当前位置: 仪器信息网 > 行业主题 > >

碳蒸镀仪

仪器信息网碳蒸镀仪专题为您提供2024年最新碳蒸镀仪价格报价、厂家品牌的相关信息, 包括碳蒸镀仪参数、型号等,不管是国产,还是进口品牌的碳蒸镀仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碳蒸镀仪相关的耗材配件、试剂标物,还有碳蒸镀仪相关的最新资讯、资料,以及碳蒸镀仪相关的解决方案。

碳蒸镀仪相关的资讯

  • 发改委向社会征集2023年度碳达峰碳中和课题研究单位
    为积极稳妥推进碳达峰碳中和工作,加强政策储备,强化决策支撑,现对2023年度碳达峰碳中和领域重大课题项目,向社会公开征集研究单位。具体事项公告如下。   一、研究题目及要点   (一)落实“双碳”目标任务中锻造新的产业竞争优势路径研究   分析全球范围内绿色低碳产业发展趋势,梳理总结我国绿色低碳产业发展现状,有针对性提出相关支持政策建议。   (二)碳预算管理制度研究   梳理国际碳预算管理经验做法,分析其实施成效、存在问题等,结合我国实际情况和碳达峰碳中和工作进展,研究提出建立碳预算管理制度的政策建议。   (三)绿色低碳先进技术分类识别及支持政策研究   按类别梳理绿色低碳领域先进技术,分析低碳零碳负碳关键技术应用前景、国内外研究进展情况、存在问题、发展方向等,确定先进适用技术范围,研究提出支持有关技术研发、应用和推广的政策建议。   (四)产品能耗标准与碳排放标准协同模式研究   梳理分析世界主要经济体重点产品能耗和碳排放管理要求,研究我国产品能耗标准与碳排放标准的实施效果,提出单位产品能耗标准和碳排放标准的协同管理模式和相关政策实施建议。   (五)重点产品碳足迹管理体系研究   梳理全球范围内产品碳足迹管理和碳标识制度有关情况,结合我国经济社会发展实际,研究提出我国重点产品碳足迹方法学、背景数据库和碳标识制度总体框架,提出建立重点产品碳足迹管理体系的政策建议。   (六)工业生产过程碳排放统计核算制度研究   开展工业生产过程碳排放核算方法研究,研究提出重点行业碳排放因子相关系数测算工作程序,并通过开展调研、组织试算等方式验证碳排放核算方法的可行性。   (七)碳减排市场化机制研究   梳理国际碳排放权交易市场建设及运行情况、碳抵消机制设计及实施情况、其他碳减排相关市场化政策机制设计及实施情况,研究提出建立健全我国碳减排市场化机制的政策建议。   二、总体要求   (一)要坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大精神,正确认识和准确把握党中央、国务院碳达峰碳中和决策部署精神,聚焦委托课题研究重点和关键环节,深化重大问题研究,提交有深度、有广度、高质量的课题研究报告。   (二)要突出改革思维和创新思路,坚持目标导向、问题导向,立足基本国情,深入开展实地调研,梳理发展现状、面临的突出问题,研究提出下一步发展思路、改革目标、政策举措及对策建议等。   (三)要注重提升课题研究质量,形成的研究成果要有前瞻性,符合客观实际,政策建议应具有针对性、适用性和可操作性,为深入推进“双碳”各项重点任务和制定实施新的重大政策提供支撑。   (四)研究成果知识产权归国家发展改革委环资司所有。   三、申报要求   (一)课题申报单位必须具有完成课题所必备的人才条件和物质条件,原则上应为具有独立法人资格的企事业单位和社会团体。课题负责人应在相关研究领域具有较高的学术造诣和政治素养,原则上要具有副高及以上职称,组织、指导、参与课题研究项目实施全过程。课题组成员应具备较高的政治素质、理论素养、业务素质,在碳达峰碳中和重点领域具有丰富经验,能够承担实质性研究工作。   (二)按要求如实填写《国家发展改革委资源节约和环境保护司委托研究课题项目申报书》。申报书需由牵头申报人所在单位盖章确认,一式3份,通过中国邮政EMS寄至国家发展改革委资源节约和环境保护司(北京市西城区月坛南街38号,邮政编码100824),信封上请注明“申报课题”及申报的课题序号、名称。   (三)申报截止时间为2023年8月11日(以寄出邮戳日期为准)。   (四)我司将组织力量对研究课题申报书进行择优遴选。结果确定后,在国家发展改革委门户网站发布公告信息,并与入选单位签订正式合同,给予相应经费资助。   (五)对最终没有合适入选单位承接的课题,由我司根据课题涉及领域确定具体承担单位。   四、项目执行时间   委托研究课题项目执行时间由签订合同之日起至2023年12月底。项目承担单位应在2023年12月15日前提交最终研究成果(3份研究报告全本、1份电子版,3份研究报告简写本、1份电子版)。    国家发展改革委   资源节约和环境保护司    2023年7月27日
  • 溶出度方法学验证的一般内容探讨
    药物的质量研究与质量标准的制定是药物研发过程的重要研究内容之一,贯穿于研发的整个生命周期。在药物质量研究工作中,分析方法学的开发及验证是其重要的组成部分之一。分析方法开发验证的目的是判断所采用的分析研究方法是否科学、合理,能否有效控制药品的内在质量特性,做到质量可控。本文旨在和大家一起交流溶出度方法学验证内容的一般研究思路,如有存在表述不当之处还请各位批评指正。溶出度方法学验证的步骤主要有:1)初步确定分析方法,UV法或HPLC法;2)制定验证的方案,包括前期文献材料调研、验证目的、验证项目及不同项目验证的可接受标准;3)开始验证工作,积累收集数据及相应图谱;4)对验证的结果进行判断,评价分析方法是否通过验证。溶出度方法学验证的项目与其他分析方法基本一致,常规验证项目包括:专属性、线性及范围、准确度、精密度和耐用性等,方法验证的指导原则可参考中国药典、ICH Q2(A/B)、USP通则、、等。1. 专属性专属性系指在其他成分(如杂质、降解产物、空白辅料等)存在时,采用的分析方法能正确测定出被测物的能力。专属性测定环节,应分别分析加有杂质、降解产物等控制成分的样品和实际样品,比较两组测试结果,结果合格的标准应该为:空白溶剂对主峰的检测无干扰,不超过1%;主成分与有关物质完全分离,分离度r≥1.5;峰纯度符合相应规定。辅料对专属性的干扰:空白辅料是指除了活性成分以外的所有辅料和包衣材料,还包括油墨和胶囊壳。具体操作方法可按处方比例配制空白辅料(含油墨或胶囊壳)的混合样品,将该混合样品溶解或分散在溶出介质中,然后向溶液中加入一定量药物,作为供试品溶液,可接受标准为:辅料(包括胶囊壳等基质)对主峰的检测无干扰,不能超过2.0%。对于溶出实验方法而言,还需要特别注意的一点是:取样时所采用的过滤装置,如滤膜、滤头等,必须要经过药物的吸附验证,防止对测定结果产生一定干扰,这一部分应在溶出方法开发阶段做充分论证研究。2. 线性和范围可取对照品适量,按照标准方法配置一系列浓度的溶液。一般操作是在容量瓶中配成一定浓度的储备液,分别精密移取储备液适量,稀释成系列浓度的溶液,通常至少使用5个浓度点(参见),1225中说明:对原料或成品药(制剂)的含量测定:一般应在测试浓度的80-120%,该范围是应考虑的最小规定范围,若超出此范围,应有正当理由,主要是根据剂型的特点;对于溶出度试验,应为规定范围的±20%,例如如果是控释制剂,规定1h后达到20%,24h达到90%,它的验证范围应为标示量的0-110%。另外,若线性贮备溶液制备过程中为了增加药物的溶解度,可能会用到有机溶剂,除非经过验证外,有机溶剂的量均不得超过总体积的5%(v/v)。例如取头孢克肟对照品55.37mg,置100ml容量瓶中配置为储备液,然后就依次精密移取稀释成一系列梯度浓度,以浓度为纵坐标,相应峰面积为横坐标进行线性回归,结果表明头孢克肟浓度在0.48-477.84μg/ml范围内,进样量在9.34-9337.66ng范围内,进样量与峰面积呈良好线性关系。3. 准确度准确度即回收率实验。回收率试验目的是考察采用拟定方法测定结果与真实值或参考值接近的程度,且应应在规定的线性范围内进行试验。在回收率实验进行之前,USP1092建议:在回收率实验之前,过滤器、滤膜等对药物的吸附要进行全面评估,同时要设法排除由于仪器的玻璃材质部分对样品吸附而对测定结果造成的干扰影响。具体的实验方法包括:在规定范围内,取同一浓度(相当于100%浓度水平)的供试品,用至少6份样品的测定结果进行评价;或考虑设计至少三种不同浓度,每种浓度至少平行配制3份,用至少9份样品的测定结果进行评价,回收率验证的浓度范围一般要求为限度的±20%。两种分析方法的选定应考虑分析的目的和样品的浓度范围。回收率供试样品溶液配制:按处方比例混合的空白辅料+不同浓度的主成分对照品或原料,再按照拟定的质量标准配制溶液,必要时可超声使主成分溶解。配制溶剂尽量与溶出介质体系一致。如果药物溶解性较差,可以将药物溶解在少量有机溶剂(一般不超过5%)中制备储备液,并用溶出介质稀释到最终浓度。可接受标准一般为:各浓度下的平均回收率应在98%-102%之间,相对标准偏差RSD应不大于2.0%。例如取头孢克肟对照品适量各三份,按照100%比例加入空白辅料,加溶出介质振摇溶解,作为50%、75%和100%供试溶液,回收率结果表明其方法回收率良好。4.重复性重复性即在同样的操作条件下,在较短时间间隔内,由同一分析人员测定所得结果的精密度。可在规定浓度范围内,取同一浓度(分析方法拟定的样品测定浓度,相当于100%浓度水平)的供试品,用至少6份样品溶液的测定结果进行评价;或设计至少三种不同浓度,每种浓度分别制备至少三份供试品溶液进行测定,用至少9份样品的测定结果进行评价(浓度设定应考虑样品的浓度范围)。实际实验操作中,可能有几种方法,方法一:取6个单独制剂分别测定溶出度,计算RSD,但该方法测定时受制剂个体差异影响比较大,如果测定结果重复性不好,可能是因为制剂含量差异所导致,用该方法时最好是挑选质量较好,例如含量均匀度较好的片剂进行实验;方法二即取供试品1片(粒),置于一个溶出杯中,按照溶出度方法测定,至规定取样点时去处六份供试液分别测定溶出度计算RSD值。结果接受标准为RSD不超过2.0%。例如取头孢克肟颗粒6袋,按照溶出度方法进行溶出,30min取溶出液滤过,进样计算溶出度,结果表明该溶出测定方法重复性良好。5. 中间精密度中间精密度即在同一实验室内的条件改变,如不同时间、不同分析人员、不同设备等测定结果之间的精密度。研究过程中的典型的变化,包括不同天、不同操作人员和设备。USP1092中建议:可选用同一批次质量特征较好的制剂(如较好的含量均匀度)的溶出试验可以由同一实验室至少两个不同的分析人员进行,每个分析人员制备标准溶液和溶出介质和依据明确的提取和定量步骤进行。通常情况下,分析人员用不同的溶出液、分光光度计或HPLC(包括色谱柱)和自动进样器,在不同天进行试验。可接受标准:USP 1092建议:当该时间点的溶出量小于85%时,两个分析员溶出结果的平均值相差不得超过10%;当该时间点的溶出量大于85%时,两个分析员溶出结果的平均值相差不得超过5%。当然,具体的可接受标准可根据特定产品做具体规定。6. 溶液稳定性溶液稳定性考察的具体时间区间可根据不同的项目需求去做不同的考察。稳定性包括对照品溶液稳定性和供试品溶液稳定性。对照品溶液稳定性:取对照品溶液适量,在室温下放置,分别于不同时间点测定吸光度值,计算其RSD值;供试液稳定性:取自制样品适量,用相应介质制备成供试液,在室温下放置,分别于不同设置时间点测定吸光度值,计算其RSD值。对于UV法测定的供试液,一般稳定性做到24小时即可,缓控释制剂可相对延长时间;对于HPLC法测定的供试液,一般需满足一条溶出曲线所有样品测定完全的时间。如果溶液不稳定,还需要考虑温度(需要冷藏)、避光(透明容量瓶+棕色容量瓶)、以及容器材料(塑料或玻璃)等对稳定性结果的影响。可接受标准一般为:取每时间点的吸光度值,计算其RSD,应不大于2%,则说明该溶液在此时间段内的稳定性良好。7. 耐用性耐用性主要评估溶出条件故意做微小改变时对溶出方法耐用性的影响。对于该实验,最好选用具有较好质量特征(如具有较好含量均匀度)的制剂批次进行,排除制剂个体差异对该结果造成的干扰。HPLC法可根据具体情况考虑流动相组分差异、流速、PH值、色谱柱类型、分离温度、波长等变化对测定结果耐用性的影响;UV测定方法可结合不同项目溶出度方法的具体情况对表面活性剂浓度、pH值、溶出介质是否脱气处理、转速、温度、体积、取样时间、不同型号品牌的溶出仪等进行方法的耐用性研究,对比溶出条件的微小变化对产品测定结果的影响。例如若选择的溶出介质是缓冲液介质体系或是含有表面活性剂的介质体系,需要做pH值变化、表面活性剂浓度变化对溶出速度的影响,以确定溶出介质的耐用性。根据品种特点考察耐用性,推荐但不仅限于上述变动条件。8. 溶出均一性溶出均一性试验包括批内均一性和批间均一性。这两项指标既能检验药品本身质量特性是否符合规定,同时也可以检验溶出方法是否满足准确性、精确性良好的要求。批内均一性可取同一批次产品的6或12个剂量单位测定溶出曲线,计算各取样时间点的RSD值。其中,早期的一些取样时间点(如5min),要求RSD≤20%;其他时间点,要求RSD≤10%。批间均一性:取不同批次产品的6或12个剂量单位测定溶出曲线,比较各批次的溶出曲线是否相似。综上,溶出方法验证的一般项目基本如上几项,当然并不局限于该些项目,具体的验证项目及可接受标准可根据产品自身特点所设定。参考文献:[1]. 《中国药典》2020年版四部:分析方法验证指导原则[2]. USP通则、 [3]. 山广志,药物制剂质量研究——方法选择与验证[4]. 胡利敏,杨丽,头孢克肟颗粒溶出曲线方法学验证[J]. 中国抗生素杂志,2017,5(42):373-376.
  • 助力双碳 北京经信局征集2022年度绿色制造名单
    为贯彻落实《“十四五”工业绿色发展规划》《工业领域碳达峰实施方案》,持续完善绿色制造体系,推进工业绿色发展,助力工业领域碳达峰碳中和,北京市经济和信息化局发布关于征集2022年度绿色制造名单的通知,涵盖绿色工厂、绿色设计产品、绿色工业园区和绿色供应链管理企业四个维度。北京市经济和信息化局关于征集2022年度绿色制造名单的通知有关单位:为贯彻落实《“十四五”工业绿色发展规划》《工业领域碳达峰实施方案》,持续完善绿色制造体系,推进工业绿色发展,助力工业领域碳达峰碳中和,按照工业和信息化部办公厅《关于开展2022年度绿色制造名单推荐工作的通知》工作部署,现组织开展2022年度国家级绿色制造名单申报推荐工作。有关事项通知如下:一、征集方向(一)绿色工厂各申报单位参照《绿色工厂评价通则》(GB/T36132-2018)开展自评价和第三方评价。已发布绿色工厂评价行业标准的(网址:https://www.miit.gov.cn/jgsj/jns/lszz/art/2022/art_0573b5434b8741f8a2f951e743c0d2b1.html),按照行业标准要求进行自评价和第三方评价。为发挥绿色工厂节能降碳引领作用,重点用能行业能效水平原则上要达到或优于《高耗能行业重点领域能效标杆水平和基准水平(2021年版)》(发改产业〔2021〕1609号)、《煤炭清洁高效利用重点领域标杆水平和基准水平(2022年版)》(发改运行〔2022〕559号)对有关行业规定的标杆值。未规定能效标杆值的行业,原则上要达到或优于相应国家能源消耗限额标准先进值。(二)绿色设计产品本年度推荐的绿色设计产品范围和标准请登录工业和信息化部节能与综合利用司网站,在“绿色设计产品标准清单”中查看(https://www.miit.gov.cn/jgsj/jns/lszz/art/2022/art_073342a296614db5b67ea862ccb33a74.html),申请产品仅限清单中载明标准的产品。各申报单位应根据标准具体要求,编写绿色设计产品自评价报告。(三)绿色工业园区本市工业基础好、基础设施完善、绿色制造水平高的工业园区可参照《工业和信息化部办公厅关于开展绿色制造体系建设的通知》(工信厅节函〔2016〕586号)中绿色园区评价有关要求开展自评价和第三方评价。此次征集的绿色工业园区是以产品制造和能源供给为主要功能、工业增加值占比超过50%、具有法定边界和范围、具备统一管理机构的省级及以上工业园区,鼓励国家低碳工业园区试点单位开展绿色工业园区建设工作。(四)绿色供应链管理企业本市行业影响力大、经营实力雄厚、产业链完整、绿色供应链管理基础好、在产业链发挥主导作用的链主企业可进行申报,参照《工业和信息化部办公厅关于开展绿色制造体系建设的通知》(工信厅节函〔2016〕586号)中绿色供应链评价有关要求开展自评价和第三方评价。对于电子电器、机械、汽车等3个行业,根据“绿色供应链管理企业评价指标体系”(网址:https://www.miit.gov.cn/jgsj/jns/lszz/art/2022/art_cc5e0d66391145de8e5d9b7d8c813440.html)进行自评价和第三方评价。二、申报要求1.近三年有下列情况的,不得申报绿色制造名单:未正常经营生产的;发生安全(含网络安全、数据安全)、质量、环境污染等事故以及偷漏税等违法违规行为的(以“信用中国”和“国家企业信用信息公示系统”为准);被动态调整出绿色制造名单的;在国务院及有关部门相关督查工作中被发现存在严重问题的;被列入工业节能监察整改名单且未按要求完成整改的;失信被执行人等。2.本次征集采取推荐申报的形式,符合条件的申报单位须由各区工业主管部门出具推荐意见。3.绿色工厂、绿色供应链、绿色工业园区申报需提交自评价报告和第三方评价报告。申报单位按照相关标准进行自评价后,自主委托符合条件的第三方评价机构开展现场评价,并出具第三方评价报告。绿色设计产品申报采用自我声明的方式,由申报单位根据标准具体要求,编写自评价报告。4.我局将通过专家论证、现场调研等方式择优向国家推荐申报2022年度绿色制造名单。三、第三方评价机构有关要求第三方评价机构要按照《绿色制造体系评价参考程序》(工信厅节函〔2017〕564号)开展工作,对评价报告内容和结果的真实性和准确性负责,并与申报主体自评价活动保持独立性,不参与自评价报告编写。经查实评价过程存在弄虚作假或故意隐瞒受评价方问题的评价机构将列入黑名单,三年内不予采信其所出具的评价结果。开展绿色制造体系相关评价工作的第三方机构要满足以下基本条件:1.在中华人民共和国境内注册并具有独立法人资格的企事业单位、行业协会等,具有开展相关评价的经验和能力;2.具有固定的办公场所及开展评价工作的办公条件,具有健全的财务管理制度;3.从事绿色评价的中级职称以上专职人员不少于10人,其中能源、环境、生态、低碳、生命周期评价等相关专业高级职称人员不少于5人;4.评价机构人员要遵守国家法律法规和评价程序,熟悉绿色制造相关政策和标准规范;5.具备开展绿色工厂、绿色工业园区、绿色供应链等领域评价的能力,近五年主导或参与绿色制造相关评审、论证、评价或省级以上科研项目,或国家及行业标准制定、绿色制造相关政策制定等。绿色制造体系第三方评价工作由申报企业或园区自主委托评价机构开展。按照工信部通知要求,为提高评价质量,同一法人的评价机构(包括与其相关联的企事业单位)开展的本批次绿色制造体系评价项目(包括绿色工厂、绿色工业园区、绿色供应链管理企业)总计不得超过15项,工信部将公开第三方评价机构开展评价工作的通过率。四、材料报送要求1.请参与本次绿色制造的申报单位于2022年10月18日(周二)前报送推荐函和相关申报材料(附件1-5)纸质版一式3份至北京市经济和信息化局产业发展促进中心(北京市朝阳区工体北路6号凯富大厦6层625室),电子版材料通过“工业节能与绿色发展管理平台”(https://green.miit.gov.cn)报送我局。2.请本市范围内开展绿色制造评价工作的第三方机构于2022年10月31日(周一)前将“评价机构年度工作情况报告”(附件6)电子版通过工业节能与绿色发展管理平台(https://green.miit.gov.cn)报送工业和信息化部(节能与综合利用司),另请发送电子版至邮箱jnc@jxj.beijing.gov.cn 。北京市经济和信息化局2022年9月21日附件:推荐汇总表.doc绿色工厂自评价报告及第三方评价报告.doc绿色设计产品自评价报告.doc绿色工业园区自评价报告及第三方评价报告.doc绿色供应链管理企业自评价报告和第三方评价报告.doc评价机构年度工作情况报告.doc
  • 从郑州居民楼大火谈材料烟毒性研究的重要性
    25日凌晨,郑州市西关虎屯小区一单元楼底层电表箱着火,目前已造成13人死亡,4人受伤。据报道,火灾中被浓烟熏死呛死的人是烧死者的4-5倍。 为何火势不大却伤亡如此惨重? 标准集团(香港)有限公司提出,在火灾中,材料燃烧时产生的浓烟毒气是造成人员伤亡的重要原因。 高层建筑发生火灾时,烟雾阻碍人们逃生、进行灭火行动从而导致人员死亡。统计表明,由于一氧化碳中毒窒息死亡或被其它有毒烟气熏死者一般占火灾总死亡人数的以上,而被烧死的人当中,多数是先中毒窒息晕倒后被烧死的。 标准集团(香港)有限公司认为,控制材料生烟性能以及烟气毒性是消防检测的一个重要问题,应该引起各方的重视。
  • 水中碳14分析方法征求意见 涉TOC和液闪仪
    环保部于近日发布了《水中14C分析方法—湿法氧化法(征求意见稿)》。历时五年,经过广泛调研和实验室认证,标准编制单位环境保护部核与辐射安全中心最终确定了湿法氧化和液体闪烁技术法进行水中碳14的测定,分析方法适用于核设施液态流出物中碳14的测定,环境水体中碳14分析可参考使用。  方法原理为:通过酸解洗气、加过硫酸盐氧化剂(根据需要,也可适当增加催化剂)对样品进行处理,将样品中所含的无机碳和有机碳转化为二氧化碳,通过载气(氮气)吹扫后用无机碱液或有机碱液吸收,吸收液加闪烁液制样后,在液体闪烁计数器上进行碳14的活度测量。  根据目前市场上的仪器,此标准中所用的氧化装置可选用TOC分析仪,也可自行搭建 分析装置为低本底液体闪烁仪。  附件:水中14C分析方法—湿法氧化法(征求意见稿).pdf
  • 浙江省市场监督管理局开展绿色双碳认证领域标准制定需求排摸工作
    各有关单位:为深入推进我省绿色双碳认证工作,根据《国家认监委秘书处关于支持开展碳达峰碳中和认证综合试点的复函》(认秘函〔2023〕11号)《认监委秘书处关于组织申报2023年认证认可行业标准制修订项目的通知》(认秘函〔2023〕10号)和省委改革办关于推进绿色双碳认证集成改革工作要求,经研究,针对绿色双碳认证领域标准制定需求开展摸排工作,现将有关事项通知如下:一、排摸内容(一)绿色产品认证、绿色管理体系认证、绿色评价、绿色服务认证等领域相关的标准;(二)双碳认证产品、服务及核算方法等领域相关的标准;碳达峰、碳中和、低碳相关认证活动、检验检测活动标准;碳计量、监测标准。二、排摸重点(一)基础通用类标准。规范绿色双碳认证认可、检验检测活动的基础要求和通用原则,涵盖术语定义、碳认证标识、基础数据库构建等;(二)绿色服务认证类标准。涵盖康养服务、民宿服务、母婴护理、无障碍环境设施、软件和信息服务、科技服务、快递包装、绿色物流、绿色数据中心、绿色金融服务认证等标准。(三)绿色产品和管理体系认证类标准。涵盖农产品、工业品、消费品、食品、管理体系、绿色评价等标准;(四)碳足迹核算、碳减排、碳清除认证类标准。涵盖碳足迹核算量化方法学、企业碳足迹核算认证、产品碳足迹核算认证,项目、园区、地区、行业减排量核算认证,碳汇、碳捕集利用及封存、碳清除认证等标准;(五)双碳管理与评价类标准。涵盖企业碳信息披露、双碳从业机构和人员行为规范、碳资产管理与评价、碳排放权交易管理与评价、碳中和管理与评价、低(零)碳管理与评价、碳信息平台管理与评价等标准。三、报送要求(一)标准需求选题应立足国内绿色双碳认证领域发展需求、适应市场需要,且与现行国家标准、行业标准、地方标准、团体标准无交叉、无重复;(二)认真填写《绿色双碳认证领域标准需求征集表》(详见附件)并附标准草案和编制说明,确保内容真实、可靠、完整和准确。本次标准项目报送工作截止日期为2023年4月25日。(三)报送方式:请各单位于2023年4月25日前将报送材料的电子文本(PDF扫描件+WORD)发送至申报邮箱。报送联系人:浙江绿色认证联盟姜宁欣,0571-89765132 浙江省标准化研究院绿色双碳认证标准研究中心姜阅,0571-85786390;报送邮箱:yue_delighted@qq.com。附件:绿色双碳认证领域标准需求征集表浙江省市场监督管理局2023年4月18日(此件公开发布)附件 绿色双碳认证领域标准需求征集表中文名称英文名称标准性质国际标准 国家标准 行业标准 地方标准(省级) 团体标准 采用国际标准无 ISO IEC ITU ISO/IEC 其他采用程度等同 修改 非等效采标号采标名称标准类别基础 方法 管理 产品 其他ICS上报单位主管部门起草单位项目周期经费预算说明目的、意义范围和主要技术内容国内外情况简要说明有关法律法规和强制性标准的关系标准涉及的产品清单是否有科研项目支撑 是 否科研项目编号及名称是否涉及专利 是 否专利号及名称填写说明:1.非必填项说明1)采用国际标准为“无”时,“采用程度”、“采标号”、“采标名称”无需填写;2)无科研项目支撑时,“科研项目编号及名称”无需填写;3)不涉及专利时,“专利号及名称”无需填写。
  • 可变蒸镀领域型有机蒸发装置-最适合高品质有机薄膜的蒸镀以及多源蒸镀!
    控制蒸镀范围的同时,通过低蒸镀速率实现薄膜的制备可以实现高结晶性的有机薄膜的制备 对少量有机材料的有效蒸镀,可削减材料使用成本 采用飞行器设计,可实现基板附近的蒸镀 Z操作台的使用,可避免与现有设备的干扰 手动挡板及可变控制蒸镀范围,能将蒸镀腔的污染控制到最小 蒸镀范围:&Phi 20~ (根据蒸镀距离可调整) 蒸镀速度:数原子层/min 安装法兰:&Phi 70ICF 坩埚温度计:TYPE-K 付挡板 【可蒸镀材料】 :分子 :诱导体 :分子 其他 用AEV-OD蒸镀的C40H20膜的X射线反射结晶结构          顶顶顶顶 水晶振动式膜厚计测定数据 (根据累计膜厚和蒸镀时间推算出的蒸镀率)
  • OI中国成功举办2012年度第一期总有机碳分析仪应用培训班
    北京普立泰科仪器有限公司(OI中国)于2012年8月成功举办了为期两天的美国OI总有机碳分析仪培训班,旨在增加用户的基本技能、应用扩展及相互之间的沟通交流,为了保证用户的培训质量及上机实际操作练习,每次培训班都会合理控制人数。本次培训班得到了广大用户的支持,共有来自黑龙江黑河市药品监督管理局,黑龙江大庆市药品监督管理局,黑龙江伊春市药品监督管理局,黑龙江七台河市药品监督管理局,黑龙江双鸭山市药品监督管理局,中国人民解放军防化研究院,北京万特尔生物制药有限公司等单位共计10人参加。 本次培训,针对的是美国OI公司的Aurora1030系列总有机碳分析仪,所有已购买此仪器的用户均可免费报名参加。通过此次培训,丰富了用户的理论知识、增强了仪器的操作技能、了解了仪器的维护和保养知识,更加重要的是,通过培训班的举办,为广大用户提供了互相交流的平台,培训当中,用户们进行了非常热烈的讨论。培训结束之后,给每一位参加培训的用户颁发了培训证书。 此次顺利举办2012年第一期培训班活动,得到了广大用户的支持,响应和好评。今后,我们会继续开展详尽完善的各种培训计划,为广大客户提供更好更优质的服务!
  • 【坛墨征文】“我与坛墨”入围征文赏析
    征文入围奖截止8月15日“我与坛墨”征文大赛已到尾声感谢大家的积极投稿和热情参与!这些质朴真诚、感人肺腑的文字让我们了解了每一位产品使用者的心声也让我们更加真切地体会到坛墨与客户们的联系接下来让我们欣赏入围奖的精美文章1、我和坛墨质检聊城市*******中心 杨老师用坛墨家的标准品大概5个年头了,记得第一次接触坛墨质检还是在一次大会上,彼时单位刚刚成立,正是处处用钱之时,价格高了单位无法承担,价格低了又怕质量没保证。对比了几家的产品,正愁哪里可以搞到性价比高的产品。坛墨质检的年轻女老板上台演讲给了我很深的印象,年轻热情的销售团队让人感觉整个公司积极向上。抱着试试的态度买了几支,和别家对比了一下,质量相当可靠,又兼顾优惠的价格,便成了坛墨的长期客户。换了几任销售经理,虽未谋面,但是每个在更换销售区域之前都会专门告知一声。最令人感动的是单位有一年由于业务量较小没有准备很多的标准品,但是省农科院周五突然下发了能力验证的通知,让周一提交验证材料。一般订货发货最快也需要三天的时间,此时单位的小伙伴们都很焦急,急忙和销售经理联系,说明了情况,坛墨质检的销售经理了解了情况,在合同还没签订的时候赶紧给仓库下了订单(正值周五担心仓库发不了货),还发了加急的快递,结果第二天标准品就到了,周一一早把结果发给了省农科院,单位报送的结果还获得了优秀的等级,从此我们对坛墨质检的产品和服务更加信任。道阻且长,行则将至。未来我们的检测工作还会遇到各种问题,也真诚希望坛墨质检发展越来越好,携手客户共同进步! 2、我和坛墨质检山东********有限公司 姜老师坛墨质检科技股份有限公司,是成立于2007年的一家国家标准物质专业生产商和服务商,专门服务于国家级计量检测单位、第三方检测机构、科研院校和大型企业。我和坛墨质检相识于2016年,相知于2018年坛墨质检第三届超级工程师大赛(荣获三等奖)。我所在单位属于第三方检测机构,日常对标准物质的需求,量大质严,相比于进口的标品,坛墨质检的价格合理,质量可靠。相比于其他机构的标品,坛墨质检的范围广,品质高。坛墨质检企业文化好,以客户利益至上的理念也让我们充分相信他们的品质,一直都是我所在单位标准物质采购的首选厂家。2019年,我们单位参加山东省农业农村厅举办的兽残(恩诺沙星和环丙沙星)能力验证,以前购买的恩诺沙星标准品在配制的过程中不慎打碎了,时间紧任务重,我们第一时间联系了坛墨质检的工作人员,由于参加能力验证单位众多,一开始坛墨质检工作人员回复恩诺沙星标品没有库存,我们说明情况,工作人员表示积极配合,从其他地区调配一支标品,并发顺丰快递,我们于第二天就收到货,当时很是感动,坛墨质检这种以客户利益至上的精神值得我们学习,最后能力验证结果满意,有一半功劳来自于坛墨质检,在此再次表示感谢。2018年参加了坛墨质检举办的第三届超级工程师大赛,本来是抱着重在参与的想法,顺带可以做一下实验室比对,加强实验室质控。由于日常实验比较忙,我和同事都是晚上加班完成的实验数据,没想到得了第三名的好成绩。感谢坛墨质检的有心,让客户和企业之间的联系进一步加深,增强了信任度。 支持国货、支持坛墨质检。希望坛墨质检越做越大,让中国企业生产的标准品能够满足中国人自己的需求! 3、我与坛墨的故事华蓝****有限公司 吴老师我是2021年3月26日入职华蓝****有限公司担任实验员一职,主要负责水质指标的检测。我们公司主要使用的标准样品作为质量控制的产品均为坛墨生产的标准样品。从进入公司以来,大多使用的标准样品都是坛墨的标样,使用感觉非常良好,而且也给自身的实验操作和结果带来了十分有保障的检验。记得有一次在使用坛墨的水质标样做BOD5的实验时,在对标样浓液转换为实验用的样品液的操作有一些困惑的地方,立即拨打了坛墨的客服电话,坛墨的客服在非常短时间且迅速地接通拨打的咨询电话后给出了非常快速的回复并解决了使用上遇到的问题,这给检测实验的正常进行提供了保障,成为了检验检测非常有力的后盾。坛墨这样高品质的售后服务以及高质量技术团队的无时无刻与客户一起的支持给后端客服非常良好而且高要求高标准的使用体验,给第三方检测公司的实验数据结果提供了非常有力的保障。 4、我和坛墨质检辽宁****有限公司 赵老师您好,坛墨质检。与贵公司业务往来近三个月,我作为辽宁****有限公司的一员,本人深深的体会到,坛墨质检以质量是企业的生命,是每个员工的自尊心为先行,为客户提供优质的产品和贴心的服务,充满激情,诚信信誉,专业的精益求精的精神,使本公司及我本人深深地坚定着为中国标准物质/标准样品的事业的发展和进步而共同努力,共创辉煌。接触坛墨质检的第一位工作人员,她叫刘明,北京女孩(笑脸)的温柔的声调,亲切细腻的服务态度,留下了深刻的印象。她在业务上的专业,为我们公司提供了更多更精准的数据和产品参数。在业务沟通中,会发生一些小的问题,我们之间会非常有默契的把事情安排处理的很好,而且无论是在工作时间还是在工作以外的时间,都是亲力亲为做到完美。2021年7月20日,坛墨质检到沈阳做会展,非常遗憾的是,我本人没有能亲自到现场,期待下一次,我们可以亲自面谈,把我们的感情提高一层,为了我们更加美好的明天,共同努力,把共同的业绩做到最完美。 5、我和坛墨质检浙江******有限公司 樊老师初次接触坛墨质检的标准物质,是作为坛墨标液的使用者,那时候充分感受到了它质量的稳定和控制的精准,制作标准曲线和作为实验室的质量控制比较轻松,充分获得了我的信赖,甚至像用于HJ 700-2014水质 65种元素的测定 电感耦合等离子体质谱法的混标都是能轻易将每种元素都做出符合要求的曲线,而今再在新的实验室成为了一名采购者,更加感受到了坛墨标质检标准物质中心对客户的尊重,因为采购需要货比三家,权衡再三在相似的产品中还是选择了坛墨质检标准物质,因为它不仅质量可靠,价格也更加合理,更重要的是坛墨质检标准物质中心能够急客户所急,在客户急需的时候,现货第二天就能收到,即使是需要定制的,也是马上就能安排发货安排研制生产,力争早日拿到客户手上,这点对实验室是很重要的。衷心感谢坛墨质检标准物质中心的优质服务,祝坛墨质检标准物质中心能更上一层楼! 6、谈与“坛墨质检”的故事深圳市********* 古老师如果把标准物质比作花朵,那坛墨质检就是深扎泥土的老根,如果把标准物质比作酒瓶,那坛墨质检就是香甜可口的美酒,如果把标准物质比作星空,那坛墨质检就是星空中最耀眼的星星。谈到坛墨质检,我便忍不住把心里想说的话一字不漏地说出来。坛墨质检,每个与其打过交道的都和坛墨质检有故事。我们也不例外。这样的标准物质网有成千上万,我们唯独选择了坛墨质检。我们与坛墨质检相识于2019年秋,和我们对接的是坛墨的赵奇超同事,热情友善的服务态度,让我对坛墨质检有了最初的印象,在每一次需要购买标准物质时,总能第一时间给到最专业的建议,还有一件事让我记忆犹新,我们采购标液时,对于临近有效期的标液,会标注并告知我,这样细心的举动让作为客户的我们感觉很暖心,感受到了贴心的服务。最后祝愿拥有十四载的坛墨质检能够初心不改带着始终秉承“准确、专业、权威,为分析测试提供溯源标准”的企业使命,认真践行“质量先行、客户第一”的企业核心价值观,用户为先,进无止境,为中国标准物质/标准样品事业的发展和进步而共同努力,共创辉煌!
  • 国产仪器品质提升论坛:热议评测认证,共谋发展!
    仪器信息网讯 2024年4月17-19日,中国科学仪器行业的“达沃斯论坛”——中国科学仪器发展年会(ACCSI 2024)在苏州狮山国际会议中心隆重召开。本届年会的特色分论坛之一——仪器评测认证助推国产优质仪器质量提升论坛,聚焦于国产仪器评测认证的重要性及其在提升国产仪器质量方面的作用。会议邀请了行业内的多位专家学者和企业代表,共同探讨如何助力国产仪器更好地发展。论坛分为三个环节:专家报告,圆桌论坛,国产好仪器(食品领域)颁奖仪式。主持人:张延军 (上海启迪漕河泾科技园 副总经理)张媛媛(仪器信息网 仪器评测部经理)报告题目:2023年度国产好仪器用户调研分析首先由张媛媛女士分享2023年度仪器信息网主办的“国产好仪器”评选活动中进行的用户调研分析。另外,她还分享了用户体验以及国产仪器应对之策。为更及时地服务用户,以面对当前广泛的“国产替代”需求,仪器信息网未来将“国产好仪器”评选工作常态化。企业随报随评,为各行业用户更及时提供仪器评价结果。同时,仪器信息网将与协会、产业界人事进一步探究仪器评测和国产仪器认证等相关工作,选优、推优,为广大用户提供全方位的仪器选型参考。刘鑫(中国海关科学技术研究中心 正高级工程师)报告题目:国产仪器验评工作进展与标准化体系建设 刘鑫先生分享了国产仪器需要验证与综合评价的自己多年的实践和思考,介绍了所构建的国产仪器验证与综合评价组织架构,以及已经建立的仪器设备验证评价认证平台。当前的“仪器设备验证评价认证平台”由海关大型检测仪器设备创新技术联盟(海关总署)、海科中心仪器设备验证与综合评价认证平台(海科中心)、中关村检验检测认证产业技术联盟(北京市—科委、中关村管委会)、中关村高端科学仪器应用示范与验证评价联盟(筹)(北京市一怀柔区政府)成都高新区国产仪器验证与综合评价认证示范区(成都市一高新区)共同组织。仪器验评有何影响力呢?他认为可以带动国产仪器销量提升,同时,他指出,验评只是推广的筛选器,多渠道宣传和推广才是提升仪器认可度的最佳途径。海关科学技术研究中心联合仪器信息网共同开发了《国产仪器选型数据库》,该数据库将为海关系统仪器设备国产替代提供参考。仪器验证与评价体系相关的标准化体系建设必不可少,这其中包含了高端仪器设备标准体系、验评技术标准体系、国产优质认证标准体系、验证评价标准样品/标准物质。文武(广东科鉴检测工程技术有限公司总经理)报告题目:仪器可靠性提升方法与案例分享“可靠性”是指产品在规定的时间内和规定的条件下,完成规定功能的能力。“可靠性”与“质量”的定义有区别,仪器的可靠性越来越复杂。文武说到,华为产品的可靠性测试开展得比较好,在国产手机和汽车领域,可靠性测试一般不按国标,而是按企业标准;可靠性测试是以暴露问题为目标的。文武认为,仪器研发可靠性提升工程包含流程方法、工具平台、热测试流程、热分析方法、热设计优化、可靠性强化试验流程、可靠性强化试验方法、可靠性强化试验效果、规范的综合应力可靠性试验、故障归零管理等。 薛马骏(上海仪电分析仪器有限公司 副总经理 )报告题目:国产分析仪器发展现状及展望薛马骏先生梳理了国产分析仪器的发展历程、仪电分析分光光度计发展历程、国产分析仪器面临的问题(遭遇刻板印象,厂商孤立,同质竞争,核心部件要靠进口)。他认为重塑国产仪器形象需要从四个方面努力:政策引导,品牌营销,产业链升级,认证验评,并介绍了上海仪电参加的“上海品牌”认证以及试用验证。薛马骏说到,上海仪电分析仪器有限公司是国产仪器企业发展的缩影。刘海锋(北京怀柔仪器和传感器公司 总工程师/副研究员) 报告题目:科学仪器在大科学装置中的应用与产业化 刘海锋先生介绍到,怀柔已经被明确作为北京的高端仪器产业主阵地。在报告中详细分享了怀柔科学城、怀柔大科学装置中的科学仪器分析、高能同步辐射光源、综合极端条件实验装置、多模态跨尺度生物医学成像设施等最新进展,并特别提及:正在建设高端科学仪器验证评价和中试服务平台。赵文建(上海赫冠仪器有限公司 总经理)报告题目:优质仪器评测助力研发驱动型仪器公司发展赵文建从介绍公司的第一台仪器是全自动凯氏定氮仪开始,分享一台仪器提升质量的全过程。赵总谈到,今年将进一步计划让中国海关科学技术研究中心验证全自动凯氏定氮仪,让松江区国产仪器示范应用基地评测凯氏定氮仪和食药二氧化硫检测仪。赵文建认为,国产仪器测评将助力优质产品更快地搬到实验桌上。目前市场不景气实际反映了市场需求的变化,而企业去适应这种变化那就需做好产品去满足需求。同时也希望实验室用真实指标来确认合适仪器,不能简单的以“进口”“国产”来辨别仪器优劣。用户准确的选择,可以让优质产品更快的脱颗而出,这是对国产仪器发展真实的支持!主持人:周琦(中国认证认可协会科技委秘书长、检测分会副会长)圆桌论坛环节由中国认证认可协会科技委秘书长、检测分会副会长周琦主持,圆桌论坛参与方既有生产企业代表,也有用户企业代表以及验评机构代表。与会嘉宾围绕“仪器评测如何高品质服务国产仪器质量提升”这一主题展开了热烈讨论,共同寻找解决方案和发展方向。薄昱民 国家认监委原总工程师/市场监管总局认证监管司 原副司长( 正司级)薄昱民谈到,建立国产优质仪器设备的认证体系,可以搭建质量保障和信任的桥梁,让国产仪器能够被更多的客户接受,让仪器研发领域的创新成果能够真正落地,进入到市场。认证是企业的体检证、市场经济的信用证、国际贸易通行证,没有认证加持,产品进入市场不容易被信任。西方发达国家经过100多年的实践,证明了认证是不断的完善,非常完备的制度体系,成了全球的质量治理方案。中国也用了,不用也不行,过去,国家通过认证这个治理工具,使得中国产品走向世界,中国的企业由于有了认证的加持,有足够的底气,有机会跟国外去谈生意,谈合同等。中国的产品走向世界,企业也走向了世界,中国从刚开始的代工到有自主品牌,再到今天的成长,开始参与标准的制定,甚至在有些领域我们开始主导相关标准制定,中国成了规则的制定者,这就是我们的成长。经历了这样的过程,中国成了世界加工厂,大家可以自信地说出来我们有完备的工业体系,这都源于改革开放,标准跟国际接轨,评价方式跟国际接轨,有了共同的语言,加上宣传,然后成为国际上的贸易大国,连续7年中国的对外贸易的额占全球贸易额的14%~15%。她提到,认证的“顶层设计”很重要,认证并不仅仅是认证机构的事,需要多方努力,而且,开展国际合作很有必要。她提出,头部企业应该带头示范,为体系建设做贡献。从企业代表们的踊跃发言讨论。从中可以看到,企业苦价格战、“劣币驱逐良币”的现象、仪器用户的偏见久矣,而且,企业对于提升自家产品质量,立足于残酷的市场竞争中的愿望是非常强烈的。一位来自高校仪器平台的用户表示她所在的高校也在计划做仪器验评的工作,慕名来到此论坛就是为了寻求合作,帮高校找到可靠的国产仪器。圆桌论坛讨论的时间远远超出了计划中的时间,我们可以看到,讨论消除了众多的疑虑,大家达成的共识是:学会、企业、验评机构、用户需要加强合作,共同推动国产仪器评测认证体系的建设和完善!圆桌论坛上与会者各抒己见国产好仪器(食品领域)入选仪器颁奖仪式获奖仪器企业代表合影附:第五届“国产好仪器”入选仪器名单(排名不分先后)序号公示名称仪器名称1丹东百特仪器有限公司百特激光粒度分析仪Bettersize26002睿科集团股份有限公司睿科EVA 80 高通量全自动平行浓缩仪3华志(福建)电子科技有限公司华志万分之一自动内校电子天平PTX-FA210S4天美仪拓实验室设备(上海)有限公司赛里安LC6000超高效液相色谱仪5天美仪拓实验室设备(上海)有限公司Dynamica V18R Pro多功能台式高速冷冻离心机6天津语瓶仪器技术有限公司语瓶实验室洗瓶机Q7207青岛盛瀚色谱技术有限公司离子色谱仪(内置淋洗液发生器)CIC-D160型8钢研纳克检测技术股份有限公司钢研纳克 电感耦合等离子体质谱仪 PlasmaMS 3009上海美谱达仪器有限公司P7双光束紫外可见分光光度计10上海喆图科学仪器有限公司喆图TGF-9140A电热恒温鼓风干燥箱11上海力辰仪器科技有限公司磁力搅拌器12北京东西分析仪器有限公司东西分析AA-7090原子吸收分光光度计13蚂蚁源科学仪器(北京)有限公司刀式研磨仪14上海世平实验设备有限公司上海世平 Master-JX 2023R 二氧化碳恒温培养振荡器15上海赫冠仪器有限公司全自动凯氏定氮仪16北京格瑞德曼仪器设备有限公司格瑞德曼 刀式研磨仪HM30017北京莱伯泰科仪器股份有限公司莱伯泰科 EV400VAC旋转蒸发仪18北京莱伯泰科仪器股份有限公司莱伯泰科-REVO-微波消解萃取系统19北京欧润科学仪器有限公司欧润OIC-900离子色谱仪20四川杜伯特科技有限公司UPFS-III-500L实验室废水处理系统21四川杜伯特科技有限公司杜伯特UP-DBT-III洗瓶机22上海般诺生物科技有限公司般诺真空离心浓缩仪组合Bionoon VAC-P123奥谱天成(厦门)光电有限公司奥谱天成ATR8800_科研级显微共聚焦拉曼光谱成像仪24成都安普诺生物科技有限公司安普诺食品重金属镉铅检测仪25广东达元绿洲食品安全科技股份有限公司DY-3000(BX1)便携式食品综合分析仪(A)26浙江福立分析仪器股份有限公司福立GC9720 Plus气相色谱仪27浙江福立分析仪器股份有限公司LC5090高效液相色谱仪28广州禾信仪器股份有限公司三重四极杆液质联用仪 LC-TQ 520029广州禾信仪器股份有限公司全二维气相色谱-飞行时间质谱联用仪GGT 062030北京东西分析仪器有限公司东西分析AA-7090原子吸收分光光度计31珠海欧美克仪器有限公司TopSizer激光粒度分析仪32北京东西分析仪器有限公司GC-4100系列气相色谱仪33上海仪电科学仪器股份有限公司(原上海雷磁仪器厂)雷磁 WZB-175型 便携式浊度计34上海仪电科学仪器股份有限公司(原上海雷磁仪器厂)雷磁ZDY-504型常量水分滴定仪35常州磐诺仪器有限公司磐诺GC 1949 智慧型气相色谱仪36杭州谱育科技发展有限公司谱育科技EXPEC 5210三重四极杆串联质谱仪37天美仪拓实验室设备(上海)有限公司普利赛斯precisa 320XB系列电子天平38天美仪拓实验室设备(上海)有限公司普利赛斯Precisa 330XM系列快速水分测定仪39海尔生物医疗云育电热恒温培养箱40奥普乐科技集团(成都)有限公司APL奥普乐40位智能高通量微波消解仪41奥普乐科技集团(成都)有限公司APL奥普乐126位全自动顶空进样器42苏州安益谱精密仪器有限公司安益谱(Anyeep)TQ8100气相色谱-三重四极杆质谱联用仪43上海卓光仪器科技有限公司全自动电位滴定仪GT10044钢研纳克检测技术股份有限公司NX-300FA 食品重金属检测仪45上海新仪微波化学科技有限公司TANK 40微波消解仪 46德合创睿科学仪器(青岛)股份有限公司DH5260智能一体化蒸馏仪47北京海光仪器有限公司HGLF系列液相色谱-原子荧光联用仪48杭州喜瓶者仪器技术有限公司喜瓶者Aurora-F2全自动洗瓶机器皿清洗机49海能未来技术集团股份有限公司K1160+K1124全自动凯氏定氮仪50北京中仪宇盛科技有限公司全自动顶空进样器HS-3051四川优普超纯科技有限公司UPR-II(超)纯水机52上海屹尧仪器科技发展有限公司屹尧科技M6微波消解仪53济南盛泰电子科技有限公司食药二氧化硫测定仪54中生(苏州)医疗科技有限公司流式细胞仪55上海元析仪器有限公司触屏紫外可见分光光度计56安徽皖仪科技股份有限公司高效液相色谱仪57衡昇质谱(北京)仪器有限公司iQuad 2300系列58青岛永合创信电子科技有限公司全自动器皿清洗机验评1北京先驱威锋技术开发公司全自动电位滴定仪 ZDJ-3D2北京历元仪器设备有限公司便携式离子色谱仪 EP-600D3北京世纪桑尼科技有限公司高灵敏真菌毒素快速检测仪 SN-5000A4北京奥美泰克科技发展有限公司LH1406自动液体处理平台5长春吉大小天鹅仪器有限公司食品安全快速检测仪 GDYQ-900MA6北京普析通用仪器有限公司多气源原子吸收光谱仪 A37北京普析通用仪器有限公司紫外分光光度计 T9CS8北京普立泰科仪器有限公司全自动甲基汞分析仪 MMA729北京海光仪器有限公司连续流动分析仪 HGCF-10010北京海光仪器有限公司HGA-100直接进样测汞仪11北京慧荣和科技有限公司全自动AMES仪 HRH-AMES11612天津屹诺维信仪器有限公司全自动重金属分离富集萃取仪 AutoHM-SCE10013珠海市迪奇孚瑞生物科技有限公司数字微流控芯片式全自动核酸检测仪VirusHunter Plus14北京北分瑞利分析仪器(集团)有限责任公司便携式原子荧光光谱仪 PAF-110015北京北分瑞利分析仪器(集团)有限责任公司傅里叶变换红外光谱仪 WQF-53016北京格瑞德曼仪器设备有限公司刀式研磨仪 HM10017上海屹尧仪器有限公司EXTRA 全自动固相萃取仪
  • 真理光学粒度仪新品及应用方案亮相2018全国碳化物技术交流会
    九月的古都开封,悄然间有了一丝秋意。9月15-17日,2018年全国碳化物粉体与陶瓷制备技术交流会在开封来旺达酒店顺利召开。大会聚集了全国碳化物粉体行业的知名专家、企业及用户,就此机会畅谈碳化物陶瓷制备和测试技术以及碳化物粉体在各领域的应用。真理光学首席科学家张福根博士在会上作了题为《碳化硅粉体颗粒的表征技术》的报告,详细阐述了碳化物粉体的粒度测试原理和方法。 张福根博士在会场作报告真理光学仪器有限公司作为本次会议的赞助单位,展出了性价比极高的LT2200系列激光粒度分析仪。多位与会嘉宾在展台现场观摩仪器,更有产品经理向嘉宾介绍产品性能和操作步骤。不少嘉宾留下了联系方式,希望会后能够深入交流。 与会嘉宾参观真理光学仪器LT2200系列是真理光学继LT3600系列激光粒度仪之后,基于用户对高性价比粒度仪的需求而倾力打造的全新一代超高速智能激光粒度分析系统。LT2200系列加持了真理光学首创的偏振滤波专利技术和衍射爱里斑反常变化(ACAD)的补偿修正技术,用户无需选择分析模式,即可在全粒径范围获得准确可靠的粒度结果。LT2200系列测量速度高达创纪录的每秒20000次,粒径范围为0.02um-2200um,兼顾极高的灵敏度和重现性,能充分满足碳化物粉体行业技术研究和质量控制的需要。
  • 中俄元首将共同见证中俄核能合作项目开工仪式,助力实现碳达峰、碳中和
    据外交部5月18日消息,外交部发言人华春莹当日宣布,国家主席习近平将于5月19日在北京通过视频连线,同俄罗斯总统普京共同见证两国核能合作项目开工仪式。据了解,2018年6月,在习近平主席和普京总统共同见证下,双方签署了核领域一揽子合作协议,包括《田湾核电站7/8号机组框架合同》、《徐大堡核电站框架合同》、《中国示范快堆设备供应及服务采购框架合同》。这是迄今为止中俄最大的核能合作项目。上述一揽子签署的合同总金额超200亿元人民币,项目总造价超千亿人民币。根据合同约定,中俄将在田湾和徐大堡厂址合作建设4台VVER-1200型三代核电机组,双方将在中国示范快堆项目中开展设备供货和技术服务合作。“核能合作是中俄传统优先合作领域,近年来发展迅速,受到两国元首高度关注。”外交部发言人赵立坚表示,“此外,核能具有清洁高效特点,四台机组建成后将有效减少二氧化碳排放量,这既体现了中方力争实现碳达峰、碳中和目标的坚定决心,也彰显了中方作为负责任大国的有力担当。”实际上,这一项目的开工对我国核能发展具有重要意义。在“十四五”规划中明确提出安全稳妥推动沿海核电建设,建设一批多能互补的清洁能源基地,非化石能源占能源消费总量比重提高到20%左右。也就是说,未来我国的核电发电将成为清洁能源的中流砥柱,相关投资也将不断涌入。具体来说,建成华龙一号、国和一号、高温气冷堆示范工程,积极有序推进沿海三代核电建设。推动模块式小型堆、60 万千瓦级商用高温气冷堆、海上浮动式核 动力平台等先进堆型示范。建设核电站中低放废物处置场,建设乏燃料后处理厂。开展山东海阳等核能综合利用示范。核电运行装机容量达到 7000 万千瓦。大力发展核电事业已成为两会共识。相关资料显示,目前世界上的3代或3.5代核电机组,商业推广最成功的是俄罗斯的VVER-1200,不仅在沃罗涅日已经并网发电,还获得了欧盟国家芬兰、匈牙利以及遵照欧盟标准的保加利亚、土耳其的新建机组合同。此外,在第三世界更是一路横扫美日韩法拿下了白俄罗斯、越南、约旦、孟加拉国、哈萨克斯坦、印度、伊朗等的大单。本次项目开工,既展示了中俄在高端装备制造和科技创新领域的重大合作成果,也将助推双方各领域务实合作提质升级。通过与俄罗斯的合作还将丰富我国在三代核电技术上的储备,双方取长补短,为未来的核能大发展积蓄力量。同时,技术储备和技术进步,不仅有助于实现碳达峰、碳中和,还将增加中国核电技术在出口海外中的竞争力。在实现碳中和和碳达峰的过程中,第三代核电技术,乃至第四代核电技术的研发正显得越来越重要。
  • 在线清洁验证:根据总有机碳、无机碳和电导率数据实时放行设备
    概述清洁验证是现行药品生产质量管理规范(cGMP,Current Good Manufacturing Practices)的重要组成部分,旨在保证药品的纯度、质量、疗效。患者的安全始终是最重要的。多年来,法规始终要求对清洁过程进行验证。然而许多厂商至今仍然沿用传统方法,即提取淋洗水和擦拭棉签样品,然后在实验室分析总有机碳(TOC)和电导率,以达到法规要求。传统的清洁验证方法虽然合规,却十分耗时,错误机率大,资本设备利用率低。目前行业将在线清洁验证视为更有效、更可持续的清洁验证和确认方法。本文简要介绍Sievers分析仪提供的解决方案,即使用Sievers® M9分析仪来分析TOC和电导率,进行精准、清晰、严谨的清洁验证和确认。目前的挑战传统上,清洁验证和确认是通过手动取样和实验室分析来完成的,其工作流程在质量和效率方面有下列明显缺点:取样耗时,需要分析人员准备样品容器、打印样品标签、提取样品、将样品送到实验室进行分析、然后还需输入和复查数据。棉签擦拭技术还要求进行繁琐的验证和培训工作,才能获得理想的回收率。在进行取样和实验室分析时,可能会损害样品的安全性。在取样的程序中,必须评估样品污染的风险和样品存储的稳定性。实验室流程常常延误数据发布,增加设备停机时间。现场提取的一个样品只代表一个时间点的清洁状况,无法代表整个清洁周期的状况。过程分析技术FDA于2004年发布了“过程分析技术(PAT,Process Analytical Technology)”指导文件1。该文件包括非约束性建议,鼓励cGMP厂家按照过程分析技术来理解工艺、控制工艺、持续证明设备的清洁验证状态。过程分析技术允许实时测量所需的质量特性。有了这些实时数据,就能掌握和证明清洁验证的状态,而无需进行人工取样或实验室分析。过程分析技术根据质量特性的测量结果来评估清洁度,而非仅仅对预定的时间点进行测量。公司采用过程分析技术,能够优化清洁验证工艺,节省清洁的时间、用料和用水,减少设备停机时间和人为错误。过程分析技术同样受FDA的严格监管,因此用来评估清洁度和放行设备的清洁工艺系统必须经过充分验证并符合规则标准,这一点至关重要。比较分析仪和传感器在选择合适的在线技术时,必须清楚了解相关的应用和法规。为了充分发挥过程分析技术的实时放行设备的作用,必须使用经过验证的仪器,仪器必须满足合规性、方法验证、数据安全等方面的要求。大多数在线TOC分析仪都用电导率来测量碳含量。Sievers TOC分析仪(例如Sievers M9分析仪)就是碳分析仪,用透气膜将干扰性化合物与CO2分离,从而准确测量碳含量。此技术能够确保测量的准确性和精确性。传感器测量氧化前后的电导率。虽然许多TOC仪器都以某种方式测量氧化前后的电导率,但在传感器测量的结果电导率中,没有将干扰性离子分离出去。TOC引起电导率变化,但碳以外的其它物质也能引起电导率变化。如果样品中含有干扰性物质(比如在清洁过程中常见的干扰物),就会产生报数偏高或偏低的情况。(见图1)图1:淋洗样品中也可能含有原料药、降解物、清洁剂、赋形剂,与有机碳分子键合的分子也容易被氧化。传感器不仅有错报的风险,而且在校准、验证、维护时,可能有不合规和效率低的问题。例如,在验证线性和特异性时,就无法用ICH Q2(R1)规则来验证传感器方法,而在使用数据来释放cGMP设备时,验证分析方法是关键环节。对于传感器来说,校准、验证系统适用性、维护等过程很繁琐,需要将文件资料甚至仪器送到厂家进行处理。而Sievers M9分析仪的维护、校准、系统适用性就可以自行完成,Sievers分析仪提供当场验证、维护、故障排除等现场支持。Sievers M9分析仪除了报告验证的、准确的TOC数据之外,还同时测量无机碳和电导率。有了这三种质量特性数据,就能全面而清晰地了解清洁工艺。Sievers的解决方案有了总有机碳、无机碳、电导率这三种数据,就能全面掌握清洁工艺。可以同时评估这三种质量特性,从而优化工艺、排除故障、或调查不合格结果(OOS,Out-of-Specification)。一旦在验证数据中确定了各个质量特性的控制范围,就能快速识别和纠正偏离工艺控制范围或规格的错误。也可以同时使用这些数据来调查故障根源,如图2所示。图2:同时使用TOC、无机碳、电导率,能够改善对不符合趋势结果的监测,并有助于调查故障根源为了演示M9分析仪与原位清洗(CIP,Clean-In-Place)工作站的整合与通信,以实时进行在线分析和报告数据,位于科罗拉多州博尔德市的Sievers分析仪开发实验室将Sievers M9便携式TOC分析仪与原位清洗站整合在一起(图3)。实验室模仿厂家普遍采用的清洁工艺,调整了流量、压力、时间、清洁方法。最终方案依照厂家所面临的复杂取样过程,无论对于时间、体积、或压力等限制,Sievers M9分析仪都能与组件成功整合,自动进行加压取样或非加压取样。还需注意,M9便携式分析仪与M9实验室型分析仪采用相同的技术。当从实验室分析转向在线分析时,相同的M9技术能够简化方法转移过程,无需再进行整套的方法验证。图3:整合了原位清洗工作站的Sievers M9便携式TOC分析仪进行实时淋洗分析。减少污染在分析样品时,必须考虑样品流路中的微生物污染风险,并采取措施降低这种风险。Sievers M9分析仪能够在不使用额外部件或工艺的情况下降低样品流路中微生物污染的风险。在清洁循环之间,分析仪用气动阀和干净的压缩空气来彻底干燥样品流路。取样组件和M9的“集成在线取样系统(iOS,Integrated Online Sampler)”都能耐受cGMP工艺常用的灭菌蒸汽、热水、腐蚀性清洁剂等。当采用Sievers M9在线清洁验证配置时,分析仪可以用干净的压缩空气吹干样品流路,使样品流路保持清洁、干燥,为下一次分析做好准备。这种在线清洁验证的系统整合为管控和降低污染风险提供了自动化的解决方案。验证和数据可靠性Sievers M9与原位清洗系统相整合的在线清洁验证技术,为合规性达标提供了精准而有力的方法。Sievers验证支持包第一和第二册满足仪器合规所需的全部要求,能够确保测量数据的准确性,可以用来释放关键性cGMP设备。数据可靠性始终是cGMP厂家所关注的重要议题。配置了DataGuard软件的Sievers M9 TOC分析仪满足联邦法规21 CFR PART 11以及数据可靠性准则的全部要求。具有可修改权限的各种用户级别确保所有用户都有正确的访问级别。审计追踪能够捕获任何人在仪器上执行的任何操作活动,其中包括执行的时间和用户信息。数据、方法、审计追踪都是不能更改或删除的。DataGuard允许以符合数据可靠性规则的方式来分析、存储、传输实时数据。总结随着生产需求不断增加,越来越多的厂家采用过程分析技术来改善运营效率和精益生产流程。在线清洁验证帮助厂家掌握工艺、控制流程、管理风险、提升效率、优化生产,而这些都是实验室监测所无法做到的。Sievers M9提供精确的、准确的、定量的、耐用的分析技术,能够充分利用清洁验证数据。这些经过验证的精准分析数据,可以用来以符合数据可靠性规则的方式进行重要决策、实时放行设备、排查故障、优化清洁工艺。Sievers分析仪为厂家的在线清洁验证提供全方位的解决方案,其中包括提供仪器、验证、合规支持、技术服务、不合格结果(OOS,Out ofSpecification)支持、提供标样、安装组件、应用支持等。如欲查询详细信息,或请Sievers分析仪为您评估工艺可行性,请与我们联系。参考文献Guidance for Industry PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance. FDA, 2004, https://www.fda.gov/media/71012/download◆ ◆ ◆联系我们,了解更多!
  • 重磅出击|红外一氧化碳分析仪同时检测环境的温度和湿度
    红外一氧化碳分析仪是一种专门用于检测气体中一氧化碳含量的仪器。它利用红外光谱技术,将一氧化碳分子吸收特定波长的红外光,从而测量其浓度。 产品链接→https://www.instrument.com.cn/netshow/SH104275/C520219.htm 红外一氧化碳分析仪在多个领域都有广泛的应用。首先,在环保领域,它可以用于监测大气中一氧化碳的浓度,帮助评估空气质量,为制定环保政策提供数据支持。其次,在工业生产过程中,红外一氧化碳分析仪可以用于检测工业废气中的一氧化碳含量,确保生产过程的安全性和环保性。此外,它还可以用于研究实验室和科学实验中,对一氧化碳的浓度进行精确测量,为科研工作提供数据支持。 红外一氧化碳分析仪具有高精度、高灵敏度、快速测量等优点。它能够准确地测量气体中一氧化碳的浓度,最小检测限可达数ppm级别。同时,由于采用非接触式测量,不会对测量样品产生干扰,保证了测量的准确性和可靠性。此外,红外一氧化碳分析仪还具有简单的操作和维护方便的特点,使其在各种应用场景中得到广泛应用。 总之,红外一氧化碳分析仪是一种重要的分析仪器,可以用于环保、工业生产和科研等领域。它能够精确地测量气体中一氧化碳的浓度,为各个领域的工作提供数据支持。
  • 砂岩中二氧化碳迁移特征的实验观测和数值模拟
    CCUS(Carbon Capture, Utilization and Storage,碳捕获、利用与封存)是应对全球气候变化以及实现“3060双碳目标”的关键技术之一。CO2注入地下储层后,储层温度压力条件的改变对CO2的运移特征有重要的影响。研究不同温压环境下储层内部CO2运移和分布特征,对储量评估和场地安全评价有重要意义。  中国科学院武汉岩土力学研究所二氧化碳地质封存团队在一组储层温压条件下开展原位CO2岩心驱替实验,并利用XCT实时监测岩心内部CO2饱和度分布特征;利用有限元方法进行相同条件下的数值模拟,匹配实验结果;将模型扩展用于探究不同温度压力条件下CO2在储层中的运移特征。研究表明:同一温度下,随着储层压力增加,CO2运移速度减慢,但运移路径上的CO2饱和度增加;同一储层压力下,随着温度增加,CO2运移速度增加,但运移路径上的CO2饱和度降低;同时,这种效应在非均质岩石的CO2低饱和度区域更加明显。  研究工作得到国家自然科学基金、岩土力学与工程国家重点实验室开放基金的支持。
  • 布鲁克海文沉降粒度仪在碳黑粒径分布测量中的应用
    p    strong Testa Analytical Solutions注册公司发布了一份技术报告,描述了如何使用他们的BI系列圆盘式离心/沉降粒度仪精确测量碳黑样品的粒径。 /strong /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201806/insimg/d966dc87-88fd-44fd-852a-876a29b9fb20.jpg" title=" BI-DCP圆盘式离心-沉降粒度仪.jpg" width=" 500" height=" 340" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 340px " / /strong /p p   碳黑作为耐磨填料被 span style=" color: rgb(255, 0, 0) " 广泛应用于轮胎制造业,以及许多其他橡胶材料的生产中 /span 。碳黑还被 span style=" color: rgb(255, 0, 0) " 用作涂层、涂料、塑料、印刷油墨和黑色着色剂中的颜料 /span 。 /p p   由于碳黑聚合物的粒径分布(PSD)与分散体的热学及力学性能关系紧密,碳黑PSD的测量成为其质量控制的重要组成部分。 span style=" color: rgb(255, 0, 0) " 尽管谱图上经常只出现单个峰,但非团聚态碳黑的典型粒径分布范围却十分宽泛,可从10nm到500nm以上。 /span /p p   作者介绍了使用圆盘式离心/沉降粒度仪测量粒径的原理,他们证明了为获取更精确测量的消光修正的重要性。 /p p   给出了ASTM系列碳黑参比材料(A4-F4)的结果,并比较了不同参比材料的差异。讨论了不同样品制备方式,给出了这些制备方式随时间的稳定性。 /p p   该报告的结论是,考虑到小粒径尺寸及典型分布的幅度,BI系列圆盘式离心/沉降粒度仪是测量碳黑粒径的优选仪器。BI系列圆盘式离心/沉降粒度仪不仅是一个坚固的仪器,且它的工作原理发展良好。如果进行了所有的修正,使用BI系列圆盘式离心/沉降粒度仪对碳黑样品粒径分布测量的精确性是非常卓越的。 /p
  • 《低碳产品认证目录(第一批)》公布
    根据《低碳产品认证管理暂行办法》(发改气候〔2013〕279号),经国家发展改革委、国家认监委共同确定,将通用硅酸盐水泥、平板玻璃、铝合金建筑型材、中小型三相异步电动机4种产品列入《低碳产品认证目录(第一批)》,特此发布。   国家认监委   2013年8月14日
  • 青岛杜科新材料采用赛恩思HCS-801高频红外碳硫仪
    青岛杜科新材料有限公司是一家拥有自主知识产权及专利技术的氢能源燃料电池复合双极板研发、生产及市场推广的高新技术型企业。近年来杜科新材料在燃料电池用胶业务上取得了丰硕成果,已经是国内燃料电池用胶行领域的龙头企业。四川赛恩思HCS-801型高频红外碳硫仪作为其质检设备,将对企业进一步提升产品品质,提高生产效率提供帮助。 高频红外碳硫仪采用高频燃烧,能保证待测样品的充分燃烧释放,是目前理想的固体样品碳硫分析设备。赛恩思HCS-801型高频红外碳硫分析仪是国内主流型号仪器,多分析金属、非金属材料,是中大型企业的选择,其性价比高、分析范围宽,适用多种样品分析,深受中大型企业的好评。 四川赛恩思仪器现已有HCS系列高频红外碳硫仪、OES系列直读光谱仪以及ONH系列氧氮氢分析仪,满足客户不同的检测需求。诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
  • 食药监总局:探索药品GMP认证与生产许可证“两证合一”
    p   国家食品药品监督管理总局日前发布2016年度药品检查报告,标志着药品监督管理模式发生重要转变。食药监总局药化监管司司长丁建华就此指出,未来药品监管的重心将向监督检查方向进一步转变,“我们考虑在未来探索药品生产质量管理规范(GMP)认证与药品生产许可证‘两证合一’,并加强事中事后监管”。 /p p   丁建华日前在接受媒体采访时表示,目前药品GMP认证已下放到省级食药监管部门,总局从2016年1月1日起不再受理药品GMP认证申请,药品GMP认证将不再是企业的“保护伞”。 /p p   丁建华说,药品GMP认证是药品生产企业在生产过程中所应遵循的基本的、必然的要求,药品生产过程本来就应按照规范进行,这一标准所规范的是一个持续的、动态的过程。他强调,保证“持续合规”是企业生产的首要责任,药化监管司将加大对企业和产品的检查来促进“持续合规”。 /p p   “药品GMP认证就相当于颁给药企一个五年有效的合格证,即使企业不按照规范生产也会认为有政府认证的担保而规避自身责任。”丁建华说,在未来取消以事前认证认可形式的监管之后,并不意味着药品质量标准会降低,药企将面临更加严格的各类检查,特别是事先不告知的飞行检查。 /p p   根据药品管理法规定,开办药品生产企业,须经企业所在地省、自治区、直辖市人民政府药品监督管理部门批准并发给《药品生产许可证》。无《药品生产许可证》的,不得生产药品。药品生产企业必须按照国务院药品监督管理部门依据药品管理法制定的《药品生产质量管理规范》组织生产。 /p p   目前我国实施的药品GMP认证是在参照国际标准的基础上,于2011年3月开始实行的,凡是达不到要求的企业和生产线都不得生产,被业内称为“史上最严格认证”。作为质量管理体系的一部分,药品GMP是药品生产和质量管理的基本要求,旨在最大限度地降低药品生产过程中污染、交叉污染以及混淆、差错等风险,确保持续稳定地生产出符合预定用途和注册要求的药品。 /p p /p p /p
  • 根据工艺能力判断合适的清洁验证总有机碳TOC限值
    观察根据擦拭和淋洗样品总有机碳(TOC)的历史或当前数据而采用工艺能力方法,能够证明清洁工艺及用于此工艺的限度是否可行、可实现、可检验。在下图所示的工艺中,上下游过程都使用1ppmC的“默认”限值,此限值将用于确定工艺能力。但是,TOC样品通常接近TOC方法的检测限(LOD)或定量限(LOQ),因此最可行的方法是使用单侧接受标准来显示工艺能力。对于单侧接受标准来说,工艺能力比率是Cnpk,而不是传统的CpK方法。评估限值对于任何清洁工艺来说,要评估两个清洁验证关键性质量属性(TOC擦拭和淋洗样品)的某个接受标准是否切实可行和可以实现,通常对于特定的生产工艺,使用工艺能力指数。如果从工艺中采集的历史或当前TOC数据满足特定的工艺能力比率,则TOC与对特定工艺的当前接受标准,适用于清洁验证。为表明这种判断,请看以下例子,表现了使用这个特定的设备,对特定的生产工艺进行的清洁工艺的合适程度。将评估以下TOC接受标准:&bull 上下游TOC擦拭样品:统计原理要评估已建立的接受标准是否切实可行和可以实现,需使用工艺能力指数。工艺能力指数旨在确定,考虑到已经观察到的当前与历史上的TOC擦拭与淋洗数据的变化率,该清洁工艺是否能够满足此接受标准。为了判断此方法是否合适,合适的工艺意味着,已建立的接受标准从统计学的角度来看,是合理的。合适的工艺是指能够确保工艺能力指数大于或等于1.25的工艺。此特定比率与传统的大1.33同,因为清洁验证接受标准是单侧规格1。为了选择工艺能力指数的正确计算方法,需同TOC擦拭和淋洗数据分布一起来考虑接受标准的类型(单侧或双侧)。如果TOC擦拭和淋洗接受标准确定TOC擦拭百分比分布目前用于特定产品清洁过程的清洁验证,使用对设备性能确认(PQ)或持续确认(定期监测)和产品转换所进行的整个清洁过程的TOC擦拭和淋洗数据。以上示例数据用直方图形式来确定正态分布。如上表所示,数据显示了同正态分布的明显偏离。大部分数据非常接近方法的检测限,因此将数据转换为近似正态分布是不合理的。所以,TOC擦拭数据要求用百分比分布来计算工艺能力比率,百分比分布应由统计程序来确定。 // 在此示例中,TOC擦拭数据的百分比分布确定了TOC擦拭数据的99.5%为0.8 ppm或800 ppb,TOC淋洗数据的百分比分布确定了TOC淋洗数据的99.5%为0.6 ppm或600 ppb。这些数值在用百分比分布来计算单侧规格工艺能力指数时很重要。对于新的清洁工艺,可升级或更换现行方法,用TOC来验证关键性的清洁工艺参数(TACT)。确定擦拭和淋洗样品的TOC工艺能力确定百分比分布之后,应使用以下公式来确定TOC擦拭和淋洗样品的工艺能力指数。对于单侧规格(如清洁验证应用中的规格),指数计算公式为:CnpK =(USL - 中位数)/(p(0.995) - 中数)其中:&bull Cnpk=非参数工艺能力指数&bull USL=Upper Specification Limit, TOC清洁验证擦拭和淋洗样品的规格上限值&bull 中位数=样品的50%百分比分布。由于TOC数据的50%非常接近检测限,因而TOC样品的中位数通常为0.1 ppm,或者0与检测限的中点值。&bull p (0.995)=数据的 99.5 %可以用此计算方法和相应的百分比分布(擦拭:0.8 ppm;淋洗:0.6 ppm)来计算工艺能力(Cnpk)如下:TOC擦拭:Cnpk=1.4;TOC淋洗:Cnpk=1.8单侧接受标准的合格工艺是指能力指数大于或等1.25的工艺,这表明清洁验证工艺及其关键性参数(时间、搅拌/速度、浓度、温度)能够满足TOC擦拭和淋洗所收集样品的参考文献1. Montgomery, D.C., (1991). Introduction to Statistical Quality Control, 统计质量控制入门, John Wiley and Sons New York, New York, 第373页2. NIST/SEMATECH e-Handbook of Statistical Methods, 统计方法手册, 第6.1.6节, What is Process Capability? 什 么 是 工 艺 能 力 ?http://www.itl.nist.gove/div898/handbook/index.htm◆ ◆ ◆联系我们,了解更多!
  • “凝聚正能量”2014丹东科学仪器论坛召开
    仪器信息网讯 2014年8月7日,辽宁省丹东市召开&ldquo 2014丹东科学仪器论坛&rdquo (以下简称:丹东论坛),丹东论坛由中国仪器仪表学会分析仪器分会(以下简称:分析仪器分会)主办,辽宁省分析科学研究院、辽宁省分析测试协会协办。分析仪器分会理事长关亚风致开幕词,辽宁省科技厅副厅长巩黎明、中国仪器仪表学会副秘书长李明远到会并致辞。参会人员200余人。丹东论坛以&ldquo 凝聚正能量,奏响科学仪器新乐章!&rdquo 为主题,共包含四个主题报告、一场企业发展正能量分享论坛、四个分论坛。   分析仪器分会理事长关亚风致开幕词   辽宁省科技厅副厅长巩黎明 致辞 中国仪器仪表学会副秘书长李明远 致辞   分析仪器分会总顾问吴忠勇以&ldquo 凝聚正能量,开创分析仪器制造业的新局面&rdquo 为题,概括以八家企业为代表的&ldquo 八股正能量&rdquo ,如:立志超越、励精图治的代表北京普析 咬住技术价值不放刻苦钻研精神的代表创新通恒&hellip &hellip 吴忠勇也谈到五笔&ldquo 负资产&rdquo :小技则满、小富则安 只求商业价值,不重质量价值 只当模仿的好汉,不做突破的英雄 只看市场,不看用户,不重服务 只认识仪器,不认识原理,在产品开发中不注重工艺设计。武汉四方光电科技有限公司董事长熊友辉谈到,只为政府等&ldquo 权贵&rdquo 服务的仪器前途堪忧 济南海能仪器股份有限公司董事长王志刚问道&ldquo 小富即安or丰功伟业&rdquo ,你如何选择?北京理化分析测试中心主任张经华说到,仪器公司老总愿意把钱花在豪车上,往往在研发上则投入甚少。凝聚正能量,同时必须对这些&ldquo 负资产&rdquo 清零。 分析仪器分会总顾问吴忠勇   丹东奥龙射线仪器有限公司总经理李义彬以&ldquo 创新!是奥龙永葆活力的核心&rdquo 为题,分享了&ldquo 干一行精一行的钉子精神&rdquo 。武汉四方光电科技有限公司董事长熊友辉以&ldquo 一台仪器的故事&rdquo ,倡导企业要&ldquo 包容性创新&rdquo ,让底层人民受益,使得更多的人从经济增长中受益,使参与者分享经济发展成果,从而满足包容性增长要求,如:火焰离子探测技术在燃气灶具中的应用,使几亿人免除火灾危害,企业也从中收获巨大利益。北京华科仪电力仪表研究所总经理边宝丽分享北京华科仪成长历程。北京海光仪器有限公司总经理杜江分享了公司&ldquo 探索国企改革发展之路&rdquo 的经验,并寄语(见下图)与行业人士共勉。济南海能仪器股份有限公司董事长王志刚以&ldquo 革命的态度创业&rdquo 为题,积极预言:&ldquo 未来十年,分析仪器世界巨头必在中国!&rdquo 丹东百特仪器有限公司总经理董青云则以平实的语言分享&ldquo 四大秘笈&rdquo :售后服务&mdash &mdash 超出用户预期 市场开发&mdash &mdash 树立百特品牌 研发&mdash &mdash 保持技术领先或特色 质量&mdash &mdash 设计、制造、采购、检验。清华大学院士金国藩呼吁,&ldquo 工科学生不能停留在仅发表几篇文章,更重要的事做出实际成果,为国民经济或国防建设做出贡献。创新,创新,再创新。实践,实践,再实践。&rdquo   杜江:&ldquo 如果你生命中的云层遮蔽了阳光,那是因为你的心灵飞的还不够高&rdquo   预言!   丹东论坛邀请清华大学院士金国藩作大会报告&ldquo 近年来国家对仪器仪表的支持&rdquo ,以详实的数据分析近年国家对仪器仪表的大力支持 剖析&ldquo 基金委仪器设备研制专项&rdquo 与&ldquo 国家重大科学仪器设备开发专项&rdquo 的异同。丹东论坛还组织&ldquo 分论坛四:国家重大科学仪器设备开发专项项目经验分享&rdquo 。   清华大学院士金国藩作报告《近年来国家对仪器仪表的支持》   分论坛之国家重大科学仪器设备开发专项项目经验分享   为寻求科学仪器发展之路,丹东论坛邀请北京市科学技术研究院院长丁辉作&ldquo 科学仪器与创新&rdquo 大会报告,从&ldquo 科学仪器与世界科技革命&rdquo 、&ldquo 科学仪器与大数据&rdquo 、&ldquo 科学仪器与资本&rdquo 三个方面,纵论科学仪器发展前景与战略。科学仪器的发展离不开关键零部件的发展,丹东论坛组织召开&ldquo 科学仪器零部件发展和应用&rdquo 分论坛,优秀的光栅、流量计、滤光片、反射镜四级杆等核心部件,以及分析仪器精密零部件制造经验交流,得到与会者热烈响应。分论坛&ldquo 仪器用户需求与建议&rdquo 、&ldquo 青年工作者论坛&rdquo 也得到与会者的热烈响应。 北京市科学技术研究院院长丁辉 武汉四方光电科技有限公司董事长熊友辉 丹东奥龙射线仪器有限公司总经理李义彬 北京华科仪电力仪表研究所总经理边宝丽 北京海光仪器有限公司总经理杜江 济南海能仪器股份有限公司董事长王志刚 丹东百特仪器有限公司总经理董青云   分论坛之科学仪器零部件发展和应用   分论坛之仪器用户需求与建议   分论坛之青年工作者论坛
  • 电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
    背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers® M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。◆ ◆ ◆联系我们,了解更多!参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
  • ACS Nano I 用扫描探针显微镜表征二维过渡金属硫族化合物的本征电学特性
    *以下应用说明基于 ACS Nano publication, 2021 15, 6, 9482–9494. 出版日期: May 27, 2021. 介绍 在传统的平面硅场效应晶体管(FET)中,当其横向尺寸小于晶体管厚度时,栅极可控性变弱,从而导致不利的短沟道效应,包括漏电流、沟道中载流子迁移率饱和、 沟道热载流子退化和 介质层时变击穿。因此,需要减小晶体管主体厚度以确保有效的栅极静电控制。理论研究表明,由于二维 (2D) 材料的原子厚度和表面懸鍵,特别是二维过渡金属二硫属化物 (TMD) 作为沟道材料的性能优于硅,能够实现原子级尺度,优异的静电门控,降低断电功耗,进一步扩展摩尔定律。[1-6] 表征沉积态二维材料的内在物理和电学特性的适当技术是沉积态二维材料的质量与基于二维材料的电子设备性能之间的关键联系。此联系可以帮助我们更好地了解、控制和改进基于二维材料的设备的性能。然而,在没有任何转移和图案化过程的情况下,在纳米尺度上分析沉积态二维材料的固有电学特性的技术是有限的。 在本应用说明中,扫描探针显微镜 (SPM) 用于研究沉积态二维TMD 的固有电学特性。 导电原子力显微镜 (C-AFM) 无需任何图案化,直接在生长态二维材料表面进行扫描。 C-AFM 能够将生长态二维材料的电导率与其形貌相关联,从而将二维材料的电特性与其物理特性(如层厚度等)联系起来。所有这些,C-AFM为我们提供了沉积态2D材料的全面信息,并帮助我们评估这些固有特性对基于二维材料的纳电子学的影响。实验细节 Park NX-Hivac 在高真空(~10-5Torr)下,用 C-AFM 在 Park NX-Hivac AFM 上使用 Pt/Ir 涂层的硅探针(弹簧常数 k~3N/m,共振频率 f0~75kHz,PPP-EFM)评估蓝宝石上生长态 MoS2和WS2层的固有电学特性。高真空环境有助于减少样品上始终存在的水层。[4,6] 将C-AFM测量的偏压施加到样品卡盘上,并通过线性电流放大器测量产生的电流。收集所有 C-AFM 电流图所施加的偏压均为1 V。在样品的顶部和侧面涂上银漆,以确保电接触。结果与讨论 在 C-AFM 电流图(图 1b)中,同轴切割蓝宝石上沉积的 MoS2 层在整个表面上显示出非均匀导电性,尽管图 1a 中的形貌显示了完全聚结的单层 MoS2 ,其顶部约有~37%的表面晶体(命名为1.3 ML)。通过引入离轴 1º 切割蓝宝石作为衬底,MoS2 层的电导率变得更加均匀, 与它们更均匀的表面结构一致(图 1c 和 d)。 总体而言,离轴 1º 切割蓝宝石上约~83% 的单层 MoS2 具有更高的电导率,而使用同轴上切割蓝宝石仅占 51%。 [7] 电导率较低的区域在图 1b、d 中用粉红色标记,阈值电流约为 ~0.3 μA。 因此,通过引入离轴 1º 切割蓝宝石(图 1b、d 中的 49% 到 17%) 可降低较弱导电区域的密度。图1.(a,c)分别在同轴和离轴1º切割蓝宝石上生长的1.3 ML MoS2的C-AFM形貌图(b、 d)同时与(a,c)一起获得的 C-AFM 电流图。通过电流阈值(~0.3μA),第一单层MoS2中的非均匀和导电性较弱区域以粉红色突出显示。经许可复制图像。[7] Copyright 2021, American Chemical Society.通过跳过蓝宝石晶片的预外延处理过程,该密度可以进一步降低到约~6.5%(图 2a-b)。具有较低电导率的 MoS2 区域的形状不是随机的,而是对应于特定的下层蓝宝石阶地。离轴 1º 切割蓝宝石上具有较低 MoS2 电导率的区域对应于聚集在一起的阶地。在预外延处理和 MOCVD 过程中,台阶会分解和凝聚。台阶(变形)成型主要由预外延处理和 MOCVD 工艺中使用的高温驱动。正如对离轴 1º 切割蓝宝石所预期的那样,随着 Wterrace 变窄,阶梯聚束变得更可能发生。当单层 MoS2 沉积在离轴 1º 切割蓝宝石上而不进行任何预外延处理时,高导电区域的密度从 83%(图 1d)进一步增加到 93.5%(图 2b)。可以观察到成束台阶(具有更高的 Hterrace,图 2a 中的 5.8%)和导电性较弱的区域(图 2b 中的暗区为 6.5%)之间存在明显的相关性。从图 2c 中的地形和电流图提取的横截面轮廓进一步支持了这一观察结果。然而,在图 2b 中没有完全去除导电性较弱的区域。这应该与生长温度(在我们的工作中为 1000 °C)有关,该温度足以在沉积过程中在蓝宝石表面引入阶梯聚束。[8-10]图2. 蓝宝石上生长的MoS2的不均匀导电性. (a-b)C-AFM 形貌图,同时获得离轴1º切割蓝宝石上1.3 ML MoS2 的电流图. (c)(a-b)位置处的相应横截面高度(红色)和电流(蓝色)剖面. (d- e)形貌图,同时获得同轴切割蓝宝石上3.5 ML MoS2的电流图。经参考文献[7]许可,对图像进行了改编。 Copyright 2021, American Chemical Society.关于观察到的 MoS2 电导率分布的不均匀性,我们发现非封闭顶层中 MoS2 晶体的存在不会影响电导率。 事实上,具有较低电导率的 MoS2 区域与 MoS2 层厚度几乎保持不变,因为它们也存在于 3.5 ML MoS2 中(图 2d-e):形貌和当前图像中黄色虚线区域的比较表明,MoS2 晶体具有非封闭顶层中方向错误的基面不会影响该区域的导电性。 此外,值得注意的是,不同电导区域的存在不仅出现在 MoS2 外延层中,也出现在蓝宝石上生长的 MOCVD WS2 层中,如图 3 所示。图3.(a-b)同轴切割蓝宝石的形貌图和同时获得的1.7 ML WS2电流图。经参考文献[7]许可,对图像进行了改编。 Copyright 2021, American Chemical Society.因此,较低的导电性主要与完全闭合的第一MoS2单层有关,而不是与非闭合的顶层有关。图4a-b显示了两个第二层MoS2晶体,其中一些区域具有较高的导电性,而另一些区域具有较低的导电性,从而进一步支持了这一点。图4.(a-b)在同轴切割蓝宝石上生长的1.3 ML MoS2上第2-3层MoS2岛的导电性。(a)在同轴切割蓝宝石上生长的MoS2的形貌及其相应的(b)电流图。白色的晶体轮廓显示部分区域具有较高的导电性,部分区域具有较低的导电性,表明表面晶体对蓝宝石上MoS2的不均匀导电性贡献不大。(c-f)轴切割蓝宝石上生长的1.3 ML MoS2的降解。(c-d)MOCVD生长后立即收集的1.3 ML MoS2的1 V下的形貌图及其相应的电流图。(e-f)在氮气柜中储存6个月后,同一样品在1 V下的形貌图和电流图。在(c)中没有氧化区,但在(e)中MoS2被部分氧化,这总是与(f)中的较弱导电区相关。经参考文献[7]许可,对图像进行了改编。 Copyright 2021, American Chemical Society.结果表明,蓝宝石起始表面的状态是决定第一层MoS2单层物理和电学性能的关键参数之一。结论通过 C-AFM 评估二维 TMD的固有电学特性,并将其与样品形貌联系起来。我们在沉积的二维 TMD 单层中发现了非均匀导电性,这可能源于:(i)TMD 层厚度变化导致的TMD 表面粗糙度; (ii)蓝宝石表面形貌引起的 TMD 应变;(iii)由于每个蓝宝石阶地的 TMD 形核率的依赖性,TMD 晶粒内缺陷率;(iv)蓝宝石表面结构和终端引起的 TMD 界面缺陷,可能导致不同的局部掺杂效应。进一步的研究正在进行中,将 C-AFM 与先进的光谱技术(如拉曼、PL和TOFSIM)相结合,以进一步探索外延二维材料的固有特性。参考文献 (1) Liu, Y. Duan, X. Shin H.-J. Park, S. Huang, Y. Duan, X. Promises and Prospects of Two-Dimensional Transistors. Nature 2021, 591, 43–53.(2) Su, S.-K. Chuu, C.-P. Li, M.-Y. Cheng, C.-C. Wong, H.-S. P. Li, L.-J. Layered Semiconducting 2D Materials for Future Transistor Applications. Small Struct. 2021, 2, 2000103.(3) Akinwande, D. Huyghebaert, C. Wang, C.-H. Serna, M. I. Goossens, S. Li, L.-J. Wong, H.-S. P. Koppens, F. H. L. Graphene and Two-Dimensional Materials for Silicon Technology. Nature 2019, 573, 507–518.(4) Agarwal, T. Szabo, A. Bardon, M. G. Soree, B. Radu, I. Raghavan, P. Luisier, M. Dehaene, W. Heyns, M. Benchmarking of Monolithic 3D Integrated MX2 FETs with Si FinFETs. In 2017IEEE International Electron Devices Meeting (IEDM) 2017 p 5.7.1–5.7.4.(5) Smets, Q. Arutchelvan, G. Jussot, J. Verreck, D. Asselberghs, I. Nalin Mehta, A. Gaur, A. Lin, D. Kazzi, S. E. Groven, B. Caymax, M. Radu, I. Ultra-Scaled MOCVD MoS2 MOSFETs with42nm Contact Pitch and 250μA/Mm Drain Current. In 2019 IEEE International Electron Devices Meeting (IEDM) 2019 p 23.2.1–23.2.4.(6) Smets, Q. Verreck, D. Shi, Y. Arutchelvan, G. Groven, B. Wu, X. Sutar, S. Banerjee, S. Nalin Mehta, A. Lin, D. Asselberghs, I. Radu, I. Sources of variability in scaled MoS2 FETs. In 2020 IEEE International Electron Devices Meeting (IEDM) 2020 p 3.1.1–3.1.4.(7) Shi, Y. Groven, B. Serron, J. Wu, X. Nalin Mehta, A. Minj, A. Sergeant, S. Han, H. Asselberghs, I. Lin, D. Brems, S. Huyghebaert, C. Morin, P. Radu, I. Caymax, M. Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High- Performance Nanoelectronics. ACS Nano 2020, DOI: 10.1021/ acsnano.0c07761.(8) Cuccureddu, F. Murphy, S. Shvets, I. V. Porcu, M. Zandbergen, H. W. Sidorov, N. S. Bozhko, S. I. Surface Morphology of C-Plane Sapphire (α-Alumina) Produced by High Temperature Anneal. Surf. Sci. 2010, 604, 12941299.(9) Curiotto, S. Chatain, D. Surface Morphology and Composition of C-, a- and m-Sapphire Surfaces in O2 and H2 Environments. Surf. Sci. 2009, 603, 2688–2697.(10) Ribič, P. R. Bratina, G. Behavior of the (0001) Surface of Sapphire upon High-Temperature Annealing. Surf. Sci. 2007, 601, 44–49.想要了解更多内容,请关注微信公众号:Park原子力显微镜,或拨打400-878-6829联系我们Park北京分公司 北京市海淀区彩和坊路8号天创科技大厦518室 Park上海实验室 上海市申长路518号虹桥绿谷C座305号 Park广州实验室 广州市天河区五山路200号天河北文创苑B座211
  • 普立泰科成功举办2013年度总有机碳分析仪用户培训班
    北京普立泰科仪器有限公司于2013年11月成功举办了为期两天的美国OI总有机碳分析仪用户培训班,旨在增加用户的基本技能、应用扩展及相互之间的沟通交流,为了保证用户的培训质量及上机实际操作练习,每次培训班都会合理控制人数。本次培训班得到了广大用户的支持,共有来自鹤岗市食品药品检测中心,清华大学环境学院,三门核电有限公司,中国科学院新疆生态与地理研究所,中国地质大学,北京市环境保护科学研究院,黑龙江双鸭山市药品检验检测所,大庆市食品药品检测中心等单位共计14人参加。 本次培训,针对的是美国OI公司的Aurora1030系列总有机碳分析仪,所有已购买此仪器的用户均可报名参加。通过此次培训,丰富了用户的理论知识、增强了仪器的操作技能、了解了仪器的维护和保养知识,更加重要的是,通过培训班的举办,为广大用户提供了互相交流的平台,培训当中,用户们进行了非常热烈的讨论。培训结束之后,给每一位参加培训的用户颁发了培训证书。 此次顺利举办2013年度TOC培训班活动,得到了广大用户的支持,响应和好评。今后,我们会继续开展详尽完善的各种培训计划,为广大客户提供更好更优质的服务!
  • 利用仪器化划入表征材料的断裂韧度
    仪器化划入方法已经成功应用于测试各种材料(包括硬的合金、陶瓷、金属、岩石[1]和软的高分子聚合物、碱硅酸盐凝胶[2]等)的断裂韧度(跨越两个数量级)在材料科学与工程领域具有巨大应用前景,尤其是评估微米级材料或多尺度复合材料(比如碎屑-橡胶混凝土[3]、再生混凝土[4]、水泥[5]、页岩[1, 6, 7],骨头[8]、功能梯度和复合涂层[9])的断裂性能,其诸多优势包括:结果与传统方法(比如单边缺口试样的三点弯曲、紧凑拉伸)测量值一致;重复性好;材料体积小;设备操作、数据分析简单;近乎无损检测(微米级划入测试划入深度一般在十几微米);尤其是试样制备简单,不需要预制缺口或裂纹;测试成本和周期都大大减小[10]。仪器化划入过程的实物图和示意图见图 1[11]。在仪器化划入过程中,利用侧向力和压入深度可以计算出材料的断裂韧度。仪器化划入表征断裂韧度主要有两种理论:一种是线弹性断裂力学(linear elastic fracture mechanics or LEFM);另一种是能量尺寸效应理论(microscopic energetic size effect laws or ESEL)。理论都是假设在压头前端存在沿水平扩展的裂纹,见图 2[12]。这种裂纹模式在直刚刀压头划入石蜡的实验中体现得最好,见图 3[13]。对于直压头:三维裂纹的横截面是长方形。能量释放率可以由J-积分计算,再结合断裂准则,即可以建立利用侧向力和压入深度计算断裂韧度的关系式。图 1 仪器化划入测试实物图及示意图:(a)直钢刀压头划入石蜡;(b)倾斜直钢刀压头划入测试示意图;(c)Rockwell C压头划入薄膜材料;(d)轴对称压头划入示意图(压入深度d,压头尖端圆角半径R,侧向力FT,划痕方向x)图 2 利用轴对称压头划入过程的侧视图(左图)和正视图(右图)。x 是划痕方向,FT 是水平侧向力,FV 是竖直正压力,d 是压入深度,n 是压头与材料接触界面朝材料外侧的单位法向,A 是承载侧向力的面积投影,p 是压头与材料接触界面的周长图 3 石蜡在直钢刀压头仪器化划入过程中压头前端水平扩展的裂纹:(a)实验结果;(b)理想的裂纹形状示意图(具有长方形横截面的三维裂纹,需要裂纹长度l、刀具宽度w、压入深度d 三个尺寸表征)不同的学者提出了不同的分析方法,断裂韧度Kc 可以通过拟合仪器化划入的实验数据获得[10, 14-19]:其中Λ=A/(2P)是名义长度,p 和A 分别是周长和水平投影面积(见图 2),都是压入深度d 的函数[12]。利用线弹性断裂力学可以直接计算出断裂韧度Kc已知压头几何形状可以得到p(d)和A(d),f=2p(d)A(d) 即压头形状函数:对于圆锥压头,f 与d3 成正比;对于圆球压头,f 与d2 成正比。图 4是利用Rockwell C压头划入钢材的结果[20]。示意图见图 4(a)。在划入过程中,施加线性增大的正压力FV,如图 4(b),同时记录侧向力FT 和压入深度d。数据与划痕残余形貌一一对应,形貌见图 4(c),并且可以利用声发射分析断裂过程,如图 4(d)。图 4 利用圆锥压头分析钢材料的断裂韧度:(a)圆锥压头仪器化划入过程示意图(划痕方向沿X 轴,FV 和FT 分别是正压力和侧向力);(b)划入过程中在施加线性加载的正压力的同时记录侧向力;(c)划痕残余形貌;(d)侧向力和压入深度的关系(左轴)和声发射(右轴)当圆锥部分起主导作用时,FT/d3/2趋近于一条水平线,这说明划入过程由断裂机制控制,声发射信号也直接验证了断裂的发生。可见,利用划入方法测试材料的断裂韧度需要适合的加载条件,只有当载荷足够大,断裂机制占主导时才能应用线弹性断裂力学的公式计算断裂韧度,但是过大的载荷会产生很多扩展方向不同的裂纹,使得只有一条裂纹扩展的假设不成立。声发射信号是确定断裂发生的有效手段,可以用于区分断裂的程度(剧烈的断裂会使得声发射信号饱和),寻找适合的加载力范围。FT/d3/2一直在波动,这种锯齿状数据是切削的典型特征,与传统测试(比如紧凑拉伸中只有一个裂纹产生)明显不同,划入过程中会产生很多裂纹,所以有必要对平稳段的数据取平均[21]。仪器化划入方法已经成功应用于各种材料的断裂韧度表征[22, 23],比如:高分子材料(聚碳酸酯PC[18]、改性石墨烯添加的环氧树脂基复合材料[24])、玻璃(熔融石英硅[25]、K9玻璃[26])、金属(紫铜[27, 28])、半导体材料(单晶硅和碳化硅[29])等。表 1比较了部分材料的仪器化划入测试结果与传统方法测试结果,划入法测试与传统方法测试结果大体一致,差异很有可能是由于材料的各向异性和不均匀造成的,因为划入法表征的是表面微观区域的力学性能,传统方法测试的是宏观力学性能。所以划入法可以表征材料断裂韧度的分布,适合于异质复合材料各组织以及界面的力学性能表征,研究不同尺度结构的断裂性能,这些都是先进材料及微纳米器件发展迫切需要解决的关键测试表征技术,尤其在表面微观力学领域有广阔的应用前景。表 1 利用仪器化划入方法表征各种材料的断裂韧度(MPa• m1/2)压头(形状尺寸)及方法材料(牌号):划入法测的断裂韧度(传统方法测试值)单位(国家)[参考文献]Rockwell C压头(2θ=120°,R=200 μm),线弹性断裂力学铝合金(AA 2024):34.4±3 (32~37)热塑性聚合物(Delrin Grade 150):2.5±0.2 (2.9±0.5)麻省理工学院(美国)[20] Rockwell C 压头(2θ=120°,R=200 μm),线弹性断裂力学钠钙玻璃:0.71±0.03 (0.70)耐热高硼硅玻璃:0.68±0.02 (0.63)热塑性聚合物(Delrin 150E) :2.75±0.05 (2.8)热塑聚碳酸酯:2.76±0.02 (2.69)铝合金(2024-T4/T351) :28.8±1.3 (26~37)AISI-1045:62.2±2.6 (50)AISI-1144:62.2±2.6 (57~67)Titanium 6Al-4V:77.0±3.4 (75)麻省理工学院(美国)[22]直钢刀压头,线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)石蜡:0.14 (0.15)水泥:0.66~0.67 (0.62-0.66)侏罗纪石灰岩:0.56 (ESEL), 0.34 (LEFM)A-51w:0.82 (ESEL), 0.81 (LEFM)B-4w:0.74 (ESEL), 0.72 (LEFM)B-12w:0.78 (ESEL), 0.78 (LEFM)麻省理工学院(美国)西北大学(美国)伊利诺伊大学厄巴纳-香槟分校(美国)[21]直钢刀压头、Rockwell C线弹性断裂力学水泥(直钢刀压头):0.66±0.05 (0.67)钢材(Rockwell C压头):40±0.2 (50)麻省理工学院(美国)[11]直钢刀压头能量尺寸效应方法水泥:0.66(0.65~0.67)伊利诺伊大学厄巴纳-香槟分校(美国)[23]Rockwell C压头线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)塑料(Delrin):3.26 (LEFM),2.85 (ESEL)聚碳酸酯(Lexan):2.87 (LEFM),2.38 (ESEL)熔融石英硅:0.96 (LEFM),0.96 (ESEL)传统测试结果:塑料(2.8)、聚碳酸酯(2.2)、熔融石英硅(0.8)科罗拉多大学(美国)麻省理工学院(美国)[28]Rockwell C压头能量尺寸效应方法聚缩醛 :3.16 (2.8)石蜡:0.14 (0.14)聚碳酸酯(Lexan 934):2.8 (2.69)铝:32.53 (32)伊利诺伊大学厄巴纳-香槟分校(美国)[40]圆球压头线弹性断裂力学熔融石英硅:0.7 (0.68~0.75)K9玻璃:0.85 (0.82)福州大学(中国)[45,46]Rockwell C压头线弹性断裂力学聚碳酸酯:2.3 (2.2)福州大学(中国)[43]作者简介刘明,福州大学机械工程及自动化学院教授,福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员、ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学本科、硕士,肯塔基大学(美国)博士,法国巴黎高科矿业工程师学校材料研究所博士后、华盛顿州立大学(美国)博士后。主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn 参考文献[1] A.-T. Akono, P. Kabir, Microscopic fracture characterization of gas shale via scratch testing, Mechanics Research Communications, 78 (2016) 86-92.[2] C.V. Johnson, J. Chen, N.P. Hasparyk, P.J.M. Monteiro, A.T. Akono, Fracture properties of the alkali silicate gel using microscopic scratch testing, Cement and Concrete Composites, 79 (2017) 71-75.[3] A.-T. Akono, J. Chen, S. Kaewunruen, Friction and fracture characteristics of engineered crumb-rubber concrete at microscopic lengthscale, Construction and Building Materials, 175 (2018) 735-745.[4] A.-T. Akono, J. Chen, M. Zhan, S.P. Shah, Basic creep and fracture response of fine recycled aggregate concrete, Construction and Building Materials, 266 (2021) 121107.[5] J. Liu, Q. Zeng, S. Xu, The state-of-art in characterizing the micro/nano-structure and mechanical properties of cement-based materials via scratch test, Construction and Building Materials, 254 (2020) 119255.[6] M.H. Hubler, F.-J. Ulm, Size-Effect Law for Scratch Tests of Axisymmetric Shape, Journal of EngineeringMechanics, 142 (2016).[7] A.-T. Akono, Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing, Journal of Nanomechanics and Micromechanics, 6 (2016) 04016001.[8] A. Kataruka, K. Mendu, O. Okeoghene, J. Puthuvelil, A.-T. Akono, Microscopic assessment of bone toughness using scratch tests, Bone Reports, 6 (2017) 17-25.[9] H. Farnoush, J. Aghazadeh Mohandesi, H. Cimenoglu, Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition, J Mech Behav Biomed Mater, 46 (2015) 31-40.[10] A.T. Akono, N.X. Randall, F.J. Ulm, Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals, J. Mater. Res., 27 (2012) 485-493.[11] A.-T. Akono, F.-J. Ulm, An improved technique for characterizing the fracture toughness via scratch test experiments, Wear, 313 (2014) 117-124.[12] A.T. Akono, F.J. Ulm, Fracture scaling relations for scratch tests of axisymmetric shape, J. Mech. Phys. Solids, 60 (2012) 379-390.[13] A.-T. Akono, F.-J. Ulm, Z.P. Bažant, Discussion: Strength-to-fracture scaling in scratching, Eng. Fract. Mech., 119 (2014) 21-28.[14] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, in: H.L. Dryden, T. von Kármán, G. Kuerti, F.H. van den Dungen, L. Howarth (Eds.) Advances in Applied Mechanics, Elsevier, 1962, pp. 55-129.[15] H.M. Hubler, F.-J. Ulm, Size-effect law for scratch tests of axisymmetric shape, J. Eng. Mech., 142 (2016) 04016094.[16] A.-T. Akono, Energetic size effect law at the microscopic scale: Application to progressive-load scratch testing, J. Nanomech. Micromech., 6 (2016) 04016001.[17] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter, Wear, 444–445 (2019) 203158.[18] M. Liu, S. Yang, C. Gao, Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading, Polymer Testing, 90 (2020) 106643.[19] M. Liu, Microscratch of copper by a Rockwell C diamond indenter under a constant load, Nanotechnol. Precis. Eng., 4 (2021) 033003.[20] A.T. Akono, P.M. Reis, F.J. Ulm, Scratching as a Fracture Process: From Butter to Steel, Phys. Rev. Lett., 106 (2011) 204302.[21] A.-T. Akono, G.A. Bouché, Rebuttal: Shallow and deep scratch tests as powerful alternatives to assess the fracture properties of quasi-brittle materials, Eng. Fract. Mech., 158 (2016) 23-38.[22] 刘明, 李烁, 高诚辉, 利用圆锥压头微米划痕测试材料断裂韧性, 摩擦学学报, 39 (2019) 556-564.[23] 刘明, 李烁, 高诚辉, 利用微米划痕研究TiN涂层的失效机理, 计量学报, 41 (2020) 696-703.[24] S. Li, J. Zhang, M. Liu, R. Wang, L. Wu, Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite, Polymer Bulletin, (2020).[25] M. Liu, Q. Zheng, C. Gao, Sliding of a diamond sphere on fused silica under ramping load, Materials Today Communications, 25 (2020) 101684.[26] M. Liu, J. Wu, C. Gao, Sliding of a diamond sphere on K9 glass under progressive load, Journal of Non-Crystalline Solids, 526 (2019) 119711.[27] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter,Wear, 444-445 (2020) 203158.[28] C. Gao, M. Liu, Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter, Tribology Letters, 67 (2019) 8.[29] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
  • 上海市2021年度“科技创新行动计划”科技支撑碳达峰碳中和专项(第一批)项目申报指南
    各有关单位:  为深入实施创新驱动发展战略,加快建设具有全球影响力的科技创新中心,上海市科学技术委员会特发布2021年度“科技创新行动计划”科技支撑碳达峰碳中和专项(第一批)项目申报指南。一、征集范围专题一、前沿/颠覆性技术  方向1、颠覆性技术  研究目标:对标碳中和世界前瞻技术进展,加强学科交叉融合,开展碳中和变革性、颠覆性的科学自由探索,包括新型能源、二氧化碳转化技术及相关科学理论研究等,为未来碳中和科学技术发展提供方向引领和理论指引,支撑本市实现碳中和战略目标。  执行期限:2021年9月1日至2024年8月31日。  经费额度:定额资助,拟支持不超过5个项目,每项资助额度50万元。  限项规则:每个单位限报不超过2项。  方向2、前沿技术  研究目标:实现温和条件下的空气直接碳捕集、人工模拟光合作用化学品合成、可再生能源驱动下的燃料合成,形成一系列碳中和领域新理论、新技术、新材料和新方法,完成相关技术验证。  研究内容:(1)空气直接碳捕集关键技术研究;(2)人工光合作用关键技术研究;(3)可再生合成燃料关键技术研究。  执行期限:2021年9月1日至2024年8月31日。  经费额度:非定额资助,拟支持不超过3个项目,企业自筹经费与申请资助经费的比例不低于1:1。专题二、二氧化碳捕集利用与封存(CCUS)技术  方向1、CCUS技术  研究目标:建立集成性CCU技术新路线,实现二氧化碳脱除、转化率均高于95%的一体化技术集成与示范;实现可再生能源驱动的二氧化碳电催化转化,二氧化碳单程转化率≥30%,产物选择性≥90%;实现碳捕集综合能耗小于2.3GJ/tCO2,降低CCUS实施成本,完成新型CCUS技术路线验证并在燃煤电厂开展万吨级示范。  研究内容:(1)二氧化碳高效捕集-利用一体化技术研究与示范;(2)二氧化碳电催化转化关键技术研究与示范;(3)燃煤电厂二氧化碳捕集利用新技术研究与示范。  执行期限:2021年9月1日至2024年8月31日。  经费额度:非定额资助,拟支持不超过3个项目,企业自筹经费与申请资助经费的比例不低于1:1。专题三、新型能源技术  方向1、可再生能源技术  研究目标:支撑城市可再生能源规模化开发利用,实现既有分布式光伏电站发电性能提升20%以上;建成热电综合利用效率提升20%以上的光伏光热综合利用系统;完成光伏消纳率100%的净能耗高层建筑柔性直流配用电系统示范;建成5000m2以上可储热轻质柔性光伏建筑幕墙示范。  研究内容:(1)既有光伏电站智能评估与能效提升关键技术研究与示范;(2)分光谱式太阳能光伏光热高效综合利用技术研究及应用;(3)高层建筑光伏柔性直流用电关键技术研究及应用;(4)新型光伏建筑幕墙关键技术研究及应用。  执行期限:2021年9月1日至2024年8月31日。  经费额度:非定额资助,拟支持不超过4个项目,企业自筹经费与申请资助经费的比例不低于1:1。  方向2、氢能技术  研究目标:推动氢能的多场景应用,建成与光伏发电、工业余热利用相耦合的200kW高温固体氧化物电解制氢系统;研制产氢量不低于2000Nm3/h和功率不低于10MW的电解制氢装备;实现低成本储氢载体规模化制氢应用示范;研发百千瓦级低成本、高效率非贵金属催化剂PEM电解水制氢设备,实现加氢站可再生能源制氢加氢一体化应用示范;实现35MPa车用加氢站液驱增压压缩系统样机国产化;形成富氢燃料低速机设计方案和关键部件原理样件,支撑大型船舶动力系统零碳排放。  研究内容:(1)高温固体氧化物电解制氢系统关键技术研究与示范;(2)高效大功率电解水制氢关键技术与装备研发;(3)大规模低成本氢储运关键技术与装备研发;(4)基于非贵金属催化剂的可再生能源PEM制氢加氢系统关键技术研究及示范;(5)液驱增压压缩系统关键技术研究及应用;(6)船用零碳富氢燃料低速机关键技术与装备研究。    执行期限:2021年9月1日至2024年8月31日。  经费额度:非定额资助,拟支持不超过6个项目,企业自筹经费与申请资助经费的比例不低于1:1。  方向3、低碳综合能源系统  研究目标:推进城市低碳能源系统建设,实现区域综合能源系统健康状况的实时评估和诊断;形成面向全市工业园区的低碳转型技术体系,完成钢铁等重点产业园区的数字化能效综合平台示范;研制基于超级电容的高安全性、高比能量、可自助充电的储能装置,实现智能分布式移动储能示范。  研究内容:(1)数字全息城市能源互联网态势感知与高效运维技术研究及应用;(2)工业园区低碳转型与能效提升数字化技术研究及应用;(3)智能网联分布式移动储能系统关键技术研究及应用。  执行期限:2021年9月1日至2024年8月31日。  经费额度:非定额资助,拟支持不超过3个项目,企业自筹经费与申请资助经费的比例不低于1:1。  方向4、燃料电池电堆技术  研究目标:实现低铂(铂载量≤0.15g/kW)催化剂、超薄金属双极板等关键材料国产化批量生产,完成燃料电池电堆集成及验证;实现300kW燃料电池电堆测试设备国产化;完成300kW燃料电池供能系统在园区内建筑楼宇、数据中心等的应用。  研究内容:(1)高功率、长寿命、低成本质子交换膜燃料电池关键材料及电堆集成技术研究及应用;(2)百千瓦级燃料电池电堆测试技术与设备研发;(3)园区百千瓦级燃料电池综合能源系统关键技术研究与示范。  执行期限:2021年9月1日至2024年8月31日。  经费额度:非定额资助,拟支持不超过3个项目,企业自筹经费与申请资助经费的比例不低于1:1。专题四、工业/产业低碳/零碳技术  方向1、钢铁/化工行业零碳/低碳流程再造工艺技术  研究目标:强化二氧化碳减排技术与钢铁、化工生产各环节的深度融合,推动传统生产流程再造,实现深度减排;实现大宗化工产品和化工聚合材料的规模化生物制造生产及精细化学品生物合成,促进原料、过程及产品绿色化。   研究内容:(1)钢铁行业零碳/低碳流程再造工艺技术研究与示范;(2)化工行业零碳/低碳流程再造工艺技术研究与示范;(3)合成生物学制备化学品关键技术研究与应用。  执行期限:2021年9月1日至2024年8月31日。  经费额度:非定额资助,拟支持不超过3个项目,企业自筹经费与申请资助经费的比例不低于1:1。  方向2、废弃物资源化与再制造技术  研究目标:提升生活垃圾焚烧的智能精细化管控水平,提高焚烧稳定性和发电效率,降低能耗和碳排放;实现干垃圾高效智能化转运、调配和精细分选,形成废旧塑料高值利用规模化能力;进一步提升沼渣的低碳资源化利用水平和产品价值;提高湿垃圾就近就地处理过程的能源利用效率,大幅减少废气废水排放;提高填埋气品质和高效收集能力,减少填埋气资源化能耗;形成废旧汽车智能化精细拆解和分离成套技术,实现典型零部件的充分回收与精准再制造,增强废旧汽车高效综合利用水平,减少拆解全过程污染排放。  研究内容:(1)生活垃圾智能高效焚烧发电关键技术研究与示范;(2)干垃圾智能转运与高值利用关键技术与装备研究与示范;(3)沼渣低碳高值化利用关键技术研究与示范;(4)湿垃圾高效清洁低碳资源化处理关键技术研究与示范;(5)垃圾填埋气提质增产高效资源化关键技术研究与示范;(6)废旧汽车智能拆解和再制造关键技术研究与示范。  执行期限:2021年9月1日至2024年8月31日。  经费额度:非定额资助,拟支持不超过6个项目,企业自筹经费与申请资助经费的比例不低于1:1。  方向3、污水污泥资源化技术  研究目标:实现低碳氢比城市污水处理工艺的外部碳源零添加,提高污水污泥高值化利用率;围绕本市工业和农村污水处理设施碳排放的不同特点,建立污水处理设施温室气体排放本地化核算技术方法,形成碳排放核算和减污降碳技术体系;实现给水厂污泥免脱水固化改良和再生填料制备,降低污泥处理处置过程能耗,推进再生产品示范应用。  研究内容:(1)城市污水处理温室气体减排耦合碳资源高值回收技术研究与示范;(2)城乡梯度污水减污降碳关键技术研究与示范;(3)给水厂污泥低碳利用技术研究与示范。  执行期限:2021年9月1日至2024年8月31日。  经费额度:非定额资助,拟支持不超过3个项目,企业自筹经费与申请资助经费的比例不低于1:1。二、申报要求  除满足前述相应条件外,还须遵循以下要求:  1. 项目申报单位应当是注册在本市的独立法人单位,具有组织项目实施的相应能力。  2. 研究内容已经获得财政资金支持的,不得重复申报。  3. 所有申报单位和项目参与人应遵守科研伦理准则,遵守人类遗传资源管理相关法规和病原微生物实验室生物安全管理相关规定,符合科研诚信管理要求。项目负责人应承诺所提交材料真实性,申报单位应当对申请人的申请资格负责,并对申请材料的真实性和完整性进行审核,不得提交有涉密内容的项目申请。  4. 申报项目若提出回避专家申请的,须在提交项目可行性方案的同时,上传由申报单位出具公函提出回避专家名单与理由。  5. 已作为项目负责人承担市科委科技计划在研项目2项及以上者,不得作为项目负责人申报。  6.项目经费预算编制应当真实、合理,符合市科委科技计划项目经费管理的有关要求。三、申报方式  1. 项目申报采用网上申报方式,无需送交纸质材料。申请人通过“中国上海”门户网站(http://www.sh.gov.cn)--政务服务--点击“上海市财政科技投入信息管理平台”进入申报页面,或者直接通过域名http://czkj.sheic.org.cn/进入申报页面:  【初次填写】使用申报账号登录系统(如尚未注册账号,请先转入注册页面进行单位注册,然后再进行申报账号注册),转入申报指南页面,点击相应的指南专题后,按提示完成“上海科技”用户账号绑定,再进行项目申报;  【继续填写】登录已注册申报账号、密码后继续该项目的填报。  有关操作可参阅在线帮助。  2. 项目网上填报起始时间为2021年7月1日9:00,截止时间(含申报单位网上审核提交)为2021年7月20日16:30。四、评审方式  采用一轮通讯评审方式。五、立项公示  上海市科委将向社会公示拟立项项目清单,接受公众异议。六、咨询电话   服务热线:8008205114(座机)、4008205114(手机)    上海市科学技术委员会  2021年6月23日
  • 质谱蒸汽探测令机场安检更轻松
    p   在机场中,美国运输安全管理局(TSA)的工作人员扫描检测你的手以及笔记本电脑等等物品时所使用的技术正是“痕量检测”的一种形式——离子迁移谱(ion mobility spectroscopy)。在几秒钟之内,样品首先被汽化成了化学离子,然后探测器再通过其分子大小和形状来识别其是否为爆炸物,而如果确实是爆炸物就会触发警报。 /p p style=" TEXT-ALIGN: center" img title=" 1_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/a7e49f29-6fda-4c6b-8e08-171b8b3924c1.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px COLOR: #0070c0" strong 接触式取样可以是一种非常有效的方式,但其前提是恐怖分子必须在到达袭击目标前接受安检 /strong /span /p p   但当待测对象较多时,这种手段就变得既费时又费力,而且其有效性很大程度上依赖于工作人员的取样水平。此外,这种技术还需要接触式取样,也就是说安检人员不得不接触到那些有可能存在残留物的物体表面。因此,当不法之徒不打算通过安检,他们的个人物品也没有机会被搜查时,这种技术就毫无用武之地了。 /p p   还有一些安检小队则依靠训练过的狗,利用它们灵敏的嗅觉来嗅出爆炸物。可是例行部署探测犬的背后意味着极为繁重的后勤和训练工作。与此同时,直接用狗近身检测也可能使某些特殊文化背景的旅客感到反感。 /p p   于是,研究人员长久以来都致力于开发一种新型的,可以像犬类一样“嗅”出爆炸物蒸汽的化学探测技术。不过这些年来很多尝试都由于灵敏度不够而失败了。针对这个问题,我们的研究小组已经从事了近20年的研究工作并且取得了很大的进展。 /p p style=" TEXT-ALIGN: center" img title=" 2_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/28c5d07c-f408-4123-9e84-1af6f5300f37.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px COLOR: #0070c0" strong   在机场里,炸弹嗅探犬是安检人员的好拍档 /strong /span /p p    strong 越来越灵敏 /strong /p p   想要设计一种能与狗鼻子相匹敌的技术,其最大的难点在于绝大部分爆炸物的饱和蒸气压都非常非常的低。某个材料的“平衡蒸气压”从根本上说是在一个特定温度的理想条件下,空气中该材料的含量有多少(也就是可供探测的含量有多少)。 /p p   全世界的军队普遍使用的含氮有机炸药(如TNT,RDX和PETN)的平衡蒸汽压只有万亿分之一左右。换句话说,如果想要在实际的工作环境中(如机场中拥挤忙碌的登机区)可靠地嗅出这些爆炸物的蒸汽,探测器的灵敏度必须达到千万亿分之一(ppq)的水平。 /p p   可是这已经超过了痕量检测设备的能力范围。要知道,拥有325ppq的探测水平就相当于能够在整个地球的范围内找到一棵特定的树。 /p p   不过,近期的研究已经将探测水平推进到了千万亿分之一这样的范围。在2008年,一个国际小组使用一种称为二次电喷雾电离质谱分析的先进电离技术,达到了比探测TNT和PETN所需的万亿分之一更优的探测水平。 /p p   在2012年,我们在美国太平洋西北国家实验室(PNNL)的研究组通过使用大气流管质谱分析(AFT-MS)成功对平衡蒸气压低于25ppq的RDX蒸汽进行了直接、实时的探测。 /p p   质谱仪的灵敏度取决于有多少目标分子能够被电离并转移进入质谱仪以供探测。这个过程进行的越充分,其灵敏度就会越高。我们的AFT-MS设计的特别之处就在于它利用时间来最大化爆炸物蒸汽分子与离子源产生的空气离子之间发生碰撞的几率。正是这些空气离子与爆炸物分子之间反应的程度决定了灵敏度的高低。AFT-MS的使用,让我们在今天有能力探测到一系列平衡蒸气压低于10ppq水平的爆炸物。 /p p style=" TEXT-ALIGN: center" img title=" 3_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/9942068c-b47e-4832-84ab-06d563e6f5da.jpg" / img title=" 3_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/e55e63e6-dc03-4db6-9737-4b229f5353ec.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px COLOR: #0070c0" strong 完美简洁的AFT-MS装置原理示意图 /strong /span /p p   strong  下一步:投入实际使用 /strong /p p   因此,我们目前研发出来的爆炸物化学探测仪器已经不必再受制于接触式取样,而是可以和犬类一样去“嗅”出炸药的味道。 /p p   该仪器为安全检查提供了令人振奋的新的可能性:第一,它具有与犬类相似的爆炸物蒸汽探测的能力,第二,它可以连续不间断地工作。痕量探测的取样不再需要直接接触待测的可疑物品。而工程师则可以设计出一种非侵入的“穿行式”爆炸物探测装置,一如那些我们常见的金属探测器。 /p p style=" TEXT-ALIGN: center" img title=" 4_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/40e61eee-2199-48e1-a666-1ea3cc793029.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px COLOR: #0070c0" strong PNNL的研究人员Robert Ewing正在往探测器中放置痕量蒸汽样品 /strong /span /p p   这项技术真正的创新之处在于其极高的灵敏度,这使得它可以对蒸汽羽流进行直接探测。因此我们不用再先收集爆炸物颗粒,然后再将其气化(比如在过去的痕量探测技术中,为了取出人们身上的颗粒而使用噪音非常大的空气喷嘴)。现在,更高的灵敏度意味着当旅客们穿行而过时,我们就能够对空气中的爆炸物分子进行连续不断的采样了。 /p p   该技术手段毫无疑问会让机场安检变得更轻松,同时还能大大提高安检口的吞吐能力,改善旅客们的体验。我们也可以将该类型的装置置于机场航站楼或者其他公共设施的入口处,炸药一旦进入这栋建筑就可以立刻被探测到(而不是仅仅当炸药通过安检口时才能探测),这显然将大大提高公共场所的安全性。 /p p   通过增加一个扫描器可用的信息独立模块,该蒸汽探测性能也可以加强安全性。目前,包括X射线和毫米波成像等在内的大多数安检技术都是基于对异常状况的观测,也就是说TSA的工作人员们会从影像中找出那些看起来形状可疑的物体。而蒸汽探测技术可以为他们提供一个能够识别特定化学品的全新工具。 /p p style=" TEXT-ALIGN: center" img title=" 5_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/ddef1337-8871-4ed1-b9b3-de39ba4dee9c.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px COLOR: #0070c0" strong 同一地点、同一时间进行两种检测——利用质谱仪进行的蒸汽探测和利用目前部署的全身扫描仪进行的视觉成像 /strong /span /p p   两种技术的整合将为我们提供一种双管齐下的爆炸物探测手段:当检测一个人或者包裹时,我们既能够观察爆炸物的影像,又可以“闻”到它散发出的蒸汽羽流。就好比如果你想认出一个久未谋面的人,你很可能既需要看一看他的近照,同时还需要听一听他的声音,而不是只需要这两样信息中的一种。 /p p   受到了狗鼻子那强大探测能力的启发,我们已经在发展能与之比肩的探测技术的道路上取得了可喜的进展。这种以爆炸物为目标的蒸汽探测技术既可以有效提高公共场所的安全系数,又可以让安检环境变得不那么扰人。下一步的研究则是在继续优化这项技术的同时尽量降低其成本,最终目的是让这些探测器能够在你身边的每一座机场中大显身手。 /p p & nbsp /p
  • 低碳行动,拯救北极熊于一声“碳”息
    Lightway- 点亮未来 - 2020年7月20日,国际权威杂志《Nature Climate Change》上发表了一篇关于北极熊的研究报告《Fasting season length sets temporal limits for global polar bear persistence》,并迅速登上各大热搜头条。报告指出,全球气候变暖导致北极海冰消融,使得北极熊的生存环境遭到极大破坏,北极熊被迫前往海岸地区。而在那里,北极熊很难找到食物和哺育幼崽,这将使北极熊的数量大幅下降。在部分地区,北极熊已经陷入数量螺旋式下降的恶性循环。 全球气候变暖最主要的原因是温室效应的不断累积,大气中的二氧化碳等温室气体就像一层厚厚的玻璃,把地球变成了一个大暖房。除非人类采取更多措施应对气候变化,否则这一物种或将在2100年左右几乎消失。 光催化CO2还原 如何实现CO2的捕捉、储存和利用,以及如何降低地球大气中的碳含量,成为了全球科学家研究的焦点。光催化方法还原CO2,可以在比较温和的光照反应条件一步直接获得一氧化碳/碳氢化合物等化学品及燃料,具有极大的应用前景。 光反应量子产率(PQY)为光催化过程的评价及催化剂的研究提供了重要的参考指标,PQY越高,说明光反应对光子的利用率越高,催化剂的性能也越好。 Ru-Re超分子复合物光催化剂体系CO2还原反应 钌-铼(Ru-Re)超分子复合物是近年来研究比较热门的光催化剂,可催化太阳光照下CO2还原为CO的光化学反应。 图1. Ru-Re超分子复合物催化下光反应示意图 光反应量子产率测试 CO2还原过程的光反应量子产率使用岛津公司最新发布的Lightway PQY-01光反应评价系统进行测试。实验中照射光波长为470nm,强度为17 × 10-9爱因斯坦/秒。PQY-01测试得到吸收光谱及吸收的光子数。CO2还原反应生成的CO使用气相色谱仪进行定量。图2显示了CO生成量和吸收光子数相关的直线。直线的斜率即为反应的量子产率,计算得到CO生成的量子产率为40%。 图2. 一氧化碳生成量 vs 吸收光子数 中间体追踪 光反应中间体的追踪对于研究反应机理,开发高效的催化剂体系十分有用。PQY-01可以直接检测到在Ru-Re超分子复合物催化下二氧化碳还原反应的中间产物(图1)。从图3和图4可见,随着反应的进行,在550nm附近出现了一个新的吸收峰,此峰为光反应中间产物的吸收光谱。经过与文献报道的数据进行对比,确认中间产物为单电子还原产物,为Ru-Re超分子复合物的光电子转移反应所生成。 图3. Ru-Re超分子复合物光催化反应的光谱测量结果 图4 Ru-Re超分子复合物光催化剂反应的微分光谱结果 如果这类Ru-Re催化剂能够投入实际应用,那么就如同植物能通过光合作用把二氧化碳合成为淀粉和蔗糖等碳水化合物一样,人类就可以通过效法自然的人工光合成,缓解温室效应,应对未来能源危机。
  • 天津市拓普仪器有限公司参加制药行业应用总有机碳(TOC)分析仪进行清洁验证专题讲
    在国内制药行业,清洁验证已经越来越被高度重视,国家药典委员会已经把“制药用水中总有机碳测定法”列入2010年版,并将“增订有关清洁验证的内容”列为2010年版的课题。为了保证和提高药品质量及适应医药工业发展的需要,辽宁省食品药品检验所与美国通用电器(GE)分析仪器有限公司于2009年6月5日在辽宁省食品药品检验所联合举办“制药行业应用总有机碳(TOC)分析仪进行清洁验证专题讲座”,天津市拓普仪器有限公司应邀参加。 讲座内容:TOC检测方法是FDA提倡的、用于评估被检水样品中所有含碳有机化合物的方法,广泛应用于质控、生产及相关医药生产设备的清洁验证等。国际协调会议(ICH)在 美国FDA(CDER & CBER2)的协助下,于1996 年创建了指导文件Q2B分析步骤的验证。具体到药厂水系统,就是如何应用这些程序和步骤,以验证TOC方法在清洁验证中的有效性。本讲座就是针对此应用,交流如何响应Q2B指导文件的要求,如何建立合适的验证方法和文档,如何建立下述指标,包括:检出限和定量下限;确定分析的准确度和精确度;线性和回收百分比验证;分析方法的稳定性验证。 同时现场演示和讲解了如何应用冲洗和刮擦两种方法采样;如何应用分析仪的自动化功能来提高验证的效率,并在会议中向大家介绍了最新的RTR(Real Time Release)_实时控制参数放行的理念及TOC方法在RTR上的应用。
  • 清洁验证:微生物总有机碳回收率和线性
    简介在生产消费品时,有效地清洁生产设备对质量控制来说至关重要。清洁工艺的目标是降低产品污染的风险,有效的清洁工艺可以将风险降低到可接受的水平,以确保产品质量。如果无法衡量和验证清洁工艺的有效性,就无法了解产品质量和消费者安全的风险。根据美国食品和药品管理局(FDA)提供的数据,2017年食品和饮料行业产品召回的主要原因是微生物对产品的污染。对于减少和消除微生物污染来说,强有力的清洁工艺至关重要,因此监控清洁工艺有效性的方法同样至关重要。总有机碳(TOC)分析是消费品生产商广泛采用的非专属方法,用于检测产品、清洁剂、以及微生物等污染物的残留量。为了证明TOC分析法适用于预期用途,我们对设备清洁之后可能尚存的残留物进行了回收和线性研究。工厂通常会测试化学污染物和化合物,但很少用TOC分析法来测试微生物的回收率。本文旨在探讨对于清洁验证和确认,TOC分析法能否证明可接受的微生物污染回收率和线性。实验设计和设置我们同科罗拉多大学博尔德分校合作,用一整夜时间在胰酶大豆肉汤中培养100毫升枯草芽孢杆菌(Bacillus subtilis)。以4500转/分钟的速度将最终培养物的十毫升等分试样离心分离10分钟,形成细胞沉淀。在每次离心之间,倒出上面的液体,用涡旋混合方法用10毫升超纯水使沉淀细胞重新悬浮。重复此过程7次。设计淋洗循环以除去细胞培养基带来的TOC污染。在第7次淋洗循环后,根据已有的4,6-二氨基-2-苯基吲哚(4,6-diaminidino-2-phenylindole,DAPI)染色任务来对细胞进行重新悬浮、稀释、计数(见图1)。图 1:枯草芽孢杆菌在细胞计数的荧光显微镜成像确定细胞密度之后,用Sievers® M9 TOC分析仪测量1 ppm确认标样组,然后进行三次细胞浓度稀释。在测量TOC之后,用0.45 μm灭菌过滤器过滤剩余样品,彻底除去细菌(见图2)。然后再次测量TOC以确定每个样品的非细胞背景TOC(见图2)。 图2:枯草芽孢杆菌的过滤过程结果表 1:微生物细胞密度与TOC的相关性结果图 3:微生物细胞密度与TOC的线性关系表1和图3是微生物TOC相关性研究的结果。线性趋势线的R2值为0.9981,表明实测细胞密度有良好的线性趋势。根据图3所示的线性拟合趋势线方程,定义为3倍噪声的检测水平(LOD,Level of Detection)为2.74E+06细胞/mL。此外,根据线性拟合趋势线和M9仪器规格,50 ppm的最大仪器定量限为2.49E+08细胞/mL。在进行微生物TOC定量之后,分别将1毫升的每种细胞密度溶液放在不锈钢试样板上进行试样污染,然后使试样干燥。此试样污染的目的是确定微生TOC相关结果的目视检测限。图4是微生物试样污染图。图 4:微生物试样板污染(A) 5.8E+07细胞/mL(B) 5.8E+06细胞/mL(C) 5.8E+05细胞/mL讨论与结论微生物TOC相关结果和试样污染图都说明了连续监测已有的清洁工艺有效性的重要性。在理想光线下,很容易在试样板上看到最高细胞密度(5.8E+07细胞/mL)的污染斑。而对于较低细胞密度,即使光线很好,也很难在试样板上看到污染斑。这表明除了强有力的清洁工艺之外,还需要用非目测的方法来测试清洁工艺的有效性。根据收集的数据,可以想象用于生产消费品的设备上仍有显着微生物污染,却仅凭目视检查就被投放到生产中,导致严重后果。因此必须连续监测已有的清洁工艺的有效性,才能降低产品质量风险和消费者安全风险。最后,由于微生物分子组成的不确定性,很难确定微生物溶液的回收率。本研究根据先前在确定活性微生物细胞中的碳含量时的发现,旨在确定微生物溶液的理论回收率。图5是理论微生物TOC产出量的计算过程。基于每个细胞的碳原子参考数,5.8E+07细胞/mL的理论TOC浓度为11.6 ppm。图 5:理论微生物 TOC 产出量的维度分析在本文的实验中,测量到5.8E+07细胞/mL的TO实际回收值为9.13 ppm,对挑战性的化合物的回收率为78.7%,从而证明实验方法是成功的。总之,本研究用Sievers M9 TOC分析仪演示了在清洁验证和确认时的细胞密度同目视检测限的关系,成功地证实了微生物TOC回收率。实验数据支持使用Sievers TOC分析仪来确认设备清洁度,同时表明除了目视检查之外还须考虑使用监测微生物污染的定量方法。TOC分析法是测量残留物、监测清洁工艺、降低总体风险的有效方法。Sievers分析仪为您提供能解决您一切清洁验证和确认需求的TOC解决方案、服务、支持。参考文献1. Recall Index and Spotlight. Expert Solutions https://www.stericycleexpertsolutions.com/recall-index/2. DAPI Protocol For Fluorescence Imaging Thermo-Fisher Scientific – US https://www.thermofisher.com/us/en/home/references/protocols/cell-and-tissue-analysis/protocols/dapi-imaging-protocol.html3. Phillips, Rob, and Ron Milo. “A Feeling for the Numbers in Biology.” Proceedings of the National Academy of Sciences 106, no. 51 (December 22, 2009): 21465. https://doi.org/10.1073/pnas.0907732106.◆ ◆ ◆联系我们,了解更多!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制