当前位置: 仪器信息网 > 行业主题 > >

水解装置

仪器信息网水解装置专题为您提供2024年最新水解装置价格报价、厂家品牌的相关信息, 包括水解装置参数、型号等,不管是国产,还是进口品牌的水解装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水解装置相关的耗材配件、试剂标物,还有水解装置相关的最新资讯、资料,以及水解装置相关的解决方案。

水解装置相关的资讯

  • 新的消解装置 | 可使用ICP-MS测定铂系金属中硅的含量
    一种新的消解装置铂、钯和铑等铂系金属的消解,具有相当的挑战性!它需要具备较高的温度、较长的反应时间和高腐蚀性的试剂(如 HCl 或王水)。安东帕 Multiwave 7000 系列超级微波系统所配备的全密闭石英管,一方面确保样品的完全消解,另一方面也防止了 HCl 对 PDC 加压仓的腐蚀。但是,石英管本体中的硅会在 280℃的高温下溶出,从而对 ICP-MS 测定样品中的硅含量产生影响。在不断的尝试之下,一种新的消解技术应运而生:在密闭的石英管内使用PTFE-TFM 内衬管进行消解,有助于克服这一限制。PTFE-TFM 内衬管实验过程仪器配置:超级微波系统Multiwave 7000 Rotor 6 转子PTFE-TFM 内衬管磁力搅拌系统消解过程:1,称取样品到 PTFE-TFM 内衬管中;2,按照下表,加入试剂到内衬管中;3,将含有铑的内衬管中加入磁性搅拌子,让样品与试剂充分接触,确保铑的完全消解;4,在 50 ML的石英反应管中填充 1ML HNO3 和 2ML H2O 的溶液;5,将 PTFE-TFM 内衬管插入到石英管中,盖上密封盖;6,采用包裹技术将石英管用PTFE薄膜密封,装入6位支架中;7,将支架放入装载载荷液 (150 ML H2O 和 5 ML HNO3)的内衬杯中。8,将内衬杯插入 Multiwave 7000 的高压消化腔(PDC)中;9,启动温度程序。实验结论消解后的运行数据样品消解的结果在安东帕 Multiwave 7000 超级微波系统的密封石英管中使用 PTFE-TFM 内衬管,为铂、钯和铑提供满意的消解结果。这种新的消解方法,由于样品不与石英表面接触,可以使用 ICP-MS 测定样品中硅的含量。
  • 如何使用EDGE从需要进行酸水解的食品样品中提取脂肪
    简介食品制造商需要提取脂肪。 通常,必须使用酸对食品样品进行预水解,以便在提取过程中回收其总脂肪。 例如,在低于正常脂肪提取温度的情况下,发生化学变化的食物(如鸡蛋)需要此步骤。使用这个操作程序从需要预水解的食 品中,用酸水解的方式提取脂肪,对于用户而言,在他们的实验室中这个步骤是必须的。 样品类型 含有结合脂肪的食物或用户想要水解的任何食物。 但是请不要使用这种方法从肉类中提取脂肪。 样品准备 1. 研磨或均质食品样品。 注意:食物含水多吗?研磨前,请在 100 °C 的烘箱中预干燥样品 1 小时。 2.称取 3 g 或更少的食物样品放入玻璃烧杯中。记录重量。 注意:对于坚果酱等脂肪较多的食物,请使用较小的样本量(2 克或更少)。 3. 向样品中加入 45 mL 沸水。然后,向样品中添加 55 mL 的 8 M HCl。 4. 用玻璃搅拌棒搅拌混合物,用表面皿盖住混合物,并使用加热板或加热块使样品沸腾 1 小时。混合物会变 成黑色的变体。 5. 将混合物从火上移开,让它摸起来冷却。 6. 使用 Whatman 1 过滤器组装过滤装置。 注意:过滤装置可以是放置在带有真空的过滤瓶中的布氏漏斗中的过滤器,也可以是放置在带有烧瓶下方的 漏斗中的过滤器,允许样品通过重力滴入。 7. 将样品转移到过滤组件中,让过滤器收集黑色水解产物。用 100 mL 水冲洗原始样品烧杯,以转移可能留 在烧杯中的任何水解产物 8. 从过滤装置中取出过滤器。在 100 °C 下烘箱干燥过滤器 1 小时。 9. 通过将 G0 Q-Disc 插入 Q-Cup 的底部,然后在顶部放置 Q-Support 来准备 Q-Cup。 注意:EDGE方法编程时请选择G0作为EDGE方法中的Q-Disc 10. 将干燥的过滤器插入 Q-Cup 的顶部。 注意:过滤器可能会被撕裂或穿孔,而不会降低脂肪回收率。如果使用的过滤器很大,可以将它们撕开以 更好地安装在 Q-Cup 内。 11. 在折叠过滤器的顶部放置一个 Q-Screen,然后使用 Q-Screen 工具将过滤器压缩到 Q-Cup 中。 12. 将 Q-Cup 放在 EDGE 架上。将预先称重的小瓶与架子上记录的重量放在一起。 EDGE萃取 13. 通过用石油醚或所需溶剂灌注溶剂管线并在下面的 EDGE 方法中编程来准备 EDGE。 14. 使用下面的 EDGE 方法提取样品。 注意:此方法需要两个 40 mL 或 60 mL 小瓶。萃取的后续工作15. 从架子上取下萃取瓶。 注意:如果样品的脂肪含量较高,则所得提取物可能呈黄色。 16. 将样品瓶置于 60 °C 的蒸发器中,让所有溶剂蒸发。 注意:脂肪将作为油性粘稠层保留在小瓶底部。 17. 将样品瓶放入 100 °C 的烘箱中 1 小时,以去除任何残留的水分或溶剂。 18. 让小瓶冷却并称重。 其中小瓶之后是蒸发后小瓶的重量,小瓶之前是提取前小瓶的重量。方法开发技巧 以下方法是适用于大多数样品类型的保守方法。请注意,可能有针对特定样品的更优化方法。请联系 Molecular Support以获取更多信息。 文献中有许多可用的酸水解方法。任何方法都可以,只要将黑色水解产物过滤,用水彻底冲洗,并用可干燥 和提取的过滤器捕获即可。  其他提取溶剂,如乙醚和己烷,可用于提取脂肪。  如果此方法的回收率低于预期,则将每个循环的保持时间增加 1 分钟。此外,如果可能,请考虑增加总提 取量或减少样本量。
  • 德祥诚征意大利VELP系列产品代理
    欢迎来电询价! 产品名称:意大利VLEP氧化测定仪OXITEST 产品简介: 意大利VELP是世界知名的分析仪器制造商,VELP以其专业和创新力开发和生产了优良的机械和电子产品。VELP从1983年开始设计、生产各种实验室分析仪器。产品涵盖食品及饲料系列、搅拌器系列、环保分析系列等,为客户提供*、合适的解决方案。 VELP全自动氧化测定仪&mdash &mdash OXITEST是VELP公司创新性产品,用于测定食品、化妆品氧化稳定性,得到样品相对IP(Induction Period)、评估食品货架期、比较不同食品的氧化稳定性。 技术参数: 订货号 名称 F30900248 Oxitest氧化测试仪 技术指标 范围 压力范围 0-8bar温度范围 室温-110℃ 氧化测试室数量 2 样本量 100ml 连接 USB 功率 900 W 电压 230 V / 50-60 Hz 重量 16.5 Kg (36.3 lb) 尺寸 365x190x485 mm 高压措施 安全真空管 极限温度 可视警戒 损坏指示 可视警戒 行业应用: l 应用行业:干果类、蔬菜类、乳制品类、豆制品类、休闲食品、保健食品、婴幼儿食品、食品添加剂、水产类、肉禽蛋类、食用油类、烘焙食品、方便食品。 l 应用领域:食品安全控制、食品质量保障与监督、食品研发 l 相关标准:CE安全认证、IEC认证、符合ISO9001/ISO14001/OHSAS18001。 产品名称:意大利VLEP全自动消解装置&mdash &mdash DKL系列 产品简介: 意大利VELP是世界知名的分析仪器制造商,VELP以其专业和创新力开发和生产了优良的机械和电子产品。VELP从1983年开始设计、生产各种实验室分析仪器。产品涵盖食品及饲料系列、搅拌器系列、环保分析系列等,为客户提供*、合适的解决方案。 VELP全自动消解装置&mdash &mdash DKL是VELP公司推出的凯氏定氮样品前期消解装置,包括多种型号:DKL8、DKL12、DKL20、DKL42。实现样品消解自动化:自动消解-自动冷却-自动报警,样品消解快速、均匀,消解后直接置于VELP凯氏蒸馏滴定系统UDK中进行测定。 技术参数: 型号 DKL8 DKL12 DKL20 DKL42 升温阶段 4 4 4 4 可编程序 54 54 5454 消化管参数 250ml Ø 42mm 250/400ml Ø 42mm 250ml Ø 42mm 100ml Ø 26mm 加热模块 铝合金模块 铝合金模块 铝合金模块 铝合金模块 自动化 全自动 全自动 全自动 全自动处理温度 450℃ 450℃ 450℃ 450℃ 升温速度 22min 22min 22min 22min 温度精确性 ± 0.5℃ ± 0.5℃ ± 0.5℃ ± 0.5℃ 操作界面 LCD显示屏,与加热模块分离,不受高温消解的影响 操作检测 消解完成后声音报警并自动关闭,降低能耗 独有技术 VELP独有TEMS技术:节约时间/节约能量/节约经费/节约空间 行业应用: l 食品、饲料和饮料行业&mdash &mdash 谷类、方便食品、饮料、啤酒、牛奶等固体、液体、半固体样品的消解 l 环 境 行 业&mdash &mdash 油品、水、废水、淤泥等 l 化工及制药行业&mdash &mdash 纸、纺织物、橡胶、塑料、聚合物等 产品名称:意大利VLEP索氏萃取(脂肪含量测定)&mdash &mdash SER148 产品简介: 意大利VELP是世界知名的分析仪器制造商,VELP以其专业和创新力开发和生产了优良的机械和电子产品。VELP从1983年开始设计、生产各种实验室分析仪器。产品涵盖食品及饲料系列、搅拌器系列、环保分析系列等,为客户提供*、合适的解决方案。 索氏萃取法是利用加热冷凝使溶剂回流,萃取固体物质的方法。SER148利用索氏提取法从固体混合物种分离出不同组分。用于食品、饲料、洗涤剂、橡胶、塑料制品、药物生产及土壤的分析中,能分析其中的水溶性成分,如脂肪、表面活性剂和杀虫剂等。 SER148型索氏抽提器采用采用Randall技术,可处理固态、半固态样品。通过浸提、回流淋洗、蒸馏三个步骤对有机溶剂进行回收;微处理器自动控制,能够编辑29组程序,*化提取、分离物质;带有冷凝水自检报警系统,确保操作的安全性;能显示实际温度和剩余时间,方便掌握实验进度;可储存、导出提取过程中的相关数据。 VELP索氏萃取装置&mdash &mdash SER148运用浸提与淋洗相结合的方法,与传统方法相比,减少了操作时间、提高了效率! 技术参数: l 抽提管数:6管 l 样品量:0.5~15g l 重复性:± 1% l 溶剂体积:30~100ml l 溶剂回收率:50~75% l 控温范围:100~260℃ l 沉浸时间:0~999min l 洗涤时间:0~999min l 功率: 900W l 重量:40kg 行业应用: l 食品、饲料和饮料行业、化工及制药行业&mdash &mdash 广泛用于各种固体、半固体样品中脂肪含量的提取 产品名称:意大利VELP HU6水解装置(可用于脂肪测定仪SER148样品前处理 ) 产品简介: 脂肪通常被包裹在食品、饲料等样品内部,为了能够精确的检测样品中脂肪的含量,在抽提之前需要使用酸水解装置将其水解、过滤、清洗。 VELP公司的HU6酸水解装置安全的对样品进行水解,用于对食品、饲料等样品进行前处理,使其中的脂肪游离出来。水解后的样品在原容器中干燥后可直接放入SER148中进行脂肪测定,能同时处理6个样品,方便操作并提高了测定的准确性。 技术参数 u样品处理数:6 u温度范围:室温~200℃ u可编程数量:20 u功率:1350W u重量:14.5kg u电压:220V/20Hz 应用行业:食品、饲料行业,可用于样品的酸水解、碱水解(视样品类型而定)。 产品名称:意大利VELP CSF6-GDE膳食纤维测定仪 产品简介: VELP公司的膳食纤维测定仪采用高效洗涤过滤装置CSF6与酶培养消化器GDE配合使用,用酶解法模拟人和动物消化系统的反应,测定膳食纤维的含量。主要用于食品中总纤维含量、可溶性纤维含量及不溶性纤维含量的测定。该仪器符合AOAC(美国官方分析化学师协会)的标准。 技术参数: CSF6高效洗涤过滤装置:可同时独立处理6个样品;采用高效蠕动泵模拟消化系统反应;可调式抽真空过滤设备;气体反吹系统,反应充分、加速洗涤。 GDE酶培养消化器:由浸入式加热头和透明水箱组成,含有6位磁力搅拌装置;适合各种培养烧杯;循环恒温水域系统、高精度温度控制;可设定培养温度及时间;带有警报计时器。 技术参数 u温度范围:室温~100℃ u温度精确度:0.1℃ u测量范围:0.1~* u同时分析6个样品 u环氧保护层,防止化学试剂腐蚀。 应用行业:食品、饲料行业 产品名称:意大利VELP纤维素测定仪FIWE 产品简介: VELP纤维素测定仪用于谷物、食品及饲料中粗纤维、木质素、纤维素、半纤维素等含量的分析。主要用于化学、分析、科研、食品和饲料工业。 FIWE型纤维素测定仪的环氧涂层,抗腐蚀性强。采用两个独立的试剂预热装置,能够快速加热酸碱;能同时处理多个样品,每个样品可以单独操作,提高试验效率。运用气泵反吹技术,避免样品粘连的同时使反应液反应充分,浸提过程通过自动旋转阀操作。具有安全自检功能,带有警报计时器。符合AOAC(美国官方分析化学师协会)、AACC(美国谷物化学师协会)等标准。 VELP推出两种型号的纤维素测定仪:FIWE6、 FIWE3。 技术参数 u能同时分别处理6/3个样品; u电子控温; u样品量范围:0.5~3.0g; u测量范围:0~*; u重现性:1%的样品的处理。 行业应用:食品、饲料等行业。 询价请电: 德祥科技 南区(华南,西南与中南)地区请联系: 周先生 广州市中山五路219号中旅商业城1505室 Tel:020-22273381 , 13512710084 Fax:020-22273368-399 东区(华东, 江,浙,沪)地区请联系: 黄小姐 上海市静安区北京西路1068号银发大厦18楼 Tel:021-52610159 52610099 转851 Fax:021-52610122 北区(华北,东北,西北)地区请联系: 王先生 北京市海淀区知春路9号坤讯大厦1506室 Tel:010-82326924 Fax:010-82329551
  • 聚丙烯酰胺水解度的测定
    一、背景介绍聚丙烯酰胺(PAM)是一种线型高分子聚合物,在常温下为坚硬的玻璃态固体,产品有胶液、胶乳和白色粉粒、半透明珠粒和薄片等。由于聚丙烯酰胺结构单元中含有酰胺基、易形成氢键、使其具有良好的水溶性和很高的化学活性,易通过接枝或交联得到支链或网状结构的多种改性物,在石油开采、水处理、纺织、造纸、选矿、医药、农业等行业中具有广泛的应用,有“百业助剂”之称。聚丙烯酰胺在国外应用最多的领域是水处理,国内在此领域的应用正在推广。聚丙烯酰胺在水处理中作为助凝剂与其它絮凝剂配合使用,可以大大降低絮凝剂的使用量,但其水解度过小会导致混凝或助凝效果较差,水解度过大又会增加制作成本,故需要对聚丙烯酰胺的水解度进行检测。 二、方法介绍● 依据标准:GB/T 17514-2008《水处理剂 聚丙烯酰胺》● 测试方法:取样约0.03g置于100mL水中溶解,用盐酸标准溶液滴定至pH为4.1时,即为终点。 三、聚丙烯酰胺水解度的测定(1)仪器及试剂● ZDJ-5B型自动滴定仪● JB-21上搅拌器(选配)● 231-01 pH玻璃电极+232-01参比电极● pH标准缓冲溶液、盐酸标准滴定溶液、基准无水碳酸钠试剂、样品 (2)测试步骤● 对pH电极进行标定,● 将100mL水倒入滴定杯中置于搅拌器上,开启搅拌器。称取约0.03g粉状试样,精确至0.2mg。加入到滴定杯中,使其完全溶解。采用预设终点模式,设置好参数后用盐酸标准溶液滴定溶液滴定至终点。 (3)测试结果图1 水解度滴定曲线 (4)注意事项由于聚丙烯酰胺水解后,随时间的延长而粘度越大,下搅拌难以维持转速,所以本次实验推荐用上搅拌进行测试,需要额外配置上搅拌装置。 四、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 《石油炼制工业污染物排放标准》等3项国家标准修改单(征求意见稿)发布
    近日,为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,完善国家大气污染物排放标准体系,促进环境空气质量改善,目前,编制单位已完成标准修改单(征求意见稿),现公开征求意见。并于2023年8月30日前将意见书面反馈至生态环境部,意见的电子版请同时发送至联系人邮箱。联系人:中国环境科学研究院环境标准研究所 江梅电话:(010)84913998传真:(010)84919396电子邮箱:jiangmei@craes.org.cn地址:北京市朝阳区安外大羊坊8号(邮编:100012)联系人:生态环境部大气环境司 张益荣电话:(010)65645574传真:(010)65645580电子邮箱:dqsgdy@mee.gov.cn地址:北京市东城区东长安街12号(邮编:100006)附件:1.征求意见单位名单.pdf 2.《石油炼制工业污染物排放标准》(GB 31570—2015)修改单(征求意见稿).pdf 3.《石油炼制工业污染物排放标准》(GB31570—2015)修改单编制说明.pdf 4.《石油化学工业污染物排放标准》(GB 31571—2015)修改单(征求意见稿).pdf 5.《石油化学工业污染物排放标准》(GB 31571—2015)修改单编制说明.pdf 6.《合成树脂工业污染物排放标准》(GB 31572—2015)修改单(征求意见稿).pdf 7.《合成树脂工业污染物排放标准》(GB 31572—2015)修改单编制说明.pdf行业基本情况:1、石油化学工业是对原料油(如石脑油、轻柴油)和气(如乙烷、丙烷)进行裂解, 生成以乙烯、丙烯、丁二烯、苯、甲苯、二甲苯为代表的基本化工原料。以基本化工原料经聚合、氧化、氧氯化、氨氧化、羰基合成、卤代、水解、醇解等等反应过程生产多种有机化学品(约200种)及合成材料(合成树脂、合成橡胶、合成纤维)。乙烯裂解装置为石化生产提供了基本原料,乙烯生产是石油化工产业的核心,乙烯工业的发展水平是衡量一个国家和地区石油化学工业发展水平的重要标志。目前我国是世界仅次于美国的第二大乙烯生产国。自2015年标准实施至2020年,中国乙烯产能从2200万吨增长至3518万吨,年均复合增长率近10%。依据中国石油集团经济技术研究院2021年度 《国内外油气行业发展报告》,预计“十四五”期间,国内累计新增乙烯产能将达到3832万吨,到2025年底国内乙烯产能将达到7350万吨。 2022年乙烯产能达到4675万吨,产量为2897万吨。2、我国是炼油大国,炼油产业向规模大型化、炼化一体化、产业集群化、基地化建设不断推进,集约化程度不断提高,在长三角、珠三角和环渤海地区形成了三个大型区域 性炼化企业集群。近些年,我国炼油能力持续增长,至2022年底,达到9.37亿吨。2022年全国原油加工量达6.8亿吨,排名前十省市分别为山东省、辽宁省、浙江省、 广东省、江苏省、福建省、河北省、上海市、新疆和陕西省。其中,山东原油加工量为13429.3万吨,排名第一;排名前三的省市产量占总产量的46.02%,前五省市原油加工量产量占总产量的59.9%,前十省市原油加工量产量占总产量的75.7%。3、据国家统计局公布的数据显示,2015年标准实施时,合成树脂产量为7808万吨, 2016年以后,我国合成树脂生产整体保持着较快的增长速度阶段,2020年合成树脂产量突破1亿吨。2020-2022合成树脂产量分别为10355万吨、10765万吨、11366.9万吨, 同比增长分别为6%、4%、5.6%。
  • 独家代理瑞典OPSIS公司食品分析设备
    独家代理瑞典OPSIS公司食品分析设备 瑞典Opsis公司与嘉盛(香港)科技有限公司进行了互访,双方就中国的市场达成一致协议:自2016年开始,嘉盛(香港)科技有限公司正式成为其产品在中国的总代理,全面负责其产品的销售和售后服务:010-66155031/32/33。瑞典OPSIS公司是世界知名的分析仪器制造厂商,公司成立于1985年,具有两条独立的产品线:气体监测和湿化学分析,后者被称为OPSIS LiquidLINE。在积累了超过30年的分析仪器研发和生产经验后,公司致力于提高仪器品质、信息交换和诸如食品、农产品、饲料和液体样品分析的标准,瑞典OPSIS公司早在1994年就通过了 ISO 17025认证,具有被评定为“3A”等级的实验室。OPSIS LiquidLINE 于1996年通过了ISO 9001质量管理体系认证;然后于2000年通过了ISO 14001环境管理体系认证。瑞典OPSIS公司的LiquidLINE分部专注于湿化学分析仪器领域,公司拥有北欧最专业的经验丰富的食品湿化学分析仪器专家团队;每类产品有多种型号可供选择,以满足不同样品、不同领域的使用要求;具有技术先进、性能成熟、操作方便、易于维修等特点。为了制造出世界上品质最优秀的分析仪器,OPSIS LiquidLINE 将研发实验室和生产工厂集中在瑞典总部,以保持两者的积极互动。公司的目标是为用户提供最先进、可靠和高效的湿化学实验室分析解决方案,目前可以提供给用户的仪器具有无线通讯功能、世界领先的分析精度和创新的样品托盘批次处理工具等。公司非常注重研发,以最先进的技术来转化研究的成果, 来最大的满足市场需要;其湿化学分析设备一直处于世界领先水平。公司利用最尖端的工具和技术,所有的材料和零件的参数和规格都要经过系统的检测。公司的技术部用最先进的信息系统发展和控制所有的图纸、方案、技术和操作规程、测试流程和生产过程检测。所有产品在生产过程中都受到严格的质量控制,并在出厂前进行严格的测试。设施完善的培训室用于用户和代理商可以参观我们工厂使用,可以进行产品介绍、公司介绍、商务会议、技术和商务培训等。瑞典OPSIS的LiquidLINE产品为:1、全自动凯氏定氮仪(包括消化炉、半自动/全自动凯氏蒸馏仪和高级废气吸收装置)2、全自动脂肪测定仪(索氏抽提仪或者热溶剂萃取仪,包括酸水解装置和溶剂抽提装置)3、其他湿化学分析仪器4、在线食品分析仪器
  • 成都生物所发明判断大豆异黄酮糖苷水解的方法
    近日,中科院成都生物所发明的“一种判断大豆异黄酮糖苷是否水解或水解程度的方法”获得国家发明专利授权。   大豆异黄酮是大豆等豆科植物生长过程中形成的一类次生代谢产物,具有多种生理功能。它不仅参与调节植物的生长活动,还能对人体发挥有益的生理调节作用。天然大豆异黄酮苷类的分子结构并不是活性发挥的最佳状态,普遍认为苷元才是活性发挥的最佳状态。然而,在大豆中,大豆异黄酮主要是以染料木黄酮、大豆苷和黄豆苷糖苷形式存在的,它们对应的苷元染料木素、大豆苷元和黄豆苷元的含量很少。为了得到生物活性高的大豆异黄酮苷元,在工业上大多以大豆豆饼或豆粕为底物,采用酸水解或微生物转化的方法将糖苷转化为苷元。此前,判断大豆异黄酮糖苷是否水解及水解程度,通常是通过水解前后苷元含量的变化来判断的,此方法过程相对比较繁琐。   成都生物所发明的该种方法,通过商品豆粕经乙醇提取、提取液抽滤除杂质、减压蒸馏浓缩至无乙醇得水相、以水相为底物进行水解、用乙酸乙酯从水解液中萃取大豆异黄酮苷元、萃取液减压浓缩、浓缩相进行薄层层析、在紫外灯下观察层析结果,以此判断大豆异黄酮糖苷是否水解或水解的程度。该方法具有快速、准确等优点,具有良好的应用前景。
  • 日立LA8080蛋白水解法&生理体液法分析氨基酸
    氨基酸是组成生物体中蛋白质的基本单元,主要以下列两种形式存在:一种是以结合态存在于肽和蛋白质中,被称为标准氨基酸,这类氨基酸约有20种,分析这类氨基酸的方法被称为“蛋白水解法(标准分析法)”;另一种是以游离态存在于生理体液(如血浆,尿液等)、食品(如肉制品,饮料等)中,这些氨基酸包含氨基酸代谢物和前体,被称为游离氨基酸,因其直接影响食品的口感与风味,近年来备受关注。游离氨基酸比标准氨基酸的种类丰富,至今已知主要有约40种,分析这类氨基酸的方法被称为“生理体液法”。高效液相色谱柱后衍生法是氨基酸分析最常用的方法,一般通过色谱柱分离后,进行柱后衍生再测定。茚三酮柱后衍生法是通过离子交换色谱柱分离氨基酸后,与茚三酮试剂混合发生化学反应(显色),可在可见光区进行检测,此方法可靠性与稳定性高,被广泛应用。下面使用日立全自动氨基酸分析仪LA8080,分别采用蛋白水解法&生理体液法测定样品中的标准氨基酸和多种游离氨基酸。缓冲液和衍生试剂可使用市售配件,适用于品质管理等常规分析。蛋白水解(PH)法日立全自动氨基酸分析仪LA8080采用长寿命高理论塔板数3 μm分离柱,可在30 min内实现标准氨基酸分离度全部大于1.2分离。并且通过调整洗脱程序,还可把分析时间从30 min更进一步缩短到24 min,实现氨基酸的超高速分析。生理体液(PF)法日立全自动氨基酸分析仪LA8080采用第三代衍生技术—TDE3,填充高效热传导材料,提高传热效率,检出限进一步提高到2.5 pmol,使用寿命是第二代的2.5倍。从上述结果中可见,对于复杂的生理体液,LA8080仍然能够实现高灵敏度和分离度的检测。日立全自动氨基酸分析仪LA8080采用日立独家的长寿命高灵敏度的第三代TDE3尖端衍生技术,以及长寿命高理论塔板数3 μm分离柱使氨基酸的分析进入超高速全自动分析的时代。
  • 莱伯泰科微波蛋白水解技术助力标准开发,开启氨基酸分析新时代!
    ‍‍‍‍‍‍‍‍‍‍在最新发布的标准方法 《NY/T3870-2021硒蛋白中硒代氨基酸的测定》中,采用了ETHOS UP微波蛋白质水解系统,HPLC-AFS法检测硒蛋白中硒代氨基酸。‍‍ETHOS UP微波蛋白质水解系统的使用,大大提高了蛋白质的水解效率,彻底改变了氨基酸分析中样品前处理的现状,开启了氨基酸分析的新时代!‍‍‍‍‍‍ 在氨基酸的测定中,提取水解技术一直是制约整个分析过程的关键环节。传统酸解法需要在烘箱中110℃水解22小时,还需要手动充氮气创造惰性环境,整个流程不但非常耗时、操作繁琐,而且研究发现,在长时间的盐酸水解过程中,多种不稳定的氨基酸,如硒代氨基酸、含硫氨基酸、色氨酸等,几乎完全被破坏。而ETHOS UP微波蛋白质水解系统的应用,将传统需要22个小时的蛋白质水解过程缩短到20-40分钟,避免了传统酸水解法水解时间长、硒代氨基酸在水解过程中不稳定的技术难题。全自动化抽真空通氮气,避免了繁琐的手动操作过程,让实验人员进一步领略到了自动化设备带来的便利。‍‍‍‍‍‍微波蛋白质水解系统‍‍‍‍ETHOS UP微波蛋白质水解系统技术特点☆ 高效微波加热方式,将传统需要22个小时的蛋白质水解过程缩短到20-40分钟,大幅提高工作效率;☆ 全自动化抽真空通氮气,确保氨基酸不会发生氧化降解,避免了繁琐的手动操作过程;☆ 高温高压单反应水解腔,一个水解腔可同时处理25个样品,确保完全一致的反应温度和压力,与传统的处理方式相比,保证样品处理的一致性;☆ 高精度的数字温度控制程序,直接控制反应液体温度,整个水解过程反应条件精确控制,标准化自动化的工作程序。改变了传统烘箱水解不能精确反应和控制样品液体温度的缺陷;☆ 样品可直接放在 HPLC样品瓶中水解,无需转移。
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T.,Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 国家药监局:脑蛋白水解物注射液药品标准不完善
    据国家药监局网站消息,为确保公众用药安全,国家药监局日前通知要求各地进一步加强对脑蛋白水解物注射液的监督检查。   通知称,在全国开展注射剂类药品生产工艺和处方核查工作中,发现脑蛋白水解物注射液品种在药品标准和执行工艺处方等方面存在着较为突出的问题,主要是企业选用猪脑原料的质量标准不完善 企业之间现行生产工艺差别较大 猪脑水解所用的蛋白酶种类、酶量及水解温度、时间等不一致,甚至有补加氨基酸的行为。针对上述突出问题,部分地区已采取了控制措施。   通知指出,一、要充分认识到脑蛋白水解物注射液在产品质量方面存在的安全风险,各地应在注射剂类药品生产工艺和处方核查工作的基础上,积极组织力量认真做好监督检查工作。要建议辖区内脑蛋白水解物注射液生产企业主动停止该品种的生产,并要求脑蛋白水解物注射液生产企业按相关技术要求,组织开展改进工艺和质量控制方法的研究工作,在相关工艺改进和质量标准未经批准前,暂不宜恢复生产。   二、对于生产企业认为其脑蛋白水解物注射液生产工艺合理、质量可控,继续进行生产的,所在地省级食品药品监督管理局应对其生产全过程予以跟踪检查,并对监督生产的产品进行现场抽样,由省级药品检验所检验。   凡生产企业存在未按批准变更生产处方工艺生产,或在制成品中补加氨基酸等违法违规行为,以及现场抽样检验不合格的,应依法予以严厉查处。   三、国家局将组织有关专家开展脑蛋白水解物注射液有效性、安全性评价工作,组织对脑蛋白水解物注射液生产工艺的改进、质量控制标准的提高工作,并在此基础上提出监管措施和改进意见。
  • 合肥研究院疏水界面表面增强拉曼光谱三维热点研究获进展
    近期,中国科学院合肥物质科学研究院智能机械研究所刘锦淮课题组研究员杨良保等人成功证实了滴于疏水界面的银溶胶在蒸发过程中能产生更多的三维热点,具有超高的表面增强拉曼散射效应。该研究成果对推动表面增强拉曼散射技术在实际检测中应用具有重要的意义。相关成果发表在英国皇家化学会Nanoscale 杂志上(Nanoscale,2015,7,6619-6626)。  近年来,SERS技术由于可以进行无损、高灵敏的指纹识别检测被广泛应用于各大基础研究领域。然而传统意义上SERS 基底的热点是以零维点状、一维线状或二维面状的空间分布构型存在的,这与SERS装置中的激光共焦量三维空间不匹配,如何解决这一矛盾以提高SERS检测的灵敏性仍然是一个很大的挑战。  针对以上问题,刘洪林等研究人员发现一滴纳米粒子溶胶随着溶剂的蒸发会形成一种独特的银纳米粒子三维结构。在这种三维结构中,粒子间距均一,且粒子间的作用以及平面上的静电吸附均会减弱,有助于产生大量的三维热点,增强SERS效应。研究人员还发现疏水界面上产生的三维热点比亲水界面拥有更高的灵敏性和更好的稳定性,并通过原位同步辐射小角X射线衍射(SR-SAXS)对这一不同检测结果的内在机理进行探索解释,有助于进一步推动表面增强拉曼散射技术成为一种实用的分析技术手段。  该研究工作得到了国家重大科学仪器设备开发专项任务、国家重大科学研究计划纳米专项和国家自然科学基金等项目的支持。  文章链接界面三维热点形成原理图
  • 岛津发布独特柱后衍生技术测定乳品中“皮革水解蛋白”
    &ldquo 三聚氰胺毒奶&rdquo 的阴影尚未从消费者的心中散去,&ldquo 皮革毒奶&rdquo 又开始威胁消费者的生命安全。在三聚氰胺成为严打对象后,又有不法企业为提高乳制品中的蛋白质含量,在乳制品中混入皮革水解蛋白,制造出&ldquo 皮革毒奶&rdquo 。 皮革水解蛋白就是利用已经废弃的皮革制品或动物毛发,水解之后制成粉状,因其氨基酸或者说蛋白含量较高,故人们称之为&ldquo 皮革水解蛋白粉&rdquo 。 &ldquo 皮革水解蛋白粉&rdquo 中含有的有毒物质被人体吸收、积累,可导致中毒,使关节疏松肿大,甚至造成儿童死亡。 为此,中国农业部2月12日下发2011年度生鲜乳制品质量安全监测计划,其中除要检测三聚氰胺外,还要检测&ldquo 皮革水解蛋白&rdquo 和碱类物质。据称,皮革水解蛋白的检测难度比三聚氰胺更大,因为它本来就是一种蛋白质。当前,国内多数参考1978年版《ISO:3496-1978肉与肉制品L(-) - 羟脯氨酸含量测定》使用分光光度法测定乳品。主要检测方法是检查牛奶中是否含有羟脯氨酸,这是动物胶原蛋白中的特有成分,在乳酪蛋白中则没有,所以一旦验出,则可认为含有皮革水解蛋白。 已经在消费者心中树立起&ldquo 食品安全卫士&rdquo 形象的岛津公司,长期关注中国的乳制品安全问题,为中国用户提供了一系列的乳制品检测解决方案。其中,岛津上海分析中心结合岛津独特的氨基酸分析系统和欧洲药典收录的氨基酸分析方法,率先开发出柱后衍生液相色谱分析乳制品中L(-) - 羟脯氨酸的检测方法。 该方法使用岛津氨基酸柱后衍生系统锂型分析柱建立了牛奶制品中24种氨基酸的高效液相色谱柱后衍生分析方法,柱后衍生及样品测定为全自动完成,消除了柱前衍生不同操作人员引入的人为误差,大大简化了样品前处理步骤,节约了时间,是一种可靠快速的检测方法。本方法可以直接用于检测牛奶中24种氨基酸。 岛津公司今后将一如既往地关注中国乳制品安全问题,继续实践&ldquo 为了人类和地球的健康&rdquo 这一公司经营理念。 有关岛津&ldquo 高效液相色谱柱后衍生方法测定乳制品中皮革水解蛋白&rdquo 的详细内容,请参见http://www.instrument.com.cn/netshow/SH100277/down_161189.htm。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 农业部:2010年例行监测未检出皮革水解蛋白
    近日,部分媒体和网站对皮革水解蛋白问题进行了报道。为加强食品安全监管,国家公布了《食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单》,其中三聚氰胺、皮革水解蛋白是禁用物质,也是生鲜乳质量安全监管中必须检测的指标。   近年来,农业部开展了三聚氰胺、皮革水解蛋白等违禁物质的例行监测,2010年抽检生鲜乳样品7406批次,奶站4778批次,运输车2628批次,三聚氰胺全部符合临时管理限量规定,没有检出皮革水解蛋白等违禁添加物质,生鲜乳质量安全状况总体良好。   2011年,农业部将继续实施生鲜乳质量安全监测计划,通过例行监测、飞行抽检、隐患排查等方式,进一步强化生鲜乳质量安全监管,如发现任何违法违规行为,将坚决打击,从重处罚,绝不姑息。
  • 密理博推出中小实验室整体纯水解决方案
    密理博中国推出针对中小型实验室的整体纯水解决方案   密理博公司——全球知名的实验室纯水器供应商于2009年9月8日在上海召开了中国Smart系列全国经销商会议暨Aquelix 新品发布会。在会上,密理博针对中国中小型实验室的纯水应用的特点推出了全新的整体解决方案。   由于中小型实验室对实验室纯水的用量相对较小,实验过程中对纯水的水质有严格的要求,密理博特别推出的中小型实验室纯水解决方案。 其中包含Smart 系列实验室纯水系统 (含 Direct-Q® 3 纯水/超纯水系统, Simplicity® 超纯水系统, RiOs-DI纯水系统, RiOs 3 纯水系统)及Aquelix ® 高纯水系统。该系列产品专为用水量不超过50升/日的中小型实验室用户设计,生产不同级别的实验室纯水和超纯水已满足实验室的各种应用需求。该整体解决方案中应用了Millipore的相关专利技术如Elix技术,集成式纯水柱, 以保证该系列产品产水水质的稳定和可靠。 另外,该系列还有设计紧凑,外形美观大方,安装简单方便,运行维护成本低等特点。   该会议还同期发布了的新型Aquelix® 高纯水系统。 该系统应用了Millipore 著名的Elix专利技术,生产的水质稳定的II级高纯水(电阻率高达15 MΩ∙ cm)。得益于卓越的Elix技术,该系统的维护和运行成本低。人性化的设计,一目了然的水质显示,一键式操作程序,让这款新型的高纯水系统更是吸引了各经销商及用户的眼球, 为蒸馏水或桶装纯水的实验室用户提供了一种经济实惠的选择。   从世界上第一台Milli-Q 超纯水系统面世以来,密理博公司生产的纯水/超纯水系统已经遍布了全球各大小实验室。近40年来的经验,让我们的纯水专家深谙各个不同实验室的各种用水需求,为各个不同实验室设计和生产理想的纯水系统,全面满足用户对纯水水质,用量和分配的不同需求,打消用户的纯水顾虑,让用户能够更加专注于他们的研究和工作。----------------------------------------------------------------------------------------------------------------------   关于密理博:   密理博 (Millipore) 是一家为生物科学研究和生物制药企业提供前沿技术,工具和服务的全球知名的生命科学公司。 作为用户的策略性供应商,我们与用户一起攻克世界挑战人类健康的各个难题。 从科研到产品开发及生产,我们专业的科学技术和不断创新的解决方案帮助世界各地的用户克服各个难题,实现既定目标。密理博是一家 S&P 500 公司,在全球47个国家拥有6,000 多名员工。   20世纪80年代,密理博公司进入中国市场。先后在香港、北京、上海、广州、成都及深圳设立了办事机构,并于2000年4月在上海浦东外高桥保税区建立了密理博(上海)贸易有限公司。 目前,密理博在中国拥有近150名员工,从事应用销售、市场推广、维修服务和技术支持等工作。   更多信息请联系 400-189-1988,或登陆www.millipore.com   ADVANCING LIFE SCIENCE TOGETHERTM   Research. Development. Production.   密理博中国媒体联系人:   李绿芊   市场推广经理 (生物科学部)   密理博中国有限公司   021-38529008   lu_qian_li@millipore.com   Millipore, Celliance, Chemicon, Upstate, Linco and NovAseptic are registered trademarks and the “M” logo, ADVANCING LIFE SCIENCETOGETHER and MicroSafe are trademarks of Millipore Corporation.
  • 深圳市三聚氰胺及皮革水解蛋白检测将常态化
    4月26日,记者从深圳市农业和渔业局制定的专项方案中了解到,我市生鲜乳中三聚氰胺、皮革水解蛋白检测将实现常态化,以确保合格率达到100%。   方案对各项主要工作进行了部署,其中包括,继续开展生鲜乳专项整治行动,加快推进标准化规模养殖,将打击生鲜乳中非法添加三聚氰胺、皮革水解蛋白等添加剂的检测制度做到常态化等 开展农资打假专项治理行动,对所有农资生产经营主体开展拉网式排查,加大农业投入品违法案件查处力度 严厉打击在食用农产品生产中非法添加和滥用食品添加剂的行为,追溯非法食品添加物生产和销售源头等,以保障人民群众身体健康和生命安全。
  • 辽宁省农业农村厅关于《土壤水解性氮测定法》等123项省农业地方标准废止的通告
    按照《中华人民共和国标准化法》《地方标准管理办法》《辽宁省地方标准管理办法》等有关规定,根据省市场监督管理局2024年第17号通告《关于废止等212项辽宁省地方标准的通告》,《土壤水解性氮测定法》(DB21/T 599-1991)等123项省农业地方标准已废止,自2024年6月13日起生效。特此通告。附件:123项省农业地方标准废止清单农产品质量安全监管局2024年7月11日附件123项省农业地方标准废止清单序号标准编号标准名称1DB21/T 599-1991土壤水解性氮测定法2DB21/T 606-1991土壤碳酸盐测定法3DB21/T 607-1991土壤盐分总量测定法—重量法4DB21/T 608-1991土壤可溶性盐分中碳酸根、重碳酸根离子测定法—双指示剂滴定法5DB21/T 609-1991土壤可溶性盐分中氯离子测定法—磷酸银滴定法6DB21/T 610-1991土壤可溶性盐分中硫酸根离子测定法—EDTA容量法7DB21/T 611-1991土壤可溶性盐分中钙、镁离子测定法—原子吸收分光光度法8DB21/T 612-1991土壤可溶性盐分中钾、钠离子测定法—火焰光度法9DB21/T 613-1991土壤全铜、锌、铁、锰测定法10DB21/T 616-1991植株全氮测定法11DB21/T 617-1991植株全磷测定法—钒钼黄比色法12DB21/T 618-1991植株全钾测定法—火焰光度法13DB21/T 619-1991植株钙、镁测定法14DB21/T 620-1991植株铜、锌、铁、锰测定法15DB21/T 1495-2007彭泽鲫鱼苗鱼种16DB21/T 1496-2007黄颡鱼鱼苗鱼种17DB21/T 1497-2007中华绒螯蟹苗种18DB21/T 1498-2007虹鳟鱼鱼苗鱼种19DB21/T 1499-2007德国镜鲤鱼鱼种20DB21/T 1500-2007刺参苗种21DB21/T 1501-2007菲律宾蛤仔22DB21/T 1502-2007南美白对虾苗种23DB21/T 1503-2007牙鲆苗种24DB21/T 1504-2007虾夷扇贝苗种25DB21/T 1505-2007海蜇苗种26DB21/T 1698-2008辽宁绒山羊鉴定方法27DB21/T 1730-2009北虫草菌种生产技术规程28DB21/T 1749.1-2009黄瓜绿斑驳花叶病毒监测技术规程29DB21/T 1749.2-2009黄瓜绿斑驳花叶病毒防控技术规程30DB21/T 1749.3-2009黄瓜绿斑驳花叶病毒检验检测技术规程31DB21/T 1840-2010蝴蝶兰温室栽培技术规程32DB21/T 1858-2010农产品质量安全 光棘球海胆 苗种33DB21/T 1861.4-2010水产生物种质检验技术规程 简单重复序列扩增法34DB21/T 1862-2010农产品质量安全 缢蛏增养殖技术规范 苗种35DB21/T 1958-2012水产动物 DNA鉴定线粒体COI基因序列法36DB21/T 1960-2012辽宁省人工鱼礁建设技术指南37DB21/T 2048-2012饲料中粗蛋白、粗脂肪、粗纤维、水分、钙、总磷、粗灰分、水溶性氯化物、氨基酸的测定 近红外光谱法38DB21/T 2054-2012玉米品种田间鉴定技术规程39DB21/T 2055-2012花生种子生产技术规程40DB21/T 2089-2013动物电子标识技术规范41DB21/T 2106-2013玉米种子纯度SSR分子标记鉴定方法42DB21/T 2144-2013毛蚶苗种43DB21/T 2163-2013水稻工厂化育秧技术规程44DB21/T 2212-2013硬壳蛤 苗种45DB21/T 2261-2014茶树菇栽培技术规程46DB21/T 2289.1-2014海洋微藻成分分析 第1部分:中性脂的测定47DB21/T 2289.9-2014海洋微藻成分分析 第9部分:灰分的测定48DB21/T 2290-2014唇鱼苗鱼种49DB21/T 2305-2014温室大棚输送器技术条件50DB21/T 2325-2014猪传染性胃肠炎病毒RT-PCR检测方法51DB21/T 2341-2014马铃薯种薯(种苗)病毒多重RT-PCR检测技术规程52DB21/T 2395-2015稻瘟病菌无毒基因检测 PCR法53DB21/T 2396-2015水稻品种抗稻瘟病检测 PCR法54DB21/T 2410-2015养殖水体中氯霉素残留量的测定 高效液相色谱串联度谱法55DB21/T 2416-2015梨高接换种生产规程56DB21/T 2451-2015玉米品种真实性鉴定 SSR分子检测方法57DB21/T 2466-2015禽流感病毒免疫层析(胶体金)检测方法58DB21/T 2469-2015H1N1亚型猪流感病毒荧光RT-PCR检测方法59DB21/T 2493-2015黄腐酸水溶肥料60DB21/T 2496-2015花生储藏技术规程61DB21/T 2501-2015大白菜贮藏保鲜技术规程62DB21/T 2510-2015苹果高接换种技术规程63DB21/T 2526-2015水稻育秧硬盘64DB21/T 2548-2015种猪氟烷基因PCR-RFLP检测技术规程65DB21/T 2549-2015仔猪乳糖酶基因检测技术规程66DB21/T 1517-2016玉米果穗剥皮机质量评价技术规范67DB21/T 2289.3-2016海洋微藻成分分析 第3部分:酸值的测定68DB21/T 2289.4-2016海洋微藻成分分析 第4部分:脂肪酸组成成分的测定69DB21/T 2592.2-2016鸡传染性疾病检测方法 第2部分:鸡传染性支气管炎病毒荧光RT-PCR诊断技术70DB21/T 2598-2016褐藻酸寡糖含量的检测71DB21/T 2633-2016滑菇熟料袋式栽培技术规程72DB21/T 2637-2016草莓贮运技术规程73DB21/T 2645-2016大蒜露地生产技术规程74DB21/T 2648-2016水稻育苗基质75DB21/T 2743-2017动物源细菌抗菌药物敏感性检测76DB21/T 2786-2017生物质固体成型燃料技术条件77DB21/T 2797-2017矮化中间砧苹果密植栽培技术规程78DB21/T 2826-2017O型口蹄疫病毒RT-LAMP检测方法79DB21/T 2870-2017大肠杆菌超广谱β-内酰胺酶基因型PCR检测方法80DB21/T 2871-2017口蹄疫病毒RT-LAMP检测方法81DB21/T 2872-2017细菌常见主要耐药基因检测技术82DB21/T 2892-2017液固扩繁香菇栽培种83DB21/T 1646-2018沿江牛84DB21/T 2922-2018冲压式棒状生物质燃料成型机质量评价技术规范85DB21/T 2923-2018田园管理机质量评价技术规范86DB21/T 2948-2018鹿茸煮炸技术操作规程87DB21/T 2985.1-2018农村土地经营权流转交易服务 第1部分:术语和分类88DB21/T 2985.2-2018农村土地经营权流转交易服务 第2部分:基本要求89DB21/T 2985.3-2018农村土地经营权流转交易服务 第3部分:市场建设和管理规范90DB21/T 3000-2018蛋鸡无抗饲料营养标准及加工工艺技术规范 调整氨基酸比例法91DB21/T 3005-2018牛冷冻精液质量检测技术规程92DB21/T 3043-2018苹果芽变鉴定规范93DB21/T 3052-2018口蹄疫病毒A型抗体快速检测方法 镧系荧光免疫层析法94DB21/T 3053-2018口蹄疫病毒O型抗体快速检测方法 镧系荧光免疫层析法95DB21/T 3054-2018犬巴贝斯虫荧光定量PCR检测方法96DB21/T 3059-2018饲料中铜、锌、铁、锰、钙、磷、钠、镁、铅、铬、镉和砷含量的测定 电感耦合等离子体发射光谱法97DB21/T 3060-2018饲料中香兰素、乙基香兰素、肉桂醛、桃醛、 乙酸异戊酯 、γ—壬内酯、肉桂酸甲酯、 乙基麦芽酚、大茴香脑的含量测定 气相色谱法98DB21/T 3061-2018饲用微生物制剂中粪肠球菌的检测方法99DB21/T 3093-2018犬冠状病毒病诊断技术规范100DB21/T 3095-2018犬非结核细菌性肺炎诊断技术规范101DB21/T 3119-2019浮游植物光合作用活性测定 叶绿素荧光法102DB21/T 3120-2019水产动物物种分子鉴定 COI、16S rRNA分子标记法103DB21/T 3124-2019萝卜杂交种子生产技术规程104DB21/T 3136-2019海洋渔业资源增殖放流技术规范105DB21/T 3222-2020高粱耐盐碱鉴定技术规程106DB21/T 3239-2020腐植酸含量快速检测技术规范107DB21/T 3241-2020转基因玉米成分检测操作技术规范108DB21/T 3253-2020小反刍兽疫病毒实时荧光RT-PCR检测方法109DB21/T 3256-2020非洲猪瘟病毒等温扩增快速检测技术规范110DB21/T 3257-2020猪繁殖与呼吸综合征病毒ELISA抗体检测方法111DB21/T 3273-2020猪伪狂犬病毒野毒株与gE基因缺失疫苗株TaqMan实时荧光定量PCR鉴别方法112DB21/T 3278-2020饲料添加剂凝结芽孢杆菌产品检测113DB21/T 3304-2020畜禽粪便中西玛津残留量的测定114DB21/T 3305-2020土壤中毒杀芬残留量的测定115DB21/T 3321-2020生物炭分级与检测技术规范116DB21/T 3324-2020玉米秸秆饲料熟化机 技术条件117DB21/T 3801-2023黄条鰤 亲鱼与苗种118DB21/T 1828-2010玉米 半湿润区高产技术规程119DB21/T 2221-2014设施辣椒主要病虫害防控技术规程120DB21/T 2222-2014设施茄子主要病虫害防控技术规程121DB21/T 1028-1999三疣梭子蟹人工育苗技术操作规程122DB21/T 2793-2017水稻抗稻曲病鉴定技术规程123DB21/T 3074-2018花生抗网斑病鉴定技术规程
  • 上海交大:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。官网:https://www.bmftec.cn/links/10
  • 上海交大:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c05243。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。官网:https://www.bmftec.cn/links/10
  • 上海交大:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c05243。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。
  • 纯水界新秀 默克MilliQ新品上市
    p style=" text-align: justify text-indent: 2em " 2019年1月15日,默克在上海博雅酒店举行了“全新Milli-Q 智能纯水/超纯水解决方案—Milli-Q& reg IQ 7003/7005”新品上市发布会,小编带大家看看Milli-Q的全新系列产品。 /p p style=" text-align: justify "   分析用水、实验室器皿用水亦或是生物用水,我们在实验过程中总会遇到一些问题!且看Milli-Q将如何成为得力助手! /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201902/uepic/fa8ffece-13bc-47b9-9538-a02406aa061f.jpg" title=" 1.jpg" alt=" 1.jpg" style=" text-align: center width: 445px height: 146px " width=" 445" height=" 146" / /p p style=" text-align: justify "    span style=" color: rgb(112, 48, 160) " strong 亮点1 /strong /span /p p style=" text-align: justify " strong   自来水供水,制纯水及超纯水的一体化系统 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/d2c8741d-0017-481e-b989-f262f48c4b8b.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 492" height=" 237" style=" width: 492px height: 237px " / /p p style=" text-align: justify " strong /strong br/ /p p style=" text-align: justify "   全一体化的纯水/超纯水实验室用水解决方案,可直接从自来水水源提供优质的 I 级水和 II 级水。 /p p style=" text-align: justify "    span style=" color: rgb(112, 48, 160) " strong 亮点2 /strong /span /p p style=" text-align: justify " strong   E-POD& reg 和Q-POD& reg 取水手臂,符合人体工程学,屏幕显示更轻松直观 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/df369ade-c031-4f8a-ad92-0b07159dde43.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 233" height=" 355" style=" width: 233px height: 355px " / /p p style=" text-align: justify " strong /strong br/ /p p style=" text-align: justify "   取水操作更灵活了 /p p style=" text-align: justify "   ▼ /p p style=" text-align: justify "   取水速度自定义:从逐滴取水到最高2升/分钟 /p p style=" text-align: justify "   解放双手更方便:旋转取水手轮或者脚踏开关取水 /p p style=" text-align: justify "   取水监控更随心:持续关注关键的水质参数 /p p style=" text-align: justify "   定制水质更随意:从我们一系列的专用POD-Pak中选择适合您特定需求的水质。 /p p style=" text-align: center " strong 显示与数据获取更具科技感 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/2a09a8b6-614d-4cea-bd5b-8362de3cec18.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-indent: 2em " span style=" text-align: justify " 像手机屏幕的触摸屏:类似智能手机的触摸屏使操作直观简单,即使戴着手套也可操作! /span /p p style=" text-align: justify "   自定义报告:轻松创建单独的取水报告,确定特定时间范围内的平均水质,对于共享资源甚至可以分摊成本。 /p p style=" text-align: justify "   数据检索、导出更智能:直接在屏幕上查看数据,或通过每个POD上的USB端口导出数据,您甚至可以扫描报告的QR码,轻松地给自己发送PDF文件。 /p p style=" text-align: justify "   跟用户手册说再见:屏幕上图文并茂的指南可指导您完成耗材的更换,并帮助您管理提示和报警。 /p p style=" text-align: justify "    span style=" color: rgb(112, 48, 160) " strong 亮点3 /strong /span /p p style=" text-align: justify " strong   创新技术为实验数据保驾护航 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/6adcc060-6f68-4f60-9ede-b3318f7b43a7.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 470" height=" 249" style=" width: 470px height: 249px " / /p p style=" text-align: justify "    strong 新技术: /strong /p p style=" text-align: justify "   获得专利的无汞ech2o& reg UV灯 /p p style=" text-align: justify "   高效IPAK Gard& reg 和 IPAK Quanta& reg 纯化柱 /p p style=" text-align: justify "   高度集成的水箱空气过滤器 /p p style=" text-align: justify "    strong 专利纯化介质: /strong /p p style=" text-align: justify "   新型IPAK Gard& reg 预处理柱可高效去除自来水中的胶体、微粒和游离氯。 /p p style=" text-align: justify "   IPAK Quanta& reg 精滤柱使离子含量低至痕量水平。 /p p style=" text-align: justify "   IQnano& reg 树脂的小珠粒,更小粒径显著提高树脂的动力学特性。 /p p style=" text-align: justify "    span style=" color: rgb(112, 48, 160) " strong 亮点4 /strong /span /p p style=" text-align: justify " strong   让实验室空间更紧凑美观,取水更便利 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/f9757680-eff7-4641-a264-c36933652df9.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 452" height=" 316" style=" width: 452px height: 316px " / /p p style=" text-align: justify "   安装位置更节省:您可以将纯水机安装在墙上、工作台下、远处的实验室柜中?? /p p style=" text-align: justify "   只有体形纤细且连接整齐的E-POD& reg 和Q-POD& reg 取水手臂留在工作台上。 /p p style=" text-align: justify "   距离再远也可随时随地取水:一个纯化装置可配置多达4个POD取水手臂,POD之间的最远距离长达5米。即使是在另一个实验室的科学家,也可以取用纯水。 /p p style=" text-align: justify "    span style=" color: rgb(112, 48, 160) " strong 亮点5 /strong /span /p p style=" text-align: justify " strong   轻松的数据可追溯性和无纸化数据管理 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/c8d255da-1f35-4a4f-b53e-692897cd674c.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: justify "    strong 以下功能帮您更好管理实验室数据: /strong /p p style=" text-align: justify "   取水历史记录 /p p style=" text-align: justify "   每日质量测量报告 /p p style=" text-align: justify "   完整的系统数据档案 /p p style=" text-align: justify "   耗材数据可追溯 /p p style=" text-align: justify "    span style=" color: rgb(112, 48, 160) " strong 亮点6 /strong /span /p p style=" text-align: justify " strong   保养维护更轻松 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/5e1cd2ba-7863-4a2c-a7ea-88be6758d6c4.jpg" title=" 8.jpg" alt=" 8.jpg" width=" 458" height=" 270" style=" width: 458px height: 270px " / /p p style=" text-align: justify " strong /strong br/ /p p style=" text-align: justify "   耗材需要更换时:您将收到报警,系统会提示并指导您操作,简单地拧上、锁定即可。 /p p style=" text-align: justify "   遇到技术问题时:简单的问题会有详细指导信息,严重的问题系统会通知您并自动停止。 /p p style=" text-align: justify "    span style=" color: rgb(112, 48, 160) " strong 亮点7 /strong /span /p p style=" text-align: justify " strong   通过Milli-Q& reg 服务获得更专业的支持 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/9e99b8c2-f6fd-4772-a6b8-40430fb2bc77.jpg" title=" 9.jpg" alt=" 9.jpg" width=" 422" height=" 414" style=" width: 422px height: 414px " / /p p style=" text-align: justify " strong /strong br/ /p p style=" text-align: justify "   有资质的现场服务工程师:遵循严格的标准程序,只使用原装零件,并提供正式服务报告 /p p style=" text-align: justify "   资质认证专业服务:提供具有IQ、OQ、MP(维护程序)和PQ文件示例的资质认证工作簿以及合规性、质量和校准等证书,以方便用户满足GLP和cGMP合规性要求。 /p p style=" text-align: justify "   span style=" color: rgb(112, 48, 160) "   strong 亮点8 /strong /span /p p style=" text-align: justify " strong   更具环保和可持续性 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/82ccb554-29a7-44aa-8ce4-3c40cab631bb.jpg" title=" 10.jpg" alt=" 10.jpg" width=" 345" height=" 329" style=" width: 345px height: 329px " / /p p style=" text-align: justify " strong /strong br/ /p p style=" text-align: justify "   strong  绿色环保: /strong /p p style=" text-align: justify "   自来水直接供水的完全无汞超纯水系统 /p p style=" text-align: justify "   减少了生产时的塑料需求,包装、运输材料以及废物水平,节省了宝贵的实验室空间! /p p style=" text-align: justify "    strong 节省用水和能源: /strong /p p style=" text-align: justify "   全新EDI冲洗,提高水质的同时,大大降低用水量 /p p style=" text-align: justify "   独特的实验室关闭模式可让纯水机只需很少量的水和电力消耗即可保持水质。 /p
  • 于爱民:快速筛查和检测非蛋白氮/水解蛋白及地沟油技术、难点和展望(高德江博士代)
    仪器信息网讯 2012年6月5日,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会主办,北京雄鹰国际展览公司承办的2012中国食品与农产品质量安全检测技术应用国际论坛暨展览会(CFAS 2012)在北京国际会议中心隆重开幕。本届论坛特别邀请到了多位食品、农产品监管部门的领导和食品质检领域的著名学者做主题报告。   如下为吉林大学化学院于爱民教授报告(高德江博士代)的精彩内容: 吉林大学化学院高德江博士 报告题目:快速筛查和检测非蛋白氮/水解蛋白及地沟油技术、难点和展望   在报告中,高德江博士从乳制品质量安全标准讲起,介绍了蛋白质的一系列检测方法及其特点。国家标准的方法主要有凯氏定氮法、分光光度法、燃烧法等。此外还有行业标准及ISO标准、AOAO标准等。基于上述方法标准,各仪器厂商都相继开展了一系列仪器的研发:凯氏定氮仪、多功能近红外分析仪、全自动杜马斯燃烧法定氮仪、真蛋白质快速检测仪等。并介绍了蛋白质快速检测仪的应用和影响因素。   随后,高德江博士重点介绍了地沟油的相关检测手段和方法。高德江博士介绍到,地沟油可以分为狭义地沟油、新型地沟油和煎炸地沟油,暂无确切的定义,也就无相应的特性指标,更无准确的检测方法,最多也只是筛查方法。地沟油的相关筛查指标主要有酸价、电导率、胆固醇、多环芳烃、特定基因组成、脂肪酸分布、表面活性剂、挥发性成分、生物胺等,另外还有纳米增强拉曼光谱法、微量元素分析法、时域太赫兹波谱技术、核磁技术等检测方法。   相对而言,仪器法比快速法的识别率高,但是,快速法具有现场快速识别的优势,二者可以互为补充。不过,地沟油成分复杂、差异性大、给检测带来很大的不确定性。因此,这些检测方法还需要进一步验证和完善。   最后,高德江博士还介绍了国外对“地沟油”的处理方法,其中,日本要求餐饮行业的废弃食用油必须全部回收,并以较高价格卖给日本政府,而日本政府则将这些地沟油提炼后用作垃圾车的燃料。加拿大也通过成熟产业链让地沟油变废为宝。希望这些国家对于地沟油的举措能给我国以借鉴。
  • 上海交大《ACS Applied Materials & Interfaces》:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c05243。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。
  • 新型肺炎冠状病毒3CL水解酶高分辨率晶体结构图
    p style=" margin: 10px 0px padding: 0px font-weight: 400 font-size: 22px color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, & quot Helvetica Neue& quot , & quot PingFang SC& quot , & quot Hiragino Sans GB& quot , & quot Microsoft YaHei UI& quot , & quot Microsoft YaHei& quot , Arial, sans-serif letter-spacing: 0.544px white-space: normal background-color: rgb(255, 255, 255) text-indent: 2em line-height: 1.5em " span style=" font-family: sans-serif font-size: 16px " 继1月25日上海科技大学免疫化学研究所和中国科学院上海药物研究所抗2019-nCoV冠状病毒感染联合应急攻关团队公布30个可能的抗2019-nCoV冠状病毒老药和中药后,1月26日,联合攻关团队及时公布由上海科技大学饶子和/杨海涛课题组测定的2019-nCoV冠状病毒3CL水解酶(Mpro)的高分率晶体结构,以便有更多的科技工作者、特别是药物研发的科技人员使用,晶体结构的坐标可到PDB蛋白质结构数据库(Protein Data Bank, PDB)下载(PDB ID: 6LU7)。 /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 饶子和院士和蒋华良院士强调,大家一起努力,研发出更多更好的抗新型肺炎药物。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 508px height: 366px " src=" https://img1.17img.cn/17img/images/202001/uepic/19976143-3de6-4811-8270-f618f3c023e4.jpg" title=" 11.jpg" alt=" 11.jpg" width=" 508" height=" 366" / /p p br/ /p
  • 一位“80后”老人的自述,一辈子只做重金属分析
    罗方若 简介:罗方若 化学分析高级工程师,现任APL奥普乐公司首席顾问、创始团队核心。1956年武汉地质学校(中国地质大学前身)首批化学分析专业毕业,先后从事传统化学分析、极谱分析、原子吸收光谱分析。1988年带领研究生作“微波辅助样品消解制备”课题,并自行设计制作了具有自动安全装置的密封增压的微波消解罐,研究其在原子光谱分析中的应用;1993年,FR-1微波消解罐获得国家专利。这是我国在微波消解仪领域获得的首个专利技术、开创了微波消解溶样方法。罗方若先生自述:参加工作后不久的1957年,我认为所从事的化学分析以后的发展方向应该是仪器分析,而国外的分析仪器当时已初露端倪。因此我决定开始自学英语,先用了1年多的业余时间学完高中英语课本,然后转入专业英文书籍的学习,以便于阅读国外的专业英文书籍、杂志。现代分析仪器肯定与电子技术有关,我从1960年开始学习电子技术,自己动手组装直流电子管收音机 然后是交流电子管,直到组装成当时最先进的有电眼显示的七管交流收音机。1961年我回到成都开始从事极谱分析,那是当时世界上最先进的微量金属元素定量分析仪器之一,图书室又有国内外的专业分析化学杂志,这对我来说正中下怀,如鱼得水。这段经历为日后微波消解仪的开发做好的技术储备。70年代中期,开始学习原子吸收光谱英文资料并从接触外国进口的仪器。80年代初我已经专门从事原子吸收光谱分析,走在了该分析技术的前沿。然而,在进行痕量金属元素测定时,觉得制备样品溶液的现有方法已经不能适应仪器的性能。1984年,国外出现微波辅助样品消解的理论,随后出现了相应的微波消解装置,国内也开始起步,但是还没有能力制造微波消解仪。这时(1988年),我带领研究生,对最新的“微波辅助样品制备”的应用进行研究。经过刻苦努力,自主研发出其中的核心部件——有自动安全装置的密封增压的样品消解罐,研究其在原子光谱分析中的具体应用,随后即发表研究成果,推广实际应用。1993年,有自动安全装置的密封增压的样品消解罐申请了国家专利,并将产品推向全国;并向中国化学会建议在成都举行“全国首届原子光谱分析中微波制样技术研讨会”,会议于1993年秋10月如期举行。2001---2003年 本人受邀参加国家科技部主办的、先后在成都、南宁、昆明、西安等地的“西南、西北地区分析测试新技术培训”学习班授课,推广微波制样技术的研究和应用。在2003年出版的我国第一部“分析测试中的现代微波制样技术”一书中,本人编写了其中的“微波溶样”理论及“微波制样设备”两个章节。先后在国内外专业技术杂志单独或共同共发表了学术论文近30篇。1992-2014年 在Perkin-Elmer公司担任“原子吸收光谱和微波样品制备”首席技高级工程师,解决原子光谱在使用和样品前处理中的各类难题,为广大用户服务。2006年-今 奥普乐科技集团(成都)有限公司担任首席科学家、从事微波消解仪器开发、设计和微波样品制备方法开发。解决原子光谱、ICP前处理难题,提供重金属分析效率。现在,微波制样技术已经十分成熟,微波消解仪已经是各部门的分析测试实验室的常用仪器, 特别是对于涉及食品安全、环境保护、医药卫生等部门的样品中微量、痕量和超痕量元素的测定,是必不可少的样品处理设备。市场上提供的国内外各厂家的微波消解仪各有特点,用户可以根据各自的要求选用。十分高兴的是:APL奥普乐公司制造的微波消解系统,不论是设计理念、元器件的配置、材料和制作工艺等方面,比起国外产品毫不逊色,赢得众多用户的信赖,发展势头很好;其产品皮实耐用,质保三年的承诺更突显对产品质量的信心,而且有可靠的售后服务和强大的应用技术支持做保证,这是难能可贵的。2015年在科技部科技创新基金支持下我带领APL奥普乐研发团队攻克微波消解仪的两项核心技术并获得专利:全罐控温、全罐控压技术,可以监测和控制所有消解罐的温度和压力,全罐温度控制保证每个样品的消解的完全性,全罐压力控制保证每个消解罐消解的安全性;这是高通量微波消解仪核心技术重大突破。2016年我带领APL奥普乐研发团队研发设计双磁控管变幅微波消解装置,将两个磁控管二维安装在微波炉腔的顶部,从顶部发射的微波保证40位双圈消解罐接收的微波一致,提高了样品消解的均匀性。2018年2的获得中国知识产局专利授权。我将继续发挥余热,在重金属分析前处理仪器设计和方法开发上砥砺前行。。。
  • 最新《疾病预防控制机构实验室仪器设备配置清单》
    最新《疾病预防控制机构实验室仪器设备配置清单》由国家疾病预防控制局关于发布《WST 10001-2023 疾病预防控制机构实验室仪器设备配置和管理 》标准将于2024年5月1日实施。该标准中准确立了省、市、县三级疾病预防控制机构实验室仪器设备配置的总体要求和基本原则,并对主要仪器设备配置的品目和配置数量做出规定。该标准适用于省、市、县三级疾病预防控制机构,并且该标准中明确了疾病预防控制机构实验室仪器设备配置清单(立即下载清单 )。清单详情如下:序号 仪器设备名称 省级 市级 县级 A 类 B 类 A 类 B 类 A 类 B 类 1微生物鉴定及药敏测试系统 1 √ 1 √ 1 √ 2全自动药敏试验菌液接种判读仪 1 √ 1 √ 3微生物鉴定质谱仪 1 √ 1 √ √ 4多病原快速筛查鉴定系统 1 √ 1 √ √ 5致病菌分子分型和基因组数据处理终端 1 √ √ 6食源性致病菌全基因组快速鉴定及溯源系统 1 √ √ 7全自动微生物核酸检测系统 1 √ 1 √ √ 8酶联免疫光谱分析仪 1 √ √ 9多聚酶链式反应扩增仪 2 √ 1 √ √ 10实时荧光定量多聚酶链式反应扩增仪 5 √ 3 √ 1 √ 11电泳系统 2 √ 1 √ √ 12脉冲凝胶电泳仪 2 √ 1 √ √ 13酶标仪 3 √ 2 √ 1 √ 14自动洗板机 3 √ 2 √ 1 √ 15空气微生物采样器 5 √ 5 √ 5 √ 16水中微生物膜过滤装置 3 √ 2 √ √ 17正置显微镜 8 √ 5 √ 2 √ 18解剖显微镜 2 √ 1 √ 1 √ 19倒置显微镜 4 √ 2 √ √ 20荧光显微镜 2 √ 1 √ √ 21暗视野显微镜 1 √ 1 √ 1 √ 22核酸蛋白测定仪 1 √ √ 23自动凝胶成像仪 2 √ 1 √ 24核酸自动提取仪 4 √ 2 √ 1 √ 25病毒载量测定仪 1 √ √ √ 26核酸测序仪 1 √ √ 27普通离心机 6 √ 3 √ 2 √ 28低温高速离心机 3 √ 2 √ 1 √ 29真空冷冻干燥机 1 √ √ 30压力蒸汽灭菌器(生物安全型) 4 √ 3 √ 1 √ 31干热灭菌器 1 √ 1 √ 1 √ 32恒温培养箱 8 √ 5 √ 3 √ 33生化培养箱 4 √ 2 √ 2 √34霉菌培养箱 1 √ 1 √ √ 35二氧化碳培养箱 5 √ 3 √ 1 √ 36厌氧培养装置 1 √ 1 √ √ 37三气培养箱 1 √ √ 38快速培养仪 1 √ √ 39恒温水浴箱 5 √ 3 √ 2 √ 40恒温摇床培养箱 3 √ 2 √ √ 41全自动染色仪 1 √ √ √ 42涡旋振荡器 6 √ 4 √ 1 √ 43水平摇床 2 √ 2 √ 1 √ 44金属浴 2 √ 1 √ √ 45超速离心机 1 √ √ 46低速大容量离心机 1 √ 1 √ √ 47正压式呼吸器 2 √ √ √ 48多道移液器 3 √ 5 √ 3 √ 49流式细胞仪 1 √ 1 √ √ 50蛋白印迹仪 1 √ 1 √ 51组织切片制作系统 1 √ √ 52全自动生化分析仪 1 √ 53相差显微镜 1 √ √ √ 54遗传分析扫描系统 1 √ 55多标记微孔板检测仪 1 √ 56全自动移液工作站 1 √ 57组织破碎仪 1 √ √ 58尿液分析仪 1 √ 59全自动血液分析仪 1 √ 60全自动血凝分析仪 1 √ 61显微镜成像分析仪 1 √ 62双扉脉动真空蒸汽灭菌器 1 √ √ 63组织匀浆机 1 √ √ 64紫外/可见分光光度计 2 √ 2 √ 1 √ 65原子吸收分光光谱仪 2 √ 1 √ 1 √ 66原子荧光分光光度计 1 √ 1 √ 1 √ 67散射式浊度仪 1 √ 1 √ 1 √ 68总有机碳测定仪 1 √ √ 69气相色谱仪 3 √ 2 √ 2 √ 70气相色谱-质谱联用仪 2 √ 1 √ √ 71气相色谱-质谱-质谱联用仪 1 √ 1 √ √ 72高效液相色谱仪 2 √ 1 √ √ 112低本底α、β放射测量系统 1 √ 1 √ √ 113医用诊断 X 线机性能检测设备 1 √ 1 114数字 X 射线摄影设备(DR)性能检测设备1√1√115数字血管造影设备(DSA)性能检测设备1√1√116乳腺摄影机设备性能检测设备1√1√117牙科摄影机设备性能检测设备1√1√118X 射线计算机体层摄影设备(CT)性能检测设备1√1√119医用加速器设备性能检测设备1√√120立体定向放射外科治疗系统性能检测设备1√√121钴-60 远距离治疗机设备性能检测设备1√√122后装治疗机设备性能检测设备1√√123正电子发射型断层扫描(PET)装置性能检测仪1√√ 124单光子发射型计算机断层扫描(SPECT)装置性能检测设备1√√ 125α、β表面沾污测量仪 2 √ 1 √ √ 126χ、γ射线巡测仪 2 √ 1 √ √ 127低本底实验室高纯锗γ谱仪 1 √ √ 128便携式γ谱仪 1 √ √ 129低本底液体闪烁测量仪(含电解浓缩装置) 1 √ √ 130氡测量仪2√√√131氡/钍射气测量仪 1 √ √ 132χ、γ、β个人剂量测量系统2√√133个人剂量报警仪 4 √ 2 √ √ 134灰化装置 1 √ 1 √ √ 135大流量空气采样装置 1 √ √ √ 136氡子体测量仪 1 √ √ 137个人剂量监测照射器 1 √ 138蛋白电泳仪 1 √ √ 139颗粒物监测仪(含光散射和重量法) 2 √ 1 √ √ 140超声波清洗仪 2 √ 1 √ √ 141超净工作台 2 √ 2 √ 1 √ 142生物安全柜 10 √ 5 √ 2 √ 143液氮罐 3 √ 2 √ √ 144恒温干燥箱 3 √ 2 √ 1 √ 145实验室空气消毒设备 1 √ 1 √ √ 1464℃医用冰箱 10 √ 5 √ 3 √ 147普通冰箱 2 √ 1 √ √ 148低温冰箱(-20℃) 15 √ 6 √ 3 √ 149低温冰箱(-40℃) 3 √ 2 √ 1 √ 150低温冰箱(-85℃) 3 √ 2 √ 1 √ 151微量振荡器 4 √ 3 √ 1 √ 152超声波细胞粉碎仪 1 √ 153样品粉碎机 2 √ 1 √ 1 √ 154均质器 6 √ 1 √ 1 √ 155纯水处理器 2 √ 1 √ 1 √ 156超纯水装置 1 √ √ 1571/百电子天平 √ 2 √ 1 √ 1581/千电子天平 2 √ 2 √ 1 √ 1591/万电子天平 2 √ 2 √ 1 √ 1601/10 万电子天平 1 √ √ √ 161甲醛测定仪 1 √ 1 √ 1 √ 162空气采样装置 15 √ 15 √ 5 √ 163风速计 2 √ 3 √ 2 √ 164温湿度计 2 √ 3 √ 2 √ 165手持式采样定位记录器 1 √ 1 √ 1 √ 166全自动样品稀释仪 √ √ 167毛细管电泳仪 √ √ 168生物信息工作站 √ √ 169冷冻切片机 √ √ 170尿素测定仪 √ √ √ 171低本底多道α谱仪或大面积屏栅α谱仪(含其制样装置) √ √ 172门式放射性检测设备 √ 173染色体自动收获仪 √ √ 174染色体自动分析设备 √ 175温度压力测定仪 √ √ √ 176定量采样机器人 √ √ √ 177氨测定仪 √ √ √ 178余氯分析仪 √ √ √ 179二氧化氯分析仪 √ √ √ 180微生物过滤检测系统 √ √ 181真菌毒素浓缩器 √ √ 182全自动荧光酶标鉴定仪 √ √ 183贾第鞭毛虫和隐孢子虫检测系统 √ √ 184放射免疫分析仪 √ √ 185数字多聚酶链式反应仪 √ √ 186微生物基因指纹鉴定系统 √ √ 187微生物定量检测仪 √ √ 188电子显微镜 √ √ 189超薄切片机 √ √ 190核酸蛋白转膜仪 √ √ 191杂交炉 √ √ 192冷冻离心浓缩仪 √ 193DNA 转导仪 √ √ 194层析纯化装置 √ √ 195高精度恒温恒湿箱 √ √ 196厌氧工作站 √ 197致病菌分子检测仪 √ √ 198全自动微生物数码显微培养计数系统 √ √ 199程控定量封口机 √ √ √ 200三磷酸腺苷荧光检测仪 √ √ √ 201蛋白质测序仪 √ 202核酸质谱分析系统 √ √ 203全自动酶免工作站 √ √ √ 204鸡胚培养装置 √ √ 205样本自动化存储设备 √ √ 206人工气候箱 √ √ 207超低容量喷雾机 √ √ 208大体积分液系统 √ 209程序降温仪 √ 210吸入染毒系统 √ 211细胞计数仪 √ 212病理切片扫描分析仪 √ 213血乳酸仪 √ 214多导生理记录仪 √ 215水迷宫仪 √ 216穿梭箱 √ 217裂隙灯 √ 218免疫分析仪 √ 219斑马鱼养殖、操作和分析系统 √ 220正倒置一体化研究级显微镜 √ 221菌落计数仪 √ √ 222细胞能量代谢分析仪 √ 223动物安乐处死装置 √ 224笼具自动清洗设备 √ 225低温恒湿密闭代谢笼 √ 226蚊蝇饲养笼 √ √ 227实验动物独立通风笼具饲养系统 √ 228生物安全柜检漏设备 √ 229尘埃粒子计数器 √ 230全自动尿碘检测装置 √ √ √ 231红外分光光谱仪 √ 232荧光分光光度计 √ √ 233测汞仪 √ √ √ 234锌卟啉测定仪 √ √ 235旋光测定仪 √ √ √ 236折光仪 √ √ √ 237气相色谱-高分辨质谱联用仪 √ √ 238二维气相色谱-质谱-质谱联用仪 √ √ 239液相色谱-高分辨质谱联用仪 √ √ 240液相色谱-原子荧光光谱仪 √ √ 241二维除盐液相色谱质谱联用仪 √ √ 242超临界流体色谱仪 √ 243超临界萃取系统 √ 244凝胶渗透色谱仪 √ √ 245在线凝胶渗透色谱-气相色谱-质谱仪(包括串联质谱仪) √ √ 246同位素比值质谱仪 √ 247磁质谱仪 √ 248全自动多通道平行浓缩仪 √ √ 249全自动固相萃取仪 √ √ 250在线固相萃取装置 √ √ 251快速溶剂萃取系统 √ √ 252超声波萃取仪 √ √ 253全自动消解装置 √ √ 254智能电热消解装置 √ √ 255全自动样品前处理平台 √ √ 256激光粒度分析仪 √ 257分散度测定仪 √ √ 258便携式气质联用仪 √ √ 259双向蛋白电泳仪 √ 260化学发光仪 √ 261血红蛋白仪 √ √ √ 262人体营养代谢测量仪 √ √ 263体外仿生模拟消化仪 √ 264便携式呼吸测定仪 √ √ 265全自动体成分测定仪 √ √ 266骨密度仪 √ √ 267全自动肌肉测定仪 √ √ 268生物细胞 3D 打印仪 √ √ 269便携式运动测试设备 √ √ 270神经系统功能测定设备 √ 271氧化还原电位分析仪 √ √ √ 272动压平衡自动跟踪等速烟尘采样仪 √ 273溶解性总固体(TDS)测定仪√√√274液液萃取仪√√√275智能一体化蒸馏仪√√√276硫化物酸化吹脱系统√√√277数字 X 光机√√278听力测试仪√√√279B 超(甲状腺、腹部、心脏)√√√280肺功能测定仪√√281血流图仪√282肌电图仪√283脑电图仪√284有机气体测定仪 √ 285气体采样及浓缩系统 √ 286便携式分光光度计 √ √ √ 287超微量分光光度计 √ √ 288电极电位仪 √ √ √ 289氧浓度快速监测仪 √ √ √ 290计算机 X 射线摄影设备(CR)性能检测设备 √ √ 291中子剂量当量测量仪 √ √ 292中子射线个人剂量测量装置 √ 293放射防护器材防护性能检测设备 √ 294石材样品粉碎设备 √ 295放射性气溶胶粒径测量装置 √ 296全身计数器 √ 297固体径迹探测装置 √ 298微量铀分析仪 √ 299人员放射性污染洗消装置 √ √ 300蛋白纯化仪 √ √ 301通风式试剂柜 √ √ √ 302制冰机 √ √ 303紫外线照度测定仪 √ √ √ 304超低温冰箱(-140℃) √ 3051/100 万电子天平 √ 306急性食物中毒检测箱 √ √ √ 307水质快速检测箱 √ √ √ 308突发事件有毒有害气体检测箱 √ √ √ 309核酸等温扩增设备 √ 310多聚酶链式反应配液体系构建工作站 √ √ 311硫化氢快速监测仪 √ √ 312二氧化硫自动监测仪 √ √ 313氯气快速检测仪 √ √ 合计 34520691注:A 类中标有数值的为必须配置的仪器设备,有最低配置数量要求;B 类 “√”项为根据工作需求、工作量及发展规划等在 A 类配置种类和数量基础上,可选择配置的实验室仪器设备,不限制配备种类和数量;非“√”项不做配置要求。
  • 沈阳科仪:正参与同步辐射装置、先进光源等大科学装置建设
    近日,上交所表示,终止半导体设备厂商中国科学院沈阳科学仪器股份有限公司(以下简称“沈阳科仪”)发行上市审核。在沈阳科仪得招股说明书中显示,其正参与同步辐射装置、先进光源等大科学装置建设。招股书显示,沈阳科仪主要从事干式真空泵、真空仪器设备的研发、生产和销售,并提供相关技术服务。干式真空泵是半导体制造工艺设备的核心附属设备,为集成电路、光 伏、LED、平板显示、锂电池等行业的生产设备提供所必需的高度洁净真空环境。沈阳科仪得真空仪器设备产品主要包括大科学装置、真空薄膜仪器设备、新材料制备设 备三大类。其中大科学装置指用于基础科学研究的国家重大科学工程的大型科研 装置与设施;真空薄膜仪器设备主要包括用于科研的PVD、CVD设备;新材料制备设备主要包括晶体材料制备设备、真空冶金设备等。在招股书的发行人的主营业务经营情况部分中显示,发行人正在参与北京高能同步辐射光源、上海同步辐射装置、合肥先进光源、大连相干光源等国家重大科学基础设施的建设,发行人已成为国内大科学装置真空技术及真空科研仪器设备领域领先的产品与服务提供商。资料显示,合肥先进光源(HALS)是基于衍射极限储存环的第四代同步辐射光源,其发射度及亮度指标的设计目标为世界第一,建成后将是全世界最先进的衍射极限储存环光源。合肥先进光源(HALS)设计定位世界唯一、位于中低能区、“具有鲜明衍射极限及全空间相干特色”的第四代同步辐射光源,将应用于动态世界的观测,为能源与环境、量子材料、物质与生命交叉等领域带来前所未有的机遇。图源 大连相干光源大连相干光源是一台采用高增益谐波放大运行模式的极紫外自由电子激光用户装置,是一种以相对论高品质电子束作为工作介质,在周期磁场中以受激发射方式放大电磁辐射的新型强相干激光光源。该装置是我国第一台自由电子激光大型用户装置,是世界上唯一工作在极紫外波段的自由电子激光用户装置,也是世界上最亮的极紫外光源。自由电子激光是近年来国际科技界飞速发展的一类重大科技基础设施,被称为“第四代先进光源”,具有超高亮度、超短脉冲、全相干等优异特性,大大提高了实验研究的时间和空间分辨率。
  • 积塔半导体“用于制造半导体装置的方法以及半导体装置”专利公布
    天眼查显示,上海积塔半导体有限公司“用于制造半导体装置的方法以及半导体装置”专利公布,申请公布日为2024年7月19日,申请公布号为CN118366850A。背景技术与硅(Si)相比,作为第三代半导体材料代表的碳化硅(SiC)具有大禁带宽度、高临界击穿电场、高热导率、高载流子饱和漂移速率和强抗辐照性等更优越的电气特性。凭借SiC的电气特性,能够开发出更适用于高压、高温、高频、强辐射等应用领域的半导体装置,其中,SiC金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field-EffectTransistor,MOSFET)更是倍受关注。常用在高压低功耗场景下的SiC MOSFET分为沟槽型SiC MOSFET和平面型SiCMOSFET。垂直结构的平面型SiC MOSFET由于存在结型场效应晶体管(Junction Field-Effect Transistor,JFET)区,使得半导体装置的输出直流电阻较大,限制了半导体装置的功率阈值。此外,平面型SiC MOSFET有着因沟道离子注入导致的沟道迁移率退化问题。相比于传统的平面型SiC MOSFET,沟槽型SiC MOSFET没有JFET区,可以避免寄生JFET效应(例如JFET区产生的额外电阻),能够实现提高的晶圆密度,同时还具有更高的阻断电压、更好的开关特性和更低的导通损耗等改善的电学性能。发明内容本公开涉及用于制造半导体装置的方法以及半导体装置。一种用于制造半导体装置的方法,该方法包括:提供半导体基底,在半导体基底中形成有沟槽;用飞秒激光束照射半导体基底的与沟槽的第一部分邻接的第二部分,使得半导体基底的第二部分发生非热熔化;以及在完成飞秒激光束的照射之后,对半导体基底进行热氧化处理,使得半导体基底的第二部分形成氧化层。
  • 北京怀柔科学城首个大装置开工 综合极端条件实验装置启动建设
    p   由中国科学院物理研究所等建设的国家重大科技基础设施项目——综合极端条件实验装置9月28日在北京怀柔正式启动建设,这也是怀柔科学城第一个开工的国家重大科技基础设施。该工程拟通过5年左右时间,建成国际上首个集极低温、超高压、强磁场和超快光场等极端条件为一体的用户装置,极大提升我国在物质科学及相关领域的基础研究与应用基础研究综合实力。 /p p   综合极端条件实验装置工程由国家发改委审批,中科院、教育部共同申请,得到了北京市和怀柔区的鼎力支持。装置由极端实验条件产生系统、极端条件下的样品表征和测量系统,以及能满足上述各系统研制、升级、维护与运行的支撑系统等部分组成。建成后,该装置将成为开展物质科学及相关领域研究的重要实验基地,成为具有国际领先水平和重要国际影响力的科学与技术研究中心。 /p p   在项目启动会上,中科院副院长王恩哥表示,综合极端条件实验装置是中科院站在国家科技创新总体布局的高度,面向全球科技创新发展态势作出的一项重大部署,是落实习近平总书记关于在北京“建设具有全球影响力的科技创新中心”要求的具体举措之一。 /p p   王恩哥对项目建设法人单位中科院物理所提出了几点要求。他说,物理所要以对人民负责、对历史负责、对党和国家负责的态度,强化建设标准和要求,按照既定建设周期,保质保量完成建设任务 抢抓机遇,认真做好前沿科学领域布局规划 大胆探索大科学装置管理体制机制改革,运行好综合实验设备,多出成果,早出成果,出大成果,勇攀科学高峰 发现、吸引、凝聚顶尖科学家,形成国际科技创新人才高地。 /p p   王恩哥强调,综合极端条件实验装置在国际上是首创,是一项“功在当代,利在千秋”的国家科技基础设施建设工程。他希望该装置能够建设成为世界领先的用户装置,与相关交叉平台一起构成具有全球影响力的凝聚态物质科学研究中心。努力探索世界科学前沿,实现技术引领性突破,在怀柔科学城建设中作出重要贡献。 /p p   “极端条件实验手段的整体水平直接影响着我国在若干核心领域的竞争力。”中科院物理所所长方忠认为,项目建设将大幅提升我国综合极端条件科学与技术研究及尖端实验设备的研制、运行能力,提升我国在相关基础研究、高技术研究领域的综合水平,使我国在该领域的综合实力步入世界一流水平,促进我国从科技大国走向科技强国。 /p p   利用装置,科研人员可以开展非常规超导、拓扑物态、新型量子材料与器件等研究工作,并可在物理、材料、化学和生物医学等领域开展超快科学研究,探索极端时空尺度上的物质结构信息和动力学信息。项目首席科学家、国家“千人计划”入选者、中科院物理所研究员丁洪举例说,倘若科学家能利用装置做出室温超导体,电影《阿凡达》中壮观的“哈利路亚悬浮山”就有望成为现实。 /p p   此外,装置还具有广泛的实际应用价值。依靠该装置,人们可以开展各种特殊功能材料和技术的研发,还能够促进凝聚态物理、材料科学、化学、地质、能源科学及信息科学等不同学科之间的相互渗透、交叉融合。 /p p   项目首席科学家、中科院物理所研究员吕力透露,装置建成后将向国内外用户全面开放,遵循“开放、共享、流动、合作”的运行管理机制,严格保证全面对外开放机时。 /p p   据了解,综合极端条件实验装置是指综合集成低温、高压、强磁场、超快光场等一系列配套的集群设备所构成的大型科学实验设施。近年来,利用极端实验条件取得创新突破已成为科学研究发展的一种重要范式,不少工作获得了诺贝尔奖,大量成果得到了重要应用。世界上许多发达国家或地区,如美国、欧洲、日本等都在该领域展开了激烈竞争,许多著名研究机构都拥有先进的极端条件实验设施。 /p p /p
  • 华电智控发布环境空气厂界无组织超标报警传感装置TVOC装置PID新品
    产品描述:TVOC-600环境空气厂界/无组织超标报警传感装置,适用于环境空气、厂界及无组织的挥发性有机物在线监测,设备为立杆或壁挂式安装,响应灵敏,可监测环境空气中低浓度挥发性有机气体,并支持扩展风速风向监测。产品特点:? 采用进口高性能PID传感器,精度高,响应快,量程可选择;? 防尘控湿及防凝露技术,排除环境空气中杂质干扰,保障检测精度;? 采用7寸触摸屏显示与操控;? 具有超标报警功能,报警限值可灵活配置;? 具有数据存储功能,可存储1年以上历史数据;? 支持扩展风速风向监测;? 内置无线传输模块实时上传数据,通讯协议符合HJ212-2017标准;? 另有防爆型产品可选,满足爆炸性环境使用需求,已取得防爆认证证书;技术参数:? 量程范围:0-20/200ppm可选? 示值误差:<±3%F.S.? 检出限:1.5ppb? 重复性:<1%? 响应时间:T90<10s? 有线输出:4-20mA,RS232? 通讯方式:3G/4G? 报警方式:声光报警 创新点:泵吸式或扩散式可选 内置7寸触摸显示大屏,可查询历史记录 内置无线传输模块 可增加声光报警器、风速风向等设备 环境空气厂界无组织超标报警传感装置TVOC装置PID
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制