当前位置: 仪器信息网 > 行业主题 > >

全定光谱仪

仪器信息网全定光谱仪专题为您提供2024年最新全定光谱仪价格报价、厂家品牌的相关信息, 包括全定光谱仪参数、型号等,不管是国产,还是进口品牌的全定光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全定光谱仪相关的耗材配件、试剂标物,还有全定光谱仪相关的最新资讯、资料,以及全定光谱仪相关的解决方案。

全定光谱仪相关的论坛

  • 化学光谱(光谱滴定)技术欢迎合作

    这个帖子发在这里有点文不对题。这版面是化学发光,我研究的是吸收光。但论文被转发到这版面上了,同时也没用地方可去,只好打扰各位了。化学光谱检测技术是在全光谱(可见)内,测定化学反应引起的结构变化对光的吸收,这个吸收的改变与物质结构的变化相关,用吸收的改变(经过数学处理建立算法)特征可以标识结构的改变在化学反应进程的位置,从而分析反应参数。应用在检测上就是光谱滴定分析技术。经过原理验证,该技术可以很好的进行呈色滴定分析。目前的研究申请多项专利、搭建了验证仪器、探索了数学模型和特征参数,对滴定实例、指示剂特征进行了实际测定,结果满意,所有结论、技术、仪器原型、方法应用等都是首创。是继感官滴定、电位滴定、光度滴定、温度滴定后的新技术由于该技术涉及面太广,不是几个人、几个团队能开发出来的,研究内容包括不局限于技术原理验证、方法开发、标准建立、仪器研发、试剂研究、结构分析、市场开发等产业的各方面,寻求有兴趣的个人、团队、厂家、公司、院校等合作,共同开发享受这个新技术。微信号

  • 国产全光谱水质在线监测仪的应用原理及研发步骤分析

    [align=center][b][/b] [/align][b]一、全光谱在线分析仪器市场现状[color=#333333]我国环境水质监测仪器以往主要依赖进口,从2000年开始,成熟的国产化设备才开始在全国范围内大规模推广。我国的环境水质在线监测仪器厂家主要以民营为主,在成长初期,普遍存在规模偏小、技术不够成熟、仪器的可靠稳定性不足等问题,难以满足我国复杂的水体环境和日益多样化的污染物监测需求。另外,仪器市场整体存在集中度不高、区域分割严重、单一企业所占市场份额小等问题。后期随着国家对环保产业的重视和水质自动监测网络体系的建立,环境水质在线监测仪器厂家数量迅速增长,部分具备自主研发实力的企业发展壮大起来,成为与国外品牌如美国哈希、日本岛津等相抗衡的仪器生产企业。[/color][color=#333333]具体到光谱在线监测领域,国内目前主要以单光谱UV254为主,较为先进也只有COD等少数数值可进行在线测量,且测量参数及精度较国外设备均有一定差距,如S::CAN公司的高端产品spectro就可以同时测量COD,BOD,BTX,NO3-N,TSS,温度,AOC等参数,并保证测量精度。[/color][color=#333333]外国设备价钱高企业和政府采购难以负担高额成本,而国内仪器设备技术落后等缺陷却无法满足精准监测的要求,此外国外仪器在国内也存在“水土不服”的情况,针对这一矛盾现状,陕西正大环保科技与浙江大学强强合作,发挥自身优势推进全光谱在线设备国产化进程,正大环保以多年的设备设计与运维经验选择相应的原材料进行整合,提供基础设备;浙江大学提供设备内部计算模型及先进完善机制,共同致力于为客户提供运行稳定,数据可靠,价格合理的全光谱在线监测设备。[/color]二、全光谱分析法原理[/b][img]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][b][color=#333333]朗伯-比尔定律光度分析中定量分析是最基础、最根本的依据, 如图所示, 可以用如下公式描述:[/color][/b][img]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][b][color=#333333]式中: A 为吸光度值 I0为空白溶液(即不存在吸收物质)时的光强度 I为吸收后的光强度 b为光程, 单位为 cm c为溶液的摩尔浓度 [/color][/b][img]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][b][color=#333333]为摩尔吸光系数, 单位为I/(mol.cm)[/color][color=#333333]当一束平行的单色光通过某一均匀溶液时, 溶液的吸光度与溶液的浓度和光程的乘积成正比, 样品中待测物质的浓度越大、或通光样品液层越厚, 由于增加了物质分 子的总数, 故对光的吸收愈多、透过的光就愈弱。检测时, 配制浓度各异的量程标准溶液 ( H J /T 191 2005) , 测定各标准溶液的吸光度, 得到标准样品的检测数据, 做出浓度对吸光度的标准曲线。[/color][/b][b][color=#333333]不同的化学物质对不同波长的光吸收强度不同,每一种物质都对应 有 确 定 的 紫 外 可见 吸 收 光谱,吸收光谱体现了物质的特性,是进行定性、定量分析的基础。不同溶液对不同波长的光吸收程度各不相同,几乎所有的有机化合物在紫外 可见光区都有特定的吸收。特定化学物质对特定波长的光吸收性较强,特别是硝酸盐、亚硝酸盐、芳香烃类物质、浑浊度、色度、有机碳含量等对不同波长的吸收不同,其敏感波长在200-700nm之间。如果只用254的波长照射,只能获得比较少的化学物质作用。而用多波长扫描,则可以得到不同波长的吸收谱,该谱能清晰地反映出水体中多种物质的分布。用相应的标准物校准,取得相应的特征吸收光波波长以及吸收率与该指标的对应关系,就可以从仪器的检测结果来推断需要的参数指标。[/color]三、自主研发关键步骤1) 原型机材料选择及整合[color=#333333]光源主要采用卤素钨灯、氘灯或氙灯。氙灯发光效率高,强度大,光谱范围覆盖紫外、可见和近红外区,优势突出。传统检测器采用光电倍增管,一次只能测量个波长点的数据,完成整个光谱区域测量的时间较长,不能适应瞬态过程全分析的要求,而且需要精密的光谱扫描机械装置(正弦机构)与分光系统配合使用,因此整个仪器结构复杂,体积庞大,容易损坏。随着技术和制造工艺的发展,目前检测器可以采用电荷注入器件(CID )、电荷耦合器件(CCD )、线阵图像传感器(MOS )等新器件。这 类检测器具有多个光敏单元和自扫描功能,因此在作光谱测量时可同时采集多个波长点的数据,将这些数据输入计算机或微处理器进行分析与处理。采用多通道检测器,结合计算机技术,不仅可以提高光谱分析的速度,还可以简化仪器的光学系统结构,缩小仪器的体积,使仪器小型化。[/color][color=#333333]仪器主要技术参数要求:波长范围200-700nm;使用环境温度0-45℃ ;光波路径宽度2-100mm;压力为标准0.1MPa-1MPa ;电源为外接电压12V;标准界面为 RS232/485/CAN总线 其他标准总线;远程通讯为调制解调器。[/color]2) 标液测量 最小二乘法获得基础模型[color=#333333]根据国标 GB 1191489 的相关技术要求, 浓度为2. 082 1mol/L的邻苯二甲酸氢钾溶液的理论 COD 值为500mg/L, 依法配制邻苯溶液 15种, 称为量程校正液,通过分别配置不同的量程校正液测量数值,通过参量反演数学模 型 将长段的吸收光谱分成个若干区 间,建立吸光度系数与浓度的方程 取若干个区间的中心波长作为特征波长即为特征波长的个数将特征光谱 映射为COD 值的特征向量,通过最小二乘法做出基本方程。[/color]3) 水样比对[color=#333333]在计算获得基础方程后选取具有代表性的水样进行实地水样检验,以去离子水为参比溶液, 得到该水样的吸光度谱图。由于地表水中其它物质引入干扰, 需要进行修正。使用可见光处的吸光度值作为修正因子,同时通过实验室检测或现场化学在线分析法进行监测,运用统计学方法 ( T检验)对比 UV 法与化学法所测量得到的两组 COD值。[/color]4) 网络神经元算法模型建立[color=#333333]机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。[/color][/b][color=#333333] [/color][b][color=#333333]人工神经网络就是这种机理。假设X(1)代表我们为电脑输入的光谱特征,X(2)代表人的吸光特征X(3)代表水的浊度特征X(4)代表水的其它特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。[/color][color=#333333]现在我们随便寻找待测水质进行测量,设备根据预设变量提取这水质的基础信息进行判断,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个区域值(设为Q)进行比较,根据Y在区域Q的位置,设备就根据预设模型判定水质的COD数值.[/color][color=#333333]由于前期设备计算积累经验较少,所以结果是随机的.一般我们设定是正确的,但是由于水中物质吸光度变化,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变,这时候设备的判断失误,COD设备数值出现偏差.[/color][color=#333333]但是我们通过实验室或是自动设备告诉它正确数值,设备就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来吸光度(3)这个体征的变化导致了其判断失误,设备会自动修改其权重W(3),修改了这个权重就意味着设备通过学习认为吸光度在判断地表水水质权重不同.这就是机器学习的一个循环,而通过大量的数据实验与积累,通过网络神经元算法的持续修正和特征水样的增多,设备对水体水质的适应性及测量精度也会快速提升。[/color]四、数据修正与模型完善5) 全程修正[color=#333333]针对硝酸盐、BTX、浊度等参数,对于适用于如污水处理厂的入流、出流和曝气池、河流、地下水、造纸厂、啤酒厂等场合的在线测量分别给出修正值,通过这种方法保障基础测量精度。[/color]6) 局部修正[color=#333333]在使用全程校准不能达到精确度要求时,经过采样、贮存和实验室分析的高质量的标准测定过程,用两点法进行校准。[/color]7) 高级修正[color=#333333]得到类似非常精确分析的测量,可以采用主成分分析、偏最小二乘拟合等方法。[/color]8) 数据计算模型持续完善[color=#333333]通过水样收集通过网络神经元算法持续完善与改进计算模型。[/color][/b]

  • 火花直读光谱的光栅基本上固定不动的吧?只能微调?

    我们这将要引进一台火花直读光谱。在这方面我是新手。刚看了下原理,感觉比较简单。   我想问一下:火花直读光谱的光栅应该是基本固定的吧?最多只能微调。是不是这样?   我的感觉是:这种光谱仪把经光栅出来的光分光后一次性全给光电倍增管接收了,一起测。是不是有点类似于高效液相色谱中的光电二极管阵列一样?只是这里是光电倍增管阵列。   其它的光谱一般是一次测一个波长的光线。所以每次要转光栅,把它调到合适的位置,使在固定在一个位置上的光电倍增管接收相应的信号。      从原理上来说,就像我们把太阳光用棱镜(火花直读是光栅)分光成七彩虹一样,然后如果我们在不同位置接收不同颜色的光线(相当于检测),这样就知道每种彩色的强度。由于在火花直读光谱仪里光电倍增管是固定的(应该是固定的吧?),所以只有在一个合适的角度才有可能让这些东东入射到相应的光电倍增管上。因为波长的排列顺序是固定的。   从这个方面来说,我觉得火花直读光谱仪的抗震性很重要,位置稍有偏离可能就不好测了,或测不到了。   不知我的理解对不对?

  • 红外全光谱范围线性度是个什么指标

    最近关注到尼高力的红外光谱仪有个全光谱范围线性度指标,但是其它厂家像布鲁克和PE公司的红外光谱仪没有给出相应的指标,请问大牛们这个指标是什么意思?怎么测出来的?可以反应仪器的什么性能?谢谢了

  • 【原创】全光谱传感器的原理及特点介绍

    [align=center][b][font=宋体][size=18pt]全光谱传感器的原理及特点、技术参数介绍[/font][/size][/b][/align][align=center][font=宋体][size=12pt] [/font][/size][/align][font=宋体][size=12pt] [/font][/size][font=宋体][size=12pt]全光谱传感器是根据紫外及可见光谱原理(UV-VIS spectrometry)监测。传感器一组光束由光源发射端发出,在通过水体后,接受端检测器测量一定波长范围内的光束强度,每种溶解在水体中的分子会吸收特定波长下的波长,水体中物质浓度不同,吸光度不同。同时,另一组光束通过参比介质(去离子水)对吸光度进行参比、校准,得到水体中物质对紫外及可见光的吸收线性,应用控制器中的线性模型,计算出水体中物质的浓度。[/font][/size][b][font=宋体][size=14pt]特点:[/font][/size][/b][font=宋体][size=12pt] 1 [/font][/size][font=宋体][size=12pt]紫外/可见全光谱测量,光谱范围:200-730nm,分辨率2.5nm;[/font][/size][font=宋体][size=12pt] 2 [/font][/size][font=宋体][size=12pt]双光束测量技术,消除光源不稳及带来的测量误差;[/font][/size][font=宋体][size=12pt] 3 [/font][/size][font=宋体][size=12pt]投入式直接测量,不需要试剂、不需取样系统,便捷、方便;[/font][/size][font=宋体][size=12pt] 4 [/font][/size][font=宋体][size=12pt]超低待机功率,非测量状态待机功率小于0.8W,一次充电可工作16个小时[/font][/size][font=宋体][size=12pt] [/font][/size][font=宋体][size=12pt]以上;[/font][/size][font=宋体][size=12pt] 5 [/font][/size][font=宋体][size=12pt]传感器清洁方便快捷,免维护,监测简单,无须培训,适合野外监测、校准;[/font][/size][font=宋体][size=12pt] 6 [/font][/size][font=宋体][size=12pt]一款仪器可同时快捷监测10多种因子,适合水污染排查、筛选检测;[/font][/size][font=宋体][size=12pt] 7[/font][/size][font=宋体][size=12pt]可设置监测报警值,对可疑水体或异常水体可自动报警,并保存监测数据,[/font][/size][font=宋体][size=12pt]方便实验室手工复核;[/font][/size][font=宋体][size=12pt] 8[/font][/size][font=宋体][size=12pt]监测传感器防护等级IP68,野外使用,防震动、防破坏、防水、防爆。[/font][/size][table][tr][/tr][/table]

  • 红外光谱仪测试乙醛,氨气两种气体

    [font='微软雅黑',sans-serif]红外光谱仪测试乙醛,氨气两种气体,同时混在一起存在干扰,分开单个气体测和混在一起测结果不一样,混在一起测结果会偏低,请问混在一起加热溶解挥发测试浓度发生什么化学性质变化,如何对另一种气体红外官能团形成干扰?乙醛和氨气都是采用乙醛溶液和氨水通过加热挥发形成气体。[/font]

  • 光谱仪的检定及核查

    大家的光谱仪都有没有强制性的检定要求,检定周期又是多少,周期内的设备期间核查又有几次,欢迎参与分享!

  • 【分享】------拉曼光谱仪性能的检定方法!!!

    拉曼光谱仪性能的检定方法a.环境条件 仪器应安放在防震台上,通风良好,附近无强电场、磁场干扰;室温18~24℃;相对温度≤75%;单相及三相电源的波动≤5%(相对误差);冷却水流速≥9.5L/min。b.检定条件(a)Ar+激光器的激发线为514.5nm、488.0nm输出功率不少于300mW;(b)低压汞灯或氖灯;(c)毛细管,CCl4试剂等。c.检定方法(a)仪器外观及初步检定 按正常操作程序,运行光谱仪,当键盘输入指令时,各相应的功能运行及控制都能正常进行;(b)测定仪器的分辨率;(c)测定仪器的波数精度;(d)仪器重现性的测定。将汞灯置于入射狭缝前,狭缝宽度分别为5μ、开、开、11μ,狭缝高度为2mm时,步进0.1cm-1,每点积分时间为0.1s,扫描测量18312.5 cm-1谱线,重复4~10次扫描测量,其重复性在土0.2~0.5 cm-1之内或更好。d.检定周期为1年。只有定期检定光谱仪,才能确认测定数据的准确、可靠,否则,测得的数据是无效的。

  • 【讨论】光谱仪不稳定的原因

    我们公司用的是ARL3460,主要做铝分析,自从去年7月换了铁通道之后,铁和硅含量就出现测量偏低的现象,最近又极其不稳定,报出结果忽高忽低,微量元素居然有0和负值。描迹、标准化后还是那样,做了暗电流和灯电流都可以。这是怎么回事?与真空泵油有关系吗?我们这台光谱仪用了3年没换真空泵油。

  • 加拿大研制出全光谱太阳能电池

    据美国物理学家组织网6月27日(北京时间)报道,加拿大科学家表示,他们研发出了一款新式的全光谱太阳能电池,其不但可以吸收太阳发出的可见光,也可以吸收不可见光,从理论上讲,转化效率可高达42%,超过现有普通太阳能电池31%的理论转化率。研究发表在最新一期的《自然·光子学》杂志上。  此款基于胶体量子点(CQD)的高效串接太阳能电池由加拿大首席纳米技术科学家、多伦多大学电子与计算机工程系教授泰德·萨金特领导的科研团队研制而成。论文主要作者王希华(音译)表示,该太阳能电池由两个吸光层组成:一层被调制用于捕捉太阳发出的可见光;而另外一层则可以捕捉太阳发出的不可见光。  萨金特介绍说,为了做到这一点,该团队用纳米材料串联成一个名为分级重组层的设备,能往返运输可见光层和不可见光层之间的电子,有效地将捕捉可见光的吸光层和捕捉不可见光的吸光层结合在一起,这样,两个吸光层都不需要妥协。

  • 求帮忙分析紫外全光谱

    求帮忙分析紫外全光谱

    [color=#444444]聚乙烯醇反应后的做出来的紫外全光谱。blank是聚乙烯醇原水扫出来的,1、8是不同条件下反应后的出水。[/color][color=#444444][img=,551,415]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241031176553_1793_1739275_3.png!w551x415.jpg[/img][/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制