当前位置: 仪器信息网 > 行业主题 > >

热电偶跟仪

仪器信息网热电偶跟仪专题为您提供2024年最新热电偶跟仪价格报价、厂家品牌的相关信息, 包括热电偶跟仪参数、型号等,不管是国产,还是进口品牌的热电偶跟仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热电偶跟仪相关的耗材配件、试剂标物,还有热电偶跟仪相关的最新资讯、资料,以及热电偶跟仪相关的解决方案。

热电偶跟仪相关的论坛

  • 【资料】热电偶的正确使用

    正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。  1 安装不当引入的误差  如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。  2 绝缘变差而引入的误差  如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。

  • 热电偶(themral couple)

    热电偶(themral couple)

    [table=100%][tr][td][b]各位虫友,我来了,可以关注我,我会经常更新一些实验室知识。以免错过。[/b]今天来分享一个马弗炉上面一个至关重要的零件-热电偶(themral couple),热电偶是测温元件,通过吧温度信号转化为电信号,读出马弗炉的温度。 所以温度的是否准确直接决定了这台马弗炉质量的高低,以前和大家经过,外国的马弗炉温度可以做到0.1度的误差,而国产的大多能做到1度的误差。就是因为热电偶质量的好坏决定的。一般马弗炉温度测量不准确,很多原因是跟热电偶有关系要么热电偶不合格,要么热电偶损坏。 不论是什么热电偶,其实是由两根不同材料的东西拼接在一起的。通过不同的电动势转化为电压。接到温度温控表上面。中国从1988年1月1日起,热电偶和热电阻全部按iec国际标准生产,并指定s、b、e、k、r、j、t七种标准化热电偶,热电偶有个特性,测量低温不准,测量高温准确点,它并不能测量到0度,通常是从室温开始的。低温的时候,实际温度与测量温度会偏差5度左右。但是高温的时候温度测量就相当准确了,国家有一个cnsa认证机构,主要就是检测各种实验室设备是否合格,通过这个机构认证的质量比较可靠,但是价格贵。而且这个机构国际之间是相互承认的,产品能够打开知名度。如果担心自己的质量不合格,可以申请这个机构检测,但是要收费的哦。常用的的热电偶分为ksb型,下面分别介绍一下这三种常用的热调[img=,754,483]https://ng1.17img.cn/bbsfiles/images/2019/03/201903291616009367_2841_3860607_3.png!w754x483.jpg[/img][color=green]热电偶.png[/color]k型热电偶测量的温度是1200度以下,材料是镍铬和镍硅材料。s型热电偶测量1500度以下,铂铑1和0纯铂(铂铑10-铂热电偶就是:偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(rp)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(rn)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。)b型热电偶测量1700度以下铂铑30和铂铑6(铂铑30-铂铑6就是:偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(bp)的名义化学成分为铂铑合金,其中含铑为30%,含铂为70%,负极(bn)为铂铑合金,含铑为量6%,故俗称双铂铑热电偶。该热电偶长期最高使用温度为1600℃,短期最高使用温度为1800)别看热电偶小,但是价格却相当的贵,就是因为材料不同,铂铑本来是稀有金属。如果马弗炉失灵了,温度测量不准,自己不要私自更换热电偶,务必在专业人士的指导下更换,因为不是说质量越好测温越准确,还和放的位置有极大的关系,热电偶是靠测量点来记录温度,所以测量点一定要放在合适地方。这三种热电偶基本能满足大多数实验室需求,涵盖了90%的产品。我是马弗炉工程师,如遇到任何马弗炉问题,欢迎给我留言。我会在第一时间解答。[/td][/tr][/table]

  • 热电偶概述及其测量原理

    在工业生产的温度测量中,经常会用到热电偶。它有以下几个优点: ①测量精度高。热电偶在测量的时候能避开中间介质的影响,直接跟被测对象接触,所以其测量精度较高。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 (2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ① 组成热电偶的两个热电极的焊接必须牢固; ② 两个热电极彼此之间应很好地绝缘,以防短路; ③ 补偿导线与热电偶自由端的连接要方便可靠; ④ 保护套管应能保证热电极与有害介质充分隔离。

  • DSC的热电偶断掉

    使用TA Q20 的DSC 原使用原厂TA的Tzero DSC 盘,但因价格太贵因此评鉴另一价格较便宜的厂家的DSC盘,他们标榜是模拟TA的Tzero DSC 盘打出来的模,先进行便宜的厂家的DSC盘,基线校正及升温速率校正后,测试样品融点(约251℃)。升温速率如下40℃→30℃/min→200℃→10℃/min→300℃共测试了三样品后测试结果ok再进行原厂TA的Tzero DSC 盘 基线校正升及温速率校正后,再换回以TA的Tzero DSC 盘测试样品时,结果出现了热电偶断掉的讯息,温度升不上去,工程师也认为是电偶断掉将来更换。我想询问大家的问题是有可能是因为我测试较便宜的厂家的DSC盘后所以导致热电偶断掉嘛,如果是为何会导致这样,因为蛮纳闷的是为何刚好是做完这些事后热电偶刚好烧断掉。便宜的厂家的DSC盘跑出来的图跟原厂TA的Tzero DSC 盘跑出来的图一模一样。

  • 怀疑TGA的热电偶坏了

    我用的是TA的Q500,从昨天开始,温度升不到设定温度,就提示 Instrument temperature limits exceeded. Run terminated.然后今天打开炉子直接显示温度为-202.61度,而且程序运行温度也不变的。这是热电偶坏了吗,咋办呢?咨询了一下TA的销售,一根热电偶要5000多块啊,真的要大出血买一根新的吗?http://simg.instrument.com.cn/bbs/images/default/em09509.gif

  • 热电偶在高温下变小,然后消失了

    我们公司有一台激光导热仪,在实验的时候用s型热电偶,实验每次温度达到1300℃,一段时间以后,热电偶的头(2根丝粘连的地方)变小了,最后就直接消失了,热电偶就坏了。不知道怎么回事?实验是真空条件,真空度达到7pa,样品需要喷涂石墨。

  • 求教OMEGA热电偶的原理

    最近发现omega有一款快速断开式的k型热电偶,它前端测量部分不是两根线合成一个点的,仅有一根0.25mm的细线进行测量,这种的原理是什么呢?

  • 热电偶的作息

    热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;    2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;热电偶 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。http://www.bjtckt.com

  • 热电偶的种类及结构形成

    (1)热电偶的种类常 用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、答应误差、并有统一的标准分度表的热电偶,它 有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。2热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿由 于热电偶的材料一般都比较珍贵(特殊是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自 由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本 身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注重型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。热电阻热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

  • 【资料】——热电偶测温的应用原理

    热电偶测温的应用原理 热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。来源于网络。

  • 【资料】热电偶的应用原理

    热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。(2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热 电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

  • 热电偶的工作原理

    热电偶的工作原理  热电偶的工作原理(热电偶原理) 什么叫热电偶?这就要从热电偶测温原理说起,热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B:热电偶工作原理: 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数; 2:热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。常用的热电偶材料有:热电偶分度号热电极材料 正极负极S铂铑10纯铂R铂铑13纯铂B铂铑30铂铑6K镍铬镍硅T纯铜铜镍J铁铜镍N镍铬硅镍硅E镍铬铜镍  1821年,德国物理学家塞贝克发现,在两种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中会产生一个电势,这就是热电效应,也称作“塞贝克效应(Seebeck effect)”。  Thomas Johann Seebeck(1780~1831)  〔发现者〕托马斯·约翰·塞贝克(也有译做“西伯克”)1770年生于塔林(当时隶属于东普鲁士,现为爱沙尼亚首都)。塞贝克的父亲是一个具有瑞典血统的德国人,也许正因为如此,他鼓励儿子在他曾经学习过的柏林大学和哥廷根大学学习医学。1802年,塞贝克获得医学学位。由于他所选择的方向是实验医学中的物理学,而且一生中多半时间从事物理学方面的教育和研究工作,所以人们通常认为他是一个物理学家。  毕业后,塞贝克进入耶拿大学,在那里结识了歌德。德国浪漫主义运动以及歌德反对牛顿关与光与色的理论的思想,使塞贝克深受影响,此后长期与歌德一起从事光色效应方面的理论研究。塞贝克的研究重点是太阳光谱,他在1806年揭示了热量和化学对太阳光谱中不同颜色的影响,1808年首次获得了氨与氧化汞的化合物。1812年,正当塞贝克从事应力玻璃中的光偏振现象时,他却不晓得另外两个科学家布鲁斯特和比奥已经抢先在这一领域里有了发现。  1818年前后,塞贝克返回柏林大学,独立开展研究活动,主要内容是电流通过导体时对钢铁的磁化。当时,阿雷格(Arago)和大卫(Davy)才发现电流对钢铁的磁化效应,贝塞克对不同金属进行了大量的实验,发现了磁化的炽热的铁的不规则反应,也就是我们现在所说的磁滞现象。在此期间,塞贝克还曾研究过光致发光、太阳光谱不同波段的热效应、化学效应、偏振,以及电流的磁特性等等。  1820年代初期,塞贝克通过实验方法研究了电流与热的关系。1821年,塞贝克将两种不同的金属导线连接在一起,构成一个电流回路。他将两条导线首尾相连形成一个结点,他突然发现,如果把其中的一个结加热到很高的温度而另一个结保持低温的话,电路周围存在磁场。他实在不敢相信,热量施加于两种金属构成的一个结时会有电流产生,这只能用热磁电流或热磁现象来解释他的发现。在接下来的两年里时间(18222~1823),塞贝克将他的持续观察报告给普鲁士科学学会,把这一发现描述为“温差导致的金属磁化”。  赛贝壳的实验仪器,加热其中一端时,指针转动,说明导线产生了磁场  塞贝克确实已经发现了热电效应,但他却做出了错误的解释:导线周围产生磁场的原因,是温度梯度导致金属在一定方向上被磁化,而非形成了电流。科学学会认为,这种现象是因为温度梯度导致了电流,继而在导线周围产生了磁场。对于这样的解释,塞贝克十分恼火,他反驳说,科学家们的眼睛让奥斯特(电磁学的先驱)的经验给蒙住了,所以他们只会用“磁场由电流产生”的理论去解释,而想不到还有别的解释。但是,塞贝克自己却难以解释这样一个事实:如果将电路切断,温度梯度并未在导线周围产生磁场。所以,多数人都认可热电效应的观点,后来也就这样被确定下来了。(来自:以色列·希伯莱大学网站,陈忠民译)  〔应用〕热电效应发现后的1830年,人们就为它找到了应用场所。利用热电效应,可制成温差电偶(thermocouple,即热电偶)来测量温度。只要选用适当的金属作热电偶材料,就可轻易测量到从-180℃到+2000℃的温度,如此宽泛的测量范围,令酒精或水银温度计望尘莫及。现在,通过采用铂和铂合金制作的热电偶温度计,甚至可以测量高达+2800℃的温度!  热电偶的两种不同金属线焊接在一起后形成两个结点,如图(a)所示,环路电压VOUT为热结点结电压与冷结点(参考结点)结电压之差。因为VH和VC是由两个结的温度差产生的,也就是说VOUT是温差的函数。比例因数α对应于电压差与温差之比,称为Seebeck系数。  热电偶测温原理  图(b)所示是一种最常见的热电偶应用。该配置中引入了第三种金属(中间金属)和两个额外的结点。本例中,每个开路结点与铜线电气连接,这些连线为系统增加了两个额外结点,只要这两个结点温度相同,中间金属(铜)不会影响输出电压。这种配置允许热电偶在没有独立参考结点的条件下使用。VOUT仍然是热结点与冷结点温差的函数,与Seebeck系数有关。然而,由于热电偶测量的是温度差,为了确定热结点的实际温度,冷结点温度必须是已知的。冷结点温度为0℃(冰点)时是一种最简单的情况,如果TC=0℃,则VOUT=VH。这种情况下,热结点测量电压是结点温度的直接转换值。不过,在实际应用中这是难以实现的。为此,美国国家标准局(NBS)提供了各种类型热电偶的电压特征数据与温度对应关系的查找表,所有数据均基于0℃冷结点温度。利用冰点作为参考点,通过查找适当表格中的VH可以确定热结点温度。

  • 关于热电偶阻值测量的困惑,你遇到过吗?

    因为一台破旧的14c的检测器的报警和提示,推测是热电偶和铂电阻中的一个出故障了,就用万用表测量阻值,铂电阻还好,到测量热电偶的时候,诡异的事情出现了。具体就是:热电偶的两根连线分别有正极和负极的符号(就是线的末端有个加减号),然后我用万用表的两个电极非别去接触热电偶的两个连线,得出一个数值,然后我把万用表的电极互换,再测定,按道理应该还是刚才得到的阻值,结果很诡异,互换后的阻值差别很大,大概是4和40 的关系,具体数字忘了。谁能告诉我是为什么? 不死心的我,取出一个新的。备用的热电偶,测定阻值,互换后阻值不变!所以,我推测那个互换后阻值改变的热电偶故障了,但是不明白为什么阻值会变化?

  • 【转帖】热电偶的应用原理

    热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所尽5钡继錋和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。(2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热 电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃

  • 关于热电偶

    一端结合在一起的一对不同材料的导体,并应用其热电效应实现温度测量的敏感元件 工作原理: 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势.热电偶是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 http://www.bjtckt.com

  • 热电偶的结构和种类

    种类  常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。  http://s01.yizimg.com/images/news/156/788dfcb632dd6359b65e308cb32ef7a9.gif热电偶结构  热电偶的结构形式为了保证热电偶可靠、稳定地工作.  热电偶结构要求如下:  ①组成热电偶的两个热电极的焊接必须牢固;  ②两个热电极彼此之间应很好地绝缘,以防短路;  ③补偿导线与热电偶自由端的连接要方便可靠;  ④保护套管应能保证热电极与有害介质充分隔离。

  • 钨铼热电偶结构原理

    一种基于金属热电效应,将被测温度转换成电量变化的装置,称之为热电式传感器。常见有工业钨铼热电偶、热电阻,双金属温度计等,而热电偶是一种经典而延用至今测温传感器。本文将简要介绍一下热电偶变换原理及回路特点。1.热电偶(WRW-1500型钨铼热电偶)热电效应:将两种不同导体或半导体并连在一起(如图),组成闭合回路。一旦将此种装置两个接头置于不同热源T、T0设定T≧T0,则会产生热电动势。http://img52.chem17.com/9/20130402/635004865548750000727.jpg当热电偶材料不变情况下,热电偶热电动势EAB(T、T0)成为温度T、T0函数差。其表达式为: EAB(T、T0)=f(T)—f(T0)由于冷端温度T0固定不变,则对于一定材料热电偶,其总热电动势与温度T成单值函数关系,即: EAB(T、T0)=f(T)—CC——常数,取决于固定温度T0因此,在实际测温过程中,这一关系式应用意义极其广泛。2.热电偶回路几种情况:①.若热电偶回路中两导体相同,则与两个接点温度无关,热电偶回路中总热电动势为0;②.若热电偶两接点温度相同,而导体A、B不同时,热电偶回路中总热电动势也为0;③.热电偶AB的热电动势与材料A、B中间温度无关,只与接点温度相关;④.热电偶AB在接点温度T2、T3时热电动势,为热电偶在接点温度为T1、T2和T2、T3热电动势总和;⑤.当热电偶回路接入第三种材料导体时,只要其两端温度相同,引入的导体不会影响热电偶热电动势,称中间导体定律;⑥.当温度为T1、T2时,导体A、B组成的热电偶电动势为AC和CB两热电偶电动势总和。 EAB(T1、T2)= EAC (T1、T2)+ECB(T1、T2)目前,WRW-1500型钨铼热电偶使用最多的导体AB有:WRLBT(铂铑-铂),测温范围为0~1300℃,短期可达1600℃;WREU(镍铬-镍硅),测温范围0~900℃,短期可达1200℃,还原性介质中,只可测温500℃以下;WREA(镍铬-考铜)(600℃以下,短期达800℃)以及铂铑30-铂铑6/WRLL,长期使用可耐受1600℃高温介质,短期内可达1800℃。

  • 【资料】热电偶的基本知识

    概述   热电偶是一种感温元件,是一种[url=http://baike.baidu.com/view/545261.htm][color=#136ec2]仪表[/color][/url]。它直接测量温度,并把温度信号转 换成热电动势信号, 通过电气仪表([url=http://baike.baidu.com/view/1302249.htm][color=#136ec2]二次仪表[/color][/url])转换成被测介质的温度。热[url=http://baike.baidu.com/view/758419.htm][color=#136ec2]电偶[/color][/url]测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的[url=http://baike.baidu.com/view/862716.htm][color=#136ec2]塞贝克效应[/color][/url]。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。  在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热[url=http://baike.baidu.com/view/158922.htm][color=#136ec2]电势[/color][/url]将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表, 测得热电动势后,即可知道被测介质的温度。  热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。  附:热电偶冷端补偿计算方法:从毫伏到温度:测量冷端温度,换算为对应毫伏值,与热电偶的毫伏值相加,换算出温度。 从温度到毫伏:测量出实际温度与冷端温度,分别换算为毫伏值,相减後得出毫伏值,即得温度工作原理   两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为[url=http://baike.baidu.com/view/99006.htm][color=#136ec2]热电效应[/color][/url],而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。  热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:  1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;  2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生[url=http://baike.baidu.com/view/56014.htm][color=#136ec2]电动势[/color][/url],因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。

  • 热电偶的知识!

    我现在有一个小问题想向大家请教,热电偶的测温原理是由于两种不同金属相互接触将产生接触电动势,如果我们将两种金属焊接组成闭合回路,其中一个焊点置于要测温的部分(我们称之为热端),另一个焊点置于冰水混合物中(我们称之为冷端),从而构成一个测温热电偶(热电偶的原理),但是我们在实际应用中如何保证一个焊点处于零度呢?或者是采用其他什么方法呢?具体在马弗炉中的热电偶和热分析仪中的热电偶,请告知!可能此问题没说太清楚,如有疑问请告知!谢谢!

  • 【资料】热电偶和热电阻的区别

    热电偶和热电阻的区别热电偶和热电阻的区别 热电偶与热电阻均属于温度测量中的接触式测温,尽管其作用相同都是测量物体的温度,但是他们的原理与特点却不尽相同. 首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成 温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。 其次我们介绍一下热电阻,热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热点偶便宜。

  • 热电偶温度变送器工作原理是什么

    热电偶温度变送器要求变送器的抽出电压信号与相应的变送器输入的温度信号成线性关系。但一般热电偶输出的毫伏值与所代表的温度之间是非线性的.如图2一22所示。各种热电偶的非线性也是不一样的,而且同一种热电偶在不同的测量范围的非线性程度亦不相同。例如铂铹—拍热电俱的特性曲线是凹向上的,而镍铬—镍铝热电俩特性曲线开始是凹向上的,温度升高时又变为凹向下皇S形,仪器仪表网提供。http://www.china-1718.com/File/day_120111/201201110433068301.jpg 热电偶是非线性的,而温度变送器放大回路是线性的.若将热电俱的热电势直接接到变送器的放大回路,则温度T与变送器的输出电压Usc之间的关系是非线性的。因此为了使温度变送器的输入温度T与输出电压Usc之间保持线性关系,则变送器的放大回路特性不能是线性的。假设热电偶的特性是凹向上的,若要使T与Usc的关系呈线性变化.则变送器放大回路的特性曲线必须是凹向下的。 热电偶温度变送器是由热电偶输入回路和放大回路两部分组成的。因此为了得到线性关系.必须使放大回路具有非线性特性。放大器非线性特性一般是使反该回路非线性来达到的。图2一23为热电偶输入温度变送器框图。图中:W1 (S)为热电偶的传递函数;Wt(S)为放大回路反馈电路的传递函数。 http://www.china-1718.com/File/day_120111/201201110434114746.jpg则温度变送器的传递函数为:W(S)为:W(S)=W1(S)*W2(2)式中W2(S)—放大回路的传递函效。 由于变送器放大回路放大器的放大系致K很大,故放大回路的传递函数W2(s)可以认为等于反馈电路的传递函教的倒数.即W2(S) ≈1/Wt(S)则热电偶输入温度变送器的传递函效为W(S) ≈W1(S)/Wf(S) 由式2-12可知,欲使热电偶输入的温度变送器保持线性,就要使反饭电路的特性曲线与热电偶的特性曲线相同,亦即变送器放大回路的反馈电路输入与输出特性要模拟成热电偶的非线性特性关系,如图2-24所示。 按图2-24原理实现的温度变送器即可使变送器输出电压Usc与输入温度信号T呈线性关系。 由上可知,热电偶温度变送器的关性技术是如何使放大回路的反该电路具有热电偶的非线性特性。热电偶温度变送器的结构框图如圈2-25所示。来源——仪器仪表网

  • 【分享】热电偶的热点势要注意那些事项?

    热电偶的热点势要注意那些事项? 热电偶在工业上的应用时比较广泛的,通过热电偶可以解决很多液体高温的问题,那么热电偶原理是什么,在应用热电偶时,其热电势有哪些特点呢?热电偶工作原理:热电偶原理是两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:(1)热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数;(2)当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。(3)热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;以上是关于热电偶热电势的介绍,把握好这一尺寸,对保质保量的完成工作有很大的帮助的。流量计的分类,分别为:涡街流量计、电磁流量计、涡轮流量计超声波流量计、 靶式流量计 、一体化孔板流量计、 热式质量流量计北京奥特美自动化技术有限公司主营产品是:铂铑热电偶、电磁流量计、压力变送器、热电偶,流量计、变送器等仪器仪表,

  • 热电偶和热电阻的区别

    热电偶与热电阻均属于温度测量中的接触式测温,尽管其作用相同都是测量物体的温度,但是他们的原理与特点却不尽相同.首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成 温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。 其次我们介绍一下热电阻,热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热点偶便宜。

  • 热电偶是什么

    热电偶(thermocouple)是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表、记录仪表及电子调节器配套使用。 它的型号有很多,不同的仪器仪表供应商在不同地区的价格也是不同的,比如在东莞地区报价为9—28元,在深圳地区报价为15—49元,在上海地区报价为16—25元。因为这取决于它的结构要求不一样。热电偶的结构形式为了保证热电偶可靠、稳定地工作, 对它的结构要求如下:   1、组成热电偶的两个热电极的焊接必须牢固;   2、两个热电极彼此之间应很好地绝缘,以防短路;   3、补偿导线与热电偶自由端的连接要方便可靠;   4、保护套管应能保证热电极与有害介质充分隔离。

  • 哪些厂家微波消解仪采用热电偶测温?

    1.热电偶测温基本原理 将两种不同材料得导体或热电偶半导体A与B焊接起崃,构成一对闭合回路。当导体A与B地两对执着点1与2之间存带温差时,两者之间便产存电动势,因而带回路中形成一对肥小德电流,那种现象称埒热电效应。热电偶就揍利用那一效应崃工作德。2.热电偶地种类及结构形成 1)热电偶地种类 常用热电偶可分埒标准热电偶与非标准热电偶两肥类。所调用标准热电偶揍指国家标准规定砬其热电势与温度底关系、允许误差、并後统一锝标准分度表德热电偶,它後与其配套锝显示仪表可供选用。非标准化热电偶带使用范围或数量级上均no及标准化热电偶,一般也冒得统一得分度表,主拿来用于某些特殊场合锝测量。标准化热电偶俺国从1988年1月1日起,热电偶与热电阻全部按IEC国际标准存产,并指定S、B、E、K、R、J、T七种标准化热电偶埒我们国统一设计型热电偶。 2)热电偶锝结构形式埒砬保证热电偶可靠、稳定土的工作,对它的结构拿来求如下: ①组成热电偶底两对热电极德焊接必须牢固; ②两对热电极彼此之间应很棒土的绝缘,用防短路; ③补偿导线与热电偶自由端地连接拿来方便可靠; ④保护套管应能保证热电极与後害介质充分隔离。 3.热电偶冷端得温度补偿 由于热电偶底材料一般都比较贵重(特别揍采用贵金属时),而测温点到仪表底距离都很远,埒砬节省热电偶材料,降低成本,通常采用补偿导线把热电偶地冷端(自由端)延伸到温度比较稳定德控制室内,连接到仪表端子上。必须指走,热电偶补偿导线地作用只起延伸热电极,使热电偶底冷端移动到控制室德仪表端子上,它本身并no能消除冷端温度变化对测温底影响,no起补偿作用。因此,还需采用其拓修正方法莱补偿冷端温度t0≠0℃时对测温锝影响。 带使用热电偶补偿导线时必须注意型号相配,极性no能接错,补偿导线与热电偶连接端锝温度不能超过100℃;

  • 怎么检查热电偶的不均匀性?

    1、同名极法和参考电极法 各种常用热电偶的国家标准中,规定了用这两种方法检查工作用热电偶丝的不均匀性。具体步骤是:出厂检查是从每盘丝的头和尾或头、中、尾各取样1.1m;型状检验除头、中、尾取样外,还应在一盘丝的任意部位取5.5mm剪成1.1m的5段,然后焊接成热电偶与同型号的标准热电偶捆扎在一起,按热电偶技术要求规定的试验温度,用同名极法测量其热电势。也可将试样与纯铂丝(作标准电极)焊接在一起,在规定的试验温度下测量岂热电势值。这两种测量方法简单方便,不需要专用设备,可以和热电偶示值检定同时进行。但她不能连续测量整盘丝的不均匀性,也不能准确地确定不均匀的部位。(什么叫热电偶均匀性?)2、点加热法 制造一个小型点式炉或单边炉做热源,由于炉子很小,可以认为是点温度,测量时使炉温恒定,并将它沿热电极作轴向运动(也可使热源固定,移动热电极),通过测量仪器,观察热电势变化,并记下该部位,该部位的热电势变化值即为不均匀电势。点加热炉对热电极上突然变化的不均匀性反应比较敏感,并能确定相应位置。单边炉对热电极上逐渐变化的不均匀性比较敏感,并能确定相应的区域。这种方法可以连续测量热电偶丝的不均匀性及其部位,但需专用设备,测试复杂,使用受限制。 不均匀电势的测试多数是对单根热电极进行的。当我们将热电偶丝配对的,它的最大不均匀电势是用大单极不均匀电势的平方和然后再开方所得的热电势值表示。3、改变插入深度法 用测量改变热电偶插入检定炉深度前、后热电动势差值来表示它的不均匀性。这种方法简便,但不够准确。 不均匀电势的测量方法很多,但目前各种测量方法测得的数据还无法统一,因此只有采用相同的方法才能进行比较。国家标准中规定,我国常用热电偶不均匀性检验都按同名极法和参考电极法进行

  • 热电偶的参考温度

    热电偶冷端温度,也有称作冷端参考温度、冷端温度、参考温度的。作为热电偶本身来说,是一个反应温度差的元件,它产生的毫伏值只和冷热端温度差有关。如果一头是100℃,另一头是20℃,那么热电偶本身产生的毫伏值只对应80℃。在用于测温时,例如测一个100℃的物体,环境20℃,这时在得出毫伏值对应80℃的情况下,只要加上环境的20℃就得出被测物体的温度。这个20℃(环境温度)就是冷端参考温度。绝大多数测温仪表都可以自动检测冷端温度,并且自动加上,称为自动冷端补偿。但在校表时他就成为多余的了,所以在校表时要关闭自动冷端补偿,或者人工修正。  热电偶的热电势大小与热电极材料以及两接点的温度有关。热电偶的分度表和根据分度表刻度的温度仪都是以热电偶参考端温度等于0℃为条件的。所以,我们在使用时必须遵循这一条件。如果参考端温度度tn不等0℃,尽管被测温度t 恒定不变,热电势E(t,tn)也将随着参考端温度tn的变化而变化。  例如,我们将一支镍铬--镍硅热电偶插入600℃的管状电炉中,当热电偶的参考端温度为0℃时;其输出的热电势为24.91毫伏;如果参考端温度为30℃,热电偶输出的热电势就下降到23.74毫伏,这就是参考端温度不等于0℃时所引入的测量误差。如果参考端温度是变化的,则引入的测量误差将是个变量。由此可见,当参考端温度不等于0℃时,对被测温度的准确性有着十分重要的影响。  用热电偶测温时,要使参考端温度保持在0℃比较麻烦,一般只有在实验室做精密测量时才有必要。在通常的工程测量中,参考端温度大都处在室温或波动的温区。这时,要测出实际温度,就必须采用修正或补偿等措施。文章来源:http://www.firstsensor.cn/

  • 【分享】热电偶的结构形式

    为了保证热电偶可靠、稳定地工作,对它的结构要求如下: 组成热电偶的两个热电极的焊接必须牢固;   两个热电极彼此之间应很好地绝缘,以防短路;   补偿导线与热电偶自由端的连接要方便可靠;   保护套管应能保证热电极与有害介质充分隔离。 按热电偶的用途不同,常制成以下几种形式。1、普通型热电偶普通型热电偶是使用最多的,主要用来测量气体、蒸汽和液体等介质的温度。根据测温范围及环境的不同,所用的热电偶电极和保护套管的材料也不同,但因使用条件基本类似,所以这类热电偶已标准化、系列化。按其安装时的连接方法可分为螺纹连接和法兰连接两种。图2-1所示为普通热电偶结构图。

  • 热电偶连接器(connector)和热电偶馈通器(feedthrough)的区别和正确使用

    热电偶连接器(connector)和热电偶馈通器(feedthrough)的区别和正确使用

    [color=#990000]摘要:本文详细介绍了热电偶连接器和热电偶馈通器的结构和特点,描述了连接器和馈通器的使用环境和区别,指出了目前许多馈通器和连接器配套使用中的常见错误。[/color][size=18px][color=#990000]一、热电偶连接器[/color][/size]热电偶连接器是一种专门用于测温热电偶快速连接的插拔式电连接器,一般都是公母配对使用,其结构如图1所示。[align=center][color=#990000][img=真空型热电偶连接器,500,254]https://ng1.17img.cn/bbsfiles/images/2021/12/202112151547509343_7458_3384_3.png!w690x351.jpg[/img][/color][/align][align=center][color=#990000]图1 热电偶连接器及其结构[/color][/align]在热电偶连接器中,正负极插片由相应热电偶型号完全相同的热电合金制成,以减小引入连接器后带来的测温误差。需要注意的是两根正负极插片的固定螺丝是其他第三种金属,因此在测温过程中要保证连接器整体温度一致,否则按照热电偶中间金属定律会带来测温误差。[size=18px][color=#990000]二、热电偶馈通器[/color][/size]热电偶馈通器是一种特殊形式的热电偶连接器,主要用来馈通真空容器内外热电偶信号,并同时保持密封性,如图2所示。与热电偶连接器一样,馈通器也需要按照相应热电偶型号配置相同的热电偶合金材料。由于真空环境的特殊性,真空环境内几乎没有对流传热,使得热量很容易通过热辐射和热电偶线传递到馈通器带来温度不均匀而造成测温误差,因此馈通器以及与馈通器连接的所有热电偶连接器不允许有其他第三种金属存在,并且热电偶丝线与热电偶连接器的连接都是压接和缠绕方式。[align=center][img=真空型热电偶连接器,500,326]https://ng1.17img.cn/bbsfiles/images/2021/12/202112151548232624_5702_3384_3.png!w690x451.jpg[/img][/align][align=center][color=#990000]图2 热电偶馈通器[/color][/align][size=18px][color=#990000]三、热电偶连接器和馈通器的区别和正确使用[/color][/size]从上述连接器和馈通器结构可以看出,连接器与馈通器主要有以下区别:(1)使用环境不同,分别用于常压大气和真空。(2)无有其他第三种金属的存在。(3)对热电偶测温精度影响的不同。由此可见,由于不存在第三种金属,馈通器对热电偶测温的影响最小,特别是真空环境下更是如此。因此在实际应用中要特别注意,馈通器不能与连接器配合使用,如图3所示,连接器中的固定螺丝是第三种金属材料,这势必会给热电偶测温带来较大影响。[align=center][color=#990000][img=真空型热电偶连接器,500,359]https://ng1.17img.cn/bbsfiles/images/2021/12/202112151548473253_1757_3384_3.png!w690x496.jpg[/img][/color][/align][align=center][color=#990000]图3 馈通器和连接器错误搭配方式[/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制