当前位置: 仪器信息网 > 行业主题 > >

天文相机

仪器信息网天文相机专题为您提供2024年最新天文相机价格报价、厂家品牌的相关信息, 包括天文相机参数、型号等,不管是国产,还是进口品牌的天文相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合天文相机相关的耗材配件、试剂标物,还有天文相机相关的最新资讯、资料,以及天文相机相关的解决方案。

天文相机相关的资讯

  • 搭配FLIR机器视觉相机,美国天文摄影师清晰拍摄“太阳黑子”~
    对于“太阳黑子”,古代的时候就有过记载,但是当时人们看到的“太阳黑子”是被理解为一些“神灵现象”。但科技的发展,让我们知道了太阳黑子即太阳表面的低温较暗区域,其每11年爆发一次,数量在太阳极大期增加,在太阳极小期减少,那么它到底长什么样子呢?众所周知人的肉眼不可以直视太阳但使用望远镜配合保护眼睛的特制太阳滤光镜就可以放心观察太阳啦~今天小菲就和大家一起揭秘太阳黑子的模样使用FLIR Grasshopper Express 6.0 MP Mono FireWire 1394b相机,内含 Sony ICX694 CCD 传感器拍摄的图片。Alan Friedman是一位天文爱好者和天文摄影师,他在位于纽约州布法罗市的自家后院中拍下了很多撼人心魄的太阳影像。他一直使用各种型号的相机(像素从30万到600万不等),并与采用氢α滤光镜 (656.3 nm) 的太阳望远镜组合进行拍照。以下照片是由不同曝光次数的太阳影像合并或叠加在一起制作而成,其中的细丝是日珥的最终形态。暗色区域是小太阳黑子,而较亮谱斑(点)是高度磁化区域。使用了以 Sony ICX274 CCD 传感器为特色的FLIR Grasshopper 2.0 MP Mono FireWire 1394b来拍摄大黑子群的拍摄使用了带Sony ICX618 CCD 的 FLIR Flea3 0.3 MP Mono FireWire 1394b 相机太阳黑子特写的拍摄使用了白光太阳滤光片。太阳黑子不是静止不动的,而是会在太阳表面游走,并可能持续数天到数周时间。太阳的这些低温区域具有强磁场,可以向太空发射质子和电子,从而触发地球上的北极光。太阳黑子是由太阳内部出现并通过光球层的强磁场而产生的。太阳黑子往往以相反磁极成对运动,太阳自转周期大约为25天。因此,我们可在大约一周时间内观测到相同的太阳黑子。拍摄到上面这样清晰的影像是非常困难的,因为大气升温造成的光反射还会使星光在夜晚忽明忽暗,因此选择合适的相机非常重要!为了获得如此清晰的影像,Alan拍摄了无数张照片,然后将图像叠加起来进行处理,以便保留到最清晰的图像。Alan拍摄多幅图像,然后再用各种程序进行处理。Alan为太阳望远镜配备了FLIR机器视觉相机,之所以选择FLIR,也是经过多方对比,FLIR相机性能卓越、尺寸小巧、重量轻且功耗低,非常适合天文拍摄。大气的易变性(尤其是在白天)是获得清晰影像的一个主要障碍。为了获得清晰影像,Alan拍摄了90秒流视频,然后从中选取最清晰的帧,最终拍摄到满意的图片。升级款:FLIR Blackfly® S随着FLIR技术的不断创新发展,相应的升级款也研发出来了,它们的性能更好,质量更高,比如FLIR Blackfly® S,它采用业内先进的冰块外形传感器,功能强大,让您可以轻松生成所需的精确图像,并加速您应用程序开发。Blackfly S提供GigE、USB3、套装和板级版本,您可以根据需要随心选择~FLIR Blackfly S USB3FLIR机器视觉相机不仅协助摄像师拍摄太阳黑子还去到火星拍摄过探测器着陆的精彩瞬间
  • 伊朗国家天文台望远镜首获观测图像
    天文学家近日在德黑兰宣布,耗资2500万美元伊朗国家天文台(INO)看到了“第一缕曙光”,其3.4米口径的世界级光学望远镜走出了去年的建设“阴霾”,正式投入运行,并获得了首张图像。这是伊朗科学界的一个重要里程碑。“这一刻,我们等了太久。”德黑兰基础科学研究所(IPM)天文学家Habib Khosroshahi说。INO位于伊朗中部3600米的加尔加什山上,其科学之旅始于20年前,当时面临着巨大的挑战。“项目刚开始时,似乎只是个梦。因为伊朗此前没有尝试过作这种规模的事情。”英国剑桥大学天文学家、INO国际咨询委员会主席Gerry Gilmore表示。去年,一些前INO的工作人员表达了对INO设计变更是否会影响其性能的担忧。“现在这些疑虑已经消除了。”INO国际咨询委员会委员Lorenzo Zago表示。据《科学》报道,INO于9月27日打开其穹顶进行校准,第二天晚上拍摄了一对距离地球约3.19亿光年的星系——Arp 282的图像。该图像分辨率为0.8角秒。第二张图像的分辨率则为0.65角秒,接近INO所在地大气条件的所能达到的分辨率极限。目前,工程师们还要完成诸如集成软件、微调主动学器件、安装第一台科学仪器——高质量成像相机等任务。Khosroshahi还希望与国际团队建立合作关系,给INO安装最先进的仪器。
  • 西光所自由曲面冷光学红外探测在天体测量领域成功应用 顺利获得天文“首光”
    近日,由西光所飞行器光学成像监视与测量技术研究室设计研制的制冷中继长波红外探测终端,配合总体单位完成在云南天文台丽江观测站2.4米口径天文望远镜外场的装机、调试和标定工作,成功实现了接近极限灵敏度的天文目标探测,顺利获得天文“首光”,助力总体填补国内天体目标特性测量领域的空白。  这也是西安光机所进入我国天体目标特性测量领域的首次尝试。作为研究所主责主业作用发挥的全新应用领域,项目组充分讨论用户应用需求,针对关键核心问题多次请教相关领域的技术专家,紧密与总体单位的沟通迭代,在系统小型化、大视场和超灵敏的要求下,最终确定采用冷光学自由曲面探测系统实施方案。飞行器室项目团队在前期设计阶段攻坚克难、集智攻关,先后攻克了大视场离轴四反自由曲面中继系统设计、低温光学组件柔性支撑和装调、全系统红外背景辐射仿真和抑制、真空恒温器微振动主被动隔离等关键技术。整个项目仅历时10个月便完成了光学系统设计以及设备集成工作,在4个多月的连续观测中获得了大量高质量数据,充分验证产品性能指标的同时,也为总体后续的天体目标特性测量奠定了坚实的数据基础。  近年来,西安光机所在创新领域布局以及先进制造能力提升方面不断下大力气改革,激光通信终端、全铝自由曲面相机、红外衍射相机的成功发射,科研生产体系重组显效,大口径光学载荷装配能力顺利建成,基础研究与工程应用更加紧密融合等都充分说明改革“组合拳”获得预期。该项目的成功,也是改革的受益者,飞行器室、空间光子信息室、热控技术研究室、装校技术研究中心和检测技术研究中心等多个部门集中力量、通力协作,在加工和装配方面,解决了大陡度全铝自由曲面光学元件的加工难题 克服了低温光学组件制冷效率低以及全系统温度均匀性差的困难 实现了离轴多反冷光学系统的高精度快速装调和预置。除此之外,项目组还开展多项冷光学组件的指标检测方法研究和验证的工作,为日后在领域将路走宽走好做好筹划和准备。
  • 什么?韦布天文望远镜也用上了碲镉汞红外探测器?
    题注:韦布通过将冷却至极低温的大口径太空望远镜(预计是斯皮策红外天文望远镜的50倍灵敏度和7倍的角分辨率)和先进的红外探测器工艺相结合,带来了科学能力的巨大进步。它将为以下四个科学任务做出重要贡献:1. 发现宇宙的“光”;2. 星系的集合,恒星形成的历史,黑洞的生长,重元素的产生;3. 恒星和行星系统是如何形成的;4. 行星系统和生命条件的演化。而这一切,都离不开部署在韦布上的先进的红外探测器阵列! ============================================================近日,NASA公布了“鸽王”詹姆斯韦布望远镜拍摄的一张照片! 图1. 韦布拍的一张照片,图源:NASA 什么鬼?!这台花费百亿美金的望远镜有点散光啊… … 怕不是在逗我玩呢吧… … 别急,这确实是韦布望远镜用它的近红外相机(NIRCam)拍的一张照片。确切来说,这只是一张马赛克拼图的中间部分。上面一共18个亮点,每个亮点都是北斗七星附近的同一颗恒星。因为韦布的主镜由18块正六边形镜片拼接而成,之前为了能够塞进火箭狭窄的“货舱”发射升空,韦布连主镜片都折叠了起来,直到不久前才完全展开。但这些主镜片还没有对齐,于是便有了首张照片上那18个看似随机分布散斑亮点。对于韦布团队的工程师而言,这张照片可以指导他们接下来对每一块主镜片作精细调整,直到这18个亮点合而为一,聚成一个清晰的恒星影像为止。想看韦布拍摄的清晰版太空美图,我们还要再耐心等几个月才行。小编觉得,大概到今年夏天,就差不多了吧。=============================================================================中红外仪器MIRI如果把韦布网球场般大小的主反射镜,比作人类窥探宇宙的“红外之眼”的晶状体的话,韦布携带的中红外仪器,可以说就是这颗“红外之眼”的视网膜了。今天,小编要带大家了解的,就是韦布得以超越哈勃望远镜的核心设备——中红外仪器 (MIRI,Mid-infared Instrument)。图2. 韦布望远镜的主要子系统和组件,中红外仪器MIRI位于集成科学仪器模组(ISIM)。原图来源:NASA如图2所示,韦布望远镜的主、副镜片经过精细调整和校准后,收集来自遥远太空的星光,并将其导引至集成科学仪器模组(ISIM)进行分析。ISIM包含以下四种仪器:l 中红外仪器(MIRI)l 近红外光谱仪 (NIRSpec)l 近红外相机 (NIRCam)l 精细导引传感器/近红外成像仪和无狭缝光谱仪 (FGS-NIRISS)其中,最引人注目的,便是韦布望远镜的中红外仪器 (MIRI,Mid-infared Instrument) 。MIRI包含一个中红外成像相机和数个中红外光谱仪,可以看到电磁光谱中红外区域的光,这个波长比我们肉眼看到的要长。 图3. MIRI 将工作在 5 至 28 微米的中远红外波长范围。图源:NASAMIRI 的观测涵盖 5 至 28 微米的中红外波长范围(图3)。 它灵敏的探测器将使其能够看到遥远的星系,新形成的恒星,以及柯伊伯带中的彗星及其他物体的微弱的红移光。 MIRI 的红外相机,将提供宽视场、宽谱带的成像,它将继承哈勃望远镜举世瞩目的成就,继续在红外波段拍摄令人惊叹的天文摄影。 所启用的中等分辨率光谱仪,有能力观察到遥远天体新的物理细节(如可能获取的地外行星大气红外光谱特征)。MIRI 为中红外波段天文观测提供了四种基本功能:1. 中红外相机:使用覆盖 5.6 μm 至 25.5μm 波长范围的 9 个宽带滤光片获得成像;2. 低分辨光谱仪:通过 5 至 12 μm 的低光谱分辨率模式获得光谱,包括有狭缝和无狭缝选项,3. 中分辨光谱仪:通过 4.9 μm 至 28.8 μm 的能量积分单元,获得中等分辨率光谱;4. 中红外日冕仪:包含一个Lyot滤光器和三个4象限相位掩模日冕仪,均针对中红外光谱区域进行了优化。韦布的MIRI是由欧洲天文科研机构和美国加州喷气推进实验室 (JPL) 联合开发的。 MIRI在欧洲的首席研究员是 Gillian Wright(英国天文技术中心),在美国的首席研究员是 George Rieke(亚利桑那大学)。 MIRI 仪器科学家,是 英国天文技术中心 的 Alistair Glasse 和 喷气推进实验室 的 Michael Ressler。 ===============================================================================深入了解MIRI的技术细节 图4. 集成科学仪器模组(ISIM)的三大区域在韦布上的位置。图源:NASA 将四种主要仪器和众多子系统集成到一个有效载荷 ISIM 中是一项艰巨的工作。 为了简化集成,工程师将 ISIM 划分为三个区域(如图4): “区域 1” 是低温仪器模块,MIRI探测器就包含在其中。这部分区域将探测器冷却到 39 K,这是必要的最初阶段的冷却目标,以便航天器自身的热量,不会干扰从遥远的宇宙探测到的红外光(也是一种热量辐射)。ISIM和光学望远镜(OTE)热管理子系统提供被动冷却,而使探测器变得更冷,则需使用其他方式。“区域 2” 是ISIM电子模块,它为电子控制设备提供安装接口和较温暖的工作环境。“区域 3”,位于航天器总线系统内,是 ISIM 命令和数据处理子系统,具有集成的 ISIM 飞行控制软件,以及 MIRI 创新的低温主动冷却器压缩机(CCA)和控制电子设备(CCE)。 图5. MIRI整体构成及各子系统所处的区域。图源:NASA图5示出了MIRI的整体构成及其子系统在韦布三大区域中的分布情况。包含成像相机,光谱仪,日冕仪的光学模块 (OM) 位于集成科学仪器模块 (ISIM) 内,工作温度为 40K。 OM 和焦平面模块 (FPM) 通过基于脉冲管的机械主动冷却器降低温度,航天器中的压缩机 (CCA) ,控制电子设备 (CCE) 和制冷剂管线 (RLDA) 将冷却气体(氦气)带到 OM 附近实现主动制冷。仪器的机械位移,由仪器控制电子设备 (ICE) 控制,焦平面的精细位置调整,由焦平面电子设备 (FPE) 操作,两者都位于上述放置在 ISIM 附近的较温暖的“区域 2”中。 图6. ISIM低温区域1(安装于主镜背后)中的MIRI结构设计及四个核心功能模块的位置。原图来源:NASA MIRI光模块由欧洲科学家设计和建造。来自望远镜的红外辐射通过输入光学器件和校准结构进入,并在焦平面(仪器内)在中红外成像仪(还携带有低分辨率光谱仪和日冕仪)和中等分辨率光谱仪之间分光。经过滤光,或通过光谱分光,最终将其汇聚到探测器阵列上(如图6)。 探测器是吸收光子并最终转换为可测量的电压信号的器件。每台光谱仪或成像仪都有自己的探测器阵列。韦布需要极其灵敏的,大面积的探测器阵列,来探测来自遥远星系,恒星,和行星的微弱光子。韦布通过扩展红外探测器的先进技术,生产出比前代产品噪音更低,尺寸更大,寿命更长的探测器阵列。 图7. (左)韦布望远镜近红外相机 (NIRCam) 的碲镉汞探测器阵列,(右)MIRI 的红外探测器(绿色)安装在一个被称为焦平面模块的块状结构中,这是一块1024x1024 像素的砷掺杂硅像素阵列(100万像素)。图源:NASA。 韦布使用了两种不同材料类型的探测器。如图7所示,左图是用于探测 0.6 - 5 μm波段的近红外碲镉汞(缩写为 HgCdTe或MCT)“H2RG”探测器,右图是用于探测5 - 28 μm波段的中红外掺砷硅(缩写为 Si:As)探测器。 近红外探测器由加利福尼亚州的 Teledyne Imaging Sensors 制造。 “H2RG”是 Teledyne 产品线的名称。中红外探测器,由同样位于加利福尼亚的 Raytheon Vision Systems 制造。每个韦布“H2RG”近红外碲镉汞探测器阵列,有大约 400 万个像素。每个中红外掺砷硅探测器,大约有 100 万个像素。(小编点评:以单像素碲镉汞探测器的现有市场价格计算,一块韦布碲镉汞探测器阵列的价格就要四十亿美金!!!为了拓展人类天文知识的边界,韦布这回真是不计血本啊!) 碲镉汞是一种非常有趣的材料。 通过改变汞与镉的比例,可以调整材料以感应更长或更短波长的光子。韦布团队利用这一点,制造了两种汞-镉-碲化物成分构成的探测器阵列:一种在 0.6 - 2.5 μm范围内的汞比例较低,另一种在 0.6 - 5 μm范围内的汞含量较高。这具有许多优点,包括可以定制每个 NIRCam 检测器,以在将要使用的特定波长上实现峰值性能。表 1 显示了韦布仪器中包含的每种类型探测器的数量。 表1. 韦布望远镜上的光电探测器,其中MIRI包含三块砷掺杂的硅探测器,一块用于中红外相机和低分辨光谱仪,另外两块用于中分辨光谱仪。来源:NASA而MIRI 的核心中红外探测功能,则是由三块砷掺杂的硅探测器(Si:As)阵列提供。其中,中红外相机模块提供宽视场,宽光谱的图像,光谱仪模块在比成像仪更小的视场内,提供中等分辨率光谱。MIRI 的标称工作温度为7K,如前文所述,使用热管理子系统提供的被动冷却技术无法达到这种温度水平。因此,韦布携带了创新的主动双级“低温冷却器”,专门用于冷却 MIRI的红外探测器。脉冲管预冷器将仪器降至18K,再通过Joule-Thomson Loop热交换器将其降至7K目标温度。 韦布红外探测器工艺及架构 图8. 韦布太空望远镜使用的红外探测器结构。探测器阵列层(HgCdTe 或 Si:As)吸收光子并将其转换为单个像素的电信号。铟互连结构将探测器阵列层中的像素连接到 ROIC(读出电路)。ROIC包含一个硅基集成电路芯片,可将超过 100万像素的信号,转换成低速编码信号并输出,以供进一步的处理。图源:Teledyne Imaging Sensors 韦布上的所有光电探测器,都具有相同的三明治架构(如上图)。三明治由三个部分组成:(1) 一层半导体红外探测器阵列层,(2) 一层铟互连结构,将探测器阵列层中的每个像素连接到读出电路阵列,以及 (3) 硅基读出集成电路 (ROIC),使数百万像素的并行信号降至低速编码信号并输出。红外探测器层和硅基ROIC芯片是独立制备的,这种独立制造工艺允许对过程中的每个组件进行仔细调整,以适应不同的红外半导体材料(HgCdTe 或 Si:As)。铟是一种软金属,在稍微施加压力下会变形,从而在探测器层的每个像素和 ROIC阵列之间形成一个冷焊点。为了增加机械强度,探测器供应商会在“冷焊”工艺后段,在铟互连结构层注入流动性高,低粘度的环氧树脂,固化后的环氧树脂提高了上下层的机械连接强度。 韦布的探测器如何工作?与大多数光电探测器类似,韦布探测器的工作原理在近红外 HgCdTe 探测器和中红外 Si:As 探测器中是相同的:入射光子被半导体材料吸收,产生移动的电子空穴对。它们在内置和外加电场的影响下移动,直到它们找到可以存储的地方。韦布的探测器有一个特点,即在被重置之前,可以多次读取探测器阵列中的像素,这样做有好几个好处。例如,与只进行一次读取相比,可以将多个非重置性读取平均在一起,以减少像素噪声。另一个优点是,通过使用同一像素的多个样本,可以看到信号电平的“跳跃”,这是宇宙射线干扰像素的迹象。一旦知道宇宙射线干扰了像素,就可以在传回地球的信号后处理中,应用校正来恢复受影响的像素,从而保留其观测的科学价值。 对韦布探测器感兴趣的同学们,下面的专业文献,可供继续学习。有关红外天文探测器的一般介绍,请参阅Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115有关候选 NIRSpec 探测器科学性能的概述,请参阅Rauscher, B.J. et al. 2014, "New and BetterDetectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749有关韦布探测器的一般介绍,请参阅Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)" 参考资源:[1]. 亚利桑那大学关于MIRI的介绍网页. http://ircamera.as.arizona.edu/MIRI/index.htm[2]. Space Telescope Science Institute 关于MIRI的技术网页 https://www.stsci.edu/jwst/instrumentation/instruments[3]. 韦布的创新制冷设备介绍 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html
  • 香山科学会议聚焦大型射电天文望远镜
    近日,香山科学会议第501次学术讨论会在京闭幕。会上,专家呼吁目前我国已拥有多项世界级天文学先进仪器,应进一步对仪器设备关键技术的发展提出要求,完善大型设备的科学目标。   随着我国射电天文学研究的发展,科学家相继提出了一批大型射电望远镜的建设方案,包括已建成的天马望远镜,在建的500米口径球面射电望远镜(FAST),正在计划中的奇台110米望远镜(QTT)以及正在构想阶段的COME空间卫星等。   与会专家认为,射电天文大型设备的建成和运行将使我国在天文学拥有更多世界级的先进仪器,同时也将为中国从事大科学装置项目、引领射电观测领域的国际前沿提供必要条件,但并非充分条件。   会议执行主席、中科院国家天文台研究员南仁东指出,我们亟须抓住这一难得的机遇,整合国内一线实测射电天文学家与仪器设备专家的研究力量,对仪器设备关键技术的发展提出要求,共同完善大型设备的科学目标,通过开展国际合作,力争提升我国在射电天文领域的自主创新能力,并取得国际一流的成果。
  • 我国大视场巡天望远镜 主焦相机研制取得进展
    4月10日,记者从中国科学技术大学了解到,由该校与中国科学院紫金山天文台组成的研制团队,顺利完成了大视场巡天望远镜的科学级电荷耦合器件(CCD)测试系统及其主焦相机——CCD290相机的验证工作,相关成果日前发表国在际著名天文仪器杂志《天文望远镜仪器与系统》上,为主焦相机的研制奠定了坚实的基础。据悉,大视场巡天望远镜主镜口径为2.5米,采用国际领先的主焦光学设计,能够提供大视场、高精度和宽波段的巡天能力,性能先进。望远镜配备大面阵7.2亿像素拼接CCD探测器,具备强大的巡天能力,能够每3夜巡天整个北天球一遍。该望远镜的主焦相机是望远镜的关键部件之一,预算占整个望远镜的三分之一,也是目前国内首个、国际领先的大视场主焦相机。由中国科学技术大学核探测与核电子学国家重点实验室王坚研究员带领的相机研制团队,对主焦相机的主要关键技术进行了攻关,其科学成像探测器由9片CCD290-99芯片拼接而成,同时具有用于主动光学的曲率传感器和导星传感器,是一个集“科学成像,波前探测,导星传感”的“三合一”功能强大的主焦相机。大视场巡天望远镜项目是中国科学技术大学与中国科学院紫金山天文台通过“科教融合”联合共建的重要天文装置,建成后将成为北半球巡天能力最强的光学时域巡天望远镜,填补国内乃至整个北半球大规模深度时域巡天专用监测设备空白,对发展大规模时域巡天新方向,提升我国天文图像巡天的观测能力起到重要作用。预期将在时域天文、太阳系天体和近邻宇宙结构研究方面率先取得重大突破性成果。
  • 众星出品|众星联恒协助重庆科技馆成功举办“仰望星空”公益天文展
    众星出品|众星联恒协助重庆科技馆成功举办“仰望星空”公益天文展我们都是星尘。这一刻,你活着。这是一件了不起的事。你生活在这个星球上,呼吸着空气,喝着水,享受着最近的那颗恒星的温暖。你的DNA世代相传--回溯到更久远的时空,从宇宙的尺度来说,你身体里的每一个细胞、组成这些细胞的所有元素,都生于一颗恒星的熔炉之中。 ——卡尔萨根我们活在浩瀚的宇宙里,古时候人们就对漫天的银河灿烂心驰神往,对宇宙的探索由古至今也是从未间断。人类倾注了许多时间与精力去观察与探究太空中的神秘现象。为了揭开宇宙神秘的面纱,重庆科技馆于7月11日起举办“仰望星空”天文展,希望能以各式各样的方式向大众尤其是青少年传播天文知识,激发孩子们的探索与求知欲。Advacam的MiniPIX早已被NASA等航天机构采用,参与多个宇宙探索项目。作为探索宇宙暗物质与研究宇宙射线等方面不可或缺的一个工具,MiniPIX为宇宙探索工程的推进做出了贡献。其新推出的MiniPIX-EDU是一款为以教育为用途而设计和定价的微型USB 相机,它把现代的辐射成像技术带进课堂,让学生可以探索我们周围看不见的电离辐射世界。学生们可以探索不同类型辐射的来源,并了解放射性同位素如何在自然界和人类房屋、城市、工业的人工环境中迁移。MiniPIX-EDU可记录非常低的放射性强度,这种强度无处不在。学生可以记录到普通材料和物体的放射性强度,如口罩、花岗岩、灰烬或纸袋上的放射性强度。此次众星联恒怀着使大众了解宇宙微观物质的希冀,尽可能简化宇宙中高能粒子的概念,形象化看不见的宇宙物质,为天文展增添了宇宙射线科普视频以及以Advacam 的MiniPIX为器材的一个“口罩阻挡粒子”探究实验两个部分的内容。我们的视频与展板:活动现场照片:探索太空,扩展我们对地球与宇宙的认识是我国发展航天事业的宗旨。中国在航天科技领域已然占领了一席之地。展览以探索宇宙为视角,采用互动体验为主的方式,让大家进一步了解我们的宇宙。展览将持续到今年11月29日,欢迎大家前去围观!(记得戴好口罩哦)
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。ANDOR总部创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac专利技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在最低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的最多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号最为丰富,从灵敏度最高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR最重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的更多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号比较丰富,从灵敏度高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 卫星干涉成像光谱仪和CCD立体相机通过鉴定
    由中国科学院西安光学精密机械研究所承担研制,曾为我国首次探月工程做出突出贡献的嫦娥一号卫星干涉成像光谱仪和CCD立体相机,于5月25日在西安通过了中国科学院西安分院组织的成果鉴定。   以中科院国家天文台李春来研究员为组长的专家鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪采用干涉光谱成像技术,在国际上首次对月球成功实施了可见-近红外宽谱段连续光谱及光谱图像探测,是国内首台成功应用的星载干涉成像光谱仪 该仪器具有很高的信噪比(S/N)与调制传递函数(MTF),是一台集光、机、电、算为一体的高端光学遥感设备 该项目在“行平场”、“不同光谱仪的对比方法”、“干涉仪胶合时剪切量的精密控制”以及“具有特色的付氏光学系统设计”方面形成一批自主知识产权,申请发明专利四项,已授权三项 该仪器成功应用于嫦娥一号探月卫星,获取了全月面79%区域清晰的多光谱图像,是国际上第一次获取480nm-960nm范围的32谱段的连续光谱和图像,为月球科学家研究月表物质成份提供了具有自主知识产权的原生信息源,并产生了大量的应用成果。   以杨元喜院士为组长的专家鉴定委员会认为,嫦娥一号卫星CCD立体相机优化集成了光、机、电等高新技术,确保了月面高精度成像和摄影测量,获得了与国外现有月球图像相比更为清晰、层次更加丰富的全月面图像 该相机采用广角、远心、消畸变光学系统及带有掩模板的面阵CCD立体成像等技术,有效减小了附加曝光影响、系统体积及定标压力 相机的立体成像系统具有高的信噪比(S/N)与调制传递函数(MTF) CCD立体相机已经成功应用于嫦娥一号探月卫星工程,申请发明专利2项(公开中),授权实用新型1项,为月球科学家研究月球的地形地貌与地质学构造提供了具有自主知识产权的原生信息源,产生了大量的应用成果。   鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪和CCD立体相机总体水平为国际先进,并建议这些技术在国防、民用及深空探测等领域进一步推广应用。
  • Nature:全球最快2D相机诞生 每秒一千亿帧画面
    由华盛顿大学生物医学工程系汪立宏(Lihong Wang)教授领导的一个生物医学工程师小组,开发出了世界上最快的只接收(receive-only)2D照相机,其每秒能够捕捉高达1000亿帧的画面。   这一数量级远远快于当前所有的只接收超高速成像技术,受到芯片储存量和电子读取速度的限制后者只能以大约1000万帧/秒的速度运行。汪立宏和同事们将这一技术命名为压缩超高速摄影术(compressed ultrafast photography,CUP)。这项研究被选作为封面文章发表在12月4日的《自然》(Nature)杂志上。   汪立宏说:&ldquo 由于这一技术将成像帧速率提高了几个数量级,我们现在进入了一个新领域来开拓新的视野。每一种新技术,尤其是量的飞跃,总是有大量的新发现紧随其后。我们希望CUP将推动科学新发现&mdash &mdash 甚至是我们所无法预料的发现。&rdquo   汪立宏教授的照相机不同于柯达(Kodak)或佳能(Cannon)的照相机,这一系列的设备能够连接高倍显微镜和望远镜来捕获动态的自然和物理现象。一旦获得原始数据,可在个人计算机上形成实际图像 这种技术被称作为计算成像。   NIH下属美国国家生物医学成像和生物工程系研究所光学成像项目主任Richard Conroy说:&ldquo 这是一项令人兴奋的研究进展和创新性研究工作。这些超高速相机有潜力大大推动我们对于一些极快速生物互作和化学过程的认识,使得我们能够构建出更好的复杂、动态系统模型。&rdquo   这项技术的一个直接应用领域就是生物医学。他们拍摄的一个影像显示,一束绿色激发光向右侧的荧光分子发射脉冲,在那里绿光转变为了红光,这即是荧光。通过追踪它,研究人员能够对荧光寿命进行单次评估,由此检测疾病或是反映如pH或氧分压等细胞环境条件。此外,汪立宏设想的其他应用领域还包括有天文学和法医学。   汪立宏的CUP研究工作突破了基础物理学的空间限制,也突破了对生物学组织深度成像的限制。   汪立宏说:&ldquo 荧光是生物技术的一个重要方面。我们可以利用CUP以光速来成像各种荧光团的寿命,包括一些荧光蛋白。在天文学世界里,CUP则可能改变游戏的规则。&rdquo   原文检索:   Liang Gao, Jinyang Liang, Chiye Li& Lihong V. Wang. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature, 03 December 2014 doi:10.1038/nature14005
  • 新品上线立鼎光电短波红外相机仪器系列分享
    西安立鼎光电科技有限公司自成立以来,一直致力于短波红外成像技术开发与应用。结合市场需求,立鼎团队不断将产品迭代与优化,推出了一系列经典产品,性能可靠,价格合理,深受国内外行业用户的信赖。立鼎光电短波相机研发历程⏩ 2016年 组建团队,研发短波红外相机。⏩ 2017年 完成非制冷相机的研制并投入市场,反馈良好。⏩ 2018年 640×512(15μm)短波非制冷相机量产;同年,立鼎首版640一级制冷相机亮相深圳光博会,获得客户好评。⏩ 2019年 优化相机功能:增加GigE 、SDI接口,增加可供用户选择的跟踪功能;同年,完成高速短波红外相机的样机设计。⏩ 2020年 成功研发出第一代60Hz高速短波相机样机,并开始研发二级制冷科研级短波红外相机;同年,完成了320短波红外相机及扩展波段相机的研发及量产。⏩ 2021年 推出TE4深度制冷相机,制冷温度最低可达-80℃;同年推出1550nm激光通信专用短波红外相机。⏩ 2022年 研制多级深度制冷短波相机、全国产化短波红外相机、线阵短波红外相机、300/400Hz高速短波相机以及高光谱短波相机。立鼎光电短波红外相机系列分类经济型:采用非制冷铟镓砷探测器,结合专业散热结构,该型相机结构小、重量轻,方便集成在各类光电系统中。可以提供专业的定制化服务,旨在为用户提供小型化、轻量化、定制化产品解决方案。制冷型: 采用热电制冷铟镓砷探测器,能够很好的抑制芯片暗电流,从而提升成像质量,此系列可选配扩展型 InGaAs 焦平面探测器,可将探测范围扩展至1.1μm-2.2μm波段。旨在为用户提供更专业的高性能相机,以满足基础型相机无法达到的性能要求。科研型:采用了高性能的TE + air cool制冷设计,芯片温度最低可降至-80℃,在超长的曝光时间下工作,图像也能具有较高的信噪比。该型产品旨在满足高端用户或科研级用户在各种高要求/高精度场景下的应用。可提供集成多种图像算法的专用软件,为用户提供更好的使用体验。立鼎短波红外相机型号命名规则下图为立鼎短波相机命名规则。通过此规则,可以直观、快捷的了解到一型号产品的重要参数。或在选型中更方便快捷的选择项目所需对应规格的相机。立鼎短波相机的应用硅锭杂质检测液晶面板异型贴合半导体检测全息光学中的应用激光光斑捕获追踪海面观测透雾成像太阳能电池板检测生物成像激光光束质量分析晶圆切割获取更多信息可通过仪器信息网和我们取得联系400-860-5168转6159西安立鼎光电科技有限公司是一家专业从事红外、激光类产品及光电测试仪器设备的研发生产、系统集成、销售服务为一体的高新技术企业。公司专注于为客户提供从元件、组件、部件到全套光电系统产品的完整解决方案。近年来,公司研制的短波红外相机(系统)在激光光斑检测、半导体检测、激光通信、光谱成像、激光切割、生物医疗、天文观测、安防等领域得到了广泛的应用。多年来,根据用户需求定制的多款光电测试仪器设备,为用户产品的性能指标保证发挥了重要作用。
  • 短波红外相机在海洋监测中的应用
    海洋区域湿度大,昼夜温差大,极易形成雾、霾、水汽等特殊条件。可见光在正常条件下成像良好,但是受天气影响较大,在恶劣天气下会出现对比度变低,轮廓模糊,细节丢失的现象等问题,无法清晰的识别目标。热成像技术虽然透雾能力好,但是当目标和背景温度接近时,热成像细节丢失严重,不利于海洋区域的目标探测。而短波红外在海面恶劣天气下也可以实现远距离船只监测,由于具备对海雾的良好透过性,所以目标几乎很少受到海上雨雾天气的影响,具有较为明显的轮廓和纹理特征。图 1可见光和短波红外雾天成像对比短波红外成像和可见光类似,主要依靠场景物体反射的光信号成像,其波段范围大约在900nm~2300nm之间,因为光在遇到大气中的分子、粒子、气溶胶和大量的悬浮小水滴时都会发生散射,当大气中的散射粒子小于光波长时,可以按照瑞利散射处理,散射系数为式中,S为散射粒子的截面积,N为单位体积的粒子数,λ为光波波长,从公式中可以看出,波长越长,散射越弱,透雾能力越强,所以短波红外穿透雾霾能力比可见光强。如图2所示,分别为可见光和短波红外的成像情况,舰船在短波红外图像中的细节更丰富。图 2 雾中短波红外(左)与可见光成像(右)不仅如此,短波红外在海面微小目标识别方面也有很大的优势,由于海面拍摄距离远,微小目标在探测器上占据的像素小, 而且海面也在不断地变化,当海杂波干扰过大时,微弱目标的信号会被淹没,造成可见光探测困难。但是短波红外则不同,利用海水对短波红外具有强吸收这一特性,可以大大提高微弱目标的识别能力。海水几乎不反射短波红外,而微弱目标发射红外辐射,背景和目标的对比度增大,微弱目标更容易被观测到。所以当对海面浮冰、小船、蛙人、浮标、飞机残骸、海面漂浮物等这些声光电特性不明显的目标探测时,相比可见光,短波红外更适合观测。 此外,短波红外技术还具有在夜间和低光条件下提供高质量监控图像的能力,在海岸港口,夜间航行可能存在风险,而短波红外监控系统可以保证即使在黑暗中,港口和船只的活动也能被及时监测,从而提高港口的安全性。西安立鼎光电提供非制冷、制冷面阵以及线阵多款短波红外相机,现货供应,具体产品如下:01非制冷短波红外相机02宽谱段短波红外相机03制冷型短波红外相机04科研型短波红外相机05线阵短波红外相机06定制短波红外相机立鼎定制型短波红外相机是立鼎团队为保证各类客户的产品性能指标而推出的定制化服务。可根据用户不同需求进行产品定制,将客户重点关注的产品性能进行提升,以满足客户在不同领域的使用。目前,立鼎团队已为多家客户定制适合客户项目应用需求的多款相机,得到了众多用户的认可。更多信息请联系西安立鼎光电400-860-5168转6159西安立鼎光电科技有限公司成立于2016年4月,是一家专业从事短波红外成像系统及光电测试装备的研发生产、系统集成、销售服务为一体的国家级高新技术企业。公司专注于为客户提供从器部组件到全套光电系统产品的完整解决方案。近年来,公司研制的短波红外成像系统在激光光斑检测、半导体检测、激光通信、光谱成像、激光切割、生物医疗、天文观测、安防等领域得到了广泛的应用。多年来,根据用户需求研制的多款光电测试装备为用户产品的性能指标保证发挥了重要作用。
  • 读出噪声低至1个电子!Dhyana 400BSI 上市,超级信噪比科学相机时代来临!
    福州鑫图光电有限公司发布新一代超高灵敏度sCMOS科学相机--Dhyana 400BSI,该机型在灵敏度、像素尺寸和速度三个核心指标上均实现了对现有背照式sCMOS相机的全面超越。 两年前,鑫图基于背照式sCMOS技术开发的Dhyana95科学相机在560nm处实现了量子效率高达95%QE的重大的突破,由此开启了sCMOS科学相机的背照式时代,而最新发布的Dhyana 400BSI不仅具备相同的高量子效率,还实现了背照式sCMOS相机读出噪声小于1个电子的关键性突破,这将带来无可比拟的超级信噪比优势! 更重要的是,该相机使用了更小的6.5微米像素尺寸,这是显微成像中获得更多的细节信息的关键因素,可以让您在更多超高分辨应用领域,看到更多可能!! Dhyana系列sCMOS科学相机已经在生命科学、化学实验室、空间物理、天文观测等前沿科学研究领域得到了广泛应用,此次Dhyana 400BSI的光电参数更是由鑫图和武汉国家光电实验室联合测试确定,在经过多年的技术和应用积累后发布的Dhyana400BSI在关键性能指标的严谨性和质量稳定上将更值得信赖!
  • greateyes发布Greateyes 全帧CCD相机 光谱系列新品
    公司介绍:成立于2007年的greateyes,是以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。greateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。 产品介绍:greateyes基于独特的平台概念,提供用于紫外、可见和近红外的成像和光谱应用的大面阵相 机。深度冷却、高品质的CCD相机传感器具有超低噪声,可优化微弱信号的探测。采用不同的像素模式、传感技术以及传感涂层以满足不同需求的成像或光谱应用。全帧CCD传感器集成在真空密闭腔室里,拥有多级半导体冷却以及单一光学窗口。相机提供丰 富的功能,例如灵活的像素联用操作、不同的触发和同步模式、可调的软件基线、传感器和散 热系统的温度监控。 主要特点: 结构紧凑灵活的联用模式量子化效率高达98%满井容量高达700.000 eˉ深度制冷温度低至-100°C最小读出噪声低至3.5 eˉ18 bit 动态范围水冷和强制风冷性性能参数:典型应用:活体荧光生物成像天文观测LIBS 光谱仪中子层析成像EL / PL 成像超冷量子研究创新点:与上一代全帧CCD相机相比: - 新的ELSEs相机整体的电子学才用全新的设计的,读处噪声更低,由于的制冷温度从之前的-60° 提升到了-100° C。 - 新一代的ELSEi相机才用全新的工业外壳设计,不仅性能优越而且美观。 -才用千兆网和USB双数据结构,可以应用不用传输距离的需求。 Greateyes 全帧CCD相机 光谱系列
  • 科学家利用地基广角相机阵GWAC探测到伽马射线暴的瞬时光学辐射
    4月10日,《自然-天文》发表了中国科学院国家天文台中法天文小卫星SVOM科研团队完成的一项重要研究成果。该团队利用位于国家天文台兴隆基地试运行中的地基广角相机阵(GWAC),成功探测到一例伽马射线暴(GRB 201223A)的瞬时光学辐射及其向极早期余辉的转变过程。  伽马暴源于大质量恒星晚期坍缩或双中子星并合瞬间伴随着新生黑洞或磁陀星的极端相对论喷流,短时间内辐射出巨大能量,包括喷流内激波导致的暴发瞬时辐射和喷流撞击外部介质产生的余辉。典型的高能暴发仅持续豪秒到几十秒,但地面光学设备接收到高能卫星的伽马暴触发警报时,很难做到实时跟进,故目前只有几例瞬时光学辐射探测——对应高能暴发的持续时间较长(30秒),且观测数据中存在反向激波的污染成分,难以明确从瞬时光学辐射到余辉的转变。   SVOM首席科学家、国家天文台研究员魏建彦提议并带领研制的GWAC具有超大的观测视场和15秒的高时间采样分辨率,作为卫星项目的重要地基设备,探测深度达到星等16等,并计划对SVOM发现的伽马暴的瞬时光学辐射开展系统性研究。   伽马暴GRB 201223A同时被Swift卫星和Fermi卫星在伽马射线波段探测到,其时,试运行中的GWAC正对所在的上千平方度天区做实时监测,成功在光学波段完整记录下暴发的全过程(图1)。这是国际上首次将瞬时光学辐射的探测突破到暴发持续不到30秒的伽马暴,远短于之前的事例。GWAC的观测实际上在高能暴发之前便已开始,在探测极限内未发现任何前驱(precursor)信号,但在整个高能暴发阶段均探测到明显的光学辐射(图2),结合60cm望远镜的后随观测数据,清晰地记录了从瞬时光学辐射到余辉的完整的演变过程。   GRB 201223A是高能波段的中等亮度伽马暴,其瞬时光学辐射的观测亮度比从高能能谱外延到光学波段的值高4个数量级(图3)。该特性与超亮伽马暴GRB 080319B类似。更具意义的是,对多波段数据的联合分析表明,GRB 201223A前身星的暴前质量损失率远低于后者,可能是一颗不大于3.8倍太阳质量的沃尔夫-拉叶星,恒星演化模型所对应的主序阶段质量不大于20倍太阳质量。   由于伽马暴发生在时间和空间上的随机性,通过GWAC对SVOM卫星的实时监测天区开展高帧频观测,将为探索极端相对论喷流、暴周环境及前身星特性提供独特数据,并具有捕获中子星并合引力波事件电磁对应体的重要潜力。   上述工作由国家天文台、美国内华达大学拉斯维加斯分校、广西大学、南京大学、中国科技大学、法国原子能署、淮北师范大学、北京师范大学等合作完成。 图1.GWAC对GRB 201223A高能爆发前后的连续观测图像。时间分辨率是15秒。中间黄色箭头指向的是光学对应体。第一行第三列是覆盖高能警报触发时刻的图像。 图2.GRB 201223A光学、X射线、伽马射线暴联合观测光变曲线。横坐标是相对于警报触发的时间,单位是秒。纵坐标流量或者星等。红色点是GWAC和F60A的观测数据。在高能警报触发前,GWAC没有探测到任何暴前辐射成分,在爆发开始后,探测到一个明亮的光学辐射,并清晰解析出从瞬时辐射到余晖的相变过程。 图3.GRB201223A瞬时辐射能谱图。横坐标是观测频率,做坐标是流量。GWAC探测到瞬时辐射光学亮度远远高于高能最佳能谱的预期。
  • 低噪声、高分辨、高帧速,滨松推出世界首台光子定量科研级相机
    滨松公司利用独有的设计技术,并采用以最新制造技术新研发出的2D CMOS图像传感器,成功研制出拥有0.27e rms的极致低噪声,且具备940万像素(4.6 μm像素尺寸)的超高分辨科研级相机“ORCAⓇ-Quest qCMOSTM C15550-20UP”。由于光电信号转换时的噪声是决定相机检测极限的重要因素,我们通过将噪声抑制到低于光的最小单位光子(光粒),在世界上首次实现了光子数的准确测量,并对所测到的2D光子数进行成像。这将使我们能够更准确地观察离子和中性原子等的量子状态,有望促进以量子计算机(*)等其他量子技术的研究和开发。本产品将于2021年5月20日(星期四)正式上市。※量子计算机:作为量子的离子和中性原子等可处于“即是1又是0”的重叠状态。利用这种特性可以进行并行处理,是一种有望解决目前在时间和规模维度上无法解决问题的计算机。ORCAⓇ-Quest qCMOSTM 相机 C15550-20UP产品概要该产品采用了新研发的高性能2D CMOS图像传感器,是世界上首台实现光子定量的科研级相机。 滨松公司一直从事研发,生产和销售用于微弱荧光,发光现象成像应用的低噪声科研级相机。这次利用滨松独有的设计技术,优化像素结构的设计,并利用先进的精密半导体制造技术,开发了世界首个具有极致低噪声,且高像素数,高分辨率,并可实现高速读取的2D CMOS图像传感器。此外,利用长年积累的低噪声相机电路设计技术,高精度探测器冷却技术,独有的信号处理技术,有效抑制了2D CMOS图像传感器各像素出现的不均匀现象。由此,我们成功地开发了世界首台可实现光子定量,且可获得高可靠性测定结果,有助于推动科学的进步以及未知领域研发的科研级相机。本产品通过对来自离子,中性原子等的光量进行定量成像,可以准确观察其量子状态,有望加速量子计算机为代表的各种量子技术的研究和开发。此外,由于它可以在宽广视场中对极弱的光现象进行成像,也预计有望应用于天文和生命科学领域。今后,我们将面向国内外大学和企业的研究人员进行销售,并在多个领域中开拓2D光子数识别测量的新应用。发射荧光的中性原子(左)和猎户座大星云(右)的成像图像产品特点1、采用新研发的高性能2D CMOS图像传感器利用滨松独有的设计技术和最新的制造技术,成功研发了世界首个具有极致低噪声的2D CMOS图像传感器。此外,采用沟槽结构,将2D CMOS图像传感器的像素一个一个地隔开,减少像素之间的串扰,且通过背照模式同时实现了高量子效率和高分辨率。再有,在具有940万像素的高像素的同时,其信号的读取速度从原来的约27百万像素每秒到约47百万像素每秒,提高了约1.7倍。2、世界上首台实现2D光子数识别测量的相机利用滨松长年积累的相机低噪声电路设计技术,高精度传感器冷却技术和独有的信号处理技术,通过抑制每个像素的电特性变动,最大限度发挥了2D CMOS图像传感器的性能。 以上种种,我们成功研发了世界首台用于2D光子数识别测量,实现噪音为传统产品约三分之一,仅0.27e rms的极致低噪声科研级相机。研发背景滨松公司自1980年以来一直研发,生产并销售低噪声的科研级相机。目前为生命科学等学术领域以及工厂自动化领域等需要对极弱荧光和发光现象进行成像技术的各种场景提供产品。为满足市场对进一步降低噪声的要求,我们致力研发具备极致的低噪声,并实现了2D光子数字计测的科研级相机。主要规格
  • 多个天文望远镜项目落地青海冷湖天文观测基地
    18日从柴达木循环经济试验区冷湖工业园获悉,目前,冷湖天文观测基地已有7个天文望远镜项目签约落地该园区。  冷湖天文观测基地建设以来,青海海西州政府、省科技厅积极与中国科学院国家天文台、紫金山天文台等科研单位和高校合作,开展天文台址资源考察,在冷湖赛什腾山天文观测选址、配套基础设施建设等方面做了扎实有效的前期工作。  据介绍,通过实施“天文大科学装置冷湖台址监测与先导科学研究”重大科技专项,开展天文台址科学监测工作,在选址区域获取了大量气象、天光背景、全天云量、晴夜数统计和视宁度分析等关键监测数据,科学证明冷湖天文观测基地具备世界一流的视宁度和重大科学研究潜力。  目前,冷湖天文观测基地已签约落地天文望远镜项目7个,4个项目已经于2020年开工建设,项目总投资1.74亿元,2021年即将开工建设的有3个项目,总投资4.23亿元。  7个天文望远镜项目分别是:国家天文台实施的SONG望远镜项目、西华师范大学与国家天文台联合实施的50Bin望远镜搬迁项目、紫金山天文台实施的多应用巡天望远镜阵MASTA项目、中国科学技术大学和紫金山天文台联合实施的2.5米大视场巡天望远镜项目、中科院地质与地球物质研究所实施的行星科学望远镜PAST项目、中科院地质与地球物质研究所实施的行星科学望远镜TINTIN项目、国家天文台实施的用于太阳磁场精确测量的中红外观测系统AIMS。  其中50Bin是第一台到达冷湖天文观测基地4200米观测点的科学级望远镜,该望远镜是由西华师范大学与国家天文台合作的50厘米双筒望远镜。测量显示,星象的半高全宽是0.68角秒,该结果表明在长期监测下台址的质量得到了科学设备的印证,冷湖天文台址具备世界一流的视宁度,结合其他监测数据,可支撑天文大科学装置充分发挥科学能力,冷湖天文观测基地具备了巨大科学潜力,能够为中国观测天文学提供有力保障。  柴达木循环经济试验区冷湖工业园相关负责人表示,随着冷湖天文观测基地影响力的提升,多个科研项目伸出洽谈合作的橄榄枝,有望落地冷湖天文观测基地
  • 德国Greateyes全新平台ELSE!全帧、深度制冷CCD 相机
    全新升级 greateyes CCD相机 2019年12月 全帧转移,深度制冷,高性能科研级CCD 相机全新平台出身于柏林的ELSE是德国greateyes公司最全新研发,应用于紫外-可见-近红外波段的光谱及影像相机。ELSE集成了目前最前沿的低噪声电子系统和超低温制冷技术,同时保持了紧凑小巧的设计。全新的设计允许从50kHz至4MHz灵活地选择所需读出速度。18-bit的模数转换能够利用CCD传感器的全动态范围,以达到更好表现和更高的信噪比。为匹配不同应用的需求,该相机包括多种类型的传感器可供用户选择。同时ELSE的低噪声使之成为极弱信号条件下所需的理想相机,它将给您的光谱学和影像研究带来前所未有的机遇。主要特点• 超低温半导体制冷系统产生极低的暗电流来达到更佳检测限• 严密的真空封装保护传感器且维护需求较低• 千兆以太网GigE 及 USB 3.0 数据接口您可选择本地或远程进行操作• 多种传感器类型不同尺寸均提供使用紫外,可见或近红外的镀膜• 高达 95% 的量子效率灵敏的传感器适合弱光应用• 用户可选择增益在最适合信噪比和动态范围间平衡传感器• 快速读取速度高帧率搭配低噪声电子系统• 灵活的软件选项原装 Vision 软件或各类开发包 SDK光谱应用成像应用ELSEsELSEi典型示例拉曼光谱近红外光谱荧光光谱吸收,透射及反射光谱活体荧光生物成像天文观测LIBS 光谱仪中子层析成像EL / PL 成像超冷量子研究典型型号ELSEsELSE 1024x128ELSE2048x512ELSE1024x256像素规格1024 × 1281024 × 2562048 × 512 感光区域26.6mm × 3.3 mm26.6 mm × 6.7 mm27.6 mm × 6.9 mm像素尺寸26 μm × 26 μm26 μm × 26 μm13.5 μm × 13.5 μmELSEi(图片为4096x4096)ELSE 1024 x1024ELSE 2048x2048ELSE 4096x4096像素规格1024 × 10242048 × 20484096 × 4096感光区域13.3 mm × 13.3 mm27.6 mm × 27.6 mm61.4 mm × 61.4 mm像素尺寸13 μm × 13 μm13.5 μm × 13.5 μm15 μm × 15 μm量子效率曲线德国Greateyesgreateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。成立于2008年的greateyes,以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。 北京众星联恒科技有限公司作为Greateyes公司中国区授权代理商,为中国客户提供Greateyes所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的x射线产品及解决方案。
  • 将超分辨显微能力推进了7纳米,Dhyana 400BSI sCMOS科学相机应用优势解析!
    当人类利用CCD、EMCCD、sCMOS等多种高灵敏光电成像技术向微观、弱光科学成像发起挑战的时候,模拟世界里的不安分因素----"噪声"渐渐成为人们前进的巨大障碍。如何将光子信号从噪声中提取出来,开发出具有卓越信号噪声比的科学相机一直是整个科学界津津乐道的话题。 2017年11月9日,鑫图光电正式对外宣布,已成功创造出一款超级信噪比科学相机Dhyana 400BSI。 实验数据解析超级信噪比的现实意义在目前火热的超高分辨率显微成像研究中,打破分辨率极限是核心问题。我们采用分光比为1:1的STORM超高分辨率成像系统做了一组生物样品的比较试验,曝光时间为10毫秒,分别采集10000张图像重建,进行半峰宽(分辨率极限)的统计分析。图(a)和(b)为采用Dhyana400BSI得到的超分辨结果;图(c)和(d)为典型的82%QE的第三代sCMOS相机得到的超分辨结果; 半高全宽(FWHM)越小,表示分辨率越高。从图中可以看出,在STORM超分辨成像中,Dhyana400BSI分辨率达到了40纳米,而第三代sCMOS相机只能达到47纳米分辨率。Dhyana400BSI将STORM超高分辨率显微镜的分辨能力推进了7纳米!因此,400BSI更优的信噪比就能大幅提升弱光信号的定位精度和分辨力水平。 超级信噪比是如何实现的?就Dhyana400BSI相机为何能实现超级信噪比的问题,鑫图科学相机事业部产品经理赵泽宇博士透露:&ldquo 我们采用三种创新的核心技术。首先,由鑫图率先引入的背照式sCMOS技术创造了95%量子效率,使光子到电子的效率转较前一代产品提升了15%;其次,我们找到了sCMOS芯片内源性的噪声的相关双采样办法,将读出噪声水平下降了30%;更重要的是,对严谨的科学成像,我们并未采用会引入量化噪声的2D降噪算法,而是创新地通过一系列信号增强算法将信号强度提升了75%。三种创新技术的结合,就诞生了具有超级信噪比的Dhyana 400BSI(简称400BSI)。 下图为微球荧光成像的实验和数据结果,显示了通过创新的信号增强算法,在不引入量化噪声情况下,信噪比就获得了75%的提升。 福州鑫图光电有限公司是中国最早从事sCMOS相机开发的公司,Dhyana系列是中国开发的为数不多的世界领先科技之一, 在生命科学、化学实验室、空间物理、天文观测等领域都有广泛应用。此次发布的 400BSI,集合了鑫图近年来在sCMOS技术开发上的众多优秀成果,在灵敏度、分辨率和速度等三个核心指标上均实现了对现有背照式sCMOS科学相机的全面超越,将全面助力中国前沿科学研究不断发展进步!
  • 安洲科技参加中国天文学会2019年学术年会
    2019年9月7-9日,由中国天文学会主办的中国天文学会2019年学术年会在青海省海西州德令哈市举行。来自全国各天文机构的近700位专家学者齐聚“聚宝盆”柴达木盆地,交流和探讨天文学领域的最新研究进展和发展趋势。柴达木盆地具有世界级天文科技产业基地建设条件的暗夜星空资源,依托良好的地理位置和星空资源优势,大型光学望远镜、光电篱笆、中红外观测系统等天文望远镜项目将落户冷湖地区。安洲科技携ET100红外发射率测量仪及410-Solar太阳能反射率测量仪参加了本次天文学盛会,同时展示了全自动BDR测量系统SOC100、高精度自动化BRDF测量系统SOC210、国际首款商用型单探测器全光谱成像光谱仪425、辐射校准传递光谱仪SR-4500/A、超高分辨率光谱辐射计SR-6500/A等业内顶级科研仪器。安洲科技国际合作方SOC公司曾参与美国NASA多个太空探测项目,如Kepler,NuStar和Chandra等天文望远镜及InSight火星探测器的热控涂层研制;本次安洲科技展示的ET100及410-Solar红外发射率/反射率测量仪在天文望远镜镜片检测、热控涂层开发、红外光学材料检测等领域也有着广泛应用。迄今世界上最大的耗资达2亿美元的双子座天文台、中国科学院国家天文台、国家航天局下属多个科研院所等知名单位均已配备ET100及410-Solar红外发射率/反射率测量仪,用于检测望远镜镜面的光学性能;该设备为便携式设计,可以原位无损快速地进行测量,深受用户好评。据悉,双子座天文台南分部的红外望远镜是世界上首先对主镜面和2个副镜面采用喷银技术,以达到红外最高灵敏度。研究人员使用410-Solar红外发射率/反射率测量仪以进行镜面的性能检测和维护。天文台的每一台望远镜配备一台先进的Gemini多目标光谱成像仪(GMOS)。配有3个2048x4608 CCD。GMOS的统一视野模式采用的镜头组阵列包含1500个部件,将聚焦平面分为多个部分。双子座天文台的红外望远镜喷银技术及其传世照片NGC 1097本次年会协办单位:国家自然科学基金委员会数理科学部、中科院国家天文台、中科院上海天文台、中科院云南天文台、中科院国家授时中心、中科院南京天文光学技术研究所、中科院新疆天文台、南京大学、北京大学、北京师范大学、中国科学技术大学、广州大学、清华大学、北京天文馆、中科院自然科学史研究所、中科院高能所、中科院南京天文仪器有限公司、中科院国家天文台长春人卫站、中科院测地所、南京师范大学、华中师范大学、武汉大学测绘学院、中国科学院大学、大连舰艇学院、上海交通大学、厦门大学、中山大学、中科院光电技术研究所。
  • 新疆首架米级光学天文望远镜通过验收
    3月8日,记者从中国科学院新疆天文台获悉,新疆天文台南山1米大视场天文望远镜项目通过验收,这是新疆首架米级光学天文望远镜。   据新疆天文台光学天文与技术应用研究室主任马路介绍,南山1米大视场天文望远镜依靠大口径,可实现天文观测更远、更清晰。原先新疆最大光学望远镜为80厘米,观测星等为16、17等左右,现在通过米级天文望远镜观测到星等可达20等。   据悉,该项目设备自2012年3月进行安装、调试,今年2月通过验收。
  • FAST引领 贵州构建天文科研矩阵
    p style=" line-height: 1.5em "   7月24日,来自贵州省科技厅的消息显示,截至目前,FAST已发现44颗脉冲星,其中18颗获得国际认证。随着19波束L波段馈源接收机的投入使用,以FAST为引领,中国科学院FAST重点实验室、FAST早期科学数据中心、贵州省射电天文数据处理重点实验室、贵州省信息与计算科学重点实验室、国家天文台· 贵州大学天文联合研究中心等科研机构有机融合,构建起了贵州天文科研矩阵,进一步聚集国内外创新资源,在射电天文领域产生新一批具有国际领先水平的原创性成果,助推中国射电天文研究跨越式发展。 /p p style=" line-height: 1.5em "   经过一年多的紧张调试,FAST已实现跟踪、漂移扫描等多种观测模式,调试进展超过国际同类大型望远镜,成为世界级的“观天利器”。目前,FAST已完成升级,用上了目前国际上最为先进的19波束L波段馈源接收机,由于巡天速度提高了五至六倍,预计将收获更多的科学观测数据。今后,19波束接收机每年将产生约20个PB的超级数据,未来十年产生的数据量将达到200PB。为满足其存储和超算能力,贵州正在对FAST早期科学数据中心进行扩容,并将启动建设贵安新区科学数据中心。 /p p style=" line-height: 1.5em "   截至目前,FAST已发现了44颗脉冲星和54颗侯选体。特别是通过与美国国家航空航天局的费米伽马射线卫星合作,FAST首次发现毫秒脉冲星J0318+0253(周期5.19毫秒)并获得国际认证,这是中美科学装置首次在地面和太空、射电与高能波段合作完成的天文学发现,也是FAST继发现脉冲星之后的另一重要成果。19波束L波段接收机投用后,FAST将会获得射电源更精确的定位图像,发现更多的脉冲星,并能观测宇宙中不同距离不同方向的中性氢1.4GHz谱线,以更好地探索宇宙历史,甚至搜寻可能存在的外星文明。 /p p style=" line-height: 1.5em "   对于FAST的卓越表现,FAST早期科学数据中心功不可没。FAST早期科学数据中心主要开展天文数据存储、共享,并行计算和高性能计算等科研工作,对实时传送的FAST海量数据进行存贮、计算和筛查,为FAST数据管理、数据综合分析与应用提供重要保障。在脉冲星搜索计算和人工智能识别等方面,FAST早期科学数据中心已经达到了世界领先的水准。其中,针对单台服务器单个文件,FAST早期科学数据中心在计算能力上提速近百倍。面对海量的图片和数据,FAST早期数据中心还创新性地开发了智能数据库,可以通过条件检索出天文学家想查找的脉冲星计算结果图型,此项技术为国际首创。FAST首次发现的毫秒脉冲星,就是由该系统计算协助发现,美国阿雷西博望远镜在相同位置三次观测均未成功。 /p p style=" line-height: 1.5em "   依托世界最大单口径射电望远镜FAST,面向国际天文前沿问题和国家重大战略需求,致力于低频射电天文研究与技术方法发展,中国科学院FAST重点实验室在探索科研与技术有机结合新模式的同时,与贵州省射电天文数据处理重点实验室、贵州省信息与计算科学重点实验室、国家天文台· 贵州大学天文联合研究中心等构成了贵州天文科研矩阵,使得贵州省初步形成了以FAST为引领的天文科研体系。 /p p br/ /p
  • 全球最大天文馆上海开建 预计2020年完工
    人马座长什么样子?离我们有多远?宇宙为何是这样子的?以后这些问题或许都可以在上海天文馆找到答案。11月8日,随着第一铲泥放入坑中,全球建筑面积最大的天文馆上海天文馆在临港新城开工建设,预计2020年完工。  据悉,上海天文馆建筑方案设计体现了“天体”及“轨道运动”的概念。主体建筑三个明显的圆形构成“三体”结构 椭圆形的建筑形态构成天体运行轨道,与三个天体一同诠释了天体运行的基本规律,暗示着“万有引力”这一塑造宇宙今日之面貌的神奇自然力。主建筑外的景观区域设计了4条非同心圆的步道,从主建筑向外自然延伸出去,象征星系的旋臂。主体建筑暗藏玄机,“圆洞天窗”“倒置穹顶”“球幕光环”等特色设计令建筑本身成为一台天文仪器。  上海天文馆将包括一幢主体建筑,魔力太阳塔、青少年观测基地、大众天文台、餐厅等附属建筑,总用地面积58602平方米,总建筑面积38164 平方米,为全球之最。在一份先期公布的材料中显示,上海天文馆的展示主题确定为“连接和人宇宙”,将从“欣赏和体验”“学习和思考”“理解和感悟”三个层次,充分展现宇宙的“大历史+大结构”。  据悉,上海天文馆工程建设中将采用全生命周期BIM 示范应用、雨水回收利用及生态净化处理、太阳能可再生能源利用、导光管系统、地源热泵等技术,建设一座节能、智慧、生态建筑。
  • 中美拟联手建造世界最大天文望远镜
    130亿年前宇宙是什么样子?太阳系以外有无外星人?宇宙大爆炸后星系如何形成?……这些问题用当前的天文学技术尚不能解答。现在,中国和美国正在磋商,拟联手建设世界上最大天文望远镜,解答茫茫宇宙的诸多谜团。 “这个项目是一个巨大的工程,不是一国所能完成,需要国际社会包括中国的参与。它将决定物理学和天文学未来六、七十年的发展方向。”加州理工学院校长钱缪8月28日在北京国家天文台接受新华社记者采访时说。 钱缪所指的项目是正在研制中的30米巨型光学/红外望远镜(TMT)。该项目由美国加州大学和加州理工学院牵头研制,目前已有加拿大和日本参加。钱缪此次和加州大学圣巴巴拉分校校长杨祖佑一起访华,就TMT合作事宜进行具体磋商。 从400年前伽利略用一根直径仅4.4厘米的“管子”看天空,到研制直径30米的巨型望远镜来仰望苍穹,人类通过望远镜观测天空的脚步就没有停止过,对宇宙的探测也越来越远、越来越深。 目前,发达国家都在寻求联合建造巨型天文观测设备。除了TMT外,美国还在计划研制巨型麦哲伦望远镜,欧洲也正在计划建设巨型望远镜。 由于起步较早,TMT成为世界上最大的天文望远镜,除了“个头”巨大,其灵敏度要比哈勃高100多倍,能够捕捉到130亿光年外的宇宙景象,清晰度也是哈勃望远镜的十几倍。 “(这个望远镜)可以一直探测到宇宙的穹苍,宇宙有多大,就能看多远。回溯历史,可以看到130亿年以前,宇宙大爆炸初期。”杨祖佑说。 “TMT可以让科学家们看到宇宙的早期阶段,能够看到星系、黑洞是如何形成的。它也会改变我们对于宇宙的认识。”钱缪说。 同时,这个世界最先进的天文望远镜也能为探寻太阳系外有无生命提供技术保障。中国科学院院士、天体物理发展战略专家研究会主席陈建生对新华社记者说,利用TMT的高分辨率和清晰度,可以观测到遥远行星的大气光谱。如果存在生命,光谱会有所不同。如果发现有水蒸气、二氧化碳或甲烷光谱,就有可能确定生命的存在。 目前,TMT项目计划投资10亿美元,其使用寿命可达至少60年,各参与合作的国家按照投资比例获得相应望远镜观测时间。今年7月,TMT已把天文台地址选在夏威夷的莫纳克亚山山顶。 “由于TMT投资大、技术先进和苛刻的天文台寻址要求,必须靠国际大合作,共同出资建造。”陈建生说:“中国天文学发展到今天,必须加强国际合作,不能关起门来搞研究。” 但是陈建生同时表示,考虑到中国加入TMT的益处、经费投入、承担风险等因素,具体细节磋商还将继续,中国能否最终正式加入TMT尚未最后敲定。 实际上,望远镜的每一次发展、突破,都引发了天文学的重大发现和人类对宇宙认识的飞跃。 “通过TMT,我们可以探测到不为人知的宇宙奥秘,满足人类求知的欲望。”杨祖佑说。
  • 云南研制天文地动仪 望破解地震预测难题
    中国科学院云南天文台正在秘密研究“天文地动仪”,这种仪器有望破解千年地震难题——提前预测地震的到来……   多功能经纬仪原理   (1)本项目研制的多功能天文经纬仪,是一种用于观测恒星位置的望远镜,恒星离地球非常遥远,它们在天空中的位置固定不变。    处于地面某一位置的望远镜,在正常情况下,地球引力g是垂直向下的,望远镜中有个水银盘,水银面的垂直方向与引力平行指向天顶,望远镜在固定时刻观测到某一恒星在天顶位置A出现。    当地下地震孕育区M受到周围应力作用,导致物质密度反常,引力方向偏移到f方向,使望远镜中的水银面指向天顶的方向发生偏移,望远镜在固定时刻观测到某一恒星在天顶的位置偏移到B,我们就可以获得偏转角θ。      在一定区域内设置多个望远镜,在地下某一区域M的物质密度发生改变时,它会导致多个望远镜的水银面方向产生偏移,通过观测某一恒星在固定时刻的位置,可以测量引力的偏转角α和β,从而可算出密度异常区的位置。地震孕育区通常存在物质密度异常,引起地面的重力异常,该仪器能够探测产生一定程度重力异常的区域,为地震专家和政府决策提供重要信息。   (2)该仪器还能测定瞬时天文大气折射,建立多方位大气折射实测模型。由于以记录电磁波传播时间为基本数据的空间大地测量技术,包括卫星激光测距、全球定位系统GPS和甚长基线射电干涉测量VLBI,都受到大气折射延迟的影响,目前仅能用理论模型或经验模型作修正,导致测量距离的误差比较大。利用多功能天文经纬仪,建立天文大气折射实测模型,转换建立起大气折射延迟实测模型,它将能使距离的测量精度接近于理论精度水平。另外,研制的仪器在航天发射和国防上也有应用价值,用该仪器和相应的测量方法可以为卫星发射和导弹基地建立本地大气折射实测模型,提高卫星发射和导弹制导系统的时间、方向和定位精度。   去年以来,王建成就一直带着一个科研小组加班加点、夜以继日地投入到一项秘密研究课题中。   王建成是中国科学院云南天文台副台长。与此前的一些研究目的不同,这次虽然同样是“看天”,但最终却是为了“探地”。   当发现甘肃舟曲1000多人死于泥石流灾害的主要原因之一是汶川“512”地震震松了舟曲山体时,王建成心中又增添了些许沉重:“我们现在希望少受外界干扰,静心和高效地研制仪器,使仪器尽快应用和推广。”王建成所说的仪器,正是他们一年多来潜心研究、能通过寻找和监测地下物质密度的异常变化,为预测地震提供有效信息的“多功能经纬仪”。张衡发明的“地动仪”在1700年前神秘失踪,今天,云南天文专家正尝试利用一种叫做“多功能经纬仪”的仪器,用天文观测的方法对地震进行精确预报。   可以想见,这种“天文地动仪”一旦研制成功,将会是人类对抗自然灾害的历史上最大的一次“地震”!   现实   上天容易入地难   众所周知,地震预测是全世界公认的难题,预测地震的仪器都具有“不可入性”,由于地震专家不能直接观测地球内部,以致对地震的孕育过程和影响这一过程的种种因素缺乏观测数据。   市防震减灾局副局长靳树才介绍,一般而言,地震的震源都在地下十多公里以下,有的深达几百公里,依托现有的技术水平,要打钻下去,直接观测,基本不可能。现阶段,地震预测主要依靠电磁波、磁辐射、地下水化学分析、放射性元素、大地倾斜、重力变化等,通过综合分析各种数据来作预报。但这些数据与地震的关系都是间接的,同时受干扰因素较多。如对地下水的观察,不仅要了解地下水变化的原因,还要了解地下水所处的构造部位、水的补给源、正常动态、可能引起水位变化的降雨及工业用水、农田灌水、气候变化、季节变化、补给源变化等干扰因素,以至引起地震发生的变化量非常小,不具有独特性,很容易淹没在其它干扰因素中,要将它们有效甄别提取出来,难度很大。   有人说汶川地震前青蛙曾有异常行为。靳树才说,动物的异常行为和地震有关联,但没有直接的、必然的联系。青蛙行为异常完全有可能是由其他原因引起的。更何况,青蛙不会告诉你将会在哪里、什么时间、发生几级地震。   “我们需的是准确、科学的预报。”靳树才说。   启发   东汉“地动仪”带来灵感   1800多年前,在张衡所处的东汉时代,地震比较频繁。经过长年研究,张衡发明了一个测报地震的仪器,叫做“地动仪”。   据史书记载,地动仪是用青铜制造的,形状有点像一个酒坛,四围刻铸着八条龙,龙头向八个方向伸着。每条龙的嘴里含了一颗小铜球:龙头下面,蹲了一个铜制的蛤蟆,对准龙嘴张着嘴。哪个方向发生了地震,朝着那个方向的龙嘴就会自动张开来,把铜球吐出。铜球掉在蛤蟆的嘴里,发出响亮的声音,就给人发出地震的警报。   汉顺帝阳嘉三年十一月壬寅(公元134年12月13日),地动仪的一个龙机突然发动,吐出了铜球,掉进了那个蟾蜍的嘴里。当时在京师(洛阳)的人们却丝毫没有感觉到地震的迹象,于是有人开始议论纷纷,责怪地动仪不灵验。没过几天,陇西(今甘肃省天水地区)有人飞马来报,证实那里前几天确实发生了地震,于是人们开始对张衡的高超技术极为信服。陇西距洛阳有一千多里,地动仪标示无误,说明它的测震灵敏度是比较高的。   遗憾的是,凝聚中华民族智慧的地动仪没有保存下来,1700多年前,地动仪神秘消失。   “应该可以用天文观测的技术和仪器来提高地震预测的准确度。”祖先的智慧、先进的科技启发和驱动着云南天文学家投入到了看似不可能的“天文地动仪”研制中。   原理   精准把脉重力变化   据了解,虽然地震孕律具有很大的复杂性,但通过研究,世界各国专家普遍认为地震孕育区受多种应力的作用,积累大量能量,引起周围重力变化。监测到重力变化,就能发现地下能量的异常聚集,地震部门现在已经能用重力仪测出重力变化大小,但却测不出重力方向。   王建成介绍,“多功能经纬仪”这一项目是通过云南天文台独创的低纬子午环的观测原理和仪器误差测量方法,研制出一架达到高精度要求的小型、轻便、全自动的“多功能天文经纬仪”样机。这种“多功能经纬仪”本来是天文上用于精确观测恒星位置变化的望远镜,而恒星位置变化是重力变化的一面“镜子”,如果同时启动多台“多功能经纬仪”监测,就能测量出重力方向,由此寻找和监测到引起重力变化的源头,为地震专家预测地震提供可靠信息。   2009年1月24日和2010年2月4日,省委常委、市委书记仇和等领导在连续两次专程登门拜访中国科学院、中国工程院在昆的院士时,都对我国恒星物理研究专家、云南天文台黄润乾院士以及云南天文台副台长、项目组长王建成介绍的多功能经纬仪项目研究情况给予了高度评价和极大地支持。   王建成表示,项目已开始总体方案设计和研讨,今年10月底完成总体设计和论证,项目研究组正排除一切干扰,不舍昼夜、严谨高效地加紧研制,计划2011年底验收,力争早日投入应用和推广。他透露,明年底样机研制成功后,即可建立多台测量仪组成的监测网,布置到我省地震断裂带周围,寻找和监测地下物质密度的异常变化区域,通过监测地下物质密度的异常变化,为预测地震提供新的有效信息。   希望   能像预测台风一样预测地震   靳树才表示,感谢其他行业专家对地震预测的关注,为地震预报献计献策,身体力行地做研制工作。   他认为“多功能经纬仪”项目是符合科学规律的,但同时,他对引起地下重力变化的力量是否就足够使地表发生形变表示不确定。因为使地表发生形变的因素也很多,比如说重型货车经过时,在路边就能感到颠簸,这就是一种形变,重型货车对路面产生的压力都远远大于重力变化的力量。所以,这对地震观测条件提出了高要求,要尽量避开环境和人为干扰,而选择环境比较安静、工农业生产干扰小、无环境污染的地区。仪器具体安装位置要选择地质条件较好的岩石,而不是松软的土层,尽量减少干扰因素。   对未来能够准确预报地震,靳树才充满了信心,他说, 地震预测具有时代性。虽然很难,但随着人类科技进步,终有一天能解决。“退回200年前,台风的预测也只能凭经验,而现在什么时候登陆,在哪里登陆,都已在人类的严密监控下,因为我们有了卫星。”他说。   至于“多功能经纬仪”,靳树才也充满期待:“仪器究竟能发挥多大作用?现在尚不能确定。待仪器研制成功后,我们将成立专门研究小组,总结规律性东西,认真观测,积累经验,在实践中提出改进建议。”
  • 中国出资1亿美元参与建最大天文望远镜
    2018年建成,我国承担光学系统等关键技术研制 (图片来源:美国物理学家组织网)   据美国媒体1月13日晨报道,中国成为全球最大天文望远镜的建造者之一,将承担这台巨大的望远镜的光学系统、激光引导星系统和科学仪器系统等关键技术研制任务。   项目由中、美、日、加、印五国合作。这直径30米的望远镜预计在2018年建成,造价约10亿美元。   报道指出,这是中国首次在国际上参与此类天文研究项目。   5国合作 中国出资1亿美元   几年前,美国与加拿大就计划在夏威夷大岛(Big Island)的莫纳克亚山(Mauna Kea)山顶上建造一台直径30米的天文望远镜。2009年时,中国成为这个项目的观察员,印度在次年加入,现在两国都成为该项目的合作方。   报道称,如今这项计划由中、美、日、加、印五国合作,领军机构是美国加州大学圣塔芭芭拉分校和加州理工大学。   目前,望远镜的设计工作已由美方完成,参与这一项目的各国已开始筹措建设资金。报道称,中国将出资10%,即1亿美元。   报道指出,望远镜建成后,各参与国家科学家观测时间的长短取决于该国出资的多少。   美联社指出,近年来,中国在航空航天领域奋起直追,不过在天文观测方面依然落后。   中国科学院国家天文台天体物理学教授、30米望远镜项目科学家毛淑德表示,参与这个项目对中国来说是一个飞越。   据悉,中国将承担该望远镜的光学系统、激光引导星系统和科学仪器系统等关键技术研制任务。   背景链接   这台巨大的天文望远镜计划用来观测宇宙中暗物质,它的灵敏度将比哈勃太空望远镜高一百多倍,清晰度也是哈勃的十几倍,能够捕捉到130亿光年外的宇宙景象。   这台直径30米的天文望远镜选址在夏威夷大岛是因为当地海拔在4000米以上,大气相对稀薄,且无光线干扰,是建造大型天文望远镜的理想之地。
  • 天文学家找到测量黑洞质量新方法
    近年来天文观测表明,每一个星系的中心几乎都有一颗大黑洞。但是目前我们还不了解它们是怎样影响星系演化的。迄今为止,人们仅测定了很少大质量黑洞的质量,这是因为它们不能直接被观测到。最近天文学家通过观测围绕黑洞运动的低温气体推断出了一些黑洞的质量,这是一种新的测量方法。   利用这种新方法,天文学家测定了星系NGC4526中心的一颗黑洞质量,后续的计算表明,这颗黑洞的质量相当于五亿颗太阳,在超大质量黑洞排行榜中名列前茅。   此前,天文学家只能依靠围绕黑洞运动的恒星来估算它们的质量,他们通过比较黑洞附近恒星和远处恒星的速度的差异来推测出黑洞的质量。然而,这是一种不精确的测量方式。如果利用相同的方法追踪带电气体的运动,测量精度相对会更好一些,但是这些老方法局限于测量邻近星系中黑洞的质量。   天文学家提出的这种新方法利用的是处于低温状态,并且随机运动不显著的高密度气体。它们发出的辐射处于电磁波谱的微波位置,这样就可以借助射电望远镜阵列对其进行更高分辨率的观测。
  • 50BiN中国节点望远镜完成 新天文学科点诞生
    近日,在紫金山天文台青海观测站(青海省海西州德令哈市东,原315国道45公里处),由西华师范大学出资购买设备,由中国科学院国家天文台、中国科学院紫金山天文台和西华师范大学三方联合建设并运行的50BiN项目(50厘米双筒望远镜网络)中国节点望远镜工程取得实质性进展。在50BiN设备的安装过程中,国家天文台、西华师范大学和南京天文光学研究所的科学家和技术人员通力合作,并在紫金山天文台青海观测站的密切协作下,克服高寒、缺氧、施工条件差等种种困难,力保施工质量。目前望远镜已经完成安装工作。   项目的基建施工于2012年10月开始,因为天气原因,仅完成了所有控制楼的地基建设和供50BiN望远镜安装的部分。余下的建筑将在2013年开春后启动并于一个月左右完成,以确保SONG项目1米望远镜及附属设备的安装。   今年完成的设备安装内容包括50BiN的圆顶和望远镜。圆顶于12月1日安装完成并通过初步测试。望远镜于12月12日安装完成,进入光机电和软件联调阶段。   50BiN具有大视场多色测光的能力,并具备同时获取两个波段高精度测光数据的能力。其主要的科学目标是恒星的时域问题研究,将开展星震学、双星、恒星活动、系外行星搜寻等天体物理前沿课题研究。在试运行阶段,50BiN中国节点将开展银河系疏散星团的多色测光巡天,得到疏散星团大样本均匀一致的观测资料。   50BiN中国节点望远镜是整个网络的原型节点,这是一个中科院和地方院校合作的成功案例。西华师范大学将以此为契机,建设西华师范大学天文台,实现科研、教学和科普一体的发展思路。加上先期成立的国家天文台、紫金山天文台、西华师范大学联合实测天体物理中心,中国的一个新的天文学科点就此诞生。
  • 《科学》关注国家天文台射电频谱日像仪项目进展
    2008年8月15日,《科学》(Science)以《星星在中国出现》为题,在“科学纵览”专题中头条介绍了国家天文台射电频谱日像仪项目的进展。文章称:“中国正在建设一双地球的新耳朵来聆听我们最近的恒星。”   由国家天文台太阳射电团组首席研究员颜毅华负责的射电频谱日像仪项目是我国太阳物理规划中确定大力发展的“两天两地”设备中的地面设备之一,已得到“十一五”国家“973“项目中的重大设备和中科院-基金委天文联合重点项目支持。射电频谱日像仪由40面4.5米天线和60面2米天线分别组成分米波和厘米波两个射电综合孔径阵列,分布在10平方公里的范围内,最长基线3公里。它的建成,将首次在厘米、分米波段上同时实现以高空间、高时间和高频率分辨率观测太阳的动力学过程及探测日冕大气。通过与国内有关高校和研究所的合作,项目组首先确立了总体方案,先后设计研制了原理样机,攻克关键技术,取得了重要进展。目前,该项目在国际学术界进一步引起关注,如前国际天文联合会太阳活动委员会主席Pick教授于2005年在考察我日像仪预研样机和台址并明确指出,作为“国际新一代太阳射电望远镜”,建成后将成为国际学术中心的重要舞台。2007年Springer出版社的Lecture Notes in Physics文集载文指出:“新的主要观测设施(特别是FASR和中国射电日像仪)将大为扩展太阳射电探测能力。”颜毅华研究员多次在国际学术会议上做邀请报告,如2007年在意大利都灵举行的国际日球年第二届欧洲大会上,颜毅华就被邀与美国FASR(频率灵活太阳射电望远镜)和欧洲LOFAR(低频射电阵)等一起做关于未来地基太阳射电设备发展的主题报告。频谱日像仪一旦建成,可以对太阳活动能量初始释放区的不同高度进行同时成像观测,如同CT扫描一样。首次实现的能量初始释放区的三维观测,对于太阳耀斑物理研究有望取得原创性成果。   作为新一代射电望远镜设备,无线电环境至关重要。为此,颜毅华首席研究员带领项目组进行了三年的缜密预研,确定站址在内蒙古自治区锡林郭勒盟正镶白旗明安图镇(我国清代杰出的蒙古族天文学家明安图的故乡,2002年国家天文台提请国际小行星委员会批准,命名了“明安图星”)。国家天文台将以太阳射电频谱仪、日像仪为主要观测设备组建明安图天文基地。明安图天文基地站区的无线电环境保护申请已得到内蒙古自治区无线电管理委员会的批复。国家天文台明安图天文基地将拥有当今世界先进的观测设备,成为与国际接轨的集科学研究、设备研究更新、科学信息交流、国际学术交流和科学普及为一体的天文研究重地。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制