当前位置: 仪器信息网 > 行业主题 > >

真空测量

仪器信息网真空测量专题为您提供2024年最新真空测量价格报价、厂家品牌的相关信息, 包括真空测量参数、型号等,不管是国产,还是进口品牌的真空测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合真空测量相关的耗材配件、试剂标物,还有真空测量相关的最新资讯、资料,以及真空测量相关的解决方案。

真空测量相关的论坛

  • 真空测量要考虑的问题

    在真空测量实践中,要用真空规比较精确地去测量被研究的稀薄气体压力,以达到预期的目的,必须考虑下列三个问题:    ①先要对被研究的对象有一般性的了解:    a.是非可凝的气体还是可凝的蒸气?是单一气体还是混合气体?是惰性气体还是活泼性气体或腐蚀性气体?    b.气流状态是稳态还是瞬态?是均匀气流还是非均匀气流?    c.所处的温度是等温还是不等温?是高温还是低温?    d.有无磁场、电场、振动、冲击、加速度、带电粒子、辐射等特殊条件?    ②根据研究对象的情况和研究的目的,正确选用真空规,并需对所选用的真空规有较深入的了解,即了解其原理、量程、特殊和局限性,以便正确地使用它。    ③要研究真空规与被测对象之间的相互作用。规的引入可能会使被测对象的原来状态发生畸变,同时被测对象也可能改变规的性能、干扰规的正常工作。    由此可知,要比较精确地进行真空测量,仅仅孤立地去研究真空规还是很不够的,必须全面地研究与上述三个方面问题有关的测量技术。

  • 彻底讲清如何在真空系统中实现压力和真空度的准确测量和控制

    彻底讲清如何在真空系统中实现压力和真空度的准确测量和控制

    [color=#cc0000]摘要:本文详细介绍了真空系统中压力和真空度测量和控制的基本概念已经常用的技术指标,详细介绍了模/数转换精度应压力和真空度测量分辨率的匹配,介绍了采用不同量程电容压力计进行真空度控制的最小建议范围。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#cc0000]1. 问题的提出[/color][/size]  在各种真空工艺和测试系统的真空容器中,容器内部的气体压力或真空度的准确测量控制对于保证产品品质和仪器测量精度至关重要。由此在气压或真空度控制过程中,需要根据容器内的真空度稳定性要求来确定控制方式和真空度采集精度,据此来选择合理的控制仪表,因此需要充分理解与真空度相关的基本概念,并深入了解压力和真空的测量方式以及控制器的特性和局限性。[color=#cc0000][size=18px]2. 真空和压力的度量[/size]2.1. 真空和压力的各种度量单位[/color]  在各种真空和压力测量系统中,需要清晰的了解不同压力指标的含义。  通常用于真空测量的度量单位是托(Torr),等于1mmHg,它表示将汞的沉没柱高度提高1.0mm所需的大气压力,一个标准大气压力等于760Torr。在一些真空系统的真空测量中使用Torr的衍生单位毫托或1/1000Torr。大于1.0毫托的真空度通常用科学计数法表示(例如5.0E-06 Torr),在欧洲和亚洲常用的真空系统中的真空和气象测量通常将条形图分为1/1000,以产生毫巴(mbar)。  在美国常用的压力度量标准是psi或“磅/平方英寸”,使用此度量标准,海平面上的大气压力测量值为14.69psi。为了进行比较,欧洲和亚洲的压力测量将大气压力定义为1.0bar。另一个指标是“水的英寸高度”,该指标通常用于报告美国天气预报中的气压,单位是指由大气压支撑的水下水柱的高度。使用此度量标准,大气压为406.8英寸水柱(在4°C时),有时此度量单位用于工业过程中的真空测量。  压力的国际单位制量度为Pascal(缩写为Pa),以法国数学家和物理学家Blaise Pascal命名,它被定义为单位面积上的力的度量,等于每平方米一牛顿。SI单位的大气压为1.01325E+05 Pa。有些气压测量通常也会以千帕斯卡(kPa)为单位进行报告。表2-1列出了最常见的压力表和真空表。[align=center][color=#cc0000]表2-1 压力和真空的度量[/color][/align][align=center][img=,690,302]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131045122503_3567_3384_3.png!w690x302.jpg[/img][/align][color=#ff0000]2.2. 压力和真空传感器[/color]  压力和真空的测量一般采用传感器,这些传感器所组成的压力表和真空表根据测量原理的不同分为多种形式,这些仪表的主要类型包括:  (1)机械规:这类仪表使用某种形式的机械联动装置或膜片装置,无需任何电子器件,仅依靠机械式的移动来指示压力或真空度。因为无需带电运行,所以这类仪表常用于压力和真空系统的安全性指示,即使在系统断电情况下也能大致了解腔体内的情况。  (2)热导规:通常称为皮拉尼、热偶和对流表,其作用原理是气体的导热系数随压力而变化,电热丝是平衡电子电路中的传感元件。由于热丝的热损失率随气体的导热系数而变化,因此也会随着腔体内气体压力和真空度而发生改变,这种变化要求改变电路的电气特性之一(电流、电压或功率)以保持电路平衡。  (3)应变规:这是一类基于应变的压力测量仪表,常用于正压测量。它们采用了一个薄隔膜,其背面装有应变感应电子电路。压力的变化会引起膜片偏转,从而产生应变,该应变被传感器检测到。  (4)电容规:常用于压力/真空测量,它们依赖于隔膜和通电电极之间电容的变化。  (5)柱规:它们使用液体,其在封闭柱中的高度会随压力而变化。  (6)电离规:取决于周围气体分子的电离和相应离子电流的测量。离子电流与腔室内的真空压力直接相关。  表2-2显示了不同类型的压力/真空表的比较,从中可以看出没有一类仪表可以满足每个过程中的所有测量要求。[align=center][color=#cc0000]表2-2 主要类型压力表的性能比较[/color][/align][align=center][color=#cc0000][img=,690,167]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131045550873_8034_3384_3.png!w690x167.jpg[/img][/color][/align][color=#cc0000][/color][align=center][/align][size=18px][color=#cc0000]3. 压力和真空仪表常用技术指标[/color][/size]  与其他物理量测量中存在的现象类似,很多用户对如何评价压力和真空仪表存在模糊的概念,因此这里简要说明压力和真空仪表的常用技术指标。  (1)参考标准:一种非常准确的压力或真空测量仪器,用于校准其他此类仪器。  (2)精确度:压力或真空仪表和用于校准的参考标准之间的绝对测量差。常用是以读数的百分比或满量程的百分比为单位来表达。  (3)线性度:与大多数其他传感器类似,压力和真空仪表(无论是数字还是模拟形式)都以设计为线性化输出作为达到理想状况的标准。线性度是衡量电子设备完成这项任务的程度——通常指定为满量程的百分比。  (4)重复性:衡量压力和真空仪表在多个不同过程运行期间,在相同压力下能达到相同输出的接近程度。一些仪表制造商在技术指标中包括了重复性,但并非全部都如此。如果没有特别注明,用户应要求供应商提高该指标。  (5)分辨率:压力和真空仪表可以实际测量的最小压力和真空度。如果仪表是模拟信号输出的型号,并且需要数字输入,则几乎总是需要高分辨率的模/数转换(至少14位),否则A/D分辨率将决定压力和真空测量的分辨率,而不是压力计和真空计的分辨率。  (6)零位和零位偏移:零位是指将压力计的输出调整为在(a)系统中可获得的最低压力或(b)低于电容式压力计分辨率的压力下读取零时发生的情况。经过一段使用时间后,零位置可能会发生变化,从而改变压力表的位置并在压力计的整体输出中产生偏移,因此必须除去这种偏移以获得可接受的精度。如果系统达到的基本压力低于压力计的分辨率,则可以将压力计的输出调整为最小输出。但是,如果最小系统压力高于压力计的分辨率,则必须使用永久零偏移量来确定正确的系统压力。零偏移或零漂移的存在并不总是表明设备需要重新校准,因为零位置的变化仅很少影响实际的压力计校准。  从表2-2可以看出,电容式压力/真空计的测量准确性最高,因此电容式真空计通常作为其他类型压力计的参考设备(即用来校准其他产品)。如对于无加热功能的的1000Torr电容压力计的准确度指标(包括重复性)约为读数的0.25%,相比之下,相同量程的皮拉尼或热偶压力计的读数精度为5~25%,电容式真空计的准确度是它们的100倍。[size=18px][color=#cc0000]4. 高精度压力和真空度控制的实现[/color][/size]  对于与真空相关的各种系统中,在指定的压力和真空度区间内进行精确测量和控制至关重要。例如,如果过程设定值介于5.0~6.0mTorr之间,并且所需的压力读数精度为0.5mTorr,则所需的测量精度为读数的10%,或者,对于100mTorr的电容压力计,为满量程的0.5%。如果选定的压力计或真空计不能达到这一精度水平,则无法将真空过程控制在所需的过程区间内。  用作闭环压力和真空度控制的压力计或真空计输入信号必须具有足够的分辨率,以辨别过程中非常小的压力变化。同时,回路中的压力和真空度控制器和控制阀也必须具有必要的分辨率,以便有效地利用这些数据来控制压力的微小变化。很多用户往往只重视了压力或真空计的选择和相应的技术指标,而忽视了控制器以及控制阀的分辨率指标,这基本是造成控制精度达不到要求或波动度较大的主要原因。[color=#cc0000]4.1. 压力计和真空计的选择[/color]  选择压力计和真空计的第一个考虑因素是满量程压力和真空度范围。为了获得良好的测量精度,真空计范围应与待测量的预期压力或真空范围相匹配。理想情况下,压力计范围应包含最高预期压力,这将最大化输出信号(模拟)并提高信噪比。如考虑在5mTorr和80mTorr之间操作的真空过程,该过程的最佳压力计(如电容压力计)的满量程范围为100mTorr。如果采用电容压力计,则该传感器在最小预期压力下的模拟输出为满量程的5%,在低压下提供良好的精度和高信噪比,同时保持足够的范围来测量高系统压力。虽然满量程为1Torr的电容压力计也适用于这种应用,但在5mTorr时的模拟输出将减少10倍,信号强度的这种变化将大大降低信噪比,降低读数精度。  许多商品化的压力计将其输出作为模拟信号发送给主机、过程控制器或数据记录设备,输出信号有多种形式,如0~10V直流电、0~5V直流电、0~1V直流电和4~20mA是最常见形式。在大多数格式中,输出与压力成线性关系,使得压力计的输出易于在软件中缩放。[color=#cc0000]4.2. 压力计和真空计信号的输出和采集[/color]  各种测量原理的压力计和真空计,其信号输出一般为模拟量,大多为连续的直流电压信号。为了将这些模拟信号直接以数字信号输出,或在控制过程中用控制器和数据记录仪采集这些模拟信号,都需要根据要求对这些模拟信号有足够高的采集精度,也就是说目标压力信号的模拟/数字(A/D)转换必须具有足够的分辨率,以将信号与压力计的正常背景噪声区分开来。例如,压力计信号的12位模数转换将区分压力计满量程模拟输出0.02%的最小信号。对于1Torr全刻度压力计,这意味着不能检测到小于0.2mTorr的压力或压力变化。在假设压力计和真空计的模拟输出为0~10V直流时,表4-1显示了各种压力计的最小可分辨压力与模数转换精度的关系。[align=center][color=#cc0000]表4-1 常见(A/D)模数分辨率下的最小可分辨压力(满量程测量范围为0~10V直流)[/color][/align][align=center][img=,690,309]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131047065875_9748_3384_3.png!w690x309.jpg[/img][/align]  从上表可以看出,将压力计输出和所需过程测量精度与主机、数据记录器或控制器的分辨率相匹配非常重要。例如,如果过程在满量程范围的1.0%下运行,压力计的满量程输出为10.000V直流信号,主机必须能够可靠地辨别100mV模拟信号。因此,A/D数据采集系统需要至少12位分辨率才能在其大部分测量范围内使用压力计。更高位的分辨率允许在最低压力下提高压力计测量的分辨率。表4-1显示了不同A/D分辨率下的最小可分辨模拟信号。上海依阳实业有限公司的压力和真空度控制器都提供至少16位的模数转换,能够解析低至0.4mV的信号,也可以根据需要提供更高位数的模式转换及相应的控制器。[color=#cc0000]4.3. 压力和真空度的闭环控制[/color]  在微小变化的压力和真空度闭环工作过程中,需要将压力计的量程选择至少要限制少整整十倍。如考虑在5mTorr下使用压力计控制过程的情况,100mTorr满量程压力计是可以使用的最大压力范围。事实上,较低的满量程范围设备将是一个更好的选择,因为它们提供更高的输出信号,更容易检测和解决,这将提高压力控制的精度。表4-2给出了一些常见电容压力计真空范围的最小建议控制压力。[align=center][color=#cc0000]表4-2 满量程压力计范围的最低控制压力[/color][/align][align=center][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131047445188_687_3384_3.png!w690x230.jpg[/img][/align][size=18px][color=#cc0000]5. 结论[/color][/size]  压力计和真空计是许多工艺过程和测试系统应用中压力/真空测量的常用传感器,为了在准确性和精确性方面实现最大性能,必须考虑并正确选择压力计特性。这些包括压力计固有的电子特性,如量程和灵敏度。另外,使用这些压力计信号的任何系统,必须匹配合理的模/数(A/D)测量精度。当然,一般而言,模数精度越高,造价越高,体积越大。[align=center]=======================================================================[/align]

  • 【原创】真空系统的组成及各种真空泵的工作原理

    [size=3][font=SimSun]在真空实用技术中,真空的获得和测量是两个最重要的方面,在一个真空系统中,真空获得的设备和测量仪器是必不可少的。目前常用的真空获得设备主要有[/font][u][color=red][font=SimSun]旋片式机械真空泵、油扩散泵、涡轮分子泵、离子溅射泵、升华泵等[/font][/color][/u][font=SimSun]。真空测量仪器主要有[/font][font=Times New Roman]U[/font][font=SimSun]型真空计、热传导真空计、电离真空计等。随着电子技术和计算机技术的发展,各种真空获得设备向高抽速、高极限真空、无污染方向发展。各种真空测量设备与微型计算机相结合,具有数字显示、数据打印、自动监控和自动切换量程等功能。本附件详细地介绍了上述内容,欢迎各位下载,交流。[/font][/size]

  • 【原创大赛】真空冷冻干燥机概念和测量单位

    (一)真空冷冻干燥机的真空概念 绝对真空是指完全没有气体的空间的状态,但实际上这种空间是不存在的。 我们一般说的真空冷冻干燥机的真空是指一定的空间内,大气压力低于气体状态,也就说该空间内气体分子数的密度低于该地区大气压的气体分子数密度。 不同的真空状态,就是空间具有不同的分子数密度,例如在标准状态(STP:即0度时,101325Pa)气体的分子数密度为2.6870*10/25m/-3,而在真空密度为1*10/-4Pa时,气体的分子数密度只有2.65*10/16m/-3(二)真空冷冻干燥机真空测量单位 在真空冷冻干燥机技术中常用真空度来度量真空状态下空间气体的稀薄程度。通常真空度用气体的压力值来表示,压力值越高真空度越低;压力值越低,真空度越高。 常用的压力单位有(1)帕斯卡:国际单位中的压力单位,我国法定压力单位。1Pa压力就是1平方米面积上作用1N的力即 1Pa=1N/m2(2)微巴:1微巴的压力就是1cm2面积上作用1dyn的力即 1微巴=1dyn/cm2(3)标准大气压:1927年在第七次国际计量大会上,给标准大气压下了定义,即在重力加速度为980.665cm/s2,水银温度为0度,水银密度为13.5915g/cm3的条件下,760mm的高的汞柱产生的压力称为1atm即1atm=760mmHg=1013250dyn/cm2这种标准大气压依赖汞的密度的测量精度,是不够严格的。所以1954年在第十次国际计量大会又重新定义了标准大气压,即1atm=1013250dyn/cm2=101325Pa

  • 谈谈薄膜真空计(3)

    谈谈薄膜真空计(3)

    http://ng1.17img.cn/bbsfiles/images/2011/10/201110211922_325615_1608408_3.jpg学习和引进国外先进核心技术,,根据我国真空设备配套测控仪表的特点,研制出的陶瓷薄膜真空计,其测量精度和稳定性已经完全可以与进口产品相媲美了。根据国内设备的习惯,控制柜上数字面板表,还是经常使用的,采用专门设计的具有真空测控特点的精密二次仪器仪表,借籍于现代智能仪表技术的科技成果,有利于提供测量的精度、分辨率、稳定性和可靠性,增加智能化的自动控制功能,(可以配接任何一种模拟量、数字量的接口,比进口的薄膜真空计更灵活、更方便)实践证明,陶瓷薄膜真空计使用到真空冷冻干燥机、真空单晶炉、气氛真空炉、真空精馏设备、真空镀膜机等设备,做真空测量和自动控制,带来极大地方便和性能提高,可以快速升级为智能型的真空应用设备。当然,也可以用到实验室、计量室作为相应的真空段的0.1级标准器,陶瓷芯片的优异性能使其年稳定度达到0.1%以上。

  • 真空封装器件漏率和内部真空度的非接触测量方法

    真空封装器件漏率和内部真空度的非接触测量方法

    [size=16px][color=#339999][b]摘要:大量MEMS真空密封件具有小体积、高真空和无外接通气接口的特点,现有的各种检漏技术无法对其进行无损形式的漏率和内部真空度测量。基于压差法和高真空度恒定控制技术,本文提出了解决方案。方案的具体内容是将被测封装器件放置在一个比器件内部真空度更高的真空腔体内,采用电动可变泄漏阀和控制器自动调节微小进气流量进行高真空度控制,由此在被测器件内外建立恒定压差,通过测量此压差下的漏率可得到器件内部真空度。[/b][/color][/size][align=center][size=16px][color=#339999][b]=========================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 真空密封器件通常需要在特定的真空度下才能正常工作,即需要高真空度和长时间的真空保持度。例如杜瓦组件作为广泛使用的绝热容器在制冷、 红外探测以及超导中都有应用,而杜瓦的绝热效果与其夹层真空度直接相关。有机发光二极管对水蒸气和氧气含量特别敏感,工作时需要真空条件,含量超标的水蒸气和氧会严重影响其寿命和稳定性。高精度的MEMS惯性器件如MEMS陀螺仪、MEMS谐振式加速度计等需要工作在高真空环境中,其内部真空度的好坏决定其品质因数的大小。由此可见,为了保证真空密封器件的密封性能,需要对漏率和真空度的变化进行测试评价,但由于存在以下几方面的原因,使得这种评价技术成为目前迫切需要解决的难题:[/size][size=16px] (1)对于大多数真空密封器件而言,其几何尺寸一般很小,且不能配置真空度和漏率测量接口,这导致了很多现有真空测量领域的传感器和仪器都无法直接使用。[/size][size=16px] (2)对于个别真空封装器件,可通过在外部形成高压将示踪气体(如氦气)加载到真空封装器件内,然后再在外部抽真空条件下采用检漏仪测量真空封装器件的漏率。但这种方法往往会破坏真空封装器件内部的真空度,且不可逆转,可能会造成真空封装器件性能的降低。[/size][size=16px] (3)直接在真空密封器件内集成真空度传感器不失为一种有效手段,如集成如皮拉尼计和音叉石英晶振等,国内外的各种研究也曾在这方面做过努力,但由于所集成传感器自身特性(如结构形状、尺寸、真空度测量范围和精度等)以及所带来附加影响,使得这种技术仅勉强适用于个别真空密封器件,根本无法作为一种通用技术得以应用。[/size][size=16px] 为了解决目前真空封装器件存在的检漏问题,特别是实现对真空封装器件内部真空度的测量,本文基于压差法提出了一种间接测量的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 对于内部具有一定真空度的真空封装器件,其漏率和内部真空度的测量将基于压差法。具体是即将被测真空封装器件放置在一个要比器件内部真空度更高的密闭腔体内,由此在封装器件内外形成压差。通过测量获得此压差下的漏率,然后再通过漏率计算出器件内部真空度。[/size][size=16px] 依据解决方案设计的真空封装器件漏率和真空度测量装置结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=真空密封器件漏率和真空度测试系统结构示意图,690,253]https://ng1.17img.cn/bbsfiles/images/2023/09/202309041023569886_4228_3221506_3.jpg!w690x253.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 真空密封器件漏率和真空度测试系统结构示意图[/b][/color][/size][/align][size=16px] 依据检漏中的压差法原理,漏率的测量结果与压差(P1-P0)呈线性关系。因此,如图1所示,只要精确控制密闭腔体内的真空度P1,在测量得到漏率后,就可以计算出真空封装器件内部的真空度。由此可见,测试真空密封器件漏率和真空度需要解决以下两个关键问题:[/size][size=16px] (1)腔体真空度P1的精确控制:对于具有高真空(如P01E-03Pa)的封装器件,腔体真空度需要达到P11E-03Pa的更高真空度,以形成尽可能大的压差,这就要求对超高真空度能实现准确控制,控制精度越高则计算得到器件内部真空度的精度越高。[/size][size=16px] (2)漏率测量:漏率测量也是决定精度的关键因素,具体实施时可以采用各种高灵敏度的漏率测量方法,如氦质谱检漏仪。为了实现定量和高精度的漏率测量,也可以采用特殊设计的漏率测试系统,但这部分内容不在本文阐述的内容之内。[/size][size=16px] 本文的重点是介绍解决方案中的超高真空度精密控制技术。如图1所示,超高真空度的控制采用调节进气流量来实现,具体采用了VLV2023型号的电动可变泄漏阀,进气流量的调节范围是1E-8PaL/s~500PaL/s,调节信号为0~10V。超高真空度控制回路有真空计、真空控制器和电动可变泄漏阀组成,真空控制器采集真空计信号并与设定值进行比较后,输出PID控制信号对可变泄漏阀进行驱动来调节微小的进气流量,由此使腔体真空度快速恒定在设置值处。[/size][size=16px] 在超高真空控制中还面临另外一个问题是真空计输出信号的非线性,为此本文解决方案中采用了具有线性化处理功能的VPC2021系列真空压力控制器,通过在真空和电压的关系曲线中取八个数据点进行拟合,可很好的解决线性PID控制非线性信号的问题。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案很好的突破了真空密封件漏率和内部真空度测量难题,关键是实现了高真空度精密控制中的微小进气流量自动调节以及传感器非线性输出信号的PID控制器线性化处理。解决方案中的高真空度控制装置可广泛应用于任何真空系统,PID控制器线性化技术可广泛应用于各种非线性传感器测量控制场合。[/size][size=16px] 本解决方案对高真空微小压差下的漏率测试技术并未做详细的介绍,这部分内容将在后续研究报告中给出详细的测试系统描述。[/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/b][/align]

  • 真空计的选择

    真空计的种类很多,常用的真空计就有压缩式真空计、电离真空计、热电偶真空计、电阻真空计等等。真空计的真空测量是真空技术的重要组成部分,因此真空计在科研与生产中的使用很广泛。那么在选择真空计时我们应该考虑哪些因素呢?   1.不同的真空计有不同的测量范围与测量精度,首先要确保真空计的测量范围满足设备的需要,再考虑真空计的测量精度;   2.有些真空计对被测气体有要求,如热阴极电离真空计的阴极易受过量空气及泵油蒸气等污染物的损害,因此需要考虑被测气体是否会对真空计造成损伤;   3.部分真空计会影响被测环境,如压缩式真空计测量时要压缩被测气体,这会使水蒸气凝结。因此要考虑真空计是否会对被测真空环境造成影响;   4.考虑真空计所测压强是全压还是分压,是否已校准,是否与气体种类有关;   5.考虑真空计能否实现连续测量,数值指示及反应时间如何;   6.考虑真空计的稳定性、可靠性、使用寿命。   7.考虑真空计的安装方法、操作性能、保修、管理、市场有无销售、购买的难易程度和规格

  • 谈谈薄膜真空计(1)

    薄膜真空计是迄今为止唯一得到公认的可作为低真空测量(0.01--100Pa)工作副标准的一种真空仪器,也是我国唯一具有法定计量校准检定规程的一种真空度计量器具(校准参照规程:Q/WHJ46-1998标准型电容薄膜真空计校准规程)电容薄膜真空计是一种绝压、全压测量的真空计,原理是把加于电容薄膜上的压力变化产生膜片间距离的变化,即产生了电容的变化,再通过鉴频器把电容变化转换成为电流或电压的变化,组成为输出信号,所以,它的测量是直接反映了真空压力的变化值,而且只与压力有关,与气体成分无关,即:薄膜真空计是一种直接测量式的、全压型的真空计。而我们的真空设备的真空度测量控制常用的真空计往往是电阻计、热偶计等等间接测量的真空计,是一种热传导型的真空测量方法,简单一点来说,就是通过测量感受气体温度的方法来间接测量气体压强(真空度),是一种类似于大家很熟悉热电阻、热电偶的测量方法,。由于测量原理上的先天不足,这类真空计的测量精度、测量稳定度是很不好的。其测量误差一般比薄膜真空计大1~2个以上数量级(误差大于30%,行业标准是50%),尤其是在低真空段,误差更大,另外,使用过电阻计、热偶计的度知道,这些仪表测量前还需要零点、满度校正,怎么能够用于在线测量控制呢?另外,遇到氢气等小质量的气体就无法测量了,如果要测,也查表换算,到底真空度是多少?猜吧。不过,它确实也有它的优点的:制造容易、价格低廉,在许多的要求较低真空设备上还普遍使用着,……用过电阻计的都领教过它的烦心。许多人抱怨花了3、4千元买到进口的真空传感器也误差大、毛病多?就是因为老外的这个价位的产品还是老的热传导测量机理的真空传感器。所以选择真空计、真空传感器、首先要看看什么原理、什么类型的,而不是数字、智能,测量机理陈旧,再怎么数字、怎么智能,也于事无补的。未完待续

  • 谈谈薄膜真空计(2)

    现代真空应用技术的发展,涉及的应用范围越来越广泛、真空应用设备对仪器仪表的要求越来越高,特别是对测量精度、稳定性要求、以及自动控制性能要求也越来越高,这直接关系到真空设备的整体性能质量,关系到真空应用技术或应用工艺的应用效果,甚至于成功与否。在精细化工、真空冶炼、真空单晶炉、真空热处理、真空浸渍、真空冷冻干燥、真空绝缘处理、电真空器件、半导体材料生产、高特新材料、新能源设备等等行业中尤其特出。许多新设备、新工艺、新产品的开发之所以老是无法实现预想的技术指标和效果,往往就是因为真空测控仪表选型不当、其实际的测量控制精度无法达到设计要求所造成的。当然,薄膜真空计也不是没有缺点的,首先是价格高,国内一般是4-6千元,量限低的贵些;进口则1.6—2.5万元/只左右;其次,国内老式的薄膜规容易零漂,需要经常校正,要求高的经常校正。主要是技术陈旧,国内材料科学相对落后造成的,温度稳定性不好;还有一个量程跨度小,国内的不超过3个数量级。第三是国产规娇气,容易坏,有油污进去很难清洗,要用丙酮,清洗挽救13往往会报废,小量程的23会坏。所以,我们需要有一种具有国产价格、进口品质的、使用方便、经久耐用薄膜真空计。结合我国国情、学习国际先进的真空测量新技术,我们能够做得到的。分析国外的薄膜真空计与我们旧式国产产品的有什么不同呢?简单说一说,其核心技术一是陶瓷薄膜电容真空压力测量技术、二是现代智能仪表技术。首先是通过大规模厚膜电路(国内有些厂家还是20年前的007运放),将薄膜电容测量机构和传感器调理电路微型化,做在陶瓷基片上,另外,将智能仪表电路微型化,一次仪表和二次仪表合二为一,所以量程宽、精度高、体积小;(其典型代表如莱宝62x、英福康TCBG等等)。未完待续

  • 覆盖高真空、低真空和正压的全量程综合校准系统精密控制解决方案

    覆盖高真空、低真空和正压的全量程综合校准系统精密控制解决方案

    [size=16px][color=#6666cc][b]摘要:针对工作范围在5×10[font='times new roman'][sup]-7[/sup][/font]~1.3×10[font='times new roman'][sup]6[/sup][/font]Pa,控制精度在0.1%~0.5%读数的全量程真空压力综合测量系统技术要求,本文提出了稳压室真空压力精密控制的技术方案。为保证控制精度,基于动态平衡法,技术方案在高真空、低真空和正压三个区间内分别采用了独立的控制方法和不同技术,所涉及的关键部件是微小进气流量调节装置、中等进气流量调节电动针阀、排气流量调节电动球阀、正压压力电子调节器和真空压力PID控制器。配合相应的高精度真空压力传感器,此技术方案可以达到控制精度要求,并已得到过试验验证。[/b][/color][/size][align=center][img=全量程真空压力综合测量系统的高精度控制解决方案,690,384]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121052314254_1235_3221506_3.jpg!w690x384.jpg[/img][/align][size=16px][/size][b][size=18px][color=#6666cc]1. 项目概述[/color][/size][/b][size=16px] 真空压力综合测量系统是一个用于多规格真空传感器测量校准的高精度动态真空压力测量系统,主要由一套真空稳压室、一套电容薄膜真空测量模块、一套冷阻复合真空测量模块、一套高精度真空测量模块,其技术要求如下:[/size][size=16px] (1)真空稳压室体积为1L;[/size][size=16px] (2)真空稳压室含有10路VCR转接接头;[/size][size=16px] (3)真空稳压室加热烘烤温度范围:室温到200℃;[/size][size=16px] (4)冷阻复合真空测量模块量程为(5×10[font='times new roman'][sup]-7[/sup][/font]~1×10[font='times new roman'][sup]5[/sup][/font])Pa;[/size][size=16px] (5)冷阻复合真空测量模块含有通讯接口,提供0~10V电压信号;[/size][size=16px] (6)电容薄膜真空测量模块量程为10Torr,测量精度为0.5%;[/size][size=16px] (7)电容薄膜真空测量模块接口为8VCR接口;[/size][size=16px] (8)电容薄膜真空测量模块含有通讯接口,提供0~10V电压信号;[/size][size=16px] (9)高精度真空测量模块量程为0.1~10000Torr;[/size][size=16px] (10)高精度真空测量模块测量精度为读数的0.1%;[/size][size=16px] (11)配备高精度真空测量模块的控制器,满足真空测量模块的使用要求,包含通讯接口。[/size][size=16px] 从上述技术要求可以看出,整个系统的真空压力范围覆盖了负压和正压,具体的全量程覆盖范围用绝对压力表示为5×10-7~1.3×106Pa,其中包含了高真空(5×10[font='times new roman'][sup]-7[/sup][/font]~1.3×10[font='times new roman'][sup]-1[/sup][/font]Pa)、低真空(1.3×10[font='times new roman'][sup]-1[/sup][/font]~1.3×10[font='times new roman'][sup]5[/sup][/font]Pa)和正压(1.3×10[font='times new roman'][sup]5[/sup][/font]~1.3×10[font='times new roman'][sup]6[/sup][/font]Pa)的精密测量和控制,更具体的是要在一个稳压室内实现三个真空压力范围的不同测量和控制精度。以下将对这些技术要求的实现,特别是对真空压力的精密控制技术方案和相关关键配套装置给出详细说明,其他通用性的装置,如机械泵和分子泵则不进行详细描述。[/size][size=18px][color=#6666cc][b]2. 高精度宽量程真空压力控制技术方案[/b][/color][/size][size=16px] 真空压力控制系统的技术方案基于动态平衡法控制原理,即在一个密闭容器内,通过调节进气和出气流量并达到相应的平衡状态来实现真空压力设定点的快速控制。在动态平衡法实际应用中,只要配备相应精度的传感器、执行器和控制器,可以顺利实现设计精度的控制。为此,针对本项目提出的技术指标,基于动态平衡法,本文所提出的具体技术方案如图1所示。[/size][align=center][size=16px][color=#6666cc][b][img=01.真空压力综合测量控制系统结构示意图,690,410]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121043350021_6971_3221506_3.jpg!w690x410.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图1 高精度全量程真空压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 对应于项目技术指标中的高真空、低真空和正压压力控制要求,图1所示的真空压力控制系统由三个相对独立的控制系统来实现项目技术要求,具体内容如下:[/size][size=16px][color=#6666cc][b]2.1 高真空度控制系统[/b][/color][/size][size=16px] 基于动态平衡法原理,对于高真空控制,需要采用上游控制模式,在分子泵全速抽气条件下,需要在上游(进气端)通过精密调节微小进气流量,来实现高真空范围内任意真空度设定点的恒定控制。如图1所示,高真空控制系统主要包括了冷阻真空计、微量进气调节装置和真空压力控制器,这三个装置构成一个闭环控制系统,它们的精度决定了高真空度的最终控制精度。[/size][size=16px] 需要说明的是高真空和低真空控制系统公用了一套机械泵和分子泵,高真空控制时需要分别使用机械泵和分子泵,而在低真空控制时仅使用机械泵。[/size][size=16px] 对于高真空传感器而言,可根据设计要求选择相应量程和测量精度的真空计,其测量精度最终决定了控制精度,一般而言,控制精度会差于测量精度。[/size][size=16px] 在高真空控制中,关键技术是精密调节微小进气流量。如图1所示,微量进气调节装置有电动针阀、泄漏阀和压力调节器组成,可实现0.005mL/min或更低的微小进气流量调节。[/size][size=16px] 微量气体调节时,首先通过压力调节器来改变泄漏阀的进气压力,使泄漏阀流出相应的微小流量气体,然后通过调节电动针阀来改变进入真空稳压室的气体流量。压力调节器和电动针阀的控制则采用的是24位AD、16位DA和0.01%最小输出百分比的双通道真空压力PID控制器。[/size][size=16px][color=#6666cc][b]2.2 低真空度控制系统[/b][/color][/size][size=16px] 基于动态平衡法原理,对于低真空控制,则需要分别采用上游(进气端)和下游(排气端)两种控制模式。如图1所示,两种控制模式的具体内容如下:[/size][size=16px] 在低真空的0.01~10Torr范围内,需要采用10Torr量程的电容真空计,并在机械泵全速抽气的条件下(电动球阀全开),通过动态改变电动针阀的开度来调节进气流量以实现设定真空度的精密控制。同时在电动针阀的进气端增加一个压力调节器以保证电动针阀进气压力的稳定。[/size][size=16px] 在低真空的10~760Torr范围内,需要采用1000Torr量程的电容真空计,并在固定电动针阀开度和机械泵全速抽气的条件下,通过动态改变电动球阀的开度来调节排气流量以实现设定真空度的精密控制。[/size][size=16px] 同样,在低真空控制系统中也同样采用了高精度的双通道真空压力控制器,两路输入通道分别接10Torr和1000Torr的薄膜电容真空计,两路输出控制通道分别接电动针阀和电动球阀,由此可实现两个低真空范围内的真空度精密控制。[/size][size=16px] 尽管电容真空计可以达到0.2%的测量精度,但要实现项目0.5%的控制精度,需要电动针阀和电动球阀具有很快的响应速度,电动针阀要求小于1s,而电动球阀要求小于3s,另外还要求真空压力控制器也同样具有很高的测量和调节精度,这些要求同样适用于高真空度控制。[/size][size=16px][color=#6666cc][b]2.3 正压压力控制系统[/b][/color][/size][size=16px] 对于正压压力控制采用了集成式动态平衡法压力调节器,并采用了串级控制方法。如图1所示,正压控制系统由压力调节器、压力传感器和真空压力控制器构成的双闭环控制回路构成。采用相应精度和量程的压力传感器和压力调节器可实现0.1%以内的控制精度。[/size][size=18px][color=#6666cc][b]3. 低真空控制解决方案考核试验和结果[/b][/color][/size][size=16px] 对于低真空精密控制解决方案,我们进行过相应的考核试验。低真空上游和下游控制考核试验装置如图2和图3所示,其中分别采用了10Torr和1000Torr薄膜电容真空计。[/size][align=center][size=16px][color=#6666cc][b][img=02.上游控制模式考核试验装置,550,371]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044011178_1432_3221506_3.jpg!w690x466.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图2 上游控制模式考核试验装置[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=03.下游控制模式考核试验装置,550,338]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044250558_2395_3221506_3.jpg!w690x425.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图3 下游控制模式考核试验装置[/b][/color][/size][/align][size=16px] 上游和下游不同真空度设定点的控制结果如图4和图5所示。[/size][align=center][size=16px][color=#6666cc][b][img=04.上游低真空度考核试验曲线,550,333]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121044433769_7471_3221506_3.jpg!w690x418.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图4 低真空上游考核试验曲线[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=05.下游低真空度考核试验曲线,550,327]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045002696_1848_3221506_3.jpg!w690x411.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图5 低真空下游考核试验曲线[/b][/color][/size][/align][size=16px] 上游和下游不同真空度设定点的恒定控制波动率如图6和图7所示。[/size][align=center][size=16px][color=#6666cc][b][img=06.上游模式低真空度恒定控制波动度,550,309]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045233797_3751_3221506_3.jpg!w690x388.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图6 上游模式低真空恒定控制波动度[/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b][img=07.下游模式低真空度恒定控制波动度,550,340]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121045436717_8569_3221506_3.jpg!w690x427.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图7 下游模式低真空恒定控制波动度[/b][/color][/size][/align][size=16px] 通过上下游两种控制模式的考核试验,可得出以下结论:[/size][size=16px] (1)配备有目前型号电动针阀、电动球阀和 PID 控制器的低真空控制系统,在采用了薄膜电容真空计条件下,恒定真空度(压强)控制的波动率可轻松的保持在±0.5%以内。[/size][size=16px] (2)由于真空控制系统中进气或出气流量与真空度并不是一个线性关系,因此在整个测控范围内采用一组 PID 参数并不一定合适,为了使整个测控范围内的波动率稳定,还需采用 2 组或2组以上的 PID 参数。[/size][size=18px][color=#6666cc][b]4. 正压压力控制解决方案考核试验和结果[/b][/color][/size][size=16px] 对于正压压力控制解决方案,同样进行过相应的考核试验。正压压力精密控制考核试验装置如图8所示,其中采用了测量精度为0.05%的压力传感器。[/size][align=center][size=16px][color=#6666cc][b][img=08.正压压力考核试验装置,600,336]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046014855_1011_3221506_3.jpg!w690x387.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图8 正压压力考核试验装置[/b][/color][/size][/align][size=16px] 考核试验的压力范围为表压0.1~0.6MPa,选择不同的设定点进行恒定控制并检测其控制的稳定性。全量程的正压压力控制结果如图9所示。[/size][align=center][size=16px][color=#6666cc][b][img=09.正压压力考核试验曲线,600,337]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046261180_1880_3221506_3.jpg!w690x388.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图9 正压压力考核试验曲线[/b][/color][/size][/align][size=16px] 为了更直观的演示正压压力控制精度,将每个压力设定点时的控制过程进行单独显示,以检测测定正压压力的稳定性,图10显示了不同正压设定点恒定控制时的正压压力和控制电压信号的变化曲线。[/size][align=center][size=16px][color=#6666cc][b][img=10.不同正压设定点恒定控制时的压力和控制电压试验曲线,690,555]https://ng1.17img.cn/bbsfiles/images/2023/06/202306121046471416_4804_3221506_3.jpg!w690x555.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#6666cc][b]图10 不同正压设定点恒定控制时的压力和控制电压试验曲线[/b][/color][/size][/align][size=16px] 通过所用的正压压力精密控制解决方案和考核试验结果,证明了此解决方案完全能够实现0.1%高精度的正压压力控制,具体结论如下:[/size][size=16px] (1)采用串级控制和模式,并结合后外置超高精度(0.05%)的压力传感器和真空压力控制器,完全可以有效提高压力调节器的压力控制精度,可实现0.1%超高精度的压力控制。[/size][size=16px] (2)如果选择更合适和狭窄的压力控制范围,还可以达到0.05%的更高控制精度。[/size][size=16px] (3)高精度0.1%的压力控制过程中,真空压力控制器的测量精度、控制精度和浮点运算是决定整体控制精度的关键技术指标,解决方案中采用的24位ADC、16位DAC和高精度浮点运算0.01%的输出百分比,证明完全可以满足这种高精度的控制需要。[/size][size=18px][color=#6666cc][b]5. 总结[/b][/color][/size][size=16px] 针对真空压力综合测量系统对高真空、低真空和正压精密控制的技术要求,解决方案可以很好的实现精度为0.1%~0.5%读数的精密控制,考试验证试验也证实此控制精度。[/size][size=16px] 更重要的是,解决方案提出了高真空度的精密控制方法和控制系统配置,这将解决在高真空度范围内的任意设定点下的恒定控制难题,为高真空度范围的计量校准测试提供准确的标准源。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~[/size][/align][size=16px][/size]

  • 真空烧结炉结构的探讨

    [b]真空烧结炉[/b]的各个结构是相互配合运行的, 任何一个结构出现故障或者使用方式不合理, 都会影响到烧结炉的运行。 我们将针对真空烧结炉的不同结构展开探讨, 优化各结构的内部系统, 以达到能够为设备运行使用减少能源损耗, 达到更理想的燃烧效果。 一、 加热室加热室的作用顾名思义就是在使用阶段能够向炉内提供热量, 只有在热量达到一定的标准设备才能正常运行, 从而使各个结构在系统内发生配合, 从而达到真空烧结的目的。加热器的温度提升变动性比较大, 为了能够在短时间内实现更高效的使用, 通常是由三层温度变化组成的, 可以根据产品的不同类型和要求对系统内部进行调节, 使温度能够与需求的标准保持一致。二、 隔热屏该结构是以圆板和圆筒形状出现的, 能够将热量与外部环境相隔离, 这样既能保障使用阶段的安全性, 同时也能避免能源损耗。 该结构在系统中处于封闭的状态, 并且由多层结构组成, 投入使用后的隔热效果也更理想。 圆板和圆筒一起组成隔热屏, 形成封闭并且呈现真空状态, 当温度由在隔热屏中向周边散发时, 真空部分也能起到保护作用, 达到更理想的使用效果。三、 低温冷阱阱广泛用于超高真空( 或高真空)系统,作用类似于挡板,一般真空烧结炉为提升燃烧的效率, 并节省时间, 会采用低温冷阱的形式来降炉内的空气抽离, 这样能够确保在真空的环境下运行使用, 才能避免出现使用不稳定现象, 并达到设备的安全控制标准。四、 真空测量真空测量是针对炉内运行使用状态来进行的。 测量是定期进行的, 达到间隔时间后, 测量模块能够自动导通。 由于烧结炉的规模比较大, 使用期间检测得到的参数中存在很大的变化因素, 因此误差是不可以避免的。 虽然目前的技术理念已经十分成熟, 但在使用时仍然需要对现场设备采取全面监控的方法, 以确保燃烧效率能够达到预期标准。

  • 怎样选择真空计

    怎样选择真空计很多试验仪器设备都需要用到真空泵、真空机组,如样品真空干燥、真空蒸馏、真空解压等等实验工作、中式,为了达到最优状态和测试效果,或提供效率、节约能源,就需要对设备的容器中的真空度进行准确的测量和自动控制,现在大家使用的大多数还是老式的电接点真空表、电阻真空计的、热偶计等等,准确度差、不稳定、寿命短、当然也有进口设备,但真空测控仪表、真空计进口的产品非常昂贵,那么我们普通设备需要真空控制时应该如何选择性价比高的真空计呢?以下的几点供大家参考,希望有帮助。第一,从真空测量机理的先进性来考虑,应该选择采用新型传感元件的真空计,如硅集成真空传感器、陶瓷基片厚膜电路真空度传感器、陶瓷电容式薄膜真空规等等;而传统老式的热传导类(热偶计、电阻计、皮拉尼计等等)虽然价格稍低些,但其精度低、稳定性差、寿命短,按照产品标准测量精度误差50%就合格;虽然现在也有数字化、但是毕竟是先天不足。第二,从真空设备的工作真空度来选择真空度测控范围:而不是根据使用真空泵或机组的极限真空度来选择,如,系统采用2x旋片泵,其极限真空度可达0.5Pa,但是,由于抽气效率的原因,往往用在100Pa以上,所以应该选择0.1kPa测量下限即可(下限越低,往往精度要求越高,价格也越高)第三,合理选择测量精度等级和测量分辨率,一般设备选择1.0级、0.5级就可以了,但是如果是作为精密真空度测量和控制、计量标准器等等,就要选择0.1级、高分辨率的仪表;首选陶瓷薄膜规(--PS510--ABCD);对于用来测量管道、容器、散热器、空调冰箱部件密封等等用途的真空计选型,可以选择0.5、0.25级精度、但是分辨率为1Pa的高分辨率的仪表如(208--310ap型),性价比极高;另外,还要根据需要测控的泵阀来选择仪器的测控继电器等等控制功能,最好要选择带有真空智能测控功能的仪表(一个继电器就能控制一个启停或开闭的真空度区间,而不是一个点)。最后不要忘记选择合适的真空接口标准,推荐kf系列卡箍法兰,当然,还有其他测试介质的重要特点:卫生洁净度、防腐蚀、防爆要求,附加功能会增加价格,要求不高,就不一定要用专门的防爆型、防腐蚀型的,要求严格的话,当然不能马虎的。简单说说,供参考了。再次提醒大家:现在是2011年啦!真空仪器仪表已经现代化了,希望大家选择更加新型的、高性价比的真空仪器仪表,

  • 采用瞬态平面热源法测量NIST标准参考材料SRM 1453热导率随真空度的变化

    采用瞬态平面热源法测量NIST标准参考材料SRM 1453热导率随真空度的变化

    1. 测试目的 美国国家标准与技术研究院(NIST)出品的标准参考材料泡沫聚苯乙烯板SRM 1453主要用于281~313 K温度范围内各种热导率测试仪器和设备的标定和校准,是目前国内外各种低热导率测试方法(稳态保护热板法和稳态热流计法)热导率测试的计量溯源,同样此标准参考材料也可以用于瞬态平面热源法热导率测试的标定和校准,以验证测试方法和测试设备的测量准确性。为此,采用上海依阳公司出品的瞬态平面热源法热导率测试系统对NIST SRM 1453标准参考材料进行热导率测试,以期实现以下目的:(1)评测和验证上海依阳公司瞬态平面热源法热导率测试系统的测量准确性,重点验证低导热材料(热导率0.03W/mK左右)测量的准确性。(2)NIST标准参考材料SRM 1453是一种典型的泡沫聚苯乙烯板,由于低密度和具有一定气孔率,所以这种材料的热导率会随真空度增高而减小。因此希望通过在不同真空度下测试SRM 1453的热导率,评估上海依阳公司瞬态平面热源法热导率测试系统测量极低热导率(小于0.03W/mK)的能力。(3)通过真空控制和真空腔提供变真空测试环境,在1E-04~1E+03Pa覆盖七个数量级的真空度变化范围内,测试NIST标准参考材料SRM 1453在不同真空度下的热导率,得到一条热导率随真空度变化的完整曲线,以期获得热导率随真空度变化的规律。2. 低温变真空瞬态平面热源法热导率测量系统 瞬态平面热源法热导率测量系统是依阳公司低温变真空环境热物理性能测试系统的一部分,采用HOTDISK公司配套产品进行热导率测试,配套主机如图1所示。选择HOTDISK公司的这台测量装置进行配套,主要考虑了以下几方面因素:(1)在采用瞬态平面热源法测试过程中,只需要简单地将探头固定在两块被测试样之间,在试样和探头温度恒定后,测试过程迅速。这样使得与试样直接发生关系的相关装置非常简单,便于对被测试样加载各种环境条件,这非常有助于进行低温和真空环境的材料热导率测试。 (2)瞬态平面热源法的热导率测试范围宽泛,基本可以覆盖绝大多数材料的热导率测试。有此采用一台这种测试仪器就可以实现金属和非金属的热导率测试,特别是低温和深低温环境下多涉及隔热材料和金属结构材料,以往至少需要两套大型测试设备才能分别实现隔热材料和金属材料的热导率测试,现在可以通过一套设备完美的解决热导率测试问题。(3)瞬态平面热源法热导率测试核心装置比较小,所需试样尺寸也不大,这就为多试样同时测量提供了可能。低温变真空环境材料热物理性能测试系统如图2所示,这套系统除了可以进行热导率测试能力之外,主要功能是模拟空间低温高真空环境,测试空间材料的低温热辐射性能。http://ng1.17img.cn/bbsfiles/images/2016/02/201602041708_584268_3384_3.png图1 瑞典HOTDISK公司热常数分析仪http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584269_3384_3.jpg 图2 低温变真空环境材料热物理性能测试系统低温变真空瞬态平面热源法热导率测量系统主要技术指标如下:(1)温度范围:-200℃~200℃(任一点可控)。 (2)真空度范围: 1E-06Pa~1E+05Pa(可控制范围 1E-01Pa~1E+05Pa)(3)热导率测试范围:400W/mK以下。3. 试样和测试卡具 将购置的厚度为14mm的NIST标准材料材料SRM 1453切割成100mm见方的正方形,如图3所示。http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584270_3384_3.jpg图3 NIST标准材料材料SRM 1453测试试样和测试卡具整体放置在如图4所示的真空腔体内,如图5所示将被测的NIST标准材料材料SRM 1453放入测试卡具内,如图6所示试样和探测器压紧后关闭真空腔,即可进行真空度的控制和热导率测试。http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584271_3384_3.jpg图4 低温高真空腔体 http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584272_3384_3.jpg图5 测试试样和测试卡具http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584273_3384_3.jpg图6 试样安装完毕后的待测状态4. 测试结果 在NIST标准参考材料SRM 1453不同真空度下热导率测试过程中,首先在常温常压下进行测试,然后再逐渐提高真空度并进行真空度控制,真空度控制精度达到5‰,稳定性优于1%。每个真空度至少恒定半小时后再开始热导率测量,每个真空度下进行2次重复性测量,任何2次测量间隔至少30分钟以上。由于NIST标准参考材料SRM 1453比较薄,厚度为14mm,由此在测试中采用了小尺寸的探头,编号C5501。整个测试过程中,试样温度保持在室温范围内,温度范围为22℃~23℃。为了便于测量控制及描述,真空度单位采用Torr,测试结果如下表所示。表中的试验参数表示测试过程中的探头加热功率(豪瓦)和测试时间(秒)。http://ng1.17img.cn/bbsfiles/images/2016/02/201602041722_584275_3384_3.png将以上测试结果绘制成横坐标为真空度、纵坐标为热导率的对数坐标曲线,如图7所示。 http://ng1.17img.cn/bbsfiles/images/2016/02/201602041721_584274_3384_3.jpg图7 NIST标准参考材料SRM 1453常温不同真空度下的热导率测试结果5. 分析与结论 按照NIST所提供的SRM 1453热导率标准数据,在常温22℃的常压环境下,热导率标准数据为0.03348W/mK。按照上述的测试结果,在常温22℃的常压环境下,多次热导率重复性测量测试结果范围为0.03226~0.03251 W/mK,偏差范围为2.90%~3.65%,完全处于±5%的误差范围内。另外,从图7所示的测试结果可以看出,整

  • 质谱仪真空系统

    真空系统无论是成熟的GCMS,还是大有作为的LCMS,亦或者是ICPMS,这些分析仪器的精贵之处毋庸置疑就是质谱仪MS。质谱仪,最基本的系统就是真空系统,也是最重要的系统之一。真空系统的作用就是提供足够的真空度来满足质谱仪的功能,主要提供足够高的平均自由程,减少背景噪声获得高灵敏度。还可以防止灯丝被氧化(GCMS),避免高压放电(TOF-MS),等。真空基础:平均自由程:每次发生碰撞之间移动的平均距离被称为 平均自由程 (l)http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif真空vacuum 可以简单分为粗真空(1 x 105 - 1.33 x 10-1 Pa)-高真空(1.33 x10-1 - 1.33 x 10-6 Pa)-超高真空(1.33 x 10-6 Pa)。真空技术:真空技术包括真空获得、真空测量技术、泄露和检漏技术。一、真空获得真空获得技术:主要通过各种真空泵或者真空泵组来获得所需的真空度。真空泵的技术指标主要有:抽气量、抽气速度、极限压力、压缩比。1、 抽气量 Q (mbar L/S or torr L/S),被真空泵从一点传送到另外一点的气体数量,它取决于压力;2、 抽气速度 S(L/S),单位时间内的抽气量;3、 极限压力 (mba),真空泵所能达到的最低压力;4、 压缩比 K=Po/Pi,排气口的压力与进气口压力的比值。1.粗真空获得,可以通过各种机械泵来获得。如油封式旋片泵http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif(通常我们所说的油泵);还有涡卷式干泵http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif;隔膜泵http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif;罗茨泵等。主要作用就是从真空室中取出大部分空气,为高真空泵保持适合的排气口压力和提供合适的进气口启动压力。各种粗抽真空泵性能对比:http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif2.高真空获得,主要有油扩散泵、涡轮分子泵、冷泵。油扩散泵:http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif涡轮分子泵:http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif各种高真空泵性能对比:http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif3.超高真空获得,主要通过超高真空泵,如离子泵、钛升华泵。二、真空测量技术主要是通过不同的真空规(vacuum gauge)来测量真空度。三、泄露和检漏技术检漏技术是用来保证元器件或系统的密闭性可以满足某种标准的一种方法。通常的检漏方法有冒泡法、压降法、卤素吸收法以及氦质谱检漏仪,以下是各种方法的比较。http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif1 x 10-1 atmcc/sec. = 6.00 cc/分钟. (0.1 *60)http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif瓦里安Varian 氦质检漏仪

  • 石墨炉分析时空测和空烧的区别

    石墨炉分析时空测和空烧的区别

    近期发现在帖子中空测和空烧这两个词经常出现,尤其是在新手的求助帖里,经常将这两个词的搞混。有的是不清楚这两个词的区别,有的可能是使用混乱。但是,这两个词的物理概念是截然不同的;为此,我简述一下,为的是今后在贴子里的表述更准确一些,避免造成发帖和回帖的误会。空测的意义:在石墨炉分析前,石墨管里任何物质均不放入,仅仅是按照既定的升温程序空测一遍,其目的是看看石墨管有无记忆效应。正常情况下,无论任何元素灯,这个空测值应该在 0.008Abs以下。如果其值过高,并且通过空烧也改善不大,则说明这根石墨管记忆效应太大了,应该报废了。一般情况下,在石墨炉分析时先做空测,再做空烧。这样做的目的:首先能发现石墨炉的一般问题,其次是为了减少石墨管的损耗,延长石墨管的寿命。空烧的意义:(1)在石墨炉分析前,石墨管里难免存在一些前面测量后遗留的残留物;这些残留物的挥发温度很高,原有的升温程序中的除残步骤的温度可能不足以将这些残留物燃烧殆尽,因为在石墨炉分析程序中,除残温度一般仅比原子化温度高100~200°,于是就会逐渐潴留在石墨管中,影响了后面的测试结果。而空烧的温度是仪器升温程序中最高温度,一般在2800~3000°;由于该温度过高,一般实施该步操作时,空烧时间仪器自动控制在3~5秒以内。并且通过记录图谱发现究竟有无残留或者残留是否被炭烧殆尽了。图-1就是将石墨管中的残留物质逐渐烧出的案例:[img=,554,532]https://ng1.17img.cn/bbsfiles/images/2019/05/201905230910001632_3243_1602290_3.jpg!w554x532.jpg[/img]图-1 通过逐步空烧将共存物烧出(2)更换新石墨管后,必须实施空烧步骤。其原因是:新的石墨管在制造工艺过程中(例如:车工掏孔、涂层)难免会带入杂物,从而影响第一次分析,所以也要空烧。(3)众所周知,石墨管在升温后,其体积会因膨胀产生形变。如果石墨管安装不到位或者石墨炉整体偏离光轴,而不能与光轴形成同心圆放入话,有可能在原子化阶段造成一个石墨管挡光而产生的“假背景”,从而影响了检测结果的真实性。利用最高温度空烧的记录图谱就可以清楚地判断出来了。其图谱最明显的现象就是:会产生一个很大的样品峰和背景峰;有时仅仅是背景峰。这是维修工程师在检修工作中的一个最基本的也是最常用的判断手段。这个判断对于一般的操作人员也可胜任。这种状况见图-2所示:[img=,419,488]https://ng1.17img.cn/bbsfiles/images/2019/05/201905230910537942_8280_1602290_3.jpg!w419x488.jpg[/img]图-2 石墨管的安装位置不良,造成背景值过高。所以,正确掌握空测和空烧的区别,会让我们少走弯路,及时发现仪器的问题。备注:如果仪器没有升温全程图谱监测功能,也可以通过吸光值加以判断,只不过没有图谱一目了然而已。

  • 彻底讲清手套箱中真空度和温度的准确控制方法

    彻底讲清手套箱中真空度和温度的准确控制方法

    [color=#990000]摘要:为充分发挥手套箱的强大功能,针对手套箱中真空度和温度这两个环境变量,本文详细介绍了准确测量和控制真空度和温度的一体化解决方案,描述了上游、下游、双向和切换控制模式在不同真空度范围内的具体应用,同时还展示了控制中用到的新型数控针阀、数控球阀和24位超高精度PID控制器。[/color][align=center][color=#990000][img=真空手套箱,690,365]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111350205454_339_3384_3.png!w690x365.jpg[/img][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]1. 问题的提出[/color][/size] 真空手套箱常用于极易氧化和潮解物质在无氧无水环境下需要人工操作的化学反应、材料处理和性能测试,功能十分强大。手套箱的核心功能是提供真空环境和便于人工操作,但在目前的实际应用中,大多只用了手套箱的无氧环境和人工操作功能,并没有充分发挥手套箱的作用。手套箱更强大的应用还体现在以下两方面: (1)真空手套箱是一个密闭式环境箱,极限真空度一般都可以达到10Pa左右,由此可以将手套箱内的真空度按照要求控制在10Pa至一个大气压之间的任何设定点上,这就可以进行各种对真空度敏感的化学反应、试验和测试,并便于在不改变和破坏真空环境的条件下进行各种人工操作。 (2)除真空度外,温度也是很多反应、试验和测试的另一个重要环境变量。在手套箱中放置相应的加热装置,就可以进行温度和真空度复合环境下的各种试验研究。以此类推,还可以配置其他物理量环境条件,形成多种边界条件下的多物理量耦合试验条件。 为充分发挥真空手套箱的强大功能,针对手套箱中真空度和温度这两个环境变量,本文详细介绍了准确测量和控制真空度和温度的一体化解决方案,并针对不同真空度范围介绍了真空度控制过程中的上游、下游和双向控制模式。[size=18px][color=#990000]2. 手套箱的真空度控制[/color][/size] 手套箱属于一种低真空环境腔体,采用机械泵一般手套箱的真空度最高可达绝对压力10Pa左右,通过抽真空和充惰性气体,由此手套箱的真空度可以控制在10Pa至一个大气压(绝对压力0.1MPa)的范围内。在如此跨越四个数量级的真空范围内进行控制,会根据实际需要采用不同精度的真空度传感器,相应就有不同控制模式。以下为各种控制模式的具体内容。[size=16px][color=#990000]2.1 上游控制模式[/color][/size] 如图1所示,在保持下游真空泵抽速恒定的条件下,上游控制模式是根据真空计测量信号,通过PID真空压力控制器调节上游进气口电动针阀的开度,即通过控制进气流量使手套箱内的压力控制在设定值。上游模式常用于高真空度控制。[align=center][img=真空手套箱,500,523]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111357256824_7565_3384_3.png!w690x722.jpg[/img][/align][align=center][color=#990000]图1 上游控制模式结构示意图[/color][/align][size=16px][color=#990000]2.2 下游控制模式[/color][/size] 如图2所示,在保持下游真空泵抽速恒定的条件下,下游控制模式是根据真空计测量信号,通过PID真空压力控制器调节下游出气口电动球阀的开度,即通过控制出气流量使手套箱内的压力控制在设定值。下游模式常用于低真空度控制。[align=center][img=真空手套箱,500,431]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111357506722_4691_3384_3.png!w690x595.jpg[/img][/align][align=center][color=#990000]图2 下游控制模式结构示意图[/color][/align][size=16px][color=#990000]2.3 双向控制模式[/color][/size] 上述上游和下游控制模式各有优势,在实际应用中很少单独使用,一般都是将上游和下游模式集成在一起用,即所谓的双向控制模式,如图3所示。在双向控制模式中,要求真空压力控制器具有正反向控制功能,即对上游电动针阀用反向控制,对下游电动球阀用反向控制。[align=center][img=真空手套箱,500,408]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111358058160_7167_3384_3.png!w690x564.jpg[/img][/align][align=center][color=#990000]图3 双向控制模式结构示意图[/color][/align][size=16px][color=#990000]2.4 双传感器自动切换模式[/color][/size] 如前所述,如果在10Pa~0.1MPa全范围内进行真空度的准确测量和控制,一般需要配置1000Torr和10Torr两只高精度的电容薄膜真空计,由此在控制过程中就需要进行传感器的自动切换。如图4所示,高切换点(2-3) 是低真空传感器工作的高点,低切换点(1-2) 是高真空传感器工作的低点,在这两点之间控制器进行平滑计算。当低真空测量值PV1和高真空测量值PV2的连续采样低于下切换点,切换到低真空传感器。当低真空测量值PV1和高真空测量值PV2的连续采样高于上切换点,则切换到高真空传感器。[align=center][img=真空手套箱,500,332]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111358269424_623_3384_3.png!w690x459.jpg[/img][/align][align=center][color=#990000]图4 双传感器自动切换过程示意图[/color][/align][size=18px][color=#990000]3. 真空计、阀门和控制器的选择[/color][/size][size=16px][color=#990000]3.1 真空度传感器的选择[/color][/size] 与其他任何传感器一样,各种真空度传感器也同样具有一定的测量范围和精度,基本规律也是测量范围宽的传感器,精度较差;测量精度高的传感器,测量范围较窄。对于手套箱,如图5所示,所采用的真空度传感器一般有以下三类: (1)常规真空计:皮拉尼真空计,精度为满量程的±(15~50)%,但一只真空计可覆盖全量程。 (2)高精度真空计:电容薄膜真空计,精度为满量程的±2.5%,如果覆盖10Pa~0.1MPa范围,一般需要配置1000Torr和10Torr两个真空计。 (3)超高精度真空计:半导体真空计,精度为满量程的±0.05%,有效量程为50Pa ~0.1MPa,无法覆盖较高真空。[align=center][img=真空手套箱,690,220]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111358455209_397_3384_3.png!w690x220.jpg[/img][/align][align=center][color=#990000]图5 三类真空度传感器:(a)皮拉尼计、(b)电容薄膜规、(c)半导体真空计[/color][/align][size=16px][color=#990000]3.2 电动阀门的选择[/color][/size] 在手套箱真空度控制中,一般会涉及两类阀门:一类是调节进气端流量的进气阀门,另一类是调节排气流量的排气阀门。进气阀门多用来进行小流量调节,因此一般选择针型阀;排气阀门多用来进行抽真空,因此一般要求使用口径较大的球形阀。由于要进行自动控制,无论是针型阀和球形阀,都要求可以用直流电压、直流电流或数字信号(RS485)进行驱动,即所谓的电动阀门或电子阀门。 电动针型阀选择小尺寸的步进电机驱动的电动针阀,如图6所示。这种电动针阀具有较高的响应速度(1s以内)和线性度(1%以内)。[align=center][color=#990000][img=真空手套箱,450,335]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111359021706_9837_3384_3.png!w603x449.jpg[/img][/color][/align][align=center][color=#990000]图6 电动针型阀[/color][/align] 电动球阀选择微型电动球阀,如图7所示。这种电动球阀同样具有较高的响应速度(7s以内),也可以选择开关时间1s以内的高速电动球阀。[align=center][img=真空手套箱,236,300]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111359189541_1861_3384_3.png!w315x400.jpg[/img][/align][align=center][color=#990000]图7 电动球阀[/color][/align][size=16px][color=#990000]3.3 控制器选择[/color][/size] 从上述手套箱真空度的各种控制模式可以看出,真空度的控制过程对控制器提出了很高的要求,如图8所示,所选择的控制器要满足以下几方面的要求:[align=center][color=#990000][img=真空手套箱,500,373]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111359333538_669_3384_3.png!w600x448.jpg[/img][/color][/align][align=center][color=#990000]图8 超高精度PID控制器[/color][/align] (1)最起码是PID控制器,并具有PID参数自整定功能。 (2)真空计自身精度较高,为充分发挥真空计测量精度,需要数据采集和控制的PID控制器通用要具有较高精度,建议控制器为24位A/D采集,16位D/A输出。 (3)至少2通道以上,实现温度和真空度同时测量及控制,并减小安装空间。 (4)多种输入信号接入功能,可直接连接热电偶、热电阻、直流电压等不同类型传感器的输入信号,实现不同参量的同时测试、显示和控制。 (5)正反向控制功能,以实现双向控制模式。 (6)具有双传感器切换功能,每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (7)程序控制功能,可自行建立和存储多个控制程序,使用时只需选择调用即可开始(程序控制模式)。 (8)具有通讯接口与计算机连接,如标准MODBUS协议的RS485接口等。[size=18px][color=#990000]4. 手套箱的温度控制[/color][/size] 手套箱除了可以提供真空环境之外,还可以在手套箱内放入加热装置进行不同温度下的各种试验和测试,由此就需要在手套箱应用中引入温度控制功能。 温度控制是一种非常成熟的经典技术,一般是结合温度传感器采用PID控制器予以实现。为了造价和安装体积的降低,一般是采用一个多通道PID控制器同时进行温度和真空度的控制,控制器与计算机通讯以显示和存储测量控制数据和曲线。 手套箱内的工作温度一般要求不能太高,但如果做好隔热防护和冷却,也可以实现1000℃以上的工作温度范围。温度测量传感器一般选择热电偶,如果对测量精度要求较高,也可以选择热电阻和热敏电阻温度传感器,这些传感器都可以直接与上述高精度PID控制器连接使用。[size=18px][color=#990000]5. 总结[/color][/size] 通过上述内容的介绍,基本讲清楚了手套箱中真空度和温度的各种控制方法和所涉及的主要传感器、电动阀门和PID控制器。在具体应用中,可以针对具体手套箱结构和功能进行局部改进,也可以根据实际要求进行手套箱的整体设计、安装和集成。 尽管本文只介绍了手套箱中真空度和温度的测量和控制,但这些方法和具体实施内容也可以推广应用到对气氛环境比较敏感的其它领域内的试验参量控制,如低温、几何量、光学和声学等领域。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [align=center][img=真空手套箱,690,308]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111352279951_3805_3384_3.jpg!w690x308.jpg[/img][/align]

  • 不同真空度下石墨硬毡热流计法高温导热系数测量

    不同真空度下石墨硬毡热流计法高温导热系数测量

    摘要:石墨硬毡具有优异的高温隔热效果和稳定性,被广泛应用于高温热处理炉、烧结炉和硅单晶炉等领域。本文主要介绍了石墨硬毡的隔热性能测试,首先采用瞬态平面热源法进行了常温常压下的导热系数测量,然后再采用稳态热流计法在高温常压氮气环境下测试了石墨硬毡的高温导热系数,最后在氮气气氛中,同样采用稳态热流计法测试了不同温度和不同真空度下的导热系数。通过测试揭示了在氮气气氛下石墨硬毡隔热材料导热系数随温度和真空度的变化规律。采用稳态热流计法进行测试使得整个测试过程更接近于石墨毡隔热材料真实的大温差隔热工况,测试结果更具有代表性和指导意义。1. 石墨硬毡简介 石墨硬毡是在石墨软毡的基础上,使用少量连接剂制成各种任意形状后,经高温石墨化处理而形成的成形隔热材料。由于其重量轻,可独立,又可进行复杂加工,从而大大改善了原有的作业环境和可操作性。同时它还能进行各种表面处理,与软毡相比它的发尘量大大降低,而使用寿命大大延长,且具有优异的隔热效果和高温稳定性,石墨硬毡以其优异的性能,广泛应用于绝大部分高端市场,包括太阳能行业,半导体单晶硅行业,人工晶体行业,光纤行业,高端真空烧结炉、热处理炉等行业。 石墨硬毡主要性能特点: (1)石墨硬毡热处理温度高(处理温度约2250℃以上),具有低收缩率,低挥发物释放量等优点; (2)灰份低,纯度高,经纯化后的高纯硬毡灰份小于20ppm,保证了热场的纯净度; (3)低导热系数、隔热效果好、节能,产品质量的一致性好; (4)纤维基体,保证绝热性能均匀,同时温场稳定性能好。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121639_596542_3384_3.jpg 图 1-1 各种工艺形式的石墨硬毡 如图 1-1所示,石墨硬毡可以根据所需的隔热性能和使用要求,采用不同的工艺手段和表面处理方式,形成多种产品形式和任意形状设计,结合使用条件,以达到自由的隔热效果设计。2. 石墨毡高温导热系数测试国内外文献综述 石墨硬毡最主要的物理性能参数之一是导热系数,特别是高温下的导热系数。由于石墨硬毡的抗氧化能力差而只能用于真空和各种惰性气体环境下,所以对于石墨硬毡还需要了解在不同气体和不同真空度下的导热系数。 另外,石墨硬毡做为隔热材料使用,一定是石墨硬毡的一面承受高温,而另一面温度很低基本在常温附近,也就是说实际隔热工况一定是石墨硬毡厚度方向上形成一个较大温差或温度梯度,温差或温度梯度会随着隔热温度的提高而逐渐增大。 为了准确测试评价石墨硬毡的隔热性能,测试中试样的边界条件必须要与石墨硬毡实际环境条件尽可能相同,必须要保证的边界条件包括温度、温度梯度、环境气氛真空度和环境气体成分。由此可见,对于石墨硬毡这类高温易氧化的隔热材料导热系数测量,必须在真空密闭环境中进行,以便于抽真空或充不同种类的惰性保护气体,同时还需配备相应的真空度控制系统。在具体的测试过程中同时还要求,被测试样的受热面温度尽可能高,被测试样的冷却面则始终处于室温附近。 由于石墨毡类材料所具有的低密度、耐高温、易氧化的特殊性,这类材料的导热系数测试只能在高温真空环境下进行测试,对测试设备的要求非常高,相应的研究文献并不多,很少有文献对石墨毡的导热性能测试进行过详尽的报道,也很少有不同测试条件下的测试结果详尽报道,就连石墨硬毡生产厂商也没有报道出相应数据的测试方法描述。这里只简单介绍Chahine等人的工作,其它报道罗列在本文的参考文献内。 Chahine等人采用热线法对WDF级的石墨毡导热系数进行了全方位的测试研究,其中石墨毡的密度为80kg/m^3,石墨纤维直径在7.0~12.5μm范围内,平均直径为10.5±3.2μm。石墨毡导热系数的测试分别在真空和氩气条件进行,测试结果如图 2-1所示。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596543_3384_3.png图 2-1 石墨毡在真空和氩气环境下的高温导热系数测试结果 为了进一步研究低密度石墨毡的传热性能,将石墨毡内的热传递分解为沿纤维的固体导热、气体导热、气体辐射和纤维之间的辐射热交换几个部分。综合考虑了石墨毡内的复合传热机理,分别对50kg/m^3和80kg/m^3两种密度的石墨毡的表观导热系数进行了计算,计算结果如图 2-2所示。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596544_3384_3.png图 2-2 两种不同密度石墨毡的表观热导率计算值以及不同传热机理 从计算结果可以看出,在小于500K的较低温度区间,石墨毡内的传热主要是固体和气体导热起主要作用,而在高温区间,辐射和一定程度的气体导热(基于环境气体成分)起主要作用,而且辐射传热机理对石墨毡的密度变化非常敏感,而其它传热形式则对密度变化并不灵敏。 作者在文献中所得出的结论是石墨毡高温导热系数的确定是个非常复杂的过程,需要结合理论计算和试验测试结果。当气体导热传热机理非常简洁以及气体导热系数可以很容易得到时,由于石墨毡的复杂几何结构,石墨毡的导热和辐射传热机理就被证明非常复杂并具有不确定性。大多数传热模型还是以纯经验为基础,还无法在不求助试验结果的前提下准确预测材料的传热性能。同样,所有辐射传热机理模型中的几何结构因数也都是通过试验手段获得。由此,WDF石墨毡的表观导热系数不能仅通过纯理论计算获得。 由以上研究文献可以明显的看出作者的无奈,作者在石墨毡测试过程中无法准确的模拟材料实际使用环境,特别是石墨毡实际使用中的大温差环境,采用热线法测试导热系数只能在被测试样等温条件下进行,无法测试得到实际大温差对导热、辐射和对流的影响和传热机理,只能通过建立经验模型和理论计算得到预测值。3. 瞬态平面热源法石墨硬毡常温常压导热系数测试 针对石墨硬毡材料,首先在常温常压下采用瞬态平面热源法(ISO 22007-2-2008 塑料-热传导率和热扩散率的测定.第2部分瞬时平面热源法)进行了测试。对石墨硬毡采用瞬态平面热源法进行测试,以期实现以下目的: (1)采用瞬态平面热源法测试石墨硬毡导热系数,以期后续与其它测试方法进行对比。 (2)石墨硬毡是一种典型材料,由于低密度和具有大量孔隙,这种材料的导热系数会随真空度增高而减小。通过真空控制和真空腔提供变真空测试环境,在1E-04~1E+03Torr覆盖七个数量级的真空度变化范围内,测试石墨硬毡在不同真空度下的导热系数,得到一条导热系数随真空度变化的完整曲线,以期获得导热系数随真空度变化的规律。同时由此可以用来研究石墨硬毡的传热机理和各种传热形式的影响。 (3)研究环境气体成分对石墨硬毡导热系数的影响,即在真空腔内充实不同的惰性气体,测试不同气体成分中石墨硬毡导热系数随真空度的变化。 本文所描述内容仅包括常温常压下的石墨硬毡导热系数测试结果,不同真空度和不同惰性气体气氛下的石墨毡导热系数测试将在后续报道中介绍。3.1. 瞬态平面热源法被测试样 瞬态平面热源法石墨硬毡被测试样如图 3-1所示,尺寸为50mm×50mm×40mm。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596545_3384_3.jpg图 3-1 石墨硬毡瞬态平面热源法被测试样3.2. 瞬态平面热源法测试结果 用两块石墨硬毡被测试样夹持瞬态平面热源法薄膜测试探头,如图 3-2所示。http://ng1.17img

  • 实验室分析仪器--质谱仪器真空系统主要组件

    质谱仪器真空系统主要包含如下一些部件:真空泵、真空计和真空阀。[b]1.真空泵[/b]真空泵是获得真空的设备。市场上真空泵种类很多简单地可将其划分为低真空泵和高真空泵两大类。低真空泵又称前级真空泵,既可用于真空腔室的预抽真空,又可作为高真空泵的前级泵提供高真空泵正常工作所需要的前级真空;高真空泵包括扩散泵、涡轮分子泵、钛升华泵、溅射离子泵、吸气剂泵、低温泵等,负责真空系统里高真空的抽取。高真空泵启动的一个共同点是不在常压下启动,需要在一定的真空条件下启动。因此在一个真空系统中,低真空泵和高真空泵常常配合使用,共同完成抽取和保持系统真空的任务171现在一些真空仪器厂商根据市场,也已推出了将低真空泵和高真空泵功能组合在一起的真空机组,用来满足各类分析仪器对真空的需求。[b]2.真空计[/b]真空计是测量真空的设备。真空计又可分为绝对真空计和相对真空计,前者直接测量空间内气体的压强,后者通过与压强有关的物理量间接地测量空间内气体的压强。按照真空计的不同原理与结构可细分为静态变形真空计、压缩式真空计、热传导真空计、电离真空计、气体放电真空计、辐射真空计等。真空阀是使真空隔离和保持的常用组件。下面简单介绍部分常用的真空组件。[b](1)扩散泵[/b]扩散泵是通过加热使高闪点的泵油蒸发,形成高速气流从喷口喷出。由于油气喷口设计在靠近泵的进气口,且使油气向侧下喷出,因此进入泵内的气体分子会往高速油气流中扩散被带走,当气流到达由冷却水冷却的泵壁后,又会凝结成液体流回蒸发器,油气中因冷凝析出的气体分子就会在出气口处被前级泵抽出即扩散泵是靠油的蒸发、喷射、凝结重复循环来实现抽气任务的。扩散泵具有无噪声、无震动和成本不高等优点,但其极限真空偏低,且使用过程中易造成系统油气污染,现在很多新型质谱仪器上已不再使用。[b](2)涡轮分子泵(turbo pump)[/b]是通过高速旋转的多级涡轮转子叶片和静止涡轮叶片的组合进行抽气的,在分子流区域内对被抽气体产生很高的压缩比,从而获得所需要的真空性能,对被抽气体无选择性、无记忆效应,操作简单、使用方便。[b](3)钛升华泵[/b]主要依靠电子轰击或通电加热使吸气材料升温,达1200~1500℃时它将不断升华并沉积在水冷泵壁内表面,形成新鲜的活性膜层而不断地吸收和“掩埋”气体分子。对活性气体主要是形成固化化合物,对惰性气体主要是“掩埋”。[b](4)溅射离子泵[/b]溅射离子泵是靠电磁场的作用产生潘宁放电而使气体分子电离,利用电离产生的离子高速轰击阴极钛板引起钛原子溅射,连续制造活性吸气膜使电离了的气体分子收附于其中达到抽气效果的真空泵。[b](5)吸气剂泵[/b]利用能够吸收气体的物质来获得真空的装置(常用来作吸气剂的物质为锆铝、锆石墨、锆钒铁等)。工作过程:首先将锆铝吸气剂加热至激活(900℃)形成活性表面,然后降温至工作温度(400℃)即可吸气。吸气机理:①化学吸收,锆铝吸气剂与其接触的活性气体如O2、CO、CO2、N2、烃类化合物发生化学反应,生成稳定的化学物;②化学吸附,锆铝吸气剂和一些气体如氢在一定温度下生成氢化物,温度稍高时,气体从表面层扩散入内层成为溶解于锆铝吸气剂合金晶格内的固溶体;③物理吸附,锆铝吸气剂的多孔表面依靠范德华力使气体分子附着在表面和孔隙中(注:物理吸附的气体在温度升高时便可很快释放)[b](6)低温泵[/b]利用20K以下的低温表面冷凝容器中的气体和水蒸气而获得真空的设备。利用泵体内温度不同的两级低温板(65K、1K)来冷凝吸附真空系统中的气体分子及水分子达到使系统获得高真空。第一级低温板温度保持在65K(-08℃)左右,主要用于冷凝吸附真空系统中的水分子;第二级低温板温度为15K(-28℃),主要用于冷凝吸附真空系统中的气体分子(H2、N2、Ar)。低温泵主要由制冷循环系统和低温泵泵体两部分组成;制冷系统使用高纯氦气作为制冷剂,对环境无害,工作安全性好。[b](7)机械泵[/b]机械泵是运用机械方法不断地改变泵内吸气空腔的体积,使被抽容器内气体的体积不断膨胀,从而获得真空的装置。它可以直接在大气压下开始工作,极限真空度一般为1.33~1.33×10[sup]-2[/sup]pa,抽气速率与转速及空腔体积的大小有关,一般在每秒几升到每秒几十升之间。[b](8)全量程冷阴极真空规[/b]这是一种全量程的新型冷阴极真空规,它集成了两个独立的真空测量系统(Pirani Cold Cathode冷阴极电离真空计系统),测量范围为5×10[sup]-9 [/sup]1000mbar(1bar=10[sup]5[/sup]Pa),真空技术在20世纪得到迅速发展,并有广泛的应用。20世纪初,旋转式机械泵、皮氏真空计、扩散泵、热阴极电离真空计等真空获得和真空测量设备的相继出现,为质谱技术的发展创造了条件。接着,油扩散泵、涡轮分子泵、离子泵、低温泵等新型真空获得设备的出现,促使真空技术进入超高真空时代,质谱仪器的性能指标也得到了显著提高

  • 实现真空紫外波段测量的手段有哪些?

    在直读光谱仪的实际应用中,如C、P、S、As等元素的最优光谱线均在真空紫外波段,而空气中的氧气及水蒸气等会对这些谱线产生强烈的吸收,使光谱强度急剧减弱,影响元素测量,所以应当将光室中的空气除去。 目前主流市场上主要有两种方式可以实现真空紫外波段元素的测量,光室抽真空或充惰性气体(如氩气、氦气等)。 抽真空型的直读光谱仪需要用额外的真空泵,存在油蒸汽污染严重、噪音大等环境问题。同时,功耗高、真空稳定速度慢,仪器需长期开机,浪费严重。 光室充惰性气体能实现真空紫外探测能力的同时,还具有稳定时间短,无噪音等优点,且能避免由于真空系统造成的光室变形、仪器漂移和环境污染等问题,目前,市场主流光谱仪多采用CCD传感器作为检测装置,光室体积可做到很小,更有利于惰性气体环境建立,从而得到更好的紫外元素分析效果,且该项技术已经过十多年市场验证,稳定可靠。

  • 【求助】关于顶空测试甲醇

    最近用带补集阱的顶空测试甲醇,但在走标线时那些浓度点线性杂乱无章。附件上是甲醇的谱图。小弟初来咋到,请大家多多帮助!

  • 顶空测咖啡粉气味成分的问题

    一朋友做顶空测咖啡粉气味成分的实验,未加溶剂直接提取气体检测,没出峰。想求助下,如果仪器本身设置没问题,直接测能否检测出成分。如果要前处理,加什么溶剂好,谢谢!

  • 气相顶空测试

    [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]顶空测试样品,有个未知峰,而且峰宽跨度达3min多,可能是什么原因造成的呢?求助大神

  • 气相顶空测试

    [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]顶空测试残留溶剂,苯系物浓度为40ug/ml,顶空瓶液体体积为5ul,结果除了溶剂峰,目标组织没检测出来,是不是顶空瓶体积过小?

  • 为什么真空环境下的温度准确测量一定要用真空型热电偶连接器(贯通器)

    为什么真空环境下的温度准确测量一定要用真空型热电偶连接器(贯通器)

    [color=#990000]摘要:针对气密容器中温度测量用的真空型连接器,本文介绍了真空型热电偶贯通器的结构,描述了选用真空型热电偶贯通器的理由,以及使用过程中的注意事项。[/color][size=18px][color=#990000]一、真空型连接器(贯通器)[/color][/size]真空型连接器是安装在气密容器(真空容器、压力容器、气体和流体容器)侧壁上的一种多芯电连接器,如图1所示,其主要功能是在保持气密性的同时在气密容器内外形成导电通道。根据导电用途,可分为各种电源、信号和热电偶用真空型连接器,本文只讨论真空型热电偶连接器。[align=center][img=真空型热电偶连接器,690,345]https://ng1.17img.cn/bbsfiles/images/2021/12/202112141552117680_9525_3384_3.png!w690x345.jpg[/img][/align][align=center][color=#990000]图1 真空型电连接器安装示意图[/color][/align][size=18px][color=#990000]二、真空型热电偶连接器[/color][/size]真空型热电偶连接器是专门用于气密容器上的一种热电偶贯通器,如图2和图3所示。贯通器壳体采用不锈钢,内部采用玻璃密封件,贯通的热电偶线为0.5mm外径的相应热电合金,其中黄线为正极,红线为负极。热电偶线按照标准热电偶型号分为K型、T型和E型等规格。连接器最大耐压为8bar,漏率小于1.33×10-8Pam3/s,绝缘为500MΩ/500VDC。[align=center][color=#990000][img=真空型热电偶连接器,690,294]https://ng1.17img.cn/bbsfiles/images/2021/12/202112141552375799_2706_3384_3.png!w690x294.jpg[/img][/color][/align][align=center][color=#990000]图2 真空型热电偶贯通器及其结构[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=真空型热电偶连接器,690,414]https://ng1.17img.cn/bbsfiles/images/2021/12/202112141552555539_4400_3384_3.jpg!w690x414.jpg[/img][/color][/align][align=center][color=#990000]图3 真空型K型热电偶连接器(贯通器)[/color][/align][size=18px][color=#990000]三、为何要用真空型热电偶贯通器[/color][/size]贯通器是用来连接真空容器内测温热电偶和容器外测量仪表的一个金属材质连接件,按照热电偶中间金属定律,如果贯通器温度不均匀(即热电偶正负极接线处的温度不同),且贯通器采用了与测温热电偶材质不同的金属材料,则会对温度测量带来较大误差。在采用热电偶测量真空容器内的温度时,由于被测温度较高且是真空环境(无对流传热),部分热量会通过热电偶线传递到安装在真空容器侧壁的热电偶贯通器上,由此引起贯通器结点处的温度不均匀。为消除这种温度不均匀带来的误差,贯通器必须使用与测温热电偶相同的热电合金材质。[align=center][color=#990000][img=真空型热电偶连接器,350,350]https://ng1.17img.cn/bbsfiles/images/2021/12/202112141553078207_2707_3384_3.jpg!w450x450.jpg[/img][/color][/align][align=center][color=#990000]图4 热电偶连接器[/color][/align]使用真空型热电偶贯通器时,任何与贯通器直接连接的热电偶线或信号线,只能采用缠绕或压接方式,不能引入其他第三种金属线。因此,需要特别注意的是不能使用任何如图3所示的热电偶连接器,因为这种热电偶连接器的固定螺丝都不是热电合金的第三种金属。[align=center]=======================================================================[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制