当前位置: 仪器信息网 > 行业主题 > >

平荷系定仪

仪器信息网平荷系定仪专题为您提供2024年最新平荷系定仪价格报价、厂家品牌的相关信息, 包括平荷系定仪参数、型号等,不管是国产,还是进口品牌的平荷系定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合平荷系定仪相关的耗材配件、试剂标物,还有平荷系定仪相关的最新资讯、资料,以及平荷系定仪相关的解决方案。

平荷系定仪相关的资讯

  • 华羿微电“一种低栅极电荷屏蔽栅MOSFET器件及其制作方法”专利获授权
    天眼查显示,华羿微电子股份有限公司近日取得一项名为“一种低栅极电荷屏蔽栅MOSFET器件及其制作方法”的专利,授权公告号为CN117476770B,授权公告日为2024年7月19日,申请日为2023年11月16日。背景技术沟槽型功率MOS器件能够在节省器件面积的同时得到较低的通态电阻,因此具有较低的导通损耗,已经在中低压应用领域全面取代平面式功率MOS器件。但是采用密集而精细的沟槽栅后,由于沟道面积的增加导致栅极电荷增大,从而影响到器件的高频特性和开关损耗。特别是随着产品应用领域朝着薄,轻,小方向发展,要达到上述目的,就需要提升整个系统的开关频率,这样就导致普通的沟槽型功率MOS器件在开关特性的缺点表现的越来越明显,如何提高器件的开关速度和开关损耗以适应节能以及高频应用的需求具有十分重要的意义。造成开关损耗大和开关速度慢的主要原因是由于沟槽型功率MOS器件在栅-源之间和栅-漏之间存在有较大的寄生电容,即栅-源电容Cgs和栅-漏电容Cgd。功率MOS管在开和关两种状态转换时,Cgd的电压变化远大于Cgs上的电压变化,相应的充、放电量Qgd较大,所以Qgd对开关速度的影响较大。如华虹NEC在中国专利(专利申请号:200510026546.5)中提出了厚底栅氧技术(Thick Bottom Oxide),从而达到降低Cgd的目的。但是该技术的不足在于Cgd只能降低约30%,仍不能满足节能以及高频应用的需求。因此,如何进一步显著的降低栅漏寄生电容,而不影响器件导通电阻,从而大大提高沟槽型功率MOS器件的高频特性和降低开关损耗成为本技术领域人员的努力方向。而基于电荷平衡原理的SGT(屏蔽栅型)MOSFET器件在很大程度上改变了动态特性和导通电阻之间的关系,使得器件FOM值更低(将导通电阻(Rdson)和栅电荷(Qg)的乘积最优值(FOM)作为评价器件性价比的标准)。发明内容本发明公开了一种低栅极电荷屏蔽栅MOSFET器件及其制作方法,将器件有源区部分沟槽区域的源极多晶硅或者栅极多晶硅通过接触孔与源极金属层相连,使得该部分区域不参与整个器件的导通,能够有效降低器件的栅极电荷,同时由于沟槽下方屏蔽栅的存在可以保障器件有足够击穿电压。该器件在中高压领域具有极大优势,当器件有源区50%的区域采用此种技术将使得器件的FOM最优值降低~46.5%(以150V耐压器件为例),从而最终使得器件最优值FOM降低并且拥有更高的性价比。该器件的制作方法能够很好的与现有屏蔽栅型MOSFET器件制造工艺兼容,因此不会带来不可实现工艺的技术瓶颈,具有很高的转化价值。
  • 雷迪美特为造纸行业提供胶体电荷滴定解决方案
    东莞市三力星造纸助剂有限公司是三力星集团旗下工厂,拥有数套造纸助剂生产线,是生产造纸助剂的专业厂家。公司主要生产Cr200D阳离子分散松香胶,P100D阴离子分散松香胶,Akd100D中/碱性AKD施胶剂,Akd200D中/碱性施胶剂,Pae100D造纸湿强剂等多种造纸助剂产品。 造纸行业中,浆料滤液和白水中胶体溶解电荷是造纸湿部化学反应的度量,因此胶体溶解电荷检测对造纸行业有着重要的意义。三力星研发质检部门在日常检测中,进行胶体电荷密度滴定实验时,由于指示剂颜色变化不容易判定,容易造成误差。鉴于该情况,我司技术部门通过与三力星工程师进行多次的技术交流探讨及现场实验验证,最后提出了采用光度滴定法作为胶体溶解电荷的测试方法。并通过实验验证了该方法的可行性。 目前,三力星采购自雷迪美特公司的TIM845自动电位滴定仪(配合专用光度电极套装)已顺利完成安装调试,并取得良好的实验结果。 更详细信息,请咨询雷迪美特中国有限公司:cherry_radiometer@126.com 020-32486709, 87683635。
  • 德祥科技与荷兰SGT公司签定代理合作协议
    近日,德祥科技(Tegent Technology)CEO Mr. Stephen Yu与世界上最专业的实验室气体净化装置制造商之一&mdash &mdash 荷兰SGT公司副总裁Mr. Victor正式签署了双方友好合作协议,强强联手,共同开拓中国市场。德祥科技(Tegent Technology)成为了SGT大中国区的独家总代理,销售代理SGT公司的所有产品。 荷兰SGT以发明和供应超净筒式过滤气体系统而著称,并作为色谱工业标准而闻名业界。目前SGT为多个色谱仪器品牌提供气体净化装置,包括Agilent, Thermo, Shimadu, Restek, Supelco等公司。 选择了德祥科技(Tegent Technology)作为新的战略伙伴,SGT公司副总裁Mr. Victor表示:&ldquo 我们相信德祥,与德祥科技(Tegent Technology) 的合作,SGT的业务一定会取得更大的突破。&rdquo 德祥科技(Tegent Technology)的CEO Mr. Yu则表示:&ldquo 作为中国分析仪器的领导供应商&mdash &mdash 德祥科技(Tegent Technology)有高精专的销售团队,高素质的售后服务团队及在国内市场的较高占有率,再联合起&ldquo SGT高知名的*、*的产品,这已经为双方将来的双赢奠定了坚固的基础。且SGT的产品大大丰富了我们公司的产品线,完善了我们的行业解决方案,提升了德祥科技(Tegent Technology)作为提供全面解决方案的供应商公司形象。双赢更是指日可待!&rdquo
  • Eijkelkamp参加中荷土壤质量环境标准制定方法研究总结会议
    5月25日,中荷土壤质量环境标准制定方法研究总结会议在环境保护部南京环科所召开。环保部生态司领导、荷兰基础设施与环境部司长Ruud Cino、环保部南京环科所专家在开幕式上分别致辞,环保部科技司、国际司,中国环科院等代表也参加了会议,全国各省(市)环境保护厅(局)相关技术人员参加了随后两天开展的培训。 在 培训中,荷兰专家介绍了荷兰土壤筛选值及其应用经验、人体健康风险评估方法,并从欧盟角度评价中国的土壤筛选值。环保部介绍了中国土壤环境管理与法规标准 需求,环保部南京环科所对中荷土壤环境质量标准制定方法研究项目进行了总结,并对我国土壤环境标准体系框架及体系进行了展望。 荷兰土壤合作平台(NSP)也组团参加了这次活动,在经验交流会上,分别就各自在土壤修复领域的经验与案例做了报告。Eijkelkamp公司作为NSP的核心成员,一直积极参与中国土壤污染与修复的市场。Eijkelkamp的各种土壤和地下水采样与分析设备是开展污染场地调查与风险评估活动中的必要手段。 土壤和地下水修复研究设备目录,欢迎索取
  • 机器人分析仪来袭——记荷兰Skalar产品技术和应用交流会
    提到化学实验室,大家一般会想到一排排的通风橱和各种的分析仪器,研究人员忙碌地穿梭其中,称取样品、添加试剂、操作仪器等等。曾经在实验室工作过或正在实验室工作的人可能都会想象,有一天有个机器人能代替我们做这些繁琐的工作吧。自动化一直是分析仪器的发展方向之一。据称,全球实验室自动化市场预测从2014年的34.742亿美元,由2015年到2020年以6.7%的年复合成长率成长,到2020年达到51.057亿美元的规模。机器人分析系统  如今,机器人分析系统的这种想法已经实现了。11月25日,在荷兰Skalar产品技术交流会上的宣传视频和产品专家介绍了机器人平台。视频中,我们看到,机器人分析仪正在进行生化需氧量(BOD)的分析,样品盘上摆放着一排排的大小不一、多达198个的样品瓶,2个机器手臂不停地移动着,移取样品、开瓶盖、加入抑制剂和/或接种、加入稀释液、搅拌混匀、检测,盖瓶盖、清洗电极和搅拌器,重复动作分析下一个样品。之后研究人员将样品架放入培养箱20° C培养5天,培养完毕后样品支架直接放置于机器人分析仪上 机器人分析仪再次开始工作,开瓶盖、搅拌混匀、检测、关闭瓶盖,重复测量所有样品。而且,配套的计算机还可以自动计算检测结果。  一套动作下来令人眼花缭乱,其中研究人员所参与的只是将样品支架放置于机器人分析仪上、开启分析仪、将样品架放入培养箱或从培养箱中取出。大量的取样、添加试剂、检测、清洗等重复工作都是由机器人分析仪完成的,消除了繁琐的人工操作,提高了分析效率和结果的准确性。机器人平台还可以进行COD、PH、电导率、碱度、碳酸盐/重碳酸盐、浊度、色度、离子选择性电极、土壤颗粒分析等分析,也可组合分析或按照客户需求定制。Skalar公司总裁R. van der Wagt, M. Sc.、昌信科学仪器公司总经理罗伟立、昌信科学仪器公司广州区经理关键旭  据Skalar公司总裁R. van der Wagt, M. Sc.介绍,Skalar在上世纪80年代即开始研制机器人分析系统,他们经常和用户面对面坐下来交流,听用户想要做什么,Skalar再想能提供哪些产品技术。在2年前Skalar推出了最新型号的机器人分析仪,该项业务增长很快。  昌信科学仪器公司总经理罗伟立谈到,4年前在中国刚开始推广机器人分析仪时遇到了很多困难,如今,这种状况有所改善,因为中国目前的人工成本也在不断提高,实验室里其他仪器也购买的差不多了 而且由于中国政府对环境保护等的重视,一些实验室的样品量大幅增加,这时对于实验室自动化的需求也提到了日程上。对于用户担心的价格问题,罗先生也说到,根据用户不同需求,配置不同模块,价格也有很大的范围空间,用户完全可以负担。  罗先生补充说,机器人分析仪在欧美、日本、韩国等地区销售的很好,最近在中国也已经有很多用户在咨询这方面的事情了。确实,在此次交流会上,编辑就看到一些用户对这款产品感兴趣,特意来参加会议想了解详细情况。连续流动分析仪  荷兰Skalar公司成立于1965年,公司秉承的宗旨是帮助全球的实验室特别是环境领域实验室,让复杂实验变得更简单、更加自动化。公司在成立之初所研制的是小型、简单的自动化系统,如今公司研制的自动化产品更大型、涉及的范围也更宽。据R. van der Wagt, M. Sc.介绍,Skalar在60年代开始研制TOC产品,70年代开始了连续流动分析仪的研制,80-90年代研制了机器人分析仪,这三个事件是Skalar公司50年发展历程中的重大转折点,促进了公司的发展。  Skalar是一家员工所有的公司,据介绍这还是公司的员工向创始人提议,而创始人也觉得如果员工成为公司的股东,工作时更加尽力,对公司的长远发展有很大好处,而欣然接受了建议,一直延续到如今。  说起昌信公司与Skalar公司之间的合作,可以追溯到1994年,是昌信公司将Skalar的产品带入了中国,二者合作已经20多年了。Skalar产品业务占据昌信的90%之多,可见昌信在这方面所投入的人力物力。昌信科学仪器公司广州区经理关键旭举例到,例如对于Skalar的明星产品“连续流动分析仪”,经过昌信的努力,如今在中国市场上,Skalar已经占据了50%左右的市场份额 由于连续流动分析仪对仪器的配套服务要求较高,为了及时解决用户的后顾之忧,昌信配备了21名服务工程师,提高了服务速度和质量。  谈到Skalar的明星产品“连续流动分析仪”,R. van der Wagt, M. Sc.说到,Skalar的优势在于自动化程度比竞争对手高,目前同类产品中只有Skalar的产品能够实现全部无人值守 另外,Skalar产品研发力量强大,能够对市场需求的变化快速反应,对此R. van der Wagt, M. Sc.举例说,在公司总部的120名员工中,研发人员就有20多名。荷兰Skalar产品技术交流会现场  撰稿:刘丰秋
  • 实验室洗瓶难?招工难?杜伯特一招帮你搞定!
    随着科技的飞速发展,各类新型实验室应运而生。虽然有政策的扶持,但科研行业还是有很多难以言说的辛酸。很多实验室都面临着招工难、招洗瓶工更难的困境。1.为解决招洗瓶工难这一问题,科研机构不得不提高洗瓶工薪酬待遇。综合国内各大招聘平台的数据可见,洗瓶阿姨的“身价”可不低。包吃、包住、双休、加班补助、高温补贴、定期体检、免费班车、饭补房补、年底双薪、年终分红。。。。。。网友:我也要应聘!先置办两台电热水器~洗瓶子的阿姨嫌用自来水洗瓶子太冻手,于是实验室买了2台电热水器。阿姨搞不定的,还是要自己动手滴容量瓶、进样小瓶这类不易清洗、对实验结果影响很大的瓶子,还是要自己动手洗。安全无小事,岗前培训很重要2.洗瓶工门槛低、待遇好、福利高,为什么还是常常一“工”难求呢?洗瓶工“后继无人”目前实验室清洗器皿的工作人员都是60或者70年代出生的阿姨。随着这些人逐年老去,很难招到清洗器皿的工作人员。年轻人不愿意做年轻人多选择办公室或者业务类的工作,一般不愿意干清洗器皿这样既辛苦又没有技术含量的工作。老龄化问题 我国人口老龄化问题日趋严重。没有足够的适龄人口基数作为支撑,用工荒问题将会持续下去。那么作为实验室管理者,应该如何快速、高效的解决这一问题呢?其实有一种办法可以让实验室轻松招到省时、省力、更省钱的“三省”洗瓶工——配置一台全自动玻璃器皿清洗设备。1.随着第三方检测市场的疯涨,近年来涌现出无数的小型检测机构。于是竞争越来越激励,整体的利润反而在下降。减少人工成本,规模化、自动化的处理实验室器皿已成行业共识。2.某省级药检所承担了全省药品的检验工作,每天有上千个样品需要检测。随着样本处理量的增加,每层楼都配备有1~2名专职清洗阿姨负责洗瓶任务。但遇到样本处理的高峰期,阿姨还是忙不过来。因此,所里决定用自动化机器来替代部分人手,提高工作效率。3.当研究变得越来越精细的时候,分析型的设备越来越先进,对前处理的要求越来越高。如果器皿清洗不干净,会造成实验室数据的不准确。这对于靠实验室数据为主要业务的检测机构来说存在一定的风险。“机器换人”日益成为中国市场投资与创新热点,机械化清洗已成为发展趋势。杜伯特立足中国市场,多年来深耕实验室清洗领域,更懂中国实验室玻璃器皿的清洗需求,致力于打造符合中国国情 “好用、专用的实验室洗瓶机”。洗得好清洁系统专业,360°清洗玻璃器皿,加之强大的冲洗力,保证了清洗效果。洗得多清洗效率高,单次可清洗170个移液管或490个进样小瓶。洗得省按照每天清洗2次计,月度清洗成本不足450元。比动辄几千元的人工清洗成本省多了!更智能仪器高度自动化、智能化,实验人员可根据清洗要求设定运行参数。更安全大大降低实验人员的操作风险,保障实验人员安全。
  • 上海大载荷系留气球垂直观测平台在京津冀地区首次成功升空
    p   2018年12月15日凌晨2点,上海市环境监测中心和中国电子科技集团第三十八研究所以及中国科学院大气物理研究所相关技术人员冒着零下8℃严寒,连续16小时作业一次性完成囊体充气和挂架合拢。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/78ecd249-9ec4-4fe3-a9f7-8bb18b1bf7f9.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 搭载气溶胶和气象在线监测仪器的 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   系留气球平台航拍图 /span /p p   中午12:00,第一根1000米大气污染物化学组分和气象参数垂直探空曲线出现在计算机屏幕上,标志着以大载荷系留气球垂直观测平台为核心的大边界层污染加强观测实验在河北省望都县全面启动。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/34942733-1811-4eff-99d9-c48b14d31c74.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center "   span style=" font-family: 楷体, 楷体_GB2312, SimKai "  2018年12月15日600米、800米 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   存在污染物高空传输 /span /p p   本次大型联合实验为国家重点研发计划项目《陆地边界层大气污染垂直探测技术》的重点观测任务。该项目由中国科学院大气物理研究所胡非教授主持,参加单位有中国环境监测总站、上海市环境监测中心、深圳市环境监测中心、北京大学、中山大学、中国科学院合肥物质科学研究院、中国气象局北京城市气象研究所、南京大学和南京信息工程大学等九家单位。 /p p   本次投入实验的大型系留气球长32米,体积为1900立方米,有效载荷220公斤,升空高度可达1200米,是目前国内唯一的一个民用大载荷大气污染观测平台,艇上载有常规“六要素”二氧化硫、二氧化氮、臭氧、一氧化碳、PM2.5、总挥发性有机物,以及气溶胶质谱、粒径谱、黑炭和颗粒物计数等气溶胶化学组分实时观测仪器,同时还搭载有风速、风向,温度、湿度、气压、三维湍流脉动风速脉动温度等气象要素观测仪器。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e5ea6ca2-52fb-4292-8f96-3f259f7254e8.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   2018年12月15日气溶胶化学组分垂直分布图,仪器:ACSM,表明近地面燃煤和生物质气溶胶排放的有机颗粒物和硫酸盐、黑炭贡献显著,硝酸盐则高空传输和地面累积同步存在。 /p p   自2012年以来,在上海市环境监测中心的带领下,由华东理工大学、南京大学、中国电子科技集团第38所和上海民防办等五家单位组成的科研团队联合科技攻关,历经坎坷,最终将2010年上海世博会科技创新成果——安防气球系统改造为适用于大气环境科学研究的垂直观测平台,成为了一个悬置在边界层空域中的高空大气“超级站”。该系统于2013年、2015年、2016年5月、2017年和2018年在上海先后完成了3次冬季气溶胶污染和2次夏季臭氧污染垂直观测试验研究。团队连续攻克了高空与地面不间断供电、数据实时传输、高稳定度在线大气观测挂架设计、大气污染物和气象多维度数据同步集成、倒挂式颗粒物采样气路设计等多重技术难关,逐步探索和形成了一套以数值模型预报为指导、地基观测设备实时配套的近低空大气垂直科学观测方案,成功实现了在边界层高度的大气污染物的定点定时观测,弥补了在大气边界层高度长时间连续稳定观测的空白,为我国区域复合型大气污染成因和传输影响研究提供了一个全新的高空观测技术手段。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/beaa86ea-1fa0-4c38-8aba-6abc20d6f5bc.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2018年12月19日张远航院士一行赴 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   系留气球观测现场指导观测实验 /span /p p   本次在京津冀地区开展的规模较大的多平台、多要素大气边界层综合观测试验,是上海市环境监测中心首次将该系统成功移植到京津冀地区,将获得冬季重污染期间点面结合、三维立体的大气污染垂直分布信息。系留气球垂直观测平台所获得的宝贵的第一手高空边界层内的污染物和气象参数的原位观测资料,将为不同大气污染探测设备的对比校验、数据质量控制、数据融合和归一化、标准化研究,以及大气污染模式的发展提供帮助。该实验和科学装备引发了大气科学研究界的高度关注,12月19日,张远航院士、柴发合教授等一行专家专程赶赴望都实验现场指导,听取课题负责人霍俊涛工程师关于气球垂直观测系统的详细介绍,并充分肯定了该科学观测系统对我国大气科学研究的重大意义。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/47627da1-cdd9-4dbc-934a-3a9c1ef71aa5.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2018年12月19日气球观测课题负责人 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   上海市环境监测中心霍俊涛工程师 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   向张远航院士一行介绍气球垂直 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   观测系统 /span /p p   “仓庚于飞,熠耀其羽”,大载荷系留气球大气和气象垂直观测平台的成功研发和稳定运行,为大气预测预报、污染预警和雾霾治理提供了一把新的解密钥匙,是我国大气环境科学研究大装备的又一重要标志性成果。上海市环境监测中心的技术人员们,不畏艰辛,攻坚克难,为保障祖国的绿水蓝天、建设生态家园贡献自己的力量! /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/df473542-22bc-4ac7-91d1-cd24bd365562.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2018年12月15日凌晨(零下8摄氏度) /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   上海市环境监测中心技术人员在 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   现场调试仪器 /span /p
  • 自旋-轨道态选择的电荷转移反应研究取得进展
    碰撞电荷转移反应广泛存在于星际介质、行星大气、等离子体等复杂气相环境中。从分子层面探究电荷转移反应的机理对剖析这些复杂气相环境的物质演化和能量传递过程有重要作用。Ar++N2→Ar+N2+是经典的电荷转移体系,受到广泛的实验和理论研究。然而,不同研究之间无法相互吻合,存在争议。这主要是由于以往实验产物探测分辨率相对较低,反应物离子束同时含有基态Ar+(2P3/2)和激发态Ar+(2P1/2),实验中难以区分不同自旋-轨道态的Ar+离子对反应产物的贡献。   中国科学院化学研究所分子反应动力学实验室高蕻课题组自主设计搭建了一套量子态选择的离子-分子交叉束装置,其能量分辨率达到国际领先水平。研究通过共振增强多光子电离方法制备处于特定自旋-轨道态的Ar+(2P3/2)离子束。实验首次精确地测量了产物N2+离子的振动和转动态分布及其与散射角的相关性(图a、b)。美国新墨西哥大学郭华课题组对该体系开展了全维度trajectory surface hopping计算。计算结果与实验结果达到半定量吻合的程度,首次揭示了该反应两种完全不同的电荷转移机制(图c、d)。一是经典的由长程相互作用决定的Harpoon电荷转移机理,主要发生在N2+(v′=1)产物通道,产生的N2+离子集中在前向散射区域且转动激发较低(图c);第二种机理在N2+(v′=2)产物通道中起主导作用,而该通道产物主要分布在前向区域却具有很高的转动激发(图d),这与经典的硬球碰撞模型不符。理论计算表明,这是由两个反应物分子的长程吸引势和短程排斥势之间的微妙平衡引起的硬碰撞辉散射(Hard collision glory scattering)过程,这是科学家首次在电荷转移反应中观测到这种特殊的散射机理。   相关研究成果发表《自然-化学》(Nature Chemistry)上。研究工作得到中国科学院、北京市自然科学基金和北京分子科学国家研究中心的支持。该研究由化学所和新墨西哥大学合作完成。(a)产物N2+散射图,(b)理论计算的N2+不同振动能级的转动量子态分布以及N2+的v′ = 1(c)和v′ = 2(d)振动能级的转动激发与散射角的相关性图。
  • 潘灿平教授:农药残留限量标准制定与残留分析中的关键技术
    中国农业大学潘灿平教授   潘灿平教授在报告中系统介绍了最大残留限量标准(MRL)的制定流程、最新的做法与MRL的应用,以及农药残留分析中的关键技术,特别是前处理技术、取样系数、储藏稳定性、提取效率、食品加工因子、手性农药分析、不确定度等方面。最后潘教授还留下博客地址http://www.sciencenet.cn/blog/canpingp2222.htm,欢迎大家交流讨论。
  • 科学家首次“拍摄”到光催化剂光生电荷转移演化的全时空图像
    太阳能光催化反应可以实现分解水产生氢气、还原二氧化碳产生太阳燃料,是科学领域“圣杯”式的课题,并受到全世界关注。在过去半个世纪的光催化研究中,科学家在光催化剂制备和光催化反应研究方面做出了努力,但光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,因而关于该过程的基本机制一直不清楚。  日前,中国科学院院士、中科院大连化学物理研究所研究员李灿,研究员范峰滔等揭开了这一谜团。研究人员综合集成多种可在时空尺度衔接的技术,对光催化剂纳米颗粒的光生电荷转移进行全时空探测,揭示了复杂的多重电荷转移机制,“拍摄”到光生电荷转移演化全时空影像。该研究明确了电荷分离机制与光催化分解水效率之间的本质关联,为突破太阳能光催化反应的“瓶颈”提供了新的认识和研究策略。10月12日,相关研究成果发表在国际学术期刊《自然》(Nature)上。  光催化分解水的核心科学挑战在于如何实现高效的光生电荷的分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开这一全过程的微观机制颇具挑战性。“长期以来,我们的团队前赴后继致力于解决这一问题,在这个工作中,集成多种先进技术和理论,在时空全域追踪了光生电荷在纳米颗粒中分离和转移演化的全过程。”李灿说。  光催化过程中,光生电子和空穴需要从微纳米颗粒内部分离,并转移到催化剂的表面,从而启动化学反应。范峰滔介绍,在如此微小的物理尺度上,光催化剂往往缺乏分离电荷所需的驱动力,因此,实现高效的电荷分离需要一个有效的电场。为了在光催化剂颗粒中形成一个定向重排的电场,科研人员将一种特定的缺陷选择性地合成到颗粒的特定晶面,有效促进了电荷的分离。为了更好地剖析纳秒范围内高效电荷分离机制,科研人员使用了时间分辨光发射电子显微镜,发现了光生电子在亚皮秒时间尺度就可以选择性的转移到特定晶面区域,且电子在超快的时间尺度上可以从一个表面移动到另一个表面。  “长期以来光催化中的主导电荷分离机制很难解释跨越如此大空间尺度超快电荷转移。”范峰滔说,“我们将超快的电荷转移归因于新的弹道传输机制,其中载流子以极高的速度传播,在与晶格发生作用之前就已经跨越了整个粒子。”  进一步,为了直接观察电荷转移过程,研究人员进行了瞬时光电压分析,发现随着时间尺度从纳秒到微秒的发展,空穴逐渐出现在含有缺陷的晶面。研究表明,晶面上光生电子和空穴的有效空间分离是由于时空各向异性的电荷转移机制共同决定的,这一复杂机制可以通过各向异性晶面和缺陷结构来可控的调整。  “通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜(飞秒到纳秒)、瞬态表面光电压光谱(纳秒到微秒)和表面光电压显微镜(微秒到秒)等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。”李灿说,“时空追踪电荷转移的能力将促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。”  “未来,这一成果有望促进太阳能光催化分解水制取太阳燃料在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。  该项工作得到国家自然科学基金委“人工光合成”基础科学中心项目、中科院稳定支持基础研究领域青年团队计划、国家重点研发计划及大连化学物理研究所创新基金等的支持。
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 【NIFDC经典文献系列赏析】融合蛋白电荷变异体表征先进技术
    蛋白新药的设计得益于重组DNA技术的发展。融合蛋白是指通过基因融合两个或更多蛋白质结构域来创造一个具有新功能的嵌合蛋白。每个融合体的功能通常分为一个载体结构域和一个效应结构域,前者有助于提高稳定性和药代动力学,后者具有从细胞毒性到识别和结合等不同的功能。截至2019年,已有11种Fc融合蛋白疗法被FDA批准。 生物制药的电荷变异体(电荷异质性)来自翻译后修饰,如磷酸化、糖基化和脱酰胺化,须在整个生产过程中密切监测,因为它可能影响产品的安全性和有效性。全柱成像毛细管等电聚焦(icIEF)已被证明有诸多良好检测性能特征,如高分辨率、自动化、定量准确、重现性好和易用性。凭借这些优势,它已成为生物制品,特别是单克隆抗体电荷变异体表征的主流技术。 与单克隆抗体等传统生物药相比,融合蛋白的电荷异质性差异更大,这使得表征融合蛋白成为一个挑战。建立一种适用于分析多种融合蛋白的平台方法可以方便方法开发并且简化生产流程。2021年,中国食品药品鉴定研究院(NIFDC)利用全柱成像毛细管等电聚焦电泳技术的双通道(紫外&自发荧光)表征9种融合蛋白药物的电荷异质性,其中6种蛋白为商业化蛋白。紫外吸收UV280nm是经典icIEF等电聚焦电泳检测通道。自发荧光(NIF:Native Fluorescence)是指利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现检测,无需添加染料。 结果表明,icIEF方法可用于重组蛋白类药物电荷异质性及等电点分析。该方法快速、准确、重复性好,为保障融合蛋白类产品生产工艺的稳定性及质量控制提供了一种可靠的平台分析方法。9种融合蛋白9种融合蛋白治疗剂(在本研究中被命名为样品1-9),其中6种已商业化,包括:样品1:安进公司的依那西普;样品2:百时美施贵宝公司的阿巴泰普;样品3:再生元公司的阿夫利贝特;样品5:重组人肿瘤坏死因子-α受体II:海正药业的IgGFc融合蛋白;样品6:嘉宏药业的康柏西肽;样品7:百时美施贵宝的贝拉塔塞普;三个样品正处于不同临床试验阶段,包括VEGFR-Fc融合蛋白样品4,血小板生成素模拟肽-Fc融合蛋白样品8和胰高血糖素样肽-1-Fc融合蛋白样品9。结果通用稳定剂SimpleSol 大多数融合蛋白在传统电聚焦凝胶电泳(IEF)分析过程中会聚集或沉淀,需要添加剂来保持稳定性。尿素已被证明可以减少蛋白质聚集,并提高IEF分析的重复性。因为本研究的目的是开发一个平台方法,所以需要确定一种能在多种融合蛋白中发挥作用的稳定剂。为此,研究人员比较了尿素和商业稳定剂SimpleSol(来自ProteinSimple)对三种不同的融合蛋白治疗剂(样品1-3)的影响。 在没有稳定剂的情况下,样品1在电泳分析过程中发生聚集,形成不可重复的峰型(图1)。在加入2M尿素的情况下,样品1的峰型重复性得到提升。然而,在有尿素的情况下,峰高明显降低,约为无尿素情况的25%。相比之下,当样品1在含50%的SimpleSol的体系下进行分析时,峰型变得可重复,而且峰高和分辨率都保持不变(图1)。因此,对于样品1,SimpleSol比尿素更适合作为icIEF分析的稳定剂。图1 对于样品2,在没有添加稳定剂的情况下也观察到了聚集现象,导致了峰型的不可重复(图2)。与样品1不同,加入2M尿素并没有改善峰型的分离。只有当加入4M尿素时,峰型才变得可重现。然而,在这两种条件下,峰高和分辨率也都明显降低。在SimpleSol的存在下,峰高和分辨率都得到了保持(图2),再次证明SimpleSol在稳定样品方面优于尿素。对于样品2,SimpleSol同样比尿素更适合作为icIEF分析的稳定剂。数据表明,SimpleSol可以作为一种通用的蛋白质稳定剂用于融合蛋白的icIEF分析方法。图2紫外吸收和自发荧光双通道检测 在紫外吸收检测模式下研究人员分析样品1,样品峰从嘈杂的基线中区分不明显(图3)。为了克服这一挑战,研究人员同时利用自发荧光通道检测。与紫外吸收检测相比,荧光检测的每个峰组都显示出更高的信号,并且荧光检测的基线噪音更小。图3与传统IEF方法对比 icIEF方法与平板凝胶IEF方法产生了相似的峰型(图4)。然而,icIEF方法的每个峰的分辨率均得到了改善。此外,icIEF方法的灵敏度明显高于IEF方法;在获得凝胶IEF结果时,每个泳道要上样大约20μg的蛋白质,而利用icIEF分析时,最终样品溶液进样浓度为0.225μg/μL至0.45μg/μL。每次进样量约为5μL。相当于2.25μg-4.5μg的蛋白质,极大节约了样品。图4. icIEF方法与平板IEF方法检测融合蛋白对比图总结 NIFDC利用ProteinSimple全柱成像毛细管等电聚焦电泳技术建立并证明了用于融合蛋白电荷异质性表征的方法平台。该平台有如下特点: 使用了通用的蛋白质稳定剂SimpleSol,可以有效避免融合蛋白发生聚集或沉淀。对于一些样品,无需任何添加剂就能获得可重复峰型,与没有稳定剂的相同蛋白质的峰型相比,添加这种稳定剂对蛋白质的峰型的不利影响很小。使得该方法可以广泛用于分析多种融合蛋白,而不需要根据不同的样品更换稳定剂。同时可通过紫外和自发荧光双通道来检测蛋白质。自发荧光检测模式利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现且无需染料,可以提高灵敏度,减少由载体两性电解质引起的背景噪音。通过icIEF分离得到的每个峰组分的峰面积百分比和表观pI值,重复性好。总共对9种融合蛋白药物进行表征,每个组分的峰面积百分比和表观PI值的定量分析都有极佳的重复性。扫描下方二维码,获取ProteinSimple融合蛋白表征解决方案参考文献:1. Wu, Gang et al. “A platform method for charge heterogeneity characterization of fusion proteins by icIEF.” Analytical biochemistry vol. 638 (2022): 114505.关于我们ProteinSimple是美国纳斯达克上市公司Bio-Techne集团(NASDAQ:TECH)旗下行业领先的蛋白质分析品牌。我们致力于研发和生产更精准、更快速、更灵敏的创新性蛋白质分析工具,包括蛋白质电荷表征、蛋白质纯度分析、蛋白质翻译后修饰定量检测、蛋白质免疫实验如Western和ELISA定量检测蛋白质表达等技术,帮助疫苗研发、生物制药、细胞治疗、基因治疗、生物医学和生命科学等领域科学家解决蛋白质分析问题,深度解析蛋白质和疾病相互关系。联系我们地址:上海市长宁路1193号来福士广场3幢1901室 电话:021-60276091热线:4000-863-973邮箱:PS-Marketing.CN@bio-techne.com网址:www.bio-techne.com
  • 德国原装进口数字滴定器、瓶口移液器
    为感谢广大客户多年来对我公司的支持与信赖,从2010年12月6日至2011年1月6日,本公司针对下列商品实行特价优惠销售,优惠价仅限供应华洋科仪客户, 凡在本公司有过交易记录的用户和经销商均可参与此次优惠月活动,欢迎来电洽询。 非常感谢各位客户对我公司长年的支持与厚爱! 德国Walu原装进口瓶口移液器 德国Walu原装进口数字滴定器 ● 倾斜式面板,并具可360度旋转之超大型液晶显示屏,操作方便 ● 世界性专利双活塞无脉冲吸液设计,充填与滴定同步进行,无需先充填再滴定 ● 专业环保型回流消气泡装置,避免试剂浪费 ● 滴定头可水平调整145-220mm, 上下调整10-200mm, 方便不同之滴定操作 ● 可伸缩式吸液管,适合各种不同高度之试剂瓶 ● 使用干电池,具低电量指示,并具省电设计,暂停使用15分钟后即可自动关机 ● 滴定器接触试剂部分皆为硼矽玻璃、PTFE、ETFE、PFA、EEP、铂铱合金等材质,抗强酸、强碱及有机溶剂,并可高温灭菌。 ● 超大滴定量,最高可累计至999.9ml. ● 符合ISO9001及CE认证,具可校正功能。 订货信息 货号 品名 原售价(人民币元) 优惠价(人民币元) HYDB-3001 Continuous E 50ml 滴定器 11800 6800 HYDB-3002 Continuous RS 50ml 滴定器 11800 6800 优惠商品数量限额欲购从速! 联系人:孙峻林,齐爱华 联系电话:0411-82364123, 13504090879 传真:0411-82364006 E-mail: sales@dhsi.com.cn, jenny@dhsi.com.cn
  • 780万!北京荷塘生华医疗科技有限公司采购荧光定量PCR仪等
    项目概况北京荷塘生华医疗科技有限公司仪器设备采购项目 招标项目的潜在投标人应在www.o-science.com;北京市海淀区西三环北路甲2号院科技园6号楼13层01室获取招标文件,并于2021年12月27日 09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:OITC-G210222015项目名称:北京荷塘生华医疗科技有限公司仪器设备采购项目预算金额:780.0000000 万元(人民币)最高限价(如有):780.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量是否允许采购进口产品采购预算(万元人民币)1荧光定量PCR仪等1批是780投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:合同签订后的3个月内交货本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小微企业、监狱企业、残疾人福利性单位采购的项目。3.本项目的特定资格要求:1)在中华人民共和国境内依法注册的,具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的法人实体;2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;3)投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;4)按本投标邀请的规定获取招标文件;5)投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。三、获取招标文件时间:2021年12月06日 至 2021年12月14日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.o-science.com;北京市海淀区西三环北路甲2号院科技园6号楼13层01室方式:登录东方在线www.o-science.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2021年12月27日 09点30分(北京时间)开标时间:2021年12月27日 09点30分(北京时间)地点:北京市海淀区西三环北路甲2号院国防科技园6号楼16层小会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、投标文件递交地点:北京市海淀区西三环北路甲2号院国防科技园6号楼16层小会议室2、招标文件采用网上电子发售购买方式:1)有兴趣的投标人可登陆“东方在线”(http://www.o-science.com 招标在线频道),完成投标人注册手续(免费),然后登录系统浏览该项目下产品的“技术指标”,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号)。开户名称:东方国际招标有限责任公司开户行:招商银行北京西三环支行账 号:8620816577100013)投标人应在“东方在线“上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在“东方在线”上登记的电子邮箱,投标人自行下载打印。3、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途(如未标明招标编号,有可能导致投标无效)。4、采购项目需要落实的政府采购政策:(1)政府采购促进中小企业发展(2)政府采购支持监狱企业发展(3)政府采购促进残疾人就业(4)政府采购鼓励采购节能环保产品七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京荷塘生华医疗科技有限公司     地址:北京市昌平区生命科学园医药科技中心9号院1号楼         联系方式:010-68290510、010-68917573、010-68290524      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区西三环北路甲2号院科技园6号楼13层01室            联系方式:吴旭 李祥宁 李媛 010-68290510、010-68917573、010-68290524            3.项目联系方式项目联系人:吴旭 李祥宁 李媛 xwu@osic.com.cn电 话:  吴旭 李祥宁 李媛 010-68290510、010-68917573、010-68290524
  • 仪真分析与荷兰TE公司建立中国地区代理合作关系
    仪真分析仪器有限公司(以下简称仪真)与荷兰TE公司正式签署战略合作协议,成为其在大中国区(包含香港和澳门地区)的独家代理,全面负责该公司产品在中国市场的推广宣传、销售及售后服务工作。 TE公司是全球知名的痕量元素检测仪器制造商,产品涵盖工业、石油化工及环境监测等领域。公司成立于2009年,地址位于技术中心代尔夫特(原Euroglas B.V.和Thermo Fisher Scientific所在地)。TE公司于2014年成功并购了著名的玻璃器具制造商Euroglass,以确保其具备提供高品质、质量可控的产品核心部件的能力。 TE公司团队致力于燃烧分析领域有超过三十年的经验,旗下产品主要包括:Xplorer总有机卤素分析仪,Xplorer TN(化学发光法)/TS(紫外荧光法)总氮/总硫分析仪,以及Xplorer TX/TS(微库仑法)总氯/总硫分析仪;其产品符合国标、ASTM、ISO、DIN等相关标准要求,模块化的设计可以为客户提供定制化的解决方案。 作为TE公司指定的大中国区的独家代理,仪真拥有强大的技术持团队,其上海的Demo实验室具备方法开发的能力。相关产品垂询,敬请与我们联系!
  • 荷兰两大品牌仪器商在中国实现战略合作
    p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热烈祝贺荷兰飞纳台式扫描电镜牵手荷兰帕纳科台式X射线荧光光谱仪 /strong /span /p p   从即日起,荷兰飞纳台式扫描电镜正式牵手荷兰帕纳科台式 X 射线荧光光谱仪。专注于飞纳台式扫描电镜的复纳科学仪器(上海)有限公司(以下简称:复纳科学仪器)正式成为荷兰帕纳科公司(以下简称:帕纳科)在中国长江以南地区高校和科研院所的授权分销商,负责帕纳科台式X射线荧光光谱仪(XRF)在此区域的销售、应用和售后服务工作。 /p p style=" text-align: center " img style=" width: 550px height: 423px " title=" 1.png" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201602/insimg/cd14e406-216c-4f84-b0ac-9c382c580c3f.jpg" width=" 550" height=" 423" / /p p   飞纳台式扫描电镜源自飞利浦电镜技术,其制造商荷兰Phenom-World由美国FEI 控股,前身是飞利浦电子光学部门,而荷兰帕纳科公司的前身是飞利浦分析仪器部。此次合作,源自于飞利浦的“大家庭”得以“重新团聚”,基于这个良好的开始,复纳科学仪器将与帕纳科互帮互助,携手开创台式科研设备在中国的新局面,为客户带来性能卓越、操作简单、稳定高效、维护方便的台式科研设备! /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/3789f575-3f10-4fb7-b671-8a92fd3f1f19.jpg" / /p p   台式X 射线荧光光谱仪能够执行元素鉴定和量化乃至更复杂的元素分析,目前有三个型号可供客户选择,分别为:适用于科研的基础型号 Epsilon 1 系列 元素分辨能力更强、效率更高的 Epsilon 3X 台式顶尖型号 Epsilon 3XLE ,XLE 全拼为:“Extra Light Element”,意味着可分析非常轻的元素,比如“F”元素, Epsilon 3XLE 的性能可与落地式 XRF的性能媲美,然而具备了台式设备体积小、操作简单、维护方便、对环境无特殊要求等优点,是将来 XRF 设备的发展趋势。 /p p   荷兰帕纳科英文名称“PANalytical”, 全拼为“Philips Analytical”,前身是飞利浦公司分析仪器部,目前隶属于思百吉集团,自上个世纪四十年代公司推出了世界上第一台 X 射线分析仪器起,帕纳科现已成为全球最大的 X 射线分析仪器生产厂家。 /p p   复纳科学仪器自2012年创立起,就专注荷兰飞纳 (Phenom) 台式扫描电镜在中国的高校、企业和科研院所的市场推广、应用支持、样品测试、销售和售后维修工作。过去几年中,复纳科学仪器在中国完成了500多台飞纳台式电镜的安装,培训和验收,在台式扫描电镜领域不断突破,屡创销售佳绩,优质的产品和卓越的服务为复纳纳科学仪器打下了较好的用户基础。此次,帕纳科牵手复纳科学仪器,旨在为中国长江以南地区的高校、科研院所客户提供台式 X 射线荧光光谱仪,让更多的客户受益于台式科研设备的操作简单、维护方便、精确高效。台式科研设备的自动化、智能化将进一步减少对操作人员知识经验技术水平的依赖,降低用户操作科研设备的技术门槛,预示着无需雇用专人维护机器。台式科研设备将是未来科研仪器发展的一个趋势,不可避免的代替一部分低端的传统落地式科研设备。 /p
  • 扫描电镜样品荷电现象成因新解——安徽大学林中清33载经验谈(12)
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 扫描电镜测试过程中,样品的荷电现象被公认为是最大且棘手的问题。对于样品荷电现象的成因,目前的解释大都语焉不详,存在许多的疑问。其中最经典的解释似乎是基于如下这张电子产额与加速电压的关系图所展开。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/7b4e9c9a-cc0b-4387-9dbc-319ec0829c11.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 零电位:无荷电;负电位:异常亮;正电位:异常暗 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 但这个解释存在以下几个步进式的问题: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " A)无论是样品的表面形貌像,还是表面的荷电表象都基于溢出样品表面的电子信号。样品中产生再多的二次电子和背散射电子,没有溢出样品表面,没有被探头接收到,对形成表面形貌像是毫无影响的,更遑论荷电表象。故样品荷电现象,对应的应该是电子信息溢出量出现的异常。这张图对产额是啥?交代不清,故是否适合做为参照? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " B)二次电子和背散射电子产额多是否就一定溢出的多?二次电子和背散射电子产额的多少和样品中形成怎样的荷电场是否能画上等号? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 一个电中性的样品。当注入样品的电荷总量与溢出样品的电荷总量存在差异,才可能在样品中形成电场。如果溢出样品表面的电荷总量低于注入样品的电荷总量,且多余的电荷聚集在样品中,就会在样品的局部或全体部位形成负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中二次电子和背散射电子产额多不代表其溢出量大。溢出样品表面的二次电子和背散射电子占其产额的总量往往都很低。产生所谓正电场必须是溢出样品的电子比注入样品的电子还要多,使样品局部或全部有大量的正电荷聚集。这种情况在扫描电镜的测试过程中几乎是不可能发生的。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " C)样品如果真的存在正电位,将会出现怎样结果? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 经典观点认为,当样品电子的产额大于入射电子总量,且这些电子都溢出样品表面,才在样品中形成正电位。如果这种情况确实发生了,那形貌像应该如何变化呢? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 首先图像将由于有大量二次电子和背散射电子的溢出而变得异常明亮;随后出现正电场使得这些电子溢出急遽减少,图像变暗;随着电子束将大量电子注入样品,这些正电荷将被中和,正电位减弱,样品的电子信息又将逐渐显现,图像也渐渐变亮,直至下一次信息爆发。故样品中出现正电位现象,图像将产生亮暗相间的闪烁,而不是稳定的异常变暗。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 现实中这种图像亮暗相间的闪烁几乎看不到,也就是正电位应该不存在。那么是否图像异常暗的现象也不存在? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 实际情况是样品的荷电现象,存在三种表现形式 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/83c7e731-b1a0-4ca5-b85c-8177b17e0cfa.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中只可能存在负电位,那么以上三种现象的形成机理是什么?形成样品荷电的真正原因是什么? /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun " strong span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun font-size: 18px " 一、荷电现象的形成 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 扫描电镜所面对的样品相对于信号激发源“高能电子束”来说,可看成无穷厚。因此在电子束轰击样品时,电子束中的高能电子因无法穿透样品而驻留在样品中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束轰击样品时,会在样品中形成散射电子并激发出样品的二次电子等信息。其中一小部分的二次电子及背散射电子(与入射电子方向相反的散射电子)将溢出样品表面,被探头接收,形成样品表面形貌像的信号源。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当注入样品的电子数与从样品表面溢出的电子数不相等时,就有可能在样品中形成静电场。从而影响电场部位的二次电子和背散射电子的正常溢出,样品表面形貌像将出现异常亮、异常暗及磨平这三种现象。这就是样品的荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 对样品荷电现象的探讨,将牵扯到一个电子迁移的问题,因此将引入一个漏电能力的概念。“漏电能力”是指样品的漏电子能力,即样品上自由电子的迁移能力。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 物体的体积、密度以及结构都会影响样品中自由电子的迁移能力。体积越小、密度越大、晶体结构越紧密,自由电子在这些物体上的迁移能力即漏电能力就强。体积较大且密度低、晶态较差的物体以及颗粒物的松散堆积体。自由电子的迁移能力一般较差,漏电能力也较差,容易形成电荷堆积。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1.1 荷电现象的形成过程 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束轰击样品时,大量的电子被注入样品,由于扫描电镜所应对的样品足够厚,故在样品中会驻留大量电子。虽然有不少二次电子和背散射电子溢出样品表面,但和驻留电子的数量相比,将形成一个不对等的关系。其结果是大量多余的自由电子存在于样品中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品的漏电能力很强,且接地良好。这些多余的自由电子就会通过样品迁移掉,样品中不存在电荷堆积的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品的漏电能力较弱,那么自由电子就会在样品的全部或局部形成堆积,并在堆积处形成强弱不等的静电场(负电场),影响该部位二次电子甚至背散射电子的正常溢出。样品表面形貌像的局部或全部将叠加出现异常亮、异常暗、磨平这三种异常现象,对表面形貌像造成程度不等的干扰,形成所谓的样品“荷电现象”。该静电场也称“荷电场”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品中各部位的漏电能力强、弱不均匀,自由电子将会从漏电能力强的部位集中迁移到漏电能力弱的部位,并在漏电能力较弱部位堆积形成荷电场。此时样品的荷电现象就只在表面形貌像的某些部位出现。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f8e09c03-be02-4633-a468-2ef64aede90f.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1.1 样品的漏电能力和导电性 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 传统理论将样品是否会产生荷电现象归因于样品的导电性。认为只有导电性好的样品不容易产生荷电现象。而样品导电性的判断又以材料名称来决定,金属材料归类于导电性好,非金属材料归类于导电性差。以此观点来解释样品荷电现象常常会产生许多疑惑。充分的实例表明,大量所谓导电性差的非金属样品并不存在荷电现象,如:许多晶体材料、纳米粉体虽然是非金属材质,都不必然会形成所谓的荷电现象。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/1eb2676b-6d05-43df-a1d4-4f314f487d0f.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 许多被公认为导电性好的金属材料,若密度较小、形态松散或形成堆积体也会产生极强的荷电现象。如下图实例所示: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/ee1ad80d-a703-435a-883d-78acc0f1eaba.jpg" title=" AA.png" alt=" AA.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为什么会出现以上这种与传统观念完全不一致的现象?以样品导电性来解释荷电现象存在怎样的问题? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电现象是静电现象,是由大量自由电子在样品的全部或局部区域形成堆积,产生荷电场,所引发的信息异常溢出。自由电子只要失去通道就会形成堆积,与材料本身导不导电的关系并不那么紧密。也就是说样品导电,仅仅是一个有利于减少荷电影响的因素,但并不充分也不能说是必要。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 形成电子通道的因素众多,除前面所说与物质性质有关的因素如:体积、密度、结构等等,还包括外界因素如:加速电压、样品的堆积程度等。以样品是否导电来做为形成荷电场的唯一成因,那是以偏概全、以孔窥天。存在这种理念对正确应对样品荷电的影响,充分获取样品信息极为不利。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun " strong 二、拆解样品荷电现象的三种形态 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 前面介绍了样品的荷电现象表现为三种形态:异常亮、异常暗、表面磨平。并分析了扫描电镜荷电现象的成因是:样品中存在大量自由电子堆积形成的荷电场,造成表面电子信息溢出异常,而这个荷电场只可能是负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 那是什么原因酿成了荷电现象出现这三种表现形式呢?& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 背散射电子能量较高,溢出量仅在荷电场极强时才受影响。故以易受荷电影响的二次电子信息为例来加以探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中自由电子的聚集点就是形成荷电场的位置。荷电场的强度及深度与加速电压和束流的大小、样品结构和体积以及颗粒物的堆积状态等因素有关联。测试时虽很难直接给出荷电场强度及位置的具体数值,但它存在一定的变化趋势。同等条件下,增大加速电压将使荷电场在样品中所处的位置下沉,达一定量,会引起荷电现象的形态发生改变。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 以荷电场在样品中的位置分布对二次电子溢出量的影响为线索,就比较容易去拆解荷电现象的三种形态: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (A)异常亮:如果入射电子在二次电子溢出区(浅表层)产生较多的二次电子,同时形成的荷电场位于浅表层下方。荷电场会将位于其上方原本无法溢出的二次电子推出样品表面,使得溢出样品表面的二次电子异常增多,图像异常变亮。荷电场足够强大会将周边的二次电子信息都大量推出,图像的形态也就受到影响。现实中,荷电现象出现“异常亮”的几率相对较高,较高的加速电压出现该现象的几率也较大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/737aaa0a-926b-4f28-9975-19c055e45e95.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (B)异常暗:较低的加速电压在一定条件下,会使得荷电场形成于样品二次电子溢出区域的上部。此时荷电场将抑制二次电子的正常溢出,出现异常暗的现象。加速电压越低在样品中累积的自由电子越靠近浅表层上部,荷电场的形成位置将越高,也越容易形成异常暗的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 极低的加速电压(100V),在样品表面产生的二次电子少,形成荷电场的位置靠近最表层,易形成强烈的异常暗现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 在凹坑上边缘有电荷累积,也易酿成异常暗这种荷电现象。因形成条件较为苛刻,故产生该现象的几率相对较低。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f760bb93-896d-4854-a6d9-638a23a465d6.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp br/ /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 随着加速电压的提升,表面二次电子产额增加,最关键的是荷电场位置下沉,有些异常暗的现象也会转移成异常亮。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/7d4f23ef-e0a1-45d2-adec-38f881638503.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (C)表面磨平:当样品中形成的荷电场位置较高,与二次电子的溢出区混杂。荷电场会对溢出样品表面的二次电子产生部分的遏制作用,表面细节由于溢出信息的不足而被抑制,出现磨平现象。松软的样品容易出现该现象。出现这一现象时,往往会在样品颗粒的边缘或较大斜面处,由于极表层的二次电子增多,而伴随出现异常亮的现象。& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品出现细节磨平这种荷电现象的几率较异常暗高。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/aba027e0-4f45-48b2-ab47-e4359f611a15.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当荷电现象出现后,提升加速电压,荷电场位置将下沉,荷电现象的形态会发生变化。趋势:异常暗& gt 磨平& gt 异常亮& gt 正常。这个变化趋势会有跳跃式的变动,但不会逆转。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59912e7c-5595-4a6a-b844-c7f0ee6140a7.jpg" title=" 9.png" alt=" 9.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun " strong 三、小 & nbsp 结 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当自由电子累积在样品中的某一个部位就会形成静电场,从而影响电场及周边电子信息的正常溢出,使得样品表面形貌像上形成异常亮、异常暗或细节磨平的现象,这个异常现象称为:样品的荷电现象。该静电场也称为“荷电场”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 二次电子能量较弱,极容易受到荷电场的影响。在探头接收到的样品电子信息中,其含量的占比越多,表面形貌像中出现荷电现象的几率也就越大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束入射样品,形成的电子信息中,只有很少的一部分溢出样品表面,溢出量和入射电子量相差甚远。注入和溢出样品电子数量的不平衡就容易形成荷电场。荷电场是由样品中自由电子的堆积所形成,因此它只可能是负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 自由电子在样品中存在一定迁移能力,迁移能力随样品性质以及样品堆积状态的不同而不同。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 表面连续、结构紧密的晶体材料或体积较小(纳米级别)的样品,电子在这类样品中的迁移能力都很强。电子迁移能力强,样品的漏电能力就好,也就不容易产生荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 表面断续、结构松散、体积较大的非晶态样品,电子在这类样品中迁移能力差,容易积累在某个部位形成荷电场,影响样品表面电子信息的正常溢出,产生所谓的荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中如果各部位的漏电能力强、弱不均,则漏电能力强的部位不会有电荷堆积。自由电子只会堆积在漏电能力弱的部位,形成所谓的局部荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 异常亮、异常暗和磨平是样品荷电现象的三种表现形式。样品表面的二次电子溢出区和荷电场之间的相对位置是造成这三种荷电表像的关键因素。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场在样品中的位置与样品的性质以及加速电压等因素有关。同等情况下,改变加速电压,荷电场的位置也会跟着发生变化,样品荷电的表现形式也会跟着改变。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场如果位于样品表面二次电子溢出区下方,则荷电场将把超量的二次电子推出样品表面,形成异常亮的现象。较高加速电压下,观察表面略紧实的样品容易出现该现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场存在于溢出区的上部且溢出样品表面的二次电子产额少,则荷电场会抑制样品信息的溢出形成异常暗的现象。当用较低的加速电压来观察低密度样品时,或者样品表面有凹坑,在一定条件下就会出现这一现象。采用极低的加速电压(如100V)观察凹坑部位时,最容易出现该现象。由于该现象的形成条件较为苛刻,因此形成的几率也较低。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场所处位置较高,位于二次电子溢出区内。那么荷电场会对样品二次电子的溢出量产生一定抑制,使得样品的表面形貌细节受到一定程度的掩盖,出现磨平现象。较低加速电压,在观察松散的样品时,容易出现这种现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 同等条件下,随着加速电压的提升,荷电场在样品中的位置逐渐下沉,荷电形态也将发生改变。荷电形态的变化趋势是: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59e152fb-6c63-420b-a71b-cc449ac98d1c.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 经常会看到这种变化趋势有跳跃的情况,但逆向变化则基本看不到。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 关于加速电压和束流的改变会对样品的荷电现象产生那些影响?这些影响都会带来怎样的结果?我们又该如何正确应对样品的荷电影响?都将在下一篇中通过充分的事例来与大家进行详细探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 参考书籍: /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 人民出版社 & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《显微传》 & nbsp 章效峰 2015年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 日立S-4800冷场发射扫描电镜操作基础和应用介绍 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 北京天美高新科学仪器有限公司 & nbsp 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 作者简介: /strong /span /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 80px height: 124px " src=" https://img1.17img.cn/17img/images/202009/uepic/f18ee0a2-3ea9-48dc-86e2-dd06d5c3e6a9.jpg" title=" 林中清.jpg" alt=" 林中清.jpg" width=" 80" height=" 124" border=" 0" vspace=" 0" / span style=" font-family: 宋体, SimSun " 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /span /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong br/ /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200817/556801.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜不适合测磁性材料吗?——安徽大学林中清33载经验谈(11) /span /strong /a /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200714/553843.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(10) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200616/551389.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200515/538555.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /strong /a /p
  • 澳门大学李绍平教授任国际顶级药物分析学期刊JPBA编辑
    p style=" text-align: center " & nbsp img title=" 微信图片_20180126101011.jpg" src=" http://img1.17img.cn/17img/images/201801/noimg/24fc3160-6b1c-4d4c-a7e6-e97f48058b59.jpg" / /p p & nbsp & nbsp & nbsp 澳门大学中医药研究院教授、中药质量研究国家重点实验室副主任李绍平,获世界最大医学与其他科学文献出版社爱思唯尔邀请,从2018年1月起担任该公司旗下期刊《药物和生物医学分析》(Journal & nbsp of Pharmaceutical and Biomedical Analysis)编辑,是该期刊自1983年创刊以来首位或任编辑的中国学者。 /p p   附原文:澳门大学中華醫藥研究院教授、中藥質量研究國家重點實驗室副主任李紹平,獲世界最大的醫學與其他科學文獻出版社愛思唯爾(Elsevier)邀請,從2018年1月起擔任該公司旗下權威的國際藥物分析領域學刊《藥物和生物醫學分析》(Journal of Pharmaceutical and Biomedical Analysis)編輯,成為該學刊自1983年創刊以來首位獲任編輯的中國學者。 /p p   由愛思唯爾出版的國際學刊《藥物和生物醫學分析》專門刊登藥物和生物醫學分析方面最新研究成果,內容亦涉及藥物、生物醫學和臨床科學相關的分析技術,包括方法、儀器和數據處理等各個層面,是生物化學家、分析化學家、微生物學家、藥物製劑學家,以及制藥企業、臨床化學實驗室、學術機構和政府部門相關管理者的重要參考資料。《藥物和生物醫學分析》影響因數居分析化學領域76種《科學引文索引》(SCI)雜誌第18位(Q1區)。該學刊編輯均為世界分析化學或藥物分析領域的傑出學者,是次李紹平獲任編輯再次顯示了澳大中醫藥質量評價研究水平獲國際高度認可。 /p p   自2002年加入澳大以來,李紹平一直致力於中藥質量評價研究,多個項目先後獲國家自然科學基金、澳門科學技術發展基金和澳門大學研究基金資助,三七系列6個標準獲《美國藥典》收載,發表SCI論文等300多篇,是國際上在中藥/藥用植物品質控制領域的知名學者,對美國市場靈芝保健品的質量評價更是引起美國業界的關注。同時,李紹平是《美國草藥典》顧問、《中國藥典》委員會委員,以及SCI雜誌《分離科學》、《中醫藥學報》和《國際分析化學》的副主編。此外,他也是中國藥學會藥物分析專業委員會副主任委員、中華中醫藥學會中藥分析專業委員會副主任委員、中國中藥協會中藥品質與安全專業委員會副主任委員。 /p
  • 世界电镜九十年之荷兰电子显微镜早期发展历史(上)
    本文作者:Woutera van Iterson,荷兰阿姆斯特丹大学阿姆斯特丹生物中心、分子生物学研究所、分子细胞学部,摘译原文发布于1996年。一、荷兰电子显微镜的起源1939年,代尔夫特只是一个有着著名历史的小镇。1584年,被称作“荷兰国父”的沉默者威廉正是在这里被暗杀。而在代尔夫特的Nieuwe Kerk依旧可以找到奥兰治王室成员的墓穴。微生物学的创始人Antoni van Leeuwenhoek也在代尔夫特通过自制的玻璃透镜研究他的“小动物”。如果不是因为代尔夫特理工大学以及它的创新产业,代尔夫特在二战前留给人们的总体印象只是一座古老的城镇。在这本回忆录中,代尔夫特产业中一个特别的部分,即荷兰的精神象征法布里克(简称“酵母工厂”)扮演了一个重要的角色。首先,在代尔夫特理工大学的技术环境中,酵母工厂为国家最重要的微生物研究传统的发展做出了巨大贡献。1885年,酵母工厂的总经理J.C.van Marken邀请M.J.Beyerinck加入工厂。Beyerinck于1895年成为微生物学教授,并被称为微生物学之父。1921年,A.J.Kluyver(微生物学家之父)接替了Beyerinck的工作。Kluyver将他的教授任期与酵母厂的咨询工作结合了起来。这些是如何与电子显微镜联系起来的?答案就是酵母细胞。1939年夏天,代尔夫特理工大学有一名工科学生,名叫Jan B. Le Poole。Jan B. Le Poole(图1)向他的物理学教授H.B.Dorgelo提出了一个大胆的请求,即为他自己的工程专业制造一台电子显微镜。因缘际会之下,这时的时机恰好成熟。图1 J. B. Le Poole博士,荷兰电子显微镜的创始人,荷兰电子显微镜学会的首任会长彼时,Dorgelo、F.G.Waller(酵母工厂总经理)和A.J.Kluyver于1939年7月6日访问完柏林的西门子公司刚刚返回。而Kluyver很熟悉最近出版的微生物照片和电子显微镜提供的相对高放大倍数的照片。问题是,是否有可能用这样一种仪器来确定酵母细胞是否配备了一个带有染色体的真正的浓缩细胞核,或者它是否类似于细菌,是否可以在核物质和细胞质之间作出明确的区分?考虑到这个问题的实际意义,Waller、Kluyver与Dorgelo讨论后,此三人决定前往透射电子显微镜及其理论背景的圣地:战前的德国。早在1939年,西门子就根据von Borries和Ruska的设计,成功售出了第一台商业化的电子显微镜。它的放大倍数高达4万倍,分辨率比光学显微镜高得多,其价格约为80000荷兰盾(笔者注:按2022年5月汇率1荷兰盾约合3.37元人民币)。然而,该电镜与其提供的可能效果有一定出入。此外,在柏林,他们确实在电镜“高”放大率下观察到了酵母细胞,但那不过是一个“丑陋”的黑点,而在光学显微镜下,一个整齐的生物体,在细胞壁内具有原生质、液泡和各种其他结构,只有细胞核是暗黑的。一般说来,当时这种生物研究工具是否有用颇具争议。在整个细胞都聚焦的情况下,人们能否分辨出重要的细节?此外,电子一直被认为是粒子,直到1924年,人们通过德布罗意的工作才意识到,电子也会像波一样传播。然而,这并没有改变这样一个事实,即微粒肯定会轰击,继而破坏有机材料。最重要的是,生命的本质在于细胞中高百分比的水,而细胞在仪器的真空条件下会发生脱水。当电子显微镜的发明变得更广为人知时,在某些生物学圈内能听到这样的说法:“电子显微镜只是收集了一些人工制品。”毕竟,瑞士的Frey Wyssling和其他人已经用间接方法充分分析了细胞的总体结构。关于生物膜的结构性质,重要的论文也几乎达到了分子水平。电子显微镜真的能给20世纪30年代这一重要的知识宝库增添什么吗?这些反对意见促成了代尔夫特理工大学未来年轻科学家的冒险,也成就了他们的幸运。鉴于所有不确定性,年轻的Jan Le Poole渴望成为一名先锋,后来证明他很幸运。Jan Le Poole建立了一台两级电子显微镜,1941年可以拍摄第一张电子显微照片。然而,40k V的加速电压被证明是非常局限的。因此,Jan Le Poole决定与飞利浦物理实验室合作建造一台150k V电子显微镜。在埃因霍温的飞利浦,A.C.van Dorsten开发了一个非常稳定的150k V的部件,同时Le Poole在H.J.de Heer的协助下正在代尔夫特研究电子光学系统。在1944年春天的代尔夫特,全新的150k V电子显微镜被研制成功。二、荷兰电子显微镜的早期组织人们很快认识到,开发电子显微镜并研究其在生物学和其他学科中的应用需要成立一个组织和专项资金。1941年,TPD(Technisch Physische Dienst)由应用科学研究组织(TNO)和代尔夫特大学合作成立。1943年11月1日,一个专门的电子显微镜研究所作成立,隶属于TPD,不过其预算独立。该研究所得到了代尔夫特酵母工厂、飞利浦、Van Houten、Algemene Kunstzijde Unie(AKZO)、喜力啤酒厂和TPD等工业的资助。后来,荷兰联合利华和荷兰皇家壳牌公司也提供了每年不少于3000荷兰盾的资助。该研究所由一个咨询委员会监督,技术和日常管理由Le Poole负责,而Dorgelo和Kluyver负责科学监督。三、代尔夫特的电镜我们来自Le Poole的小组,在荷兰从战争的苦难中解放出来之前,我们只能孤立地工作,因此几乎没有意识到电镜的设计包含了许多令人兴奋的创新。其中一项创新是在40倍放大的物镜和160倍放大的投影镜头之间增加了两个镜头。其中一个额外的镜头有一个小孔,可以使放大倍数在6400倍到80,000倍间连续变化。放大到6400倍时,电流通过所谓的衍射透镜(另一个更大孔径)。使用该衍射透镜,可以从小至3μm的样品选定区域获得衍射图案。并可以在电子图像和电子衍射间来回切换,这在代尔夫特已被发现可以用于粘土矿物的测定。选区衍射的原理先前已被H.Boersch发现,但当时Le Poole还不知道。引入中间透镜的另一个优点是电镜镜筒的高度减小,从样品到最终图像的总距离达到60cm。此外,LePoole引入了一种特殊的对焦装置,尤其在高倍率下,当荧光屏上的强度较低时,可进行精确聚焦。入射电子束通过聚光镜和样品中两组平行板间的横向电场,以50Hz的频率振动。当物镜没有完全聚焦时,这种振动会使图像模糊。这有助于聚焦,并大大提高了代尔夫特研究所拍摄电镜照片的质量。从那以后,这种“摇摆”的磁型版本成为飞利浦所有透射电镜的特征。早期电镜中的图像场非常大(直径18cm),并投射到锥形烧瓶的底部,并转至荧光屏(图2)。通过在屏幕上方束流横截面足够小的位置引入35毫米胶片,可以在随后的照片放大中覆盖整个图像。发射电压在50-120kV之间变化,对于生物样品,电压越高,电子束的穿透力往往越强。图2. 150 kV电子显微镜,像场投射到沉积在锥形玻璃烧瓶底部的荧光材料上代尔夫特还研制了静电电子显微镜,该电镜于1951年由W.A.leRutte完成,在固定放大倍数下具有8nm的分辨率。1952年,Le Rutte发表了一篇关于他对静电电子光学贡献的论文,但由于当时电磁式电子显微镜的技术优势,这项工作被迫中断。另一个有趣的发展始于1943年中期。早在1942年,由于酵母细胞体积过大,Le Poole就提议建造一个发射电压1 MeV的电镜,以提高电子对样品的穿透力。建造这种电镜,必须克服种种问题,因此最终决定在飞利浦研究实验室建造400 kV的显微镜。Le Poole设计了这个电镜的电子透镜系统,而飞利浦的Van Dorsten负责设计高压设备,Oosterkamp负责发射枪,Verhoeff负责装配。1947年,这台电镜安装在代尔夫特研究所。四.代尔夫特电镜的早期工作不仅是电子显微镜的研究,代尔夫特对于电镜应用的开展也比较早。在准备研制基础型150 kV电子显微镜的这些年里,旧的两级型电镜在用于检验Le Poole的新想法的同时,还用于科学研究。在这项工作的成功,很大程度上归功于Harrie de Heer引进了出色的拍摄技术。生物学家A.Quispel于1942年10月开始在A.J.Kluyver教授的带领下担任研究助理。他做的第一件事是在单孔样本架上准备足够的“Geisselthallack”支撑膜。Quispel的任务是研究该电镜在生物学研究中的作用,尤其是研究酵母核中的染色体。为了做到这一点,Quispel开发了一种“染色”酵母核的方法,即与其他细胞相比提高对比度。这种选择性染色需要重金属,因此,他改变了Feulgen的方法,使用银及镧盐。然而,酵母没有揭示其染色体核的秘密,染色体核仍然处于漆黑一片的状态。Quispel接着尝试用蛋白水解酶使细胞质对电子束更透明。1943年9月,Quispel离开代尔夫特时,这项工作移交给了我,最初也得到了J. M. van Brakel的协助。然而,事实证明,对太大的酵母细胞进行研究还为时过早。当时我们深受战争的压迫,但我们年轻,对这项工作充满热情。我们急切地研究了酵母细胞、噬细胞菌、疗养院医生用的结核菌、各种其他细菌以及土壤样品中的粘土矿物、颜料、金属和在35mm胶片上拍摄的各种其他物品。五、战争快结束时的情况1944年,150 kV电子显微镜及其所有改进装置投入使用,但仅使用了几个星期。随着1944—1945年饥荒的来临,国家的形势变得非常危急。盟军已经解放了荷兰的南部,但是盟军在大河附近被拦截。在那个冬天,在河流以北的我们食物配给量减少到每周800卡路里。大家在解决温饱与绝望中挣扎。没有电,客运列车也没有运行,我们只有木制轮胎的自行车用于运输。为了保全电镜的透镜等核心部件,大家不得不做好随时拆除电镜的准备。值得一提的是,飞利浦电镜高压发电机中的冷却油无意间为大家解决了一些生存难题,这些冷却油被分配给研究所的工人作为燃料,大家在家里用它来照明等。我们也积极参与地下活动,试图抵抗危险的压迫环境。曾经,德军试图逮捕所有18至40岁的男性在德国从事强迫劳动,大家不得不躲起来试图逃避。六.解放以后在加拿大军队解放的动乱平息下来之后,代尔夫特电镜被重新组装起来。但此时,自己也开始怀疑,在与世隔绝的环境下使用代尔夫特电镜开展相关研究,是否对促进电子显微学的发展具有意义。来自盟军国家参观者的反应给我们的印象是, Le Poole电镜或将是一种意义重大的仪器设备,但我们不能依赖这种仅有的“大家的印象”,何况,在埃因霍温的飞利浦根本不准备开始在商业基础上生产电子显微镜,因为该公司主要对销售数千台以上的产品感兴趣。有没有办法提高同事们的希望?答案是有的。首先,我写了一篇关于美国在电子显微镜领域活动的综述。之所以能够做到这一点,是因为1944年9月荷兰南部解放后不久,荷兰国家矿业图书馆(DSM)就有了专门的美国科学期刊。虽然很明显,美国科学家的工作是广泛的和令人印象深刻的,但这篇综述让代尔夫特的物理学家相信,他们的成就并没有白费。此外,我还与我的父亲讨论了他们的担忧。父亲既是一名科学家,也是荷兰国家矿业公司董事会成员,能够理解新仪器的重要性以及飞利浦的工业观点。飞利浦的总裁Anton Philips博士刚刚从英国回来,他在那里度过了战争的岁月。我陪父亲去了埃因霍温,在那里我们在总裁家里吃了午饭。Philips先生仔细地听着,因为他还没有听说过代尔夫特电子显微镜的构造,以及他的公司已经如此密切地参与其中。1946年1月,Jan Le Poole有机会访问英国,并参加了英国电子显微镜集团的一次会议。在那里,他最后的一丝怀疑消失了:代尔夫特电镜确实是一种创新。他在英国遇到了Van Dorsten,他们讨论了对商用飞利浦电子显微镜的要求。1946年1月,飞利浦董事会似乎改变了观点,开始准备推动电子显微镜样机的开发,商业生产电镜有了基础。该电镜在某种程度上可以在X射线设备业务部开发,但样机是在飞利浦物理实验室(后称为飞利浦研究实验室)制造的。后来,一个特殊的电子显微镜部门成为科学和工业下医疗系统集团(一个主要的工业业务集团)的一部分。回想起来,这是早期所有努力的真正结果。1946年,飞利浦公司制造的电镜原样机在牛津的一次大会上展出,虽然当时这台“顽固”的电镜现场未能展示有用的电镜图片,但同样受到了人们的赞赏。(大会结束后,有人发现一个孔盘在运输过程中滑出了立柱,从而阻挡了电子束。)下一步,飞利浦决定建立一系列的四台电子显微镜原型机,其中一部分零件将在莱顿大学 Kamerlingh Onnes实验室的仪器制造商学院进行制造。飞利浦EM100的最终设计于1947年完成。一个独特的早期特征是荧光屏在透射中观察并倾斜到水平方向,如图3所示。在所有随后的飞利浦电镜中,这种结构被放弃,因为垂直柱比倾斜柱在机械上更稳定。图3 飞利浦EM100七、战后时期代尔夫特研究所的工作人员逐渐增加:有4名物理学家、1名生物学家、1名工程师、2名仪器制造师和4名技术人员。从1946年起, Le Poole得到了J. Kramer的协助,J. Kramer在过去的36年中一直是Le Poole的得力助手。1946年,物理学家的首要任务是校正电镜的像散,提高高电压稳定性,以及进一步发展一种更强的物镜,即在不需要进一步稳定透镜电流和高电压的情况下充分降低色差。包括其他工作在内,这项工作为飞利浦简化电子显微镜的设计提供了背景。除了电子显微镜的发展外,仪器的使用也变得越来越重要。后者包括微生物学方面的研究和为研究所以外的客户所做的工作。三台电子显微镜确实不是一件奢侈的事,但当时只有一台,并且为了仪器研制,有时不得不将这台电镜拆开。电子显微镜的质量体现在制备好试样的显微图片的质量上。当时,样品制备技术也正处于开创性的阶段。即使是主要用于生物标本的90kV,这些样品要么太脆弱,缺乏图像对比度,要么像酵母细胞一样太厚。在拍摄来自Lisse花球研究实验室的植物汁液样品时,缺乏对比度尤其令人不安,因为在这些样品中必须识别病毒棒。通常,我拍摄这些病毒时甚至都无法观察它们。在马里兰州贝塞斯达的国立卫生研究院的RalphW.G.Wyckoff博士来访后,我们对阴影投射技术有了很大的了解。这实际上为带有长鞭毛的细菌的电子显微照片(图4)和许多其他样本增加了一个新的维度。1947年,我有幸在贝塞斯达的国立卫生研究院获得奖学金并前往美国工作。那年12月,在费城的EMSA大会上,我提出了一篇题为《代尔夫特电子显微镜在生物学中的一些应用》的论文。在解释了代尔夫特显微镜的原理之后,投影了各种鞭毛细菌的显微照片,随后是为L.Algerica制作的叶绿体显微照片以及为Utrecht大学的L.H.Bretschneider制作的公牛精子显微照片。其中一张精子照片的特殊之处是用一种铁糖复合物喂养细胞,这是Bretschneider早期成功地尝试,目的是提高细胞代谢最活跃部位的对比度。由于我去了美国,A.L.Houwink博士于1947年接替了我在代尔夫特的工作,他继续进行细菌鞭毛和一些原生动物的研究。图4. 梅氏弧菌,视野7微米当时在制备技术方面遇到的问题很大。TNO金属研究所的 J. A. Nieuwenhuis在1944年发展了复制技术,该技术被Dalitz和Schuchmann(1952年)以及Beekhuis和Schuchmann(1952年)发表。1947年,高电压电镜从埃因霍温带到了代尔夫特,巨大的酵母细胞研究仍然令人失望。在高电压下,未经制备的酵母细胞以及真菌孢子,没有揭示重要的细节。此外,在这台高电压电镜样机准备就绪时,对这种仪器的需求已经消退。光束穿透的问题已经被一种新策略的发展所规避:薄片技术。因此,高电压电子显微镜的发展在1950年停止,但在1960年国际上对高电压电子显微镜的兴趣恢复后,以一种新颖的设计重新焕发生机。L.H.Bretschneider(1949年)在Utrecht大学为他在代尔夫特的电子显微镜工作进行了这种薄片技术的实验。他和他的同事P. F. Elbers穿着厚重的外套,在4°C的温度下,用剑桥1890年产的摇式切片机将切片嵌入石蜡和硬蜡混合物中。1954年,这项技术在对蛔虫肠道细胞的研究中得到了进一步发展,其中在剑桥1952年产的显微镜摇式切片机上进行了冷切片。在同一研究所,Elbers构建了一种单通道旋转切片机,配有用于甲基丙烯酸酯嵌入的热扩展装置,并专注于电子染色的使用。不久之后,H.B.Haanstra(1955年)在飞利浦研究实验室成功地制造了一台简单的切片机,并于1958年获得了专利。1949年7月,在代尔夫特举行的国际电子显微镜大会对荷兰所有电子显微镜学家来说都是一个巨大的鼓舞,在大会上,我们有机会展示我们的最佳成果,并与国外的同行结识。八、20世纪50年代初:荷兰涌现更多电镜当飞利浦公司开始商业化交付电子显微镜时,代尔夫特对电子显微镜研究的垄断宣告结束。1949年完成的第一个EM100,被送往哥本哈根的Statens血清研究所进行试验。在荷兰,每所州立大学都有自己的电镜,还有一些特殊的研究所也是如此,如利瑟的花球培养实验室、荷兰皇家贝壳实验室、Sikkens(一家油漆和清漆工厂),当然还有飞利浦研究实验室。当然,正是代尔夫特的工作引起了大学和研究所的兴趣。然而,也有各种各样的失望,由于大多数大学对于电镜进行有序研究的要求还没有准备好,严重低估了电镜使用的实际意义,因此出现了各种令人失望的情况。在格罗宁根大学(University of Groningen),E.H.Wiebenga教授为自己的研究做了充分准备,在美国Cecil Hall为其传授过蛋白质晶体(edestin and exalsin) 的制备;在英国,Wiebenga熟悉蛋白质的X射线衍射技术。1950年11月,他在学校拍摄出了第一张电子显微图片。然而,1951年10月,一名攻读博士学位的学生接手了Wiebenga关于种子球蛋白的工作,发现新安装的电镜无法使用。第一批电镜提供的分辨率约为5nm,不足以完成这类工作,他不得不使用X射线衍射技术。1952年前后,G.Boom对几种晶体材料表面结构的研究和E.F.J.van Bruggen对蛋白质变性的研究得到了新的物镜和更合适的制备技术(如负染法)的支持。这标志着格罗宁根大学在蛋白质结构化学方面卓有成效的研究工作的开始。由于朱莉安娜女王的到访,瓦赫宁根农业大学有幸成为1951年首批安装EM100的学校之一。趁着飞利浦技术人员还在的情况下,非常聪明的女王及时喊道:“我什么都没看到!” 在最初的挫折之后,Christina van der Scheer 的工作在 S. Henstra 的协助下,主要关注病毒颗粒的研究现在的工作人员很少意识到刚开始时遇到的困难。在阿姆斯特丹大学(University of Amsterdam),EM100于1951年1月交付,安装在一个地下室的自行车存放区,天花板低得足以磕头,没有通风。由于我们没有专项基金,电镜胶片必须用我的厨房用具来冲洗。尽管如此,在1953年,我还是在罗马举行的第十届微生物学大会上发表了一篇关于细菌鞭毛的特邀论文。1959年,我获得了科学博士学位,著有专著《不同视角下的Gallionella ferruginea》。早在1952年,在莱顿大学,之前提到的、和仪器制造学院合作制造的四台电子显微镜样机之一(不是Philips EM100)安装在医学院的解剖学大楼。九、回顾过去回想起来,一开始,生物学的主要困难之一似乎是光学显微镜所见与电子显微镜所见之间的差距。这需要很多年的时间来弥补这一差距,而这只有在光学显微镜专家开始使用电子显微镜专家开发的制备程序时才能实现。 此外,长期以来,电子显微镜学家对于他的物理学家朋友和传统生物学家来说,都是个陌生人。在电子显微镜照片上看到的东西在很长一段时间里都是纯描述性的形态学,那时分子解释过于投机。生物化学已经成为将超微结构研究引入分子生物学领域的主要支持之一。第一批商业生产的电镜可能不足以满足所有电子显微镜学家的所有期望,但这也是对以后生产越来越优秀电镜的一种鼓舞。拓展阅读:捷克斯洛伐克电镜发展史系列世界电镜九十年之怀念捷克斯洛伐克电子显微镜先驱——Delong、Drahoš和Zobač世界电镜九十年之捷克斯洛伐克早期电子显微镜发展史
  • 赛多利斯(Sartorius)高端瓶口分液器和数字滴定仪全新上市
    作为国际领先的实验室产品与服务的供应商,赛多利斯(Sartorius)隆重推出全新的高端瓶口分液器Prospenser和Prospenser Plus,以及数字滴定仪Biotrate。其精心设计让日常分液和滴定变得更加便捷。 瓶口分液和滴定是日常理化分析、有机溶剂移取的理想工具。全新产品的独特设计更具安全性、便捷性,并且可定制,充分满足各种分液的需求。同时,还能够帮助细胞培养和生物实验进行更加高效、快捷、安全和经济的培养基分装。Prospenser和Prospenser Plus是高品质的瓶口分液器,具有出色的耐化学性。Prospenser和Prospenser Plus可连接Minisart® 针头滤器直接进行除菌过滤;后部配有通用接口可用于干燥管或滤器的连接;Prospenser Plus还配有介质再循环系统,极大地避免浪费。Biotrate是一种功能先进的优质数字滴定仪,具有高耐化学性,为精确、安全地滴定各种液体提供了智能解决方案。得益于其大而清晰的电子显示屏、平滑的操作轮以及360°旋转分液头,Biotrate使用起来十分地轻松便捷。 现在关注“赛多利斯实验室”官方微信,获取更多活动内容和技术干货!
  • 国际首次!我科学家“拍摄”到光生电荷转移演化全时空图像
    太阳能高效利用是洁净能源研究的科学“圣杯”。10月12日,《自然》在线发表了一项关于太阳能光催化研究的重要进展。通过综合集成多种可在时空尺度衔接的技术,中国科学院大连化学物理研究所李灿院士、范峰滔研究员等科研人员,对光催化剂纳米颗粒的光生电荷转移进行了全时空探测,在国际上首次“拍摄”到光生电荷转移演化全时空图像。“这项研究为突破光解水催化剂电荷分离的‘瓶颈’,提供了新的认识和研究策略。”李灿强调。太阳能光催化反应可以实现分解水产生氢气、还原二氧化碳产生太阳燃料,有望为实现“双碳”目标提供重要的解决途径,受到全世界关注。“虽然在过去半个世纪的光催化研究中,人们在光催化剂制备和光催化反应研究方面做出了巨大努力,但由于光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,人们对该过程的基本机制一直不清楚。”李灿坦言。光催化过程中,光照射到催化剂上时,催化剂内部会产生光生电荷,即光生电子和空穴。光生电子和空穴需要从微纳米的催化剂颗粒内部分离,并转移到催化剂的表面,启动化学反应。光催化过程的核心科学挑战在于如何实现光生电荷的高效分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开这一过程的微观机制极具挑战性。“长期以来,我们团队一直在致力于解决这一问题。在这项研究中,我们在时空全域追踪了光生电荷在光催化剂纳米颗粒中分离和转移演化的全过程。”李灿说。为更好地了解纳秒范围内光生电荷在催化剂内部的分离机制,研究人员使用了时间分辨光发射电子显微镜,发现了光生电子在亚皮秒时间尺度可以从一个表面移动到另一个表面。随后,为了直接观察光生电荷的转移过程,研究人员进行了瞬时光电压分析,发现随着时间尺度从纳秒到微秒的发展,空穴逐渐出现在催化剂表面含有缺陷的晶面。“通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜、瞬态表面光电压光谱和表面光电压显微镜等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。”李灿说,时空追踪电荷转移的能力将极大促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。“这是基础研究的重大突破。未来,这个成果有望促进太阳能光催化分解水制取太阳燃料在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。
  • Merck提供Milli-Q实验室超纯水对LC-MS分析痕量荷尔蒙的重要性
    水质对 LC-MS 分析痕量荷尔蒙的重要性前言随着分析仪器灵敏度不断提高,超痕量的物质也很容易被检测出来,所以实验人员也越来越重视试剂的纯度。如果用含有痕量杂质的水做LC-MS流动相,或制备标样和空白样 品,会导致错误的结果或者数据分析的困难。在很多国家,从环境中(也包括水路)检测出医药产品的存在。饮用水中存在痕量荷尔蒙的报道也越来越多,而这一类化合物很难被传统的水处理方法去除。这也影响到了LC-MS级别纯水,因为无论瓶装或直接纯化的LC-MS级别水都是由自来水制得。 目的本文的目的是研究无论自来水有没有被痕量激素污染,制备 LC-MS 级别超纯水的实验室纯水系统的适用性。 样品制备和检测方法样品收集:自来水:世界上多个国家自来水,包括西班牙、法国、芬兰、中国和印度超纯水:来自世界多个国家实验室纯水系统制备的LC-MS级别超纯水,包括西班牙、法国、芬兰、中国和印度。水样在运输及测试过程中必须使用硅酸盐玻璃器皿。 水纯化系统:1.波兰和印度: Milli-Q Integral with Millipak® final filter (EMD Millipore)2.法国: Milli-Q® Integral with LC-Pak® final filter3.中国和西班牙:Elix® and Milli-Q® Advantage with Millipak® final filter 水纯化系统生产的超纯水质量参数:印度:TOC: 48 ppb, Resistivity: 18.2 MΩcm,25C 其他国家:TOC1.SPE活化:5mL 甲醇(LiChrosolv® LC-MS, EMD Millipore)2.上样:15 mL/min,10 min 真空干燥3.洗脱:3mL甲醇,蒸发至1mL材料和方法:仪器: nLC-MS系统:HPLC:Agilent 1290nMS:Agilent 6420 QQQnHPLC仪器参数:Ø色谱柱:Purospher® STAR RP-18 endcapped(2μm) Hibar® HR 50-2.1 mm(EMD Millipore)Ø流速:0.5 mL/minØ进样量:样品40μL, 标样10μLØ溶剂A:含有1%乙酸的Milli-Q® 超纯水Ø溶剂B:高纯度乙腈(LC-MS LiChrosolv® , EMD Millipore)Ø梯度(min,%B):TimeA%B%0100%02100%050100%60100%9100%013100%0 nMS参数: Capillary 4000 V, Nebulizer 37 psi, Drying gas N2, 7.5 /min, 300o C ESI+, MRM荷尔蒙检测:水样品中检测出如下荷尔蒙:结果与讨论:从污水处理厂流出的水中检测出低浓度(ng/L)荷尔蒙,这些水被直接排放至水路中,甚至被作为饮用水。如果自来水中存在痕量荷尔蒙,就要在超纯水应用于激素类物质的检测用于制备样品和标样,以及作为LC-MS流动相和空白之前,确保能够被纯水系统除去。使用标准加入法可以检测时9种不同的荷尔蒙。 荷尔蒙分析的方法检出限(MDL)为12-36 pg/L。使用LC-MS/MS检测出(IDL)的荷尔蒙浓度(图1、2和3):1.Estradiol: 法国样品 265.40 ng/L 西班牙样品 297.92 ng/L2.Androsterone: 法国样品 515 ng/L, 西班牙样品1635 ng/L*西班牙样品*( 可能样品中存在荷尔蒙类似物使得检测含量过高)3.Corticosterone: 中国样品 14.91 ng/L相对应的,在这些水样对应的超纯水样品中并没有检测出荷尔蒙(MDL: 12-36 fg/L, IDL: 0.4-1.1 pg)结果和讨论:图1. 法国和西班牙自来水样品中Estradiol 的LC-MS/MS结果(左图)和Milli-Q® 纯水结果对比(右图,标样为1ppm的Estradiol)图2. 法国和西班牙自来水样品中Androsterone 的LC-MS/MS结果(左图)和Milli-Q® 纯水结果对比(右图,标样为1ppm的Androsterone)图3. 法国和西班牙自来水样品中Corticosterone 的LC-MS/MS结果(左图)和Milli-Q® 纯水结果对比(右图,标样为1ppm的Corticosterone) 结论w自来水中可能含有痕量荷尔蒙。为了满足实验室应用要求,自来水要通过各种纯化手段制备成超纯水。w作为水纯化系统的进水中如果可以检测出荷尔蒙(或类似物),在超纯水系统制备的纯水中已检测不出该类物质。w为LC-MS/MS实验选择合适的超纯水资源可以确保得到高质量的数据。w可以依靠正确的安装和良好的维护纯水系统来满足实验室LC-MS/MS分析对超纯水高质量的要求。
  • 荷电的应对技巧——安徽大学林中清33载经验谈(13)
    p style=" text-align: justify text-indent: 2em " 为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。 /p p style=" text-align: justify text-indent: 2em " strong 专家约稿招募: /strong 若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。 /p p style=" text-align: justify text-indent: 2em " 本期将分享林中清老师为大家整理的33载扫描电镜经验谈之荷电的应对技巧,以飨读者。 span style=" color: rgb(127, 127, 127) " (本文经授权发布,分享内容为作者个人观点,仅供读者学习参考,不代表本网观点) /span /p p style=" text-align: center margin-top: 15px margin-bottom: 15px " span style=" font-size: 18px color: rgb(0, 0, 0) " strong 荷电的应对技巧——安徽大学林中清33载经验谈(13) /strong /span /p p style=" text-align: justify text-indent: 2em " strong 【作者按】 /strong 任何事件的发生都存在着内、外两方面因素。就样品的荷电现象来说,内在因素在上一篇《扫描电镜样品荷电现象成因新解》中有详细的介绍,而加速电压和束流的影响则是最重要和最直接的外部因素。改变加速电压和束流会对样品的荷电现象产生怎样的影响?我们又该如何应对样品荷电的影响?这种种问题都将在本文给出明确的解答。& nbsp /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" color: rgb(86, 86, 86) letter-spacing: 1px padding: 0px line-height: 1.8 box-sizing: border-box " p style=" margin-bottom: 0px padding: 0px box-sizing: border-box margin-top: 10px " span style=" color: rgb(151, 72, 6) font-size: 18px " strong 一、& nbsp 加速电压和束流对样品荷电的影响 /strong /span /p /section /section section style=" text-align: center margin: 0px 0% 10px font-size: 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: 100% height: 3px vertical-align: top overflow: hidden background-color: rgb(254, 222, 69) box-sizing: border-box " section style=" margin: 0px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(255, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(254, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap justify-content: center position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto box-shadow: rgb(0, 0, 0) 0px 0px 0px flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(255, 255, 255) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section /section /section /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " 充分的事例说明,加速电压和束流的改变会对样品荷电的形态及强弱产生重大影响。提升加速电压,将会增加进入样品的电子总量,也能使荷电场在样品中的位置下沉,这些变化是使样品荷电形态出现改变的源泉。提升束流强度会增加击入样品电子数,加重荷电现象。下面将就此做详细的探讨。 /span /p p style=" text-align: center " span style=" font-size: 18px " strong 1.1加速电压的改变对样品荷电的影响 /strong /span strong /strong /p p style=" text-align: justify text-indent: 2em " 改变加速电压会使得由电子枪发射出来的电子束能量和亮度(发射亮度)产生同步改变。带来的结果是:电子束的发射亮度和电子能量产生同步的增加或减弱。 /p p style=" text-align: justify text-indent: 2em " strong 电子束的发射亮度定义为: img style=" max-width: 100% max-height: 100% width: 74px height: 43px " src=" https://img1.17img.cn/17img/images/202010/uepic/8724f64f-0bc7-41c6-b3bc-e60bee9c5ed0.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" width=" 74" height=" 43" / /strong ,因此提升发射亮度的结果:电子束束流密度的增加和立体角的减小。增加束流密度意味着,相同面积内电子束注入样品的电子数增加,立体角的减小会使得进入样品的电子更为集中。故提升加速电压将增加注入样品单位面积的电子数,在一定程度上会加强荷电场强度,不利于降低荷电场对测试结果的影响。 /p p style=" text-align: justify text-indent: 2em " strong 改变任何因素对最终结果的影响都遵循着辩证法的规律,存在正、负两个方面结果的竞争。结局如何?取决于各自量变的积累是否使其成为结局的主导,所谓:量变到质变。 /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 加速电压的增加从电荷量的改变这个方面来说,不利于样品荷电场的减弱。但是加速电压的增加也会带来以下有利于减少荷电场影响的变化:1.& nbsp 电子能量的提升,大量电子深入样品内部形成堆积,造成样品中荷电场位置的下移,当该位置深入到一定值时会失去对表面电子溢出的影响。& nbsp 2. 入射电子能量的提升引发背散射电子能量提升,当探头获取的信息主体是背散射电子时,将有利于削弱荷电场对结果的影响。 /p p style=" text-align: justify text-indent: 2em " 下面将依据实例来探究改变加速电压对荷电现象的影响。 /p p style=" text-align: justify text-indent: 2em " strong A) 加速电压越高,荷电越强 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/1eea1347-275c-4c03-8646-074eae49ef0c.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / /p p style=" text-align: justify text-indent: 2em " 以上三张照片展现的是一种特种布料的截面。照片从下到上可见,布纤维层上涂敷了漆料,漆料上做了多层膜。 /p p style=" text-align: justify text-indent: 2em " 测试条件:分别用1KV、2KV、6KV加速电压对其进行观察。 /p p style=" text-align: justify text-indent: 2em " 样品特性:截面观察,无论是布纤维、油漆层还是薄膜层相对电子束来说都是无穷厚,电子束能量再高也无法击穿。 /p p style=" text-align: justify text-indent: 2em " 漏电能力:1.& nbsp 处于中间的油漆层是 strong 密度较大的非晶态固体 /strong ,漏电能力极差且 strong 荷电场的位置 /strong 在样品中较难移动;2.& nbsp 布纤维密度较大,漏电能力较强,形成的荷电场强度较小;3. 薄膜层是紧密的晶体结构,漏电能力最强,不易形成荷电场。 /p p style=" text-align: justify text-indent: 2em " 结果:提升加速电压,随着注入样品的电子增多,三个部位分别表现为:1.油漆层 1KV注入的电子少,无荷电现象;2KV荷电现象的强度和区域都明显增加,6KV整个油漆区域都存在严重的荷电现象;2.& nbsp 布纤维 1KV无荷电现象,2KV出现轻微的荷电,6KV荷电现象加重;3.& nbsp 薄膜层始终无荷电现象。 /p p style=" text-align: justify text-indent: 2em " strong B)加速电压升高荷电现象减轻 /strong strong /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/306aa525-67a8-4be0-a866-3b5590b121c5.jpg" title=" 2.PNG" alt=" 2.PNG" / /p p style=" text-align: center " strong 枝晶MOF /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 样品介绍:枝晶MOF,松散的晶体材料(见最后一张)。 /p p style=" text-align: justify text-indent: 2em " 测试条件(AV):100V、200V、300V、400V、600V、700V /p p style=" text-align: justify text-indent: 2em " 样品特性:样品松软、凹陷,漏电能力较差而电场容易沉降。 /p p style=" text-align: justify text-indent: 2em " 结果:加速电压100V,电子累积于凹陷的上表层。荷电场位置极高,抑制凹陷处二次电子溢出,图像呈异常暗。二次电子产额的不足,造成荷电场对结果影响极大,图像变形严重。 /p p style=" text-align: justify text-indent: 2em " 200V、300V、400V,随着加速电压的提升,荷电场从样品表面下沉,电子信息开始溢出样品。只是此时表面信息还是受荷电场影响,出现磨平或异常亮的现象,但随荷电场的下沉而逐步减弱。 /p p style=" text-align: justify text-indent: 2em " 这是一个晶体材料,加速电压的增加很容易在晶体结构上形成电荷通路,使得样品漏电能力增强而进一步加速荷电场的下降。因此我们可以看到随着加速电压从200V增加到400V荷电现象快速的减弱。 /p p style=" text-align: justify text-indent: 2em " 加速电压增加到600V以后,形成的荷电场更深,至此对样品电子信息的溢出也无法形成影响。荷电现象消失。 /p p style=" text-align: justify text-indent: 2em " 提升加速电压有利于荷电场的下沉减少样品的荷电现象,但缺点是,过高的加速电压会使得样品表面信息出现缺失。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/5b33187f-2953-4615-8e37-654fad2e2829.jpg" title=" 3.PNG" alt=" 3.PNG" / /p p style=" text-align: justify text-indent: 2em " 以上实例充分展示,加速电压对样品荷电的影响并不单调,同样遵循辩证法的规律。样品漏电能力是形成荷电场的内因,是根基。改变加速电压会对荷电场在样品中所处的位置及强度产生影响,是形成荷电场最重要的外部因素。实际操作中,选取不同加速电压,依据结果的变化趋势来修正测试参数,是最有效抑制样品荷电场影响的方法之一。 /p p style=" text-align: justify text-indent: 2em " strong C)增加加速电压对荷电场强度和位置的影响 /strong /p p style=" text-align: justify text-indent: 2em " 以下测试结果组合,将向我们充分展示:随着加速电压增加所带来的荷电场强度增加和荷电场位置下移,这两个增加和减弱样品荷电现象的因素,它们之间各自量变的竞争,将会给测试结果在荷电现象的呈现上,带来怎样的质变。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/8f694a6a-9018-4704-b2db-30bdb0a881dc.jpg" title=" 4.PNG" alt=" 4.PNG" / /p p style=" text-align: justify text-indent: 2em " 样品名称:真菌和锑纳米颗粒 /p p style=" text-align: justify text-indent: 2em " 测试条件(AV):1KV、2KV、3KV、5KV、10KV、20KV /p p style=" text-align: justify text-indent: 2em " 测试结果:1KV,注入样品的电子数较少,荷电场强度弱,对溢出样品表面的电子信息影响不大,测试结果无荷电现象。 /p p style=" text-align: justify text-indent: 2em " 2KV、3KV,注入样品的电子数增多,荷电场强度逐渐加强,而荷电场的位置却处于能充分影响样品电子信息溢出的区间,因此随着加速电压的增加荷电现象加重。 /p p style=" text-align: justify text-indent: 2em " 5KV,10KV、20KV虽然注入样品的电子数进一步增加,但荷电场在样品中的位置同步加深,逐渐失去对溢出样品表面电子信息的影响。荷电现象减弱直至在10KV后再次消失。 /p p style=" text-align: justify text-indent: 2em " strong D)减速模式与样品的荷电现象 /strong /p p style=" text-align: justify text-indent: 2em " 主流观点认为:在样品台上附加一个减速场将有效的减弱样品荷电的影响。至于具体原因交代的并不清晰。 /p p style=" text-align: justify text-indent: 2em " 实际测试过程中发现,减速场并不存在消除荷电的效果,但会对荷电现象的表现形式产生影响,结果也较为复杂。有可能消除也可能加重荷电现象,或从异常暗转变为异常亮。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/e1cefc7e-789c-4dde-bfb9-f5500d96f208.jpg" title=" 5.PNG" alt=" 5.PNG" / /p p style=" text-align: justify text-indent: 2em " 以上都是介孔KIT-6。该样品具有一定的晶体特性,因此拥有一定的漏电能力。而晶体结构和块体形态的差异,使得不同块体以及块体的不同部位,漏电能力都存在些微差异。 /p p style=" text-align: justify text-indent: 2em " 样品下方添加一个负电场(减速场),这个电场也会对样品各部位产生影响。样品各部位的特性及漏电能力不同,受减速场的影响也不同,出现的荷电现象更不相同。虽无法精确定量减速场对最终结果的影响,但因其出现在下方,故该影响以信息增加为主,荷电形态的变化也以由暗到亮为主。 /p p style=" text-align: center " span style=" font-size: 18px " strong 1.2 改变束流对样品荷电的影响 /strong /span /p p style=" text-align: justify text-indent: 2em " 降低束流将会减少电子束注入样品的电子数,故束流降低荷电现象必然是减弱。但降低束流会使得电子束激发的样品信息总量下降,溢出样品表面的电子总量也会下降,探头获取样品的表面信息不足,使得样品表面形貌像的质量较差。 /p p style=" text-align: justify text-indent: 2em " 易形成荷电的样品,绝大部分都是由轻元素所组成的非晶态结构,表面信息都不充足。因此降低束流达成减少荷电影响的手段,除非万不得已,很少被使用。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/73c23666-7a1b-453f-a5f3-dfffba92be0e.jpg" title=" 6.PNG" alt=" 6.PNG" / & nbsp /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" color: rgb(86, 86, 86) letter-spacing: 1px padding: 0px line-height: 1.8 box-sizing: border-box " p style=" margin-bottom: 0px padding: 0px box-sizing: border-box margin-top: 10px " strong span style=" color: rgb(151, 72, 6) font-size: 18px " 二、& nbsp 样品荷电的应对 /span /strong /p /section /section section style=" text-align: center margin: 0px 0% 10px font-size: 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: 100% height: 3px vertical-align: top overflow: hidden background-color: rgb(254, 222, 69) box-sizing: border-box " section style=" margin: 0px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(255, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(254, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap justify-content: center position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto box-shadow: rgb(0, 0, 0) 0px 0px 0px flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(255, 255, 255) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section /section /section /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " 不同形态和特性的样品,其荷电现象的成因及形成荷电场的强度和位置都不相同。选用不同能量的电子信息(SE/BSE)形成表面形貌像时受荷电场的影响程度也不同。依据这种种不同来选择合适的测试条件,将有效的克服样品荷电影响。 /p p style=" text-align: justify text-indent: 2em " 应对样品荷电影响的思路递进路线图: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 在保证样品信息不受影响的情况下,尽量选择漏电能力强的部位来测试并增加探头接收背散射电子信息的含量。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 如果采用以上方法无效,应尽量选择形成荷电场强度小的测试条件。比如:合适的加速电压、束流及快速拍照等。 /p p style=" text-align: justify text-indent: 2em " 3.& nbsp 再无效,可给样品覆盖漏电能力强的物质(蒸金)来降低荷电场的影响。该方法容易形成细节假象,要把握住量。 /p p style=" text-align: justify text-indent: 2em " 以上应对样品荷电现象的思路递进只是一个建议。实际操作可不按这个路径,即可单独运用,也可以组合起来使用。因时而变、因势而取,只要适合就是最好的。 /p p style=" text-align: justify text-indent: 2em " 最高目标:充分克服样品荷电的影响,充分获取真实的样品信息,充分获得样品的高质量表面形貌像。 /p p style=" text-align: center " span style=" font-size: 18px " strong 2.1受荷电影响小的样品结构及电子信息 /strong /span strong /strong /p p style=" text-align: justify text-indent: 2em " strong 2.1.1受荷电影响小的样品结构 /strong /p p style=" text-align: justify text-indent: 2em " 小颗粒以及连续、紧密的晶体结构漏电能力都很强,在该结构中无法形成荷电场或形成的荷电场强度不大,无需进行特殊处理即可直接观察。该类样品分以下五种情况。 /p p style=" text-align: justify text-indent: 2em " strong A)& nbsp & nbsp 纳米颗粒,直径小于几百纳米的样品 /strong /p p style=" text-align: justify text-indent: 2em " 酒精分散滴在硅片上烘干。直径几百纳米的小颗粒表面能很强、吸附力大,不用考虑固定问题。颗粒越小吸附力越好。 /p p style=" text-align: justify text-indent: 2em " 采用硅片的原因:1.& nbsp 硅片是半导体,虽导电性不好,但其本身是结构紧密的晶体,电子迁移效果好,漏电能力强,不会形成荷电现象;2.& nbsp 硅片本身电子信息极弱,抛光好的硅片表面平整,不会形成背底信息;3.& nbsp 硬度大,有利于样品在其表面充分的站立,获取的样品表面形貌像立体感强。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/48c68779-a0ec-4532-a96d-99daf8bdbf63.jpg" title=" 7.PNG" alt=" 7.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/f774d24c-ada8-4f23-8b2a-1f025e1cf718.jpg" title=" 9.PNG" alt=" 9.PNG" / /p p style=" text-align: justify text-indent: 2em " strong B)连续、紧密的晶体结构 /strong /p p style=" text-align: justify text-indent: 2em " 紧密、连续的晶体结构漏电能力较强,自由电子在样品上的迁移也十分容易。这类样品只要做到充分的接地,样品中形成的电荷累积就很少,不存在荷电现象或荷电极其轻微。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/7bc8fc68-2862-476d-b2db-fc94808f7a6a.jpg" title=" 10.PNG" alt=" 10.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/ceec775c-414c-401f-af53-d2361e58d006.jpg" title=" 11.PNG" alt=" 11.PNG" / /p p style=" text-align: justify text-indent: 2em " strong C)漏电能力差异大的样品 /strong /p p style=" text-align: justify text-indent: 2em " 一个样品,如果不同部位的漏电能力有很大差异,样品的荷电只会在漏电能力差的部位聚集出现。测试时只需要避开漏电能力较差的部位,结果就不会受到荷电影响。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/8d950643-1090-4f87-8139-4f30594caab4.jpg" title=" 12.PNG" alt=" 12.PNG" / /p p style=" text-align: justify text-indent: 2em " 同一个样品,不同部位漏电能力的差异来自两方面原因:1.材料特性上的些微差异,上面已有充分展示;2. 颗粒堆积体的堆积形态,凹陷部位容易积累电子,降低样品整体的漏电能力,该处极易形成荷电现象。 /p p style=" text-align: justify text-indent: 2em " 易形成荷电现象的部位,在测试时需要加以规避。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/fe5a942c-0912-44a2-84f7-4974245817d5.jpg" title=" 13.PNG" alt=" 13.PNG" / /p p style=" text-align: justify text-indent: 2em " strong D)低倍有荷电现象不代表高倍率也会有荷电现象 /strong strong /strong /p p style=" text-align: center text-indent: 0em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/56a3afdc-fd4e-4898-b8c3-f51b7944099a.jpg" title=" 14.PNG" alt=" 14.PNG" / /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: justify text-indent: 2em " strong E)高倍率有荷电不代表低倍率也会出现荷电现象 /strong /p p style=" text-indent: 0em text-align: center " strong /strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/1e1dfda1-fd2a-41fa-abf3-6a9c3761ce8a.jpg" title=" 15.PNG" alt=" 15.PNG" / /p p style=" text-align: justify text-indent: 2em " strong 2.1.2 选择受荷电影响小的电子信息(BSE) /strong /p p style=" text-align: justify text-indent: 2em " strong A)背散射电子能量比较大 /strong ,其溢出量不容易受到样品荷电场的影响。遇到样品有荷电现象时,选择背散射电子常常可以解决90%的荷电影响。样品仓探头接收的样品信息是以背散射电子为主,是应对样品荷电现象的最有效手段。提升背散射电子能量,也是进一步减少荷电影响的有力方式。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/95c96f8e-7433-444d-9dd7-c09e566d3408.jpg" title=" 16.PNG" alt=" 16.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/d94b56cd-bccf-480f-a623-d8b973744eb1.jpg" title=" 17.PNG" alt=" 17.PNG" / /p p style=" text-align: justify text-indent: 2em " 改变工作距离,降低上、下探头接收到的样品电子信息中总的二次电子含量,能起到减少样品荷电影响的效果。 strong /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/031ef60e-af40-4d9c-84df-4550dd5efc96.jpg" title=" 18.PNG" alt=" 18.PNG" / /p p style=" text-align: justify text-indent: 2em " 用样品仓探头观察200纳米以上的细节,清晰度和辨析度(细节分辨能力)都好;观察200纳米到20纳米细节,清晰度随细节变小而逐渐变差但辨析度具有优势;观察10纳米以下细节,清晰度和辨析度都很差。故除非观察10纳米以下的细节,对其它信息合理采用样品仓探头往往更有利。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/af2b57e0-acd1-4670-824a-48c58f3646d0.jpg" title=" 19.PNG" alt=" 19.PNG" / /p p style=" text-align: justify text-indent: 2em " strong B)选择不同角度的二次电子也会对图像荷电现象形成影响 /strong /p p style=" text-align: justify text-indent: 2em " 样品表面二次电子溢出的分布并不均匀。与样品表面夹角大的高角度二次电子,溢出方向与荷电场法线方向基本重合,故比低角度二次电子更容易受荷电场的影响。探头接收的样品电子信息中高角度信息越多,荷电对结果的影响就越大。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/c3ca2fb8-96bb-4393-9a5c-574de4b98c9d.jpg" title=" 20.PNG" alt=" 20.PNG" / /p p style=" text-align: justify text-indent: 2em " 以上事例充分说明,利用样品本身的漏电能力以及选用受荷电影响小的电子信息(背散射电子,低角度电子信息)都对减少样品荷电对结果的影响有明显效果。如果采用以上方式无法消除荷电场对测试结果的影响,那又该如何处理? /p p style=" text-align: center " span style=" font-size: 18px " strong 2.2选择形成荷电场强度小的测试条件 /strong /span strong /strong /p p style=" text-align: justify text-indent: 2em " 除了加速电压与束流对样品荷电场的形成有直接影响外,电子束的扫描速度也会影响样品中荷电场的形成。用快速的扫描方式成像,对降低样品的荷电影响同样效果显著,只是成像质量较差。这就是CSS和TV成像模式。 /p p style=" text-align: justify text-indent: 2em " strong 2.2.1采用电子束快速扫描方式获取图像 /strong /p p style=" text-align: justify text-indent: 2em " 快速移动的电子束会减少每次扫描时电子在样品中的注入量,并有助于电子在样品中迁移,这都会使样品中的荷电场强度大大减弱。以快速的电子束扫描模式来获取样品表面形貌像,有利于减少样品荷电对测试结果的影响。 /p p style=" text-align: justify text-indent: 2em " 快速扫描获取样品表面形貌像的方式有:CSS和TV模式。 /p p style=" text-align: justify text-indent: 2em " CSS模式是以快速、多次线扫,然后取几次线扫的平均值做为图像每条线的衬度信息。整幅图像就是由这些以线扫方式所获取的样品表面形貌衬度信息所组成。 /p p style=" text-align: justify text-indent: 2em " TV模式是以更快速的面扫描方式获取样品表面形貌像,将十几或几十幅图片叠加在一起形成最终的表面形貌像。 /p p style=" text-align: justify text-indent: 2em " 以电子束的快速扫描方式获取样品信息,在降低荷电的影响时,也大大削弱了样品信息的溢出量,使图像质量较差。电子束移动速度越快图像质量越差。TV模式图像质量最差。 /p p style=" text-align: justify text-indent: 2em " 图像漂移是快速扫描成像模式所面对的最大问题。图像漂移越严重,清晰度就越差,严重的漂移会引起图像变形。虽然有些厂家设计了图像漂移校正软件,但都有限度,与慢扫描模式所获取的图像质量还是有一定差距。 /p p style=" text-align: justify text-indent: 2em " 改变测试条件解决样品荷电影响,常常会给扫描电镜的图像带来正、反二方面的结果。用辨证的观念,坚持适度性原则,是选择最佳测试条件的更本保障。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/93c65b6d-7ef6-4019-bb09-087b799012ae.jpg" title=" 21.PNG" alt=" 21.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/639d9ab7-f211-419a-88a5-ace79ff57379.jpg" title=" 22.PNG" alt=" 22.PNG" / /p p style=" text-align: justify text-indent: 2em " strong 2.2.2样品表面蒸镀漏电能力强的物质(蒸金) /strong strong /strong /p p style=" text-align: justify text-indent: 2em " 给样品表面“蒸金”,让漏电能力强的金膜与电子束接触,既可增加样品表面的漏电能力,减少荷电场对结果的影响,还能提升样品电子信息的溢出量,改善表面形貌像的质量。但该方法带来的严重后果是对表面形貌细节的掩盖和改变。 /p p style=" text-align: justify text-indent: 2em " 既要保证获取优质的表面形貌像又要对表面形貌像没有结构性的改变,把握好蒸金的量就极为关键。 strong 多次、多角度的微量蒸金 /strong ,是用蒸金的方式获取最佳结果的最有效方法。采用这种方法,可以避免蒸金的死角也容易掌控蒸金的量。如同炒菜时的调味,味不足可以弥补,味太过只能倒掉。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/173a8c15-f847-4f79-bfce-cf8d17a6ca8e.jpg" title=" 23.PNG" alt=" 23.PNG" / & nbsp /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" color: rgb(86, 86, 86) letter-spacing: 1px padding: 0px line-height: 1.8 box-sizing: border-box " p style=" margin-bottom: 0px padding: 0px box-sizing: border-box margin-top: 10px " span style=" font-size: 18px " strong span style=" color: rgb(151, 72, 6) " 三、 结束语 /span /strong /span /p /section /section section style=" text-align: center margin: 0px 0% 10px font-size: 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: 100% height: 3px vertical-align: top overflow: hidden background-color: rgb(254, 222, 69) box-sizing: border-box " section style=" margin: 0px 0% transform: translate3d(-10px, 0px, 0px) -webkit-transform: translate3d(-10px, 0px, 0px) -moz-transform: translate3d(-10px, 0px, 0px) -o-transform: translate3d(-10px, 0px, 0px) position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(255, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) padding: 0px background-color: rgba(254, 255, 255, 0) width: 100% height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap justify-content: center position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto box-shadow: rgb(0, 0, 0) 0px 0px 0px flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(255, 255, 255) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section section style=" display: inline-block vertical-align: top width: auto flex: 0 0 0% align-self: flex-start height: auto box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top flex: 0 0 0% height: auto align-self: flex-start padding: 0px 2px 0px 1px box-sizing: border-box " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 3px height: 55px vertical-align: top overflow: hidden background-color: rgb(86, 86, 86) box-sizing: border-box " svg viewbox=" 0 0 1 1" style=" float:left line-height:0 width:0 vertical-align:top " /svg /section /section /section /section /section /section /section /section /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " 样品的荷电现象源于电子束轰击样品时,注入样品的电子数和溢出样品表面的电子数之间出现差异。由于溢出样品表面的各种电子总数,只占电子束激发的样品电子信息中,极少的一部分,因此注入的电子数一定会远多于溢出样品表面的电子数。多余出来的电子就在样品中形成自由电子。 /p p style=" text-align: justify text-indent: 2em " 如果样品形态是: /p p style=" text-align: justify text-indent: 2em " 1. 颗粒较小(几百纳米以下)或连续、紧密的晶态结构。这类样品本身的漏电能力很强,自由电子在样品中迁移十分容易。当样品接地良好,则多余的电子就会从样品中漏除。 /p p style=" text-align: justify text-indent: 2em " 2. 样品颗粒很大且是断续、松散的非晶态结构或小颗粒的松散堆积体。这类样品的漏电能力较差,自由电子会在样品中形成堆积。这些堆积的电子将在堆积处形成静电场,从而影响样品中各种电子信息的正常溢出,在样品的表面形貌像上叠加异常暗、异常亮或者磨平这三种形态的荷电现象。静电场由样品的荷电所形成,因此也称为“荷电场”。 /p p style=" text-align: justify text-indent: 2em " 二次电子能量较弱,由其为主形成的图像最容易受荷电场影响而酿成荷电现象。背散射电子能量较大,溢出量不易受荷电场影响,由其为主形成的图像很少出现荷电现象,且加速电压越大,图像出现荷电现象的几率越低。 /p p style=" text-align: justify text-indent: 2em " 荷电现象只影响图像的形态而对样品形态不产生影响。 /p p style=" text-align: justify text-indent: 2em " 样品的荷电现象有三种形态:异常亮、异常暗、磨平 /p p style=" text-align: justify text-indent: 2em " 异常亮:当样品表面有大量二次电子产生,而荷电场产生在样品信息溢出区的下部。此时荷电场会将位于其上方的二次电子大量推出,荷电场及周边的信息正常溢出得到异常的增加,出现异常亮。该现象往往出现在使用较高加速电压观察堆积体和密度较大但漏电能力较差的样品中。 /p p style=" text-align: justify text-indent: 2em " 异常暗:当荷电场位于样品信息溢出区的上部。此时样品的信息溢出受到荷电场的抑制,从而形成异常暗的现象。这类现象常常出现在采用低加速电压观察较松散样品的凹陷部位。增加加速电压会使得荷电场的位置下降,这种荷电形态容易转变成磨平或异常亮直至消失。 /p p style=" text-align: justify text-indent: 2em " 磨平:样品浅表层有足够的信息产生,而荷电场位置较高,和信号溢出区混杂,荷电场会使得溢出样品的电子异常减少而影响细节分辨。这类现象较易出现在较低加速电压观察松散的样品。增加加速电压,荷电现象也会变为异常亮或消失。& nbsp /p p style=" text-align: justify text-indent: 2em " 应对样品荷电影响的方式有很多。各种应对方式所适合的样品类型及所获取的样品信息也各不相同。 /p p style=" text-align: justify text-indent: 2em " 充分分散样品,使得样品各点充分接地将极为关键。它能消除很多因样品堆积而产生的附加荷电场。 /p p style=" text-align: justify text-indent: 2em " 应对样品荷电应遵循尽量提升样品本身的漏电能力,减少样品上自由电子堆积的原则。充分分散和固定好样品,准确找到样品上漏电能力强的部位进行观察,是十分有效的手段。 /p p style=" text-align: justify text-indent: 2em " 接收受荷电影响小的电子信息(背散射电子、低角度电子信息等)。在保证图像分辨力的基础上,选择形成荷电场小的加速电压和束流,采用快速扫描(CSS\TV模式)获取表面形貌像,这些都是削弱样品荷电影响的有效方式。 /p p style=" text-align: justify text-indent: 2em " 如果以上方式都不奏效,在样品表面形成漏电层(蒸金& nbsp )将成为很关键的方法。蒸金应当遵循多次、多角度、微量蒸镀的原则,保证金膜均匀、适量。最佳的效果是即消除荷电影响,又提升图像质量,还对原有的图像细节影响小。 /p p style=" text-align: justify text-indent: 2em " 实际操作过程中往往会发现,应对样品荷电,采用单一的方法并不能给我们带来完美的结果。表现为荷电不能被完全消除,图像质量受到影响。将几种消除荷电的方式复合使用常常能带来更好的效果,是应对样品荷电最有效的手段。 /p p style=" text-align: justify text-indent: 2em " 荷电现象是进行扫描电镜测试时,经常遇到并让测试者十分头痛的问题。正确认识荷电形成的原因,才能找到可行的应对方式。希望本文能给大家提供一定的参考。 /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》 张大同2009年2月1日& nbsp span style=" text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等& nbsp 2009年1月& nbsp span style=" text-indent: 2em " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》 恩格斯 于光远等译 1984年10月& nbsp span style=" text-indent: 2em " 人民出版社& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " 《显微传》 章效峰 2015年10月& nbsp 清华大学出版社 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) " strong style=" margin: 0px padding: 0px " 作者简介 /strong /span strong style=" margin: 0px padding: 0px " : /strong /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: justify text-indent: 2em " span style=" margin: 0px padding: 0px text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 82px height: 128px float: left " src=" https://img1.17img.cn/17img/images/202010/uepic/97fabfc9-e32f-4731-9623-40143ec93450.jpg" title=" 林.jpg" alt=" 林.jpg" width=" 82" height=" 128" / /span span style=" text-indent: 2em " 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zt/LZQ" target=" _self" style=" text-indent: 2em text-decoration: underline " strong style=" color: rgb(0, 176, 240) " 【系列专题:安徽大学林中清33载扫描电镜经验谈】 /strong strong style=" color: rgb(0, 176, 240) " /strong /a /p p style=" text-indent: 2em " strong 林中清系列约稿互动贴链接 /strong (点击留言,与林老师留言互动): /p p style=" text-indent: 2em " a href=" https://bbs.instrument.com.cn/topic/7656289_1" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " https://bbs.instrument.com.cn/topic/7656289_1 /span /strong strong span style=" color: rgb(0, 176, 240) " /span /strong /a /p
  • 145万!北京荷塘生华医疗科技有限公司蛋白纯化仪等采购项目
    项目编号:OITC-G230881301项目名称:北京荷塘生华医疗科技有限公司仪器设备(第六批)采购项目预算金额:145.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量是否允许采购进口产品采购预算(万元人民币)1蛋白纯化仪等1批是145投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:合同签订后60天内本项目( 不接受 )联合体投标。881301技术要求.docx
  • 我国自主研发的量子磁力仪载荷实现全球磁场测量
    我国首台自主研发的量子磁力仪载荷——“CPT原子磁场精密测量系统”于7月27日搭载空间新技术试验卫星(SATech-01)发射。11月7日,国产量子磁力仪载荷的无磁伸展臂在轨展开,载荷进入在轨长期工作阶段,目前已获取五天的有效探测数据,实现了全球磁场测量,推进了我国量子磁力仪的空间应用研究。CPT原子磁场精密测量系统由CPT原子/量子磁力仪、AMR磁阻磁力仪、NST星敏感器、无磁伸展臂组成,由中国科学院国家空间科学中心太阳活动和空间天气重点实验室、复杂航天系统与电子信息技术重点实验室,以及中科院沈阳自动化研究所联合研制。无磁伸展臂一次性展开至4.35m后,处于伸展臂顶端的CPT原子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器远离卫星磁干扰和遮挡,开始获取有效探测数据。CPT原子/量子磁力仪在轨测量噪声峰峰值0.1nT。NST星敏感器获取了卫星在不同模式、不同时段下伸展臂的姿态变化实时数据,结合AMR磁阻磁力仪的三轴磁场探测,首次在轨验证了磁场矢量和姿态一体化同步探测技术。国产量子磁力仪首次全球磁场勘测图(空间中心太阳活动与空间天气重点实验室供图)CPT原子磁场精密测量系统载荷(空间中心、沈阳自动化所供图)无磁伸展臂地面展开测试(沈阳自动化所、空间中心和微小卫星研究院供图)CPT原子磁场精密测量系统伸展臂在轨展开状态示意图(微小卫星研究院供图)CPT原子磁力仪和AMR磁阻磁力仪在轨测量结果(空间中心供图)NST星敏感器相对于卫星本体坐标系的测试结果(空间中心、中科新伦琴NST星敏团队提供供图)
  • 精准医疗露荷尖:基因检测及相关上市公司解析(下)
    五.A股上市公司比较  继精准医疗露荷尖-基因检测及相关上市公司解析(上)详解精准医疗、基因测序产业链之后,下篇主要对比相关上市公司。在介绍A股基因测序上市公司之前罗列几个美国基因测序公司。  启迪(即Illumina):上篇已经提到,上游测序仪龙头,收入20亿美元,市值250亿美元。  23andMe:初创型公司,总收入不足2亿美元,大量收集基因组数据,进军药物研发领域,志存高远。  美国大型的测序服务公司有: Sequenom, CardioDx 和 Foundation Medicine 等,其中罗氏集团15年初出资10.4亿美元收购Foundation Medicine56%的股份,公司当前估值20亿美元以上。  A股上市公司:  1.建立基因测序股票池  每一个概念题材都会有很多公司沾边,但其中不少公司大股东都是抱着打酱油、讲故事的心态跟风投资,真正具有战略眼光、值得我们重点关注的并不多,基因测序也一样。  打开同花顺,查找基因测序板块,可以看到A股涉及基因测序概念的有21家,(如下图),但其中不少只是轻微涉猎基因测序,比如共进股份,隶属通信行业,现在积极转型大健康,前期3000万增投小海龟科技,持有小海龟科技15%的股权。小海龟科技宣称已自主研发成功半导体高通量基因测序仪(2.5代),并启动预研新一代的基因测序技术,本人也十分看好共进股份,但基于上述判断决定不纳入基因测序概念股票池。  在综合考虑主业相关性、介入基因测序力度、成功可能性之后,从中筛选了12家+华大基因(即将上市)合计13家,予以比较分析,如下。  2.13家公司综合比较  下表统计了这13家公司的收入、利润和市值,并简单统计了2015年上半年基因测序业务对总体收入利润贡献情况。  可以看出,即便已经筛选,绝对数值看,基因业务贡献利润都没过亿,相对数值看,基因业务对业绩贡献较高的公司凤毛麟角,华大基因、达安基因、迪安诊断、千山药机较高,超过30%,前三家是因为产前筛检做得好,千山药机主做高血压基因芯片,但增长乏力,关于千山药机的非议比较多,可以百度自行了解。其他占比不高或因所收购公司尚未并表,或因基因业务刚处于起步阶段,这是行业发展现状决定的。  如果我们按照市值排序:  行业老大华大基因即将创业板上市,15年净利润2个亿上下,预计市值500亿以上,华大因为前些年重点放在科研,做产业起步晚,目前收入并没有展现出大哥气质,随着未来登陆资本市场,会展现王者归来的气概,市值千亿不是梦 行业老二达安基因216亿,还有很大成长空间 荣之联也排名靠前,但其主要收入来源于政府跟电信单位,而非基因业务 中源协和收入排名11,市值排名第3,二者不对等,主要是因中源协和以细胞检测制备及存储为主,这块业务毛利率达到惊人的80%,因此在资本市场享有较高溢价,理所当然 市值最小的仟源医药仅仅40亿。  3.每个公司业务看点  达安基因:通过参控股子公司,逐渐实现了在国内精准医疗行业的全产业链布局,分子诊断+基因检测双核心,收入30%来自产前筛检,一半来自分子诊断,背靠中山大学,技术雄厚,国内唯一可以跟华大比肩的基因公司   迪安诊断:2.5亿收购博圣生物进入基因测序领域,探索肿瘤诊断与治疗。产前筛检是当前主要收入,但多元化经营战略明显,携手阿里,与泰格共建实验室,收购美生,最近又新疆元鼎,资本运作频频,值得期待   安科生物:4.5亿元收购法医DNA检测龙头中德美联25%股权:产品被应用于公安、司法和医学DNA检测分析领域,中德美联还储备有肿瘤分子诊断技术,目前其相应临床产品已进入报批阶段,当前主要收入来源于生物制品   仟源医药:收购恩氏基因,进入基因保存领域,基因保存技术难度不高,为以后提供样本,为未来基因测序和基因治疗提供样本和依据(一个婴儿基因保存收费3600元,期限100年,很划算),当前主营化学制药,这个行业当前都不景气,市值最小   中源协和:细胞检测制备及存储业务占当前收入的57%,利润的67%,毛利率超过80%,投资5000万元,筹建基因检测相关技术研究公司,近期1亿元对碳云智能进行增资,目标公司主营业务涉及生命大数据、人工智能和互联网领域,而其创始人更是大名鼎鼎的华大基因前CEO王俊,“细胞+基因”双核心战略看好   千山药机:控股宏灏基因79.7%,主打高血压基因芯片,宏灏基因使用第一代基因检测技术,技术上无疑是相对落后的。但优势是成本低,检测周期短,因而市场应用也不错,未来竞争力如何只能留给市场判断,另外千山药机控股上海申友51%进军基因测序   昌红科技:基因存储板、分子筛、基因扩增板和微细胞过滤网等基因测序耗,为华大和Thermo Fisher Scient的基因存储板供应商,传统业务占比过大   新开源:收购武汉呵尔医疗、三济生物、晶能生物三家公司100%股权进军肿瘤筛查、基因检测试剂、测序服务,其中武汉呵尔医疗是国内肿瘤细胞学检测龙头,而且三家公司大股东都与新开源现有股东关系密切。另出资3亿参与设立20亿并购基金,由传统PVP业务转型精准医疗,态度坚决。  荣之联:最了解生物行业的IT公司,与华大基因关系密切,合作超过十年,为其提供数据技术服务,持有华大基因90多万股,本质上还是一家IT公司,看点在车联网。  紫鑫药业:与中科院合作,生产出号称具备完全自主知识产权的测序仪,不看好市场前景   北陆药业:收购南京世和20%股权,主要从事与癌症用药有关的基因检测业务,正协助世和尽快取得基因测序试点资格   东富龙:伯豪生物34%股权,进军基因测序、生物芯片、生物标志物技术服务   六.总结  先说几点看法:  1.基因检测是精准医疗的基础,而基因组样本量则是基因检测的根基,由于发展时间较短,基因组样本量不够大是行业发展瓶颈:对于相同的个体,不同公司给出的检测结果也可能不一样,这主要是由其所依赖的数据样本差异决定的,基因组样本量越丰富,分析结果越准确。华大和23andMe已经意识到这一问题,在大量收集人类基因组数据,这类公司未来一定会成为伟大的公司。  2.成本仍需下降,人类基因组启动之时,测一个人基因组花了几亿美金,现在已经下降到只需几千美金,但这还不够,当前除了产前筛检比较廉价之外,其他项目价格偏高,有待于成本的继续下降,打开市场成长空间。  3.技术仍需进步,人类有30亿个DNA碱基对,当前只有少得可怜的3%左右能被准确解释,未来需要借助各种科学手段寻找这些密码与各类疾病之间的确定性关系。解读这些数据,一方面需要高性能计算平台和分析软件(人的基因组有1.3G,为保证准确度测序量必须是这个数据的好几倍,这么大的数据在 windows下无法操作,只能在linux等系统下使用C++,perl等编程语言进行处理) 一方面还需要更大的样本量,华大和23andME等正在干的事。  4.政策扶植,其中涉及伦理学,医疗风险,都少不了政策的引导与支持,国家对精准医疗的投入也必不可少。  5.篇幅所限,要深入对比这十几家上市公司难度不小,未来有机会再择重点公司进行剖析。  长远看,基因检测无疑市场空间无限,但当前唯有产前筛检技术较为成熟,价格水平大众已可接受,市场增长迅速,渗透率还不足3%,未来超过10倍空间,受益个股如迪安诊断、达安基因、华大基因等,其他中下游肿瘤诊断、个性化治疗、遗传病评估、辅助生殖都处于技术积累和孕育期,未来有赖于成本的持续下降,技术的不断进步,和政策的大力扶植,将会迎来爆发期,短期内无法对业绩形成贡献。  综合,从技术研发实力,主营业务协同性,战略布局角度,看好华大基因、达安基因、迪安诊断、中源协和、新开源、安科生物、北陆药业的长期成长性,而昌红科技、荣之联、千山药机,股性较活,遇到行业利好消息刺激的时候也具备交易性机会。
  • 咬定青山不放松——访MTI-科晶集团董事长江晓平博士
    p strong 引言: /strong 自2007-2009年金融危机以来,虽然全球范围内的经济形势正在逐步好转,但其向上攀升的势头却日益疲弱,所以寻找世界经济新的增长点已成为摆在世界各国面前的一个新课题。在每次经济危机之后,世界走向振兴都需要新的经济引擎出现,虽然至今究竟哪个产业能成为新的经济增长点尚很不明朗,不过在众多专家的预测当中,总会不时出现两个产业的身影——新能源和生物医药,尽管这两个领域还都存在一些问题。譬如新能源产业(主要包括太阳能光伏、风电、新能源汽车等),现在还没有突破成本与规模瓶颈。 /p p & nbsp & nbsp & nbsp “而要突破这些瓶颈,关键是要解决材料的问题。所以,我们非常看好新材料市场的未来前景,这也是MTI-科晶集团自1994年成立以来一直专注于这一领域的根本原因”,MTI-科晶集团董事长江晓平博士在接受仪器信息网工作人员专访时表示。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 500px HEIGHT: 376px" title=" QQ图片20160606100433.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201606/insimg/0bec550d-ce17-45b4-8af4-7eedee0a8590.jpg" width=" 500" height=" 376" / /p p style=" TEXT-ALIGN: center" strong 江晓平博士 /strong /p p strong One stop shopping /strong /p p & nbsp & nbsp & nbsp MTI-科晶集团成立之初主要是为材料研究实验室提供实验用的单晶片,经过二十余年的发展,虽然产品线得到了极大的扩充,但一直没有离开材料研究的样品制备这一领域。江博士告诉笔者,科晶的目标是要为用户提供材料研究用的全套解决方案,即One stop shopping。 /p p & nbsp & nbsp & nbsp 在材料研究领域经常会出现这样的场景——当建立一个实验室的时候,科研人员需要花费大量的时间和精力去进行采购前调研,和不同的仪器及设备供货商打交道。而这时候像MTI-科晶集团这样的公司的价值就能够充分体现出来,它们为用户提供的不仅仅是仪器或设备,而是一整套解决方案,仪器或设备只是这套解决方案的一个环节,它们的价值更重要的是体现在服务方面。 /p p & nbsp & nbsp & nbsp 譬如某个科研机构要新建一个石墨烯研究实验室,那么MTI-科晶集团的市场销售人员会首先与相关科研人员取得充分的沟通,了解他们的需求,在此基础上科晶一般会拿出几套方案来供用户选择。而在最后采购的时候,从科研材料到实验室设备往往就由科晶负责打包提供,从而帮助用户节省了大量的调研时间。而要成功实施这套商业模式,在笔者看来市场销售人员的专业水平是一个重要的保障因素(特别是针对像新材料、新能源这样的前沿科研市场),最起码他们要听得懂用户的专业描述,搞清楚用户正在进行的科研工作,才可能为用户拿出一个解决方案。 /p p & nbsp & nbsp & nbsp 谈到当初MTI-科晶集团选择这条商业模式时,江博士的语气中多少透露着一丝无奈,“我们曾经也考虑过公司只专注于少数几个产品,把它们做强做大。但这种模式需要大量的资金投入研发,而当时我们根本没有这个条件。如果选择了那条道路的话,MTI-科晶集团恐怕也无法发展到今天。但就像我前面提到的,无论科晶的产品线怎样拓展,我们的‘根’始终是在材料科学研究这个领域。” /p p & nbsp & nbsp & nbsp 曾听不少业内的企业家谈过一个概念,即“一英寸宽,一英里深”,只不过笔者听到这句话的时候大多是和产品发展战略联系在一起。但从广义上看,其实它更代表着一种专注的态度,集中精力谋求在自己的优势领域做深、做精、做强何尝不也是一种“一英寸宽,一英里深”呢? /p p strong 如何做一个成功的“中国品牌” /strong /p p & nbsp & nbsp & nbsp 究竟“中国制造”在当下全球市场的口碑究竟如何,可以说是“仁者见仁,智者见智”。大家限于看问题不同的角度、掌握信息量的程度,判断也各自不同。鉴于江博士多年的海外创业经历,而且MTI-科晶集团本身又是先从海外市场做起,再打回中国市场(据了解,当前国外市场对MTI-科晶集团整体营收的贡献要超过50%)。所以,在采访中,笔者也把这个问题抛给了江博士。 /p p & nbsp & nbsp & nbsp “拿实验室设备来说,要打开海外市场,尤其是欧美市场,建立起自己的品牌,非常非常的难”,江博士毫不讳言地表达了自己的观点。 /p p & nbsp & nbsp & nbsp “比起分析仪器,可能实验室设备相对好一些,但即使对于科晶而言,进入的程度依然不够。难的原因,一是我们的产品在质量、做工等方面和人家还有很大差距,当然这不仅仅是设备制造商的问题,实际上它涉及到整个国家工业基础水平的高低;另一方面就是实验室市场有很大的惯性,人家用惯了一些老牌子的产品,你一个外来者要去取代人家,没有点儿自己的创新怎么可能?但创新是需要大量投入的。所以相当一部分国产厂商只能走‘山寨’道路,然后再低价血拼;第三就是你的产品好不容易挤进了海外市场后,如何能够守住这个市场并进一步扩大?在国外,有时候跌倒了是爬不起来的。所以要塑造一个‘品牌’,除了市场宣传以外,创新和产品质量更加关键。” /p p & nbsp & nbsp & nbsp 不过江博士也特别强调,随着近些年中国国力的不断增强,他对于“中国制造”在国际市场的前景还是非常乐观的。 /p p & nbsp & nbsp & nbsp 在准备这次专访的时候,出于职业习惯笔者自己也查询了一些关于工业、非消费品领域的中国产品在欧美的影响及评价等方面的资料,其实结果还是很令人鼓舞的,这也与江博士的预期非常一致。只是这些产品并非直接面向普通消费者,所以很多人了解不多。华为算是大家比较熟悉的品牌,无论是在电信设备领域还是网络设备领域,华为百分之百可以称得上是全球主流厂商,美国人甚至以安全为借口,禁止美国企业采购华为的设备。其他有代表性的品牌还包括:振华重工(ZPMC)的港口机械,接近80%的全球垄断份额,2013年奥巴马总统在一次码头演讲时还专门用美国国旗遮住起重机上振华的标志;中集天达的空港设备,据了解,天达的设备基本覆盖欧洲所有的主要机场,常去欧洲出差/旅行的网友有兴趣的话可以在登机的时候找找一个印着CIMC的金属小铭牌;远大的非电中央空调,主打时髦的节能环保概念,也是在全球市场内居垄断地位;海康威视的监控系统,特别是在视频监控系统领域已经是一马当先;等等。当然,这些只是笔者查到的,没有查到的恐怕会更多。总之,中国的经济和工业发展到今天的规模,绝不是仅靠几个血汗工厂就能撑起来的。 /p p & nbsp & nbsp & nbsp 所以,中国的科学仪器及实验室设备行业也无需妄自菲薄,正如江博士所说,“前途还是光明的,而且我也亲眼目睹越来越多像科晶这样的中国实验室设备制造厂家确实在认认真真做事,想把自己的东西做好。” /p p strong 现在· 未来 /strong /p p & nbsp & nbsp & nbsp 经过二十多年的不懈努力,江博士自豪地告诉笔者,MTI-科晶集团在国际市场拥有了一定的品牌影响力,在研发用单晶片和新能源材料研究设备两个市场已经做到了全球市场占有率第一。 /p p & nbsp & nbsp & nbsp 不过,江博士也清醒地认识到,在未来,科晶还有很大的提升空间。 /p p & nbsp & nbsp & nbsp “譬如实验炉产品,目前科晶只是做到了国内市场第一,而在全球市场,我们和德国、美国的一些著名品牌相比还有一定距离,需要我们追赶。再譬如,在薄膜晶体生长设备、薄膜的镀膜设备等方面,我们也在不断加大研发投入。” /p p & nbsp & nbsp & nbsp 对于MTI-科晶集团未来的产品研发、生产模式,江博士是这样设想的,“科晶将主要把住两个关口,即设计和组装,而把中间环节,像零部件的制造让给合作厂家。一句话,我们会尽量向宏碁集团创办人施振荣先生提出的“微笑曲线”的两端靠拢,即向附加值更高的环节靠拢。这样科晶才能有更多的时间去做创新,我们刚才谈到的品牌建设,实际上在国际市场更主要地是通过不断的产品创新来达到的。譬如美国,老实说它也并非十全十美。但它绝对是一个崇拜创新的国度,抄袭在那里是非常被看不起的。” /p p & nbsp & nbsp & nbsp 谈到创新自然离不开资金的支持,所以上市融资也是很多企业追求的目标之一,曾几何时,它甚至是一个企业成功的标志。同样,MTI-科晶集团目前也在为创业板上市做着准备。 /p p & nbsp & nbsp & nbsp “缺少资本市场的支持,光靠自己滚动发展,有时候很多想法确实很难实现”,江博士坦率地表示,“实际上在材料研究领域MTI-科晶集团到目前为止还是‘一条腿’走路,我们还缺一块,就是分析/表征仪器。但这块市场现在基本上是被国外公司垄断了,竞争难度更大。如果我们手里的资金充裕的话,可能会考虑进入这一市场,我们在这方面已开始进行一些尝试,但难度确实非常大。” /p p strong 后记 /strong /p p strong & nbsp & nbsp & nbsp 在采访过程中,江博士笑言,当初自己离开科研领域而下海创业,主要是当时写论文已经写烦了,所以才想到找一些更具挑战性的工作尝试尝试,同时,也是想为社会做一些实实在在的事情。从做贸易起家,发展到在合肥、沈阳、深圳三地投资建厂,以及遍布全球的销售网络,MTI-科晶集团这家总部位于美国加州里士满市的华人公司咬定了材料科学研究市场这座“青山”后就没有再改变过。这也许是因为在这条道路上不断有新的挑战需要江博士和他的同伴们去面对。所以最后,请允许笔者借用电影《珍珠港》的一句旁白来结束本文:It suffered, but it grew stronger。(主编当班) /strong /p p & nbsp /p
  • 轶诺发布荷兰轶诺布氏光学扫描仪BIOS新品
    荷兰轶诺BIOS 布氏光学扫描仪是一个手持设备,可与常规电脑/平板或其他任何运行Windows10操作系统的设备连接。其软件安装方便,可在十分之一秒内测得布氏压痕的大小。不同的材料有不同的光洁度,测量布氏压痕时,必须快速调光。然而,自动调光系统速度太慢,我们经常得不到正确的结果。BIOS布氏压痕测量系统用滚轮提供了一个超快调光的方法。特性显微镜:布氏压痕光学扫描仪相机:500万像素镜头:远心镜头0.6X视场:最大9.5 X 7.12mm尺寸:160mm X φ 45mm重量:527gr供电:USB-2系统电源系统:高性能嵌入式控制器,i7, MS Windows® 10操作系统屏幕:横向电容式触摸屏显示分辨率:0.1 HBW硬度转换:HRC软件: 综合数据库,仅用1个镜头测量1 mm-10 mm直径的压痕,1μm/step测量分辨率,精密数字变焦1X-8X,快速测量反应时间,可编辑存储后的数据数据输出:CSV, MS Solutions Excel, Word, etc.连接:USB-2创新点:布氏压痕光学扫描仪,是一个手持设备,自带软件可在十分之一秒内测量布氏压痕大小。 布氏压痕测量系统提供了一个超快调光的方法。 荷兰轶诺布氏光学扫描仪BIOS
  • 李翠萍:质谱仪标准会得到不断完善、更新和发展
    p    span style=" font-family: 楷体,楷体_GB2312, SimKai " 去年下半年,国标委发布了《质谱仪通用规范》国家标准。今年2月1日,该标准将正式开始实施。作为我国质谱行业首个通用规范,该国家标准的出台能否改善行业秩序,起到引领质谱产业健康发展的作用?在该标准即将正式实施之际,仪器信息网特别邀请该标准起草人之一、军事科学院防化研究院李翠萍高级工程师为大家解读该标准内容。 /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/438e883b-bb98-49d4-93bc-1b75929e28a7.jpg" title=" 0.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体,楷体_GB2312, SimKai " /span strong 军事科学院防化研究院高级工程师 李翠萍 /strong /p p   首先很高兴并感谢仪器信息网的邀请,下面我将对GJ/T33864-2017《质谱仪通用规范》的制定的背景、意义和主要内容进行解读。作为标准的起草人之一,我主要参加了该规范中起草稿的讨论和修改工作,重点参与了分类、要求和检验方法等内容的起草,由于我本人主要从事移动式质谱仪器的应用和研发,对实验室高端质谱应用较少,认知水平有限,不妥之处敬请国内同行指正。 /p p    span style=" color: rgb(79, 129, 189) " strong 制定标准的背景和意义 /strong /span /p p   质谱仪作为一种物质最基本的分析手段,其应用覆盖了环境科学、生命科学、医疗卫生、食品安全、公共安全等多个重要领域。在我国质谱仪的年采购量已达到几千台,总金额达到几十亿元,我国很多重要部门和行业的实验室都配备了质谱仪,质谱仪产品的性能和技术状态直接影响着全社会和国民经济领域的各个方面。但由于我国的质谱仪制造水平相对较低,大部分质谱仪产品主要依靠进口。近年来,随着我国科技的飞速发展以及国家和企业对质谱仪等科学仪器的投入力度的加大,国产质谱仪在中低端市场已经逐步打破了国外的垄断,占据了一定的市场份额 同时用于生命科学等领域的高端质谱仪研发和产业化也正呈现出快速发展的势头,尽管还有较长的路要走,但国产质谱仪产品的发展必将势不可挡。 /p p   与此同时,由于质谱仪种类多,不同原理的仪器有不同的性能和特点,应用的侧重点也不同,尽管国家也制定并颁布了不少以质谱仪为测试手段的国家或行业标准测试方法,但由于我国质谱仪器技术基础薄弱,制造水平相对较低,有关质谱仪器的校正、检验和验收方面的国家或行业标准相对较少。多年来,由于缺乏统一的标准和规范,质谱仪在研发、制造、检验和验收等过程中存在术语、性能指标、检验方法等诸多不规范、不统一等问题,容易引起歧义或争议。在质谱仪市场上,有的仪器厂商按照自己的标准进行定义和宣传,存在虚高产品性能指标或不提检验条件,只谈单一最优指标等问题,给购置、决策、检验和评定等环节造成误导和误判,给国家、部门、企业和用户造成不必要的经济损失和成本浪费。同时,由于无统一的验收标准和规范,在一定程度上导致了质谱仪行业和产业的过度宣传和无序竞争,严重制约了我国质谱仪器自主创新和产业发展,因此,制定我国质谱仪器的系列标准,需求十分迫切。《质谱仪通用规范》正是在这样的形势下,同时也是国内质谱仪器技术得到发展基础上提出并制定的。但在制定的过程中,我们还是遇到了很多困难,主要的困难是由于国内质谱仪器制造水平相对落后,尽管有很多应用标准,但关于仪器制造和验收等方面的标准基础十分薄弱,可参考和借鉴的依据较少。工作组的同志通过大量查阅资料、广泛征求意见,结合自身工作经验,经过多次研讨和认真修改,制定了该通用规范。通过规范质谱仪常用术语、分类、性能要求、检验条件、检验方法和检验规则,为质谱仪制造和使用过程中的调试、校准、验收等提供了统一依据,为国内质谱仪的快速发展提供了标准,也为今后制定质谱仪系列标准开了一个好头。该标准的制定是各类质谱仪系列标准制订工作的基础,对质谱仪器性能测定标准化工作具有重要的推动作用。相信随着我国质谱技术的不断发展,质谱仪标准也会得到不断完善、更新和发展,最终形成各类仪器的标准体系。 /p p    strong span style=" color: rgb(79, 129, 189) " 标准制定中重点考虑的几方面内容 /span /strong /p p   该标准主要规定了适用范围、术语和定义、仪器分类、通用要求、检验方法、检验规则和标志、包装、运输以及贮存条件要求等六部分内容。下面对标准制定中重点考虑的几方面内容进行简要介绍。 /p p    span style=" color: rgb(255, 0, 0) " 1、适用范围 /span /p p   该标准作为通用规范,应当适用于各类质谱仪,包括单独使用的质谱仪和联用系统中作为检测器使用的质谱仪,色谱等样品前处理仪器或装置不包含在该标准中。由于考虑到协调一致和通用原则,检漏质谱仪和专用质谱仪等特殊用途的质谱仪也不含在该标准范围内。 /p p    span style=" color: rgb(255, 0, 0) " 2、仪器分类 /span /p p   该标准首先将市场中常见的质谱仪按照使用场合和质量分析器进行分类,为以后制定其它质谱仪系列标准奠定了基础。目前市场上的质谱仪分类有很多,有的按照样品的种类分为有机质谱仪和无机质谱仪,有的按照应用场合分为实验室质谱仪和工业过程质谱仪,有的按照质量分析器分为四极杆质谱仪、离子阱质谱仪、磁质谱仪、飞行时间质谱仪等,有的按照离子源分为电子轰击离子源质谱仪、电感耦合等离子体质谱仪、电喷雾质谱仪、基质辅助激光解析质谱仪等等。经过充分讨论和征求意见,多数专家赞同采用两种分类模式,即分别按使用场合和质量分析器进行分类。根据目前市场上出现的质谱仪按照使用场合分为实验室质谱仪、过程质谱仪和移动质谱仪,并分别进行了定义和规范,将在实验室环境中固定使用的质谱仪定义为实验质谱仪,将在现场固定位置连续监测的质谱仪定义为过程质谱仪,将移动过程中使用的质谱仪定义为移动质谱仪,如便携式质谱仪、车载质谱仪,避免了市场上出现的所谓车载质谱仪其实不过是移动实验室质谱仪,而非真正意义上的车载质谱仪 另外按质量分析器对目前市场上出现的主流质谱仪进行了分类,其他新型质量分析器及串联质谱仪参照本规范。 /p p   span style=" color: rgb(255, 0, 0) "  3、质谱仪工作条件 /span /p p   有了质谱仪的分类后,就针对不同的应用场合规定了不同类型质谱仪的工作条件。在制定的过程中既考虑实际的使用环境,又考虑质谱仪的内部部件、运行状态等进行确定。如实验室环境温度按实验室标准为15℃-30℃,但质谱仪中大量使用的分子泵在环境温度达到30℃时,长期使用会发生保护性停机,实际上实验室用的质谱仪器均工作在空调房间内,经讨论将环境最高温度定为25℃ 根据多数工业场所的环境温度和仪器实际的技术水平,将工业工程质谱仪环境温度定为10℃-35℃,根据我国大部分地区的环境温度和仪器经过采取一定的技术措施能够达到的技术水平,将移动质谱仪的环境温度定为-10℃-40℃。 /p p    span style=" color: rgb(255, 0, 0) " 4、主要的性能指标要求和检验方法 /span /p p   该标准为通用规范,因而只考虑各类质谱仪通用的基础要求,除了环境条件外,不对分类仪器进行分别规范,详细规范应由分类质谱仪规范进行规定。另外,根据我国国情,在标准的制定中考虑到中低端质谱仪的技术水平和满足实际工作的需要,确定的是最低的性能指标要求,如质量准确性、稳定性等。下面具体解释主要指标和检验方法: /p p   (1)质量范围:为质谱仪可测量的最小和最大质荷比范围,是衡量质谱仪测量范围的基本指标。由于不同原理、不同应用的质谱仪质量范围不同,标准中没有详细规定具体的质量范围指标,但规定了检验方法。检验方法规定了实际可检测到的最小和最大离子峰的质荷比,因考虑到受标准物质的限制,允许有最大值的10%外延。 /p p   (2)质量准确性:为质谱仪实际测定的离子质荷比同标准值的偏差,是衡量质谱仪定性能力的基本指标。规范中根据三类不同应用场合的质量准确性要求,分别确定了最低须达到的指标和检验方法。如果仅采用某1个峰进行计算,不足以表征质谱仪在全质量范围内的性能(该方法是很多厂商喜欢使用的方法,容易引起误导或分歧),因此,该标准中规定了要在仪器给定质量范围内的高、中、低端同时各选取至少1个质荷比的质谱峰进行质量准确性检验,才能客观地反映仪器实际的水平!当然,实际中如果有用户的样品离子只用到底端或中端,或高端部分质量范围,另当别论。 /p p   (3)质量稳定性:为衡量质谱仪长时间工作中质量轴方向的稳定性基本指标。规范中根据三类不同应用场合的稳定性时间要求,确定了最低须达到的稳定性指标和检验方法。检验方法中根据不同的时间要求,每隔1h测量至少一次质荷比,计算测量值与理论值之差的绝对值,取测量的最大值。 /p p   (4)质量分辨率:是衡量质谱仪分辨两个相邻峰的能力。考虑到单峰和双峰两种计算方法各有其适用性,规范规定都可以使用,要求在分辨率指标后面注明。在检验方法中要求在质谱仪全质量范围内对高、中、低端各选取1个质荷比的质谱峰进行测试和计算,客观反映质谱仪在全谱范围内的指标和仪器的实际水平。 /p p   (5)检测限:是衡量质谱仪器检测样品量的能力,有灵敏度、检测限、检出限、信噪比等多种表征方法,经讨论和征求意见认为检测限可作为通用要求,可真实反映质谱仪的检测能力。在检验方法中规定信噪比不低于3:1的进样量为检测限,也是质谱仪最低须满足的信噪比要求。 /p p style=" text-align: right " 作者:李翠萍 /p
  • 数显小负荷布式硬度计在有色金属检测中应用广泛
    数显小负荷布式硬度计在有色金属检测中应用广泛山东云唐智能科技有限公司数显小负荷布式硬度计在有色金属检测中确实有广泛的应用。这种仪器适用于铸铁、钢材、有色金属及软合金材料的硬度测定,尤其在黑色金属、有色金属及轴承合金材料的布氏硬度检测中发挥着重要的作用。此外,该设备对飞机、汽车等安全部件进行硬度检测也是非常理想的仪器。具体来说,数显小负荷布式硬度计具有以下特点:测量范围广泛:其测量范围为4~450HBS,4~650HBW,适用于各种硬度的材料测试。自动化程度高:采用LCD液晶显示屏,数字显示,菜单式操作,试验过程自动化,能自动保存每次试验的参数设置,试验过程自动化。精确度高:采用先进的无摩擦主轴系统,保证试验的准确可靠。应用范围广:不仅适用于软金属材料及小型零件的布氏硬度试验,也适用于对黑色金属、有色金属及轴承合金材料的布氏硬度检测。在实际应用中,数显小负荷布式硬度计可以满足不同种类和形状的试样测试,其操作简便、测试准确可靠,为有色金属检测提供了有力支持。数显小负荷布式硬度计在有色金属检测中有广泛的应用,以下是几个具体的应用案例:检测铝、铅、锡等软料硬度:数显小负荷布式硬度计可以用于检测铝、铅、锡等软料的硬度,这些材料在汽车、电子、包装等领域有广泛应用。通过使用数显小负荷布式硬度计,可以快速、准确地检测这些材料的硬度,从而控制产品质量和生产过程。检测轴承合金材料的硬度:轴承合金材料广泛应用于机械、汽车、航空等领域,其硬度是影响轴承性能的重要因素之一。数显小负荷布式硬度计可以用于检测轴承合金材料的硬度,帮助企业控制产品质量和确保设备正常运行。检测有色金属管材的硬度:有色金属管材在石油、化工、食品等领域有广泛应用,其硬度是评价管材质量的重要指标之一。数显小负荷布式硬度计可以用于检测有色金属管材的硬度,帮助企业控制产品质量和确保管道系统的安全可靠性。检测硬质合金材料的硬度:硬质合金材料具有高硬度、高耐磨性和良好的耐热性等特点,广泛应用于刀具、模具等领域。数显小负荷布式硬度计可以用于检测硬质合金材料的硬度,帮助企业控制产品质量和提高生产效率。总之,云唐数显小负荷布式硬度计在有色金属检测中具有广泛的应用价值,可以帮助企业提高产品质量和生产效率,确保设备和人身安全。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制