当前位置: 仪器信息网 > 行业主题 > >

显微高仪

仪器信息网显微高仪专题为您提供2024年最新显微高仪价格报价、厂家品牌的相关信息, 包括显微高仪参数、型号等,不管是国产,还是进口品牌的显微高仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微高仪相关的耗材配件、试剂标物,还有显微高仪相关的最新资讯、资料,以及显微高仪相关的解决方案。

显微高仪相关的资讯

  • 1180万!海南大学采购共聚焦显微镜、高内涵系统等仪器,部分仅限国产!
    7月7日,某招标采购网站上发布海南大学采购激光共聚焦显微镜、高内涵成像系统、流式细胞仪等仪器的项目,项目总计金额超过1180万元。其中全自动生化分析仪,二氧化碳培养箱到水浴箱要求为国产。以下为详细招标信息:招标单位:海南大学招标产品:液相色谱质谱联用仪 ,石英晶体微天平 ,切片机 ,水浴/油浴/恒温槽 ,移液器/移液枪 ,共聚焦显微镜 ,生物显微镜 ,流式细胞仪/细胞分析仪 ,动物麻醉机 ,生化分析仪 ,液氮罐 ,生物安全柜 ,CO2培养箱/二氧化碳培养箱 ,血液分析系统 招标编号:HD2022-1-027流式细胞分析仪等招标公告招标编码为【HD2022-1-027】,招标项目内容包括【流式细胞分析仪、激光扫描共聚焦显微镜、高内涵筛选系统、全自动生化分析仪、移液器、液相色谱/三重串联四极杆质谱联用系统、全自动模块式动物血液体液分析仪、电子天平、生物显微镜、二氧化碳培养箱、生物安全柜、小动物麻醉机、液氮罐、水浴锅、切片机】,投标截止到【2022-07-26 08:30】,欢迎合格的供应商前来投标。项目编号:HD2022-1-027项目名称:药学院美安实验平台设备购置一、采购需求:包号采购品目名称数量预算(万元)A激光扫描共聚焦显微镜1260B高内涵筛选系统1265流式细胞分析仪198.8C超高效液相色谱/三重串联四极杆质谱联用系统1260D全自动模块式动物血液体液分析仪170全自动生化分析仪131.5E自发行为记录分析系统127F包:171.35 万元序号采购品目名称数量预算(元)1全自动脱水机13120002石蜡包埋机11840003全自动石蜡切片机12090004倒置显微镜1990005体视显微镜1620006生物显微镜1960007二氧化碳培养箱2398008生物安全柜3395009双开门冰箱2450010灭菌锅14200011烘箱1580012显微镜17500013台式低速离心机2750014水浴锅2180015掌上离心机5160016涡旋仪2120017液氮罐2780018防爆柜1450019大容量离心机22000020培养箱12000021二氧化碳培养箱12000022生物安全柜13500023小动物麻醉机23500024小动物呼吸机22500025大小鼠耳标钳3100026大鼠脑模具2300027小鼠脑模具2300028大鼠心模具2350029小鼠心模具2350030大鼠气管插管套装2230031小鼠气管插管套装2210032小鼠固定装置650033大鼠固定装置650034兔固定装置1030035犬固定装置3400036小型无影灯11000037消毒喷雾机5100038电子天平(1g)250039电子天平(0.1g)3100040电子天平(0.001g)1400041电子台秤(10g)2200042电子体温计410043电子数显游标卡尺1100044冰箱(4度)11190045冰箱(-20度)11060046冰柜(-20度)1980047单道可调量程移液器1170048单道可调量程移液器1170049单道可调量程移液器1170050单道可调量程移液器1170051单道可调量程移液器1170052单道可调量程移液器1170053电动移液器1280054水浴箱15000包D中的全自动生化分析仪,包F中的二氧化碳培养箱到水浴箱国产,其余允许进口。本项目不接受联合体投标。合同履行期限: 非进口产品合同签订后30天内交货且安装调试完毕,进口产品合同签订后90天内交货且安装调试完毕。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.本项目的特定资格要求:1、如投标人不是所投产品生产厂家的,属于三类医疗器械的须具有医疗器械经营许可证,属于二类医疗器械的须具有医疗器械经营备案凭证 2、所投产品属于二、三类医疗器械产品的须具有医疗器械注册证、医疗器械生产许可证(若所投产品为进口产品,则无需提供医疗器械生产许可证) 属于一类医疗器械产品的须具有产品备案登记凭证、生产企业备案登记凭证(若所投产品为进口产品,则无需提供生产企业备案登记凭证)。三、获取招标文件时间: 2022年07月06日00时00分 至 2022年07月12日23时59分(提供期限自本公告发布之日起不得少于5个工作日)(北京时间,法定节假日除外)。地点:全国公共资源交易平台(海南省)(http://zw.hainan.gov.cn/ggzy/)方式: 网上购买售价: 0元四、提交投标文件截止时间、开标时间和地点2022年07月26日08时30分(北京时间) 地点: 海南省公共资源交易服务中心(海口市国兴大道9号)202 开标室。五、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:海南大学企业信息 地 址:海南省海口市美兰区人民大道58号联系方式:赵老师0898-662790302.采购代理机构信息名 称:中科高盛咨询集团有限公司地 址:海南省海口市龙华区金贸中路1号半山花园海天阁第32层3238房联系方式:蔡广杰0898-685910773.项目联系方式项目联系人:蔡广杰电 话:0898-68591077六、采购项目需要落实的政府采购政策:《政府采购促进中小企业发展管理办法》、《财政部印发通知进一步加大政府采购支持中小企业力度》、《财政部 发展改革委 生态环境部 市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》、《关于信息安全产品实施政府采购的通知》、《关于促进残疾人就业政府采购政策的通知》、《财政部 司法部关于政府采购支持监狱企业发展有关问题的通知》、《关于政府采购支持绿色建材促进建筑品质提升试点工作的通知》、《财政部国务院扶贫办关于运用政府采购政策支持脱贫攻坚的通知》、《海南省财政厅关于印发《海南省绿色产品政府采购实施意见(试行)》的通知》、《海南省财政厅 海南省工业和信息化厅关于落实超常规举措加大对中小企业政府采购支持的通知》。
  • 围观:用乐高积木打造出的真正显微镜(图)
    艺术家Carl Merriman用他的行动表明,乐高不仅是简单的玩具,还可以是实用的工具。   Carl Merriman用乐高积木打造一款功能齐全的显微镜,虽然不能和专业的设备相提并论,不过已经能够实现常规的显微镜操作,还可以切换不同的镜头。   用积木打造显微镜的工作,对于研究乐高创作27年的Carl Merriman来说并不难。Carl Merriman表示&ldquo 虽然你没法用它来进行高端的研究,但放大效果仍旧不错,外部旋钮带动内部复杂的机械结构,用起来很趁手。&rdquo   制作这款乐高显微镜的灵感来自于已经停产的LEGO X-POD套装。他发现X-Pod的造型很像培养皿,因此在研究其用途的时候第一时间就想到了显微镜。   经过长时间的调整,对整个系统的调焦进行了改善,使用者能够通过切换三组镜头来达到实验观察的目的,可以说这已经不再是玩具,而是真正的显微镜。
  • 350万!清华大学高稳定超高分辨显微成像系统采购项目
    项目编号:清设招第2022118号项目名称:清华大学高稳定超高分辨显微成像系统采购项目预算金额:350.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01高稳定超高分辨显微成像系统1套是设备用途介绍:观察固定/活细胞或组织内部超微结构和形态变化(包括但不限于各种细胞的亚细胞器、分泌囊泡、突触、染色体以及包括蛋白质在内的大分子等)的超高分辨率水平(≤50nm)图像;研究亚细胞和分子水平定性,定量和定位分布检测;并在细胞及分子生物学,神经科学,组织及病理学、病毒及微生物学,免疫及肿瘤学等领域具有广泛用途。简要技术指标:1)高稳定超高分辨显微成像模块,生物分子可实现XY方向分辨率≤50nm;2)点扫描激光共聚焦显微成像模块,生物分子可实现XY方向分辨率≤200nm;3)科研级全电动倒置荧光显微镜,超高分辨专用100X油镜,数值孔径NA≥1.45。合同履行期限:合同签订后90日内交货本项目( 不接受 )联合体投标。
  • 艺术品揭秘 | 当梵高的画遇到X-Ray显微镜
    HORIBA作为分析测量系统的,长期致力于为汽车检测、半导体仪器、环境测量仪器、医疗诊断、科学仪器等多个行业提供解决方案。但是HORIBA并不满足于此,凭借强大的技术优势,HORIBA不断拓宽新领域,其中,艺术品的修复和保护这一领域的成果尤为瞩目。艺术创造满足了人们的精神追求,大师们的艺术作品在备受仰慕的同时,也给从事艺术品修复和保护工作的专家们留下许多悬念:这些令人惊叹的作品在当时是如何被创作出来的?那是一个怎样的过程?有没有不为现代人所了解的知识和技术被运用其中?历尽沧桑的艺术品怎样才能恢复原貌,保持当时的风采?现在,HORIBA新技术的发展能够帮助这些专家揭示多年来一直不为人知的艺术品制作过程,更好地了解艺术作品,从而达到修复目的。在HORIBA分析实验室,我们已经与日本各地的博物馆、大学和私人收藏家密切合作,探索新的分析技术。我们希望为艺术品领域做出贡献,以确保艺术作品永久流传,供后人欣赏。为更多了解有关工作,我们走访了Mori艺术品保护工作室并采访了三位专家,在现场,他们利用HORIBA的XGT X射线显微镜分析了梵高在巴黎时期创作的一幅画作,这一场景让我们更确切地看到了HORIBA先进技术的作用和价值。下面让我们一起来认识一下三位专家,并通过我们的采访听听专家们是怎样利用HORIBA X射线来“看”梵高画作的吧!以下是采访记录1HORIBA小记者感谢您们给我们这个机会来展开这一新奇有趣的话题,在开始之前能否先谈谈你们的研究背景和兴趣呢?请先从Mori先生开始吧。Naoyoshi Mori先生嗯,那先要回到我在比利时的学校,我的专业是艺术品修复,在过去的20年里,我一直在经营自己的工作室。我的主要工作是恢复人们在参观一件艺术品时“该看到的”样子。不过这些年来,我逐渐意识到这样一个事实,那就是我们必须真正超越我们所看到的表面的东西,去从作者的角度分析艺术作品,考虑他们创作艺术品时所了解的知识和采用的技术。这些年来我在艺术领域遇到了很多人,包括艺术家和博物馆管理人员。他们对作品深入的洞察力,让我明白“看到绘画或艺术作品背后”的重要性。今天我们利用HORIBA的XGT去分析艺术品,就是在了解艺术作品背后的故事。Kaori Taguchi博士在意大利从事艺术品修复工作后,我回到日本进行了关于艺术品修复伦理的研究。今天,我更多从事艺术品修复方面的实操性工作,但我也带着两个基本问题来审视每一件艺术品:它是如何发展到现在的状态的;从现在开始我们能做些什么来修复和保护它。Nanako Sato女士我从艺术史专业毕业后一直在Yoshino博物馆工作,我主要负责西方艺术作品的保存、分析和研究。我们的收藏主要包括19世纪和20世纪法国印象派画家的作品。我的工作主要是修复历史较短的艺术品,考证绘画的背景,包括它们是什么时候画的,当时有什么可用的材料,以及艺术家如何使用当时可用的知识和技术。2HORIBA小记者能简单介绍一下你们正在进行的分析工作,以及你是如何使用HORIBA的仪器来分析梵高的绘画吗?Kaori Taguchi博士我们目前的项目包括分析和保护梵高的四幅作品,它们被保存在日本各地不同的博物馆里,其中一件作品可能根本没有修复的记录,这意味着这幅作品的原始绘画过程的痕迹仍然存在。我必须说这是一个很特别的项目,利用HORIBA的XGT X射线显微镜,我们能看到这幅画绘制过程的不同阶段。此外,我们还可以将这一方法应用到其它绘画的分析中,观察并建立分析模式,从而揭示艺术家的思维方式。正因为拥有利用HORIBA的XGT X射线显微镜来分析艺术品的经验,我们接到了很多日本其它项目的电话,邀请我们开展类似分析。Naoyoshi Mori先生事实上,博物馆使用HORIBA的XGT X射线显微镜之类的分析仪器的机会有限,这就使得我们正在进行的这项对艺术品进行分析的工作更有价值。以修复为目标的分析是许多国家的一种普遍做法,但使用特定类型的先进技术来“揭示”艺术家在艺术品创造过程中的秘密并不常见。而我们能接触到这种技术,这让一些专家都感到惊讶。为了使这一规模的项目取得成功,进行多边合作至关重要。在我们的案例中,我们招募了一家公司、一所大学和一名私人收藏家。这个分析项目的有趣之处在于,我们不仅学会了尊重一幅画背后的创作技术,以及我们需要做些什么来揭示这些创作技术从而达到保护艺术品的目的。同时,我们还了解到与这幅画的艺术意义相关的其它创作过程。我们今天分析的这幅画是梵高在巴黎时期的作品,这是梵高开始尝试广泛使用色彩的时期。通过XGT X射线显微镜提供的光学分析,我们希望了解梵高在那个时期是如何表现对光线的运用,以及他用了什么类型的技术来实现其视觉效果。3HORIBA小记者请问能否进一步拓展与HORIBA的合作?此外,我们希望我们的读者知道为什么这个装置适合分析艺术作品。Kaori Taguchi博士当我们次在神奈川县的波拉艺术博物馆(POLA Museum of Art)讨论这个项目时,我意识到我们需要与一家公司合作,为我们提供合适的分析工具。我开始询问有哪些专门的仪器可以进行这些实验,从而知道了HORIBA的XGT光学图像分析仪。我联系了HORIBA并了解到更多关于XGT系统的知识,以及如何使用它来帮助我们工作。我们需要回答的个问题是,如何解开艺术作品中隐藏的创作过程,事实上这样的过程很少被公开,因为艺术家们几乎不会留下记录来描述他们如何应用不同的技术。HORIBA的XGT X射线显微镜的贡献就在于此,它使我们能够对作品进行无损分析,更准确地揭示不同史时期艺术家所采用的技术,让我们为保护这些艺术作品尽一份力。通过XGT的元素分布成像功能,可以了解到在作品上不同的点分别存在哪些元素[从右到左依次是:锌(Zn)、铜(Cu)、铅(Pb)、汞(Hg)]。4HORIBA小记者能不能具体说一下,从这些分析中你们了解到了什么呢?Naoyoshi Mori先生我们研究工作的一个方面是探寻艺术品中颜料浓度较高的部分,进而确定画作中的这些部分是否被覆盖或涂改过。了解这些部分发生的改动,有助于我们确定艺术家在绘画过程中是否经历了想法上的转变,是否存在为了作品效果而对作品的一部分进行修饰的情况。通过了解颜料浓度较高的部分之间的差异,我们可以洞察画家在完成作品的过程中所做的决定,这也是画作创作过程的一部分。Kaori Taguchi博士需要注意的是,这种类型的分析揭示了构成一件艺术品的许多层面。我所说的层面,是指随着创作过程的进展,不可避免地会发生变化的不同阶段。这种分析帮助我们“看到”作品的原始草图以及终的作品。基于这类研究,我们可以确定哪些部分因修复而改变。非常确切地说,通过这个项目我们已经能够发现梵高在绘画过程中进行的大部分改动。5HORIBA小记者请问近还有利用这种分析手段来进行其他研究的例子吗?Kaori Taguchi博士通过这种研究,我们有很多令人惊讶的发现。例如,近的一项研究显示,在根特祭坛(The Ghent Altarpiece)这幅画作中,羔羊的面部表情在修复过程中发生了多次变化。Naoyoshi Mori先生另一个很好的例子是毕加索(Picasso)的名画《海滩上的母亲和孩子》(a Mother and Child at the Beach),这幅画也在神奈川的波拉博物馆(POLA Museum)展出。令人惊讶的是,在这位母亲的身体下面出现了一个精雕细琢的海豹图案,这是几十年来从未见过的。诸如此类的发现重新唤起了学者们的兴趣,并产生了新的理论。在这种情况下,会引发诸如“为什么那里会有海豹”的疑问,它是另一幅画的一部分,还是毕加索想藉此传达某种信息?6HORIBA小记者毋容置疑,这些都是永恒的艺术作品。能否说一下在这样的分析过程中,你们采取了什么措施来确保画作的安全呢?Naoyoshi Mori先生我们不仅负责修复和分析的工作,我们同样会就有关作品的包装及运输提供适当的意见。Kaori Taguchi博士在分析过程中,我们与HORIBA的应用工程师密切合作,设置特殊的环境条件,来确保艺术品处于安全的环境中。例如,XGT设备通常在一个封闭的系统中进行实验,也就是说,将实验对象封闭在一个箱子中进行实验,以确保没有外部因素影响实验。不过,我们认为这样的过程仍然存在风险,所以我们再次修改了实验方案,在一个开放的系统中进行分析。此外,我们还作出了一些其它调整,包括减慢分析仪样品台的移动速度,保持与X射线之间的大距离,安装一个瞬间停止装置以防有地震发生。Naoyoshi Mori先生就像Taguchi女士所说过的,原来分析模式的X光距离是2毫米,现在这段距离已增加到10毫米。同时必须指出,我们的工作必然存在风险。显然,安全的做法就是把画藏在一个秘密的地方,但在我看来,这跟让画作“死去”无异。艺术是一个活的有机体,我们的工作就是思考用风险小的方法进行这些研究,同时牢记风险总是存在的。7HORIBA小记者请问这项工作的未来计划是什么呢?
  • 高功率显微镜助力机器学习快速揭示细胞内部结构
    借由高功率显微镜和机器学习,美国科学家研发出一种新算法,可在整个细胞的超高分辨率图像中自动识别大约30种不同类型的细胞器和其他结构。相关论文发表在最新一期的《自然》杂志上。  领导该COSEM(电子显微镜下细胞分割)项目团队的奥布蕾魏格尔说,这些图像中的细节几乎不可能在整个细胞中手动解析。仅一个细胞的数据就由数万张图像组成,通过这些图像追踪该细胞的所有细胞器,需要一个人花60多年时间。但是新算法可在数小时内绘制出整个细胞。  除了《自然》上两篇文章外,研究团队还发布了一个数据门户“开放细胞器”,任何人都可通过该门户访问他们创建的数据集和工具。这些资源对于研究细胞器如何保持细胞运行非常宝贵,过去科学家们并不清楚不同细胞器和结构怎样排列——它们如何相互接触及占据多少空间。现在,这些隐藏的关系首次变得可见。  在过去十年中,研究团队使用高功率电子显微镜从多种细胞中收集了大量数据,包括哺乳动物细胞。  最新的机器学习工具可在电子显微镜数据中精确定位突触,即神经元之间的连接。研究人员调整了算法来绘制或分割细胞中的细胞器,该分割算法为图像中的每个像素分配一个数字,这个数字反映了像素离最近的突触有多远,算法使用这些数字来识别和标记图像中的所有突触。COSEM算法的工作方式与之类似,但维度更多。研究人员根据每个像素与30种不同类型的细胞器和结构中的每一种的距离对每个像素进行分类。然后,算法整合所有这些数字来预测细胞器的位置。  研究人员表示,利用这些数字,该算法还能判断特定的数字组合是否合理。例如,一个像素不能既位于内质网内,同时又位于线粒体内。  为了回答诸如细胞中有多少线粒体或它们的表面积是多少等问题,研究团队构建的算法结合了有关细胞器特征的先验知识。经过两年的工作,COSEM研究团队最终找到了一套算法,可为迄今为止收集的数据生成良好的结果。  目前,研究团队正在将成像提升到更高的细节水平,并进一步优化工具和资源,创建一个更为广泛的细胞标注数据库和更多种细胞和组织的详细图像。这些成果将支持未来的新研究领域——4D细胞生理学,以了解细胞在构成有机体的不同组织中的相互作用。
  • 1070万!山东大学高灵敏激光共聚焦显微分析系统、随机光学重构超分辨显微镜采购项目
    一、项目基本情况1.项目编号:SDDX-SDLC-GK-2023022项目名称:山东大学随机光学重构超分辨显微镜采购预算金额:650.000000 万元(人民币)最高限价(如有):650.000000 万元(人民币)采购需求:随机光学重构超分辨显微镜采购,具体内容详见电子招标文件。合同履行期限:质保期:国产设备3年,进口设备1年本项目( 不接受 )联合体投标。2.项目编号:SDDX-SDLC-GK-2023020项目名称:山东大学高灵敏激光共聚焦显微分析系统采购预算金额:420.000000 万元(人民币)最高限价(如有):420.000000 万元(人民币)采购需求:高灵敏激光共聚焦显微分析系统采购,具体内容详见电子招标文件。合同履行期限:质保期:国产设备3年,进口设备1年本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月25日 至 2023年12月01日,每天上午8:30至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:山东大学采购网使用CA数字证书或账号密码登录“山东大学电子招投标系统”(http://www.cgw.sdu.edu.cn)方式:本项目采用电子标。潜在供应商需登录山东大学采购网(http://www.cgw.sdu.edu.cn)进行注册,注册完成并通过中心审核后,在获取电子招标文件截止时间前再次登录“山东大学电子招投标系统”在线进行招标项目信息填报,审核成功后下载电子招标文件; 电子招标文件工本费:0元/本; 本项目实行资格后审,获取电子招标文件成功不代表资格后审的通过。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学     地址:山东大学中心校区明德楼        联系方式:0531-88365560      2.采购代理机构信息名 称:山东省鲁成招标有限公司            地 址:0531-83196323            联系方式:刘嘉华、解佳琪            3.项目联系方式项目联系人:刘嘉华、解佳琪电 话:  0531-83196323
  • 10月21日网络讲座:原子力显微镜高次谐波信号分析、提取及成像
    摘要:原子力显微镜(AFM)轻敲模式(TM)成像过程中,针尖与样品间的非线性相互作用会导致探针检测信号的频谱中出现各种倍频分量,即高次谐波信号。利用高次谐波信号的幅度/相位信息进行成像,可以表征样品表面精细结构和分析研究样品表面纳米力学性质。报告介绍了利用小波变换对高次谐波信号特性开展的分析研究,以及几种常用的对微弱高次谐波信号增强放大、提取的方法。最后,展示了研制的高次谐波成像系统及其在样品表征中的应用。报告人:北京航空航天大学物理学院钱建强教授钱建强,北京航空航天大学物理学院教授,博士生导师。中国仪器仪表学会显微仪器分会理事,中国宇航学会空间遥感专业委员会委员,全国高等学校光学教学研究会理事,主要从事纳米测量方法与显微仪器技术研究。上世纪90年代初师从姚骏恩院士,研制成功国内首批激光检测原子力显微镜。近年来承担并完成国家科技支撑计划重大课题子课题、国家863、国家自然科学基金、北京市自然科学基金等项目20余项。先后研制成功基于自激励和自感知的石英音叉探针频率调制原子力显微镜,原子力显微镜液相环境频率调制成像系统,原子力显微镜高次谐波/多频激励成像系统。率先开展了基于压缩感知的原子力显微镜成像方法研究,基于小波变换的原子力显微镜高次谐波信号分析。在Nanotechnology、 Ultramicroscopy、Review of Scientific Instruments等国内外学术期刊发表论文100余篇,获授权国家发明专利15项,主编并出版工信部“十二五”规划教材1部。网络讲座时间:北京时间 2021年10月21日 上午10:00-上午11:00申请方法:关注“Park原子力显微镜”公众号查看首页文章进行注册即可参加。届时直播间会抽送十位赠送精美礼物。
  • 杨泽超:6年时间,研发高时空分辨变温扫描隧道显微镜
    在近日举行的首届“大走廊杯”中国杭州博士后科创精英赛总决赛中,杭州师范大学物理学院杨泽超教授团队带来的项目“高时空分辨变温扫描隧道显微镜的研发与制造”从来自美国、英国、德国等13个海外国家和北上广深等30余个城市的300多个青年博士后团队中脱颖而出,得到不少科研人员和投资者的关注。首届“大走廊杯”中国杭州博士后科创精英赛总决赛现场要实现弯道超车、跨越发展,科学研究就要更具前瞻性一位创投公司高级投资总监表示:“我很看好这个项目,觉得这个产品应用范围很广,而且有较高的技术壁垒,他们把分辨率做到了原子级。同时,此仪器还能对原子的运动过程进行毫秒级的实时捕捉。”物理学院杨泽超教授据悉,扫描隧道显微镜(Scanning Tunneling Microscope,STM)是一种空间分辨率可以达到原子量级的微观探测工具,它能使人类直接地观察到物质表面的单个原子及其排列状态,并且能够研究其相关的物理、化学性质,因此在表面科学、材料科学、生命科学等领域得到了广泛应用。杨泽超介绍,表面纳米结构在不同温度条件下表现出不同的物理化学性质,而扫描隧道显微镜因具有原子分辨率实空间成像能力,尤其适合用来研究这类材料的表面物性。但同时表面结构动力学过程通常发生在毫秒或微秒的时间尺度。因此,在变温条件下工作的同时具有高时间分辨率的扫描隧道显微镜已经成为世界上很多研究小组的研究项目。“目前基于超高真空环境的扫描隧道显微镜已经高度商品化,尤其是德国和日本公司的产品占据市场的统治地位。但是兼具高时空分辨的变温快速扫描隧道显微镜国内外尚未出现成熟商品化产品。”杨泽超瞄准了这个空白, 2016年在德国马普学会弗里茨-哈伯研究所开展博士后研究工作时,将精力和重心放在高时空分辨变温扫描隧道显微镜的研发与制造上。他说,要实现弯道超车、跨越发展,科学研究就要更具前瞻性。“光搭建这个显微镜设备就花了2年时间,如果算上前期研发设计,总共花了6年。我们每周工作70个小时以上,无论酷暑还是严寒,我们都坚守在实验室内,紧盯测试过程,饿了就几顿并作一顿,累了就趴在桌子上休息。”回忆起研发历程,作为团队核心成员的杨泽超非常感慨,“六年磨一剑,不仅要坐得住冷板凳,还要有不惧困难的勇气。下一步我们将继续优化仪器的软硬件设计,提高仪器操作的便捷性。”个人价值和国家需要相结合,是很有成就感的事2021年,在德国求学生活已过十年的杨泽超,做出了一个决定,结束自己的海外生涯,正式归国。他带着“高时空分辨变温扫描隧道显微镜的研发与制造”项目加入物理学院。“我们不仅针对性解决了传统扫描隧道显微镜在快速扫描时图像畸变和快速慢速扫描不易切换等硬件方面的问题,而且自主研发的扫描头和快速扫描控制系统,在保有原子分辨率的前提下可以达到120帧/秒的成像速率。可以系统地研究不同覆盖度下氧原子在 Ru(0001) 表面的扩散运动机制。仪器的工作温度范围也扩展到了(200-1000 K)。这套设备将成为研究纳米材料‘时间-结构-性质’构效关系的理想科研仪器,为表面物理和化学的研究提供更多的实验手段,在原位实时实空间研究表界面原子扩散、薄膜材料生长和化学反应等领域均具有重要意义。” 杨泽超自豪地介绍道,“作为杭师大的老师,我不仅想让这个项目在祖国落地,更想在我工作生活的杭州有所作为,能将个人价值和国家需要相结合,是很有成就感的事。”目前杨泽超已将他研发的高时空分辨变温扫描隧道显微镜放置在学校实验室内。“作为一名教师,除了基础的教学,我也想通过自己研发扫描隧道显微镜的经历引导学生了解前沿的技术动态和趋势,带给学生更多的启发。” 他动情地说,“物理学作为基础学科,对于国家的现代化建设和产业升级具有重要的推动作用,我愿为培养这样的基础学科人才而继续努力。”
  • 新疆生态与地理研究所420万元购买高内涵细胞成像仪、激光显微切割系统
    5月31日,中国科学院新疆生态与地理研究所公开招标,购买高内涵细胞成像仪、激光显微切割系统两台仪器,预算420万元。  项目编号:OITC-G210300028  项目名称:中国科学院新疆生态与地理研究所细胞成像与捕获技术平台采购项目  预算金额:420.0000000 万元(人民币)  采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1高内涵细胞成像仪1台是420万元激光显微切割系统1台  合同履行期限:合同生效后90天内。  本项目( 不接受 )联合体投标。  开标时间:2021年06月21日 10点30分(北京时间)0028技术部分.doc
  • 张承青系列约稿[1]:之一 电子显微镜实验室环境调查的必要性
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之一,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之一 电子显微镜实验室环境调查的必要性电子显微镜是一种高精密仪器设备。电子显微镜能良好成像正常工作的必要条件除了电镜设备本身质量过硬之外,磁场震动声波独立地线房间设置等周边环境也是一个重要条件(当然当然,还必须有良好的制样和正确的操作)。但是环境因素往往是动态变化的,每天不同时刻、每周不同日期等,都会有所不同,所以可能被忽视或者误判。因为除了声波是可以感觉到的以外,磁场是看不见摸不着,低频震动(1~20Hz)也是人类难以觉察到的。但是因为这些环境因素造成成像质量差、图片分辨率和清晰度等问题,可能会误导我们查找原因的方向,或者产生无谓的纠纷。中国电镜界以前一般把“site survey”翻译成:“场地测试”,这是不对的,还是称为“环境调查”比较贴切。“survey”的原意也并不仅限于“测试”和“测量”,还有“调查”和“整体调研”的意思。小小一个翻译偏差,造成工作方向大大不同。虽然环境调查中很重要的一环就是场地测试,但是不能用场地测试来代替环境调查。这不是咬文嚼字,真的是大有区别呢。环境调查需要综合考察了解多项信息,需要全面考察场地周围具体情况,如周边及上下楼层输送和使用电力情况、楼房(厂房)结构、运输通道、电梯承重及开门大小、附近是否有产生较大振动的设备(可能是间歇工作)、安装中或即将安装(包括近、中、远各期规划)的设备、甚至周边区域的输电线给配电设施隧道地铁等环境干扰因素,然后进行综合性的考量。场地环境调查还包括对电镜及其配套设施设备的安装布局进行合理规划。如环境不达安装标准还需要和用户充分沟通后期可能出现的问题以及解决方案(包括预见到整改所需投入的人力物力时间等资源)。电镜安装前的环境调查可以前瞻性地预先采取适当措施,减少以至避免周边环境的干扰;电镜安装后的环境调查可以协助判断图像质量不好的原因,缩小问题查找范围(环境是动态变化的,一段时间后变差是大概率事件)。实例如武汉某电子公司所使用的电镜,因为用户没有按照要求配置独立地线,以及事先没有做好前瞻性的环境调查和场地规划,导致电镜没有专用的独立地线而只能使用公共地线代替。且由于变压器和UPS距离镜筒的距离过近,这些设备产生的AC磁场不能有效衰减至不影响成像的程度,后来的检测还发现周围环境(楼上附近区域有强电磁干扰源)也是磁场超标的重要原因之一,这些因素叠加致使电镜成像极差。由于用户对于安装环境的重要性没有足够的认知造成不理解和不认可,误认为是电镜厂家掩饰设备质量问题,原本很简单的技术问题升级为用户和厂商的纠纷。环境对电子显微镜的干扰和影响,正日益受到各电镜厂商的重视。针对具体场地的需要,针对不同类型的干扰,采取不同的方法,选用性价比最优的解决方案,这些目前在技术上都已经相当成熟,各种配套解决方案也已经在大量实践中得到验证和确认。然而如何选择各种整改措施,还是依赖于对场地环境全面的调查了解。场地环境调查实际上就是:借助专业技术人员,使用专用精密测试仪器,以不同品牌型号的设备安装要求为依据,依靠专业理论和实践经验,对电镜安装场地的现状及可预见的将来做出科学合理的解释和预判,尽量避免不必要的麻烦,取得事半功倍的效果。反过来另一方面也值得注意:各个品牌的电镜对环境的具体要求,是按照其最高指标的要求。也就是说,如果某些环境指标不达标,并不会因此造成电镜故障或者损坏,只是不能达到该电镜的最佳指标而已。如果基本用不到电镜的高精度指标的话,对环境的要求可以适当有所降低(有时可以省好几十万呢)。但这必须与用户有充分的沟通,本人刚入行时没有经验,有过切身经验教训呢(咳,不提了)。所以电镜的环境调查工作,绝不是可有可无,需要由有经验、有认真负责精神的、全面性、前瞻性、切实与用户沟通的人去做。近年来我国经济高速发展,电镜配置随之日益普及,老用户升级换代,新用户也不断涌现,电镜环境调查这个“老生常谈”看来还得继续谈下去。2020.10张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八 温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 科学家开发出一种多功能近场显微镜平台,可在高磁场和液氦温度以下工作
    重大的科学突破往往是由新技术和仪器实现的。一种新型的近场光学显微镜,在极端温度和磁场下具有高分辨率成像,可以为量子计算技术和拓扑研究做到这一点。Kim等人提出了一种sub-2开尔文低温磁赫兹散射型扫描近场光学显微镜(cm-THz-sSNOM)。太赫兹sSNOM成像使用照射在小金属尖端上的300微米波长光在纳米尺度上绘制材料,允许以深亚波长,20纳米空间精度测量局部材料特性 - 比所用光的波长小15,000倍。经过几年的努力,研究人员能够展示出一种改进的sSNOM平台,该平台在极端操作条件下具有无与伦比的分辨率能力。“我们在空间,时间和能量方面提高了分辨率,”作者Jigang Wang说。“我们还同时改进了在极低温度和高磁场下的操作。显微镜是通过测量超导体和拓扑半金属来展示的。结果显示了在1特斯拉磁场中9.5开尔文的第一个高分辨率sSNOM图像。显微镜可以帮助开发具有更长相干时间的新量子比特 - 目前受到材料和界面缺陷的限制 - 并提高对拓扑材料基本性质的理解。“重要的是成像到十亿分之一米,千万亿分之一秒和每秒数万亿个光波,以便能够选择更好的材料并指导量子和拓扑电路的制造,”王说。尽管显微镜已经展示了破纪录的测量结果,但研究人员的目标是通过提高灵敏度并使SUV大小的显微镜更加用户友好来进一步改进仪器。相关文章:“A sub-2 kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM),” by R. H. J. Kim, J.-M. Park, S. J. Haeuser, L. Luo, and J. Wang, Review of Scientific Instruments (2023). The article can be accessed at https://doi.org/10.1063/5.0130680.文章展示了研究人员开发的一种多功能近场显微镜平台,可以在高磁场和液氦温度以下工作。研究人员使用该平台演示了极端太赫兹(THz)纳米显微镜的操作,并在低至1.8 K的温度、高达5 T的磁场和0–2 THz的操作下获得了第一个低温磁太赫兹时域纳米光谱/成像。低温磁太赫兹散射型扫描近场光学显微镜(或cm THz-sSNOM)仪器由三个主要设备组成:(i)带有定制插件的5T分对磁低温恒温器,(ii)能够接受超快THz激发的定制sSNOM仪器,以及(iii)MHz重复率,用于宽带太赫兹脉冲产生和灵敏检测的飞秒激光放大器。应用cm THz sSNOM来获得超导体和拓扑半金属的原理测量证明。这些新能力为研究需要极端低温操作环境和/或在纳米空间、飞秒时间和太赫兹能量尺度上施加磁场的量子材料提供了突破。
  • 高真空可控环境型原子力显微镜 AFM5300E
    产品介绍AFM5300E配置专业的真空腔体,可在环境控制条件下原位对样品微观尺度的形貌及物性进行观测分析。真空环境下可大幅降低氧化、水膜吸附等对样品真实情况的影响;真实测量特殊条件下材料的性能。让研究达到常规原子力显微镜无法企及的高度和深度。产品特点1、环境控制:具备常温大气,高真空、高低温、气氛、液相、湿度等环境功能;2、多功能配置:接触式,轻敲式,SIS(样品智能扫描)等工作模式,能进行三维形貌,电磁及机械力学性能观察分析,独有的极高分辨的SNDM(扫描非线性介电显微镜);3、操作便捷:激光器/样品移动螺杆置于真空腔外;触点式控温台/扫描器设计;4、真空转移:一体化提供离子研磨仪、高分辨扫描电镜、可控环境原子力显微镜,使用真空转移盒可保护样品在各个设备间转移测量,避免大气暴露; 5、高分辨:真空下极高的相位及磁畴分辨能力。 公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 高鸿钧院士团队成果:多探针扫描隧道显微镜分时复用切换技术
    科学仪器的发展,不断促进对新材料的探索,从而直接或间接影响各科技领域的方方面面。工欲善其事必先利其器,深化与落实科学仪器的自主研发,更是科技攻关的桥头堡。扫描隧道显微镜(STM),及一系列扫描探针显微镜(SPM) :原子力显微镜(AFM)、扫描近场光学显微镜(SNOM) 等,掀起一场纳米技术革命,广泛应用于材料表面纳米尺度局域电子态、形貌以及分子振动等丰富物性的研究。电输运性质作为材料的关键参数,被广泛关注。集成多个独立STM的多探针STM系统,通过施加电/力等调控手段,实现纳米尺度、原位表征材料局域电子态与局域电输运性质,有望加速后摩尔时代新器件的基础研究。四探针 STM 可实现微观体系的四端法测量,有效消除接触电阻带来的测量误差,获得材料的本征电导率。多个独立探针的协同操纵和成像,往往需要相同数量的多套STM控制系统。随着STM探针/压电驱动部件的增加,多探针控制系统的成本和复杂度急剧增加。因此,发展低成本、高效率、可扩展的通用控制解决方案,实现STM控制系统分时操纵多个探针、乃至探针阵列的技术十分必要。中国科学院物理研究所/北京凝聚态物理国家研究中心高鸿钧研究团队多年来一直致力于扫描探针显微学及其在低维量子结构方面的应用,在前沿科学研究取得一系列重要成果。同时,他们也在相关高精尖仪器自主研制方面不断积累,奠定了扎实的基础。物理所技术部郇庆/刘利团队一直致力于科研仪器设备的自主研发,与所内外多个课题组紧密合作,在核心关键部件、成套系统等方面取得了一系列成果(包括一台商业化四探针系统的彻底升级改造【Review of Scientific Instruments, 88(6):063704, 2017】、光学-低温扫描探针显微镜超高真空联合系统【Review of Scientific Instruments 89, 113705 (2018)】和新一代高通量薄膜制备及原位表征系统【Review of Scientific Instruments 91, 013904 (2020)】的自主研制)。两个团队再次密切合作、联合攻关,共同指导N04组博士生严佳浩(已毕业,爱尔兰科克大学博士后)、马佳俊、王爱伟(已毕业,国家纳米中心博士后)、马瑞松(已毕业,物理所关键技术人才)等同学成功研制并搭建了一台多探针STM分时复用切换系统,完成单个STM控制系统依次操纵多个探针在纳米尺度下的成像与定位,以及维持探针位置后的局域电输运测量。该系统采用的核心思路为研发团队首次提出,软硬件均完全自主研发,采用了ARM + DSP + FPGA多核数字平台来兼备复杂切换逻辑、多路高精度高速并行采样与数据处理,涉及C/C++与Verilog HDL编程语言,并提供图形操作界面以提高易操作性,具备多项独特优点:1)单个探针内大、小扫描管及多个探针间的无缝切换,无瞬态抖动;2)皮安级电流切换;3)任意单个探针具备毫米级移动范围与原子级空间分辨;4)多个探针可无限靠近,最小距离仅取决于针尖曲率半径;5)原位、纳米尺度、相同区域内,STM成像与电输运测量。该联合研发团队用6年多时间对系统进行了反复地设计优化和改进,并进行了全面性能测试。该研发成果所涉及的多项关键技术,如微弱信号的放大与切换、高稳定电压保持、复杂控制逻辑等,是未来大规模探针阵列应用的重要技术基础。分时切换的核心思路具有可扩展性强、成本低廉的特点,有望在材料基因组研究高通量表征领域有广泛的应用。该系统的详细介绍发表在近期的《科学仪器评论》杂志上【Review of Scientific Instruments 92, 103702 (2021) doi: 10.1063/5.0056634】。该工作得到了中国科学院关键技术研发团队项目(GJJSTD20200005)、国家自然科学基金国家重大科研仪器研制项目(11927808)和国家自然科学基金委青年基金项目(12004417)等的支持。图1:分时复用切换方案图2:分时复用系统硬件设计图3:分时复用切换系统软件架构图4:分时复用切换系统部分图形用户界面图5:单STM探针空间定位图6: 多探针切换与空间定位附:Rev. Sci. Instrum. 92, 103702 (2021).pdf
  • 良渚实验室310.00万元采购共聚焦显微镜,流式细胞仪,离心机,切片机,高内涵成像,PCR,立体显微...
    详细信息 关于良渚实验室单细胞记录系统等科研设备的竞争性磋商公告[浙江求是招标代理有限公司] 浙江省-杭州市-余杭区 状态:公告 更新时间: 2023-03-16 招标文件: 附件1 附件2 项目概况单细胞记录系统等科研设备 采购项目的潜在供应商应在微信获取(扫描附件二维码或关注“浙江求是招标代理有限公司”企业公众号)或现场获取。(杭州市西湖区玉古路173号中田大厦21楼H室)获取采购文件,并于2023年3月29日9:30:00(北京时间)前递交响应文件。一、项目基本情况1.项目编号:QSZB-F(H)-A23027(CS)2.项目名称:单细胞记录系统等科研设备(非政府采购项目)3.采购方式:竞争性磋商4.合同履约期限:单细胞记录系统:合同签订后120日内;转运体研究仪器:合同签订后90日内;SIM超分辨显微镜:合同签订后120日内;体视显微镜:合同签订后120日内;转盘共聚焦显微镜:合同签订后120日内;活体荧光扫描显微镜系统:合同签订后180日内;小动物用内窥镜:合同签订后180日内;高通量活细胞成像仪:合同签订后60日内;超速离心机碳纤维转头:合同签订后90日内;流式细胞仪液流系统:合同签订后90日内;数字玻片扫描成像系统:合同签订后120日内;超高分辨激光共聚焦显微镜:合同签订后120日内;实时荧光定量PCR仪:合同签订后90日内;细胞能量代谢分析仪:合同签订后90日内;冷冻切片机:合同签订后90日内;石蜡包埋机:合同签订后90日内;石蜡切片机:合同签订后90日内;自动组织脱水机:合同签订后90日内。5.本项目不接受联合体响应。6.采购需求: 标项 名称 数量 单位 简要技术需求或服务要求 是否允许采购进口产品 预算金额(万元) 一 单细胞记录系统、转运体研究仪器 1 批 详见采购需求 是 310 二 SIM超分辨显微镜 1 套 详见采购需求 是 450 三 体视显微镜、转盘共聚焦显微镜等 1 批 详见采购需求 是 1035 四 小动物用内窥镜 1 套 详见采购需求 是 80 五 高通量活细胞成像仪 1 套 详见采购需求 是 282 六 超速离心机碳纤维转头、流式细胞仪液流系统等 1 批 详见采购需求 是 550 七 实时荧光定量PCR仪、细胞能量代谢分析仪 1 批 详见采购需求 是 245 八 冷冻切片机、石蜡包埋机等 1 批 详见采购需求 是 60.8 二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定,未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:无三、获取采购文件1.时间:2023年3月16日至2023年3月28日(双休日及法定节假日除外)上午:8:30-11:30、下午:13:00-17:00。获取磋商文件截止时间之后潜在供应商依然可以获取磋商文件,如对磋商文件有质疑的应在规定的质疑期限内提出。2.地点:浙江求是招标代理有限公司(杭州市西湖区玉古路173号中田大厦21楼H室)3.方式:微信获取(扫描附件二维码或关注“浙江求是招标代理有限公司”企业公众号)或现场获取。获取文件联系人:於路莹;联系方式:0571-876661124.售价:500元整,售后不退。收款单位(户名):浙江求是招标代理有限公司开户银行:工行浙大支行银行账号:1202024609900033043财务联系方式:0571-87666113开票信息请发送邮件至:caiwu@qszb.net,提供:项目名称或编号、开票资料、收件信息并注明专普票。5.供应商未按照本公告规定的方式获取磋商文件的,响应文件将被拒绝。四、响应文件提交1.响应文件提交截止时间:2023年3月29日9:30:00(北京时间)2.地点:杭州市西湖区玉古路173号中田大厦16楼求是招标7号会议室备注:供应商应当在磋商文件要求的截止时间前,将响应文件密封送达指定地点。在截止时间后送达或者未密封的响应文件为无效文件,采购代理机构将予以拒收。五、开启1.响应文件开启时间:2023年3月29日9:30:00(北京时间)2.地点:杭州市西湖区玉古路173号中田大厦16楼求是招标7号会议室六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜1.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,对采购文件需求的以书面形式向采购人提出质疑,对其他内容的以书面形式向采购人和采购代理机构提出质疑。质疑函范本请到浙江政府采购网下载专区下载。2.需要落实的政府采购政策:包括节约资源、保护环境、支持科技创新、促进中小企业发展等。详见磋商文件的第三章-采购项目需要落实的政府采购政策。▲3.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务后不得再参加该采购项目的其他采购活动。八、对本次采购提出询问,请按以下方式联系1.采购人信息名称:良渚实验室地址:浙江省杭州市余杭区文一西路1369号联系方式:fengzhen427@zju.edu.cn采购项目联系人:冯老师采购项目联系方式:0571-887905152.采购代理机构信息名称:浙江求是招标代理有限公司地址:杭州市西湖区玉古路173号中田大厦21楼项目联系人:陈宵项目联系方式:0571-87666119质疑联系人:沈欣颐质疑联系方式:0571-81110356质疑邮箱:jdkh@qszb.net附件信息: QSZB-F(H)-A23027(CS).jpg36.9 KB 文件获取函.docx64.7 KB × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:共聚焦显微镜,流式细胞仪,离心机,切片机,高内涵成像,PCR,立体显微镜 开标时间:null 预算金额:310.00万元 采购单位:良渚实验室 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:浙江求是招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 关于良渚实验室单细胞记录系统等科研设备的竞争性磋商公告[浙江求是招标代理有限公司] 浙江省-杭州市-余杭区 状态:公告 更新时间: 2023-03-16 招标文件: 附件1 附件2 项目概况单细胞记录系统等科研设备 采购项目的潜在供应商应在微信获取(扫描附件二维码或关注“浙江求是招标代理有限公司”企业公众号)或现场获取。(杭州市西湖区玉古路173号中田大厦21楼H室)获取采购文件,并于2023年3月29日9:30:00(北京时间)前递交响应文件。一、项目基本情况1.项目编号:QSZB-F(H)-A23027(CS)2.项目名称:单细胞记录系统等科研设备(非政府采购项目)3.采购方式:竞争性磋商4.合同履约期限:单细胞记录系统:合同签订后120日内;转运体研究仪器:合同签订后90日内;SIM超分辨显微镜:合同签订后120日内;体视显微镜:合同签订后120日内;转盘共聚焦显微镜:合同签订后120日内;活体荧光扫描显微镜系统:合同签订后180日内;小动物用内窥镜:合同签订后180日内;高通量活细胞成像仪:合同签订后60日内;超速离心机碳纤维转头:合同签订后90日内;流式细胞仪液流系统:合同签订后90日内;数字玻片扫描成像系统:合同签订后120日内;超高分辨激光共聚焦显微镜:合同签订后120日内;实时荧光定量PCR仪:合同签订后90日内;细胞能量代谢分析仪:合同签订后90日内;冷冻切片机:合同签订后90日内;石蜡包埋机:合同签订后90日内;石蜡切片机:合同签订后90日内;自动组织脱水机:合同签订后90日内。5.本项目不接受联合体响应。6.采购需求: 标项 名称 数量 单位 简要技术需求或服务要求 是否允许采购进口产品 预算金额(万元) 一 单细胞记录系统、转运体研究仪器 1 批 详见采购需求 是 310 二 SIM超分辨显微镜 1 套 详见采购需求 是 450 三 体视显微镜、转盘共聚焦显微镜等 1 批 详见采购需求 是 1035 四 小动物用内窥镜 1 套 详见采购需求 是 80 五 高通量活细胞成像仪 1 套 详见采购需求 是 282 六 超速离心机碳纤维转头、流式细胞仪液流系统等 1 批 详见采购需求 是 550 七 实时荧光定量PCR仪、细胞能量代谢分析仪 1 批 详见采购需求 是 245 八 冷冻切片机、石蜡包埋机等 1 批 详见采购需求 是 60.8 二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定,未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:无三、获取采购文件1.时间:2023年3月16日至2023年3月28日(双休日及法定节假日除外)上午:8:30-11:30、下午:13:00-17:00。获取磋商文件截止时间之后潜在供应商依然可以获取磋商文件,如对磋商文件有质疑的应在规定的质疑期限内提出。2.地点:浙江求是招标代理有限公司(杭州市西湖区玉古路173号中田大厦21楼H室)3.方式:微信获取(扫描附件二维码或关注“浙江求是招标代理有限公司”企业公众号)或现场获取。获取文件联系人:於路莹;联系方式:0571-876661124.售价:500元整,售后不退。收款单位(户名):浙江求是招标代理有限公司开户银行:工行浙大支行银行账号:1202024609900033043财务联系方式:0571-87666113开票信息请发送邮件至:caiwu@qszb.net,提供:项目名称或编号、开票资料、收件信息并注明专普票。5.供应商未按照本公告规定的方式获取磋商文件的,响应文件将被拒绝。四、响应文件提交1.响应文件提交截止时间:2023年3月29日9:30:00(北京时间)2.地点:杭州市西湖区玉古路173号中田大厦16楼求是招标7号会议室备注:供应商应当在磋商文件要求的截止时间前,将响应文件密封送达指定地点。在截止时间后送达或者未密封的响应文件为无效文件,采购代理机构将予以拒收。五、开启1.响应文件开启时间:2023年3月29日9:30:00(北京时间)2.地点:杭州市西湖区玉古路173号中田大厦16楼求是招标7号会议室六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜1.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,对采购文件需求的以书面形式向采购人提出质疑,对其他内容的以书面形式向采购人和采购代理机构提出质疑。质疑函范本请到浙江政府采购网下载专区下载。2.需要落实的政府采购政策:包括节约资源、保护环境、支持科技创新、促进中小企业发展等。详见磋商文件的第三章-采购项目需要落实的政府采购政策。▲3.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务后不得再参加该采购项目的其他采购活动。八、对本次采购提出询问,请按以下方式联系1.采购人信息名称:良渚实验室地址:浙江省杭州市余杭区文一西路1369号联系方式:fengzhen427@zju.edu.cn采购项目联系人:冯老师采购项目联系方式:0571-887905152.采购代理机构信息名称:浙江求是招标代理有限公司地址:杭州市西湖区玉古路173号中田大厦21楼项目联系人:陈宵项目联系方式:0571-87666119质疑联系人:沈欣颐质疑联系方式:0571-81110356质疑邮箱:jdkh@qszb.net附件信息: QSZB-F(H)-A23027(CS).jpg36.9 KB 文件获取函.docx64.7 KB
  • 约稿|锂离子电池显微智能分析解决方案全解析
    为帮助广大材料领域科研工作者了解前沿表征与检测技术,解决材料表征与检测技术难题,开展相关表征与检测工作,仪器信息网广泛向业内技术专家、仪器厂商约稿,并整理相关学术文章和讲座视频,以期对材料表征技术进行全面的介绍和综述。相关内容将收录至【材料表征与检测技术盘点】专题,并在仪器信息网平台全渠道推送,后续还将把干货整理成册,以供更多人士阅读。征稿活动进行中,欢迎来稿,征稿活动详情点击:【材料表征与检测技术盘点】专题:https://www.instrument.com.cn/zt/CLBZ以下为欧波同集团供稿,以飨读者:欧波同锂离子电池显微智能分析解决方案锂离子电池因其清洁、能量密度高、循环性能好等优点广泛应用于我们的日常生活中。尤其是近年来, 新能源汽车、储能电站的快速发展, 锂离子电池的用量超乎想象,一台新能源汽车集成了几千个电池,达几百公斤,巨量的电池集中在一起,安全问题就尤为重要。近年来锂电池电动车、汽车和储能电站均发生过燃爆事故,因此,锂电池质量、安全等方面的研究越来越被人们重视,对锂电池的质检技术也提出了更高的要求,这涵盖了正负极材料、隔膜、铜箔、铝箔,甚至外包装材料。欧波同集团长期从事光镜、电镜领域的微观分析工作,通过和广大客户的交流,我们发现现在客户的微分析存在效率低、人的主观因素影响大、非标准化等问题,为此我们成立了汇鸿科技公司,利用智能化软件实现显微分析的自动化、标准化。1、 锂离子电池材料显微智能分析系统(LIBMAS)锂离子电池是指以锂离子嵌入化合物为电极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。由于材料加工过程中的缺陷,锂电池在使用或储存过程中仍会出现一定概率的失效[1],例如,多孔电极在充放电过程中发生体积膨胀和收缩,导致颗粒逐渐出现裂纹,这些裂纹沿着原有缺陷萌生和扩展,最终导致材料出现机械断裂和电极结构解体,造成电极材料粉化。这些材料的失效严重降低了锂电池的使用性能,影响其使用的可靠性和安全性。图一:汇鸿锂离子电池显微智能分析系统针对锂电池使用过程中产生的各种失效问题,汇鸿智能科技为客户量身定制了专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、开裂球识别、二次球颗粒分布均匀性判断、截面孔隙统计、隔膜孔隙统计等锂电池材料分析。1) 开裂球识别:通常在制备三元正极材料时,采用共沉淀法[2]使纳米级一次粒子团聚堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图二:软件智能区分开裂球和普通球通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图二。正极颗粒内部通常是二次球颗粒形成的多晶结构,我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图三。使用LIBMAS对截面孔隙进行识别,快速获得截面孔隙结果。图三:二次球截面孔隙识别2)团聚体颗粒识别:正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的,在几个到十几个微米之间的二次球颗粒。以往采用人工统计分析,需要在SEM成像后,手动逐个测量,工作量大,而且存在人为测量的误差;采用汇鸿智能分析软件,则可以一键操作,简化流程,在最短的时间内快速获得标准化的统计结果,如图四。图四:一次颗粒团聚形成的二次球颗粒识别电极材料的颗粒尺寸影响电池的容量、倍率性能和循环性能[3]。小尺寸颗粒可以缩短锂离子固相扩散路径,内部多孔颗粒可以提供更多的锂离子迁移通道。但是粒径过小会导致库仑效率和充填密度低下,影响整体电池的容量。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图五。图五:软件自动区分团聚颗粒及团聚颗粒截面3)单晶颗粒识别:相对于单独的纳米粒子,团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。然而在团聚体反复充放电过程中,电极不断膨胀和收缩,内部颗粒十分容易破碎。相比易产生颗粒粉碎的多晶正极材料,许多研究[4,5]已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿科技LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图六。图六:单晶颗粒的识别4)大小二次球识别:除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图八。图八:大小二次球颗粒分布均匀性识别和统计5)隔膜孔隙率统计:锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实[6],隔膜的微孔孔径分布越均匀,电池的电性能越优异。孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图九:隔膜孔隙识别及孔隙率统计汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图九。二、锂离子电池异物分析系统(LIBIAS)目前行业对锂电正极材料中金属及磁性异物的分类主要有以下三个方面:金属及非金属大颗粒、磁性异物、Cu/Zn单质[7]。异物引入的方式有原材料带入和制造过程中产生。为了有效控制锂离子电池正负极材料中非金属/金属/磁性异物的含量,一般会使用专业的设备与软件对初筛后的原材料中异物颗粒进行形貌与成分统计。行业内以往使用光镜或手动测量的方法,然而这些传统检测方式往往在数据结果的准确性、全面性、一致性上有或多或少的不足,给精确检测带来比较大的挑战。目前,锂电池材料中异物颗粒的检测主要面临的问题有:1)异物来源广、溯源难,2)数据量大、费时费力,3)颗粒易团聚、识别难度高。图一:同一颗粒分别在光学显微镜(左)、电子显微镜(右)下的图像及EDS能谱识别颗粒主要成分为Fe图二:电镜图像下滤膜上所有颗粒分布情况图三:滤膜上的颗粒团聚现象针对传统软件的不足,欧波同集团旗下的汇鸿科技公司开发了“锂离子电池异物分析系统”(LIBIAS)。这是集准确、高效和易操作功能为一体的全自动清洁度分析系统,可以实现高清BSE图像采集拍摄和图像处理、元素定量测试等功能。包括:1)简易上手的测试程序,2)开放的标准库编辑系统,3)一键生成对应报告图表。图四:颗粒类型占比饼状图(左),三元统计相图(右)汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”锂离子电池材料显微智能分析系统(LIBMAS)”和“锂离子电池异物分析系统(LIBIAS)”,将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。参考文献:[1] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Phys. Sin., 2018, 67(12): 128501. DOI: 10.7498/aps.67.20180757.[2] Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method.DOI:10.1016/j.powtec.2009.12.002[3] 杨绍斌,梁正. 锂离子电池制造工艺原理与应用[M].[4] Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode.DOI:10.1126/science.abc3167[5] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2 三元正极材料研究进展[J]. 电池工业, 2017, 21(2): 51-54.[6] 毛继勇,许汉良.锂离子电池用隔膜孔隙率对电池性能的影响[J].广州化工,2018,46(14) : 78-80.[7] 惠升,詹永丽,黎江.锂电正极材料金属及磁性异物过程控制的研究[J].世界有色金属,2021(17):166-168.作者:沈宁单位:欧波同个人简介:沈宁,OPTON创新研究中心BD工程师 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责欧波同集团锂电行业应用市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。
  • 布鲁克发布Bruker 高通/能量三维X射线显微成像系统(Micro-CT)新品
    Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。 特点 40-130kV低成本免维护X射线源 8位滤光片转换器自动进行能量选择 GPU加速性能可提高3D重构速度 大尺寸图像的自动拼接偏移扫描 利用螺旋扫描和精准重构可获得最佳的平面结构图像质量 借助HART Plus,对大宽高比物体在保持图像质量的情况下,扫描速度可提高4倍参数• X射线源:40-130kV,39W,• X射线探测器:600万像素平板探测器(3072×1944像素)• 标称分辨率(最大放大率下样品的像素):图像分辨率<3um;空间分辨率<5um,• 重建容积图(单次扫描):最高4800×4800像素 • 样品尺寸:最大值:直径250mm,长500mm,重量20kg• 扫描空间:最大值:直径250mm,长300mm• 辐射安全:在仪器表面的任何一点上<1 uSv/h• 外形尺寸:1250(宽)×815(深)×820(高)毫米• 重量:400千克,不含包装• 电源:100-240V / 50-60Hz / 3A创新点:Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。 Bruker 高通/能量三维X射线显微成像系统(Micro-CT)
  • 布鲁克发布Bruker 高通/能量三维X射线显微成像系统(3D XRM)新品
    Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。 特点 40-130kV低成本免维护X射线源 8位滤光片转换器自动进行能量选择 GPU加速性能可提高3D重构速度 大尺寸图像的自动拼接偏移扫描 利用螺旋扫描和精准重构可获得最佳的平面结构图像质量 借助HART Plus,对大宽高比物体在保持图像质量的情况下,扫描速度可提高4倍参数• X射线源:40-130kV,39W,• X射线探测器:600万像素平板探测器(3072×1944像素)• 标称分辨率(最大放大率下样品的像素):图像分辨率<3um;空间分辨率<5um,• 重建容积图(单次扫描):最高4800×4800像素 • 样品尺寸:最大值:直径250mm,长500mm,重量20kg• 扫描空间:最大值:直径250mm,长300mm• 辐射安全:在仪器表面的任何一点上<1 uSv/h• 外形尺寸:1250(宽)×815(深)×820(高)毫米• 重量:400千克,不含包装• 电源:100-240V / 50-60Hz / 3A创新点:Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。 Bruker 高通/能量三维X射线显微成像系统(3D XRM)
  • 北京科委:高时空分辨电子显微系统关键技术研发可获千万级国家自然基金支持
    北京科委发布《关于开展2021年度国家自然科学基金区域创新发展联合基金项目组织申报工作的通知》,围绕人工智能、生物医药、新材料与先进制造等相关领域开展基础研究和应用基础研究,充分发挥国家自然科学基金在北京国际科技创新中心建设中的作用。新材料与先进制造中,高时空分辨电子显微系统关键技术及功能体系动力学集成项目直接费用平均资助强度约为1000万元。研究要求围绕新型量子体系和低维纳米材料系统的研究需求,研究高时空分辨电子显微镜的关键核心技术和功能体系动力学过程,解决脉冲电子束产生、脉宽压缩、显微成像等关键科学技术问题,发展多时域、多维度的飞秒-亚纳米电子显微成像方法和解析理论。研究内容包括研制适合超快电镜的高性能电子源,提高脉冲电子束发射性能,发展具备超快时间分辨及高空间分辨的电子显微学表征新方法。重点支持项目还包括了车用燃料电池催化剂的原子尺度准原位表征和机理研究,研究要求针对车用燃料电池催化剂对高活性和高耐久性的技术要求,研究和开发新型低维高质量活性和高低电压稳定性的贵金属氧还原催化剂,在原子尺度下用准原位方法表征催化剂表面结构和原子迁移过程,阐明催化剂表面原子结构与催化活性的构效关系、催化剂稳定性机制,制备满足高活性和长循环需求的燃料电池氧还原催化剂。通知全文如下:关于开展2021年度国家自然科学基金区域创新发展联合基金项目组织申报工作的通知各依托单位:北京市2020年起加入国家自然科学基金区域创新发展联合基金(以下简称区域联合基金),旨在吸引和聚集全国优秀科研人员,围绕人工智能、生物医药、新材料与先进制造等相关领域开展基础研究和应用基础研究,充分发挥国家自然科学基金在北京国际科技创新中心建设中的作用。近日,国家自然科学基金委员会正式发布《2021年度国家自然科学基金项目指南》,启动区域联合基金申报工作(申请通知详见国家自然科学基金委员会网站www.nsfc.gov.cn),集中接收截止时间为2021年3月20日16时。为做好2021年度区域联合基金项目的组织申报工作,现将有关事项通知如下:一、深入开展项目组织动员各依托单位要深入分析优势研究团队情况,充分整合资源,调动科研人员申报积极性。做好交叉方向项目组织工作,促进优秀团队强强联合。认真研读申报通知和项目指南,做好申报政策宣讲和解读。二、积极联合企业等应用方共同申报2021年度国家自然科学基金区域创新发展联合基金项目指南(北京节选,见附件)明确提出“鼓励申请人与北京地区具有较好研究实力和研究条件的企业开展合作研究”。各依托单位要加强宣传,广泛动员科研人员与企业、创新中心等应用方联合申报区域联合基金项目。三、加强辅导提高申报质量各依托单位应积极组织领域专家对项目申报进行培训和指导,交流项目申报的经验和做法,提高申请书撰写水平;组织专家听取项目汇报、开展项目预审、提出修改意见,提升项目申报质量。各依托单位要充分发挥主体责任,加强项目组织与协作,加强与市基金的沟通和联系,共同为科研人员做好服务。在项目组织申报过程中遇到问题,请及时与北京市自然科学基金委员会办公室联系。联系人:郭凤桐;电话:010-66154813。北京市自然科学基金委员会办公室2021年1月26日
  • SILICON SEMICONDUCTOR I 高真空对于电扫描探针显微镜的优势
    SILICON SEMICONDUCTOR I 高真空对于电扫描探针显微镜的优势高真空对于电扫描探针显微镜的优势Advantages Of High Vacuum For Electrical Scanning Probe Microscopy 来自IMEC和比利时鲁汶大学物理与天文学系的Jonathan Ludwig,Marco Mascaro,Umberto Celano,Wilfried Vandervorst,Kristof Paredis学者们利用Park NX-Hivac原子力显微镜对MoS2在形态和电学方面进行了研究。2004年,石墨烯作为一类新材料原型的被发现,引起了人们对二维(2D)层状材料的极大兴趣。从那时起,人们合成并探索了各种各样的二维材料。 其中,过渡金属二氯代物 (TMDs) 因其固有的带隙、小的介电常数、高的迁移率和超薄的材质而引起了人们的广泛关注, 这使其有望成为将逻辑技术延伸到5 nm以上节点的候选材料。然而,在300 mm兼容的制造环境中集成此类材料仍然面临许多挑战,尤其是因为在薄片或单个晶粒中观察到的有用特性,高质量TMD层的可控生长、转移和加工仍然是一个关键障碍。 扫描探针显微镜作为一种固有的高分辨率二维技术,是研究TMDs形态和电学特性的强大工具。本技术说明以MoS2为例,利用Park NX-Hivac原子力显微镜系统的功能,探讨了高真空用于电学测量的优势。调查:材料和方法MoS2 用MOCVD在蓝宝石衬底上生长了一系列不同层厚的MoS2样品。所有的测量都是在生长的、未转移的MoS2 / 蓝宝石上进行的。相同材料制成的元件的室温迁移率高达μm~30 c㎡/Vs,较厚样品的平均迁移率更高。图1:(a-c)所研究样品的AFM形貌图。(d)用于测量蓝宝石上多层MoS2的C-AFM装置示意图。(e)显示悬臂在高摩擦区域扫描时如何扭曲的动画。(f)对应于(b)中黑线的形貌横截面,在MoS2岛边缘显示0.6 nm台阶,在蓝宝石台地上显示0.2 nm台阶。所有的图像都是用Gwydion绘制的。比例尺为500 nm。 所有被测样品的原子力显微镜(AFM)图像如图1所示。总共测量了三个样品,其层厚为1-2层,3-4层,还有一个具有金字塔结构,这里称为多层MoS2。1-2层样品由一个完全封闭的单层MoS2薄膜组成,在顶部形成额外的单层岛。这些单层岛构成了第二层生长的开始,在形貌图上可以识别为浅色区域。与此相似,3-4层样品由一个完全封闭的三层MoS2薄膜和附加的单层岛组成。图1(d)显示了3-4层样品的样品结构示例。在这里,每个绿色层代表一层MoS2。除了MoS2岛,我们还看到对角线贯穿每个样本。这些是蓝宝石衬底上的台阶,可以通过2D薄膜看到。蓝宝石阶梯与MoS2层之间可以通过台阶高度明确区分,c面蓝宝石为0.2nm,单层MoS2台阶为0.6 nm,如图1(f)横截面所示。多层样品与其他两个样品不同之处在于MoS2表面具有3D金字塔状结构。这些金字塔位于一个完全封闭的三层结构上,其形成是由于随着层厚的增加,生长机制由逐层向三维转变。增长的细节可以在参考文献12中找到。导电扫描探针显微镜 本文采用两种导电扫描探针显微镜(SPM)来表征MoS2的电子性质:导电原子力显微镜(C-AFM)和扫描隧道显微镜(STM)。在C-AFM中,悬臂梁与材料表面接触,并且同时记录形貌和电流。为了测量电流,在样品台上施加一个偏压,并通过连接到导电AFM探针的外部电流放大器来测量电流。材料的电接触是通过在材料的顶部和侧面涂上银漆来实现的。我们使用商用Pt-Ir涂层探针,如PPP-CONTSCPt或PPP-NCSTPt,其标称弹簧常数在0.2-7N/m之间。由于C-AFM是一种基于接触的AFM技术,它还能够实现其他C-AFM通道的同时一起记录侧向力。横向力显微镜(LFM)测量激光在PSD上的横向偏转,这是由于悬臂梁在扫描表面时的扭转或扭曲而引起的,如图1(e)所示。LFM图像的正向和反向的差异与物质的摩擦力成正比,后者不同于C-AFM,因为裁剪的Pt-Ir导电导线,在我们的例子中,用于测量当探针高于表面几埃时探针与样品之间的隧穿电流。STM可以通过保持高度恒定并记录电流(称为恒定高度模式)或使用反馈保持电流水平恒定并记录高度(恒流模式)来执行。在恒流模式下,高度图像包含形貌和电学信息。C-AFM 在空气中与在高真空中 为了证明二维材料表面水层的重要性,我们分别对空气和高真空(HV)中的相同MoS2样品进行了C-AFM测量,如图2(a-b)和(c-d)。虽然在空气中和在高真空环境中扫描的形貌图像非常相似,但是C-AFM图像有很大的不同。最值得注意的是,在高真空下测量的电流增加了三个数量级。在5V偏压下,空气中的平均电流水平为1.4nA,而在高真空下,平均电流水平为1.1μA。电流水平的提高是由于去除了空气中始终存在于样品表面的薄水层。该水层对MoS?尤其成问题,因为它对材料进行p-掺杂,有效地切断了它的电性。从类似的CVD生长的MoS2器件的电输运来看,在暴露于去离子水两小时后,通态电流严重退化,迁移率降低了40%。图2: 3-4 MoS2样品的C-AFM显示高真空下电流水平和灵敏度增加。(a)和(b)分别是在空气中5V偏压下的形貌图和电流图像。(c)和(d)是在0.5 V偏压下泵送至高真空后立即拍摄的形貌图和电流图像。在空气和高真空中采集的数据采用相同的参数:相同的探针,弹簧常数k为7 N/m,设定值为10 nN,扫描频率为1 Hz。比例尺为500 nm。 除了电流的增加,高真空下的C-AFM图像也显示了更多的细节。从空气中的图像来看,电流是相对均匀的。除此之外,C-AFM 在空气中针对此样品提取不出太多的信息。相比之下,从真空下扫描的电流图,我们可以清楚地看到MoS2层中的晶界。尽管C-AFM探针与材料直接接触,但施加的力很小,因此在重复扫描过程中不会去除MoS2材料。图3所示为同一样品在高压下以~30nN力进行5次扫描后的形貌图,探针的标称弹簧常数为~7N/m。图3: (a)是3-4层MoS2的最初形貌图,(b)是在0.1V设定值下连续扫描5次后的形貌图,使用弹簧常数约为7 N/m的PPP NCSTPt探针。比例尺为50nm。专为晶界分析的C-AFM和LFM 当使用低弹簧常数探针成像时,例如标称弹簧常数为0.2N/m的PPP-CONTSCPt,我们可以用C-AFM同时获得摩擦数据,从而考虑到形貌、电学和材料特性之间的相关性。图3显示了1-2层MoS2样品的高度、摩擦和电流图像。在图3(a)中,第一层和第二层区域分别标记为1Ly和2Ly。晶界处的摩擦比原始区域高,因此它们在摩擦中表现为黑线。通过比较电流和摩擦力,可以看出摩擦图像中的黑线与电流中的黑线相匹配。然而,由于衬底对2D薄膜的局部导电性的影响,电流图像显示了额外的特征。图4:(a)形貌,(b)摩擦,(c)在1-2层生长的MoS2 / 蓝宝石样品上同时获得的电流。各区域的层厚如(a)所示。比例尺为200 nm。扫描隧道显微镜观察MoS2 借助Park NX-Hivac原子力显微镜,我们还能够获得高质量的STM图像,而无需复杂的超高真空系统和特殊的样品制备/处理。图4显示了在恒流模式下成像的多层MoS2样品的500 nm扫描,Iset=0.5nA, Vbias=1V。由于STM给出了形貌与电子结构的卷积,我们在高度图像中看到了层岛和晶界。图5:多层膜的MoS2 / 蓝宝石的STM图像。裁剪的Pt-Ir导线在恒流模式下 。Iset=0.5nA, Vbias=1V。比例尺为200nm。结论 本研究利用Park NX-Hivac AFM系统,对过渡金属二氯生化合物(TMDs)家族的二维材料二硫化钼(MoS2)进行了形态和电学方面的研究。在AFM形貌图像上观察了单层和多层的差异。此外,在多层图像上确定了由逐层生长机制引起的三维金字塔状结构的细节。 利用导电SPM(C-AFM和STM)研究了MoS2在空气中和高真空条件下的电学性能。在高真空条件下,尽管存在氧化层,但测量到的电流信号清晰、均匀、较高。最后,结合C-AFM和LFM获得了晶界分析的形貌、电学和力学信息。这种方法可以在晶界上找到更具体和更详细的结构。 二维层状材料广泛应用于工业和学术的各个研究领域。二维材料电性能和力学性能的表征与探索是材料研究领域的一个重要课题。原子力显微镜是一种多功能的成像和测量工具,它允许我们使用各种成像模式从多个角度评估二维材料。本研究强调材料分析的改进策略。此外,这些结果强调了多方向和多通道分析二维材料的重要性,其中包括半导体工业高度关注的过渡金属二氯代物。References1. K. S. Novoselov, A. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, &A. A. Firsov. Electric field effect in atomically thin carbon films. Science306, 666–669 (2004).2. A. K. Geim & I. V. Grigorieva. Van der Waals heterostructures. Nature499, 419–425 (2013).3. K. F. Mak, C. Lee, J. Hone, J. Shan, & T. F. Heinz. Atomically Thin MoS 2?: A New Direct-Gap Semiconductor. Phys Rev Lett105,136805 (2010).4. H. Liu, A. T. Neal, Z. Zhu, Z. Luo,X. Xu, D. Tománek,&P. D. Ye. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano8, 4033–4041 (2014).5. J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao,&K. Wu. Rise of silicene: A competitive 2D material. Prog Mater Sci83, 24–151 (2016).6. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, & J. Hone.Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol5, 722–726 (2010).7. X. Xu, W. Yao, D. Xiao, &T. F. Heinz. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys.10, 343–350 (2014).8. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K.Banerjee,& L. Colombo. Electronics based on two-dimensional materials. Nat Nanotechnol9, 768–779 (2014).9. X. Xi, L. Zhao,Z. Wang, H. Berger, L. Forró, J. Shan,& K. F. Mak. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol.10, 765–769 (2015).10. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, &A. Kis. 2D transition metal dichalcogenides. Nat. Rev. Mater.2, 17033 (2017).11. W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande,&Y. H. Lee. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today20, 116–130 (2017).12. D. Chiappe, J. Ludwig, A. Leonhardt, S. El Kazzi, A. Nalin Mehta, T. Nuytten, U. Celano, S. Sutar, G. Pourtois, M. Caymax, K. Paredis, W. Vandervorst, D. Lin, S. Degendt, K. Barla, C. Huyghebaert, I. Asselberghs, and I. Radu, Layer-controlled epitaxy of 2D semiconductors: bridging nanoscale phenomena to wafer-scale uniformity. Accepted Nanotechnology (2018).13. E. R. Dobrovinskaya, L. A.Lytvynov,& V. Pishchik. Sapphire: material, manufacturing, applications. Springer Science & Business Media, 2009.
  • 张承青电镜实验室环境约稿[7]:谈谈电子显微镜的接地
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之七,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之七 谈谈电子显微镜的接地众所周知电器设备都需要安全接地保护。各种设备的外壳或外露金属部分,都要与大地直接连接,以保证在万一短路漏电时,还能够使外壳或外露金属部分的电压保持在人体能够容忍的范围内(我国现行规定安全电压为不超过24V),以确保人身安全。电子显微镜也不例外,同样需要安全接地保护,万一系统发生漏电时提供一个泄放回路,确保操作人员或维修人员的人身安全。不过另外还有一个特殊的地方就是,电子显微镜的地线同时还是电子显微镜内各个分系统(如探测器、信号处理放大、电子束控制等等)的共同“零电位”端,必须保持电压稳定在“零”。理论上地线端是一个电压为零的参照点,但是实际上,当地线回路上存在电流时(这个电流通常称为漏电流或接地电流,由各用电设备分别产生,其大小为各漏电电流的矢量和),在这个地线回路上的任何一个接地端都有接地电压存在(因为任何地线的接地电阻R尽管很小但不可能为零,根据欧姆定律V=IR,接地电压V在漏电电流I不为零的情况下不会为0),尽管这个接地电压很小以至于我们时常忽略它。但在电子显微镜系统里,这个接地电压使得“零电位”端的电压不能稳定在“零”,这样就会使得电子显微镜不能保持在最好的工作状态下。因为总漏电电流不可能为恒定值,所以接地电压的大小是无规则变化的。即便是一般认为小到微不足道的接地电压,对于经常需要把图像放大几万到一百多万倍的电子显微镜来说,所产生的影响也往往是不可忽视的。接地电压的变化,直接致使SEM模式的图像垂直边缘产生类似磁场和振动干扰的毛刺,严重时还会使图像抖动。解决这个问题的方法很简单,就是专门为电子显微镜设置一个单独的接地回路,我们称之为“独立地线(single earth loop)”。这样就排除了同一供电回路中其它用电设备的漏电流对电子显微镜的干扰。注意,必须从接地体到接地线到接地端子都是独立且不与任何导电体相连接的,这样才能保证该地线的完全独立。必须防止以下几种常见错误:1)没有埋设完全独立的接地体,只是单独布放一根地线联接到公共接地体;2)虽然有单独的接地体但是接地线或接地端子与公共地线或其它用电设备相联接;3)尽量不要接“等电位端子盒”,那玩意儿一般都是接公共地线或者与轻钢龙骨短接的;4)独立地线尽量不要两台或更多的电镜合用(有些有好几台电镜的用户,实在不情愿给每个电镜配一套独立地线啊);5)注意不可以利用现成地下金属导体做独立地线的接地体,像是大楼底梁阀板里的钢筋什么的,那都是公用的;也不要借用弱电系统的接地体,那些都不可靠;6)与电镜信号系统连接的设备(如波谱能谱计算机显示器等,它们的地线必须与公共地线分离,这点实践中经常被疏忽)。电子显微镜对独立地线的接地电阻要求实际不高,前些年某品牌要求是100欧姆以下即可。目前一般各家厂商都只是要求在1~10欧姆即可(小于0.1欧姆的地线成本急剧上升,并且有些土质环境很难做到)。地线制作一般有“深井式”和“浅坑式”两种(参见图一和图二)。注意无论那种方法,都要与地下任何金属物保持四米以上直线距离以防干扰。深井式制作说明(供参考):1.钻深孔:直径约50~100毫米,深度约为3~20米,达到到潮湿土层即可。2.接地体:铜管壁厚2毫米(铜棒亦可,多花些银子就是)直径约30毫米、长约0.5米,由接地线焊牢(三点以上)引出到电子显微镜附近。3.接地线:4~10平方毫米橡胶或塑料多股铜芯线。4.降阻剂:盐、小块木炭各约2~3公斤。5.施工工艺:将接地体吊放到孔的底部,准备一细长工具(钢筋、水管等),将逐渐放入的降阻剂由下而上地捣实,然后继续回填捣紧,特别注意在接地体周围一定要捣实捣紧,同时注意不要把接地线碰断。图一 深井式示意图浅坑式制作说明(供参考):1.挖浅坑:深度约为0.5~2米,达到潮湿土层即可。2.接地体:铜板约0.5×0.5米,厚度2~3毫米,由接地线焊牢(三点以上)引出到电子显微镜附近。3.接地线:4~10平方毫米橡胶或塑料多股铜芯线。4.降阻剂:盐、小块木炭各约2.5~5公斤。5.施工工艺:将铜板垂直放到坑的底部,周围先以降阻剂覆盖,并捣实捣紧,然后继续回填捣紧,注意不要把接地线碰断。 图二 浅坑式示意图 “深井式”适合地面难以开挖或地下水位很深的某些地方。比较而言,“浅坑式”是更为常见的做法。无论是“深井式”或是“浅坑式”,按照此工艺施工,接地电阻都可以达到4~10欧姆(单接地体)。接地线与接地体的连接如果不便焊接的话,也可以钻孔用螺栓连接。注意必须用铜螺栓铜垫圈铜螺母,不要用哪怕是不锈钢的来代替。这不仅是防锈,还是防止产生化学电势、防止产生电腐蚀。特别需要注意,板型接地体或者条带型接地体必须垂直埋下及回填捣实,这很重要的哦!在土壤电阻很大的地方,为降低接地阻抗,还可以将两个以上的接地体连接起来构成一个小型接地系统,此时各接地体间距0.3~0.5米即可(深井式可以使用同一钻孔)。经实测,一般一个接地体接地电阻可达4欧姆左右,两个个接地体接地电阻可达3欧姆左右,三个接地体接地电阻可达2欧姆左右,六到十个接地体接地电阻可达1欧姆以下(视土壤电阻率而定)。因为不会有“跨步电压”的危险,所以不需要参照防雷电格栅式地线网的做法。同时为减少附近地下其它导体的影响,这个小型接地系统也应尽量少占用地下面积。为防止意外短路,接地线进入室内后应直接与电子显微镜的接地线(或电子显微镜内部的地线汇流排)连接,而不要配置一般常见的地线盒或地线端子箱等,不要进入其它等电位端子箱或开关箱,不要与其它汇流排相连。道理很简单,说穿不值钱。不过因为地线属于地下隐蔽工程,做好后很难判断它的独立性究竟好不好。曾经多次碰到磁场好,振动噪声都没问题,电镜本身也是正常的,就是偏偏图像有毛刺,最后临时断开所有接地线毛刺就大为改善,问题所在很清楚了吧。还有市售UPS的接地制式,基本都是不符合单独接地要求的。UPS主机一般共有八个桩头、进出八根线,除两个接电池组外,另有相零地三进三出。要知道:进来的地线桩头在UPS主机内部是与输出的地线桩头完全相通的!UPS厂商工程师按照标准作业规范,把八个头八根线一个一个接好,开机、正常、走人。可是说好的独立地线呢?没啦,在UPS的鼎力相助下,和公共地线网连起来了。呜呜!怎么办?断开就是,两个都断开?显然不对。好,再问,(卖个关子)应该断开哪一个?临时断开地线时必须注意是断开所有的接地线,包括附属设备如能谱波谱拉伸台等等,还包括插在墙上电源插座的显示器,扒拉扒拉一堆呢。包括三个爪子的电源插头,可以拔的都拔掉。如果疏忽漏掉一个没有断开,后面都是做无用功。噢,不,算上误导,就是做负功,不如不做。还有一点需要注意,有时电镜会有循环冷却水箱、空压机、UPS等一大堆附属设备,这些设备也需要接地,但必须和电镜的独立地线分开(有些电镜厂商有明确说明,有些没有),可以使用另一个独立地线,也可以接入公共地线。真空泵由于是从电镜取电(其开启和停止由电镜端控制),一般出厂配置就是用三芯电缆(相、零、地)与电镜相连,曾有人画蛇添足,再给它外壳接个地(说是保险一些),这个地线很自然就接到等电位端子箱、接到公共地线去了。哦噢,独立地线又没有啦!有时图像不好,排查电镜自身原因后,地线就是最可疑的(磁场振动都可以测出来,地线的独立性没法测)。所以,提高对地线的认识,事先与用户(可能还有用户单位电务管理人员)有明确沟通,是很重要的。不幸也是最容易被疏忽的一个方面,唉。2020.11张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 2020亚太区高成长500强企业榜单揭晓,Park原子力显微镜入围
    p style=" text-indent: 2em " span style=" text-indent: 2em " & nbsp /span strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " 2020年5月11日,原子力显微镜制造商Park原子力显微镜公司(Park Systems)宣布,该公司入选了英国《金融时报》 /span span style=" text-indent: 2em " (FT) /span span style=" text-indent: 2em " 近日发布的 /span span style=" text-indent: 2em color: rgb(0, 112, 192) " “ strong 2020亚太区高成长500强企业榜单” /strong /span span style=" text-indent: 2em " 。 /span br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 237px " src=" https://img1.17img.cn/17img/images/202005/uepic/821f4ef6-098e-4eb2-8abf-97832f31f245.jpg" title=" AC9137350E58DAB46A1725C45DB0471E3E7BA11C_size21_w640_h337.jpeg" alt=" AC9137350E58DAB46A1725C45DB0471E3E7BA11C_size21_w640_h337.jpeg" width=" 450" height=" 237" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 《金融时报》(FT)依据各企业2015至2018年的年复合成长率(CAGR)排名,选出亚太地区500家成长最快的企业,他们分别来自亚太区域11个经济体,包括新加坡、马来西亚、印度尼西亚、菲律宾、澳大利亚、新西兰、印度、日本、韩国等。数据显示,今年上榜企业的最低平均增长率为8.3%。据悉,所有上榜企业的相关数据都通过了国家统计局的核查,不符合上榜标准的企业会被剔除。 span style=" text-indent: 2em " 榜单由德国统计数据门户Statista编制。 /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " 从榜单中企业行业分布来看,上榜最多的是科技行业企业,约有四分之一的上榜公司属于这一类别。 /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " 《金融时报》表示,亚太企业和其他地区一样,深受全球疫情蔓延的影响,尽管榜单评选时尚未把疫情列入考虑,但仍有助判断哪些企业的缓冲能力较强,足以在疫情之中幸存下来。那些反应最灵敏、最具创造力的企业,将化危机为“创新的催化剂”,中期内有望各自快速发展。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/8e360a03-e5ef-40d5-933d-fec9e1f6d238.jpg" title=" 帕克原子力显微镜.jpg" alt=" 帕克原子力显微镜.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " Park原子力显微镜公司总部位于韩国水源 /span /p p style=" text-indent: 2em " 2015年,Park原子力显微镜公司在KOSDAQ上市自首次公开募股以来,其销售额每年都创新高,Park原子力显微镜公司在2020年新冠疫情大流行的情况下,业绩再创新高,在英国《金融时报》500强韩国企业的排名中, span style=" color: rgb(0, 112, 192) " 排名第25位 /span 。 /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " Park原子力显微镜副总裁Keibock Lee /span /strong 评论道:“我们很高兴能跻身亚太地区增长最快的公司前10%的行列。随着我们对原子力显微镜系统的创新设计,以及在资本资产、研发和人员方面的不断加大投入,相信我们能够在我们所服务的快速发展的纳米技术行业实现高速增长。 /p p style=" text-indent: 2em " 我们在提供最精确、最高纳米分辨率的AFM技术优势方面有着悠久的历史,这一直是我们持续增长的不竭动力。” /p p style=" text-indent: 2em " Park原子力显微镜成立于1997年,是AFM行业的全球市场知名品牌。公司拥有多项与AFM技术相关的专利,产品涵盖从用于研究的桌面AFM到用于半导体制造质量保证的带有机械臂的全自动AFM系统。Park原子力显微镜的主要客户包括全球数千所知名大学、国家实验室和行业领先企业,以及几乎所有领先半导体公司的AFM的主要供应商。 /p p style=" text-indent: 2em " 近来,Park原子力显微镜推出系列新计划来推广期AFM产品,包括设立研究基金、奖学金等。如提供Park AFM奖学金项目;最近扩大在线学习项目,提供公司网络研讨会、现场演示和用户聊天;举办纳米科学研讨会,以推广应用和技术,促进科学发现等。 /p p style=" text-indent: 2em " strong 关于Park原子力显微镜 /strong /p p style=" text-indent: 2em " Park原子力显微镜公司是目前世界上发展最快的原子力显微镜(AFM)制造商之一,为化学、材料、物理、生命科学、半导体和数据存储行业的研究人员和工程师提供了一系列完整的产品。 Park的客户包括20多家全球最大的半导体公司,以及亚洲、欧洲和美洲的国立研究型大学。Park 原子力显微镜是韩国证券交易所(KOSDAQ)的上市公司,公司总部位于韩国水原,地区总部位于美国加州圣克拉拉、德国曼海姆、中国北京、日本东京、新加坡和墨西哥墨西哥城。 /p p br/ /p
  • 430万!同济大学材料科学与工程学院高分辨高灵敏激光共聚焦显微镜采购项目
    项目编号:1297-2343020085C1/08项目名称:同济大学材料科学与工程学院高分辨高灵敏激光共聚焦显微镜采购项目预算金额:430.0000000 万元(人民币)采购需求:高分辨高灵敏激光共聚焦显微镜 1套合同履行期限:详见招标文件本项目( 不接受 )联合体投标。获取招标文件时间:2023年02月19日 至 2023年02月24日,每天上午9:00至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:上海市普陀区中山北路2130号1706室方式:现场领购或邮箱 报名资料:法人授权委托书原件(或法人授权委托书原件的扫描件)、营业执照副本原件(或加盖公章的复印件)及汇款凭据。 报名电话:025-83609978(南京)/021-52181959(上海) 报名邮箱:jshc9999@163.com 以下为本公司对公支付宝报名付款码:(转账时请务必备注公司名称+85C1/08)售价:¥500.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:同济大学地址:上海市杨浦区四平路1239号联系方式:胡老师 021-695847232.采购代理机构信息名称:江苏省华采招标有限公司地址:上海市普陀区中山北路2130号1705室1706室联系方式:张荣、刘洁 025-83603328(南京),021-52181959(上海)3.项目联系方式项目联系人:张荣、刘洁电话:025-83603328(南京),021-52181959(上海)
  • 310万!同济大学材料科学与工程学院正置高分辨高灵敏激光共聚焦显微镜采购项目
    项目编号:1297-2343020085C1/07项目名称:同济大学材料科学与工程学院正置高分辨高灵敏激光共聚焦显微镜采购项目预算金额:310.0000000 万元(人民币)采购需求:正置高分辨高灵敏激光共聚焦显微镜 1套合同履行期限:详见招标文件本项目( 不接受 )联合体投标。获取招标文件时间:2023年03月20日 至 2023年03月27日,每天上午9:00至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:上海市普陀区中山北路2130号1706室方式:法人授权委托书原件(或法人授权委托书原件的扫描件)、营业执照副本原件(或加盖公章的复印件)及汇款凭据。 报名电话:025-83609978(南京)/021-52181959(上海) 报名邮箱:jshc9999@163.com 以下为本公司对公支付宝报名付款码:(转账时请务必备注公司名称+85C1/07)售价:¥500.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:同济大学     地址:上海市杨浦区四平路1239号        联系方式:范老师 021-69580239      2.采购代理机构信息名 称:江苏省华采招标有限公司            地 址:上海市普陀区中山北路2130号1705室1706室            联系方式:张荣、刘洁 025-83603328(南京),021-52181959(上海)            3.项目联系方式项目联系人:张荣、刘洁电 话:  025-83603328(南京),021-52181959(上海)
  • 专家约稿|压电力显微术的基本技术原理与使用注意事项
    原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1. 压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜 ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2. PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。 图1 压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3. PFM的测量模式图2 压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonance PFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM 信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonance PFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得 PFM 压电响应信号比常规FPM测量的响应信号幅值放大了 Q 倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。 4. PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3 BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用Vector PFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线的获取需要施加大于±10V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4 SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线。 图5 二维异质材料MoS2/WS2的材料特性曲线[2]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6 Si掺杂HfO2样品的回字形写畴区域[3]5. 注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在 PFM 测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1] HERMES I M, STOMP R. Stabilizing the piezoresponse for accurate and crosstalk-free ferroelectric domain characterization via dual frequency resonance tracking, F, 2020 [C].[2] LV JIN W. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science (New York, NY), 2022, 376: 973-8.[3] MARTIN D, MüLLER J, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric [J]. Adv Mater, 2014, 26(48): 8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。
  • 扫描隧道显微镜助力“药物击靶”可视化:原来药物分子也会“玩乐高”
    p   8月5日,Science Advances期刊发表我国学者论文,其上登载了一张“药物击靶”显微镜照片。据论文通讯作者之一的中国医学科科学院基础医学研究所副研究员王晨轩介绍,这是科学家首次直观看到“药物击靶”的状态,可用于指导药物分子的设计。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 489px " src=" https://img1.17img.cn/17img/images/202008/uepic/a84d5415-9f82-46e6-9b7b-49dcd99b74d4.jpg" title=" 微信图片_20200813111429.png" alt=" 微信图片_20200813111429.png" width=" 500" height=" 489" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 363px " src=" https://img1.17img.cn/17img/images/202008/uepic/3faeb35b-438a-4004-a05c-ddb29962f12d.jpg" title=" 1b2fd81ff88d4487bc9adafb2c51ee14.jpg" alt=" 1b2fd81ff88d4487bc9adafb2c51ee14.jpg" width=" 600" height=" 363" border=" 0" vspace=" 0" / /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong   照片显示:当药物分子(硫黄素T)要与生命体内的靶蛋白结合、起药效时,不是像人们想象的单个分子去结合蛋白,而是自动像“乐高积木”一样组装后,合力“击靶”,这种“机灵劲儿”与之前人们的想象完全不同。 /strong /span /p p   本以为它只身赴命,没想到它两两成对、凑四成团、甚至6人成伍& #8230 & #8230 这个新发现可能带来哪些颠覆性改变?据王晨轩介绍:“教科书中有一个经典的‘锁钥模型’,是说药物分子能够‘击靶’必须要和蛋白严丝合缝,像一把钥匙开一把锁,但现在的显微镜观测结果表明,药物分子用寡聚态的方式‘工作’,或许我们只需要半个钥匙就能开锁。” /p p   “药物设计是个‘配钥匙’的过程。人们已知一个疾病相关的蛋白质结构,想设计一种反向性的药物,需要有机化学家、计算机辅助药物设计的理论化学家等一起构筑一个和蛋白质活性中心匹配的足够大的钥匙才能工作。药物合成越长越难,每个基团像“粘胳膊”一样,到了产业化的时候对工艺的要求更是指数级的增加。如果药物其实只需要合成原来的很小一段,1/4或者是1/8,那么难度将大大降低。此发现可以简化药物合成路径。 /p p   据悉,蛋白质的照片拍摄很困难,先是晶体衍射法,再是冷冻电镜的方法,但是至今仍不是所有的蛋白都能拍摄成功,原因是都必须要让蛋白排列成有序的阵列,才能满足成像要求。“这就好比,只有阅兵式上的解放军方阵才能成像,而后面的群众大联欢方阵是拍不上的。”王晨轩打了个特别形象地比方,因此要拍摄和药物分子结合的蛋白分子,就要用新的拍摄设备。 /p p   扫描隧道显微镜勇最初是物理学家用来探测原子、亚原子的微观结构,具有超高的分辨能力。王晨轩说,把物理设备引进生物领域是上世纪90年代的事情,需要完成对设备的硬件、软件、算法的全新研制,中国团队在国际上是较早进入这一领域的。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 400px " src=" https://img1.17img.cn/17img/images/202008/uepic/bdfe1e18-3132-4394-88b3-5eff33787fac.jpg" title=" 1597292515109044001.jpg" alt=" 1597292515109044001.jpg" width=" 300" height=" 400" border=" 0" vspace=" 0" / /p p   由于它是通过量子力学中的隧穿效应,通过记录穿越样品的电子直接捕捉蛋白质和药物分子的“模样”,最开始的扫描隧道显微镜操作必须在真空中。中国科学家团队很早解决了常态下用扫描隧道显微镜观测的问题,在世界上首次使用了扫描隧道显微镜,实现了在大气室温下对化学分子的观察。 /p p   为了拍摄首张“药物击靶”显微镜照,医科院基础所王晨轩、于兰兰、张文博,与国家纳米科学中心的王琛、杨延莲、方巧君团队等几代科研人打磨多年,不仅发明了蛋白质对基底的吸附技术、分子伴侣的固定技术、扫描探针的脉冲技术等一系列专利技术,还对整个“拍照”的流程进行优化和摸索。 /p p   “整套(拍照)技术非常复杂,很难形成照搬流程,只能像是匠人之间的口口相传,需要知识、经验和揣摩,专业人员可能需要一年或者几年的训练时间跟着走下来,才能系统掌握。”王晨轩说。 /p
  • 技术线上论坛|5月25日《如何实现自动化、高通量单细胞力谱测量?单细胞显微操作技术一步搞定!》
    [报告简介]单细胞粘附力作为生物机械学分支的重要组成部分,是细胞与外周相互作用的直观体现,能够有效的反映出细胞与基质或细胞之间相互作用能力。细胞与基质之间的作用力十分微小,一般都在nN别,过去通常使用原子力显微镜才能够进行测量。但是原子力显微镜方案往往具有通量低,操作繁琐等问题,使得单细胞力谱的研究非常繁琐。基于此,Cytosurge推出的全新多功能单细胞显微操作FluidFM技术给细胞力谱测量带来了新的希望。该技术结合了的原子力显微镜探测技术与微流体控制系统,能够直接通过使用中空的原子力探针将细胞通过负压抓取在探针表面,并不需要激活细胞的任何通路信号,为粘附力的测量带来了大的优势。一方面,这种方法能够提供远比蛋白结合牢固的多的粘附力,能够将细胞牢固的固定在探针上并且无需包被探针。另一方面,由于没有生物化学处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。该系统具备高度自动化,能够快速,全自动的完成力学的测定,让单细胞力谱研究变得十分容易。本报告将介绍FluidFM单细胞显微操作技术的原理和发展,并结合多篇发表在期刊Nature、Cell、Bioactive Materials等上的近科研成果,深入阐述这种技术在单细胞力谱测量方面的新进展。[直播入口]请扫描下方二维码进入FluidFM单细胞显微操作技术群,届时会在微信群中实时更新直播入口,无需注册!扫码进群,即刻获取直播链接,无需注册![报告时间]05月25日 下午15:00-16:00 [主讲人介绍]Tamás Gerecsei 亚太区席应用科学家,高FluidFM解决方案工程师,Cytosurge AGTamás是一位生物物理学家,毕业于Etvs Loránd(ELTE罗兰大学)。 在与FluidFM在学术环境中合作多年后,他加入了Cytosurge公司,成为了一名训练有素的微纳米系统工程师。在Cytosurge AG,Tamás不断推动并拓展FluidFM技术的应用边界,并使FluidFM技术应用于各地研究人员的课题中。您可以经常发现他在各种专业的学术会议上传播关于Cytosurge和FluidFM技术的信息。 郭亚茹 北京大学口腔医院,口腔医学中心,获中国博士后科学基金,并入选北京大学医学部 2021年博雅博士后项目,在Advanced functional materials、Bioactive Materials、Journal of dental research等杂志上以作者或共同作者的身份发表5篇。 2021年,在Bioactive Materials发表了题为:Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis的研究文章,报道了基质硬度通过p-PXN-Rac1-YAP信号轴调节细胞形成,这项工作不仅有助于在组织工程和再生医学中寻找佳材料,也为肿瘤治疗和病理性血管再生提供了新的治疗策略。在生物材料设计和治疗一些病理情况方面具有特殊意义。本实验研究人员采用了多功能单细胞显微操作系统——FluidFM技术,实现了单个细胞的分离,单个细胞粘附力的测量。 [原理&应用简介]FluidFM技术如何测定细胞粘附力?众所周知,细胞在基质上进行单层培养时,吸附在基质表面时主要会产生两种不同类型的力,一种是细胞与基质之间的粘附力,另一种是细胞与细胞之间的粘附力。因此对于细胞粘附力来说,单个细胞的粘附力就是细胞与基质之间的作用力。而单层细胞的细胞粘附力则是细胞之间相互作用力和细胞基质与细胞之间作用力之和。如下图所示:因此只要同时测定单个细胞粘附力即可得到细胞与基质之间的相互作用力,而细胞间的相互作用力则可以通过同时测量单层细胞的细胞粘附力和单个细胞的粘附力做差得到,如下公式所示:Force cell-cell ≌ Force Monolayer – Force Indiv.cellFluidFM测量力学步骤与一般的原子力显微镜十分类似,但是操作却远比原子力显微镜简单,这得益于FluidFM有的中空探针。这种探针无需像普通原子力探针一样对探针进行修饰或者将细胞提前粘连在探针上,可以直接在液体中原位抓取细胞,完成粘附力测定,并且在测量后探针仍然可以继续进行测试,并且无需对探针进行更换或再修饰。FluidFM技术测量单细胞力谱的基本流程。仅需操作鼠标系统即可自动完成对细胞的抓取和粘附力的测量。此外FluidFM系统会自动记录探针运动轨迹和力学曲线,如上图中所示当探针开始靠近细胞后,探针表面开始出现压力变化,当系统达到设定力学值后系统会自动停止下降并开始施加负压抓住细胞。随着探针开始上升,细胞给予探针的拉力随之增高,并逐渐达到临界,随后细胞脱离基质,探针受力趋近于零,而这一过程中探针受力的大值即为细胞粘附力。FluidFM技术测量HeLa细胞核CHO细胞的粘附力。能够高通量测量单细胞粘附力谱FluidFM测量粘附力十分智能化,仅需5分钟即可完成单个细胞的粘附力测定,一天可完成上百个细胞的测量,能够大幅度提升单细胞力谱测量的通量,让单细胞力谱研究变得简单、快速、高通量。 应用举例一:FluidFM技术测定衰老内皮细胞的力谱内皮细胞衰老导致细胞表型的改变与心血管疾病有着密切关系。随着细胞的衰老,细胞的粘附力等机械属性会有很大改变,因此对于细胞粘附力的研究将有助于理解细胞衰老的变化。Nafsika Chala等人利用FluidFM技术对血管内皮细胞与基底之间的粘附力进行研究发现,衰老的细胞与正常细胞存在着nN别粘附力差异。如下图所示:FluidFM技术用于衰老与正常细胞的单细胞粘附力测定。对比衰老小、大和正常细胞的细胞尺寸(a)、细胞粘附力(b)和细胞周长(c)及单细胞粘附力/面积(e)和单细胞粘附力/周长(f)的变化。研究者认为,衰老内皮细胞的粘附力增加是与细胞的粘着斑增加有关,表明衰老细胞能够加强与基质的相互作用从而防止内皮剥脱,但是受制于血流的影响这种能力受到了很大限制。 应用举例二:FluidFM揭示应力依赖性酵母交配中的分子相互作用性凝集素是芽殖酵母酿酒酵母介导细胞聚集交配的关键蛋白。交配细胞表达的互补凝集素类“a”型和“α”型的结合是促进细胞的凝集和融合的关键。Marion Mathelié-Guinlet等通过测量“a”型和“α”型结合的单个特定键的强度(~100 pN),发现延长细胞间的接触能够大地增加了交配细胞间的粘附力,而这种增强可能是由于凝集素的表达。FluidFM技术用于酵母属间交配过程单细胞力谱测量。MATa与MATα相互作用的示意图(a)和Fluid测量细胞间相互作用示意图(b)及测量结果(c);用DTT和DEPC药物刺激研究二硫键和His273对粘附的影响(d)、其示机制意图(e)和无粘附、DTT和DEPC粘附发生的概率(f);以及物理应力增强MATa和MATα细胞之间的粘合力(g)、发生频率(h)及破裂长度(i)。此外,研究组发现凝集素二硫键在粘附过程中起到了关键作用,而这一作用主要来自于α-凝集素的组氨酸残基His273。更为有趣的是,作者发现机械张力增强了相互作用的强度,这可能是由于激诱导凝集素构象从弱结合折叠状态转换成强绑定伸展状态导致。这项研究很好地展现了一种理解控制酵母性别的复杂机制的可能方法。 总结 细胞粘附力测定在细胞生命科学研究中起着至关重要的作用,然而传统手段中有着各种各样的局限性,主要原因是缺乏一种能够有效抓取细胞并进行力学测定的手段。现如今FluidFM技术在细胞粘附力测定中的使用,使得研究者们有了一种能够有效、低损的方式抓取细胞,配合原子力显微镜的测量的特性,真正意义上做到、无损、快速的测量单细胞粘附力,帮助研究者寻找细胞粘附力与细胞生命发展、肿瘤细胞转移之间的关系。
  • 中国扫描式电子显微镜行业发展现状分析,市场集中度高
    一、扫描式电子显微镜行业概述扫描电子显微镜(SEM)简称为扫描电镜,是用细聚焦的电子束轰击样品表面,通过电子与样品相互作用产生的二次电子、背散射电子等对样品表面或断口形貌进行观察和分析。根据我国SEM的研制过程,可将其SEM发展历程大致分为4个阶段:自行设计研制期、技术消化引进期、自主研发集中期、自主研发放缓期。资料来源:公开资料整理二、扫描式电子显微镜行业现状扫描电子显微镜属于高精密仪器,其产品单价相对高昂,因此国内个人对于扫描电子显微镜的需求量较小,一般都是高校、企业等需要。根据数据显示,2020年我国扫描式电子显微镜行业需求量360台,同比2019年的334台增长了7.78%。资料来源:公开资料整理近年来,中国扫描电子显微镜市场规模呈现逐年增长的态势,增长速度呈现下降趋势。2020年,中国扫描电子显微镜市场规模实现10.48亿元,同比增长2.95%。国内产品占据10%左右的市场份额,国外产品占据大部分市场份额。资料来源:公开资料整理相关报告:华经产业研究院发布的《2022-2027年中国扫描式电子显微镜行业市场运行现状及投资规划建议报告》三、扫描式电子显微镜行业市场格局我国扫描式电子显微镜主要应用于主要用于纺织、化工、印染、 仪器仪表 、材料分析、教学科研等许多领域。其中材料、化工领域是最大的应用市场,2020年市场占比为40.8%,其次为生物、医学领域,2020年市场占比为33.5%。资料来源:公开资料整理中国扫描电子显微镜的采购主体主要为高校、企业与科研机构。根据数据显示,中国扫描电子显微镜市场45%的采购主体为高校,企业和科研机构各占39%。即2020年,16.72亿元的中国扫描电子显微镜市场中,高校、企业和科研机构分别采购了约7.52亿元、6.52亿元和2.68亿元。资料来源:公开资料整理由于国内扫描电子显微镜的技术水平与国际先进水平有一定差距,中国的扫描电子显微镜行业市场主要被海外知名扫描电子显微镜生产企业所占据。市场集中度较高,CR4在75%以上。其中,市场占比最大的企业为蔡司,市场占比达到22%;其次为赛默飞(含飞纳),市场占比为21%。四、扫描电子显微镜行业相关企业在扫描电子显微镜产品布局方面,海外厂商的均已经应用了场发射电子枪技术,而我国除中科科仪和聚束科技外的其他品牌仍停留在分辨率和放大倍数较为逊色的钨灯丝扫描电镜阶段。此外,按国内扫描电子显微镜产品招投标的情况来看,受产品技术先进性影响,海外厂商扫描电子显微镜产品的平均价格也明显高于国内品牌。因为较高的技术壁垒,我国目前扫描电子显微镜的生产企业不多,其主要有中科科仪、聚束科技、国仪量子、泽攸科技和善时仪器等。这些企业均未上市,在市场占比方面,中科科仪是国产品牌中占比最大的企业,占全国市场的比重为7%,远低于国外品牌。
  • 广东省分析测试协会发布《表面化学分析 扫描探针显微镜数据存储格式(征求意见稿)》团体标准征求意见稿
    各有关单位及专家:由广东省分析测试协会组织制订的《表面化学分析 扫描探针显微镜数据存储格式》团体标准已完成征求意见稿,根据《广东省分析测试协会团体标准制修订工作程序》,现公开征求意见。欢迎各有关单位及专家提出修改意见,并请于2024年2月4日之前将《征求意见表》(附件3)反馈到下面指定邮箱。 联系人:1.丁喜冬,13535590010,Dingxd@mail.sysu.edu.cn2.协会秘书处,020-37656885-227,gdaia@fenxi.com.cn广东省分析测试协会2024年1月4日 附件:1. 《表面化学分析 扫描探针显微镜数据存储格式(征求意见稿)》2. 《表面化学分析 扫描探针显微镜数据存储格式(征求意见稿)》编制说明3. 征求意见表附件1 《表面化学分析 扫描探针显微镜数据存储格式(征求意见稿)》.pdf附件2 《表面化学分析 扫描探针显微镜数据存储格式(征求意见稿)》编制说明.pdf附件3 征求意见表.doc
  • 如海光电发布显微拉曼光谱仪 MR系列新品
    1. 产品简介显微拉曼测量系统,由光纤光谱仪、拉曼稳谱激光器、拉曼探头、LED光源、金相显微镜等部分构成,通过把光谱模块集成到显微镜上,实现拉曼光谱信息的测量。系统自由灵活,具备对微小区域实时成像和采集该区域物体拉曼光谱的能力,帮助用户快速对样品微观结构,微观光谱信息的测试和分析;相比于传统的拉曼光谱仪,MR拉曼光谱仪具有重现性好,测量速度快,灵敏度高等特点;适用于固体、粉末和液体等样品。主要应用领域为生物医疗、宝石鉴定、纳米材料、高分子材料、细胞探测等。2. 产品外观 3. 产品特点l空间分辨率和光谱分辨率高;l稳定性好;l耦合效率高。4. 产品参数物理参数MR532MR785整机尺寸300×200×62 mm整机重量3.7kg(不含显微镜)光谱范围200-4000cm-1200-3200cm-1波长分辨率激发波长532±1nm,线宽≤0.2nm785±0.5nm,线宽≤0.08nm激光功率稳定性≤2%RMS(@2hrs)激光器寿命5000hrs10000hrs电源电压100-240V AC@50/60Hz输出功率0-80mW可调滤光片激光截止深度OD8物镜无限远长工作距平场消色差金相物镜10X 20X 50X转换器内定位5孔转换器CCD成像可成像工作温度0-45℃工作湿度5%-80%机架、照明反射机架,低手位粗微同轴调焦机构。粗调行程28mm,带平台位置上下调节机构。最大样品高度78mm,微调精度0.002mm。带有防止下滑的调节松紧装置和随机上限位装置。内置100-240VAC 50/60Hz宽电压系统。反(落)射照明器,柯拉照明系统,带视场光阑与孔径光阑,中心可调。带斜照明装置。100-240V宽电压,单颗大功率5W LED,暖色载物台双层机械移动平台,低手位X、Y方向同轴调节;平台面积175mm×145mm,移动范围:76mm×42mm。透反射玻璃载物台板 5. 应用领域l生物医疗l生物细胞检测l石油化工l材料分析l光学实验教学l纳米材料表征l宝石鉴定6. 操作步骤?显微成像操作步骤:1) 使用HDMI连线连接相机和显示屏,连接相机DC 5V电源 2) 连接显微镜底座背部220V电源,显微镜底部左右两端分别为透射和反射的照明光源开关,依据所选应用选择照明开关和光照亮度;3) 旋转转换器选择合适倍率物镜;4) 调节三维平台,聚焦物体使目标成清晰像。?拉曼测量操作步骤: 1) 在计算机上安装UspectralPro软件,软件安装过程中,会自动安装光谱仪驱动程序; 2) 电源接口连接5V/2A电源, 用USB数据线将光谱仪与计算机连接; 3) 打开UspectralPro软件进行激光器、光谱仪参数控制(使用说明详见UspectralPro软件使用说明书); 4) 给探头安装好需要的采样附件后,将探头对准样品,操作UspectralPro软件对需检测的样品进行数据采集; 5) 采集完数据后,可用UspectralPro软件进行数据处理。 创新点:显微拉曼测量系统,由光纤光谱仪、拉曼稳谱激光器、拉曼探头、LED光源、金相显微镜等部分构成,通过把光谱模块集成到显微镜上,实现拉曼光谱信息的测量。系统自由灵活,具备对微小区域实时成像和采集该区域物体拉曼光谱的能力,帮助用户快速对样品微观结构,微观光谱信息的测试和分析;相比于传统的拉曼光谱仪,MR拉曼光谱仪具有重现性好,测量速度快,灵敏度高等特点;适用于固体、粉末和液体等样品。主要应用领域为生物医疗、宝石鉴定、纳米材料、高分子材料、细胞探测等。 显微拉曼光谱仪 MR系列
  • 共聚焦和光片显微镜将继续成为光学显微技术基石——牛津仪器ANDOR谈高端光镜
    光学显微镜已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,为了满足蓬勃发展的生命科学领域不断产生的新的需求,光学显微镜在成像速度、成像深度、克服光毒性等许多方面也不断发展出新的技术。仪器信息网特别关注高端光学显微镜的技术发展和在生命科学领域的应用进展,并广泛向国内外高端光学显微镜企业约稿(投稿邮箱:lizk@instrument.com.cn),帮助广大用户了解相关技术与应用进展。本篇为牛津仪器ANDOR供稿,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,在生命科学等领域被广泛应用;2009年,联合推出sCMOS相机,被广泛应用于生命科学、材料科学、物理科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功;近日,ANDOR又推出了BC43台式共聚焦显微镜新产品,操作简便可帮助用户提高工作效率。跟随本文,全面了解这家成立32年的公司,其“一步一个脚印”的发展历程、他们对当前光学显微镜技术和应用现状的解读以及技术未来发展趋势的展望。仪器信息网:请回顾一下贵公司光学显微镜技术的发展历程。1989年的一个下午,爱尔兰岛东北部的贝尔法斯特女王大学物理系的Donal Denvir发现当时任何一款相机都无法满足实验检测的需求,他下定决心开始研制一台全真空密封的相机来支持自己的研究应用。新研制的相机经过Andor创始团队不断精心改进,成功应用于各种成像与光谱研究。Andor对显微镜技术的重大贡献是2002年推出了第一台EMCCD(电子倍增电荷耦合器件)相机iXon,这种超灵敏的相机带来了新的契机,能够检测在显微镜下观察的样品中的单分子荧光信号。2005年,ANDOR推出的Revolution活细胞成像系统,iXon与转盘技术的强大组合,大大改善了转盘共聚焦在高对比度活细胞显微成像中的效用,以及对活体样品进行三维成像的能力,赢得了行业用户的广泛关注。2012年,ANDOR将EMCCD现有帧率提升3倍,显著提高了产品性能,并帮助研究人员更多地了解生物样本的快速动态事件。2009年,ANDOR推出sCMOS相机Neo, 此后sCMOS成为使用最广泛的科学相机技术,并且广泛应用于显微镜领域。sCMOS提供了比之前更高的分辨率和更快的帧速率,因此促进了对细胞,特别是细胞内动态和细节的更深入了解。 这种sCMOS技术与EMCCD技术相辅相成,同一台显微镜下可以兼顾灵敏度或者分辨率和速度。同年,ANDOR在显微系列产品组合中增加了两个光刺激模块Mosaic和MicroPoint。Mosaic基于DMD方法,可以在亚细胞或更高分辨率下实现多个照明区域的精确定义。这个工具被用来对显微镜下观察的样品进行光活化、转换或漂白。 这些方法是进行亚细胞实验和了解蛋白质、亚细胞分隔和细胞器的时空行为的有力方法,或者在更大的范围内跟踪大群体中的单个细胞。 该技术发明之前,显微镜只是一种被动观察的工具,但现在可以在显微镜下主动研究细胞和系统生物学。 最近有研究显示,Mosaic与光遗传学相结合,可以成为一种特别有用的工具,这种方法可以促进信号和其他通路的特定光控制。 MicroPoint具有类似的优势,但可用于:(a) 炎症、伤口和愈合与发育的消融研究;(b) DNA损伤,创造DNA断裂的模型,这是细胞可能成为癌症的早期触发因素。这个模型被用来理解DNA修复如何在治疗中发挥作用。2010年,ANDOR收购了Bitplane,将高端三维图像可视化和分析软件Imaris纳入显微产品组合。 Imaris提供广泛的工具来分析一些研究领域的三维图像数据,包括细胞和发育生物学、神经科学、癌症研究和组织分析。2016年,ANDOR推出 Dragonfly,这是为研究人员提供的完整的显微成像解决方案。荣获行业大奖的Dragonfly 500通过转盘设计的改进(详见下文),并结合(a)TIRF(全内反射荧光显微镜),这是一种专门用于细胞膜成像的强大技术(如受体周转和囊泡对接);(b)基于激光的宽视场显微镜,用于微弱光的荧光成像;(c)用于超分辨率成像的光学器件(包含3D成像)。 Dragonfly使研究人员有能力在一台显微镜上对细胞进行比以往更详细的研究。Dragonfly在以下几个方面对现有的转盘技术进行了重大改进:(1)引入Borealis专利照明技术,在基于微透镜的转盘共聚焦显微镜中提供交叉视野照明。这使研究人员在更准确的图像分析、更高质量的大面积和样品拼接的蒙太奇成像中受益。(2)更好的信噪比,实现更高的对比度成像:使用价格较低的低功率激光器,或为dSTORM和DNA-PAINT超分辨率成像或基于图像的单细胞原位转录组学等技术提供更多功率。(3)更稳定的照明源,维护费用低。• 实时样品体积渲染,用户能够快速了解他们的实验进展,并对修改方案做出早期决定和结论。• 更低的仪器本底噪音使研究者能检测到更弱的荧光信号,观察到更细致的生物学现象。• 独特的转盘设计,在保持高速采集速度的同时,可以对样品进行更深入的成像(从数百微米到毫米尺度)。这也意味着转盘技术可以对大型固定样品进行成像,因此为组织成像以及斑马鱼和果蝇等大型模式生物的成像提供了一个高产的解决方案。2017年,ANDOR推出了SRRF-Stream+ ,这是一种超分辨率技术,可以轻松地添加到现有的相机中,或与Dragonfly等显微成像解决方案一起使用。这项技术打破了光学显微镜系统的自然分辨率限制,从200纳米下降到50纳米。现在,研究人员可以观察到他们以前看不到的结构,可以从图像中了解更多信息。 此外,SRRF-Stream+ 无需专门的光学设备或方法来执行,并且可以与几种不同的成像技术一起使用,因此,它可以为更多研究团体所用。2021年,岁末当下,ANDOR推出了BC43台式共聚焦显微镜。一个完整的转盘共聚焦解决方案被整合在如此一个不透光的小设备里。BC43操作非常直观和简单,即便是显微镜新手也能轻松掌握。BC43可以放在普通的实验台上,成为高效实验室工作流程的一部分。简单的操作流程和较少的维护需求使这款设备能够给用户带来非常高的工作效率。此外,BC43内含Dragonfly中的Borealis照明和一些新技术包括内置的一个新激光引擎以实现更小的占地面积。仪器信息网:当前贵公司主推的产品和技术有哪些。贵公司在高端光学显微镜方面有哪些独具优势的技术?我们公司目前推广和之前描述的显微成像产品是• 用于显微镜的灵敏科学相机EMCCD 和 sCMOS• Dragonfly系统• BC43台式转盘共聚焦显微镜• 激光耦合器• 用于显微镜的光刺激设备Mosaic和MicroPoint• 显微镜用的光谱仪和显微制冷机• 三维可视化分析软件Imaris• 超分辨技术SRRF-Stream+ (技术优势参考上述内容)仪器信息网:贵公司高端光学显微镜在生命科学研究中有哪些应用?目前Andor的转盘共聚焦显微镜灵敏度高、成像速度快、分辨率好,可进行3D+动态立体信息探索,在细胞生物学、发育生物学、肿瘤生物学、疾病与免疫学、微生物学、神经生物学、生物物理学等不同领域均表现卓越。细胞生物学家们借助Dragonfly探究细胞内精细的亚细胞结构如线粒体成像、细胞膜动态、细胞周期与分裂、微管动力学、胞内运输、囊泡运动。同时,作为研究发育和厚组织的利器,Dragonfly可以观测受精卵及早期胚胎发育、肢体形成、模式生物如(果蝇、线虫、斑马鱼)的完整生物体成像、类器官发育分化、血管及血流变化;在神经生物学和植物学等方向,借助高速特点可以进行单分子和钙成像,对于透明脑、体外培养的活组织及切片,三维成像和活体培养极为关键;肿瘤或疾病免疫方向的固定的大组织切片、石蜡切片、透明化组织、病原宿主的互作、受体循环与定位等;以及蛋白互作、单分子运动、内吞外排、膨胀显微镜、空间转录组多维成像等。仪器信息网:从整个行业的角度,对于目前的高端光学显微技术,您比较看好哪些?还有哪些问题亟待解决?未来光学显微镜的技术发展趋势如何?我们相信,任何有利于更快、更深、高对比度成像的技术都是可以看到需求继续增长的关键领域。 因此,共聚焦和光片显微镜将继续成为受欢迎的显微技术基石。我们将看到越来越多的研究会引入光操纵,从而更好地了解细胞内信号通路,以及细胞群体间(如神经细胞)如何相互沟通。Andor有几十年丰富的基础生物学研究,现在正是将这些知识转化为未来临床和社会经济相关问题解决方案的基础,包括植物生物学和动物生物学。这需要进行重大调整,将细胞层面的基础研究纳入多细胞、器官和整个生物体的范畴。未来显微镜在光学能力和提高生产力方面都需要扩大规模。为了支持对样品进行更深入的成像,特别是自从透明化组织的技术出现后,存在着补偿由于折射率不匹配而产生的光学畸变的挑战,以及其他来自样品的光学限制。这方面的潜在解决方案之一是使用自适应光学技术。目前有一些想法已经发表,但还有很多东西需要开发,并使之成为一个光学上高效和紧凑的解决方案,以获得良好的商业解决方案。此外,显微镜需要从 "专家 "技术转变为科学界更广泛、普适的技术。它可以为特定主题(如癌症)完整研究的一部分提供强大的支持。我们看到,对于越来越多的研究人员而言显微镜的使用是其工作流程和发表论文的关键环节。基于对此理解,我们历时达五年之久设计了一键成像的台式共聚焦BC43,将3D+成像融入到普通实验室的日常工作,减除了复杂操作和仪器放置的种种烦扰和顾虑。我们认为应该对图像采集和分析协同结合有所期待,分析可以用来帮助复杂的显微实验的自动化,使显微镜操作步骤实时适应正在研究的样品中发生的情况。通过Dragonfly及BC43结合Fusion和Imaris可以实现从样品图像采集到分析的无缝衔接,这种捕捉-分析相结合的工作流程将促进易用性,使更多的研究人员能够运用高级的显微成像方法。未来如果对一些典型的生物医药应用案例的参数进行提取优化,结合人机交互和机器学习的先进算法,帮助研究者进行实时获取批量数据特征,在观测过程中及时优化调整。疫情以来,越来越多的研究工作者采用线上办公形式,此外,设备过度占用日常科研本就繁忙用户或管理员的时间,亟需各种长时程高频使用的设备包括显微成像及分析趋向于在线自动化远程监测、控制。智能化的人机交互及不同端口多界面控制、物联网设备的稳定运转及报告反馈的联网尤为重要。利用AR、VR及远程全息投影等方式,也可针对设备使用、培训、考核进行更多方案的优化。Dragonfly作为某些平台中心和课题组的成像利器,常年全日无休稳定运转,也给了我们信心未来可以在无人值守及远程控制上进一步探索。如今,随着采集大量图像数据能力的提高,所有研究机构和公司,都面临的一个至关重要的问题:采集的数据在进行转移、存储和分析方面均存在瓶颈,耗费过多的金钱、时间、人力成本。此外,确保分析软件包能加载导入数据并进行有效地分析是一个需要持续关注的问题,需要开发团队对大数据有深层的理解并不懈改善算法和架构。对于大数据分析而言,存储和算力的高要求,不断优化系统配置可能难以覆盖爆炸式的增长,业内伙伴和用户的共同努力,有望能建立云端强大的数据转移、存储、分析体系,以分配更适合终端需求的相应资源,安全、高效、灵活的解决不同需求。在此过程中,如何更好的促进共享、保护隐私值得关注和讨论。仪器信息网:从整个行业的角度,您如何评价目前高端光学显微镜的应用情况?应用过程中还有哪些亟待解决的问题?未来光学显微镜应用将会如何发展?基于对学术设计及对概念验证的大力投入,高端光学显微技术目前发展迅速,挑战在于如何将其精炼成易于商业化的、强大易用的解决方案,从而有助于探索一系列的科学问题和不同应用。这些解决方案的范围包括现有技术的持续进步,如用于体外实验用到的共聚焦和光片,也有越来越多的人需要使用当下这些技术和其他尚未建立的光学技术,以进一步提升对体内或在体实验模型的成像,后者是药物发现和其他疾病治疗转化医学领域的重要环节,需要实验设计和成像设备选型上在NIRⅠ、Ⅱ区的标记、照明、检测上有更多适配。应用方面,先进的科学研究机构、CRO公司和医学院基于平台和服务商的稳定支持,能够基于现有技术对系统进行改造,可以支撑更复杂的需求,如微流控装置或一些电磁场刺激及重力场变化。未来我们相信,更多涉及人类幸福健康的行业团队包括生命科学、医学、化学、材料学、半导体、农业、太空科学将利用光镜发现、验证自己的理论,并结合先进的技术如精细力学控制、3D打印等对目标物进行观测、改造。仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距?国产光学显微镜在中低端显微镜市场占领份额较多,如江西凤凰、麦克奥迪、永新光学等品牌,或作为高端品牌的元器件代工厂,厚积薄发,未来一定为国内光镜行业的发展奠定基础。目前主流的高端光镜主要依赖进口,欧美日品牌进入市场较早,占市场主导,国内高端显微镜目前在蓬勃发展,很多高等研究机构如清北、中科院生物物理所、苏州医工所、西安交大等和初创企业(多集中在粤港澳和江浙地区)都在进行研究及转化的突破创新,组建的成像系统多处于实验室技术打磨阶段或迈入市场不久,fMOST、LBS、 HiS-SIM已经开始被市场逐步接受,但其零部件还是进口为主,国产替代之路尚需长期努力和紧密合作。Andor也期望和国内外业内伙伴有更多合作,不论是元器件模块、显微成像系统、数据分析软件都可以多方协作,作为整体解决方案应对市场需求。对于商业化的显微镜而言,稳定、易用的高性能体验及使用场景的匹配是整个行业要不断精益求精的重要方向,自然会有市场越来越多的认可。仪器信息网:您认为,未来几年高端光学显微镜的热点市场需求有哪些?在未来几年,我们认为对高端光学显微镜的最热需求将集中在多维活细胞高速动态成像、超分辨成像、类器官研究、大型组织成像(透明化组织、活体组织体外培养)、单细胞原位空间转录组学领域、动物活体深层成像。基于应用的定制化显微成像系统开发将为学术研究、产业、商业提供绝佳的资源并富有成效进行循环利用。这些需求基于多维时空动态成像,联合先进的流式分析分选、高内涵、质谱成像和单细胞及转录组测序技术对物质代谢、基因和蛋白等的时空表达变化图谱进行同步解析,能够给研究工作带来前所未有的海量信息,透过更多跨领域合作和大数据共享分析,打破认知边界和信息壁垒,服务生命健康。不论是高端光学显微成像或其他高精度检测设备都需要合适的高速高灵敏度的CCD/sCMOS检测器,牛津仪器Andor作为科学相机厂家,已经在生命科学、物理科学的深耕多年,未来一定能够帮助更多的客户及合作伙伴们在光学显微及其他先进成像应用提供高质量的产品和全方位的服务。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制