当前位置: 仪器信息网 > 行业主题 > >

摩尔检测仪

仪器信息网摩尔检测仪专题为您提供2024年最新摩尔检测仪价格报价、厂家品牌的相关信息, 包括摩尔检测仪参数、型号等,不管是国产,还是进口品牌的摩尔检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合摩尔检测仪相关的耗材配件、试剂标物,还有摩尔检测仪相关的最新资讯、资料,以及摩尔检测仪相关的解决方案。

摩尔检测仪相关的资讯

  • 复旦大学唐惠儒组突破核磁检测的微摩尔瓶颈
    导读 01 复旦大学生命科学学院唐惠儒教授团队在期刊《Journal of the American Chemical Society》上发表了题为“Detecting Submicromolar Analytes in Mixtures with a 5 min Acquisition on 600 MHz NMR Spectrometers”的研究论文,研究人员报告了一种新策略,通过结合探针诱导的灵敏度增强和基于NUS的1H-13C HSQC 2D NMR(PRISE-NUS-HSQC),在经济高效的常规600 MHz光谱仪上进行5分钟采集,即可同时检测复杂混合物中的亚微摩尔氨基化合物。研究背景 02 氨基化合物广泛存在于化学、生物学、医学、食品和环境科学等领域的复杂混合物中,涉及药物杂质、蛋白质代谢、生物系统中的生物胺、神经递质和嘧啶等。核磁共振(NMR)光谱是一种优秀的工具,可以同时鉴定和定量这些混合物中的化合物,但其检测限度(LOD)在几微摩尔以上(5 μM)。研究发现 03 研究人员开发了一种敏感而快速的方法,通过结合探针诱导的灵敏度增强和非均匀采样基于1H-13C HSQC 2D-NMR(PRISE-NUS-HSQC),引入了两个13CH3标记物,分别增加了每个分析物的1H和13C丰度,最多可增加6倍和200倍。这使得能够在5 mm试管中以5分钟采集时间在600 MHz光谱仪上高分辨率检测0.4-0.8μM的分析物混合物。该方法比传统的1H-13C HSQC方法(约50μM,10小时)更敏感且更快。此外,研究人员使用磺胺酸作为单一参考物,建立了一个数据库,涵盖了100多个化合物的化学位移和相对响应因子,从而实现了可靠的鉴定和定量。研究结果 04 综上所述,研究人员通过将探针诱导的灵敏度增强与基于NUS的1H-13C HSQC 2D-NMR相结合,开发出了一种同时定量复杂混合物中氨基化合物的新策略。该方法在多种生物基质中展示了良好的定量线性、准确性、精密度和适用性,为化学、药物、代谢组学、食品和其他混合物的大规模定量分析提供了一种快速而敏感的方法。
  • 珀金埃尔默推出具有集成式单色器选件的多标记微孔板检测仪
    基于滤光片的灵敏度与基于单色器的灵活性完美结合,从而大大增强 EnVision® 检测仪的性能 马萨诸塞沃尔瑟姆 – 生命科学研究、新药研究和细胞科学领域的全球技术领先者珀金埃尔默生命与分析科学部,今日宣布推出两种用于 EnVision® 多标记微孔板检测仪的新型单色器选件,该检测仪被众多生物技术、制药和学术研究人员用于在新药研究过程中筛选化合物。这项新的 EnVision 技术将于 1 月 27 日至 30 日在加州棕榈泉市召开的 2008 实验室自动化大会的 427 号展台展出。利用这一技术,可制造出将基于滤光片技术的灵敏度与单色器的灵活性融为一体的优化型微孔板检测仪。带有单色器的 EnVision 实现了检测技术与应用之间的轻松转换,所有操作都依靠一个性能优于市面上其它台式检测仪的平台完成。 “整合到 EnVision 系统之中的新型单色器选件带来了前所未有的灵活性和速度,大大提高了先导化合物优化过程中化学靶物与先导化合物的比率。”珀金埃尔默生命与分析科学部生物研发业务总裁 Richard Eglen 博士说道,“这一新技术可根据研究人员的需要不断升级,证实了我们在推动微孔板检测仪市场和巩固公认的 EnVision 品牌方面做出的不懈努力。” EnVision 多标记微孔板检测仪可在每项应用中针对每种标记都表现出卓越性能。新型单色器选件将 EnVision 变为性能极致的双模式仪器,既能检测吸光度也能检测荧光强度。这种单色器选件具备两种使用模式,“吸光度单色器”使用单个单色器测量吸光度,而“荧光强度单色器”用两个双光栅单色器来测量吸光度和荧光强度。 微孔板检测仪的模块化设计针对实验室不断变化的应用需求和不断提高的通量需求提供了可升级的解决方案。可将单色器选件与其它 EnVision 选件结合使用,包括 TRF(时间分辨荧光)LASER,它能发出强烈的短时间激发脉冲,从而实现极佳的信噪比。 EnVision 仪器可方便地集成到全自动系统中(如珀金埃尔默的 JANUS® 自动化工作站),旨在提供最大的配置灵活性,并可以使用 1 到 3456 孔微孔板。与高精度分液器设备和温度控制器配合使用时,EnVision 可以执行快速的动力测量、酶检测和其它多种基于细胞的新药研究检测。经过优化的 EnVision 还体现了珀金埃尔默专有的 AlphaLISA® 技术,利用该技术可以对复杂样品(如血清和血浆)中的大生物分子进行同质测量而无需清洗过程。 有关带有单色器选件的 EnVision 多标记微孔板检测仪的详细信息,请访问 http://www.perkinelmer.com\platereaders
  • 仪器新应用!普林斯顿大学通过多种探测设备揭示莫尔材料中的新物理机制!
    【科学背景】莫尔材料是通过旋转或晶格错位设计的高度可调的强关联二维材料,因其在拓扑和电子关联效应方面的独特特性成为了研究热点。然而,其存在的主要挑战在于理解和控制这些材料中出现的复杂电子相行为。莫尔材料中的平坦能带结构极大地增强了库仑相互作用,导致一系列集体电子相的产生,包括相关绝缘体、非常规超导体和拓扑相。这些相的微观机制复杂多样,且往往对环境参数(如温度、外磁场和电场)非常敏感,使得实验研究和理论建模都面临巨大挑战。有鉴于此,美国普林斯顿大学Kevin P. Nuckolls & Ali Yazdani教授两人在“Nature Reviews Materials”期刊上发表了题为“A microscopic perspective on moiré materials”的研究论文。科学家们提出了多种局部探测技术以深入研究莫尔材料中的电子相行为。例如,局部光谱学、热力学和电磁探测技术被广泛应用于探测这些材料中的电子态和相变。具体而言,扫描隧道显微镜(STM)和扫描透射电镜(STEM)等局部探测工具能够直接观察到莫尔材料中的局部电子态和结构变化。这些技术帮助科学家揭示了莫尔材料中相关绝缘体、广义Wigner晶体、非常规超导体、莫尔铁电体和拓扑轨道铁磁体等多种电子相的形成机制。通过这些研究,科学家们不仅识别了莫尔材料中的基本物理机制,还发现了一些通过传统全局探测手段无法观察到的脆弱量子相。此外,新开发的局部电荷传感和量子干涉探针技术进一步揭示了莫尔材料中的新物理可观测量。【科学亮点】1. 实验首次通过旋转或晶格失配设计出莫尔材料,产生了高度可调的二维材料平台。&bull 莫尔材料通过相同二维原子晶体的旋转错位或不同二维原子晶体的晶格失配设计而成。&bull 这些材料形成了长波长的干涉图案,导致平坦的电子能带,非常有利于相关的集体物质相的形成。2. 实验揭示了莫尔材料中的电子关联效应和拓扑保护特性。&bull 莫尔材料中,电子之间的库仑相互作用主导系统的动力学,使得相关相得以形成。&bull 这些材料的低能带结构由与六方原子晶格相关的狄拉克物理描述,具有内在的自旋-轨道耦合,有利于拓扑特性。3. 实验通过局部光谱学、热力学和电磁探测技术,发现了多种奇异的电子相态。&bull 这些技术揭示了相关绝缘体、广义Wigner晶体、非常规超导体、莫尔铁电体和拓扑轨道铁磁体等奇异相的基本机制。&bull 局部探针技术,如局部电荷传感和量子干涉探针,揭示了新的物理可观测量,发现了脆弱的量子相态。4. 实验展示了旋转错位和晶格失配设计的多样性及其产生的丰富物理现象。&bull 旋转错位设计涵盖了多种莫尔同质双层和多层结构,包括扭曲单层、双层、三层、四层和五层石墨烯,以及扭曲的过渡金属二硫化物(如WSe2、WS2、WTe2和MoTe2)。&bull 晶格失配设计涵盖了对准的异质双层TMDs(如WSe2/WS2和MoTe2/WSe2)和对准的石墨烯/六方氮化硼(hBN)异质结构。【科学图文】图1:莫尔材料的相图。图2. 在双层魔角石墨烯中,电子跃迁的平坦电子带和级联。图3. 在莫尔石墨烯中的相关绝缘体。图 4:在莫尔过渡金属二硫属元素化物中,相关绝缘体的成像。图5:在莫尔石墨烯中,相关驱动拓扑相的局部传感。图6: 成像轨道铁磁性和莫尔铁电性。图7: 在莫尔石墨烯中,非常规超导电性的光谱探针。【科学结论】本文展示了莫尔材料作为一种新兴材料类别在量子材料领域中的引人注目的研究前景。通过对莫尔材料的局部探测和研究,揭示了其复杂的电子相态和奇异性质,为我们理解强关联量子系统提供了独特的视角。特别是,莫尔材料展现了拓扑和关联效应的独特结合,产生了许多未曾在自然界其他材料中观察到的新奇电子相。本文呼吁进一步发展新的局部探针技术,以解决现有技术的局限性,促进对莫尔材料的更深入理解。同时,强调了继续在莫尔材料中寻找和理解未实现的奇异量子相的重要性,特别是对零磁场下稳定的分数Chern绝缘体(FCIs)的研究。这将推动我们对莫尔材料及其潜在应用的全面认识,为未来量子材料研究和技术应用开辟新的可能性。原文详情:Nuckolls, K.P., Yazdani, A. A microscopic perspective on moiré materials. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00682-1
  • 仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!
    【科学背景】摩尔纹超晶格是指在两个二维材料或层状结构叠加时形成的周期性结构,能够引发出多种量子现象,如超导性和莫特绝缘体。然而,迄今为止,这些研究主要集中在范德华层材料上,其层间相互作用较弱,限制了能量调制的深度和在室温下的应用。具体而言,范德华层材料的摩尔图案受到其相对弱的范德华力的限制,这导致形成的平带对热波动和杂质非常敏感,因此在低温下观察到的平带物理现象远多于室温条件下的观察。为了克服这一限制,科学家们开始寻找更强的层间相互作用,以增加能量调制的深度,从而实现室温下的摩尔纹材料在此背景下,二维卤化物钙钛矿被提出作为一个潜在的解决方案,因其具有离子键合和更强的层间耦合能力。然而,要实现这一概念,必须克服多个技术难题。首先,传统的二维钙钛矿合成方法通常依赖于有机配体,这些配体太过庞大,阻碍了层间的电子耦合,从而不利于摩尔纹超晶格的构建。其次,控制二维钙钛矿的厚度和侧向尺寸,尤其是在特定扭角下的生长,是一项具有挑战性的工程任务。为了解决这些问题,美国普渡大学(Purdue University)Letian Dou & Libai Huang教授、中国科学技术大学张树辰,上海科技大学Yuan Lu等教授携手开发了一种新的合成方法,成功制备出无配体、超薄、大面积的二维卤化物钙钛矿晶体。这些人工扭曲的结构展现了清晰的方形摩尔纹图案,并在扭角约为10°时显示出局域的激子和电荷。通过高分辨透射电子显微镜和瞬态光致发光显微镜等技术手段,研究团队验证了这些摩尔纹超晶格的形成及其在平带物理方面的潜力。【科学亮点】(1)实验首次展示了利用超薄、无配体卤化物钙钛矿构建摩尔纹超晶格的成功尝试。此前,大面积的二维非范德华材料在控制厚度和扭角方面存在挑战,本研究通过合理的合成方法克服了这些难题,成功制备了具有方形摩尔纹图案的扭曲钙钛矿层。(2)实验通过高分辨透射电子显微镜清晰展示了这些超薄钙钛矿层的方形摩尔纹超晶格,这些结构在扭角约为10°时显现出局域的明亮激子和捕获的电荷。(3)通过扭角依赖的瞬态光致发光显微镜和电学特性表征,研究发现摩尔势阱引起的局域激子导致了显著增强的激子发射。这些结果不仅验证了理论预测的平带增加的振子强度,也展示了扭曲钙钛矿结构作为独特的室温摩尔材料平台的潜力。【科学图文】图1: 通过平衡溶液方法和表征,将RP-相二维2D钙钛矿转化为APbX3相。图2. 在钙钛矿转角层twisted perovskite layers,TPLs中的方形莫尔图案。图3. 在MAPbI3 钙钛矿转角层TPLs中,依赖于转角的激子输运和湮灭。图 4. 在MAPbI3 钙钛矿转角层TPLS中,依赖于扭转角的光致发光photoluminescence,PL发射。【科学结论】本研究揭示了扭曲的二维卤化物钙钛矿超晶格作为新兴的室温摩尔激子材料平台的潜力,通过引入超出传统范德华相互作用的离子层间耦合。这不仅拓展了摩尔材料的选择范围,还为光发射、光-物质相互作用等应用(如激子激光和激子极化子)提供了新的探索可能性。激子的增强振子强度不仅为设计能量和电荷传输功能提供了更多机会,还为太阳能电池和LED等领域的应用开发提供了潜在的技术路径。此外,通过调节阳离子和外部压力来控制层间距离,我们展示了钙钛矿结构的高度可调性,这为优化摩尔激子的定域和性质提供了有力工具。未来,进一步研究晶格松弛效应对摩尔平带稳定性的影响,并推动更完善的理论模型和改进的显微镜技术,将有助于深入理解这一新兴领域的基础物理与应用潜力。原文详情:hang, S., Jin, L., Lu, Y. et al. Moiré superlattices in twisted two-dimensional halide perovskites. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01921-0
  • 台积电副总裁:不在乎摩尔定律存亡,3D芯片封装推动持续进步
    摩尔定律曾指出,半导体市场的经济性完全基于晶体管密度,而很少考虑功率。然而,随着应用的发展,芯片生产商已将重点放在功率、性能和面积(PPA))改进上,以继续稳步前进。在一次采访中,台积电业务开发资深副总裁、工艺技术负责人Kevin Zhang表示,只要整体进步继续,他就不关心摩尔定律的存亡。面对摩尔定律是否已死的提问,Kevin Zhang表示:“我简单的答案是:我不在乎,只要我们能继续驱动技术微缩,我不在乎摩尔定律是生是死。”事实上,台积电的优势在于它每年都能推出一种新的工艺技术,并提供客户寻求的性能、功率和面积(PPA)改进。大约十年来,苹果一直是台积电的最尝鲜客户,这就是为什么台积电工艺技术的演变与苹果处理器的演变非常吻合。然而,当研究台积电在苹果芯片之外的实力时,人们将注意到AMD的Instinct MI300X和Instinct MI300A芯片具有人工智能(AI)和HPC(高性能计算)功能。这两款产品都广泛使用台积电的2.5D和3D先进封装,或许是展现台积电能力的最佳范例。事实上,台积电及其客户专注于3D微缩技术。“观察人士基于平面微缩狭隘地定义了摩尔定律——现在情况已不再如此,我们实际上继续寻找不同的方法将更多功能和能力集成到更小的外形尺寸中。我们继续实现更高的性能和更高的能效。因此从这个角度来看,我认为摩尔定律或微缩技术将继续下去。”当被问及台积电在渐进式工艺节点改进方面的成功时,Kevin Zhang澄清说,我们的进步远非微不足道。台积电强调,该代工厂从5nm到3nm级工艺节点的过渡导致每代PPA改进幅度超过30%。台积电继续在主要节点之间进行较小但持续的增强,以使客户能够从每一代新技术中获益。
  • 中南大学在莫尔超晶格量子器件研究领域取得新成果
    近日, 中南大学物理与电子学院教授刘艳平、何军与美国加州州立大学北岭分校Gang Lu、澳大利亚悉尼大学刘宗文以及湖南大学潘安练、段曦东教授等国内外学者合作,在《先进材料》(Advanced Materials)上发表题为“TMDCs莫尔超晶格层间耦合效应的量子调制”的研究论文。中南大学物理与电子学院为该项研究成果的第一完成单位,博士后郑海红博士为论文第一作者,刘艳平教授为论文的通讯作者。在范德瓦尔斯材料中,层间扭曲或晶格失配可以形成莫尔超晶格(Moiré superlattices),其周期随着扭曲角的变化而连续变化。莫尔超晶格可以产生空间周期性的莫尔势,改变材料的电子和能带结构,从而产生强相关联的量子现象,为研究多体系统的量子模拟提供了可能,促进了量子光学器件的发展。二维莫尔超晶格为探索新的强相关联的物理现象提供了一个强大的平台,这些现象都取决于界面层间耦合相关的莫尔势。目前,莫尔超晶格主要通过机械剥离技术和人工堆叠方法制备。然而,人工转移方法不可避免地造成由不纯界面引发的层间耦合在空间上的不均匀性,阻碍了对周期性莫尔超晶格物理性质及其应用的深入理解。因此,直接生长具有均匀的层间耦合和最小晶格重构的莫尔超晶格仍然是一个挑战,对莫尔超晶格的应用构成严重限制。针对这一难题,该研究创新性通过Sn原子辅助生长克服堆积自由能,并使用CVD生长技术直接制备了不同扭角的WSe2莫尔超晶格。利用低频拉曼散射光谱验证了其均匀性,证明了强的界面耦合。扭曲角为1.5°的CVD生长的莫尔结构的莫尔势比人工堆叠的更深(增加了155%),表明界面耦合可以调节莫尔势的深度。第一性原理模拟揭示了莫尔超晶格中的平带现象,为莫尔激子的产生提供了理论基础。本研究成果提出了一种合成二维莫尔超晶格的新方法,并为设计和优化其莫尔性能提供了策略,这种新策略将有望用于量子计算、量子通讯、新型超导体等领域。研究者通过Sn原子辅助下克服堆积自由能,采用CVD生长技术制备了具有不同扭曲角的WSe2莫尔超晶格。受访者 供图据悉,“低维物理与量子器件”是中南大学物理与电子学院特色研究方向和“十四五”规划重点发展支持方向之一。此项研究得到了国家自然科学基金面上项目、湖南省自然科学基金杰出青年项目、湖南省重点研发项目、湖南省芙蓉学者特聘教授基金、中南大学创新驱动青年团队项目、中南大学高性能复杂制造国家重点实验室自主研究课题、澳大利亚ARC Discovery、博士后面上项目等多个项目的支持,并获得中南大学高性能计算公共平台在材料结构计算等方面提供的有力支持。
  • 卓立汉光专访南京工业大学的王琳教授:后摩尔时代中的二维光电材料
    北京卓立汉光仪器有限公司(以下简称卓立汉光)于8月24日-25日在南京举办第四届“逐梦光电”国产光电分析仪器研制与应用研讨会。来自南京工业大学的王琳教授在会议期间接受卓立汉光《视点前沿》栏目的采访,奇思妙想探索二维光电材料制备与应用王琳教授课题组研究方向是二维光电材料与器件,主要分为三个子方向,即材料、物理、信息。*一个材料方向是关于二维光电材料本身的设计和制备,主要面向有化学材料背景的同学们,同学们可以根据自己的奇思妙想,利用一些比较新奇的制备方法去制备具有优异光物理特性和光电器件性能的材料,这些材料主要是以二维钙钛矿为代表的二维卤化物。第二个是物理方向,需要通过二维卤化物或者二维半导体与其他材料通过范德华异质结进行组装,从而研究由界面、电荷或能量传递引起的发光物理上的特性。这个方向适合具有良好物理知识背景的同学去从事。第三个是信息方向,当课题组制备出性能优异的光电材料并深入了解了其光物理特性之后,需要针对光电器件的应用去开发原型器件,包括存储器、晶体管和光电探测器等。目前王琳老师课题组的学生及老师一共有40余人。二维材料与后摩尔时代(Post-Moore Era)英特尔创始戈登摩尔在60多年前提出摩尔定律,描述电子器件在近几十年来的发展趋势。指的是每18-24个月,电子器件的集成密度会翻倍。随着器件的特征尺寸逐渐逼近了材料和器件的物理极限,大家发现这个摩尔定律失效了,由于后摩尔时代就出现了。王琳老师介绍道:“后摩尔时代有两条常规的发展路径。一是 “More Moore”(延续摩尔),更多的是采用更加激进的方法将器件的特征尺寸更加微缩化,使得集成密度提升到更高水平,主要是从尺寸集成角度来讲,希望材料能有底层的创新。第二是超越摩尔,也就是“More than Moore”。更多的是强调单一的器件功能的丰富化,比如把传感、存储、计算等功能集成在一个单一器件,使得器件功能更加丰富,从而提升集成的密度。这样单位面积上的器件的数量和功能得到很大提升,满足大家对集成器件更高的要求。搭建在显微镜上的圆偏振发光(CPL)王琳老师近年部分研究聚焦在低维材料的圆偏振发光中。课题组近期《NANO LETTERS》上发表了一篇文章(Stimulating and Manipulating Robust Circularly Polarized Photoluminescence in Achiral Hybrid Perovskites),文章通过二维的范德华力把二维非手性钙钛矿和二维手性钙钛矿连接起来,制备得到的材料在室温下的CPL强度有了数量级的提升。王琳老师分享了课题组在圆偏振显微镜的搭建的经验:“圆偏振发光显微系统的搭建需要用到四分之一玻片,我们可以在谱仪的激发或者发射端通过四分之一玻片的加入实现CPL特性的测量。CPL特性有三种测量方法:激发侧起偏、发射侧检偏和二者的结合。CPL也是表征二维材料如二硫化钼、二硒化钼等材料的一种重要方法。CPL*大应用方向是自旋光电子器件,我们以前主要考虑电荷传输及电荷量,但是经研究发现自旋作为载流子另外一个维度的调控,可以进一步丰富器件的功能,出现很多新奇的特性,而圆偏振光在这个方面是很好的表征手段。”与卓立汉光一起成长的科研历程作为卓立汉光的老朋友,王琳老师提到,她们课题组的发展和卓立汉光是密不可分的。她回忆道:“我在2017年认识了卓立汉光的董磊副总经理,当时我们有一个很好的想法,那就是能不能去集成适合研究二维材料微纳光电系统的全国产化设备,包括荧光、拉曼、光吸收、微纳LED测量,包括低温和磁场环境等。我当年刚回国,怀揣对祖国的热情,对国产仪器也有别样的情怀。董总问我,你敢不敢做*一个吃螃蟹的人,我当时也没有什么犹豫,就和董总达成了这样的协议。”通过六年的发展,王琳老师说,她觉得当初的选择是对的。她在当初选择了国产品牌并与它一起成长,虽然并不是每一台国产仪器都是完美的,但是她也见证国产仪器从不完美或是比较稚嫩的状态走向一个逐渐完美强大的发展过程。“这个过程和我自身的科研经历相似,我也是从一个懵懵懂懂的科研工作者,慢慢看清楚自己想做什么。有些虽然没有做到,但是已经确定了一个非常坚定的目标,我也非常感谢和卓立汉光一起成长的过程。‘’结束语在采访中,王琳老师深入浅出为我们科普了后摩尔时代,也让我们看到了二维光电材料与器件的发展潜力。*后当王琳老师娓娓道来她与卓立汉光一起成长的故事的时候,我们也十分感动并非常荣幸能够参与到这个与科研工作者一起成长的历程中。非常感谢王琳老师对卓立汉光的信任,也希望能与王老师一起见证二维光电器件在后摩尔时代中的巨大魅力。王琳教授简介王琳,南京工业大学教授、博士生导师、国家海外高层次青年人才引进计划入选者。长期从事低维异质集成材料与器件的研究工作。目前已发表学术论文90余篇,以(共同)通讯作者身份在Nat. Mater.、Nat. Commun.、Adv. Mater.、Angew. Chem. Int. Ed.、Nano Lett.、ACS Nano、Light Sci. Appl.、Nano Today等发表论文40余篇。曾荣获国际健康、科学与工程组织*佳研究员奖、国际先进材料学会奖章、欧洲材料学会青年科学家奖、江苏特聘教授、江苏省“六大人才高峰”高层次人才A类等荣誉。当选国际先进材料协会会员、欧洲先进材料大会科学顾问委员、柔性电子材料与器件工信部重点实验室学术委员会委员、InfoMat、中国激光杂志社、Frontier of Physics青年编委等。
  • 后摩尔时代石墨烯面临的挑战与机遇
    从“买不到”到“买不起”,自2020年底开始的全球范围内的“缺芯荒”,有着愈演愈烈之势,芯片价格飙涨至5倍仍不见停。全球性芯片荒似乎没有经过多少时日,就如多米诺骨牌一样,冲击着全球百余行业,从汽车、钢铁产品、混凝土生产到空调制造,甚至包括肥皂生产,都或多或少受之影响,多位业内专家表示,至少要到2022年全球芯片供应链才能恢复正常化。随着5G通讯、智能汽车及线上化办公的发展,仿佛一夜之间人们对芯片的需求就提升了数个级别。芯片产业的发展,对单晶晶圆及单晶硅材料的需求也一夜暴涨。众所周知,单晶晶圆及单晶硅材料是制造半导体芯片的基本材料,也是集成电路产业的基石。目前最广泛使用的半导体晶圆材料为单晶硅晶圆,此外还有以砷化镓(GaAs)、磷化铟(InP)为代表的第二代半导体材料,以及以碳化硅(SiC)、氮化镓(GaN)等为代表的第三代半导体材料。1975年,Intel创始人之一的戈登摩尔提出摩尔定律后,集成电路一直沿着“当价格不变,每18个月晶体管的密度增加一倍、性能提升一倍”的路径发展。单晶硅作为芯片产业中最为关键的基础材料已发展了数十年,在晶体管尺寸接近物理极限、经济成本越来越高的当下,集成电路发展遇到了挑战,产业发展进入“后摩尔时代”,如何在摩尔定律之外进行材料创新,更显得尤为重要。6月9日,世界半导体大会在南京召开,中国科学院院士、上海交通大学党委常委、副校长毛军发在主题演讲中表示,集成电路的发展有可能会绕开摩尔定律,往异质集成电路上发展。所谓异质集成电路,即是将不同工艺节点的化合物半导体高性能器件(芯片)、硅基低成本高集成器件/芯片(都含光电子器件或芯片),与无源元件或天线,通过异质键合成或外延生长等方式集成而实现。而在这个过程中,单晶化石墨烯无论是作为外延生长衬底材料,还是新型器件材料,都拥有广阔的发展空间。石墨烯是由碳原子组成的六角蜂窝状二维原子晶体材料,具有线性色散的狄拉克锥形能带结构,载流子有效质量为零,迁移率极高,拥有非常优异的物理性能。而石墨烯薄膜材料又有单晶和多晶之分。与传统的多晶石墨烯相比,单晶化石墨烯具有多种优势。多晶石墨烯晶粒畴区小且不均一,晶粒尺寸通常为5-20 µm,但单晶的晶粒最大可达厘米级。单晶石墨烯的载流子迁移率室温下约为 300000 cm2/Vs,远高于多晶石墨烯由于存在晶界限制的1000-3000 cm2/Vs。此外,多晶石墨烯层数调控性差,且存在大量的本征缺陷,这导致了其电学、力学、热学等诸多优良性质的降低。相比之下,单晶石墨烯性能优异,可构筑高性能的电子器件或光电子器件,逐渐成为硅基电子学器件的有力竞争者和补充者。石墨烯材料想要进入芯片、光电等高精尖领域,类比于基于硅晶圆的硅电子器件,基础则是单晶化石墨烯材料的批量制备。图1 北京石墨烯研究院单晶石墨烯晶圆(左)与多晶石墨烯(右)光镜图像对比欧盟石墨烯旗舰计划(Graphene Flagship)提供了一种新颖的单晶石墨烯生长技术,即通过光刻技术在衬底表面打上用于石墨烯单晶晶体生长的“晶种”,随即通过调控生长技术,控制石墨烯晶体在指定位置的晶种上生长,最后形成约100 μm级的单晶石墨烯晶体。这种方法可以自由控制晶体生长位置,便于在制备光电子器件前期妥善排布材料空间,同时降低了各类生长耗材的使用。然而,这种制备方式虽然技术可控,但工艺难度较高,生长效率低,不便进行产业化放大,难以满足市场中日渐增长的产业需求。图2 a-d为欧盟旗舰计划“晶种”技术单晶石墨烯生长及转移过程;e为单晶石墨烯阵列SEM图像;f为单晶石墨烯在铜箔上的光镜图像;g为转移至SiO2/Si后的光镜图像高品质单晶石墨烯是目前全球范围内对石墨烯材料性能和品质最极致的追求。市场数据表明,欧盟石墨烯旗舰计划目前最大单晶石墨烯尺寸在4厘米级,且仍旧处于科研研发状态,欧洲最大CVD石墨烯生产商Graphenea也仅能产业化制备晶畴为20 μm的多晶石墨烯材料,远低于集成电路产业的要求。我国虽然是石墨烯制备的产业大国,无论在企业数量还是石墨烯产能上,都傲居全球榜首,但主要集中在粉体材料或低品质多晶薄膜材料,而高品质石墨烯薄膜的批量制备技术依然是当前石墨烯产业发展的瓶颈。根据CGIA公开数据显示,截至20年底,中国拥有约1.7万家石墨烯相关注册企业,但据统计,真正开展业务的仅3000余家,而粉体制备及相关应用企业占据绝大多数。同时,由于缺少稳定的生长工艺和可靠的制造装备等原因,传统CVD制备方式批量生产的单层石墨烯薄膜材料多为多晶石墨烯,从事高端单晶化CVD石墨烯薄膜的企业更是寥寥无几。毫无疑问,单晶石墨烯生长工艺更加复杂,处理技术更加困难,但单晶石墨烯没有晶界,具有更高的平整度、机械性能、均一性及光电性能,是石墨烯应用于高性能电子及光电器件集成的理想材料。尤其是在异质集成、生物传感器、第三代半导体及其外延材料的生长上,对单晶化石墨烯材料有着更高品质的要求。北京石墨烯研究院(BGI)及刘忠范院士团队深耕石墨烯产业十数年,在单晶化大尺寸石墨烯薄膜生长上突破了产业化的技术壁垒,通过特殊的衬底处理工艺,可实现A3尺寸衬底上高品质石墨烯薄膜的宏量制备,年产能15000片/年,以及10x10 cm2铜基单晶石墨烯薄膜的制备,年产能90000片/年。无论在产品尺寸、晶粒畴区还是质量上,北京石墨烯研究院单晶化石墨烯产品都拥有无可比拟的优势。表1 北京石墨烯研究院单晶石墨烯产品参数尺寸通过短短五个月的市场化试运行,北京石墨烯研究院的单晶石墨烯产品已收获包含军方、中车集团、新加坡国立大学等国内外50余家一流高校科研院所与企业的订单,其中超半成和异质结构、半导体材料、光电器件相关。北京石墨烯研究院的单晶化石墨烯产品,逐渐在异质集成领域崭露头角。基于强大的市场需求及核心基础地位,伴随疫情带给社会生活的巨大改变,全球都在加码发展半导体产业。“未来的变化是产业‘赛道’可能会变,新材料和新架构的颠覆性技术将成为后摩尔时代集成电路产业的主要选择。”赛迪顾问股份有限公司副总裁李珂在2021世界半导体大会上如是表示。后摩尔时代,异质集成作为绕道摩尔定律创新的途径之一,结合石墨烯等新兴光电新材料,开辟石墨烯颠覆性应用技术,为我国早日实现“中国芯”具有重要意义。
  • 四川药检所采购大批检测仪器 涉及43类62台
    2010年6月10日,四川省政府采购中心发布公告,受四川省食品药品检验所委托对一批实验室设备进行国内公开招标,此次招标仪器涉及45类62台。详情请见附件。 附件:   四川省食品药品检验所实验室设备政府采购项目公开招标公告   四川省政府采购中心受省食品药品检验所的委托,拟对一批实验室设备进行国内公开招标,兹邀请符合本次招标要求的供应商参加投标。   一、招标编号:川政采招[2010]053号   二、招标项目: 分包号 设备名称 第一包:药品检验基础设备 TOC测定仪(进口) 1台 氮吹仪(全自动浓缩工作站)(进口) 2台 紫外分光光度计(进口) 1台 费休式水分测定仪(进口)1台 液相色谱仪(进口)1台 分析天平(百分之一)(进口)4台 分析天平(十万分之一)(进口)3台 氢气发生器(进口)2台 全自动集菌仪(进口)2台 澄明度检测仪(进口)1台 微波马弗炉(进口)1台 胶体渗透压测定仪(进口)1台 全自动细胞洗涤机(进口)1台 第二包:食品、化妆品检验设备 原子吸收分光光度计(进口)1台 红外分光光度计(进口)1台 第三包:医疗器械检测基础设备 无线发射温度测试仪(进口)1台 电器安全检测用温度角1套 信号发生器(心电监护用)1台 第四包:药包材检测基础设备 正置生物显微镜(进口)1台 微粒检测显微镜(进口)1台 水蒸气透过量测试仪1台 透气性检测仪(进口)1台 红外裁刀(进口)1台 气相色谱仪(进口)1台 自动顶空进样器2台 第五包:国产常规设备 暗箱式三用紫外分析仪1台 真空泵1台 漩涡混合器1台 离心机1台 空气压缩机1台 超纯水仪1台 电热恒温鼓风干燥箱2台 渗透压摩尔浓度测试仪1台 恒温摇床培养箱1台 不溶性微粒测定仪2台 超声波清洗机 3台 融变时限试验仪2台 固相萃取仪1台 低速大容量离心机1台 光化学衍生器1台 二氧化碳培养箱1台 第六包:电磁兼容实验室系统 电磁兼容暗室(进口)1套 第七包:气相-质谱联用仪 气相/质谱联用仪(进口)1套 第八包:液相/质谱联用仪 液相/质谱联用仪(进口)1台 第九包:高效液相色谱检测设备 超高效液相色谱仪(进口)1台 液相色谱仪(进口)3台   三、资金来源:财政预算安排资金   四、投标人应具备的资格条件:   1、具有独立承担民事责任的能力   2、非投标产品制造商必须获得产品制造商的授权   3、具有良好的商业信誉和健全的财务会计制度   4、具有履行合同所必须的设备和专业技术能力   5、具有依法缴纳税收和社会保障资金的良好记录   6、参加本次政府采购活动前三年内,在经营活动中没有重大违法违规记录   五、供应商家数计算:   投标产品为同一品牌同一型号的视为一家,如果有多家供应商以同一品牌同一型号产品参加投标的,应作为一个投标人计算,以符合招标文件要求的最低报价者为该品牌及型号产品的唯一有效投标人。   六、资格审查:   除明确要求在购买招标文件时需提供的资格证明文件外,本项目投标供应商的资格条件在评标时进行审查。供应商应在投标文件中按招标文件的规定和要求附上所有的资格证明文件,要求提供的复印件必须加盖单位印章,并在必要时提供原件备查。若提供的资格证明文件不全或不实,将导致其投标或中标资格被取消。   七、招标文件发售时间、地点:   招标文件自2010年6月11日至2010年6月25日(节假日除外)每天9:00-12:00、14:00-17:00在四川省政府采购中心计划财务科购买。招标文件售价:人民币200元/包(招标文件售后不退,投标资格不能转让,购买招标文件公司名称与投标公司名称必须一致)。   供应商购买招标文件时应出示从四川政府采购网(www.sczfcg.com)上下载的“介绍函”。   八、投标截止时间和开标时间:2010年7月6日上午10:00时(北京时间)。   投标文件必须在开标当日于投标截止时间前送达开标地点。逾期送达或密封和标注不符合招标文件规定的投标文件恕不接受。本次招标不接受邮寄的投标文件。   九、开标地点:四川省政府采购中心开标大厅。   十、本投标邀请在四川政府采购网上以公告形式发布。   十一、采购人: 省食品药品检验所   联系人: 母兵   联系电话:87877117   十二、采购代理机构:四川省政府采购中心   地 址:成都市玉沙路155号福德酒店二楼   邮 编:610041   联系电话:86961812(采购二科) 联 系 人:兰云   86961794 (综合科)   86961778(计划财务科)   四川省政府采购中心   二O一O年六月十日
  • PerkinElmer 推出全新创新性多模式微孔板检测仪
    中国,上海&ndash 2014年6月24日-专注于提高人类健康及其生存环境安全的全球领先公司PerkinElmer Inc. 今天宣布推出EnSight&trade 多模式微孔板检测仪。EnSight系统是市面上第一款将标记、无标记检测功能和先进成像技术(能够进行细胞成像)整合到同一台式系统上的微孔板检测仪,能够帮助研究者们在同一平台上进行试验&mdash &mdash 以便在新药研发过程中更早地获得可靠的预测结果。   科学家们可以将EnSight系统应用在癌症、细胞毒性、生物治疗、表观遗传学和原代/干细胞等研究领域。EnSight系统能够帮助研究者们获得更为可靠的读数,并通过样品生成更多类型的数据 还可以利用EnSight微孔板不同的技术模式进行确证检测,确保不会因使用的检测技术限制而导致结果有所偏差。   &ldquo 对于EnSight系统,我们将PerkinElmer在细胞成像领域内业界领先的专业技术应用在我们的多模式微孔板检测仪技术上。由此,我们开发了一套创新性系统帮助研究者们加快研发全新治疗方案的进程。&rdquo PerkinElmer 生命科学与技术部总裁Brian Kim 表示。   EnSight系统的细胞成像功能使研究者们可以快速可视化细胞并生成单细胞数据。在使用原代/干细胞时,此单细胞数据比传统多模式检测技术生成的典型单孔数据更具细胞生物学的相关性。   EnSight系统不仅具有独一无二的检测技术组合,还配备了全新的Kaleido&trade 数据采集和分析软件。此类软件拥有基于工作流程的向导式界面,让用户可以快捷方便地设置和运行检测,执行细胞计数等分析任务,并生成图片和报告。   除了细胞成像功能之外,EnSight系统结合了Alpha 技术、PerkinElmer 的 LANCE® 和 DELFIA® TRF 检测平台。这套系统还采用了Corning® Epic® 无标记技术,可提供有关细胞和生物化学系统丰富的生理相关性数据,并且不受标记干扰。   更多有关EnSight 系统的详细信息,请访问 www.perkinelmer.com/ensight。   关于 PerkinElmer, Inc.   PerkinElmer, Inc.是一家专注于提高人类健康及其生存环境安全的全球领先公司。据报道,该公司2012年收入约为21亿美元,拥有约 7,500名员工,为超过150个国家/地区的客户提供服务,同时该公司也是标准普尔500指数的成员。有关其它信息,请访问 www.perkinelmer.com。
  • 珀金埃尔默在候选药物检测仪器领域新推出 VICTOR™ X 多标记微孔板检测仪平台
    推出 VICTOR™ X 多标记微孔板检测仪平台,为新药发现和研究客户提供更高的灵活性 圣路易斯 – 健康科学和光电子学领域的全球技术领先公司珀金埃尔默有限公司(NYSE:PKI),今日在生物分子科学学会 (SBS) 第 14 届年会和展会上宣布推出 VICTOR™ X 多标记微孔板检测仪平台。该新型 VICTOR X 平台将为客户提供更高的灵活性,同时其增强的多功能性将支持初步筛查之外的更多新应用领域,包括质量控制和治疗研究。 VICTOR X 平台是珀金埃尔默一流的 VICTOR 系列台式多标记检测仪器的最新版本,这些检测仪器广泛用于各种规模的研究实验室,包括学术中心、制药和生物技术筛查实验室、新药研究团体以及疾病与治疗领域的研究团体。 “自从 VICTOR 平台作为市场上首个满载式多标记微孔板检测仪之一推出之后,珀金埃尔默就一直不断努力满足客户在新药发现和研究领域对各种可靠、易于使用和经济节约的解决方案的需求,”珀金埃尔默有限公司生物研发业务总裁 Richard Eglen 博士说道,“在 VICTOR X 的开发过程中,我们大量吸取了客户的反馈意见,打造出了具备可升级软件的增强型产品,该软件不仅可以进行定制,而且具备可扩展性,易于与研究应用程序相集成。我们的客户现在能够更轻松地创建新方案,或从若干个基于应用程序的预设方案中选择一个方案来运行。” 增强的软件包具有以下功能:帮助创建新方案的改进型“启动向导”;预设的基于应用程序的示例方案;以及用于实时监控细胞和酶学检测的改进的动力学支持。VICTOR X 装置还可以很方便地进行重要附件的现场升级,用户可以随着需求的变化来增添功能。
  • 蒋尚义:集成芯片将是后摩尔时代的发展趋势
    近日,蒋尚义在回归中芯国际之后首次公开亮相,出席了第二届中国芯创年会,并发表演讲。据科创板日报报道,蒋尚义此次演讲提出了多个观点,如摩尔定律的进展已接近物理极限;后摩尔时代的发展趋势是研发先进封装和电路板技术,即集成芯片;半导体主要芯片已不再掌握在少数厂商;以及中芯国际先进工艺和先进封装都会发展、半导体产业需建立完整的生态环境才能在全球市场竞争中取胜等。蒋尚义指出,先进工艺研发是基石,因应摩尔定律的发展规律,先进工艺长期持续发展是毋庸置疑的。在此摩尔定律趋缓与后摩尔时代逼近的关键时刻,提前布局,先进工艺和先进封装双线并行的发展趋势显得尤为必要。而研发先进封装和电路板技术,目标是使芯片之间连接的紧密度和整体系统性能类似于单一芯片。蒋尚义表示,从系统层面看,重新规划各单元,包括特别情况下把目前极大型芯片折成多个单元,依据个别系统,针对各单元的特殊需求,选择合适的单元,分别制成小芯片,再经由先进封装和电路板技术重新整合,称之为集成芯片,这将是后摩尔时代的发展趋势。蒋尚义指出,要重新定义芯片与芯片间沟通的规格,必须先把整体生态环境和产业链建立起来,整合从设备原料到系统产品产业链,同时,还需要EDA Tools,Standard Cells,IP’s,Testing等配合。这些环节缺一不可,更重要的是,需要彼此之间的配合,保证一致性和完整性,以达到系统性能的最佳化,建立完整的生态环境,才能在全球市场竞争中取胜。2020年12月中旬,中芯国际发布公告,宣布蒋尚义博士获委任为中芯国际董事会副董事长、第二类执行董事及战略委员会成员。据了解,蒋尚义曾于2016年加入中芯国际并开始出任第三类独立非执行董事。不过2019年,中芯国际公告披露称,任期届满三年的蒋尚义因个人原因不再连任独立非执行董事。对于蒋尚义此次回归后,中芯国际未来发展方向成为了业界关注的焦点,对此,蒋尚义表示先进工艺一定会走下去,先进封装是为后摩尔时代布局的,中芯国际先进工艺和先进封装都会发展。此外,蒋尚义还指出,半导体应用市场从主要芯片掌握在少数供应商转变为主要芯片不再掌握在少数厂商。芯片供应链重整,不同的应用需要不同的芯片,芯片的需求成多元化。
  • 莫尔超晶格重大突破发文Nature!低温强磁场纳米位移台扮演关键角色
    背景介绍 载流子之间的相互作用是凝聚态物理学的热门研究和重点关注对象。调控这种相互作用的能力将有望调控复杂的电子相图。近年来,二维莫尔超晶格已经成为量子领域非常具体潜力的一个研发平台。莫尔系统通过调整层扭转角、电场、莫尔载流子浓度和层间耦合,可以实现其物理参数的高度可调。进展概述 近期,Xiaodong XU(美国华盛顿大学)的研究小组报道了光激发可以高度调整莫尔捕获载流子之间的自旋-自旋相互作用,从而产生WS2/WSe2莫尔超晶格中的铁磁有序。该研究中,作者使用了德国attocube公司提供的ANPxyz101系列兼容低温强磁场纳米精度位移台,以确保在低温强磁场环境中精确控制样品位置。文章以《Light-inducedferromagnetism in moirsuperlattices》为题,发表于Nature期刊。 图1显示了丰富的填充因子依赖的磁光响应,在填充因子为&minus 1时,RMCD显示出超顺磁样响应。当空穴掺杂明显减少(见图1e)时,一个磁滞回线开始出现, 这是铁磁性的标志。在&minus 1/3的填充因子(即每3个莫尔晶胞中有一个空穴)附近,随着激子共振激发功率的增加,在磁圆二色性信号中出现了一个明显的磁滞回线。图1. WS2/WSe2异质结中的磁圆二色性随填充因子变化。a) 器件示意图 b) PFM图像,标尺:20 nm c) 反射谱随偏置电压变化 d-e) 磁圆二色(RMCD)随填充因子变化 图2a显示了在1.6K温度与填充因子为-1/3时RMCD信号与激光功率的关系。当功率小于16 nW时,RMCD信号与磁场之间的关系消失,表现为一条无特征的直线。当功率增加到临界阈值以上时,出现一个滞回线。图2b中零磁场下RMCD信号的强度随激光功率的增加而增大,最终达到饱和。在低填充因子下,由于空穴距离更大固有磁相互作用明显较弱。因此,在分数填充因子为&minus 1/3处出现的功率依赖的RMCD响应表明,通过光学诱导的长程自旋-自旋相互作用,出现了铁磁序。磁滞回线宽度对光激发功率的依赖关系可以忽略不计,这意味着在温度远低于居里温度时,磁滞回线宽度主要由磁各向异性决定。如图2c-d所示,随着温度的升高磁滞回线宽度减小,有效的居里温度被确定为8K左右。图2. 在填充因子为-1/3的时候对光致铁磁性的观察。a-b)1.6K温度,不同激光功率下RMCD信号随磁场变化。c-d)磁滞回线宽度与温度的关系,激光功率103 nW 课题组进一步在填充因子为&minus 1/7下进行了温度与激光功率依赖性的RMCD测量(图3)。图3a显示了在不同的激光功率下的测量结果。作者定义了一个临界温度Tc,超过这个温度,RMCD的磁性响应(心跳线形状)就会消失。以253 nW光激发为例,心跳线形状保持强至约40K。为了进一步突出这一效应,图3b中绘制了提取的RMCD信号振幅与激发功率和温度的变化关系。这些数据表明,一旦光激发功率足够大,可以引入磁序,Tc可以从20K左右的调谐到45K。观察到的现象指出了一种机制,其中光激发激子促成了莫尔捕获空穴之间的交换耦合。这种激子促成的相互作用可能比莫尔捕获空穴之间的直接耦合范围更长程,因此即使在稀空穴体系中也会出现磁序。这一发现为莫尔量子物质的丰富的多体哈密顿量增加了一个动态调谐方案。图3. 利用光激发功率和填充因子调节磁态。a-d) RMCD信号强度与磁场、温度、填充因子的关系图 图a-b中填充因子为-1/7 值得指出的是,整个实验都是在低温及强磁场中进行的。这其中关键的设备就是德国attocube公司提供的ANPxyz101系列兼容低温强磁场纳米精度位移台,该位移台能够在极低温环境下提供纳米级的精确位移,成为整个变温及磁场调控过程中精确控制样品位置的关键设备。 attocube公司生产的位移器设计紧凑,体积小巧,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和扫描器,并以稳定而优异的性能,原子级定位精度,纳米位移步长和厘米级位移范围受到科学家的肯定和赞誉。产品广泛应用于普通大气环境和极端环境中,包括超高真空环境(5E-11mbar)、极低温环境(10 mK)和强磁场中(31 T)。图4 attocube低温强磁场位移器,扫描器attocube低温位移台技术特点如下:参考文献:[1]. Xiaodong XU, et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022)
  • 后摩尔时代新器件重大研究计划项目指南发布
    关于发布后摩尔时代新器件基础研究重大研究计划2023年度项目指南的通告国科金发计〔2023〕8号国家自然科学基金委员会现发布后摩尔时代新器件基础研究重大研究计划2023年度项目指南,请申请人及依托单位按项目指南中所述的要求和注意事项申请。国家自然科学基金委员会2023年2月10日后摩尔时代新器件基础研究重大研究计划2023年度项目指南本重大研究计划面向芯片自主发展的国家重大战略需求,以芯片的基础问题为核心,旨在发展后摩尔时代新器件和计算架构,突破芯片算力瓶颈,促进我国芯片研究水平的提升,支撑我国在芯片领域的科技创新。一、科学目标本重大研究计划面向未来芯片算力问题,聚焦芯片领域发展前沿,拟通过信息、数理、材料、工程、生命等多学科的交叉融合,在超低能耗信息处理新机理、载流子近似弹道输运新机理、具有高迁移率与高态密度的新材料、高密度集成新方法以及非冯计算新架构等方面取得突破,研制出1fJ以下开关能耗的超低功耗器件和超越硅基CMOS载流子输运速度极限的高性能器件,实现算力提升2个数量级以上的非冯架构芯片,发展变革型基础器件、集成方法和计算架构,培养一支有国际影响力的研究队伍,提升我国在芯片领域的自主创新能力和国际地位。二、核心科学问题针对后摩尔时代芯片技术的算力瓶颈,围绕以下三个核心科学问题展开研究:(一)CMOS器件能耗边界及突破机理。需要重点解决以下关键问题:探寻CMOS器件进行单次信息处理的能耗边界,研究突破该边界的新机理,实现超低能耗下数据的计算、存储和传输。(二)突破硅基速度极限的器件机制。需要重点解决以下关键问题:在探索同时具备载流子长自由程和高态密度的新材料体系基础上,研究近似弹道输运的器件机理,实现突破硅基载流子速度极限的高性能器件。(三)超越经典冯?诺依曼架构能效的机制。需要重点解决以下关键问题:探寻计算与存储融合的机制与方法,并结合新型信息编码范式,实现新型计算架构,突破冯?诺依曼架构的能效瓶颈。三、2023年度资助的研究方向(一)培育项目。围绕上述科学问题,以总体科学目标为牵引,2023年度拟资助探索性强、选题新颖、前期研究基础较好的申请项目,研究方向如下:1.超低功耗器件的理论、材料与集成技术。针对1fJ以下的开关能耗目标,研究超越CMOS的新原理逻辑、存储、感知器件及其核心材料与集成技术;研究极端物理条件下的极低功耗信息处理与存储机制及模型。2.高速高性能器件的理论、材料与集成技术。探究弹道输运机制,寻求超越传统硅基沟道自由程和态密度的半导体材料,研究并实现高弹道输运系数的新型场效应器件;探索有限能耗下的信息高速处理、存取与传输新机制及其器件技术。3.高能效计算与存储架构。探寻突破冯?诺伊曼能效瓶颈的新型计算架构和存储架构,研究面向存内计算新架构的设计方法学。(二)重点支持项目。围绕核心科学问题,以总体科学目标为牵引,2023年拟资助前期研究成果积累较好、处于当前研究热点前沿、对总体科学目标有较大贡献的申请项目,研究方向如下:1.原子级沟道P型晶体管。研制高性能低功耗原子级沟道P型晶体管,沟道厚度小于1.5nm,迁移率大于100cm2/V?s,Vds = 1V时开态电流大于600μA/μm、关态电流小于100pA/μm。2.硅基新型神经突触器件。研制硅基新型神经突触器件,探索器件在电和近红外光刺激下多电导态产生的光电协同机理,阐明影响器件及其阵列波动性、重复性的物理机制和突触行为机理,并建立相关模型。实现阵列规模不小于4kbit,单次操作能耗低于1fJ、操作速度达到纳秒量级、权重精度达到3bit以上,并实现基于神经突触阵列的神经形态视觉。3.多元编码融合的张量处理架构。研究随机数、定点数、浮点数等两种或多种新型编码共融的编码机制,以及数字域、时间域、频率域多域融合的计算范式,数据精度可配置、数模计算异步协同的新型架构,探索编码可重构、硬件可复用的电路设计技术,研制高精度的张量处理器芯片,8bit等效精度下的计算密度大于5TOPS/mm2、能效大于50TOPS/W。4.异构融合的高能效存内搜索架构。研究非易失关联存储器及其集成技术、异构融合存内搜索架构以及混合精度能效提升技术,单比特搜索能耗低于1fJ,在多模态信息检索任务验证中实现与软件相当的搜索准确率,8bit等效精度下的能效大于50TOPS/W。四、项目遴选的基本原则(一)紧密围绕核心科学问题,鼓励有价值的前沿探索和创新研究。(二)优先资助能解决芯片中的实际难题、具有应用前景的研究项目。(三)鼓励多学科交叉研究。(四)重点资助具有良好研究基础和前期积累、对总体科学目标有直接贡献的研究项目。五、2023年度资助计划2023年度拟资助培育项目8项,资助直接费用约为80万元/项,资助期限为3年,培育项目申请书中研究期限应填写“2024年1月1日—2026年12月31日”;拟资助重点支持项目4项,资助直接费用约为300万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“2024年1月1日—2027年12月31日”。六、申请要求及注意事项(一)申请条件。本重大研究计划项目申请人应当具备以下条件:1.具有承担基础研究课题的经历;2.具有高级专业技术职务(职称)。在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。(二)限项申请规定。执行《2023年度国家自然科学基金项目指南》“申请规定”中限项申请规定的相关要求。(三)申请注意事项。申请人和依托单位应当认真阅读并执行本项目指南、《2023年度国家自然科学基金项目指南》和《关于2023年度国家自然科学基金项目申请与结题等有关事项的通告》中相关要求。1.本重大研究计划项目实行无纸化申请。申请书提交时间为2023年3月15日-3月20日16时。(1)申请人应当按照科学基金网络信息系统(以下简称信息系统)中重大研究计划项目的填报说明与撰写提纲要求在线填写和提交电子申请书及附件材料。(2)本重大研究计划旨在紧密围绕核心科学问题,将对多学科相关研究进行战略性的方向引导和优势整合,成为一个项目集群。申请人应根据本重大研究计划拟解决的具体科学问题和项目指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。(3)申请书中的资助类别选择“重大研究计划”,亚类说明选择“培育项目”或“重点支持项目”,附注说明选择“后摩尔时代新器件基础研究”,根据申请的具体研究内容选择相应的申请代码。培育项目和重点支持项目的合作研究单位不得超过2个。(4)申请人在申请书“立项依据与研究内容”部分,应当首先明确说明申请符合本项目指南中的资助研究方向,以及对解决本重大研究计划核心科学问题、实现本重大研究计划总体科学目标的贡献。如果申请人已经承担与本重大研究计划相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。2.依托单位应当按照要求完成依托单位承诺、组织申请以及审核申请材料等工作。在2023年3月20日16时前通过信息系统逐项确认提交本单位电子申请书及附件材料,并于3月21日16时前在线提交本单位项目申请清单。3.其他注意事项。(1)为实现重大研究计划总体科学目标和多学科集成,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中应关注与本重大研究计划其他项目之间的相互支撑关系。(2)为加强项目的学术交流,促进项目群的形成和多学科交叉与集成,本重大研究计划将每年举办一次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人有义务参加本重大研究计划指导专家组和管理工作组所组织的上述学术交流活动。4.本重大研究计划咨询方式:国家自然科学基金委员会信息科学部四处联系电话:010-62327351
  • 超越摩尔定律?厚度仅0.7 nm!台湾团队成功研发出单原子层二极管
    p   科学家除改善电路中晶体管基本架构外,也积极寻找具有优异物理特性且能微缩至原子尺度(& lt 1纳米)的晶体管材料。 /p p   芯科技消息,半导体技术蓬勃发展,但面对集成电路微缩化的3纳米制程极限,科学家除改善电路中晶体管基本架构外,也积极寻找具有优异物理特性且能微缩至原子尺度(& lt 1纳米)的晶体管材料。 /p p   成功大学、台湾“科技部”、同步辐射研究中心合作研发出仅有单原子层厚度(0.7纳米)且具优异的逻辑开关特性的二硒化钨(WSe sub 2 /sub )二极管,并在《自然通讯 Nature Communications》杂志上发表研究成果。 /p p style=" text-align: center " img width=" 447" height=" 500" title=" 1.jpg" style=" width: 447px height: 500px " alt=" 1.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/23354494-092f-4f45-a23e-f3f6ab8d514a.jpg" border=" 0" vspace=" 0" / /p p   根据研究团对介绍,二维单原子层二极管的诞生,更轻薄,效率更高,除了可超越摩尔定律进行后硅时代电子元件的开发,以追求元件成本/耗能/速度最佳化的产业价值外,还可满足未来人工智能芯片与机器学习所需大量计算效能的需求。 /p p   二维材料具有许多独特的物理与化学性质,科学家相信这些性质能为计算机和通信等多方领域带来革命性冲击。成大与同步辐射研究中心团队说明,其中与石墨烯(Graphene)同属二维材料的二硒化钨(WSe2),是一种过渡金属二硫族化合物(Transition Metal Dichalcogenides, 简称TMDs),能在单化合原子层的厚度(约0.7纳米)内展现绝佳的半导体传输特性,比以往传统硅半导体材料,除了厚度上已超越3纳米的制程极限外,可完全满足次世代集成电路所需更薄、更小、更快的需求。 /p p   研究团队利用同时兼具高亮度/高能量解析/高显微力的台湾“三高”同步辐射光源,成功观察到可以利用搭载二维材料的铁酸铋(BiFeO3)铁电氧化物基板,能有效地在纳米尺度下改变单原子层二硒化钨半导体不同区域电性。 /p p   指导该计划的成大教授吴忠霖表示,相较以往只能利用元素参杂或加电压电极等改变电性方式,最新发表的研究无需金属电极的加入,是极重大的突破。 /p p   该研究团队也解释,这项研究利用单层二硒化钨半导体与铁酸铋氧化物所组成的二维复合材料,展示调控二维材料电性无需金属电极的加入,就能打开和关闭电流以产生1和0的逻辑信号,这样能大幅降低电路制程与设计的复杂度,以避免短路、漏电、或互相干扰的情况产生。 /p p   由于二维材料极薄,能如同现今先进的晶圆3D堆栈技术一样,透过堆栈不同类型的二维材料展现不同的功能性。研究团对认为,未来若能将此微缩到极限的单原子层二极管组合成各种集成电路,由于负责运算的传输电子被限定在单原子层内,因此能大幅地降低干扰并能增加运算速度。 /p p   研究团对期望,若这项技术持续精进,预期可超过现今计算机的千倍、万倍,而且所需的能量极少,大量运算时也不会耗费太多能量达到节能的效果,其各项优点将对现今数字科技发展带来重大影响,团队也举例,或许未来手机充电一次就能连续使用1个月,以现阶段最火的自动驾驶汽车来说,如果所有的感测、运算速度都比现在快上千、万倍,视频中的未来汽车可能再也不是梦想。 /p p & nbsp /p
  • 天尔新品|水质在线多参数检测仪强势来袭
    为了适用于自来水厂、小区二次供水、泳池水、供水管网、工业过程水、农业用水、卫生疾控、等相关行业的水质实时检测,天尔仪器最新研发生产了一款多参数水质检测仪,它是集水质监测传感器、数据处理单元,内部水流管路单元为一体的水质数据采集系统,可直接将多种水质在线测定项目集成在一台整机内部,在10.1寸安卓高清工业触摸屏上集中察看和管理,灵敏度高,抗干扰力强,操作界面简单易学,可同时测量pH、溶解氧、电导率、ORP、余氯等多种项目.支持定制化服务。◆ 采用10.1寸安卓高清工业级电容式触控屏,灵敏度高,运行速度快,图片处理细节细腻,稳定性好,适合长期不间断使用,使用寿命长;◆ 检测池流量可控式设计,测量值不受外界水流量变化的影响;◆ 标准化接口,模块化设计,安装简易、操作便捷,可根据客户需求定制相应监测参数;◆ 运用PC端数据软件,具有在线监测、曲线分析、记录数据、手机APP实时查询、导出数据等功能。◆ 水路采用串联式设计,工作效率高,用水量少;◆ 流通池内置排气阀门,通过开启阀门将流通池内的空气排出,从而减少气泡对电极读数的影响;◆ 水电分离,腔体之间独特设计,具有良好的密封性、屏蔽性,耐腐蚀,抗干扰;◆ 可实现多个参数同时在线监测,提高集成度,降低运行维护成本,每个通道独立工作,互不影响;◆ 无需添加试剂,无二次污染,响应速度快,传感器使用寿命长;◆ 可实现pH、电导率、溶解氧、ORP、浊度、温度等参数的测量.
  • Small Methods综述:扫描透射莫尔条纹方法(STEM-MF)
    当两套空间频率相近的周期性条纹或点阵相互干涉,就可能形成莫尔条纹(moiré fringe)。莫尔条纹常被应用于光学、机械学等学科进行图像处理、滤波等。在常用的材料学表征方法,如原子力显微镜(AFM)、扫描隧道显微镜(STM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)中,莫尔条纹亦被应用于材料的位错识别、晶格应变分析等。  产生莫尔条纹的周期性结构可以是样品中的两套周期性晶格,也可以是扫描电子束遵循的周期性点阵与晶体的晶格。莫尔条纹概念应用于扫描透射电镜(STEM),可以通过控制扫描电子束的空间频率(即扫描点阵)与被分析的晶格点阵发生干涉,利用这种可控差拍干涉分析材料微结构的方法叫做扫描透射莫尔条纹方法(STEM-moiré fringe,简写为STEM-MF)。该方法由苏东和朱溢眉于2010年最先提出,并得到电子显微学领域的关注与发展。该方法通过获取实空间的干涉图样研究材料微结构,有如下优点:1)具有较大的视野范围 2) 对晶格变化的敏感性高 3) 可显著降低电子束辐照剂量 4) 具有高度可调的扫描策略以适应不同的晶格点阵。  最近,北京工业大学柯小行副教授课题组与中科院物理所苏东研究员课题组合作撰写综述文章,全面介绍了STEM-MF方法的相关理论,并进一步结合几何相位分析(GPA)、环形明场成像(ABF-STEM)、能量色散 X 射线光谱(EDX)和电子能量损失光谱(EELS),深入讨论了该方法的发展。继而通过STEM-MF在应变分析、缺陷研究、二维材料结构分析和电子束敏感材料结构表征上的应用,总结分析了STEM-MF在解决材料表征问题中的优势。最后,文章对STEM-MF的发展趋势进行展望,为STEM-MF应用于材料结构表征提供了崭新的思路。    文章提出STEM-MF方法的主要应用包括:  (1)材料应变分析:莫尔条纹对两套晶格周期及相对旋转角度高度敏感,因此可以利用STEM-MF进行应变分析。该方法已被用于半导体、金属等材料的定量化应变分析,兼具高精度(可达0.05-0.02%)和大视野范围的优点。  (2)材料缺陷研究:利用缺陷产生的应变可实现STEM-MF的缺陷识别,克服了常规 STEM 成像中高分辨条件下视野有限的缺点,能够在较低的放大倍数下快速定位缺陷,并在氧化物异质结、热电材料中得到了应用。  (3) 二维材料的结构表征:STEM-MF方法在快速定位晶界、界面缺陷和晶格扭曲等方面具有独特优势,因此在石墨烯和过渡族金属二硫化物等二维材料的微结构分析中有巨大的应用潜力,已被用于分析二维材料同质结、异质结等结构。  (4)电子束辐照敏感材料的低剂量表征:由于STEM-MF的扫描特点,能够在较大的扫描范围内调节步长,从而可减少高达99%的电子束辐照剂量。因此,该方法在研究电子束辐照敏感的材料方面有诱人的应用前景,目前已被初步应用于有机晶体和部分无机材料的结构表征。鉴于软物质结构表征的重要性,作者期望该方法能够在有机材料、生物材料、Mxenes 和MOF等更多的电子束辐照敏感材料的表征中发挥其应有的潜力。  文章最后讨论了STEM-MF的挑战和机遇,并就样品漂移等STEM不稳定因素的影响、机器学习方法的融入、扫描点阵的设计策略等方面提供了方案和建议。  论文信息:  Moiré Fringe Method via Scanning Transmission Electron Microscopy  Xiaoxing Ke*, Manchen Zhang, Kangning Zhao, Dong Su*  Small Methods  DOI: 10.1002/smtd.202101040
  • 葛炳辉团队:STEM模式下基于扫描莫尔条纹快速测定样品厚度的方法
    ◆第一作者:南鹏飞通讯作者:葛炳辉教授通讯单位:安徽大学论文DOI:10.1016/j.micron.2022.103230近日,安徽大学电镜中心南鹏飞同学关于利用扫描摩尔条纹测定样品厚度的工作被Micron杂志接收。样品厚度是透射电镜(TEM)成像中的重要参数,主要用于图像衬度的解释以及性能和微观结构之间的关系的研究。当前,透射电镜中常用的样品测厚方法主要包括电子能量损失谱(EELS),会聚束电子衍射(CBED)和位置平均会聚束电子衍射 (PACBED)等技术。其中EELS是一种原位测厚技术,主要通过log-ratios方法或K-K求和法则来计算样品的相对厚度或绝对厚度。在准确测得非弹性平均自由程的情况下,EELS测厚的准确度可达± 10%。CBED测厚则主要借助模拟来实现,测厚准确度可达 ± 5%。PACBED是扫描透射模式(STEM)下的一种测厚方法,通过对多个位置的CBED花样取平均,最终获得的PACBED花样中只包含厚度、倾转和极化的影响,精确度优于± 10%。然而,实际使用时,EELS测厚需要昂贵的Gatan成像过滤系统(Gif),而CBED和PACBED测厚则需要复杂且耗时的模拟工作。本工作介绍了一种STEM模式下快速测定样品厚度的方法,主要通过调节focus借助系列离焦的扫描莫尔条纹(SMF)成像来判断。通过将样品倾转至正带轴或强的双束衍射条件,并且适当调整放大倍数和电子束扫描方向就可以在中等放大倍数范围观察到SMF像。通过SMF的形成条件可知,只有电子探针和样品发生相互作用时才能观察到SMF。再通过改变离焦量,就可以控制电子探针相对于样品的位置,从而实现SMF的出现和消失。因此,实际在改变离焦值时电子探针的位置变化 ∆f 就反映了样品厚度。不过,要更准确的获得样品厚度 T 还需要考虑电子探针在深度方向的尺寸 δz 以及样品表面总的非晶层厚度 A, 即 T=∆f-δz+A ,其中δz=1.77λ/α^2,α 为会聚半角,λ 为电子波长。进一步地,本工作还结合EELS测厚方法验证了SMF测厚方法的正确性。该工作强调了系列离焦SMF在快速测定样品厚度方面的应用,能够有效避免STEM模式下的电子束损伤和积碳问题,尤其适用于不耐电子束辐照的样品。赞助国家自然科学基金项目 (Nos. 11874394) 安徽省高校协同创新计划项目 (No. GXXT-2020-003)。论文链接https://doi.org/10.1016/j.micron.2022.103230
  • 新品上线|天尔仪器水质应急快速检测仪器
    随着户外检测水质越来越多的的需求,便携式的水质检测仪器成为了环保部门以及环境监测着购买需求的一款仪器,天尔仪器为了更加满足不同客户的检测要求,最新研发生产了一款经济智能快速简单的水质测定仪仪器TE-YJ12S水质快速测定系统用于测量水中浊度、色度、总氯、余氯、化合性氯、有效氯、二氧化氯、悬浮物、pH、溶解氧、氨氮、亚硝酸盐氮、磷酸盐、铁、锰、铜、六价铬、总铬、镍、锌、总硬度、COD、&zwnj 铅、&zwnj 汞、&zwnj 镉等多项检测,箱体采用军用级高强度防水手提安全箱一体化设计,防水等级IP67,具有25mm/16mm双检测模块,数字化集成系统,彩色液晶触摸屏,进口冷光源,专业水质检测系统,内置高容量锂电池,性能稳定、测量准确、测定范围广、功能强大、操作简单,检测速度快等应急特点。 1. 采用7寸高清液晶触摸显示屏,操作便捷,可直接显示被测物的浓度值及当次测量的吸光度,且嵌入实验操作步骤;2. 内置工作曲线,配制标准溶液,即可实现样品的快速测定。曲线具有修正功能,用户可根据检测需求对相应的项目进行曲线修正和调整;3. 具有独特干扰补偿算法,可有效屏蔽色度、光衰产生的测量偏差,设备使用方便、数据检测准确;4. 用户可自设报警限值,超过限值自动提示;5. 仪器可自动调零和自动校正,提高检测效率;6. 内置热敏打印机,可随时打印当前数据及历史数据;7. 高强度IP67防水箱体,耐用性强;8. 内置高容量锂电池,持续工作可达50小时以上.技术参数:1. 显示:7寸高清彩色液晶触摸屏2. 支持语言:全中文显示,支持定制英文操作3. 光学检测系统:自动波长定位检测系统4. 样品检测:支持25mm/16mm比色管检测及电极检测5. 光源:进口冷光源(可达10万小时以上)6. 测量项目:浊度、色度、总氯、余氯、化合性氯、有效氯、二氧化氯、悬浮物、pH、溶解氧、氨氮、亚硝酸盐氮、磷酸盐、铁、锰、铜、六价铬、总铬、镍、锌、总硬度、COD、&zwnj 铅、&zwnj 汞、&zwnj 镉、7. 测量范围:浊度:0-20NTU/0-200NTU、色度:0.0-50.0°/0-500°、总氯:0.02-2.00mg/L、余氯:0.02-2.00mg/L、化合性氯:0.02-2.00mg/L、有效氯:1.0%-15.0%、二氧化氯:0.04-5.00mg/L、悬浮物:0-200mg/L、pH:6.5-8.5pH、溶解氧:0.5-15mg/L、氨氮:0.02-2.50mg/L(水杨酸法)/0.02-5.0mg/L(纳氏试剂法)、亚硝酸盐氮:0.005-0.200mg/L、磷酸盐:0.1-1mg/L、铁:0.1-4.0mg/L、锰:0.02-5.00mg/L、铜:1-5mg/L、六价铬:0.05-1.00mg/L、总铬:0.05-1.00mg/L、镍:0.1-4mg/L、锌:0.1-2mg/L、总硬度:0.05-4.00mg/L、COD:0-100mg/L、铅:0-1.0mg/L、汞:0-0.5mg/L、镉:0-0.5mg/L
  • 天尔仪器智能多参数检测仪助力福建南平水利局
    水质检测一直是环境检测不可缺少的一部分。为了能够随时了解水质状况,确保我们的生活环境安全健康,不同的部门就需要不同配置和功能的水质检测仪器来满足其自身的检测需求,那么今天,我们就来介绍一款备受好评的实验室多参数cod氨氮总磷测定仪,在水利局中的实际应用本次客户主要检测的是cod氨氮总磷总氮等常规检测指标的项目,想要一款日常操作简单又检测准确的水质检测仪器,我们福建负责人员根据客户的需求以及日常检测情况给客户推荐了这款多功能智能多参数水质检测仪器,这款实验室多参数cod氨氮总磷总氮水质检测仪是由天尔仪器研发生产,是水质监测领域中的佼佼者。它采用符合人们检测的常规需求和检测的精准度配置,确保了产品的卓越性能和稳定性。此外,该产品还具有多种特点,如快速测定、智能操作、配置50+检测指标、数据存储和分析等,使其成为环保监测的得力助手。 天尔分析仪器有限公司是一家专注于水质检测仪器研发、生产、销售、服务于一体的高新技术企业,生产研发的有20多种型号的水质检测仪器,可以满足大部分的客户采购需求,广泛适用于适用于生活污水、工业废水、地下水、中水、地表水中多种水质污染物的检测 . 运用于水质检测实验室、市政、污水处理厂、环境监测站及教育科研高校、电厂、疾控中心、造纸电镀、水产养殖和生物药业、石化、煤炭、冶金、纺织、制药、食品等行业
  • 后摩尔时代新器件基础研究重大研究计划2022年度项目指南发布
    国家自然科学基金委员会现发布后摩尔时代新器件基础研究重大研究计划2022年度项目指南,请申请人及依托单位按项目指南中所述的要求和注意事项申请。 国家自然科学基金委员会 2022年2月17日 后摩尔时代新器件基础研究重大研究计划2022年度项目指南  “后摩尔时代新器件基础研究”重大研究计划面向芯片自主发展的国家重大战略需求,以芯片的基础问题为核心,旨在发展后摩尔时代新器件和计算架构,突破芯片算力瓶颈,促进我国芯片研究水平的提升,支撑我国在芯片领域的发展与创新。  一、科学目标本重大研究计划面向未来芯片算力问题,聚焦芯片领域发展前沿,拟通过信息、数理、工程材料、生命等多学科的交叉融合,在超低能耗信息处理新机理、载流子近似弹道输运新机理、具有高迁移率与高态密度的新材料、高密度集成新方法以及非冯计算新架构等方面取得突破,研制出1fJ以下开关能耗的超低功耗器件和超越硅基CMOS载流子输运速度极限的高性能器件,实现算力提升2个数量级以上的非冯∙诺伊曼架构芯片,发展变革型基础器件、集成方法和计算架构,培养一支有国际影响力的研究队伍,提升我国在芯片领域的自主创新能力和国际地位。  二、核心科学问题  本计划针对后摩尔时代芯片技术的算力瓶颈,围绕以下三个核心科学问题展开研究:  (一)CMOS器件能耗边界及突破机理。需要重点解决以下关键问题:探寻CMOS器件进行单次信息处理的能耗边界,研究突破该边界的新机理,实现超低能耗下数据的计算、存储和传输。  (二)突破硅基速度极限的器件机制。需要重点解决以下关键问题:在探索同时具备载流子长自由程和高态密度的新材料体系基础上,研究近似弹道输运的器件机理,实现突破硅基载流子速度极限的高性能器件。  (三)超越经典冯∙诺依曼架构能效的机制。需要重点解决以下关键问题:探寻计算与存储融合的机制与方法,并结合新型信息编码范式,实现新型计算架构,突破冯∙诺依曼架构的能效瓶颈。  三、2022年度资助的研究方向  (一)培育项目。  围绕上述科学问题,以总体科学目标为牵引,2022年度拟资助探索性强、选题新颖、前期研究基础较好的申请项目,研究方向如下:  1.新原理超低功耗器件。  针对1fJ以下的开关能耗目标,研究超越CMOS的新原理逻辑、存储、感知器件及其材料、集成技术;研究高传输效率、低能量耗散的芯片级互连技术;研究极端物理条件下的极低功耗信息处理与存储机制及模型。  2.具有长自由程与高态密度的半导体新材料和器件。 探究弹道输运机制,寻求超越传统硅基沟道自由程和高态密度的半导体材料,研究并实现高弹道输运系数的新型场效应器件。  3.新型计算与存储架构。  探寻突破冯∙诺伊曼能效瓶颈的新型计算架构和存储架构,研究面向存内计算新架构的设计方法学。  (二)重点支持项目。  围绕核心科学问题,以总体科学目标为牵引,2022年拟资助研究基础较好、对总体目标有较大贡献的申请项目,研究方向如下:  1.低功耗新材料DRAM器件技术。  研制出CMOS后道集成工艺兼容的高速低功耗无电容DRAM单元,读写时间小于10ns,动态保持时间1小时以上,实现多bit存储。  2.基于新材料的近似弹道输运器件。  研究超越单晶硅沟道平均自由程,同时具备高态密度的新沟道材料,实现与CMOS工艺兼容且逼近弹道输运极限的新沟道材料互补场效应晶体管。室温下,栅极过驱动电压和漏极电压小于0.75 V时,弹道输运系数大于0.5,注入速度大于5×106cm/s,驱动电流超过500μA/μm。  3.可重构的混合编码计算架构及电路复用技术。  研究包含随机数、时间域、频率域、模拟域等两种或多种新型编码机制、数据精度可配置的混合编码计算架构,以及编码可重构、硬件可复用的电路设计技术,研制基于CMOS或新型非易失器件的混合编码芯片,实现与数字电路相当的计算准确率,完整芯片的能效在低精度和高精度计算任务中分别达到50TOPS/W和5TOPS/W。  4.单片三维集成的存算一体架构及关键技术。  研究近存计算与存内计算融合的单片三维集成架构,高带宽的存储与计算层间数据流,以及硅基关键电路设计技术,实现堆叠3层以上、包含硅基CMOS和多种后段逻辑、存储器件的存算一体芯片,存储阵列规模不小于100Kb,完成复杂计算时的全系统能效大于10TOPS/W。  四、项目遴选的基本原则  围绕核心科学问题,本重大研究计划侧重:  (一)紧密围绕核心科学问题,鼓励有价值的前沿探索和创新研究。  (二)优先资助能解决芯片中的实际难题、具有应用前景的研究项目。  (三)鼓励多学科交叉研究。  (四)资助具有良好研究基础和前期积累、对总体目标有直接贡献的研究项目。  五、2022年度资助计划  2022年度拟资助培育项目8项左右,资助直接费用约为80万元/项,资助期限为3年,培育项目申请书中研究期限应填写“2023年1月1日-2025年12月31日”;拟资助重点支持项目4项左右,资助直接费用约为300万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“2023年1月1日-2026年12月31日”。  六、申请要求及注意事项  (一)申请条件。  本重大研究计划项目申请人应当具备以下条件:  1.具有承担基础研究课题的经历;  2.具有高级专业技术职务(职称)。  在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。  (二)限项申请规定。  执行《2022年度国家自然科学基金项目指南》“申请规定”中限项申请规定的相关要求。  (三)申请注意事项。  申请人和依托单位应当认真阅读并执行本项目指南、《2022年度国家自然科学基金项目指南》和《关于2022年度国家自然科学基金项目申请与结题等有关事项的通告》中相关要求。  1.本重大研究计划项目实行无纸化申请。申请书提交日期为2022年3月18日-3月20日16时。  (1)申请人应当按照科学基金网络信息系统(以下简称信息系统)中重大研究计划项目的填报说明与撰写提纲要求在线填写和提交电子申请书及附件材料。  (2)本重大研究计划旨在紧密围绕核心科学问题,将对多学科相关研究进行战略性的方向引导和优势整合,成为一个项目集群。申请人应根据本重大研究计划拟解决的具体科学问题和项目指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。  (3)申请书中的资助类别选择“重大研究计划”,亚类说明选择“培育项目”或“重点支持项目”,附注说明选择“后摩尔时代新器件基础研究”,根据申请的具体研究内容选择相应的申请代码。  培育项目和重点支持项目的合作研究单位不得超过2个。  (4)申请人在申请书“立项依据与研究内容”部分,应当首先明确说明申请符合本项目指南中的资助研究方向,以及对解决本重大研究计划核心科学问题、实现本重大研究计划科学目标的贡献。  如果申请人已经承担与本重大研究计划相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。  2.依托单位应当按照要求完成依托单位承诺、组织申请以及审核申请材料等工作。在2022年3月20日16时前通过信息系统逐项确认提交本单位电子申请书及附件材料,并于3月21日16时前在线提交本单位项目申请清单。  3.其他注意事项。  (1)为实现重大研究计划总体科学目标和多学科集成,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中应关注与本重大研究计划其他项目之间的相互支撑关系。  (2)为加强项目的学术交流,促进项目群的形成和多学科交叉与集成,本重大研究计划将每年举办一次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人有义务参加本重大研究计划指导专家组和管理工作组所组织的上述学术交流活动。  (四)咨询方式。  国家自然科学基金委员会信息科学部四处  联系电话:010-62327351
  • 新品发布:Sievers Soleil快速微生物检测仪
    Sievers分析仪产品线再次增加新成员,为快速发展的制药和生命科学行业提供更强大的支持。据麦肯锡公司称,新模式在药物开发管线中所占的比例已从11%增加到21%,生产工艺流程也必须跟上步伐。要快速适应先进制造、过程分析技术(PAT)实施以及改进批量制造和工艺控制的要求,就需要在生产过程中保持灵活性。全新Sievers® Soleil快速微生物检测仪可提供近乎实时的数据,用于监测超纯水和生产工艺中微生物控制的有效性,最终提供与传统方法相关的可操作结果。随着Sievers Soleil的发布,Sievers分析仪已成为业内首家为制药工艺提供所有四种关键分析检测参数的品牌 — 微生物、细菌内毒素、总有机碳TOC和电导率。这一综合服务使Sievers分析仪成为水质检测解决方案和过程分析技术领域独一无二的单一来源供应商。使用Sievers Soleil,用户可以在45分钟内准确检测水系统、原材料和加工过程样品中的微生物污染,与需要数天才能得出结果的传统检测方法相比有了重大改进。通过近乎实时地提供与平板计数相关的微生物数据,制造商可以迅速采取行动控制污染事件并降低风险。这一新型快速微生物检测仪源于威立雅近期对Sentinel Monitoring Systems公司的收购。Sentinel公司的技术和专业知识,使Sievers分析仪的产品组合扩展到快速微生物检测的新兴市场。使用Sievers Soleil快速微生物检测仪,用户可以:针对制造工艺流程及时做出数据驱动型决策,从而降低风险、节省更多成本并在产品放行时增强信心。在实验室中或在整个制造过程中进行旁线检测(at-line),从而监测水系统、清洁验证、环境监测、原材料和原料药中的污染控制过程。只需3个移液步骤即可轻松进行检测。消除产品放行中的微生物检测瓶颈。30多年来,Sievers分析仪通过卓越的分析检测推动用户做出更明智的决策,帮助用户满足法规要求、优化流程并与最佳实践保持一致。Sievers Soleil延续了这一传统,实现了简单的微生物检测和更高的效率。作为水处理解决方案的先驱,威立雅始终致力于开发类似于Sievers Soleil这样的创新技术,以满足客户的需求。现在,Sievers Soleil快速微生物检测仪已正式在大中华区市场开售,即刻联系我们,了解Sievers分析仪产品如何帮助用户简化水质检测。点击查看Sievers Soleil快速微生物检测仪产品页面。点击查看Sievers Soleil快速微生物检测仪视频介绍◆ ◆ ◆联系我们,了解更多!
  • Science:石墨烯莫尔(moiré )超晶格纳米光子晶体近场光学研究
    光子晶体又称光子禁带材料。从结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体,其物理思想可类比半导体晶体。通过设计,这类晶体中光场的分布和传播可以被调控,从而达到控制光子运动的目的,并使得某一频率范围的光子不能在其中传播,形成光子带隙。 光子晶体中介质折射率的周期性结构不仅能在光子色散能带中诱发形成完整的光子带隙,而且在特定条件下还可以产生一维(1D)手性边界态或具有Dirac(或Weyl)准粒子行为的奇异光子色散能带。原则上,光子晶体的概念也适用于控制“纳米光”的传播。该“纳米光”指的是限域在导电介质表面的光子和电子的一种耦合电磁振荡行为,即表面等离子体激元(SPPs)。该SPP的波长,λp,相比入射光λ0来说多可减少三个数量。如果要想构筑纳米光子晶体,我们需要在λp尺度上实现周期性介电结构,传统方法中采用top-down技术来构建纳米光子晶体,该方法在加工和制造方面具有较大的限制和挑战。 2018年12月,美国哥伦比亚大学D.N. Basov教授在Science上发表了题为Photonic crystals for nano-light in moiré graphene superlattices的全文文章。研究者利用存在于转角双层石墨烯结构(twisted bilayer grapheme, TBG)中的莫尔(moiré)超晶格结构,成功构筑了纳米光子晶体,并利用德国neaspec公司的neaSNOM纳米高分辨红外近场成像显微镜研究了其近场光导和SPP特性,证明了其作为纳米光子晶体对SPP传播的调控。 正常机械解理的双层石墨烯是AB堆叠方式,但是,当把其中的一层相对于另一层旋转一个角度,就会形成AB和BA堆叠方式相间排列的莫尔超晶格结构,AB畴区和BA畴区之间是AA堆叠方式的畴壁,如图例1A所示。如果通过门电压对该双层石墨烯施加一个垂直电场,会在AB畴区和BA畴区打开一个带隙,从AB畴区到BA畴区堆叠次序的反转连同能带结构的反转则会在畴壁上形成拓扑保护的一维边界态,如图例1C。一维边界态的存在会使得畴壁上光学跃迁更加容易,表现为畴壁上增强的光导能力。研究者通过德国neaspec公司的neaSNOM高分辨率散射式近场红外光学显微镜对样品进行近场纳米光学成像,在近场光学振幅成像中观察到了转角双层石墨烯上六重简并的周期性亮线图案,成功可视化了这种光导增强的孤子超晶格网络。从近场光学振幅成像上可以看到孤子超晶格周期长度大约为260nm,据此,研究者推断对应的转角大约为0.06°。 图例1:散射式近场光学显微镜(neaSNOM)对转角双层石墨烯(TGB)进行近场纳米光学成像研究的结果。A:实验示意图(AB,BA,和AA表示石墨烯不同堆叠类型);B:近场纳米光学振幅成像及TEM图;C:畴壁上电子能带结构。 不仅孤子超晶格的周期性和等离激元的波长相匹配,而且之前的研究表明,双层石墨烯中的孤子对SPP具有散射行为,转角双层石墨烯中规律的孤子结构所形成的周期性散射源恰好满足了作为纳米光子晶体的条件。接下来研究孤子超晶格对SPP的光子晶体效应,实验中研究者利用neaSNOM近场光学显微镜的针作为SPP发射源,并通过改变门电压和入射光波长改变SPP的波长,在该器件上同时得到了两组近场光学振幅图和相位图(如图例2B和2C)。从图中可以看到,λp=135 nm和λp=282 nm的情况下,近场光学振幅图和相位图表现出截然不同的周期性明暗图案,这种周期性明暗分布正是SPP在孤子超晶格传播过程中干涉效应的显现,近场光学振幅图、相位图和理论计算结果显示出的吻合性。对近场光学成像的傅里叶变换使得研究者可以进入动量空间研究其光子能带结构,结合模拟计算,对光子能带结构的研究表明,虽然孤子对SPP的散射较弱,还不足以形成纳米光学带隙,但是转角双层石墨烯中SPP的传播毫无疑问符合纳米光子能带色散行为。 图例2:散射式近场光学显微镜(neaSNOM)研究石墨烯超晶格中等离激元(SPP)传播近场光学成像结果。A,C: 通过改变门电压和入射光波长,λp分别为135nm和282nm下近场光学成像结果(同时获得近场光学振幅成像和相位成像);B,D: 模拟计算结果。 在该项工作中,研究者利用转角双层石墨烯设计实现了石墨烯SPP纳米光子晶体,并利用德国neaspec散射式近场光学显微镜从几个途径进行了研究。先,畴壁区域增强的光导响应来源于孤子的一维拓扑边界态,neaSNOM近场光学显微镜以高的分辨率可视化了孤子超晶格网络。其次,双层石墨烯纳米光子晶体的主要参数(周期性、能带结构)可以通过改变转角角度和静电场等实现连续调控,这可以突破标准top-down或光刻等技术来构筑纳米光子晶体的限制和挑战。在电中性点附近,孤子被预言具有拓扑保护的一维等离激元模式,此时,双层石墨烯纳米光子晶体作为一维等离激元的二维网络载体,可能会展现出很有意思的光学现象。 特别值得指出的两点是:1. 即使研究者通过0.06°的超小转角制造了高达260nm的孤子超晶格周期长度,如果没有neaSNOM近场光学显微镜高的空间分辨率(取决于针曲率半径,高可达10nm),清晰地看到孤子超晶格网络依然是非常困难的。2. neaSNOM近场光学显微镜具有的伪外差相位解调模块,可以同时实现高信噪比下的近场光学信号振幅成像和相位成像。该项工作中实验结果和模拟计算结果的吻合很好地证明了这一点。作为二维材料纳米光学领域为专业的研究工具,neaspec近场光学显微镜已经助力国际和国内多个研究机构在为的杂志发表了诸多研究成果。不仅是在纳米光学成像领域,neaspec开放兼容的设计使得它在纳米傅里叶红外光谱(nano-FTIR)、太赫兹(THz)、拉曼、荧光、超快、光诱导等多个领域均有广泛应用。
  • 广东药检所采购一批检测仪器
    广州顺为招标代理有限公司 受广东省药品检验所(以下简称“采购人”) 的委托,对广东省药品检验所2011年第二季度仪器设备采购项目进行公开招标采购,欢迎符合资格条件的供应商投标。   一、采购项目编号:GZSW11175HG4086   二、采购项目名称:广东省药品检验所2011年第二季度仪器设备采购项目(本项目共分7个包)   三、采购预算:详见《招标文件》   四、项目内容及需求:(采购项目技术规格、参数及要求)   1、名称、数量: 包号 仪器设备名称 数量 单位 备注 1 恒温恒湿箱A 3 台 进口 恒温恒湿箱B 1 台 进口 2 螺旋接种仪 1 台 进口 菌诺计数器 1 台 进口 3 净气型储药柜A 4 台 国产 净气型储药柜B 4 台 国产 4 微粒测定仪 3 台国产 渗透压摩尔浓度测定仪 1 台 进口 5 双通道原子荧光分光光度计 1 台 国产 6 恒温干燥箱 3 台 进口 智能溶出度测定仪 2 台 国产 融变时限检查仪 1 台 国产 恒温水浴摇床 1 台 进口 旋转蒸发仪 1 台 国产 真空脱气仪 1 台 国产 7 电子天平(1/十万)A 2 台 进口 电子天平(1/万)B 1 台 进口 冻干机 1 台 国产 超声波清洗器 1 台 国产 生化培养箱 2 台 国产 加热板 3 台 国产 超净工作台 1 台 国产   2、用途:检测   3、简要技术要求:详见《用户需求书》   投标人可对个别包或全部包报价,但应对包内所有的招标内容进行投标,不允许只对包内部分内容进行投标。   五、供应商资格:   1、投标人须是具有独立承担民事责任能力的在中华人民共和国境内注册的法人   2、投标人注册资金必须达到50万元或以上   3、投标人不是制造商的必须是所投主要设备的代理商或经销商,或具有制造商或其分支机构对本项目的授权书   4、符合《政府采购法》第二十二条规定。   请携法人营业执照、税务登记证副本复印件(加盖公章)至采购代理机构报名,文件如需邮寄请与工作人员联系,在任何情况下采购代理机构对邮寄过程中发生的迟交或遗失均不承担责任。   六、符合资格的供应商应当在2011年11月24日起至2011年12月13日 期间(办公时间内,法定节假日除外)到 广州顺为招标代理有限公司(详细地址:广州市越秀区麓景路123号城建装饰大厦601房 )购买招标文件,招标文件每套售价150元(人民币),售后不退。   七、投标截止时间:2011年12 月14日上午9:30(北京时间)   八、投标文件递交地点:广州市越秀区麓景路123号城建装饰大厦601房   九、开标评标时间:2011年 12月14日上午9:30(北京时间)   十、开标评标地点:广州市越秀区麓景路123号城建装饰大厦601房   采购代理机构联系人:刘小姐     采购人联系人:   电话:020-83592216 电话:   传真:020-83595411 传真:   联系地址:广州市麓景路123号城建装饰大厦601房  联系地址:   邮编:510000   开户行:详见招标文件   帐号:详见招标文件 广州顺为招标代理有限公司 2011年11月24日
  • 【霍尔德新品】放射性低本底γ能谱检测仪的功能特点
    【放射性低本底γ能谱检测仪←点击此处可直接转到产品界面,咨询更方便】环境辐射污染是一种潜在的重大污染源,其危害不亚于显性污染。一旦失控,将对周边居民的生活质量造成不可逆转的影响。比方说,放射源周边的生物或传播媒介被放射性核素污染后,就像带着致命毒素的蛇一样,通过食物链由低级向高级攀升,并在这一过程中不断将毒素富集。这些放射性污染物一旦进入人体,便像埋在人体内部的定时炸弹,时刻威胁着我们的健康。因此,我们必须高度重视环境辐射污染问题,坚决遏制其对我们健康的影响。放射性低本底γ能谱检测仪应用领域:医院放射性核素γ能谱测量分析;建材、土壤、生物、地质样品等γ能谱测量分析;建筑材料的快速无损检测;铀矿地质样品镭(铀)、钍、钾含量分析;可按用户要求配备铀、铯、钴、碘等人工核素分析软件。放射性低本底γ能谱检测仪功能特点:1、具备实时快速低能γ射线稳谱技术的低本底数字化能谱仪,可保证开机快速测量以及长期稳定性;传统低本底数字化能谱仪需要人工反复调整谱仪参数才能够工作,且无法长时间稳定工作;2、自带数字化稳谱功能,可选择本底镅源γ射线稳谱、天然特征峰稳谱等数字化稳谱方式;3、支持粒子图谱、能谱曲线、梯形成形信号与原始脉冲信号显示;4、数字化能谱仪具备LIST-MODE模式,可实现粒子事件信息(时间、位置、幅度等)的实时采集,各通道数字化谱仪具备时钟同步功能,同步精度不低于15ns;粒子事件信息可传输到计算机上成谱,从而满足快速移动测量的要求;5、双谱测量:支持能谱与时间谱测量;6、高分辨率:采用16位80MSPS高速高精度模数转换器;7、高数字成形频率:数字成形频率高达80MHz
  • 新品上市|高智能食品安全快速检测仪全新升级创新检测模块
    新品上市|高智能食品安全快速检测仪全新升级创新检测模块  山东云唐智能科技有限公司生产的食品安全综合分析仪,采用多功能集成、箱仪一体化设计,以高强度安全防护箱为载体,内部集成多个检测功能,适用于食药监局、卫生部门、高教院校、科研院所、农业农村局、食品深加工企业及检验检疫部门等单位。高智能食品安全快速检测仪产品链接https://www.instrument.com.cn/netshow/SH104655/C527480.htm 高智能食品安全快速检测仪创新点和产品特性:  1. 功能构成:主要包括分光光度模块、新型农残检测模块、胶体金检测模块、荧光检测模块、数字化管理模块等,所有模块集成一体,可快速检测200多种食品安全项目,如兽药残留、农药残留、非法添加剂、细菌数值等指标。  2. 检测样品种类:餐具及厨房用品、瓜果蔬菜及其制品、水产品及其制品、畜禽产品及其制品、婴幼儿乳品及奶粉制品、蜂蜜、粮油及其制品、调味品(食醋、酱油、味精、盐等)、酒类茶叶及其制品、食用菌、饮料、蛋类药物残留(鸡蛋,鸭蛋等)、米豆面制品、糖果糕点类(小食品)、薯类及膨化食品、瓶(桶)装饮用水、添加食用色素的食品、使用添加剂的食品、含有有毒有害物质的相关食品。  3、显示屏幕:仪器采用15.6英寸液晶触摸屏显,搭配运行安卓智能操作系统,主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,操作方便,性能更强。  4、供电模式:仪器交直流两用,直流12V供电,可连接车载电源,配18ah大容量充电锂电池,电量可实时显示,无外部电源条件下可持续工作至少 4 小时。  5、检测通道:≥24通道 采用精密旋转比色池设计,使用同芯片同光源校准精度,解决不同光源之间的误差值,更加准确高效,采用高精度进口四波长冷光源,每个通道均配置 410、520、590、630nm 波长光源,标配先进的光路切换装置,专利光路切换功能可实现64波长,并且所有检测项目可实现所有通道同时检测.  6、通讯接口:配备无线通信模块、4G(APN)通讯模块、蓝牙传输,同时具有双USB接口以及RJ45网线接口,可以多方式实现数据保存及数据传输。  7、存储方式:支持U盘存储,两个标准USB接口,免驱动安装。检测结果存储容量20万条以上,可生成Excel表格进行拷贝,并具有登录保护功能。  8、操作系统:仪器可在同一检测界面自动对应相关检测通道,一次性选择不少于11个样品名称,无需退出界面,节省操作时间。并可以对每个通道属性和样品信息单独进行编辑,例如送检单位、人员,检测人员等,打印时勾选打印显示。  9、数据集成系统:设备首页自动汇总分析检测数据,包含:周检测数据、月检测数据,全部检测总数量,包含检测总数,合格数,不合格数,以及相关柱形分析图,各项检测数据一目了然,无需电脑查询,更加快捷直观。  10、数据库系统:十几项数据库分类管理仪器:包含项目类型、项目数据、检测数据、历史记录、国标信息、曲线信息、采样信息、检测信息、受检信息、复核信息、图表信息、光源校准信息、打印样式信息、样品库信息等等,数据库之间互相协调联动保证数据的真实完整性。同时产品数据库以及历史检测记录支持一键检索功能。  11、限量规判系统:具有限量查询、添加物质合规判定系统。检测出结果后,系统自动调用系统数据库中相关国标进行比对判定,客观显示判定结果是否合格。  12、项目预设系统:仪器具有任务预设模块,一键提前预设,给出方便快捷的新检测方案,每一个任务分别可以设置不同的样品、批次、编号、来源、备注、抽样信息、检测信息、受检信息、复核信息等更多信息。样品送检时一键调取保存信息,并可多次调取,适用于大批量检测业务,可以大大提高检测效率。  13、数据监管系统:同步对接监管平台,数据可局域网和互联网数据上传,检测结果可直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,监测区域食品安全长短期动态及问题预估、预警。  14.1、全新打印系统:内置全新打印机,新创自定义打印方式,可按需灵活勾选控制:产品合格证(国家农业部标准要求),二维码,抽样信息、检测信息,受检信息、复核信息、抽样日期、检测日期等信息的打印。  14.2、A4纸版本报告打印功能:设备拥有两种结果展示方式,可以自动生成A4打印模板和小票打印模板两种样式,可通过WiFi及网线等方式连接外置打印机可进行打印。  15、胶体金检测模块:采用单通道CMOS成像处理技术及胶体金免疫层析技术,可读取胶体金卡数据,自动采集、处理分析,将检测结果显示,并可根据参考限值自动判断检测结果,可检测常见的兽药残留、生物毒素、抗生素、违禁添加物等。  15.1、可即时检测单联卡及三联卡   15.2、检测通道:2个通道   15.3、检测方式:消线法和比色法   15.4、显示模式:阴性或阳性   15.5、曲线形式:插入式扫描方式,显示金标卡图像,实时生成、识别CT曲线图,无需手动调整。兼容市场上其他金标卡,使用耗材不受限制。  16、荧光检测模块:快速检测水质中微生物、固体物细菌含量。利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)。以ATP含量表明样品中微生物与其他生物残余得多少,用于判断卫生状况。 适用于食品、餐具、手、液体等表面及水质洁净度的检测。  16.1、检测通道:双通道  检测精度:1×10-18mol  16.2、检测范围:0 to 99999 RLU  16.3、检测时间:15 秒  16.4、检测干扰:±5﹪或±5 RLU  16.5、操作温度范围:5℃到40℃  16.6、操作湿度范围:20—85﹪  16.7、开机 30 秒自检、内置自校光源、自动判断合格与不合格、自动统计合格率 。  17、仪器具备远程升级功能,可定向分客户分仪器更新,开机后自动更新,并可持续性免费更新系统版本,无需像传统产品返厂更新,节省时间及人力成本并避免了物流运输返厂升级导致设备损坏的潜在风险。
  • 【第三轮通知】2024中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛
    “2024中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛”将以“大会报告+分会报告+产品展览+高校科技成果展示+学术墙报+晚宴交流”的形式召开,85个口头报告专家及20余个提供墙报的学者,分别来自于半导体检测领域知名科研院校、半导体制造企业、半导体检测企业等。届时,您将有机会与科研院校的课题组长、系主任、副院长、院长和学生等,产业界知名企业的董事长、总经理和高管等共同研判半导体检测技术发展趋势,共同碰撞产学研合作火花,共同对接面向产业市场和科研市场的高质量合作机遇。诚邀您报名注册参会!指导单位中国技术创业协会上海市经济和信息化委员会上海市科学技术协会上海虹桥商务区管理委员会上海市闵行区人民政府主办单位国家集成电路创新中心上海市仪器仪表行业协会财联社承办单位复旦大学光电研究院上海复创芯半导体科技有限公司科创板日报上海南虹桥投资开发(集团)有限公司上海段和段(虹桥国际中央商务区)律师事务所协办单位中国上海测试中心上海市集成电路行业协会上海市真空学会上海电子学会智能仪器与设备专委会上海市在线检测与控制技术重点实验室上海理工大学光电学院上海大学特种光纤与光接入网重点实验室昆山上理工光电信息应用技术研究院有限公司求是缘半导体联盟复旦大学校友总会集成电路行业分会长三角集成电路产业产教融合共同体南通市半导体产业协同创新联合体特别报道《CMG 数字中国》融媒体节目支持媒体仪器信息网半导体综研半导体行业联盟上海市真空学会官网大同学吧芯片揭秘支持期刊半导体学报自动化仪表会议日程参会单位(字母排序,滑动阅读)爱德万测试(中国)管理有限公司爱发科费恩斯(南京)仪器有限公司安徽华鑫微纳集成电路有限公司安徽见行科技有限公司安捷伦科技(中国)有限公司安世半导体科技(上海)有限公司昂图(上海)贸易有限公司八帆仪器设备(上海)有限公司百及纳米科技(上海)有限公司北京北方华创微电子装备有限公司北京航空航天大学北京华峰装备技术有限公司北京华卓精科科技股份有限公司北京振兴计量测试研究所北京中科米格实验室技术有限公司忱芯科技(上海)有限公司大恒新纪元科技股份有限公司东方晶源微电子科技(北京)股份有限公司福禄克测试仪器(上海)有限公司复旦大学复纳科学仪器(上海)有限公司盖泽华矽半导体科技(上海)有限公司光库智能科技(南阳)有限公司广东金鉴实验室科技有限公司国仪量子技术(合肥)股份有限公司哈尔滨工业大学海宁凯成私募基金管理有限公司杭州富加镓业科技有限公司杭州广立微电子股份有限公司杭州积海半导体有限公司杭州加速科技有限公司杭州镓仁半导体有限公司杭州谱育科技发展有限公司杭州银行杭州长川科技股份有限公司合肥御微半导体技术有限公司河南大学闳康技术检测(上海)有限公司华东师范大学华恒半导体设备(苏州)有限公司华中科技大学加野仪器(上海)有限公司江南大学江苏才道精密仪器有限公司江苏超敏仪器有限公司江苏帝奥微电子股份有限公司江苏集萃苏科思科技有限公司江苏捷捷微电子股份有限公司江苏迈纳德微纳技术有限公司江苏微导纳米科技股份有限公司江苏芯德半导体科技有限公司江苏友润微电子有限公司匠岭科技(上海)有限公司聚微(嘉兴)科技有限公司卡尔蔡司(上海)管理有限公司开源证券研究所柯泰光芯(常州)测试技术有限公司科学指南针堀场(中国)贸易有限公司昆山国力电子科技股份有限公司昆山上理工光电信息应用技术研究院有限公司昆山新锦宏智能装备科技有限公司量伙半导体设备(上海)有限公司聆思半导体技术(苏州)有限公司领先光学技术(江苏)有限公司马尔精密量仪(苏州)有限公司麦峤里(上海)半导体科技有限责任公司苏州镁伽科技有限公司魅杰光电科技(上海 )有限公司木王芯(苏州)半导体科技有限公司上海拿成智能科技有限公司纳瑞科技(北京)有限公司南昌航空大学南京宏泰半导体科技股份有限公司南通晶测半导体科技有限公司南通敏顺智能科技有限公司南通芯力电子科技有限公司宁波银行欧陆埃文思材料科技(上海)有限公司珀金埃尔默企业管理(上海)有限公司普源精电科技股份有限公司青岛大学日置(上海)测量技术有限公司荣旗工业科技(苏州)股份有限公司睿励科学仪器(上海)有限公司赛默飞世尔电子技术研发(上海)有限公司赛默飞世尔电子技术研发(上海)有限公司赛英特半导体技术(西安)有限公司厦门国际银行上海大宁支行厦门海恩迈科技有限公司厦门锐思捷水纯化技术有限公司上海爱柯锐科技有限公司上海邦芯半导体科技有限公司上海超越摩尔私募基金上海澈芯科技有限公司上海崇诚国际贸易有限公司上海点莘技术有限公司上海电子信息职业技术学院上海顶策科技股份有限公司上海段和段律师事务所上海复旦微电子集团股份有限公司上海复享光学股份有限公司上海概伦电子股份有限公司上海感图网络科技有限公司上海鸿舸技研科技有限公司上海华岭集成电路技术股份有限公司上海汇博检测设备有限公司上海积塔半导体有限公司上海集材汇智集成电路技术有限公司上海集成电路材料研究院有限公司上海季丰电子股份有限公司上海交通大学上海精测半导体技术有限公司上海玖钲机械设备有限公司上海科源电子科技有限公司上海理工大学上海麦湘自动化科技有限公司上海铭剑电子科技有限公司上海欧波同仪器有限公司上海拍频光电科技有限公司上海市科普教育展示技术中心上海泰成投资管理有限公司上海微崇半导体设备有限公司上海伟测半导体科技股份有限公司上海遥芷科技有限公司上海怡瑞投资管理咨询有限公司上海隐冠半导体技术有限公司上海赢朔电子科技股份有限公司上海优睿谱半导体设备有限公司上海育仪科技有限公司上海曌达测控科技有限公司上海喆塔信息科技有限公司上海智湖信息技术有限公司上海众濒科技有限公司上海卓晶半导体科技有限公司深圳大学深圳市埃芯半导体科技有限公司深圳市普马电子科技有限公司深圳市森东宝科技有限公司深圳市市卓达智视科技有限公司深圳市卓达智视科技有限公司深圳市琢光半导体设备技术有限公司深圳中科飞测科技股份有限公司胜科纳米(苏州)股份有限公司是德科技(中国)有限公司苏州博欧自动化科技集团有限公司苏州东微半导体股份有限公司苏州芬中传感技术有限公司苏州国科测试科技有限公司苏州国芯科技股份有限公司苏州黑河电子科技有限公司苏州回能环保科技有限公司苏州钧信自动控制有限公司苏州凌光红外科技有限公司苏州妙光睿芯智能科技有限公司苏州瑞霏光电科技有限公司苏州天准科技股份有限公司苏州矽视科技有限公司泰克科技(中国)有限公司天津大学精仪学院通富微电子股份有限公司无锡北京大学电子设计自动化研究院无锡芯鉴半导体技术有限公司无锡英诺赛思科技有限公司武汉颐光科技有限公司西安电子科技大学西安交通大学/西安天交新能源有限公司夏罗登工业科技(上海)有限公司新慧能济(上海)科技有限公司新胜科技(上海)有限公司亚科电子(香港)有限公司亿丰测(上海)分析技术有限公司英铂科学仪器(上海)有限公司悦芯科技股份有限公司张江国家实验室长三角先进材料研究院兆易创新科技集团股份有限公司浙江潮芯电子有限公司浙江大学浙江大学集成电路学院浙江禾芯集成电路有限公司浙江晶能微电子有限公司浙江芯晟半导体科技有限责任公司致真精密仪器(青岛)有限公司中国半导体产业链集团中国电子技术标准化研究院中国科学院上海硅酸盐研究所中国原子能科学研究院中科飞测科技股份有限公司中芯聚源私募基金管理(上海)有限公司中信银行徐汇支行珠海錾芯半导体有限公司宏茂微电子(上海)有限公司
  • 水质重金属检测仪触摸屏显示,读数直观、简单
    水质重金属检测仪是一种专门用于测量水体中重金属元素含量的仪器,该仪器可以监测河流、湖泊和海洋等水体中的重金属污染程度,提供科学依据和数据支持,以评估环境质量并采取相应的保护措施,适用于环境监测、工业生产、自然水体保护等领域。  水质重金属检测仪产品详细介绍→https://www.instrument.com.cn/show/C511390.html 一、水质重金属检测仪使用注意:  1、在使用水质重金属测定仪之前,我们需要对仪器进行确认,这包括检查仪器的型号和测试范围是否符合标准,避免检测结果出现误差;  2、在进行测量之前需要对样品进行预处理,正确的预处理方法能够有效地去除样品中的干扰因素,使得测定结果更加准确;  3、测试时我们需根据所测试的样品来选择合适的功能,同时,还需要注意控制测试条件的稳定性和精度,以确保测定结果的可靠性;  4、测试完成后需要对重金属水质检测仪进行清洁和维护,保持仪器的良好状态,在清洁过程中,应使用适当的清洁剂和工具进行清洁,避免使用可能导致仪器损坏或污染的物质。  二、水质重金属检测仪优势:  1、精确性:水质重金属检测仪通过采用先进的分析技术和精密的传感器,能够提供高精度的重金属元素检测结果。它能够准确测量水体中的各种重金属元素,如铅、汞、镉、铬等,具备较高的测量准确性。  2、快速性:水质重金属检测仪具有快速测量的特点。它通常能够在短时间内完成对水样的检测,减少了等待结果的时间。这对于监测和应急情况下的水质评估非常重要。  3、便携性:水质重金属检测仪通常具有便携式设计,体积小巧,重量轻,便于携带和操作。它适用于户外野外工作和实地测试,可以灵活应用于不同的水体环境。  4、多功能性:水质重金属检测仪通常支持多种元素的同时测量,具备一定的多功能性。除了重金属元素,有些检测仪还可以测量其他水质指标,如pH值、溶解氧、温度等,提供了全面的水质分析功能。  5、易于操作:水质重金属检测仪通常具备简单易用的操作界面和操作流程。它们一般具备直观的显示屏和用户友好的菜单,使得操作人员可以方便地进行测试和结果查看。  6、数据记录和传输:水质重金属检测仪通常具备数据记录和传输功能。它们可以将测量结果进行自动记录、存储,并支持数据的导出和传输,方便后续分析和报告生成。  三、水质重金属检测仪参数介绍:  1、技术参数:  波长配置:420nm、470nm、520nm、560nm、620nm、700nm;  示值误差:≤±5%;  仪器稳定性:<0.5%;  仪器重复性:<0.5%;  光化学稳定性:20min内数值漂移≤0.002A(10万小时寿命);  2、物理参数:  比色方式:比色管(16mm消解比色一体管)、比色皿(10mm、30mm、50mm);  操作系统:Android7.1.1智能操作系统  操作界面:中文或英文操作界面;  显示屏:8英寸(1024*768分辨率)高清晰度彩色液晶触摸屏;  曲线数量:820条标准曲线、420条拟合曲线  网络接口:USB2.0、HDMI、WiFi、蓝牙、热点、RJ45;  云平台:仪器带有监管平台,连接有线/无线网络,检测结果直接传输至环境安全监管平台。  打印机:热敏行式打印机;  数据储存:800万组,可自由调用查看;  数据导出格式:Excel表格;  仪器尺寸:367x243x125mm;  仪器重量:5.3kg;  3、环境及工作参数:  环境温度:(5-40)℃;  环境湿度:相对湿度<85%(无冷凝);  额定功率:10W  工作电源:AC220V±10%/50Hz;  可配置:大容量锂电池。  治理水中重金属需要使用专业的水质重金属检测仪来实时监测水中含量和成分,从而制定针对性较强的治理措施,正确操作和维护重金属水质检测仪,这样才可以保证仪器的准确性和可靠性,为水质监测和保护工作提供有力的支持。
  • 海兰达尔:高精度温室气体分析仪或将成环境监测市场下一个刚需
    随着双碳政策的逐步推进,从碳达峰碳中和目标的提出,再到“十四五”生态环境监测规划、碳监测评估试点工作方案的发布,国家政策明确提出开展温室气体监测和评估,推进碳排放实测技术发展和信息化水平提升等内容。习总书记讲话中提出,中国二氧化碳的碳排放力争于2030年前达到峰值,努力争取到2060年前实现“碳中和”。在双碳战略下,温室气体监测将成为未来一段时期环境监测的重点,也将为整个环境监测市场带来新的增长点。但是,这个新的增长点如何把控?立足当下,各个企业又有怎样全新的布局?仪器信息网今天就机遇、市场、技术、产品、销售、发展六大模块采访了江苏海兰达尔环境科技有限公司(以下简称“海兰达尔”),海兰达尔环境是否会在将来有全新的布局呢——仪器信息网:当前双碳等一系列政策出台将给环境监测市场带来哪些热点机遇?这对温室气体监测仪器有怎样新的要求?海兰达尔:自《碳监测评估试点工作方案》发布以来,碳监测工作已在重点行业、城市、区域三个层面如火如荼地开展,旨在探索建立碳监测评估技术方法体系,形成业务化运行模式,总结经验做法,发挥示范效应,为应对气候变化工作成效评估提供数据支撑。当下的市场条件,对于环境监测行业来说是重要的机遇。碳监测工作的有效开展,离不开高性能环境监测仪器提供的保障。对于各个重点行业(火电,钢铁,石油天然气开采,煤炭开采和废弃物处理),需要分别开展CO2和CH4的监测;对于试点城市,则需要根据情况,开展高精度CO2,N2O,CH4浓度,CO2/H2O通量,碳同位素(13CO2,14CO2)等要素的监测。这些监测需求除了要求温室气体分析仪能满足高精度地面原位测量,还对监测方法的适应性提出了很高的要求。当下的碳监测朝着 “天空地一体化”的方向发展,地面、船舶、走航、无人机都是很好的监测手段。同时,原位和移动测量的数据还可与卫星遥感监测的结果相互验证,从而评估监测手段的科学性。高精度温室气体分析仪未来会成为环境监测市场的下一个刚需,与环境大气污染物分析仪形成协同观测,发挥重要的监测作用。另一方面,温室气体不断升高是全球面临的问题,国际社会的协作也是非常重要的一环。因此国内外监测网络数据的兼容性就非常重要,这就要求在监测技术和方法上、质量控制以及质量保证方面尽可能一致或相近。为了满足野外站点长期无人值守的监测需求,这要求温室气体分析仪在保证高精度,低漂移,长期稳定性的基础上,更加注重坚固耐用,简单便携,易于安装,便于维护的特性。仪器信息网:关于温室气体监测,目前国内外市场发展态势如何?目前主流市场有怎样的竞争格局?海兰达尔:目前高精度的温室气体监测仪器仍以进口为主,进口仪器技术已经相当成熟,在国际上多个重要的温室气体监测网络(如中国气象局温室气体观测网,世界气象组织(WMO)GAW,欧洲综合碳观测系统(ICOS)等)都有广泛的应用和部署。国产化的温室气体监测设备还在发展中,仪器的性能(包括精度,漂移等)和稳定性还需要有效地验证。当前的主流技术和品牌有:光腔衰荡光谱法(美国Picarro品牌),离轴积分腔输出光谱法,以及传统的非分散红外光谱法和傅里叶变换红外光谱法等。其中首屈一指的技术就是Picarro的CRDS光谱技术,仪器测量的性能和稳定性均为最佳,是高精度监测的首选设备,被誉为温室气体监测的黄金标准,也已经被广泛应用在多个试点城市,占据了高精度温室气体监测的主要市场。仪器信息网:贵公司销售的温室气体监测仪与市场上同类品牌相比有什么优势?海兰达尔:海兰达尔是美国Picarro公司在国内的授权销售和售后服务商,所提供的Picarro分析仪是世界上最顶尖的高精度温室气体监测设备。Picarro的所有产品均基于其核心技术-光腔衰荡光谱(CRDS)技术,拥有超过45个光腔衰荡光谱专利。不同于其它光谱技术,CRDS 技术并不通过测量光强经样品后的变化来测得样品的吸收度,而是测量光强在光腔内的衰荡时间,这样可以使其不像传统光谱技术那样受到光源干扰而造成的测量偏差。同时Picarro仪器光腔内部进行精确的温度和压强控制,保证光腔内环境的稳定性,从而最大程度地减小测量中分析仪对环境的依赖效应。高精度的温室气体分析仪会自动进行水汽校正,排除掉水汽对CO2,CH4浓度测量的影响,这也是其如此高精度的最重要保证和Picarro产品区别于同类产品的最大特点。Picarro产品与同类品牌相比的优势有以下这些:高精度(满足WMO和ICOS以及国内环境监测部门对于数据质量的要求)低漂移,长期稳定性好;专利技术,已被众多国际监测网络认可并大量应用操作简单,无耗材,维护频率低;具有独特的水汽校正,精确报告待测气体的干气摩尔分数。简单便携,易于安装,便于维护,可在野外或实验室部署;仪器信息网:贵公司在温室气体检测产品线方面是如何布局的?目前有哪些产品或者成果?海兰达尔:我司销售的温室气体分析仪以Picarro高精度温室气体浓度和同位素产品为主,主要有:高精度温室气体浓度分析仪:G2301(CO2,CH4),G2401(CO2,CH4和CO),G5310(N2O,CO),G4301(便携式测量CO2,CH4)。温室气体稳定碳同位素和浓度分析仪:G2131-i(CO2,CH4浓度,δ13C-CO2), G2201-i(CO2,CH4浓度,δ13C-CO2,δ13C-CH4)。同时我司配合Picarro产品自主研发了配套的温室气体监测预处理系统,包括多通道进样系统(GHG-PRE系列)和样气冷凝除湿系统(GHG-CT系列冷阱),GHG-CT系列冷阱能将样气降低至-50℃甚至-70℃条件下进行除水,使其符合国标和WMO对于温室气体样气除水效率的要求。GHG-PRE系列除实现样气和标气的自动切换以外,还能对冷阱进行控制,包括制冷温度、切换温度、除霜温度、除霜时间、A/B双通道冷阱切换等,这使得样气除水通道的A和B分别处于冷凝除水和加热除霜状态,并定时进行状态切换,以实现冷阱的免维护。此外,除水通道状态切换能配合前端的多路选择阀进行设置,这保证了冷阱的无盲点运行,使得样气始终处于冷凝除湿状态。目前这套预处理系统通过了国内第三方检测机构多项测试和检验,配合Picarro高精度温室气体分析仪,已在多个高精度温室气体监测站点实现安装运行,突破性的设计和鲜明的技术特点使其非常适合高精度温室气体监测对于样气除水的要求。高精度温室气体监测系统安装应用案例海兰达尔预处理系统通过检测报告仪器信息网:目前,贵公司温室气体监测仪的销售情况如何?有哪些典型的应用单位?从对未来的预期来说,哪些单位会是仪器使用大户?海兰达尔:目前我司销售的高精度温室气体分析仪在全国多个环境监测部门、气象部门和科研机构都有广泛应用。典型应用单位有:无锡市生态环境局,江苏省环境监测中心,中国环境监测总站,广州市环境监测中心站,深圳市环境监测中心站,中国气象局,浙江省气象局,安徽省气象局,山西省气象局,中国科学院青藏高原研究所,北京大学,集美大学,西北大学等。对于中国市场,我司除了在现有的环境监测和气象行业继续深耕以外,会更加拓展其它行业的业务机会,如石油石化等重点行业和生态监测行业等,这些行业都有潜在的温室气体监测需求。在未来,气象行业、生态环境监测行业等相关领域会是使用大户。仪器信息网:贵公司将来重点关注和拓展的方向是什么?目前已经在开展或将开展哪些气体监测创新仪器/应用的研究? 海兰达尔:我司未来会更加关注温室气体稳定碳同位素的应用,寻求利用稳定碳同位素进行碳源汇监测的市场机会,另外关注生态监测中碳通量监测。同时,拓展温室气体分析仪移动监测业务,比如车载,船载和无人机等方式,形成立体化监测的网络。
  • 新品推荐|天尔多功能饮用水检测仪器 TE-80
    天尔TE-80饮用水多功能水质检测仪是我们公司最新研发生产的一款便携式水质测定仪器,可广泛应用于饮用水、自来水、疾控、环保部门、城市供水、纯净水厂、饮料厂、化工、制药、食品等领域中水质污染物的快速检测.依据光电检测原理和化学比色测量原理研发设计,可用于测定饮用水中浊度、色度、余氯、总氯、二氧化氯、有效氯、化合性氯、亚氯酸盐、氨氮、亚硝酸盐、臭氧、尿素、总硬度、钙硬度、镁硬度、锰、铁、六价铬、高锰酸盐指数、pH、溶解氧、氯化物、电导率等项目(支持定制),搭载高清彩色液晶触摸屏,操作便捷,内置高容量锂电池,自带高强度防水耐酸碱便携箱,是一款可在野外,实验室提 供检测,监察,数据管理集一体的便携式水质检测系统.1.采用5寸高清液晶触摸显示屏,操作便捷,可直接显示被测物的浓度值及当次测量的吸光度,且嵌入实验操作步骤;2.内置工作曲线,配制标准溶液,即可实现样品的快速测定。曲线具有修正功能,用户可根据检测需求对相应的项目进行曲线修正和调整;3.具有独特干扰补偿算法,可有效屏蔽色度、光衰产生的测量偏差,设备使用方便、数据检测准确;4.用户可自设报警限值,超过限值自动提示;5.仪器可自动调零和自动校正,提高检测效率;6.内置热敏打印机,可随时打印当前数据及历史数据.检测项目:项目测量范围检测方法浊度0-20NTU/0-200NTU散/透射光法色度0.0-50.0°/0-500°铂-钴标准比色法余氯0.02-2.00mg/LDPD法总氯0.02-2.00mg/LDPD法二氧化氯0.04-5.00mg/LDPD法 有效氯1.0%-15.0%碘量光度法化合性氯0.02-2.00mg/LDPD法亚氯酸盐0.02-2.00mg/LDPD法氨氮0.02-5.0mg/L纳氏试剂法氨氮0.02-2.5mg/L水杨酸法亚硝酸盐0.005-0.200mg/L重氮偶合法臭氧0.01-2.00mg/LDPD法尿素0.05-5.00mg/L麝香草酚法总硬度0.05-4.00mg/L邻甲酚酞络合酮钙硬度0.05-4.00mg/L邻甲酚酞络合酮镁硬度0.10-4.00mg/L邻甲酚酞络合酮锰0.02-5.00mg/L甲醛肟法铁0.1-4.0mg/L邻菲咯啉分光光度法六价铬0.05-1.00mg/L二苯碳酰二肼法高锰酸盐指数0.5-5.0mg/L碱性高锰酸钾法pH6.5-8.5pH标准缓冲溶液法溶解氧0.5-15.0mg/L碘量光度法氯化物0.5-25.0mg/L硫氰酸汞分光光度法
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制