[align=center][b][size=16px]皮米级光谱仪在激光检测中的应用[/size][/b][/align][align=center][size=16px]会议时间:2021年6月10日14:00[/size][/align][size=16px][b]内容介绍:[/b]本次演讲的核心内容为皮米级激光器在激光检测中的应用,重点阐述了皮米级光谱仪的工作原理、皮米级光谱仪系列产品、皮米级光谱仪在激光制造和研究中的应用以及皮米级光谱仪与其他相关产品在使用中的异同点等等。[b] 讲师介绍: 胡增权:[/b]用化学硕士,物理学博士。在太阳能电池材料研发、电化学薄膜、真空镀膜等方面颇有建树。具备十五年以上研发经验,尤其对半导体激光的研究更为深入,已发表相关文章数篇。[b]报名地址:[/b][url]https://www.instrument.com.cn/webinar/meeting_19728.html[/url][/size]
[align=center][b][size=16px]皮米级光谱仪在激光检测中的应用[/size][/b][/align][align=center][size=16px]会议时间:2021年6月10日14:00[/size][/align][size=16px][b]内容介绍:[/b]本次演讲的核心内容为皮米级激光器在激光检测中的应用,重点阐述了皮米级光谱仪的工作原理、皮米级光谱仪系列产品、皮米级光谱仪在激光制造和研究中的应用以及皮米级光谱仪与其他相关产品在使用中的异同点等等。[b] 讲师介绍: 胡增权:[/b]用化学硕士,物理学博士。在太阳能电池材料研发、电化学薄膜、真空镀膜等方面颇有建树。具备十五年以上研发经验,尤其对半导体激光的研究更为深入,已发表相关文章数篇。[b]报名地址:[/b][url]https://www.instrument.com.cn/webinar/meeting_19728.html[/url][/size]
[align=center][b][size=16px]皮米级光谱仪在激光检测中的应用[/size][/b][/align][align=center][size=16px]会议时间:2021年6月10日14:00[/size][/align][size=16px][b]内容介绍:[/b]本次演讲的核心内容为皮米级激光器在激光检测中的应用,重点阐述了皮米级光谱仪的工作原理、皮米级光谱仪系列产品、皮米级光谱仪在激光制造和研究中的应用以及皮米级光谱仪与其他相关产品在使用中的异同点等等。[b] 讲师介绍: 胡增权:[/b]用化学硕士,物理学博士。在太阳能电池材料研发、电化学薄膜、真空镀膜等方面颇有建树。具备十五年以上研发经验,尤其对半导体激光的研究更为深入,已发表相关文章数篇。[b]报名地址:[/b][url]https://www.instrument.com.cn/webinar/meeting_19728.html[/url][/size]
我们是专业做激光的,主要的产品是飞秒激光,当然也做纳秒激光等产品,请问到底哪些仪器里面用激光?我们做的飞秒激光器应该还是不错的,听说很多国外仪器里面用的是激光器,不过国内做仪器的人少,不好交流这些事情。如果有人可以交流,那么对于我们来讲是莫大的帮助,至少告诉我那些仪器用激光,这样也会缩小我们的查找范围。多谢!
棱镜式激光扫描切割与载物台移动式激光扫描切割的区别
条码扫描模组在外国已经使用很久了,现在已经发展到中国内部。这种技术的发明带来了更多的工作改革潮流。促进了自动化的步伐,大大简化人类工作流程,减少更多的脑力负担。扫描模组属于二次开发产品,兼备识别条码并加以扫描和解码的功能,然后还可以植入更多的应用行业的功能程序。外形构造小巧,高度集成材料,可以置入手机、平板电脑,打印机和一些医疗设备等各行各业的机械设备中。一般情况,条码扫描模组分为二大类,第一个就是激光扫描模组,第二个就是红光扫描模组。 现在对激光扫描模组进行分析下,激光扫描模组是通过辐射出一个激光光源点,然后按照激光发射的原理打成激光光线照遭条码上,在经过解码转化成为数字信号,加而给电脑读取信息。但是相对于红光扫描模组来说就比价精确点了。在强烈的阳光下,一般情况都是用激光扫描模组,因为红光不是红外线,就是单单的红色的光。阳光中可以算什么光线都有,会对红光扫描模组发射出来的LED灯光造成很大的影响,导致扫描的结果不准确。 如果在结构上来说呢,红光扫描模组要比激光扫描模组好一点而且价格实惠。激光扫描模组里面的结构是靠点胶固定的机械装置,因此就有很大的结构固定,易碎行,抗硬性就不是很好了。红光扫描模组里面就没有一些所谓的机械装置固定,所以耐用性比价好,但是总体来说,激光扫描模组的用途是比较多的,红光的就有很多局限性。看个人的用处所在. 本文出自 www.yuanjingda.com 转载请注明出处!
在蔡司的产品家族里面,扫描电镜SEM无疑是一颗璀璨的明珠。Zeiss扫描电镜向我们清晰的展示了万千样品的细微特征:http://ng1.17img.cn/bbsfiles/images/2016/12/201612200918_01_3005748_3.jpg而环绕在电镜周围的,则是为大家所熟知的一群“老朋友”:能谱、波谱、EBSD、阴极荧光谱仪等等。Zeiss电镜的朋友圈,随着科技的进步,向着更前沿的科研方向不断拓展延伸。在这个朋友圈中,最新闪亮登场的是WItec的激光拉曼(Raman)光谱仪。激光拉曼光谱仪在光谱仪的家族里也算是重器。对于大多数物质而言,在分子结构的分析方面,激光拉曼的作用,无可替代。http://ng1.17img.cn/bbsfiles/images/2016/12/201612200918_02_3005748_3.jpg那么扫描电镜与激光拉曼相结合,究竟能给我们带来那些新的发现呢?首先让我们领略一下Zeiss扫描电镜与激光拉曼联用系统的风采:图中主机为Zeiss Merlin扫描电镜,左侧为GatanMonoCL4阴极荧光光谱仪,中间黑色部分为激光拉曼的扫描电镜适配单元,右中下俩黑色部件:上方为激光拉曼的激光器部分(Laser source),下方为单色器(Monochromator)。http://ng1.17img.cn/bbsfiles/images/2016/12/201612200918_03_3005748_3.jpg接下来我们与您分享一下,扫描电镜与激光拉曼联用的一篇测试结果:样品为黄铁矿(Pyrite)和石英(Quartz)的伴生物。图一为Zeiss扫描电镜的样品拍摄结果: http://ng1.17img.cn/bbsfiles/images/2016/12/201612200919_01_3005748_3.jpg图一 Zeiss Merlin扫描电镜图像图二为WItec激光拉曼内置光学显微镜所拍摄的大致同一样品区域: http://ng1.17img.cn/bbsfiles/images/2016/12/201612200919_02_3005748_3.jpg图二大致同一区域的光学图像 图三为WItec激光拉曼在选定区域的图像分析结果:不同的颜色代表了不同的分子构成,给出了样品所包含的三种不同物质相的信息。http://ng1.17img.cn/bbsfiles/images/2016/12/201612200919_03_3005748_3.jpg图三 WItec激光拉曼的图像分析结果图四为WItec激光拉曼在选定区域的谱图分析结果: 红、蓝、绿三种颜色的谱图,与图像分析结果中相映的色彩区域一一对应,体现出三个不同相所包含物质成分及分子结构的信息。http://ng1.17img.cn/bbsfiles/images/2016/12/201612200919_04_3005748_3.jpg图四 WItec激光拉曼的谱图分析结果 图五为Zeiss扫描电镜与WItec激光拉曼的混合图像分析结果: http://ng1.17img.cn/bbsfiles/images/2016/12/201612200920_01_3005748_3.jpg图五 扫描电镜、激光拉曼的混合图像分析结果好了,转瞬之间我们就完成了,激光拉曼在亚微米尺度下的面扫描图像分析。这才是扫描电镜与激光拉曼联用的精华所在。扫描电镜告诉了我们:它看起来是个什么样子;而激光拉曼告诉了我们:它究竟是什么,它是如何构成的。Zeiss来自德国,WItec同样源于德国,这是科学仪器领域再完美不过的Couple了。最后,科学无国界,我们在此特别鸣谢韩国科学技术研究院,感谢KIST所提供的设备、测试结果及合作中的所有帮助。韩国科学技术研究院始建于1966年,从成立之日起,KIST就一直是带领韩国科学技术复兴和发展的领导性机构之一。致力于高新工业核心技术的研发,为韩国前沿性产业升级做出了杰出的贡献。此次购买蔡司扫描电镜激光拉曼联用系统主要用于石墨烯领域的研究。“知微行远,以科技探索世界”,欧波同将以更积极,更专业的态度,在科学仪器领域为各界工作者提供全方位的支持和帮助!
[url=http://www.f-lab.cn/microscopes-system/dplsm.html][b]差分偏光激光扫描显微镜[/b][/url]differential polarization laser-scanning microscope (DPLSM)具有[b]扫描光学显微镜[/b]和[b]分光偏振计[/b]的双重优点,可提供逐像素地实施的生物样本的各向异性数据,在记录生物组织图像强度的同时,能够实时地提供高精度的生物样品的各向异性组织的逐个像素的数据。差分偏光激光扫描显微镜采用模块化设计,可以直接安装到用户现有的激光扫描显微镜上,不用担心改变原来的光路和电子。我公司提供方便安装的差分偏光激光扫描显微镜DPLSM模块,可直接安装到激光扫描显微镜上,不需要改变电路和光路就可使用差分偏光激光扫描显微镜DPLSM功能。差分偏光激光扫描显微镜:[url]http://www.f-lab.cn/microscopes-system/dplsm.html[/url]
激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统 显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置 LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源 LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统 LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。
目前国内用的最多的是213吧,不知有没有用飞秒激光器与ICP-MS联用的?
用飞秒激光器做剥蚀源,不知道是不是有人做过实验的?
美国ESI飞秒激光剥蚀系统想配个UPS电源,激光系统还给一个小型冷却水机供电。不知道具体功率是多少。想在断电后能续航2-3小时。有哪位朋友帮忙看看怎么配UPS电源。
中国科技网讯 美国中弗罗里达大学(UCF)一个研究小组9月5日(北京时间)表示,他们造出了仅67阿秒(1阿秒=10-18秒)的极紫外激光脉冲,这是迄今为止最短的激光脉冲,之前纪录是80阿秒。该技术有望带来一种新工具,帮助科学家研究亚原子世界和迄今未知的量子力学行为。这一成果也标志着近4年来激光脉冲领域的首个重大突破。研究结果提前发表在《光学通信》网站上。 该成果的非凡意义还在于他们并没有使用特殊设备,如英里级的粒子加速器、体育场那么大的圆形同步加速器。UCF物理系教授常增虎(音译)和光学与光子学院同事们在该校弗罗里达阿秒科技(FAST)实验室,利用迄今最强激光在更小空间进行了高水平的研究。 常增虎的小组发明了一种叫做“双光栅”的技术,能将极紫外线以特殊方式切断,在尽可能最短的光脉冲内凝聚大量能量。除了生成了激光脉冲,他还制造了迄今最快的摄像机对光脉冲进行了检测。 “该研究造出了迄今最短的激光脉冲,为理解亚原子世界打开新的大门,让我们看到电子在原子、分子中的运动,跟踪化学反应过程。”UCF理学院院长、物理学家迈克尔·约翰逊说,“设想一下,现在我们可能看到量子力学过程了,这是令人震撼的。” 量子力学是研究微观物理学,尤其是微观水平的能量和物质。这一技术能帮助科学家理解构成世界的最小物质是怎样运作,还能帮助研究在特殊物理、生理过程中,如数据传输过程、治疗癌症或诊断疾病时递送标靶药物的过程中是如何利用能量的。 2001年时,科学家首次演示了阿秒级脉冲。自那时起,全世界科学家就在致力于制造这种最短脉冲激光,以往纪录是2008年德国马克斯·普朗克研究院创造的80阿秒脉冲。“自50多年前发明激光以来,人们对激光脉冲的要求越来越短。” UCF光学与光子学中心院长巴哈·萨雷说,“最新进展不仅让中弗罗里达大学跻身该领域前沿,也为人们打开了研究超快动态原子现象的新视野。”(记者毛黎 常丽君) 总编辑圈点 研究小尺度世界的运动规律,需要“超小号工具”。要干预和观察那些稍纵即逝的现象,就需要能量集中在极短时间的光脉冲。如果人们制造不出相应的光学机器,就没办法监测单个粒子,只能对粒子运动做出统计学意义上的描述;而在人们脑海中,基本粒子世界也只能是全景图,而不是精细的工笔画。美国研究小组的成果,让科学家向着观察量子尺度的运动又走近了一步。微观世界不为人知的景色,有望在极短激光的照射下现出真相。 《科技日报》(2012-09-06 一版)
世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。美国军方很快就在此基础上开展了对军用激光装置的研究。1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。 激光是六十年代发展起来的一项新技术。它是一种颜色很纯、能量高度集中、方向性很好的光。激光测距仪是利用激光进行测距的一种仪器。它的作用原理很简单:通过测定激光开始发射到激光从目标反射回来的时间来测定距离。例如用激光测距仪来测量月球的距离,如果激光从开始发射到从月球反射回来的时间被测定为2.56秒,激光发射到月球的单程时间就等于1.28秒,而激光的速度是光速,等于每秒三十万公里。因此,测得的月球离地球的距离为单程时间和光速的乘积,即三十八万四千公里。为了发射和接收激光,并进行计时,激光测距仪由激光发射器、接收器、钟频振荡器及距离计数器等组成。激光测距仪还能用来对人造卫星跟踪测距,测量飞机飞行高度,对目标进行瞄准测距,以及进行地形测绘,勘察等。 激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。它是提高高坦克、飞机、舰艇和火炮精度的重要技术装备。 由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。
最近在了解高温观察用激光共焦扫描显微镜,看了很多有关采用CLSM观察的高温熔化、凝固和固态相变的观察,感觉很不错。但是我在论坛里看见采用激光扫描共焦显微镜拍摄的很多三维组织图像照片,这种激光共焦扫描显微镜和宝钢、首钢的那种高温观察用的激光扫描共焦显微镜是不是不一样啊??激光共焦扫描显微镜是不是也分好几种啊,请专家解惑,我刚刚接触,不是很了解。另外高温观察用激光共焦扫描显微镜大概多少钱啊,在哪里买呢,谢谢大家
[b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[/b][font=&][size=12px][color=#1c1d1e][b][b]郑伟[/b][/b][/color][/size][/font][font='Microsoft YaHei', 宋体, sans-serif][b][b][/b][/b][/font][font=&]【题名】:[b][b]激光共焦扫描显微镜研究与软件研制[/b][/b][/font][font=&]【期刊】:[/font][font=Arial][font=&][size=12px]CNKI[/size][/font][/font][font='Microsoft YaHei', 宋体, sans-serif][color=#545454][b]【链接】:[url=https://kns.cnki.net/kcms/detail/detail.aspx?filename=1018798236.nh&dbcode=CMFD&dbname=CMFDTEMP&v=tp8D2bwk5nHWNaI8kWxjxAWIhbvBSi0KpipnvlBaa1QI0oJbPJNOQEe5HcciaOqv]激光共焦扫描显微镜研究与软件研制 - 中国知网 (cnki.net)[/url][/b][/color][/font]
最近我们再调研三维全场扫描激光测振仪技术,想向各位大神了解一下三维全场扫描激光测振仪有哪些品牌?哪家比较好?有技术比较、大概的价位最好,感谢大家!
共焦激光扫瞄显微镜ZEISS所提供之英文数据,内容包含:1.影像构成原理2.电子信号处理[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=32959]共焦激光扫瞄显微镜[/url]
[align=center][b]激光烧蚀技术简介[/b][/align]激光烧蚀技术(LA),也称激光剥蚀,是一种固体进样方式。主要是利用功率很高的激光脉冲,激光打到样品表面,可以实现原位,无损检测。不需要样品消解,无需酸的消耗,绿色环保,避免污染。从脉宽分类:纳秒级别,飞秒级别。从波长分类:213nm,193nm等。1.主要联用技术,联用ICP-OES, [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url].2.作用范围为微米级别,所以应用领域基本在微区分析。3.样品适用范围及LA特点:Ø 难消解的样品(Pt, Ph等),挥发元素(Hg)。Ø 可进行样品的原位分析,提供更多元素空间分布的特点。Ø 进样不需要稀释,提高测试灵敏度。Ø 可减少水中氧的干扰。Ø 激光对于样品会产生破坏。Ø 测定灵敏度低。Ø 有质量歧视和分馏效应。Ø 目前的标样只是玻璃,需要基体匹配才能更好地进行分析。4.可检测的样品为:金属,合金,矿产,粉末状态,熔融状态,陶瓷,生物组织,土壤沉积物,塑料,电子材料,玻璃。其中目前玻璃标样是最为常见的。5.仪器使用条件:22 ℃左右,湿度为60%以下。6.常用单位介绍:Ø mJ 能量,每个脉冲的能量。Ø J/cm2 能量密度,每个脉冲作用单位面积的能量。Ø nm 波长,激光输出波长。Ø ns 脉宽,激光输出每个脉冲的时间。7.可优化的条件:激光参数:激光能量,激光频率(剥蚀深度),激光光斑尺寸,He,Ar流速。分析需求:分析区域,分析时间,分析元素。8.联用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]的时候,雾化器流量,炬管位置,三位监控。9. 选取仪器波长和能量成反比。选取需要适合的波长和脉宽。
激光测距仪是用激光做为主要工作物质来进行工作的。目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540纳米的半导体激光,工作波长为1064纳米的YAG激光。1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。在国内,某些厂家还有生产1064纳米的激光测距仪。
提供照片出自OLYMPUS激光共聚焦扫描显微镜想了解本产品一切信息者可与本人联系:Olympus.zzq@126.com[img]http://ng1.17img.cn/bbsfiles/images/2006/06/200606021415_19451_1625155_3.jpg[/img]
一、在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量 共聚焦显微镜的分辨率超过普通光学显微镜,染色过程简便,可以在活细胞上进行无创伤性的染色,最大程度地维持细胞的正常形态。多种自发性的荧光染料,已被广泛地用于诸如RNA、DNA细胞核、线粒体、内质网、肌动蛋白、细胞膜等结构的标记。运用免疫荧光技术,将不同波长的两三种荧光物质标记在内部不同结构的相应抗体上,以这几种荧光物质特定的光谱特性选择激发光和滤光片,则可以观察到细胞内部各结构间的毗邻关系。特别是在荧光着丝点易被遮盖(如荧光原位杂交实验)的情况下,这种三维图像的多角度观察提供了极大的优越性。细胞有丝分裂中细胞核内染色体数目(双倍体、多倍体)、形态和位置的变化,一直是细胞生物学肿瘤研究中的热点。着丝点是细胞核内的重要结构,被认为在有丝分裂中起重要的作用,应用共聚焦显微镜的定量测量技术,可以较精确地测定着丝点在不同分裂期的位置。共聚焦显微镜生成厚度小于0.2微米的依次相连的光学切片,即使较厚的组织的三维数据也可被计算机获取,运用适当的图像分析软件,可以测量并确定所观察结构的表面特征,体积等参数,为相互结合定量测量提供了新手段。2. 活细胞生理信号的动态监测:活细胞的功能监测在细胞生物学、神经生理学、药理学等领域都有重要意义。许多荧光染料可以聚集在细胞的特定结构,而对细胞的活性基本上不产生影响。可以利用这一特性来反映细胞受到刺激后形态或功能的改变。如亲脂性染料DiOC6(3)主要聚集在内质网,且对细胞的毒副作用极小。肌细胞中的肌浆网与ER有相同的属性,是胞内钙库,应用共聚焦显微镜,就可以动态观察肌细胞兴奋时SR的变化。许多参与神经元兴奋传导的离子如K+、Na+、Ca2+及H+、Cl-、Mg2+ 等,都有其自发性的荧光染料。Ca2+ 在细胞的兴奋、分化、死亡等过程中都起重要作用,是许多生理反应的胞内第二信使,是目前研究得最为充分的离子; 通过激光扫描共聚焦显微镜对胞内、核内钙转移的研究、对心肌细胞的钙变化研究、免疫细胞钙信号的研究、对Ca2+信号在凋亡细胞中作用的研究都取得了可喜的结果,而更多的研究则是将激光扫描共聚焦显微镜应用于神经生物学中对神经元Ca2+动态测量的研究。目前激光扫描共聚焦显微镜以其独特的优势成为钙研究中的重要手段之一。3. 粘附细胞的分选(adherent cell sorting) 对特异细胞的分选和克隆,是研究单个细胞或细胞系生物特性的先决条件。 将细胞贴壁培养在特制培养皿上,培养皿底部有一层特殊的膜,用高能量激光在欲选细胞四周切割成八角形几何形状,掀去培养皿底部的膜,非选择细胞则被去除。目前对粘附细胞分选方法多用于对杂交瘤和突变细胞的分选,也有用于对经转化的平滑肌细胞,卵巢癌细胞及人畸胎瘤干细胞等的分选和克隆,还可用于基因调控、基因治疗等研究。4. 细胞激光显微外科和光陷阱功能: 激光扫描共聚焦显微镜可将激光当作一把“光刀子”使用,完成诸如细胞膜瞬间穿孔,染色体切割,神经元突起切除等一系列细胞外科手术。光镊是利用激光的力学效应,将一个微米级大小的细胞或其它结构钳制于激光束的焦平面上,也称为光陷阱。光镊可以用来进行细胞融合(如卵细胞受精)、机械刺激或细胞骨架弹性测量等,特别是在测量植物细胞的细胞骨架时很有意义。5. 光漂白后的荧光恢复(FRAP): 细胞在相互接触后彼此间即有低阻抗的通道形成,以进行细胞间通讯;被经合成肽测试法证明只允许低于1.5KD分子通过的通道被称作缝隙连接。缝隙连接是存在于相邻细胞间的一类蛋白通道,普遍认为缝隙连接通过介导细胞间的信息传递,在诸如增殖、分化、代谢等过程中发挥极其重要作用。FRAP技术借助脉冲式激光照射细胞的某一区域,从而该区域荧光分子的光淬灭,该区域周围的未淬灭的荧光分子将以一定速率向受照区域扩散,而此扩散速率可通过低强度激光扫描探测。在研究细胞骨架构成、跨膜大分子迁移率、细胞膜流动性、胞间通讯等领域中有较大的意义。6. 在细胞凋亡研究中的应用细胞凋亡是由体内外因素触发细胞内预存的死亡程序而导致的细胞死亡过程,细胞凋亡作为生理性、主动性过程,能够确保正常发育、生长、维持内环境稳定,发挥积极的防御功能。用激光扫描共聚焦显微镜观察凋亡细胞,可见凋亡细胞体积变小,细胞质浓缩,细胞核变小,出现染色质沿核膜内侧排列的核边聚集现象。细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。细胞凋亡(Apoposis)是生物体内广泛存在的,由细胞特定基因控制,以细胞DNA 降解为特征的细胞自发过程,与机体中多种生理及病理过程密切相关。因而,对Apoposis 的研究现已成为研究细胞生物学研究的热点之一。而激光扫描共聚集显微镜结合众多荧光探针的应用,成为细胞Apoposis超微结构及分子水平变化的有力手段。二、在神经科学中的应用1. 定量荧光测定:对活细胞进行定量测定,具有很好的重复性,分析神经细胞和胶质细胞的某些物理及生物化学特性;监测抗原表达,细胞结合和杀伤等特征。在多发性硬化病人大脑活检标本上观察病变组织的微血管内皮细胞特异性地表达。2. 细胞内离子的测定:使用多种荧光探针,对神经细胞的Ca2+、PH及其它各种细胞内离子进行定量和动态分析。3. 神经细胞的形态学观察:激光扫描共聚焦显微镜使用模拟荧光处理,可将系列光学切片的数据合成三维图像,并可从任意角度观察。如Joshi等观察了细胞突触的骨架的三维图像。三维重建图像可使神经细胞及细胞器的形态学结构更加生动逼真。三、在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用:1993年Ikeda等应用激光扫描共聚焦显微镜研究内耳毛细胞的亚细胞结构,用Rhodamine 123染色,见线粒体分布于表皮板下和核下,加入1mmol/L三硝基酚使线粒体膜电位减小,荧光强度明显减弱。用DIOC6(3)染色,观察到内质网分布于表皮板下直至细胞核区域,呈网状、核下及侧膜下也有分布,胞质中则极少,探讨了蛋白激酶(PKC)在三磷酸肌醇/钙信号系统中的作用。2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用钙离子在细胞的生命活动中起着重要作用,它参与调节细胞功能,如肌肉收缩,细胞运动,递质合成与释放,信息传递,细胞换能等。激光扫描共聚焦显微镜的荧光测钙技术可探测到细胞内钙浓度的细微变化,当内耳毛细胞受到各种生理及病理因子刺激时,可用荧光测钙技术观察细胞内钙离子浓度的变化。为研究毛细胞的机能提供了新的手段。3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用Issa等用膜片钳的全细胞记录法将Fluo-3已导入毛细胞,用激光扫描共聚焦显微镜观察,当毛细胞去极化时其底部侧膜上平均有18个亮点(钙内流所至),然后对同一毛细胞进行连续超薄切片电镜观察,证明这些亮点即为突触前活性区。4. 激光扫描共聚焦显微镜在嗅觉研究中的应用:Schild等用激光扫描共聚焦显微镜和钙荧光探针研究嗅觉感受器神经元的钙通道分布,以Fluo-3和Fura-red 染色后行双发射比例测量,测出其胞内游离钙呈不均匀分布,观察显示嗅觉感受器神经元的钙通道位于胞体部,与同一部位的钾通道一起构成适应性调节机制,而对树突尖端纤毛的钙依赖性换能过程无干扰。四、在肿瘤研究中的应用激光扫描共聚焦显微镜的出现,在一定程度上推动了肿瘤的研究进展。它为肿瘤细胞生物学、分子生物学、细胞通讯、细胞形态学研究、细胞的抗药物代谢、细胞膜及其受体等领域的研究,提供了有效手段。1. 定量免疫荧光测定:激光扫描共聚焦显微镜采用免疫荧光对肿瘤细胞的抗原表达、细胞结构特征、抗肿瘤药物的作用及机理等方面进行定量的观察和监测,为较理想的形态学观察方法。先采用荧光标记特异性抗原或抗体,使其与特异性抗体或抗原结合,再采用激光扫描共聚焦显微镜对其进行定性、定量和形态学分析。近年来报道较多的是P53肿瘤相关抗原等的定位、定性和定量分析。采用荧光标记某些蛋白分子,然后测定其平均荧光强度和积分荧光强度,从而对某些细胞结构蛋白分子进行定量分析。2. 细胞内离子分析激光扫描共聚焦显微镜可以准确地测定细胞内Ca2+ 、 K+ 、 Na+ 、 Mg2+ 、 pH等
激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。 激光测距仪是用激光做为主要工作物质来进行工作的。目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540纳米的半导体激光,工作波长为1064纳米的YAG激光。1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。在国内,某些厂家还有生产1064纳米的激光测距仪。 对于905纳米和1540纳米的激光测距仪,我们就称之为“安全”的。对于1064纳米的激光测距仪,由于它对人体具有潜在的危害性,所以我们就称之为“不安全”的。 激光测距仪已经被广泛应用于以下领域:电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等。
造福银屑病(俗称牛皮癣)、白癜风、异位性皮炎等皮肤病患者的用于皮肤治疗的新型准分子激光设备日前在安徽光机所通过投资方验收。 传统的针对皮肤疾病的光学治疗手段主要有紫外长波PUVA法,紫外中波UVB法,大多采用形式多样的宽频紫外UV灯管,其发射的紫外在很大的波谱范围,基本涵盖了280-400nm的宽阔区域。在治疗照射过程中方向不易控制,发散角度大,正常皮肤处于曝光中,有可能引起皮肤发红、灼伤等不良影响,并且效果不是很显著。 安徽光机所激光中心陈永荣课题组,通过半年多不懈努力的自主研发工作,研制出国内首台用于皮肤治疗的XeCl准分子激光设备,该设备能输出308nm(处于银屑病、白癜风等疾病治疗的活跃频谱295-320nm内)的单频紫外脉冲激光,强度高、方向性好,由光纤导引至病灶,能迅速释放能量,只针对病变局部,不累及周围正常皮肤。与传统方法比较,具有见效快、疗程短、费用低、抗复发、特便捷、更安全等优点。是当今医疗领域极力推行的最新疗法,病患者无需治疗前做太多的准备,真正能达到无创伤绿色治疗。同时,该疗法还避免了传统的普通紫外光大面积治疗导致皮肤老化甚至癌变的风险。 根据国内外相关临床研究资料,308nm紫外激光可使银屑病患者皮损处活化的T淋巴细胞迅速调亡;对白癜风病人,对由免疫性引致的黑色素细胞破坏造成的黑色素生成能力减损或丧失有明显的疗效;对各种异位性皮炎有非常好的效果,特别对消除搔痒等刺激症状疗效尤为显著,能促进正常细胞的迅速生长。 用于皮肤治疗的XeCl准分子激光设备结构紧凑、外观大方、操作灵活、移动方便、输出能量和功率稳定、工作寿命长、性能可靠。激光由光导纤维传输,单脉冲能量150mJ,能量不稳定性±3%,重复频率≤50Hz,光纤输出6-16mJ,光斑强度均匀。 研发人员相信在可预见的未来,308nm准分子激光在医疗领域将会有广泛的应用前景。(韩奇阳、陈永荣供稿)http://www.aiofm.ac.cn/news/2006/12/22.htm
[b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[/b][font=&][size=12px][color=#1c1d1e][b]周一览[/b][/color][/size][/font][font='Microsoft YaHei', 宋体, sans-serif][b][b][/b][/b][/font][font=&]【题名】:[/font][b][b][color=#333333][b][font=&][color=#032d2c][b]共聚焦激光扫描显微镜的研制[/b][/color][/font][/b][/color][/b][/b][font=&]【期刊】:[/font][font=Arial][font=&][size=12px]CNKI[/size][/font][/font][font='Microsoft YaHei', 宋体, sans-serif][color=#545454][b]【链接】:[url=https://link.springer.com/book/10.1007/978-0-387-45524-2]共聚焦激光扫描显微镜的研制 - 中国知网 (cnki.net)[/url][/b][/color][/font]
我做了几次,觉得激光粒度仪测的总要比扫描电镜看到的大一点,不知道大家有没有碰到这个问题
[align=center][b]双光子激光扫描显微镜的检测模式及其在生物医学领域的应用[/b][/align][align=center][font=宋体]刘皎[/font][sup]1[/sup],吴晶[sup]1[/sup][/align][align=center]1. [font=宋体]北京大学医药卫生分析中心,北京,[/font]100191[/align][b][font=黑体][[/font]摘要] [/b]双光子激光扫描显微镜(two-photon laser scan microscope, TPLSM[font=宋体])具有低光毒性、高时空分辨率、高信噪比等优点,结合了激光扫描共聚焦显微镜和双光子激发技术,广泛应用于脑科学、免疫学、肿瘤、胚胎发育等生物医学相关研究领域。本文结合作者所在的北京大学医药卫生分析中心共聚焦平台的工作经验,概述了[/font]TPLSM适用的样本、检测模式以及在生物医学领域的应用,以期为相关科研技术人员提供参考。[b][font=&][Abstract][/font] [/b]Two-photon laser scan microscopy (TPLSM) has the advantages of low phototoxicity, high spatial and temporal resolution, and high signal-to-noise ratio.TPLSM combines laser scanning confocal microscopy with two-photon excitationtechnology and it is widely used in brain science, immunology, tumor, embryodevelopment and other biomedical related research fields. Based on the author'swork experience in the confocal center of Peking University Medical and HealthAnalysis Center, this paper summarizes the applicable samples, detection modesand applications of TPLSM in the biomedical field, in order to provide referencefor related scientific researchers and technicians.[b][font=黑体][[/font]关键词] [/b]显微镜双光子,检测模式,应用[b]1 引言[/b]双光子激发技术的基本原理是在高光子密度情况下,荧光分子可同时吸收2个长波长光子,产生一个一半波长光子去激发荧光分子的相同效果。双光子激光扫描显微镜(two-photon laser scan microscope, TPLSM[font=宋体])在激光扫描共聚焦显微镜的基础上,以红外飞秒激光作为光源,长波长的近红外激光受散射影响小,易穿透标本,可深入组织内部非线性激发荧光,对细胞毒性小且具有高空间分辨率,适合生物样品的深层成像及活体样品的长时间观察成像[/font][1]。使用高能量锁模脉冲激光器,物镜焦点处的光子密度最高,在焦点平面上才有光漂白及光毒性,焦点外不损伤细胞。双光子效应只发生在焦点处,所以双光子显微镜无需共聚焦针孔,也能做到点激发点探测,提高了荧光检测效率[2]。[b][/b]双光子激光扫描显微镜显微镜可以通过XYZ,XYT,XYλ,XYZT,XYλT等多种模式实现多维成像,亦可进行更复杂实验的拍摄,比如二次谐波成像(Second Harmonic Generation Imaging,SHG[font=宋体])、双光子荧光寿命成像([/font]Two-photon Fluorescence Lifetime Imaging Microscopy, TP-FLIM[font=宋体])、荧光寿命[/font]-[font=宋体]荧光共振能量转移成像([/font]FluorescenceLifetime - Fluorescence Resonance Energy Transfer Imaging, FLIM-FRET[font=宋体])等实验以满足对样品的定性、定量、定位、共定位等多维度多功能的研究。[/font]TPLSM已成为生命科学各领域重要的研究工具,可在细胞及亚细胞水平对活体动物的神经细胞形态结构、离子浓度、细胞运动、分子相互作用等生理现象进行直接的长时间成像监测,还能进行光激活染及光损伤等光学操纵,广泛应用于脑科学、免疫学、肿瘤、胚胎发育等生物医学相关研究[3-5]。本文拟通过按TPLSM常见的检测模式分别阐述其在生物医学领域的应用,以其为相关科研技术人员提供参考。[b]2. TPLSM适用的样本[/b]TPLSM适用的样本非常广泛,从液体、固体等形式的材料或制剂、细菌、细胞、细胞团、类器官、组织切片、到各种模式动物(如线虫、果蝇、斑马鱼、小鼠、大鼠、兔、猴等)及其[font=宋体]脑、脊髓、肝脏、肺、皮肤等器官[/font],都可以通过搭载不同载物台进行测试。相对于传统激光扫描共聚焦显微镜200μm的成像深度极限,双光子显微镜成像深度可达800μm,如果是透明化样品可更厚。TPLSM尤其适合活体动物成像,且比小动物荧光成像有更高的分辨率和信噪比,一般TPLSM的XY轴分辨率为200 nm左右,Z轴分辨率为300 nm左右。[b]3. TPLSM的检测模式[/b]3.1 二维成像模式TPLSM可以实现点扫描、点探测,得到生物样品高反差、高分辨率、高灵敏度的二维图像,从而获得细胞/组织等光学切片的物理、生物化学特性及变化。也可以对所感兴趣的区域进行准确的定性、定量及定位分析。激光扫描显微镜的zoom功能,可以用来调节扫描区域的放大倍数。但受物镜分辨率的限制,一味的增大zoom值,不能得到相应的高清图像,需根据实际情况参考piexl size进行设定。TPLSM可以实现XY、XZ或XT的二维成像模式,XT线扫会在后文与XYT时间序列成像一起进行举例说明(图2b)。3.2 三维成像模式3.2.1 Z轴序列三维成像(XYZ)[align=left]TPLSM可沿Z轴方向通过电动载物台的连续扫描对样品进行无损伤的光学切片(XYZ),获得三维立体图像。同理,通过沿Y轴方向连续扫描,可获得连续的XZY图像。如图1所示TPLSM[font=宋体]可以顺利观察到可以观察到血管清晰形态结构:单个胚胎的胎盘微血管(图[/font]1a)、肝脏血窦微血管(图1b)和后肢微血管(图1c)[6]。[/align][align=center][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151626576232_4807_3237657_3.png!w690x230.jpg[/img][/align][align=center]图1(a)胚胎胎盘微(b)肝脏血窦和(c)后肢的微血管三维成像[/align]3.2.2 时间序列扫描模式(XYT)[align=left]按照一定的时间间隔重复采集,则可实现对该样品的实时监测(XYT)。此类实验可观察组织区域内特异荧光探针标记的单个细胞或细胞内不同部位接受刺激后的整个变化过程。[font=宋体]如图[/font]2[font=宋体]([/font]a[font=宋体]),可以根据微血管[/font]XYT[font=宋体]序列扫描的成像结果中某一血细胞在前后两张图的位置移动和这两帧图的扫描时间间隔计算血流速度。若血流速度很快,[/font]XYT扫描不足以捕捉实际流速,可以使用XT线扫计算。如图2(b),微血管XT扫描图像中绿色荧光背景里的黑色线条代表单个血细胞的流动轨迹,每条线条的横坐标代表血细胞移动的距离(distance / μm[font=宋体]),纵坐标代表此段时间([/font]time/ ms[font=宋体]),根据这两个数据可以计算出单位时间内血细胞的流动速度([/font]μm / ms)[6]。[/align][align=center][img=,690,262]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151627102569_8367_3237657_3.png!w690x262.jpg[/img] [/align][align=center]图2 微血管(a)XYT扫描结果和(b)XT一维扫描结果图像计算血流说明示意图[/align]3.2.3 光谱扫描模式(XYλ/XYΛ)通常配置有可调节接受范围的检测器的TPLSM,可以实现从400nm-800nm的发射波谱扫描。通过配置具有连续可调波长的双光子激光器,还可以实现750nm-1300nm激发波谱扫描。这对于开发研制特殊染料探针的课题来说是很方便、全面的检测功能。3.3四维成像模式(XYZT/XYλT/XYΛT)基于上述三维成像模式,结合时间序列扫描,可以实现TPLSM的四维成像。3.4二次谐波成像(SHG)SHG是一个二阶非线性过程,且一般为非共振过程,适合富含胶原纤维的样本成像,如角膜、鼠尾肌腱、皮肤等。生物组织产生的二次谐波最主要的转换源自胶原,不同生物组织中的二次谐波信号强弱与组织中的胶原含量密切相关,含胶原丰富的组织包括结缔组织和肌肉组织等二次谐波信号也比较强,另外还有一些能产生强二次谐波的生物结构是微管,如细胞分裂中纺锤体。对于具有中心对称性的生物结构,如果局部中心对称性的破坏也会产生二次谐波:在两中心对称介质的界面,不同物态分子的相互作用使局部微观场特性在交界面(如细胞膜)发生突变,从而产生界面二次谐波[7]。除了动物组织外,一些含有特殊分子结构的植物组织也能产生二次谐波。二次谐波显微成像具有高空间分辨率、深成像深度、低损伤、以及对结构对称性的高度敏感性的特点,如果能与其他成像技术结合,将成为生物样品研究的有力工具[8]。3.5双光子荧光寿命成像(TP-FLIM)[9]FLIM技术是研究细胞内生命活动状态的一种非常可靠的方法。荧光寿命是荧光团在返回基态之前处于激发态的平均时间,是荧光团的固有性质,因此其不受探针浓度、激发光强度和光漂白效应等因素影响,且能区分荧光光谱非常接近的不同荧光团,故具有非常好的特异性和很高的灵敏度。此外,由于荧光分子的荧光寿命能十分灵敏地反映激发态分子与周围微环境的相互作用及能量转移,因此FLIM技术常被用来实现对微环境中许多生化参数的定量测量,如细胞中折射率、黏度、温度、pH值的分布和动力学变化等,这在生物医学研究中具有非常重要的意义。目前FLIM技术在细胞生物学中一些重要科学问题的研究、临床医学上一些重大疾病的诊断与治疗研究以及纳米材料的生物医学应用研究等方面均有广泛应用,并取得了许多利用传统的研究手段无法获取的数据。FLIM检测需要脉冲激光,TPLSM带有的高能量锁模脉冲激光器可以满足激发要求。3.6荧光寿命-荧光共振能量转移成像(FLIM-FRET)[10]传统的FRET过程分析通常是基于荧光强度成像来实现,分析的结果容易受光谱串扰的影响。而将FLIM技术应用于FRET过程分析,利用FLIM技术可定量测量这一优势,可非常灵敏地反映供体荧光分子与受体荧光分子之间的能量转移过程。当受体分子与供体之间的距离10nm时,供体的能量转移到受体,受体从基态发生能量跃迁,从而影响供体的荧光寿命。与没有受体分子的时候相比,发生FRET的供体分子的荧光寿命降低。因此,FRET-FLIM联合能够实时监测生物细胞中蛋白质的动态变化,如蛋白质折叠、分子间(蛋白-蛋白,蛋白-核酸)相互作用和细胞间信号分子传递、分子运输以及病理学研究等。[b]4 结论和展望[/b]综上,TPLSM应用灵活,具备多种检测模式,适用于多种样本,亦可实现多种实验目的,如荧光的定量、定性、定位、共定位,动态荧光的测定等。一些特殊的实验模式,将TPLSM在生物医学领域的应用进一步扩大。通过结合其他技术(多手段联合拓展,如膜片钳、原子力显微镜、光电联用等),TPLSM必将成为助力生物医学领域研究的有力工具。双光子荧光成像由于具有天生的三维层析能力以及深穿透能力,在活体生物组织成像上广受欢迎。双光子显微镜镜下空间增大后,可广泛应用于猴、大小鼠、兔等较大的模式动物的活体成像。且可结合电生理技术、光遗传技术,广泛应用于麻醉、清醒或运行行为等生理状态下的动物脑科学神经相关研究,在单细胞、单树突精度上对神经元群体活动进行监控。如结合膜片钳技术,对活体脑组组急性切片神经元进行双光子深层成像[11];结合光遗传技术,实现视觉皮层同一神经元和神经元群体的稳定操控和长期多次重复记录[12];对在健身球上移动的头部固定小鼠小脑进行成像,探讨觉醒状态和运动行为对胶质网络中钙离子的激发的影响[13];结合多种疾病模型,探讨大脑皮层神经元及胶质细胞活性的改变及作用等[14]。随着多种双光子显微镜系统的出现,双光子显微镜成像技术将以其实时、无损地探测、诊断及检测能力,在生物医药及临床医学应用中发挥更大作用。[b]参考文献[/b][1] [font=宋体]李娟[/font],[font=宋体]张岚岚[/font],[font=宋体]吴珏珩[/font].[font=宋体]双光子显微镜的应用优势与维护要素[/font][J].[font=宋体]中国医学装备[/font],2021,18(12):158-163.[2] HendelT,Mank M, Schnell B,et al.Fluorescence changes of genetic calcium indicatorsand OGB1correlated with neural ac tivity and calcium in vivo and in vitro[J].JNeurosci, 2008,28(29):7399-7411.[3] DolginE.What leva lamps and vinaigrette can teach us about cellbiology[J].Nature,2018,555(7696):300-302.[4] Noguchi J,Nagaoka A, Watanabe S,et al.in vivo two-photon uncaging of glutamate revealingthe structure-function relatio nships of dendritic spines in the neocortex ofadult mice[J]. J Physiol,2011,589(Pt 10):2447-2457.[5] BishopD,Nikiél, Brinkoetter M,et al.Nearinfrared branding efficiently correlateslight and electron microscopy[J]. Nat Methods,2011,8(7):568-570.[6] [font=宋体]刘皎[/font],[font=宋体]丛馨[/font],[font=宋体]何其华[/font].[font=宋体]活体小鼠微血管血流倒置双光子激光扫描显微镜检测方法的建立[/font][J].解剖学报,2022,53(02):261-265.[7] [font=宋体]屈军乐[/font],[font=宋体]陈丹妮[/font],[font=宋体]杨建军[/font],[font=宋体]许改霞[/font],[font=宋体]林子扬[/font],[font=宋体]刘立新[/font],[font=宋体]牛憨笨[/font].[font=宋体]二次谐波成像及其在生物医学中的应用[/font][J].[font=宋体]深圳大学学报[/font],2006,(01):1-9.[8] [font=宋体]孙娅楠[/font],[font=宋体]赵静[/font],[font=宋体]李超华[/font],[font=宋体]等[/font].[font=宋体]二次谐波结合双光子荧光成像方法观察人源胶原蛋白透皮吸收情况[/font][J].激光生物学报,2017,26(1):24-29.[9] [font=宋体]刘雄波,林丹樱,吴茜茜,严伟,罗腾,杨志刚,屈军乐,荧光寿命显微成像技术及应用的最新研究进展。物理学报,[/font]2018,67(17):178701-1-178701-14[10] [font=宋体]罗淋淋,牛敬敬,莫蓓莘,林丹樱,刘琳,荧光共振能量转移[/font]-荧光寿命显微成像(FRET-FLIM[font=宋体])技术在生命科学研究中的应用进展。光谱学与光谱分析,[/font]2021,41(4):1023-1031[11] Isom-BatzG,Zimmem PE.Collagen injection for female urinary incontinence after urethralor periurethral surgery[J].J Unol,2009,181(2):701-704.[12] JuN,Jiang R,Mrcknik SL,et al.Long-term all-optical interrogation of corticalneurons in awake-behaving nonhuman prim ates[J].LOSBiology,2018,16(8):e2005839.[13]Nimmerjahn A,Mukamel EA, Schnitzer MJ.Motor behavior activates Bergmann glialnetworks[J].Neuron,2009,62(3):400-412.[23] Huang L, Lafaille JJ, YangG.LearningDependent dendritic spine plasticity is impaired in spontaneousautoimmune encep halomyelitis[J].Dev Neurobiol,2021,81(5):736-745.[14] Huang L,Lafaille JJ,Yang G.LearningDependent dendritic spine plasticity is impaired inspontaneous autoimmune encep halomyelitis[J].Dev Neurobiol, 2021,81(5):736-745.
随着计算机技术和光电技术的飞跃发展,八十年代后期开始实际应用的激光共聚焦扫描显微镜(LSM),使人们在医学生物学上对活细胞的动态观察、细胞无损伤探测、免疫荧光标记和离子荧光探针的观察和研究上有了更加得心应手的手段和工具。随着计算机、光学显微镜、大数值孔径复消色差物镜、高分辨率分析显示、激光源、激光功率、高敏感度探测器、声光转换电子控制和各种荧光标记物的发展,使得LSM向更精、更快、多维和无损伤性分析的方向发展。
http://ng1.17img.cn/bbsfiles/images/2012/09/201209051718_388882_2571111_3.jpg SA3C06A激光甲烷遥距探测仪是甲烷气体泄漏检测领域的一项极具创新性的发明,是实现远距离检测甲烷气体泄漏的最有效的便携式专业仪器。 SA3C06A激光甲烷遥距探测仪采用光学检测方式,运用红外分光度量原理,利用对甲烷分子有唯一吸收性波长的激光来实现泄漏检测。 远程检测距离可达30米,在反射模式及外部装置辅助下甚至可达150米。SA3C06A具有灵敏的探测反应能力,只需0.1秒即可获知检测结果,检测精度可达100ppm-m甚至更低。 为了满足历史数据查询和决策数据提供的信息化需求,SA3C06A更具备大容量的数据存储能力,通过内建式存储器和外部SD卡可将检测数据以完整报表形式导入至计算机终端。 SA3C06A激光甲烷遥距探测仪以其独特的性能和表现正在帮助工作人员跨越以往的检测盲区,只需举起,迅速确定甲烷泄漏与否就有可能! 特性: ? 真正实现远距离泄漏探测,有效距离可达30米 ? 极灵敏的反应能力,仅需0.1秒检测反应时间 ? 对甲烷气体的唯一性,无其他气体干扰 ? 大容量数据存储能力 ? 无需周期性校调 ? 结构轻巧,具有优秀的便携性 安全: ? 激光安全:指示激光:2级 测量激光:1级 ? 符合IEC60825-1(JIS C6802)2级激光产品对眼睛安全要求 ? 符合IEC529(JIS C0922) IP64等级防水防尘要求 ? 符合EMC(EN61000-6-4:2001和EN61000-6-2:1999)
[font=&]激光粒度仪测量粒度的原理是米氏散射理论。米氏散射理论用数学语言精确描述折射率为[/font][font=&]n、吸收率为 m、粒径为 d 的球形颗粒,在波长为 λ 的激光照射下,散射光强度随散射[/font][font=&]角 θ 变化的空间分布函数,此函数也称为散射谱。[/font][font=&]根据米氏散射理论,大颗粒的前向散射光很强而后向散射很弱;小颗粒的前向散射光弱而后[/font][font=&]向散射光很强。如图所示的是固定波长下的大、中、小颗粒的散射谱示意图。激光粒度仪正[/font][font=&]是通过设置在不同散射角度的光电探测器阵列测这些散射谱来确定颗粒粒径的大小。对于特[/font][font=&]定颗粒,这种散射谱在空间具有稳定分布的特征,因此称此种原理的激光粒度仪又称为静态[/font][font=&]激光粒度仪。[/font][font=&]根据米氏散射理论,当颗粒粒径小到一定程度(如小于波长 的 1/10 左右)时,光强分布[/font][font=&]变成了两个相近似对称的圆(图 1(1) dλ),此时称为瑞利散射。产生瑞利散射的最大粒[/font][font=&]径就是激光粒度仪的测试下限。激光粒度仪的测试下限还与激光波长有关,激光波长越长测[/font][font=&]试下限越大,波长越短测试下限小。研究表明,具有同时测量前向和后向散射光技术,同时[/font][font=&]具有差分散射谱识别技术的激光粒度仪,在用红光(波长为 635nm)做为光源时的测量极[/font][font=&]限为 20nm,用绿光(波长为 532nm)时的测量极限为 10 nm。[/font]