可广泛应用于物理、材料及器件的前沿研究,比如:太阳能电池、低维材料、量子器件、超导材料、新型半导体、纳米催化、生物传感等,对纳米尺度和飞秒时空尺度中的超快的物理、化学及生物过程进行监测。金属镀膜中的载流子迁移和热扩散10 nm厚金属薄膜上的超快热载流子和热扩散,采用仪器的点激发,宽场探测模式。半导体中的载流子迁移和热扩散同时监测Si基半导体中的载流子迁移和热扩散(可测量半导体材料的热导率),采用仪器的点激发,宽场探测模式。光伏材料中的载流子迁移和演化钙钛矿CsPbBr3载流子成像,迁移动力学及边缘态动力学研究。采用仪器的宽场激发,宽场探测模式催化材料中的热载流子分布和“热点”局部热电子密度高、寿命长,可能具有更高的催化活性。采用仪器的宽场激发,宽场探测模式。新型二维材料中的边缘物理态研究二维WS2中激子分布情况,激子寿命研究。可以看到,多层的边缘具有更高激子密度和更长激子寿命 技术参数光源飞秒激光 +OPA,激光波长范围取决于应用场景检测器sCMOS成像空间分辨率500 nm载流子迁移定位精度30nm时间分辨率500 fs (100 fs 激光脉冲条件下)时间延迟线0-4 ns/0-8 ns显微镜模块倒置显微镜,上方为开放空间,后期可兼容低温模块、探针台、电学调控、磁场等特殊实验场景。测量模式点泵浦 + 宽场探测(载流子迁移)宽场泵浦 + 宽场探测(载流子分布)仪器工作模式反射 / 散射已发表文献:J. Am. Chem. Soc. 2022, 144, 13928专利:202110510123.X(以上展示的所有实测数据均为本型号仪器测得,并已公开发表,更多细节请查阅以上文献)。更多参考文献:(为了方便用户参考研究前沿,如下列出一些国际上利用瞬态吸收成像方法的研究案例。这些数据并非用该型号仪器获得,但是卓立Omni-TAM900仪器可实现这些应用场景中的绝大多数功能。如有特殊需求,欢迎与卓立汉光联系。)Science 2017, 356, 59 (钙钛矿超长热载流子)Nat. Mater. 2020, 19, 617 (转角二维量子异质结)Science 2021, 371, 371 (超导材料电荷密度波)Science 2022, 377, 437 (立方砷化硼超高载流子)Nat. Mater. 2020 , 9, 56 (材料中的携能载流子)
    留言咨询
  • SisuROCK是一款快速、完整、先进的全能型岩矿和样芯分析工作站,搭载多个成像传感器,无需任何样品准备,可实现快速、准确的岩芯测井。每天可自动完成数百米长度的岩矿样芯扫描成像分析,可将获取的高光谱成像数据转化为与样芯和整个矿床一致、客观的矿物图。主要特点: 应用案例: SISUROCK配置表: 附:矿物质鉴定表 矿物质鉴定表提供了关于每种矿物在不同红外区域(VNIR:可见光至近红外,SWIR:短波红外,MWIR:中波红外,LWIR:长波红外)的识别潜力的信息,具体如下: 可能:在该区域可能检测到矿物,但不一定非常明确。 中等:在该区域有一些响应,但可能不如其他区域的响应好。 良好:在该区域有较好的矿物响应,通常适合识别。 清晰:在该区域矿物的响应非常明确,是最适宜的识别区域。 不确定:数据不足,无法准确评估矿物的识别潜力。 无:在该区域没有响应或响应非诊断性,不适合矿物识别。
    留言咨询
  • PhenoTron-XYZ植物表型成像分析系统,是易科泰生态技术公司基于国际先进光谱成像传感器技术和自主研发的XYZ植物表型自动扫描平台,设计生产的一款适用于实验室或温室高通量植物表型分析系统:国际知名高光谱成像技术公司Specim(芬兰)高光谱成像传感器Thermo-RGB© 红外热成像与可见光成像融合分析技术,可实现遥控和在线图传FluorCam叶绿素荧光成像技术平台采用STP(Sensor-To-Plant)技术和在线视觉监控可选配基于蒸渗仪技术的iPOT数字化培养盆,全面监测重量变化、土壤水分与温度,及叶片温度、叶绿素荧光、茎流、光合作用等生理生态参数可选配台面式表型分析平台,XYZ安装在样品平台上,特别适合实验室组培苗和种苗表型分析、种质资源检测等应用于种苗与组培苗表型检测、作物表型研究分析、植物生理生态研究、光合生理研究、种质资源检测、胁迫与抗性评估与筛选等 主要技术指标:1) 平台采用STP技术,嵌入式主控系统,全中文操作界面,触控屏+PC端GUI软件双重控制,可无线控制2) XYZ三轴全自动运行,精准定位扫描成像分析,运行精度1mm3) 支持组合命令,可自定义Protocols,自动执行XYZ三轴移动、停止、光源开闭、快门触发等4) 机器视觉识别定位:监控镜头经过算法校准,在线监视全域植物状态并实现一键精准定位成像,自动采集RGB、红外热成像、FluorCam叶绿素荧光成像数据,并通过机器视觉定位高光谱扫描成像5) 机器视觉监控:监控镜头经过算法校准,在线监视全域植物状态和自动扫描成像,通过注册XYZ自动定位采集RGB、红外热成像、FluorCam叶绿素荧光成像数据,并在线监控全过程6) 标配台面式XYZ三轴有效行程:X轴80cm,Y轴有效扫描长度180cm,Z轴可升降范围30cm7) 400-1000nm高光谱成像:a) 光谱通道448,具备MROI功能,根据需求自由选择感兴趣光谱波段,减少数据冗余b) 帧率:330FPS(满帧),适应多种测量场景,尤其对容易摆动的植物,保证最佳的成像效果c) 光谱分辨率 FWHM:5.5nmd) 空间分辨率:1024像素e) 信噪比400:1f) 分析参数:可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、叶绿素荧光指数、健康指数、覆盖度等近百种参数8) 900-1700nm高光谱成像:a) 光谱通道224,具备MROI功能,根据需求自由选择感兴趣光谱波段,减少数据冗余b) 帧率:670FPS(满帧)c) 光谱分辨率 FWHM:8nmd) 空间分辨率:640像素e) 信噪比1000:1f) 分析参数:可成像测量分析NDNI归一化N指数、NDWI归一化水指数、MSI水分胁迫指数等9) SpectrAPP高光谱成像分析软件:a) 具备伪彩色/灰度显示、波段融合、ROI选区、光谱指数分析、光谱曲线绘制、光谱特征统计、直方图统计、结果图/表导出等功能b) 可分析NDVI、PRI、DCNI、CRI、ARI、PSRI、NPQI、EVI、HI、WBI等数十种光谱指数,可根据需求定制添加光谱指数 10) Thermo-RGB成像:a) 可见光-红外热成像双镜头主机,出厂黑体多点校准并附校准证书,分辨率640×512像素b) 测量温度范围-25℃-150℃,灵敏度0.03℃@30℃c) 红外热成像分析软件具备调色板、差值技术、温度范围设置、等温线模式、选区分析、温度扫描、剖面温度、时间图、3D温度图、在线报告等功能d) Thermo-RGB© 成像融合分析:可进行手动/自动ROI分析;光照/背光叶片长度、宽度、周长、凸包面积、圆度等形态分析;最高、最低、平均温度、最大温差、中位数等温度分析;R/G/B、H/S/V、绿视率等颜色分析,具备温度直方图统计、路径分析、温度转换、图/表导出等功能e) Thermo-RGB遥控并可在线图像无线传输,实时监测RGB及红外热成像画面,测量最大、最小、中心点温度信息等 11) 叶绿素荧光成像:a) 专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720×560像素,像素大小8.6×8.3µ mb) 3色4组LED激发光源:620nm脉冲调制测量光,620nm红色、5700K白色双色光化学光源,735nm远红光用于测量Fo’等c) 光化学光最大1000µ mol.m-2. s-1可调,饱和脉冲3900µ mol.m-2. s-1d) 可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocolse) 50多个叶绿素荧光自动测量分析参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图f) 自动同步显示叶绿素荧光参数及参数图、叶绿素荧光动态曲线、叶绿素荧光参数频率直方图g) 可通过注册定位自动精准定位运行叶绿素荧光成像分析,单次成像面积35x46mmh) 可对植物叶片、果实等不同组织进行叶绿素荧光成像分析i) 可选配GFP成像j) 配备便携支架和叶夹,方便独立使用
    留言咨询
  • SisuROCK 高光谱岩心扫描仪SisuROCK是芬兰SPECIM公司专门针对岩芯以及其它地质矿石样品开发的高速推扫式高光谱成像分析工作站,设备操作简单,自动化程度高,具有对单个岩芯以及整箱岩芯进行高速高光谱数据采集的模式,非常适合地质矿产用户的应用。SisuRock应用于高速大量岩矿岩心等的高光谱扫描分析,每天可自动完成几百米长度的岩矿岩心扫描成像分析,可选配970-2500nm SWIR传感器、400-1000nm VNIR或8-12um热成像传感器,整机重量约500kg,岩心可达150cm(L) x 65cm(W) x 20cm(H),重量可达50kg。SisuROCK配备了SPECIM公司先进的高光谱相机,可以对地质产品进行快速的高光谱数据收集。SisuROCK不仅可以作为一种高效、高吞吐量的生产工具在矿业生产中广泛使用,也可以作为一种功能强大且灵活的分析手段应用到地质研究领域。SisuROCK工作特点 SisuROCK是一套专门针对岩芯和其他地质样品开发的高速扫描全自动高光谱成像设备。该设备简单易用,具有对单个矿芯高分辨成像,和对整箱岩芯高速扫描的不同模式。SisuROCK在15秒内就能完成整箱岩芯的高光谱成像数据采集,极大的提高了矿石分析筛选的效率。在一项勘探项目中,SisuROCK 以2mm空间分辨率的full core tray模式运行,以平均每天检测1200米矿样的速度,在两周时间里对17000米的矿样完成了高光谱数据采集。芬兰SPECIM是世界上最早生产商用高光谱相机的厂商,至今已有20多年的历史。其产品多样,覆盖范围广泛,包含工业高光谱相机、Sisu系列岩芯高光谱成像系统以及Aisa机载高光谱成像系统,产品覆盖可见光到热红外波段(VNIR、SWIR、MWIR、LWIR),为用户提供全面的高光谱成像解决方案。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制