当前位置: 仪器信息网 > 行业主题 > >

明晶体量仪

仪器信息网明晶体量仪专题为您提供2024年最新明晶体量仪价格报价、厂家品牌的相关信息, 包括明晶体量仪参数、型号等,不管是国产,还是进口品牌的明晶体量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合明晶体量仪相关的耗材配件、试剂标物,还有明晶体量仪相关的最新资讯、资料,以及明晶体量仪相关的解决方案。

明晶体量仪相关的论坛

  • 晶体荧光寿命测定

    我的样品是Nd:YAG固态晶体,激发光是808nm,发射波长在1064nm我想测晶体的荧光寿命,晶体大小在133mm*33mm。请问在北京那里可以进行测定?测量这种寿命,需要什么样的仪器?仪器的名称是什么?因为完全不懂,也不知道到哪里打听 谢谢

  • 【原创】晶体管特性图示仪

    晶体管特性图示仪是一种可以检测晶体管的特性参数的电子测量仪器。晶体管特性图示仪操作简便,主要有六个旋钮,每个旋钮代表不同的功能作用。它们分别是用来测试调控电流开关、电压开关、峰值电压开关、功耗限制电阻、零电压、零电流开关。晶体管特性图示仪的工作原理大致是这样的:通过示波管的内刻度可直接读测半导体管的低频直流参数,通过摄影装置可记录所需的特性曲线;根据需要还可以测试隧道二极管、场效应管、VMOS管、达林顿管及可控硅等半导体材料制做的器件。晶体管特性图示仪可同时在示波器管荧光屏上显示两只同类型半导器件的特性曲线。晶体管特性图示仪的具体参数如下:集电极扫描电压0-500V 二端测试电压0-5KV、 集电极电流1μA-500mA/div 、具有脉冲阶梯信号。

  • 专家创新胶体量子点太阳能电池转化效率纪录

    一个国际科研团队撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化,研制出了迄今转化效率最高的胶体量子点太阳能电池。据美国物理学家组织网9月18日报道,一个国际科研团队在最新一期的《自然-材料学》杂志上撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化(不易与其他物质发生化学反应),研制出了迄今转化效率最高(达6%)的胶体量子点(CQD)太阳能电池。吸光纳米粒子量子点是纳米尺度的半导体,其能捕捉光线(既可吸收可见光,也可吸收不可见光)并将其转化为能源。人们可将其喷洒到包括塑料在内的柔性材料表面,制造出比硅基太阳能电池更便宜、更经久耐用的太阳能电池。而且,胶体量子点电池的理论转化效率可高达42%,超过硅基太阳能电池31%的理论转化率。今年7月,多伦多大学的科学家研制出了转化效率为4.2%的胶体量子点太阳能电池。胶体量子点太阳能电池研制领域最大的挑战在于如何使量子点紧密结合在一起,因为量子点之间的距离越大,转化效率越低。然而,量子点通常由多出其1—2纳米的有机分子包裹,在纳米尺度上,这有点大,而有机分子是制造胶体的重要成分。为此,加拿大多伦多大学、沙特阿拉伯阿卜杜拉国王科技大学、美国宾夕法尼亚州立大学的科学家们开始考虑使用无机配位体来让量子点紧紧依附在一起,以尽可能节省空间。结果,科学家们不使用“庞大”的有机分子也获得了胶体的特征。“我们在每个量子点周围包裹了一单层原子,它们将量子点包裹成非常紧密的固体。”该研究的领导者、多伦多大学电子与计算机工程系博士后唐江(音译)表示。研究合作者、宾夕法尼亚州立大学的约翰-艾斯拜瑞说:“最新研究表明,我们能剔除电荷陷阱——电子陷入的位置。量子点紧密地结合在一起以及消除电荷陷阱,双管齐下使电子能快速且平滑地通过太阳能电池。”美国国家可再生能源实验室委派的实验室证实,新研制出的胶体量子点太阳能电池不仅电流达到了最高值,高达6%的整体能量转化效率也创下了纪录。“最新研究表明,无机配位体在构建实用设备方面具有强大的作用。”量子点太阳能电池研制领域的领导者、芝加哥大学教授德米特里·塔拉品说,“新的表面化学为我们制造高效且稳定的量子点太阳能电池铺平了道路,也将对其他利用胶体纳米晶体制造的电子和光电耦合设备产生影响。全无机方法的好处包括能显著改善电子的运输速度,让设备更加稳定等。”

  • 【求助】问一个分光晶体的问题

    如果仪器经常处于待机状态(经常开关机容易减短仪器使用寿命),那么这样会对分光晶体有伤害吗?影响分光晶体的使用寿命有那些因素?谢谢大虾们!

  • 【分享】晶体结构

    一、研究晶体结构的重要意义  自然界中的固体物质绝大部分都是晶体,只有极少数是非晶体。初中化学课本在溶液部分讲述结晶过程时指出:在结晶过程中形成的具有规则外形的固体叫做晶体。高中化学课本在分别讲述四类晶体的特点以前,先讲了所有晶体在结构上的共同特征。它指出:“晶体为什么具有规则的几何外形呢?实验证明:在晶体里构成晶体的微粒(分子、原子、离子等)是规则地排列的,晶体的有规则的几何外形是构成晶体的微粒的有规则排列的外部反映”。这里所说的“实验”主要指有X射线来测定分析晶体结构的实验。高中化学课本下册“金属键”一节中就指出,金属晶体的内部结果是用X射线进行研究发现或证实的。其它晶体也是如此。用X射线测定晶体结构的科学叫做X射线晶体学,它和几何晶体学、结晶化学一道,对现代化学的发展起了很大作用。它们的重要性可概括为以下四点:(1)结晶化学是现代结构化学的一个十分重要的基本的组成部分。物质的化学性质是由共结构决定的,所以结构化学包括结晶化学,是研究和解决许多化学问题的指南。结晶化学的知识在研制催化剂中的应用就是一例。(2)由于晶体内的粒子排列得很有规则,所以晶态是测定化学物质的结构最切实易行的状态,分子结构的实际知识(如键长、键角数据)的主要来源是晶体结构。很多化合物和材料只存在于晶态中,并在晶态中被应用。(3)它们是生物化学和分子生物学的支柱。分子生物学的建立主要依靠了下列两个系列的结构研究:一是从多肽的α螺旋到DNA的双螺旋结构;二是从肌红蛋白、血红蛋白到溶菌酶和羧肽酶等的三维结构。它们都是应用测定晶体结构的X射线衍射方法所得的结果。(4)晶体学和结晶化学是固体科学和材料科学的基石。固体科学要在晶体科学所阐明的理想晶体结构的基础上,着重研究偏离理想晶态的各种“缺陷”,这些“缺陷”是各种结构敏感性能(如导电、扩散、强度及反应性能等)的关键部位。材料之所以日新月异并蔚成材料科学,相当大的程度上得力于晶体在原子水平上的结构理论所提供的观点和知识。二、晶体的通性和分类  在介绍晶体结构研究的发展简史以前,需要先说明一下晶体中微粒是怎样有规则地排列的,并用晶体的这个本质特征来解释晶体的一些通性。应用X射线研究晶体内部结构的大量实验证明,一切晶体在结构上不同于非晶体(以及液体、气体)的最本质的特征,是组成晶体的微粒(离子、原子、分子等)在三维空间中有规则的排列,具有结构的周期性。所谓结构的周期性,是指同一种微粒在空间排列上每隔一定距离重复出现。换句话说,在任一方向排在一直线上的相邻两种微粒之间的距离都相等,这个距离称为周期。如果每一个微粒用一个点代表,则所有这些点组成一个有规则的空间点阵。过一点在不同方向取三根联结各点的直线作为三个坐标轴,用三组平行于坐标轴的直线将所有的点联结起来,则将空间点阵划成所谓空间格子,空间格子的最小单位是一个平行六面体。晶体的空间格子将晶体截分为一个个内容(组成粒子、粒子的排布、粒子间的作用力的性质等)完全等同的基本单位──晶胞。晶胞的形状、大小与空间格子的平行六面体单位相同。晶体可以看作无数个晶胞有规则地堆积而成。在非晶体中,微粒的排列没有规则,不存在空间点阵结构。  与非晶体不同,晶体具有以下几个通性:(1)晶体有整齐、规则的几何外形。例如,只有结晶条件良好,可以看出食盐、石英、明矾等分别具有立方体、六角柱体和八面体的几何外形。这是晶体内微粒的排布具有空间点阵结构在晶体外形上的表现。对晶体有规则的几何外形进行深入研究以后,人们发现不同晶体有不同程度的对称性。晶体中可能具有的对称元素有对称中心、镜面、旋转轴、反轴等许多种。玻璃、松香、橡胶等非晶体都没有一定的几何外形。(2)晶体具有各向异性。一种性质在晶体的不同方向上它的大小有差异,这叫做各向异性。晶体的力学性质、光学性质、热和电的传导性质都表现出各向异性。例如,石墨晶体在平行于石墨层方向上比垂直于石墨层方向上导电率大一万倍;云母片沿某一平面的方向容易撕成薄片等。这是由于在晶体内不同方向上微粒排列的周期长短不同,而微粒间距离的长短又直接影响它们相互作用力的大小和性质。非晶体由于微粒的排列是混乱的,表现为各向同性。(3)在一定压力下,晶体有固定的熔点,非晶体没有固定的熔点,只有一段软化温度范围。这是由于晶体的每一个晶胞都是等同的,都在同一温度下被微粒的热运动所瓦解。在非晶体中,微粒间的作用力有的大有的小,极不均一,所以没有固定的熔点。  晶体的分类在几何晶体学上和在结晶化学上是不同的。在几何晶体学上,按照晶体的对称性将晶体分为七个晶系、32种宏观对称类型、230种微观对称类型(可参看大学《结构化学》教材有关部分)。在晶体化学中,如高中化学课本所说,是根据组成晶体的微粒的种类及微粒之间相互作用力的性质,将晶体首先分为金属晶体、离子晶体、原子晶体和分子晶体四大类。关于离子晶体和金属晶体结构研究的历史过程,以及与另两类晶体有关的共价键理论的历史发展,分别在本章其它几节中介绍。下面主要介绍几何晶体学(其主要内容是空间点阵理论)和X射线晶体学建立和发展的史实。

  • 在矿泉水中喝到了不知名透明晶体

    在矿泉水中喝到了不知名透明晶体

    喝矿泉水喝到了透明的结晶体 有尝试溶解 不溶于水 有人知道可能是什么东西吗?矿物质还是什么。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/09/201909191607316087_7290_3739662_3.png[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/09/201909191607537870_2134_3739662_3.png[/img]

  • 晶体、非晶体等概念的分别

    首先要理解晶体概念,以及晶粒概念。我想学固体物理的或者金属材料的都会对这些概念很清楚!自然界中物质的存在状态有三种:气态、液态、固态 固体又可分为两种存在形式:晶体和非晶体 晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。晶体共同特点:均 匀 性: 晶体内部各个部分的宏观性质是相同的。 各向异性: 晶体种不同的方向上具有不同的物理性质。 固定熔点: 晶体具有周期性结构,熔化时,各部分需要同样的温度。 规则外形: 理想环境中生长的晶体应为凸多边形。 对 称 性: 晶体的理想外形和晶体内部结构都具有特定的对称性。 对晶体的研究,固体物理学家从成健角度分为离子晶体 原子晶体 分子晶体 金属晶体 显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书 (郭可信,王仁卉著)。与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。一般,无定型就是非晶 英语叫amorphous,也有人叫glass(玻璃态).晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。所以很多冶金学家材料科学家一直在开发晶粒细化技术。科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。人们习惯把这种小尺度晶粒较微晶。然而科学总是发展的,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,描叙结构特点的只有径向分布函数,这是个统计的量。我们不知道具体确定的晶格常数,我们总可以知道面间距的统计分布情况吧。非晶有很多诱人的特性,所以也有一帮子人在成天做非晶,尤其是作大块的金属非晶。因为它的应力应变曲线很特别。前面说了,从液态到到固态有个成核长大的过程,我不让他成核呢,直接到固态,得到非晶,这需要很快的冷却速度。所以各路人马一方面在拼命提高冷却速度,一方面在不断寻找新的合金配方,因为不同的合金配方有不同的非晶形成能力,通常有Tg参数表征,叫玻璃化温度。非晶没有晶粒,也就没有晶界一说。也有人曾跟我说过非晶可以看成有晶界组成。 那么另一方面,我让他成核,不让他长大呢,不就成了纳米晶。人们都说,强扭的瓜不甜,既然都是抑制成核长大,那么从热力学上看,很多非晶,纳米晶应该不是稳态相。所以你作出非晶、纳米晶了,人们自然会问你热稳定性如何。后来,又有一个牛人叫卢柯,本来他是搞非晶的,读研究生的时候他还一直想把非晶的结构搞清楚呢(牛人就是牛人,选题这么牛,非晶的结构现在人们还不是很清楚)。他想既然我把非晶做出来了,为什么我不可以把非晶直接晶化成纳米晶呢,纳米晶热啊,耶,这也是一种方法,叫非晶晶化法。既然晶界是一种缺陷,缺陷当然会影响材料性能,好坏先不管他,但是总不好控制。如果我把整个一个材料做成一个晶粒,也就是单晶,会是什么样子呢,人们发现单晶确实会有多晶非晶不同的性能,各向异性,谁都知道啊。当然还有其他的特性。所以很多人也在天天捣鼓着,弄些单晶来。现在不得不说准晶。准晶体的发现,是20世纪80年代晶体学研究中的一次突破。这是我们做电镜的人的功劳。1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无无平移周期性的合金相,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。后来,郭先生一看,哇,我们这里有很多这种东西啊,抓紧分析,马上写文章,那段金属固体原子像的APL,PRL多的不得了,基本上是这方面的内容。准晶因此也被D.Shechtman称为“中国像”。 斑竹也提到过孪晶,英文叫twinning,孪晶其实是金属塑性变形里的一个重要概念。孪生与滑移是两种基本的形变机制。从微观上看,晶体原子排列沿某一特定面镜像对称。那个面叫栾晶面。很多教科书有介绍。一般面心立方结构的金属材料,滑移系多,已发生滑移,但是特定条件下也有孪生。加上面心立方结构层错能高,不容易出现孪晶,曾经一段能够在面心立方里发现孪晶也可以发很好的文章。前两年,马恩就因为在铝里面发现了孪晶,发了篇Science呢。卢柯去年也因为在纳米铜里做出了很多孪晶,既提高了铜的强度,又保持了铜良好导电性(通常这是一对矛盾),也发了个Science.这年头Science很值钱啊。像一个穷山沟,除了个清华大学生一样。现在,从显微学上来看单晶,多晶,微晶,非晶,准晶,纳米晶,加上孪晶。单晶与多晶,一个晶粒就是单晶,多个晶粒就是多晶,没有晶粒就是非晶。单晶只有一套衍射斑点;多晶的话,取向不同会表现几套斑点,标定的时候,一套一套来,当然有可能有的斑点重合,通过多晶衍射的标定可以知道晶粒或者两相之间取向关系。如果晶粒太小,可能会出现多晶衍射环。非晶衍射是非晶衍射环,这个环均匀连续,与多晶衍射环有区别。纳米晶,微晶是从晶粒度大小角度来说的,在大一点的晶粒,叫粗晶的。在从衍射上看,一般很难作纳米晶的单晶衍射,因为最小物镜光栏选区还是太大。有做NBED的么,不知道这个可不可以。孪晶在衍射上的表现是很值得我们学习研究的,也最见标定衍射谱的功力,大家可以参照郭可信,叶恒强编的那本《电子衍射在材料科学中应用》第六章。准晶,一般晶体不会有五次对称,只有1,2,3,4,6次旋转对称(这个证明经常作为博士生入学考试题,呵呵)。所以看到衍射斑点是五次对称的,10对称的啊,其他什么的,可能就是准晶。

  • 投资10亿元!国产电镜新势力进军半导体量测设备,项目落地无锡

    [color=#000000]4月1日,总投资10亿元的惠然科技半导体量测设备总部项目正式签约落地滨湖。区委书记孙海东与惠然科技有限公司董事长杨仁贵一行会谈,惠然科技有限公司副总裁刘航等出席活动。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/41763465-44bb-437f-b306-afbb20cdc9eb.jpg[/img][/align][back=#c6d9f0][b][color=#000000]孙海东对项目的成功落地表示祝贺。[/color][/b][/back][color=#000000]他说,惠然科技有限公司技术储备雄厚、人才配备扎实,产品化经验丰富、科创实力强劲,自去年8月北京拜访接洽以来,双方合作密切、项目推进迅速。此次签约落地的半导体量测设备总部项目,让滨湖集成电路产业发展再添“生力军”,为滨湖乃至无锡深化集成电路产业链布局、健全集成电路产业“生态圈”注入新动能。希望双方能以此次签约为契机,深化交流、强化对接、紧密联动,推动合作走深走实,力促项目早建设、早投产、早见效。滨湖将一如既往不遗余力地做好项目支持、人才服务等各项保障工作,为公司发展创造最优环境。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/dae1230b-de70-4715-b325-00b1124ab5a8.jpg[/img][/align][back=#c6d9f0][b][color=#000000]杨仁贵感谢滨湖各级各部门对公司发展的大力支持。[/color][/b][/back][color=#000000]他说,滨湖产业基础深厚、人才资源优质,好山好水之间科创活力迸发,是一片干事创业的热土。惠然科技坚持自主研发、深耕半导体产业,与滨湖产业发展、周边市场需求契合度高。相信在滨湖各级政府的大力支持下,惠然科技能充分发挥自身科技、人才优势,不断夯实核心技术攻关能力,推动半导体相关设备产品国产化,助力无锡滨湖集成电路产业高质量发展。[/color][color=#000000]惠然科技有限公司是一家以电子光学技术为核心,专注于扫描电子显微镜及半导体量测设备研发、生产和销售的高新技术企业。此次签约落地的项目包含[b]公司总部、上市主体以及新设立的半导体量测设备研发生产基地[/b]。[/color][color=#000000]惠然科技自2016年成立以来,始终坚持技术主导创新,已经成为创新引领型企业,目前公司拥有国际化研发队伍规模百余人,并拥有许多自主知识产权。其中包括4项发明专利、15项实用新型专利、5项软件著作权,以及18项正在申请的发明专利等。2022年电子光学原型机验证成功,并于2023年7月顺利出机交付首代电镜产品FE-SEM整机“风”系列F6000;同年,与北京大学联合研发“聚焦离子束PFIB设备”。[/color][color=#000000]区别于逆向仿制和复制,惠然科技汇聚国内外专家及高级工程师,基于全自主正向研发,在科研和工业领域拥有丰富的工程化和产品化经验,具备根据应用需求差别进行定制化的核心能力,致力于打破科技封锁,期望努力成为电子光学领域科学仪器和工业级检测设备解决方案的领先企业![/color][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【资料】"眼科晶体及其种类

    什么是"眼科晶体及其种类?(一)PMMA人工晶体 人们眼球内有一个能把平行光线曲折的组织结构叫晶体(前述),而且它能随人们意志随时变动屈光能力,使你看远看近都清楚。这种能力叫调节。当白内障手术时,要把病变混浊不透明的晶体摘除,术后要补足这种屈光的损失,以前用眼镜代替,后来科学家们制造了一种按病人所需类型不同的人造晶体,英文称Intraocular Lens(缩写为IOL),意思是眼球内的一个透镜,我国早期翻译为人工晶体。人工晶体的材料主要是PMMA(聚丙基丙烯酸甲酯),是通称的有机玻璃。 50年来的使用,仍然被认为是最理想的,相容性好,几乎不降解。数十年于眼内仍然保持完好的形态、光洁度、透明性、分辨率。由于PMMA质地偏硬, 80年代制造IOL时袢的材料用聚丙烯制做,后来发现仍然不如PMMA稳定,同时人们想出办法对PMMA进行处理,改变了分子排列序列,也能变软而富有弹性,所以近来的人工晶体光学部和袢是不同处理的PMMA,光学部直径一般为5.0;5.5;6.0;6.5;7.0mm,祥长12一13.5mm。  (二)折叠式人工晶体 随着超声乳化手术的开展与普及,为了把人工晶体自很小切口植入,于1984年人们设计制造了可以折叠或卷曲的晶体,近十年来才得以应用并不断改进。现用可折叠式晶体的材料主要有:硅酮(Silicone)、水凝胶(Hydrogel)、丙烯酸(Acrylate)三种。这三种材料生物相容性都很好,光学部直径6.0mm,但可由3.2一4.0mm切口植入眼内。所以,植入折叠晶体者术后效果好。缺点是价格比普通晶体贵。  (三)多焦人工晶体 人工晶体植入后,由于无调节力,看远清楚看近不清楚(老花现象),反之看近清楚看远需要近视镜补足,这是美中不足。为了克服此缺陷,30年来,人们研制应用过多焦人工晶体,其中主要分为二种类型:1、多区多焦型,有二区、三区、四区等,即把人工晶体分为中心区,周围环状区,各部位屈光度不同,一般差2.5D,形成二个焦点,一个看近,一个看远。此类晶体的缺点是远近视力受瞳孔大小、环境光线强弱的影响;2、衍射多焦型,此种晶体是根据Huygens光的波性理论为基础,在人工晶体后表面上刻了30条深2um的小槽,克服了分区多焦晶体受瞳孔大小变动的影响。但是上述二种晶体的共同缺点是必需将进入眼内光线的能量分为二部分,用一半看近,一半看远,远近都不十分清楚,可使视敏度受一定影响。所以,在临床上只有少数医师和患者应用,未成为主流。  关于人工晶体植入的位置, Ride1y1949年的设计是后房型,因当时屈光力计算和预测所限及手术后巨大散光而陷入低谷。后来,人们试制并应用了前房型,虹膜面型及虹膜夹型,由于并发症多,效果差,80年代回到了当年的设想一一后房型。又经近几年改进,现在的人工晶体是囊袋内植入的后房型,即完全回到了“上帝”造人时给予的位置。 2。 隐形眼镜材料晶体类型 切口大小 特点 合资晶体 5.5mm PMMA材料,硬性不可折叠进口单片晶体 5.5mm PMMA材料,硬性不可折叠折叠晶体 2.8mm 灭烯酸酯,软性,可折叠,手术切口小,眼内固定良好.蓝光滤过晶体 2.8mm 可减少有害光线进入眼内,保护视网膜,可预防老年性黄斑变性 多焦点晶体 2.8mm 可提供远,中,近全程视力.减少验光,减少患者术后对眼镜的依赖 可调节晶体. 2.8mm 术后具有一定的调节预定力,达到调节看远看近的效果 有晶体眼屈光性晶体 保持了晶体的调节力预定, 对中高度近视预测性高.

  • DSC 测量晶体转化曲线没有变化?

    请问各位高人,我做DSC实验,0-600度,NaFO4晶体在400度左右晶体转化,XRD已经证明转化了,但是DSC结果是一条平线,DTA也是没有任何变化,我做了三次都一样,快疯了,谁能指点我一下,先谢谢了。

  • 量子隧穿效应“孵出”能效更高的隧穿晶体管

    有望解决目前芯片上晶体管生热过多的问题科技日报 2012年03月28日 星期三 本报讯(记者刘霞)据美国物理学家组织网3月27日(北京时间)报道,美国圣母大学和宾夕法尼亚州立大学的科学家们表示,他们借用量子隧穿效应,研制出了性能可与目前的晶体管相媲美的隧穿场效应晶体管(TFET)。最新技术有望解决目前芯片上晶体管生热过多的问题,在一块芯片上集成更多晶体管,从而提高电子设备的计算能力。 晶体管是电子设备的基本组成元件,在过去40年间,科学家们主要通过将更多晶体管集成到一块芯片上来提高电子设备的计算能力,但目前这条道路似乎已快走到尽头。业界认为,半导体工业正在快速接近晶体管小型化的物理极限。现代晶体管的主要问题是产生过多的热量。 最新研究表明,他们研制出的TFET性能可与目前的晶体管相媲美,而且能效也较以往有所提高,有望解决上述过热问题。 科学家们利用电子能“隧穿”过固体研制出了这种TFET。“隧穿”在人类层面犹如魔术,但在量子层面,它却是一种非常常见的行为。 圣母大学的电子工程学教授阿兰·肖宝夫解释道:“现今的晶体管就像一个拥有移动门的大坝,水流动的速度也就是电流的强度取决于门的高度。隧穿晶体管让我们拥有了一类新的门,电流能够流过而非翻过这道门,另外,我们也对门的厚度进行了调整以便能打开和关闭电流。” 宾州州立大学的电子工程系教授苏曼·达塔表示:“最新技术进展的关键在于,我们将用来建造半导体的材料正确地组合在一起。” 肖宝夫补充道,电子隧穿设备商业化的历史很长,量子力学隧穿的原理也已被用于数据存储设备中,借用最新技术,未来,一个USB闪存设备或许能拥有数十亿个TFET设备。 科学家们强调说,隧穿晶体管的另一个好处是,使用它们取代目前的晶体管技术并不需要对半导体工业进行很大的变革,现有的很多电路设计和电路制造基础设施都可以继续使用。 尽管TFET的能效与现有晶体管相比稍逊色,但是,去年12月宾州州立大学和今年3月圣母大学的科研团队发表的论文已经表明,隧穿晶体管在驱动电流方面已经取得了创纪录的进步,未来有望获得更大的进展。 达塔说:“如果我们在能效上取得更大成功,将是低能耗集成电路上的重大突破,这反过来会加大我们研制出能自我供能设备的可能性,自我供能设备同能量捕获设备结合在一起,有望使我们研制出更高效的健康检测设备、环境智能设备以及可移植医疗设备。” 总编辑圈点: 滚动的台球,碰到桌壁后总会反弹。而量子理论不排除“穿壁而过”的可能性——在基本粒子级的尺度下,“隧穿”的几率不能忽视。隧穿曾是晶体管电路设计者需要防范的现象,然而科学家最终利用它造出了新式晶体管。几年前就有计算机试用了这种新式硅片,它要求的电压更小,且在待机状态下不耗电。隧穿晶体管技术一旦投入商用,CPU的设计者就不必忧虑发热的老问题了。

  • 【网络会议】Bruker新一代小分子晶体学和蛋白质晶体学解决方案

    【会议讲座】Bruker新一代小分子晶体学和蛋白质晶体学解决方案:PHOTON II CPAD探测器和IμS 3.0光源【会议时间】2016年03月16日 14:00:00【主讲老师】张振义博士,Bruker AXS SCD单晶应用科学家,负责中国区的小分子晶体学和蛋白质晶体学的技术支持工作。在晶体学领域具有10年的研究经历,涵盖蛋白质晶体学,蛋白质和药物小分子复合物以及小分子晶体结构的研究。【会议简介】本次讲座将为您带来最新单晶衍射技术的精彩介绍,让您的工作变得更加得心应手,效率更高。布鲁克公司一直致力于在光源和探测技术上革命性的创新,在材料研究、晶体结构研究等领域给用户提供了一系列解决方案,引领者单晶衍射仪的潮流。最新推出新一代PHOTON II探测器,自动化程度更高,易学易用,在提升用户工作效率方面有着惊人的进步。该探测器使用了最前沿的用于四代同步辐射光源的CPAD(电荷积分像素阵列)技术,将实验室探测器的技术提升到了一个新的高度:最大的单片有效区域,最高的动态范围,单光子的检测效率。同时布鲁克公司推出新一代,光强度媲美转靶的微焦斑光源:IμS 3.0。这些新技术的应用将为您的晶体学的实验带来质的飞跃。【会议报名】http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1798-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名截止时间:2016年03月15日 13:303、报名及参会咨询:QQ群—171692483

  • 【分享】金属键和金属晶体结构理论!!

    一,金属键理论及其对金属通性的解释一切金属元素的单质,或多或少具有下述通性:有金属光泽,不透明,有良好的导热性与导电性,有延性和展性,熔点较高(除汞外在常温下都是晶体),等等.这些性质是金属晶体内部结构的外在表现.金属元素一般比较容易失去其价电子变为正离子,在金属单质中不可能有一部分原子变成负离子而形成离子键.由于X射线衍射法测定金属晶体结构的结果可知,其中每个金属原子与周围8到12个同等(或接近同等)距离的其它金属原子相紧邻,只有少数价电子的金属原子不可能形成8到12个共价键.金属晶体中的化学键应该属于别的键型.1916年 ,荷兰理论物理学家洛伦兹(Lorentz,H.A.1853-1928)提出金属"自由电子理论",可定性地阐明金属的一些特征性质.这个理论认为,在金属晶体中金属原子失去其价电子成为正离子,正离子如刚性球体排列在晶体中,电离下来的电子可在整个晶体范围内在正离子堆积的空隙中"自由"地运行,称为自由电子.正离子之间固然相互排斥,但可在晶体中自由运行的电子能吸引晶体中所有的正离子,把它们紧紧地"结合"在一起.这就是金属键的自由电子理论模型.根据上述模型可以看出金属键没有方向性和饱和性.这个模型可定性地解释金属的机械性能和其它通性.金属键是在一块晶体的整个范围内起作用的,因此要断开金属比较困难.但由于金属键没有方向性,原子排列方式简单,重复周期短(这是由于正离子堆积得很紧密),因此在两层正离子之间比较容易产生滑动,在滑动过程中自由电子的流动性能帮助克服势能障碍.滑动过程中,各层之间始终保持着金属键的作用,金属虽然发生了形变,但不至断裂.因此,金属一般有较好的延性,展性和可塑性. 由于自由电子几乎可以吸收所有波长的可见光,随即又发射出来,因而使金属具有通常所说的金属光泽.自由电子的这种吸光性能,使光线无法穿透金属.因此,金属一般是不透明的,除非是经特殊加工制成的极薄的箔片.关于金属的良好导电和导热性能,高中化学课本中已用自由电子模型作了解释.上面介绍的是最早提出的经典自由电子理论.1930年前后,由于将量子力学方法应用于研究金属的结构,这一理论已获得了广泛的发展.在金属的物理性质中有一种最有趣的性质是,包括碱金属在内的许多金属呈现出小量的顺磁性,这种顺磁性的大小近似地与温度无关.泡利曾在1927年对这一现象进行探讨,正是这一探讨开辟了现代金属电子理论的发展.它的基本概念是:在金属中存在着一组连续或部分连续的"自由"电子能级.在绝对零度时,电子(其数目为N个)通常成对地占据N/2个最稳定的能级.按照泡利不相容原理的要求,每一对电子的自旋方向是相反的 这样,在外加磁场中,这些电子的自旋磁矩就不能有效地取向.当温度比较高时,其中有一些配对的电子对被破坏了,电子对中的一个电子被提升到比较高的能级.未配对的电子的自旋磁矩能有效地取向,所以使金属具有顺磁性.(前一节中介绍价键理论的局限性时已指出,顺磁性物质一般是具有自旋未配对电子的物质.)未配对电子的数目随着温度的升高而增多 然而,每个未配对电子的自旋对顺磁磁化率的贡献是随着温度的升高而减小的.对这二种相反的效应进行定量讨论,解释了所观察到的顺磁性近似地与温度无关.索末菲与其他许多研究工作者,从1928年到30年代广泛地发展了金属的量子力学理论,建立起现代金属键和固体理论——能带理论,可以应用分子轨道理论去加以理解.(可参看大学《结构化学》教材有关部分)

  • 【分享】为什么晶体有熔点,而非晶体没有?

    构成物体的大量分子(含原子、离子和分子,下同)永不停息地运动着,分子运动越剧烈,分子的能量就越大,物体的内能就越大,宏观上就表现为温度越高。物体的内能除了包括分子运动的动能外,还包括分子间因存在的相互作用力而具有的势能。分子的运动和势能的总和就是物体的内能。 构成固体的分子,都有固定的平衡位置,但由于这些分子的排列方式不同,固体又可以分为晶体和非晶体两大类。如果组成固体的分子杂乱堆积,没有一定规则,这样的物质叫做非晶体,非晶体内部的分子是无规则的均匀排列。如果分子的排列有一定的规则,在三维空间里作周期性的排列,这样的物质叫晶体。 一般来说,当晶体从外界吸收热量时,其内部分子的平均动能增大,温度也开始升高,但仍保持有规则排列。继续吸热达到一定的温度(熔点)时,其分子运动的剧烈程度可以破坏其有规则的排列,于是晶体开始变成液体。在晶体从固体向液体的转化过程中,吸收的热量用来破坏晶体分子的有规则的排列。晶体熔化的过程就是破坏分子间的规则排列,增大分子间距离的过程,这个过程需要克服分子间的吸引力而做功,这就是晶体熔化之所以会吸收热量的原因。晶体熔化时吸收的热量是用来克服分子引力做功,晶体熔化时吸收的热量全部转化为分子的势能,分子的动能并没有改变,所以温度不变。当晶体完全熔化后,随着从外界吸收热量,温度又开始升高。 非晶体由于分子的排列不规则,吸收热量后不需要破坏分子的有规则排列,只用来提高平均动能,所以当从外界吸收热量时,非晶体的温度不断升高,并由硬变软,最后变成液体。 特殊情况:冰熔化的过程是破坏分子间的规则排列,减小分子间距离的过程,这个过程需要克服分子间的斥力而做功,熔化时吸收的热量全部转化为分子的势能,使分子间的势能增大,分子的动能并没有改变,所以温度也保持不变。除冰外,还有灰铸铁等也属于这种情况。

  • 【资料】晶体的类型与性质

    一、一周知识概述(一)、所讲内容及目的  1、晶体的类型  2、离子晶体、分子晶体、原子晶体的性质及模型  3、氢键  4、金属晶体的结构和性质(二)、与前后周的衔接关系  本单元内容是在原子结构和元素周期律以及化学键知识的基础上介绍的,理论性较强,比较抽象,所以配了很多插图,便于理解,并能提高兴趣。重点要掌握四类晶体的概念,晶体类型与性质的关系。二、重点知识归纳及理解(一)、晶体的类型1、晶体:具有一定的几何形状,其构成粒子按某种规律排列,占有一定空间的纯净物。 (二)、离子晶体、分子晶体、原子晶体、金属晶体1、概念(1)离子晶体:阴阳离子间通过离子键结合而成的晶体。(2)分子晶体:分子间以分子间作用力相结合的晶体。(3)原子晶体:相邻原子间以共价键相结合而形成空间网状结构的晶体。(4)金属晶体:通过金属阴离子与自由电子之间的较强作用形成的单质晶体。2、四种类型晶体的比较(三)、四种晶体结构模型1、离子晶体NaCl和CsCl晶体结构特征(1)在NaCl晶体中,每个Na+同时吸引着6个Cl-,每个Cl-也同时吸引着6个Na+。故Na+、Cl-个数比为1:1,在整个晶体中不存在单个的NaCl分子。NaCl不是表示分子组成的分子式,只是表示晶体内离子个数比的化学式。(2)CsCl晶体中,每个Cs+同时吸引着8个Cl-。每个Cl-也同时吸引着8个Cs+。故而CsCl是只表示离子个数比的化学式。2、CO2分子晶体结构模型  在CO2晶体结构中,每个质点都是一个小分子,该晶体为立方体结构。每个立方体顶点上都有一个CO2分子。在立方体的六个面心也有一个CO2分子存在。每个CO2分子与12个CO2分子相邻。 3、金刚石晶体结构模型  在金刚石晶体中,每个碳原子都以共价键与相邻的4个碳原子结合四面体结构。六个碳原子形成一个六元环,每个碳原子又被12个环共用。这些正四面体(或六元环),向三维空间延伸得到立体网状晶体。4、金属共同物理性质的解释(1)金属晶体具有金属光泽和颜色:这是由于自由电子能对可见光进行选择性吸收和反射从而使金属晶体具有不同的颜色和光泽。(2)金属的导电性、导热性  导电性:由于自由电子在外加电场的作用下产生定向移动形成电流。故金属容易导电。  导热性:自由电子在运动时与金属离子相互碰撞,在碰撞过程中发生能量交换,使整块金属达到同样的温度。(3)金属的延展性:当金属受到外力时,晶体中的各原子层就会发生相对滑动,由于金属离子与自由电子之间的相互作用没有方向性,受到外力后相互作用没有被破坏,故金属只发生形变而不断裂。使金属具有良好的延展性。三、难点知识剖析(一)、晶体溶沸点高低比较(1)异类晶体分子晶体。  一般情况下:原子晶体(熔沸点)>离子晶体>分子晶体。  例如:SiO2>NaCl>CO2(2)同类晶体  原子晶体共价键键能→键长→原子半径(3)组成和结构相似的分子,分子间作用力随相对分子质量增大而增大。晶体的熔沸点升高。例如:F2<Cl2<Br2<I2,CO2<CS2。(4)分子间形成氢键时,分子间作用力增大熔沸点反常偏高。例如:H2O>H2Te>H2Se>H2S。(5)一般情况下(同类型的金属晶体),金属晶体的熔点由金属阳离子半径、所带的电荷数、自由电子的多少而定。阳离子半径越小,所带的电荷越多,自由电子越多,相互作用就越大,熔点就会相应升高。例如:熔点K<Na<Mg<Al,Li>Na>K>Rb>Cs。(二)、氢键(1)形成条件:原子半径较小,非金属性很强的原子x(N、O、F)与H原子形成极强性共价键,与另一个分子中的原子半径较小,非金属很强的原子y(N、O、F),在分子间H与y产生较强的静电吸引,形成氢键。(2)表示方法:x-H…y-H(x,y可相同或不同,一般为N、O、F)。(3)氢键能级:比化学键弱很多,但比分子间作用力稍强。(4)氢键作用:使物质有较高的熔沸点(例:HF、H2O、NH3等);使物质易溶于水(例:NH3、C2H5OH、CH3COOH等);解释一些反常现象(例:水结冰体积膨胀、水和乙醇的恒沸混合物等)。 [img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102390_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102392_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102394_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102396_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102397_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102398_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102399_1605343_3.gif[/img]

  • 电化学石英晶体微天平应用研究和背景扣除

    电化学石英晶体微天平应用研究和背景扣除摘 要 基于用循环伏安法研究非理想可逆体系时,电极本身的氧化峰电量与还原峰电量存在一比值。据此建立了一种用于电化学石英晶体微天平应用研究的背景扣除新方法。用这种方法研究了腺嘌呤、腺苷、腺苷一磷酸在金电极上的电化学氧化行为。结果表明: 3种活性分子均能在1. 2 V左右氧化,对应的氧化电流大小顺序为:腺嘌呤腺苷腺苷一磷酸,氧化过程的电子转移数为6。关键词 电化学石英晶体微天平, 循环伏安法, 腺嘌呤, 腺苷, 腺苷一磷酸[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15840]电化学石英晶体微天平应用研究和背景扣除[/url]

  • 测量包裹在玻璃中晶体的拉曼光谱

    测量包裹在玻璃中的晶体是一定要用有暗场的显微共焦拉曼光谱仪吗?我查到的资料是暗场用来观察样品,当测量拉曼光谱是还是要用普通的objectives。因为经费有限,有没有可能只用明场显微镜找到样品?谢谢大家的建议

  • 【求助】晶体和玻璃的色散曲线

    想要找到一些晶体和玻璃的色散曲线,包括有机玻璃,透明树脂等有机高聚物,或者在不同波长下的折射率数据也行。在哪里有呢?多谢了!

  • 【求助】晶体和玻璃的色散曲线

    想要找到一些晶体和玻璃的色散曲线,包括有机玻璃,透明树枝等有机高聚物,或者在不同波长下的折射率数据也行。在哪里有呢?多谢了!

  • 【求助】请教有关晶体择优取向的问题

    我做了单质铜的xrd,结果表明(111)面与(200)面的强度之比为3,远高于pdf卡片的值2.04,我是否可以根据这一结果认为产物中{111}面的比例很高?如何据此来判断晶体生长的取向呢?因为我得到的产物是尺寸较大(约有800-1000nm粗)的一维结构,做电子衍射打不透,无法通过电子衍射花样来判断取向,所以只好寄希望于xrd了。我是新手,刚刚接触材料这一行,可能这个问题很菜,还请大家不要见笑,谢谢!

  • 【求助】有关X光谱仪中的分光晶体

    老师给了我一个课题是生长大尺寸的PET晶体一直不知道这个PET是做什么的后来才知道是用在X射线光谱仪中的色散元件,称为分光晶体请问大侠们对分光晶体的了解多少啊

  • 【分享】F我国晶体缺陷研究的先驱者之一——冯端 物理学家

    我国晶体缺陷研究的先驱者之一——冯端 物理学家1923年6月11日生于江苏苏州,原籍浙江绍兴。1946年中央大学物理系毕业后留校任物理系助教。1949年起历任南京大学物理系助教、讲师、副教授,1978年任教授。1984-1988年任南京大学研究生院院长,1986-1995年任固体微结构物理国家重点实验室主任,兼学术委员会主任迄今。1991-1995年任中国物理学会理事长,1992-1996年任国家科委攀登计划项目“纳米材料科学”首席科学家,1980年当选为中国科学院院士(学部委员)1993年当选为第三世界科学院院士。冯端在凝聚态物理领域特别是晶体缺陷研究方面做了大量开拓性的工作,澄清了金属和氧化物晶体中缺陷的组态和起源,开辟了非线性光学晶体微结构化新领域,首次观测到铁电相变中的微畴结构和铌酸锂晶体非公度相变中公席错的结构及其演变。他为推动中国凝聚态物理 的研究和发展起到了重要作用。冯端为国家培养了一批德才兼备的当术带头人,在创建并领导南京大不固体微结构物理国家 重点实验室方面取得了令人称道的成绩。冯端60年代初即选择体心立方结构的难熔金属为突破口,采用浮区区熔法显示位错的技术,澄清了体心立方金属中位错的类型及其组态等问题。1978年后,又以在激光技术中获得重要应用的复杂氧化物单晶体为对象,采用多种实验手段,如浸蚀法、应力双折射貌相术、X射线貌相术、电子显微镜衍衬像及高分辨率像等观测技术,对这些晶体中的位错、畴界、生长条纹、生长区界面、包裹体等缺陷的类型、分布进行研究,并追溯其生长和相变中的起源和 探索其可能的物理效应。基于对铌酸锂等晶体铁电畴深入研究,掌握了制备具有周期性畴结构的晶体生长技术,于1980年与合作才一起制备了周期为微米量级的聚片多畴铌酸锂晶体,在实验上首次全面验证了诺贝尔奖得主布鲁姆伯根(N.Bloembergen)关于非线性光学的准位相匹配理论,实现了铌酸锂晶体的倍频增强效应,从而在国际上领先开拓了非线性光学晶体微结构化这一新领域。随后,又在不能位相匹配的钽酸锂晶体中实现了准位相匹配,并研究了周期畴结构的形成机制。1996年4月中美“用于非线性光学及相关领域的微结构晶体”学术会议在南京召开,表明国际上已承认他的领先工作。冯端还研究了晶体缺陷在结构相变中的作用,首次观测到铁电相变中的微畴结构和铌酸锂晶体非公度相变中公度错的结构及其演变;并用X射线貌相术及同步辐射貌相术阐明畴界的成像规律及追踪其在铁电和铁弹相变中的行为。他倡导了金属超晶格的研究,特别是在周期金属超格中取得了具有独创性的成果。近年来,他领导了有关纳米材料科学的研究工作,在金 属的磁性和半导体的光学性质方面,取得不少具有独创性的成果。这些科研成果使冯端获得多次国家奖励,其中包括1982年国家自然科学奖二等奖(排名第一),1995年国家自然科学奖三等奖(排名第五)及1996年何梁何利科技进步奖(物理)。

  • 【求助】晶体和玻璃的色散曲线

    想要找到一些晶体和玻璃的色散曲线,包括有机玻璃,透明树枝等有机高聚物,或者在不同波长下的折射率数据也行。在哪里有呢?多谢了!

  • 非晶体物象分析

    X射线衍射仪能检测出非晶体的物象吗,和检测晶体物象的流程有什么区别,如果能测试出图谱分析检测后的图谱与晶体检测后的图谱分析有何区别?三轴欧拉样品台360°旋转能任意旋转角度吗?

  • 动态水分吸附仪在晶体潮解性质研究中的应用

    近期读到一篇关于晶体潮解动力学的研究论文,采用动态水分吸附仪对于潮解点的判定和潮解动力学的研究分析非常深入。最近对这一课题很感兴趣,希望做类似研究的各位多多讨论。文章摘要如下:晶体材料及其混合物的潮解动力学传热模型Heat transport model for the deliquescence kinetics of crystalline ingredients and mixturesNa Li a, Lynne S. Taylor b, Lisa J. Mauer a, *a Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United Statesb Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States关键词:吸附速率,晶体材料,潮解,传热Key words: Sorption rate, crystalline ingredients, deliquescence, heat transport 摘要:当环境的相对湿度超过潮解点RH0时,易潮解的晶体发生一级溶解过程。对于压片易潮解材料,潮解的速率随着RH超出RH0差值的增加而加速;但是,迄今还没有关于晶体食物材料粉末的潮解动力学模型被发表。本文采用一种多样品重量法水分吸附仪SPSx测定了常见的粉末食品材料(如柠檬酸、氯化钠、蔗糖、果糖、山梨糖醇和木糖醇)及其混合物的水分吸附速率。水蒸气的吸附速率与样品的直径、温度和组成有关。实验证明样品压片的潮解传热模型能够成功的应用于粉末材料和其混合物,其实验结果进一步的论证了潮解的理论基础,为在可控的恒湿箱内预测潮解过程中的水分吸附速率提供了有力的工具。Abstract:Deliquescent crystalline solids undergo the first order dissolution process of deliquescence when the environmental relative humidity (RH) exceeds the deliquescence point (RH0). The rate at which deliquescence occurs increases as the RH increases above the RH0 in compressed disks of select deliquescent ingredients; however, a kinetic model for the deliquescence of powdered crystalline food ingredients and blends thereof has not been published. The water vapor sorption rates of commonly used powder food ingredients (citric acid, sodium chloride, sucrose, fructose, sorbitol, and xylitol) and blends were determined using a multi-sample gravimetric moisture sorption analyzer. The water vapor sorption rate was dependent on sample radius, temperature, and sample composition. The heat transport model for the deliquescence of compressed disks was successfully extended to the powder ingredients and blends. Such results enable further understanding of fundamental theories of deliquescence and provide a useful tool in the prediction of water vapor uptake rate during deliquescence in controlled RH chambers.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制