当前位置: 仪器信息网 > 行业主题 > >

频率计数器

仪器信息网频率计数器专题为您提供2024年最新频率计数器价格报价、厂家品牌的相关信息, 包括频率计数器参数、型号等,不管是国产,还是进口品牌的频率计数器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合频率计数器相关的耗材配件、试剂标物,还有频率计数器相关的最新资讯、资料,以及频率计数器相关的解决方案。

频率计数器相关的论坛

  • 【求助】求 SS3341A 频率计数器的说明书

    【求助】求 SS3341A 频率计数器的说明书

    各位好!本菜新近淘得一台旧的 SS3341A 频率计数器,石家庄无线电四厂1987年出品。年代久远,已经没有说明书了。不知哪位朋友有说明书或电路图。提前致谢。http://ng1.17img.cn/bbsfiles/images/2016/10/201610312136_615471_0_3.jpg

  • 国家时间频率计量基准相关介绍

    [align=center][b][size=24px]国家时间频率计量基准相关介绍[/size][/b][/align] 国家时间频率计量基准包括:[b]秒长国家计量基准和原子时标国家计量基准[/b]。[b]秒长国家计量基准[/b]: 秒长国家计量基准是直接复现秒定义的实验装置,输出的标准频率具有最高计量学特性,它是经国家审查、批准作为统一全国秒长量值(频率量值)最高依据的计量器具,全国只有一套。1967年,秒定义从天文秒改为原子秒,定义在铯原子基态能级跃迁上。铯原子钟成为直接复现秒定义的实验装置。 世界上第一台热铯束钟是英国国家物理实验室1955年研制完成的。中国计量科学研究院从70年代起开始了热铯束钟的研究,1981年研制完成的NIM3热铯束钟,相对频率不确定度达到3×10[size=12px]-13[/size],成为中国第一代秒长国家计量基准。2003年,中国计量科学研究院研制完成了中国第一台激光冷却铯原子喷泉钟NIM4,不确定度达到8.5×10[size=12px]-15[/size],随后改进提高至5×10[size=12px]-15[/size],经国家质量监督检验检疫总局批准替代NIM3热铯束钟,成为中国第二代秒长国家计量基准。2014年,中国计量科学研究院研制完成的新一代NIM5铯原子喷泉钟,不确定度达到1.5×10[size=12px]-15[/size],获批取代NIM4成为新的秒长国家计量基准。2014年8月,NIM5铯原子喷泉钟通过国际专家评审开始参加国际原子时合作驾驭国际原子时。2017年改进后的NIM5不确定度达到9×10[size=12px]-16[/size]。 秒长基准利用高稳晶振或者低温蓝宝石晶振等频率源,通过频率变换合成9192631770 Hz的微波信号。利用此微波信号激励铯原子产生钟跃迁,误差信号反馈给频率源将微波频率锁定到铯原子秒定义能级跃迁上。由于秒定义在不受任何外界场干扰的孤立的铯原子跃迁频率,因此世界各国计量院研制的基准钟复现秒定义都评定和修正一系列物理效应引入的钟跃迁频率偏移,包括外界场引入的频率偏移,如将原子周围温度引入的黑体辐射频移修正到0 K温度,将重力场引入的频率偏移修正到平均海平面水准。 秒长国家计量基准作为国家时间频率计量体系的源头,复现秒定义输出基准频率,用来驾驭氢钟产生本地原子时,向国际计量局报送数据,驾驭国际原子时,也直接测量光钟等高性能原子钟的频率。 随着科学技术的发展,秒定义可能被修改,其时,按新定义复现秒长的实验装置将成为新的秒长国家计量基准。[b]原子时标国家计量基准[/b]: 中国计量科学研究院于1980年建立了原子时标,1983年经国家计量主管部门(原国家质量监督检验检疫总局)批准,由中国计量科学研究院(NIM)国家时间频率计量中心建立和保持的原子时标UTC(NIM)为原子时标国家计量基准,是统一全国时间频率量值的最高依据。 原子时标国家计量基准由守时钟组、内部测量系统、溯源比对系统、数据处理系统、算法及控制系统等部分组成。守时钟组由不间断运行的多台商品氢原子钟和商品铯原子钟组成,产生连续稳定的时间频率信号;内部测量系统通过双混频时差测量得到中国计量科学研究院协调世界时UTC(NIM)与各守时原子钟之间的时差(相位差);溯源比对系统通过全球卫星导航系统(GNSS)及卫星双向时间频率传递(TWSTFT)技术使UTC(NIM)实现国际比对,参加国际原子时合作;数据处理系统对内部比对和国际比对数据进行存储、监测和处理;算法及控制系统对钟组相关数据进行计算产生本地原子时,利用中国计量科学研究院保持的铯喷泉钟秒长国家计量基准和国际原子时合作返回的UTC-UTC(NIM)数据对其进行驾驭(校准),产生准确稳定的UTC(NIM)。 UTC(NIM)作为原子时标国家计量基准,其量值溯源至国际标准时间-协调世界时(UTC)并对UTC做贡献;同时作为国家时间频率量值的源头,保证国内时间频率测量量值的准确统一。与协调世界时(UTC) 实现全球卫星导航系统(GNSS)共视及载波相位时频传递,保证了UTC(NIM)参加TAI合作的高水平链接,与UTC偏差在±5 ns内,标准合成不确定度优于2 ns。 中国计量科学研究院基于载波相位的链接于2013年成功主导了欧亚四国铯原子喷泉钟国际比对,标志中国第一次成功实现基准钟国际比对;实现时间传递链路校准技术及装置,2014年被BIPM指定为国际9家一类GNSS时间传递链路校准实验室,负责对亚太区域内二类实验室的校准。

  • 安捷伦频率计的外部时基问题

    实验室用安捷伦频率计,型号53220A,错误代码+580(没有有效的外部时基),我是用labview编的程,请问该如何解决。如何设置频率计的外部时基???

  • 中国计量院与重庆市质监局签署"国家时间频率计量中心重庆应用中心"建设合作协议

    8月8日,中国计量科学研究院(简称“中国计量院”)与重庆市质量技术监督局(简称“重庆质监局”)在重庆签署了国家时间频率计量中心重庆应用中心建设合作协议。中国计量院院长方向、重庆质监局局长杨宏伟分别在协议上签字。[align=center][img]http://www.nim.ac.cn/sites/www.nim.ac.cn/files/news2018/07-09/image001_3.jpg[/img][/align][align=center]签字仪式现场[/align] 根据协议,双方将本着平等互利、合作共赢的原则,充分发挥重庆质监局资源、区位、市场优势与中国计量院科研、技术、人才优势,由中国计量院协助重庆质监局建设国家时间频率计量中心重庆应用中心,实现重庆时间频率计量标准向原子时标国家计量基准UTC(NIM)的溯源,提高重庆市及西部地区高精度时间频率服务能力。

  • 国家时间频率计量中心实验室落户上海,1秒可以精确到纳秒级!

    [table][tr][td][align=left] 5月23日作为上海科创中心建设方案的一项重要工作,“国家时间频率计量中心上海实验室”落户上海。同日,上海市计量测试技术研究院与上交所技术有限责任公司签订了合作协议。[/align][align=left] 时间频率作为最准确的基本物理量,较早实现了量子化定义。时间频率的计量水平是国家核心竞争力的重要体现,高准确度时间频率已经成为一个国家科技、经济和社会生活中至关重要的参数。[/align][align=left] 以股民们打交道的上交所来说,时间频率安全可控是保障金融安全的重要一环。上交所技术有限责任公司负责人表示,上海正在打造国际金融中心,目前,上海证券交易所对时间准确度的要求已经达到百纳秒量级。为了加强市场监管,维护股票交易的公平性,金融行业需要统一的实时授时服务,进一步保障金融数据的安全。下一步双方将紧密合作,未来将上海实验室建立的时间标准直接传递给证交所,让上海金融的交易系统实现独立自主可控,国际金融中心保驾护航。[/align][img=,,473]http://p2.qhimgs4.com/t017565c3726c245854.jpg[/img][align=left] 在刚过去的5月20日,被喻为“根本性飞跃”的新国际单位制正式生效,实现了7个国际基本单位全部建立在基本物理常数定义之上,意味着“国际单位制进入了量子化时代”。在7个国际基本单位中,时间测量的准确度最高、稳定性最强、应用面最广。[/align][align=left] 高精准度时间的应用,能够使我们的城市变得更智能、更高效,社会管理更便捷、更可靠,同时极大改变我们的生活方式。[/align][align=left] 例如,卫星定位需通过测定电磁波信号传播的时间,来测定卫星与地面物之间的距离。1微秒的时间测量误差,导致的地面定位误差大约是300米。而1秒=1000000微秒,1纳秒=1000微秒。按照实验室的公开信息,该实验室的时间精度可达百纳秒级别。[/align][align=left] 又如,药物临床试验进行药理分析时,时间是药理分析过程中的关键参数,时间准确度直接影响药理分析结果的准确性。计量院检测人员针对这一时间同步需求,对实验室的同步时钟进行校准,使药理分析过程中使用的时间基于UTC(协调世界时)时间偏差限定在足够小的范围内。各大医院不仅需要本院时间内部统一,还需要做到远程医疗的各协同医院时间统一。推进医疗系统时间同步的建设,可以进一步实现医疗服务资源的共享,打响上海服务等“四大品牌”,加快构建上海全球卓越城市的步伐。[/align][align=left] 当前,上海正以“令人向往的卓越的全球城市”为愿景,着力打造创新之城、人文之城、生态之城。上海市场监管部门围绕政府职能转变,持续发挥市场在资源配置中的决定性作用,激发市场主体活力,实施创新驱动战略、发展高水平对外开放经济,同时也通过立法保障、政策规划、制度驱动的方式,计量技术基础建设得到了长足发展。[/align][/td][/tr][/table]

  • 求购频率计

    要求:检测频率范围在0.1~250MHz,大概研究200MHz左右的频率稳定性。

  • 计数器可以自校验吗?

    各位专家,请教下,计数器(通过频率调整,实现物理计数)可以自校准吗?详细说明:实验室出具的检验报告中有这样的表述“样品经过500万次试验,完好,不损坏”,实验室评审时,专家提出这个计数器需要进行量值溯源,但联系的计量机构不具备如此多次数的计量能力,请问该如何处理?实验室是否可以自行校验?类似的计数器,我这边有很多,请教给位,谢谢!

  • 请教各位,计数器可以自验吗?

    请教各位,计数器(通过设置频率,实现物理计数)可以自校验吗?说明:实验室出具的试验报告中有测试寿命的项目,例如“经过500万次试验,样品无损坏”等,实验室复评审时,专家提出需对计数器进行计量,但所属区域的计量机构答复,没有计数器的计量资质,而且,所需计量的次数太大,很难实际计量,请问各位有何好办法?谢谢!

  • 【求助】关于正比计数器

    我从书上看到探测器里面有正比计数器,SDD,硅PIN探测器等等,但是好象很多仪器上面用的都是SDD或者硅PIN探测器,而正比计数器用的很少。SDD或者硅PIN探测器的好坏一般都是什么分辨率的大小啊什么的,那正比计数器的好坏从什么指标可以看出来呢?

  • 研发化油器用膜片材质及振动频率检测技术

    求助:研发化油器用膜片材质及振动频率检测技术化油器用膜片的材质及其工作时的振动频率,直接影响到化油器的工作性能,其检测及控制技术是行业的关键共性技术难题,研发一种膜片材质及其振动频率检测技术,使膜片处于最佳的工作状况,满足其可靠性、稳定性要求,求专家合作,方式灵活!有此专长和经验的技术人才或者团体,欢迎联系我,QQ2115562681,电话15003885078

  • 在线粒子计数器的校验问题

    各位好!我们企业现在用的在线粒子计数器(型号为Rnet)是PMS的,想咨询两个问题:①关于型号为Rnet的PMS在线粒子计数器是否在使用前需要将采样口的防尘盖打开再进行通电,不然会导致内部的激光器烧掉的说法是否属实?②关于零过滤器的问题。针对厂区很多的在线粒子计数器,除了定期的外送校验,是否可以用零过滤器来进行企业内部的在线粒子计数器的自检,这种方法是否科学?有人能给我科普下零过滤器的相关知识吗?

  • 【分享】尘埃粒子计数器的特征及功能简介

    尘埃粒子计数器是用于测量洁净环境中单位体积内尘埃粒子数和粒径分布的仪器,主要用于测量洁净环境单位体积空气内定的尘埃粒子大小及数目。尘埃粒子计数器由显微镜发展而来,经历了颗粒计数器、激光空气粒子计数器、PCS纳米激光空气粒子计数器的过程,具有功能多、测量精度高、速度快、便于携带和操作简单等特点。 尘埃粒子计数器采用微电脑控制处理,能直接打印检测结果,采用液晶屏显示,一目了然,粒径档位多、便于观测各粒径的尘埃。采用内置微机控制,能够实现测量参数设定、测量结果显示、按键、定时、打印、时间、日期、数据存储等。尘埃粒子计数器可同时显示环境的温湿度并监测报告粒子传感器的工作状态,能够一次采样可同时测得多种粒径的尘埃粒子数,并能选择观察其中某一粒径粒子的数目及其变化情况,对于研究、检测和评价各种洁净环境都十分方便。 尘埃粒子计数器可以用于对洁净室检测、过滤器现场检测、捡漏、可监测超净工作台、生物安全柜、饮料包装环境、医院洁净手术室、生化制品、食品卫生的粒子检测。尘埃粒子计数器可广泛应用于药检所、血液中心、防疫站、疾控中心、质量监督所等权威机构、制药车间、半导体、光学、医院、环保、检验所等生产企业和科研部门。

  • 菌落计数器的选购标准

    全自动菌落计数器因其计数准确、自动化程度高、可留存样品信息、使用方便,一般可在数秒内统计出样品菌落数、性价比高等优点,而受到众多企业、医院、科研院所的喜爱,但是由于全自动菌落计数器的科技含量较高,如果选型出现问题,对日后的检验、科研工作会带来很大不便,所以最好的办法就是在挑选时一定要挑选一台满足使用需求的菌落计数器,那如何选购一款优质的菌落计数器呢?   一、根据实际使用需求来确定CCD传感器的档次   很多用户偏向于选择像素高的菌落计数器,却没考虑到检验和科研的实际应用需求,所以用户在选购前就要确定好自己要买多少像素的CCD传感器。   二、看图像采集通道功能,指标越多越好   所谓"图像采集通道",就是菌落计数器对于样品信息的获取能力,也就是标志着菌落计数器开始计数统计前的初始信息是否真实可靠。如果图像采集通道功能过于单一,那当后期计数时时会很容易出现误判,所以"图像采集通道"指标越多越好。指标响应时间越小,则标志着该菌落计数器获取样品信息的能力越强。   三、看最小菌落分辨率为多少   一般入门级菌落计数器最小菌落分辨率多半有0.1mm左右的效果,中等机型有0.05mm的水准,若实际比较入门、高阶机型的图档显示能力,拥有高分辨率的计数器,在菌落较小时效果会更明显。   四、看有没有数据及报表管理功能   在选购菌落计数器时一定要选有具有数据及报表管理功能的设备,于由微生物的不可复检性,对于以往检验数据的管理和回溯极为重要,不然在实际开展工作时繁杂的统计数据和报表管理会耗尽科研人员的精力。   五、不要指标高的,就要效果好的   现在有些菌落计数器在给用户介绍时,会宣传他们的产品有多少多少功能,多高多高的指标,实际上等真正买回家,根本用不到这么多功能,最重要的还是要统计菌落的实际效果好不好,不能为了过多的功能而买一个效果不是很好的设备。而统计效果的好坏关键在于算法是否合理。   六、看使用是否方便   全自动菌落计数器的一个主要优点在于它降低了人工统计菌落的工作量,减轻了工作人员的工作强度,但由于菌落形态和样品状态的不确定性,市面上大多数菌落计数器都较为强调通过人工干预来提高准确度。用户在选购设备时应注意操作是否简便、是否符合工作人员的操作习惯和操作思路。一般来说,需要的人工干预越小,使用越简便。

  • 关于正比计数器

    正比计数器参数中 关于能量分辨率都采用百分数表示 谁能解释一下这个百分数的含义。

  • 在线颗粒计数器

    请问有没有在线上下游颗粒计数器的厂家资源吗?过滤精度试验台上用

  • 远程粒子计数器

    远程粒子计数器

    药品生产洁净区中的尘埃粒子是定期用尘埃粒子计数器进行测试的,有次参加制药设备展时看到了这个东东,直接挂在墙上的,用于在线计数的?这个收集口离天花板那么近,收集到的数据有代表性么?有木有哪个朋友有用到的?交流交流呗http://ng1.17img.cn/bbsfiles/images/2012/12/201212180844_413462_1614319_3.jpg

  • RF射频发生器频率问题讨论?

    RF射频发生器频率有40.68和27.12MHZ两种频率?那么一般选择哪种啊?也就是哪种更好?http://simg.instrument.com.cn/bbs/images/default/em09511.gif为什么这样选择?

  • 关于仪器期间核查频率

    实验室的有台仪器设备之前都是按程序文件要求半年6个月进行1次仪器期间核查(按仪器校准规范核查的),以及2年一次外面公司上门计量校准,现在有个问题想问下?半年一次期间核查,我想把程序文件修改成1年1次期间核查可以吗?(因为仪器期间核查买标液还是其次的,主要核查操作太麻烦)?还有说明下这台仪器的检测项目是已申请了CNAS认可,我们把核查频率由6个月改成12月,到时候现场评审老师看到会不会质疑不认可?实验室其实每年还有做其他质量监控的现在想减少仪器期间核查频率!

  • 【分享】菌落计数器的选购标准

    全自动菌落计数器因其计数准确、自动化程度高、可留存样品信息、使用方便,一般可在数秒内统计出样品菌落数、性价比高等优点,而受到众多企业、医院、科研院所的喜爱,但是由于全自动菌落计数器的科技含量较高,如果选型出现问题,对日后的检验、科研工作会带来很大不便,所以最好的办法就是在挑选时一定要挑选一台满足使用需求的菌落计数器,那如何选购一款优质的菌落计数器呢? 一、根据实际使用需求来确定CCD传感器的档次很多用户偏向于选择像素高的菌落计数器,却没考虑到检验和科研的实际应用需求,所以用户在选购前就要确定好自己要买多少像素的CCD传感器。 二、看图像采集通道功能,指标越多越好所谓"图像采集通道",就是菌落计数器对于样品信息的获取能力,也就是标志着菌落计数器开始计数统计前的初始信息是否真实可靠。如果图像采集通道功能过于单一,那当后期计数时时会很容易出现误判,所以"图像采集通道"指标越多越好。指标响应时间越小,则标志着该菌落计数器获取样品信息的能力越强。

  • 波长色散探测器之流气式正比计数器

    [size=18px]在平时工作中,身边总是有人在问波长色散分析仪的探测器用的是什么检测器?是什么原理?有的为啥还有需要气体的,搞的好麻烦,气体爆炸怎么办……今天我们就来聊聊[b]波长色散分析仪的检测器[/b]。波长色散的x荧光光谱仪由于要使用分光晶体,从而使得待测元素的分析仪谱线可以较好的分离,故通常使用分辨率不那么高的流气式正比计数器和NaI闪烁计数器作为光谱仪的探测器。主要说说流气式正比计数器[b]气体正比计数器又可以分为封闭式和流气式正比计数器[/b],由于封闭式正比例计数器分辨率太低,而且温差电冷能量探测器已经实用化,所以封闭式正比例计数器将会慢慢被淘汰。我们主要来说说流气式正比例计数器,一般情况下,流气式正比计数器为一个直径2cm住状体,中间有一根20-30μm的金属丝,用作前放信号和外部高压的接头,筒状体内部充入惰性气体和淬灭气体,通常为90%的氩气和10%的甲烷气体混合器,并在金属丝和柱壳间施加1400V~1800V的电压。当流气式正比计数器中的探测气体收到X射线的照射时,或产生大量的负电子和正电性氩离子组成的离子对。假设入射X射线的光子能量为E,产生离子对的有效电离能 为V,由入射X射线光子产生的平均离子对数n与入射X射线光子的能量成正比,与离子对的有效电离能成反比:n=E/V产生的电子在电压作用下会逐渐加速飞向样机金属丝,并引发进一步的氩原子电离,这一效应被称为电离增益,流气正比探测器的电离增益一般为6*10四次方。。。。经放大后的电流由电容收集,产生的脉冲电压与入射光子的能量成正比。在这里需要注意的是,脉冲高度和强度的区别。[b]脉冲高度:[/b]指由单个X射线产生的单个脉冲电压幅度。[b]X射线强度:[/b]指每秒钟测得的脉冲数。重点来了,[b]探测器的分辨率一般定义为峰高一半处所对应的谱峰宽度,简称谱峰半高宽。[/b]流气式正比计数器一般适用于较长波长的X射线探测,通常用于0.15~5nm波长的X射线探测,对于0.15以下的波长,探测的灵敏度很低,这也就是为什么目前很多的X荧光分析仪会设置有多个检测器的原因。希望这样的小知识普及能够让大家明白什么是流气式正比计数器,并且知道他的原理,这样见到这类型的分析仪就不会在这边面有疑问啦![/size]

  • 【讨论】计数器的噪声

    谁能详细介绍下计数器的噪声啊?怎样测量的?我在有的文献中看到,对于SC,使用LiF200晶体、黄铜样品测Cu-Kα、积分方式,关闭X射线发生装置的电源,启动计数测量100s,重复三次,取平均值,小于600 cpm合格对于F-PC,使用PET晶体、铝块样品Al-Kα、积分方式,关闭X射线发生装置的电源,启动计数测量100s,重复三次,取平均值,小于60 cpm合格我们的仪器在安装的时候,厂家的工程师做过,可惜当时我不在现场[em09509],后来我看工程师留下的关于噪声测试的屏幕截图,居然显示X射线是开着的,百思不得其解啊理学ZXS Primus Ⅱ型X射线荧光光谱仪软件中有“噪声测试”功能,但对此不是很了解有谁做过噪声测试吗?可以来讨论一下啊

  • 尘埃粒子计数器有哪些特点

    尘埃粒子计数器有哪些特点

    [size=16px]  尘埃粒子计数器有哪些特点  尘埃粒子计数器的主要特点包括:  高灵敏度:可以检测微小颗粒,一般可测量0.3微米以上的粒子。  宽测量范围:可根据需要选择不同的粒径通道进行测量,能够覆盖较大范围的粒径。  实时监测:具有实时监测功能,能够实时显示空气中的颗粒数量和大小。  测量精度高,性能稳定。  功能强,体积小,操作简单方便。  有不同尺寸和重量可供选择,适应不同的应用场景。  通常采用铁制喷塑外壳制成。  配备彩色7寸触摸屏显示,易于观察和操作。  这些特点使得尘埃粒子计数器在医药、光学、化学、食品、化妆品、电子卫生、生物制品、航空航天等行业的洁净环境检测中得到广泛应用。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/12/202312111000040704_5136_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 观测频率

    对于原子核的Larmor频率来说 在核磁中是不是其频率越高 越容易被检测到信号?为什么呢?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制