当前位置: 仪器信息网 > 行业主题 > >

干涉成像仪

仪器信息网干涉成像仪专题为您提供2024年最新干涉成像仪价格报价、厂家品牌的相关信息, 包括干涉成像仪参数、型号等,不管是国产,还是进口品牌的干涉成像仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合干涉成像仪相关的耗材配件、试剂标物,还有干涉成像仪相关的最新资讯、资料,以及干涉成像仪相关的解决方案。

干涉成像仪相关的仪器

  • 中红外指纹区成像仪 什么是指纹区域目前可用的电磁源、光谱色散器件和探测器使在电磁波谱可见到近红外部分的低成本便携式光谱仪设备的开发成为可能。尽管已经报道了一些应用,但在电磁波谱区域内的有机成分识别是非常具有挑战性的,因为它对应于分子伸缩振动能级的泛音带。因此,该地区有机化合物的光谱特征往往不清楚,很难准确区分复杂混合物的各个成分。准确识别样品成分的理想方法是通过光谱中所谓的“指纹”区域的光谱,即基本分子能量带所在的区域。指纹区域位于大约7m 和20m(500cm -1 至1450cm -1)之间,称为中远红外(MIR),可用于区别不同化合物结构上的微小差异。犹如人的指纹,故称为指纹区。指纹区的红外吸收光谱很复杂,能反映分子结构的细微变化。这个区域的振动类型复杂而且重叠,特征性差,但对分子结构的变化高度敏感,只要分子结构上有微小的变化,都会引起这部分光谱的明显改变。 图通过显示在指纹区域典型有机化合物的吸收特征,而图中左侧所示的近红外谐波区域则没有这种特征。红外光谱指纹区的特点: l 多峰性l 峰特征性l 峰移动性l 精细性红外指纹成像光谱仪INO 在MEMS 开发方面的背景使其在开发在红外指纹光谱区域的微型成像光谱仪器方面处于优势地位。这主要归功于INO 作为微测辐射热计传感器发展的世界领先者的地位。与傅里叶变换红外光谱仪(FTIR)中使用的制冷红外成像阵列相比,微测辐射热计传感器非制冷,体积小, 价格便宜,是小型化,低成本红外光谱成像系统的理想选择。此外,INO 开发了一种在微测辐射热计阵列像素上沉积金黑宽带吸收体的工艺。与标准测辐射热计吸光度相比,金黑吸收器将测辐射热计的吸光度提高了两倍,因此灵敏度提高了2 倍。金 - 黑吸收体还允许前所未有的大波长吸收范围:从电磁波谱的可见光到太赫兹区域。由于几种微机电“MEMS”技术的融合,光谱学世界正在经历变化。 MEMS 微测辐射热计阵列与MEMS 扫描法布里 - 珀罗干涉仪和小型化成像透镜的集成使得能够创建小型,低成本的高光谱成像仪器,可以在电磁频谱的红外“指纹”区域工作。到目前为止,这主要是大型,昂贵的基于傅立叶变换干涉仪(FTIR)的仪器领域。这些仪器通常仅限于实验室环境,由经过培训的专家操作。小型、低成本的成像光谱仪的出现将极大地减少这些设备进入的障碍,使得这些技术在实验室外得到更广泛的应用。随后,在农业和食品质量,先进制造业,生物医学,国防和安全等领域设想开发一系列新应用。
    留言咨询
  • 活体成像仪 400-860-8560
    UVP Biospectrum Advanced 900活体成像仪随着科研的深入,生命科学的研究已经发展到在体研究的阶段,德国耶拿公司UVP Biospectrum Advanced 900活体成像仪是一款兼容生物发光和荧光多重成像的非侵入性活体成像仪。生物发光方面,该仪器使用了一个-100度深度制冷的背照式CCD,配合超大光圈的定焦镜头,不仅能实现灵敏度的信号采集,而且将噪音水平控制到极低的水平,从而实现高灵敏度的生物发光检测。荧光成像方面,高强激光光源可以实现从紫外到近红外的全光谱荧光成像,带宽更窄,激光光强更强,既兼容了所有的荧光成像应用,又可以通过近红外降低样品背景,进一步提升了成像效果。 该仪器既可以用于动物活体成像,亦可以用于植物活体成像,模块化设计,及各种配件可以实现生物学、医学、环境生物学等多个领域的各种成像应用扩展,比如高分子材料、纳米靶向材料成像、WB成像等。可以根据客户需求定制化滤光片,匹配个性化的需要。温控板可以让小鼠保持正常生理体温,小鼠成像时的状态与正常生理状态一致,确保结果的准确性。软件使用方便,对于需要多次成像的试验,可通过预设模板的方法进行一键成像。在线气体麻醉系统可以实现在线麻醉,防止体外麻醉对小鼠带来损伤。一次可同时进行多达10只小鼠的成像。软件符合21CFR Part11,可以实现对数据追踪溯源,保证数据的真实性。应用方向:癌症与抗癌药物研究 ,免疫学与干细胞研究 ,细胞凋零 ,病理机制及病毒研究 ,基因表达和蛋白质之间相互作用 ,转基因动物模型构建 ,药效评估 ,药物甄选与预临床检验 ,药物配方与剂量管理 ,肿瘤学应用 ,生物光子学检测 ,食品监督与环境监督等。
    留言咨询
  • 皮米激光干涉仪 德国attocube公司在皮米精度位移激光干涉仪FPS的基础上,新推出了体积更小、适合集成到工业产品与同步辐射应用中的IDS型号皮米精度位移激光干涉仪。与FPS型号干涉仪相似,IDS型号同样适用于端环境如高真空与高辐射环境并且具有高精度与高采样速率。IDS产品是适合工业集成与工业网络无缝连接的理想产品。产品在工业应用中具有广泛范围前景,包括闭环位移反馈系统搭建、振动测量、轴承误差测量,实时位移测量等。 德国计量院(PTB)对IDS3010激光干涉仪的精度进行了认证。值得指出,在0-3米的工作距离内, IDS激光干涉仪的的测量数据与德国计量院激光干涉仪数据完全一致。德国计量院的认证使得IDS激光干涉仪的测量数据满足德国标准,使得IDS更加理想的成为位移台鉴定与机器加工等领域的测量工具。IDS3010激光干涉仪主机尺寸与接口IDS3010激光干涉仪应用领域IDS3010充分满足高分辨位移于定位的工业和科研需要,可应用于长度测量、同步辐射、精密仪器、半导体工业以及显微镜。IDS3010激光干涉仪产品特点 + 设计紧凑(50mm x 55mm x 195mm),适合工业集成+ 工业化界面,含HSSL、AquadB、CANopen、Profibus、EtherCAT、等界面+ 测量速度快,定位样品采样带宽10MHz+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 校正简单,配备可见激光(650nm)用于校正测量激光(1530nm)+ 测量精度高,探测器分辨率高达1 pm设备选件光纤式激光探头 IDS系列激光干涉仪可提供不同型号探头(探头尺寸,光斑大小不同)。探头直径范围:1.2mm – 22mm。典型准直激光光斑:1.6mm, 典型聚焦激光光斑:70 mm。低工作温度:10mK, 1E-10mBar超高真空适用, 10MGy强辐射环境适用。激光探头技术参数表激光探头型号尺寸mm (直径与长)工作距离(低反射,高反射材料)激光类型(聚焦、准直) 光斑大小D1.2/F7Ф 1.2 7.55-9 mm30-45 mm聚焦,焦距7mm70μm@7mmD4/F8Ф 4 11.56-10 mm15-30 mm聚焦,焦距8mm70μm@8mmD4/F13Ф 4 11.511-15 mm30-45 mm聚焦,焦距13mm70μm@13mmD12/F2.8Ф 12 32.32.8 mm聚焦,焦距2.8mm2μm@2.8mmM12/C1.6Ф 14 17.40-1000 mm准直1.6mmM15.5/C1.6Ф 22 20.60-1000 mm准直1.6mmM12/C7.6Ф 14 49.30-5000 mm准直7.6mm应用案例■ IDS3010在航天飞行器形变检测上的应用德国卫星制造商OHB公司(德国OHB-System 是一家专门从事小卫星系统、分系统研制工作的企业,在小型商业卫星、小型研究卫星及相关分系统的研制、制造和操作方面具有丰富的经验)采用attocube的激光位移传感器IDS3010,对三代气象卫星(MTG)柔性组合成像仪进行了高真空光-热-力学模型试验。该试验包括在仪器的不同区域,并监控其后续光学元件相对位移测量哈特曼传感器。在真空环境中通过IDS3010激光干涉仪以小于1角秒的精度对平面基准相对位置的稳定性进行了一个多星期的持续测试。为了校准IDS3010不同探头之间的距离,需要进行初步测试(每个传感器探头与用于角度计算的距离,名义上为100 mm)。为此,平面参考镜的电动框架被用来产生任意角度的运动。这些角度是由IDS3010激光干涉仪和校准的自准直仪测量得到。IDS3010激光干涉仪在±720角秒范围内表现出良好的线性(0.1%),并且非常容易校准。再与MTG柔性组合成像仪对齐之后,即在Shack-Hartmann传感器和IDS3010传感器之间执行另一个交叉校准,以补偿IDS3010传感器相对于Shack-Hartmann传感器的时钟。三代气象卫星的柔性组合成像仪(MTG-FCI)的实验装置。紫色表示激光干涉仪组件:传感器探头支架和角角锥棱镜支架。以上信息由OHB System AG提供结果此次测量的目的是在一周多的时间内连续监测参考镜相对于卫星的稳定性,精度小于1角秒。使用如上所述attocube公司的激光干涉仪得到的测试得到角度精度甚至比一个角秒还要好。理论计算表明,其测试分辨率可以到达0.021角秒(等于5.8u°),但实际读数受试验装置振动的限制。■ IDS3010激光干涉仪在自动驾驶高分辨调频连续波(FMCW)雷达上的应用自动驾驶是目前汽车工业为前沿和火热的研究,而自动驾驶尤为重要的是需要可靠和高分辨率的距离测量雷达。德国弗劳恩霍夫高频物理和雷达技术研究所(Wachtberg,D)Nils Pohl教授和波鸿鲁尔大学(Bochum,D)的研究小组提出了一种全集成硅锗基调频连续波雷达传感器(FMCW),工作频率为224 GHz,调谐频率为52 GHz。通过使用德国attocube公司的皮米精度激光干涉仪FPS1010(新版本为IDS3010)证明了测量系统在-3.9μm至+2.8μm之间达到了-0.5-0.4μm的超高精度。这种全新的高精度雷达传感器将会应用于许多全新的汽车自动驾驶领域。图一 紧凑型FMCW传感器的照片图二 雷达测距示意图,左边为雷达,右边为移目标,attocube激光干涉仪用来标定测量结果参考文献S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019).■ IDS3010激光干涉仪在半导体晶圆加工无轴承转台形变的测量上的应用半导体光刻系统中的晶圆轻量化移动结构的变形阻碍了高通量的半导体制造过程。为了补偿这些变形,需要的测量由光压产生的形变。来自理工大学荷兰Eindhoven University of Technology 的科学家设计了一个基于德国attocube干涉仪IDS3010的测量结构,以此来详细地研究因为光压而导致的形变特性。图一所示为测量装置示意图,测量装置由5 x 5 共计25个M12/F40激光探头组成的网格,以此来实现监测纳米的无轴承平面电机内部的移动器变形。实验的目的是通过对无轴承的平面的力分布进行适当的补偿,从而有效控制转台的变形。实验测得大形变量为544nm,小形变量为110nm(如图二所示)。图一 左侧5X5排列探头测量装置示意图,右图为实物图图二 无轴承磁悬浮机台形变量的测量结果,大形变量为544nm参考文献Measuring the Deformation of a Magnetically Levitated Plate displacement sensor.■ IDS3010在X射线成像中提高分辨率的应用在硬X射线成像中,每个探针平均扫描时间的减少对于因为束流造成的损伤是至关重要的。此外,系统的振动或漂移会严重影响系统的实时分辨率。而在结晶学等光学实验中,扫描时间主要取决于装置的稳定性。Attocube公司的皮米精度干涉仪FPS3010(升之后的型号为IDS3010),被用于优化由多层波带片(MZP)和基于MZP的压电样品扫描仪组成的实验装置的稳定性的测量。实验是在德国DESY Photon Science中心佩特拉III期同步加速器的P10光束线站上进行的。Attocube公司的激光干涉仪PFS3010用来检测样品校准电机引起的振动和冲击产生的串扰。基于这些测量,装置的成像分辨率被提高到了±10nm。 图一 实验得到的系统分辨率结果参考文献Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)■ IDS3010激光干涉仪在微小振动分析中的应用电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。全球研究机构苏黎世邦理工大学的Sebastian Huber教授课题组巧妙的利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上(doi:10.1038/nature25156)。研究人员通过测试了一种机械超材料的体,边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。德国attocube公司的激光干涉仪IDS3010被用于超声-空气转换器激励后的机械超材料振动分析。IDS3010能到探测到机械超材料不同位置的微小振动,以识别共振频率。终实现了11.2pm的系统误差,为声子四拓扑缘体的实验分析提供了有力的支持。图一 实验中对对机械超材料微小振动的频率分析参考文献Marc Serra-Garcia, et al. Nature volume 555, pages 342–345 (2018)■ IDS3010激光干涉仪在快速机床校准的应用德国亚琛工业大学(Rwth Aachen University,长久以来被誉为“欧洲的麻省理工”)机床与生产工程实验室(WZL)生产计量与质量管理主任的研究人员利用IDS3010让机床自动校准成为可能,这将大的提高机床的加工精度和加工效率。研究人员通过将IDS3010皮米精度激光干涉仪和其他传感器集成到机床中,实现对机床的自动在线测量。这使得耗时、需要中断生产过程、安装和卸载校准设备的手动校准变得多余。研究人员建立了一个单轴装置的原型,利用IDS3010进行位置跟踪,其他传感器如CMOS相机被用来检测俯仰和偏摆。校准结果与常规校准系统的结果进行了比较:六个运动误差(位置、俯仰、偏摆、Y-直线度、Z-直线度)对这两个系统显示出良好的一致性,值得指出的是:使用IDS3010的总时间和成本显著降低。该装置演示了自动校准机床的个原型,而且自动程序减少了机器停机时间,从而通过保持相同的精度水平提高了生产率。参考文献Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)■ IDS3010激光干涉仪在工业C-T断层扫描设备中的应用工业C-T断层扫描被广泛用于材料测试和工件尺寸表征。设计一个的锥束C-T系统的挑战之一是它的几何测量系统。近,瑞士联邦计量院(METAS)的科学家将德国attocube公司的IDS3010皮米精度激光干涉仪用于X射线源、样品和探测器之间的精密位移跟踪。实验共有八个轴用于位移跟踪。除了测量位移之外,该实验装置还能够实现样品台的角度误差分析。终实现了非线性度小于0.1μm,锥束稳定性在一小时内优于10ppb的高精度工业C-T。参考文献Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU■ IDS3010激光干涉仪在增材制造3D打印方面的应用微尺度选择性激光烧结(μ-SLS)是制造集成电路封装构件(如微控制器)的一种创新方法。在大多数的增材制造中需要微米量的精度控制,然而集成电路封装的生产尺寸只有几微米,并且需要比传统的增材制造方法有更小的公差。德克萨斯大学和NXP半导体公司开发了一种基于u-SLS技术的新型3D打印机,用于制造集成电路封装。该系统包括用于在烧结站和槽模涂布台之间传送工件的空气轴承线性导轨。由于该导轨对定位精度要求很高,所以采用德国attocube公司的皮米精度干涉仪IDS3010来进行位置的跟踪。参考文献Nilabh K. Roy, Chee S. Foong, Michael A. Cullinan: "Design of a Micro-scale Selective Laser Sintering System", 27th Annual International Solid Freeform Fabrication Symposium, At Austin, Texas, USA ■ IDS3010激光干涉仪在扫描荧光X射线显微镜中的应用在搭建具有纳米分辨率的X射线显微镜时,对于系统稳定性的要求提出了更高的要求。在整个过程中实验过程中,必须确保各个组件以及组件之间的热稳定性和机械稳定性。德国attocube的IDS3010激光干涉仪具有优异的稳定性和测量亚纳米位移的能力,表现出优异的性能。IDS3010在40小时内具有优于1.25nm的稳定性,并且在100赫兹带宽的受控环境中具有优于300pm的分辨率。因此,IDS3010是对所述X射线显微镜装置中使用的所有部件进行机械控制的不二选择,使得整个X射线显微镜实现了40nm的分辨率,而在数据收集所需的整个时间内系统稳定性优于45nm。参考文献Characterizing a scanning fluorescence X ray microscope made with the displacement sensor■ 皮米精度激光干涉仪IDS3010在相位调制器的精密调制和控制上的应用相位调制器是相干合成孔径望远镜中光束合成机构的关键部件。提高相位调制器的调制精度和控制带宽有助于提高合成孔径望远镜的成像分辨率。相位调制器运动信息包括俯仰角、方位角和轴向位移3个自由度。目前3个或者多个自由度的实时测量还处于发展阶段。同时实现多自由度测量更是少之又少。来自中国科学院光电技术研究所光束控制重点实验室的方国明课题组采用德国attocube system AG公司的三轴皮米精度激光干涉位移传感器IDS3010通过获取待测目标平面内3个不共线点的位移量,而3个不共线的点可确定平面的法线,基于平面法线的性可解,从而可以获得目标的3个自由度运动信息,包括方位角、俯仰角和轴向位移。成功实现了三自由度的同时实时测量。图示: 三自由度测量原理示意图■ 皮米精度位移测量激光干涉仪助力声子四拓扑缘体观测电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。图示:实验装置示意图参考文献Observation of a phononic quadrupole topological insulator.Nature volume 555, pages342–345(2018)■ 激光干涉仪检测纳米精度位移台误差在实际生产中的存在可能导致损失以及客户对产品信心的丢失。光学传感器可以在质量检测中帮助减少误差产生提高成品率。attocube激光干涉仪是理想的可在各个领域提供高精度探测来减少误差的一种光学传感器。作为纳米精度位移台供应商的德国attocube公司,对位移台的精密移动的测量与鉴定是一个非常重要的任务。例如,下图左,ECS3030型号的线性位移台可在真空中进行位移。ECS3030位移台的行程是20mm。技术参数要求的是可重复精度小于50nm。利用attocube激光干涉仪对位移台上样品进行测量,位移台被程序控制来回往复移动1mm,在20mm的行程内在多个不同地点进行来回往复移动。测量结果如下图中所示。通过分析,左图中的数据提取的偏差值是13.2nm,下图右数据的直方图显示标准差是13nm。因此,位移台的可重复性技术指标是合格的。通过使用attocube激光干涉仪可以实施对于纳米精度位移台ECS3030的全自动测量。这已经是德国attocube公司对于位移台的质量检测手段。并且,这样一个简便与实用的传感器可以直接集成到生产线中去提供高产出的质量检测。■ 激光干涉仪组建高精度X射线显微镜同步辐射中心具有广泛的应用领域,生物科技(蛋白质结构),医学研究(微生物),工程研究(裂纹的变化观测),先进材料(纳米结构测量)等。以上应用需要高精度去驱动聚焦镜,样品,光学狭缝等物品(下图左),这样的机械结构需要减少热漂移与定位误差。德国attocube公司的激光干涉仪具备皮米精度分辨率,激光探头可在真空环境中使用,是同步辐射研究的良好选择。在现有激光探头中,标准激光探头M12是已经被证实可以在辐射环境中使用(大10MGy)。美国布鲁克海文实验室E. Nazaretski等人结合attocube激光干涉仪与纳米精度位移台搭建了X射线扫描成像显微镜(下图中)。通过attocube激光干涉仪作为实时检测与反馈位移台移动的工具,科学家实现了0.5nm的步进扫描(下图右)。并且,在真空环境中,系统的热漂移达到了2nm/h。综上所述,高精度的X射线显微镜可以实现纳米精度扫描成像,是实现硬X射线区域光学研究的有力工具。该显微镜使得X射线荧光光谱纳米精度成为了现实。参考文献E. Nazaretski , et.al. J. Synchrotron Rad. (2015). 22, 336–341 ■ 激光干涉仪无损探测轴承误差旋转物体的运动误差分析是高精度机械工程领域的一个主要兴趣之一。如果是高速旋转的转子,甚至1纳米的误差就会产生不想要的振动与运动误差。因此,纳米精度的运动误差监测是机械工程领域前沿的重要研究课题。一个主要的难题是:如何减小运动误差?为了减小误差,先需要测量误差。德国attocube公司的激光干涉仪可以提供一个无损,紧凑并且一插即用的解决方案。通常的线性位移测量需要一个平整的表面,而旋转运动的时候,遇到的是一个曲面(右图上)。attocube激光干涉仪测量的是一个直径为10mm的电动转子。由于attocube激光干涉仪的探头具有较大的容忍角度,激光探头很容易完成了校准并开始进行测量。转子转速为2160转每秒,两个激光探头对转子的运动误差进行了测量。右图下显示的为测量结果,红色实线为平均位置,而虚线显示了误差为5微米的两个圆环。黑色实现为实际测量数据。德国attocube公司的激光干涉仪软件使用界面友好,可提供亚纳米别的运动误差校正方案。即使是新用户,对于其激光干涉仪的使用也会很快熟悉。参考文献 Review of scientific instruments, 84, 035006 (2013) ■ 激光干涉仪校正低温非线性扫描通常扫描台在室温下扫描50微米 x 50微米的范围时候不会有显著的非线性效应。但是当在低温环境(4K或更低)中,压电陶瓷本身的性能发生变化,会产生下图右中的非线性扫描现象。通过德国attocube公司的激光干涉仪,可以在低温环境下使用激光探头对扫描台的扫描运动进行实时检测(高速扫描)。结合对扫描台的施加电压进行实时反馈控制,可解决低温下非线性扫描问题。测试数据■ 实验数据,皮米精度的稳定性图1 77mm长的腔在20个小时内的实验测量数据表明数据误差范围在55pm■ 测量速度快,定位样品采样带宽10MHz图2 样品移动速度2米/秒,移动范围1m发表文章1. Stability investigation of a cryo soft x-ray microscope by fiber interferometry Rev. Sci. Instrum. 91, 023701 (2020) 2. Vibration-heating in ADR Kevlar suspension systems James Tuttle et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 755 0120153. S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019).4. Observation of a phononic quadrupole topological insulator.Nature volume 555, pages342–345(2018)5. Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU6. Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)7. In situ contrast calibration to determine the height of individual diffusing nanoparticles in a tunable confinement S. Fringes et al. J. Appl. Phys. 119 024303 (2016)8. Interferometric characterization of rotation stages for X-Ray nanotomography T. Stankevi? et al. Rev. Sci. Instrum. 88 053703 (2017)9. Measurement of forces exerted by low-temperature plasmas on a plane surface T. Trottenberg and H. Kersten Plasma Sources Sci. Technol. 26 055011 (2017)10. Mesh-type acoustic vector sensor M. K. Zalalutdinov et al. J. Appl. Phys. 122 034504 (2017)11. Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)用户单位attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定,在全球范围内有超过了130多位低温强磁场显微镜用户。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎.....国内部分用户北京大学中国科技大学中科院物理所中科院武汉数学物理所中科院上海应用技术物理研究所复旦大学清华大学南京大学中科院半导体所上海同步辐射中心北京理工大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所……国外部分用户
    留言咨询
  • 凝视型高光谱成像仪(无需运动)凝视型高光谱成像仪(无需运动)基于Fabry-Perot干涉仪技术,不需要机械扫描仪器。在该技术中,在传感器前面放置可连续选择光谱波段的可调谐滤波器,通过快速收集每个光谱带通的完整图像生成三维光谱立方体数据,波长有400-1000nm和1000-1700nm范围。凝视型高光谱成像仪(无需运动)包括支持广泛的高光谱成像应用所需的硬件和软件。无论您是在现场工作,实验室或生产设施,都满足标准性,可移植性和应用多功能性。凝视型高光谱成像仪(无需运动)主要技术参数:型号Model 4250 VNIRModel 4400 SWIR波长范围400-1000nm1000-1700nm光谱通道数300nominal108nominal光谱分辨率4nm10nm像素2.3MP3.2MP连接USBUSB,Camlink镜头15°或30°工作温度20°C ± 10°C湿度65% non-condensing尺寸重量197.7x81x78mm,1.25kg354x80x80mm,1.6kg凝视型高光谱成像仪(无需运动)主要特点:▼采集速度:该相机独特属性之一是其波长选择性,可以根据应用和要成像的对象动态控制。 该系统支持多种操作模式,从具有数百个波段的高光谱分辨率静态图像捕获到在多光谱配置中具有几个感兴趣的带通的实时甚至视频速率图像捕获和分类。▼图像均匀性:线扫描系统依赖于恒定的条件以获得max佳性能,并容易受到微妙的环境变化的影响,从而对图像均匀性产生不利影响。因为4200张图像可以同时捕获整个感兴趣的区域,所以即使在动态条件下,它也可以捕获高度一致的图像。▼应用灵活性:前置凝视系统比行扫描技术具有其他优势,显著的是更灵活的观察几何选项。这种系统不仅可以静态安装,还可以用于外部安装在机载平台上。▼我们的目标是针对客户的问题开发智能成像解决方案。 因此,我们的系统包括不仅用于采集而且用于图像探索和分类的应用软件。易于使用的工具允许简单直观地应用复杂的分割算法,并立即呈现给用户。凝视型高光谱成像仪(无需运动)主要应用领域:▲ 刑事侦查:可疑文件鉴定、痕迹探测、可燃液体残留分析、犯罪现场勘查等;▲ 天文地理:地质遥感、矿石检验、天文观测等;▲ 材料分析:各种塑料、金属、垃圾等材料检验等;▲ 农业生产:农作物生长情况及病虫害监测、农作物选种、农产品等级分类等;▲ 食品安全:瓜果蔬菜农药残留检测、肉类产品食用品质及表面污染物检测等;▲ 药品检测:药片中的有效成分含量及其分布检测等;▲ 环境监测:水体水质污染监测、土壤污染检测、大气污染物监测等;▲ 文物保护:艺术品鉴别、文物古迹修复等。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
    留言咨询
  • 凝视型高光谱成像仪(无需运动)凝视型高光谱成像仪(无需运动)基于Fabry-Perot干涉仪技术,不需要机械扫描仪器。在该技术中,在传感器前面放置可连续选择光谱波段的可调谐滤波器,通过快速收集每个光谱带通的完整图像生成三维光谱立方体数据,波长有400-1000nm和1000-1700nm范围。凝视型高光谱成像仪(无需运动)包括支持广泛的高光谱成像应用所需的硬件和软件。无论您是在现场工作,实验室或生产设施,都满足标准性,可移植性和应用多功能性。凝视型高光谱成像仪(无需运动)主要技术参数:型号Model 4250 VNIRModel 4400 SWIR波长范围400-1000nm1000-1700nm光谱通道数300nominal108nominal光谱分辨率4nm10nm像素2.3MP3.2MP连接USBUSB,Camlink镜头15°或30°工作温度20°C ± 10°C湿度65% non-condensing尺寸重量197.7x81x78mm,1.25kg354x80x80mm,1.6kg凝视型高光谱成像仪(无需运动)主要特点:▼采集速度:该相机独特属性之一是其波长选择性,可以根据应用和要成像的对象动态控制。 该系统支持多种操作模式,从具有数百个波段的高光谱分辨率静态图像捕获到在多光谱配置中具有几个感兴趣的带通的实时甚至视频速率图像捕获和分类。▼图像均匀性:线扫描系统依赖于恒定的条件以获得max佳性能,并容易受到微妙的环境变化的影响,从而对图像均匀性产生不利影响。因为4200张图像可以同时捕获整个感兴趣的区域,所以即使在动态条件下,它也可以捕获高度一致的图像。▼应用灵活性:前置凝视系统比行扫描技术具有其他优势,显著的是更灵活的观察几何选项。这种系统不仅可以静态安装,还可以用于外部安装在机载平台上。▼我们的目标是针对客户的问题开发智能成像解决方案。 因此,我们的系统包括不仅用于采集而且用于图像探索和分类的应用软件。易于使用的工具允许简单直观地应用复杂的分割算法,并立即呈现给用户。凝视型高光谱成像仪(无需运动)主要应用领域:▲ 刑事侦查:可疑文件鉴定、痕迹探测、可燃液体残留分析、犯罪现场勘查等;▲ 天文地理:地质遥感、矿石检验、天文观测等;▲ 材料分析:各种塑料、金属、垃圾等材料检验等;▲ 农业生产:农作物生长情况及病虫害监测、农作物选种、农产品等级分类等;▲ 食品安全:瓜果蔬菜农药残留检测、肉类产品食用品质及表面污染物检测等;▲ 药品检测:药片中的有效成分含量及其分布检测等;▲ 环境监测:水体水质污染监测、土壤污染检测、大气污染物监测等;▲ 文物保护:艺术品鉴别、文物古迹修复等。关于昊量光电:昊量光电,您的光电超市!上海昊量光电设备有限公司专注于光电领域的技术服务和产品销售。致力于引进国外优质的光电器件制造商的技术与产品,为国内客户提供优质的产品与服务。我们力争在原产厂商与客户之间搭建起沟通的桥梁与合作的平台。您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
    留言咨询
  • Zygo激光干涉仪红外干涉仪适用于高精度红外成像应用的测量方法光学成像的应用广泛,种类繁多。在系统的设计波长下进行测试对开发、最终对准和鉴定至关重要。用于航空航天和国防的夜视、红外和热成像系统、光刻子系统、遥感望远镜和外来材料鉴定对波长有不同的要求,而它们都受益于在红外干涉仪系统在设计波长下的测试。ZYGO长期以来被公认为是世界上干涉测试仪器的先行者,已经设计和制造了许多特殊装备的干涉仪系统,包括NIR、SWIR、MWIR和LWIR波长的系统。ZYGO还设计和制造了一系列用于这些波长的参考光学器件(透射球面镜和透射平面镜)。主要特点工作波长范围广:NIR:1.053μm&1.064μmSWIR:1.55μmMWIR:3.39μmLWIR10.6μm基于工作波长的QFAS十字快速对准视图简化了红外测试系统和组件的设置。ZYGO独有的QPSI™ 采集技术,可在振动较常见的环境中实现可靠的测量,NIR、SWIR和MWIR型号均配有这种技术。可选的DynaPhase™ 瞬时数据采集技术,对振动不敏感,可在最恶劣的环境中进行测量。
    留言咨询
  • FT-IR 光谱辐射应用 光谱辐射计量应用 从科学研究到可部署的解决方案,傅立叶变换红外(FT-IR)光谱辐射计量技术已经成为发展和增强不同军事应用的理想技术。在国防工业领域,FT-IR光谱辐射计量技术应用于:&minus 伪装系统开发和红外隐身;&minus 飞机发动机热辐射特性的分析检测;&minus 红外诱饵发射光谱和先进对抗系统的开发、分析和改进;&minus 逸散性排放分类,用于红外辐射特性数据库的开发;&minus 战场爆炸波分类,其中包括炸弹爆炸、炮口焰和导弹发射;&minus 开发多种可部署的侦察解决方案对战场情况进行远程遥感。 这种卓越的创新型技术扩展了工程模型的应用。它还用于改善不同类型的红外发射源。FT-IR成像光谱辐射计可为红外发射源建模和辐射场的时空演变提供关键信息数据。 结合成像光谱辐射计,用带有反演算法的辐亮度测量可以对各种大气应用进行成像,例如:&minus 气象湍流探测;&minus 大气成分分析;&minus 化学云的远距离探测。 技术在传统的单像束FT-IR光谱辐射仪具有无可比拟的性能(如更高的光谱分辨率和在整个视场(FOV)内更好的灵敏度)的同时,多像素FT-IR超光谱成像仪则进一步拓展了红外特性的探测能力。通过空间解析所观察场景的关键特性,可能提供精确的目标空间谱信息。 通过结合场景的光谱和空间谱信息,采集到的数据将得到进一步的应用。因此,FT-IR成像光谱辐射计具有生成3D图像的独特功能(2D空间图像+Z向的光谱信息),其中每个像素点具有其所对应空间场景的谱信息。 走在成像光谱领域的最前沿ABB在光谱技术领域拥有35年的创新史,是公认的世界领导者,目前正在通过其新开发的FT-IR超光谱成像光谱辐射计扩展其遥感产品系列。MR-i具有以下特点: 成熟、坚固的设计MR-i是一款商用/商业级FT-IR成像光谱辐射计,以ABB Bomem MR系列光谱辐射仪为基础,核心其设计采用了与MR304/MR170相同的无阻尼、坚固的4端口干涉仪结构。 双相机配置MR-i是首款能同时具有中波红外成像和长波红外成像的商业级FT-IR超光谱成像光谱辐射计。MR-i 4端口干涉仪能够同时容纳两种不同类型的相机模块(如MWIR/LWIR)组合,扩展了仪器的光谱覆盖范围,或可集成两个相同的相机模块(如MWIR/MWIR),扩展了仪器的动态范围。凭借这种独特的特性,MR-i能够同时采集并精确同步两个可互换的相机模块的数据,使仪器能够同时进行复杂辐射场景的测量。 配置两个探测模块的MR-i就如同在一个仪器中融合两个成像光谱辐射仪的功能,具有以下好处:&minus 两个相机的精确同步;&minus 两个相机的光轴一致;&minus 通过一个用户界面轻松操作;&minus 降低了购置成本;&minus 降低了维护成本 灵敏度/扩展的动态范围 某些应用,例如目标红外辐射特性,常常需要同时测量场景中随机分布的高、低强度发射源。每个探测模块的信噪比性能受到相机积分时间的影响。根据亮点(hot pixels)的能量级别设置积分时间将对场景中的暗点(cold pixels)产生负面影响。另一方面,预设暗点最大信噪比的积分时间将导致亮点饱和。 MR-i对于目标红外辐射特性的定量测量与分析提供了无与伦比的灵敏度。利用相同光谱范围(MWIR-MWIR或LWIR-LWIR)的两个探测模块配置在两个输出端口,它们能够分别设置不同的增益或积分时间,以扩展仪器的动态范围。这大大改善了对于场景中最明亮和最暗淡的区域的定量监测。
    留言咨询
  • 科缔欧人体测温热成像仪,在线人体红外温度筛查预警系统,热成像人体测温布控系统,火车站监测人体温度热成像,园区人体温度监控红外热成像,人体温度检测超温预警系统,营业厅智能红外人体测温人脸识别机,红外热像仪人体测温报警摄像机,校园学生体温检测热成像,工厂出入口人体温度检测异常预警摄像头,海关口岸红外人体测温异常报警系统,医院人体测温告警系统,手持式人体温度检测仪,建筑工地人体测温仪,车站热成像人体测温摄像头,在线式人体测温红外热成像。产品型号:KDO-PC10-S150PY产品名称:人体测温热成像仪一、系统概述 科缔欧人体测温红外热成像探测仪采用非接触式区域性的高效温度测量监测预警系统,采用了美国业界厂家的热成像大靶面芯片,使用双芯片镜像分析技术,出厂就针对人体温度范围专门做了校准,可以脱离黑体使用,成本优势明显。探测仪能够在公共场所进行人体温度监测筛查,快速找出并对体温较高的人员进行标记并报警,如快速排查冠状病毒、SARS、寨卡和埃博拉等引起的人体发热症状。系统温度自动校正,无须人工干涉,内置高精度双芯片热成像传感器,彻底消除温度漂移,可长年稳定可靠工作。 可广泛应用于机场、火车站、地铁站、客运站、医院、学校、政府、企事业单位、营业厅、商超、会议中心、园区、工厂、企业、建筑工地等公共场所以及各类生产中心集中办公场所等区域。二、产品特点◆红外图像清晰:非致冷式微电热FPA检测器,提供清晰红外热像图;◆快速检测:红外热像仪采用毫秒级响应探测器;◆精度测温:全幅高速测温、测温精度±0.3;◆测温稳定:采用美国热成像大靶面芯片,使用双芯片;◆使用安全:非接触的人体温度测量。三、系统架构 系统采用集成一体化模式设计,由人体测温红外热成像探测仪、管理软件客户端构成。系统以人体测温热红外成像探测仪设备为主要前端设备;存储管理需配置电脑服务器,管理软件安装于电脑服务器。 该前端专门针对人体测温区间进行精确校准,能够适应人体温度检测的各种应用环境,能够有效针对人体温度分布区间进行高精度温度识别,特别适用于各类人员聚集区域、公共场所的人员健康情况预警管理。实现所有出入人流的温度实时监测和超温预警,设备可联声光报警装置,通过对人体温度实时监测,将体温过高自动筛出,可进一步确认是否有疫情、病情等情况,然后及时进行处理。通过USB数据线将采集到的温度数据信息传输至管理客户端进行存储,进一步分析和追溯。四、系统优势 系统可根据不同场景灵活部署,既可以作为突发情况下紧急进行通道出入口的流动人员非接触无感体温测量筛查,也可以用于常态化对交通枢纽、学校、园区的各个通道入口处进行流动人员无感体温测量筛查。系统可以融合公共场所常用安防子系统,譬如视频监控、LED屏显示、门禁、报警联动等系统,实现个子系统间资源共享,为公共卫生应急事件处理提供无感测温手段,并与关联安防系统之间形成联动管控机制。五、设备参数型号KDO-PC10-S150PY视场角/最小成像距离24° x18°/0.1m空间分辨率1.3 mrad热灵敏度0.1KRMS @1Hz refresh rat探测器类型非致冷式微电热FPA检测器分辨率64 x64工作波段8-14um焦距调焦方式手动图像红外图像保存BMP或JPG格式软件支持告警显示和管理平台测温功能测温范围30℃~45℃测温精度±0.3℃报警条件当检测到超过温度阀值高低温报警触发报警时可自动存储温度数据。参数校正辐射率校正,环境温度校正,距离校正人体测温距离0.3米~1.8接口数据接口USB2.0,开关量物理特性重量340g尺寸104(L)*58(W)*67(H)mm电源AC220V功耗2W工作温度-20℃- +50℃存储温度-40℃- +60℃安装三脚架临时、悬架固定。侧视,正视,小角度俯
    留言咨询
  • 白光干涉仪 400-860-5168转1329
    白光干涉仪概述Rtec 白光干涉仪在加利福尼亚硅谷制造。已被多个知名实验室、大学和行业使用。UP系列在一个头上组合了4种成像模式。能够在同一测试平台上运行多种测试,只需单击按钮,就能转换成像模式。这种组合可以轻松地对任何表面进行成像如透明、平坦、黑暗、扁平、弯曲的表面等。每种成像模式都具有各自的优势,并且各项技术彼此互补。该项整合技术不仅有利于数据的综合分析,也可以减少维护成本,从而提高效率。 3D光学轮廓仪组合l白光干涉仪l旋转盘共聚焦显微镜 l暗视野显微镜l明视野显微镜 主要平台规格 产品规格l标准电动平台150x150mm(可选210x310mm)l标准转塔,电动转塔可选l垂直范围可达100mml倾斜阶段6度lXY平台分辨率0.1uml自动拼接楷模lSigma头 - 仅限白光干涉仪lLambda头 - 白光干涉仪+共焦+暗场+明场 应用 ●粗糙度 ●体积磨损 ●台阶高度 ●薄膜厚度 ●形貌 测试图像示例 DLC涂层球 粗糙涂层表面 圆球磨斑 金刚石 生物膜 微流体通道 聚合物涂层 墨痕 硬币 研磨垫 铝的失效痕迹 划痕 涂层失效痕迹 芯片通道 晶圆以上为双模式三维表面轮廓仪拍出的样品形貌。在同一平台上结合使用多种光学技术,测试仪可以测量几乎任何类型的nm分辨率样品。 该表面轮廓仪配有功能强大的分析软件,符合多种标准。双模式三维表面轮廓仪能够在同一测试平台上运行多种测试,产品的组合可根据不同的技术应用要求而改变。针对样品的同一区域可进行不同模式的实验检测,模式切换可实现自动化。多项技术的整合能够使不同技术在同一检测仪上充分发挥各自的优势。该项整合技术不仅有利于数据的综合分析,也可以减少维护成本,从而提高效率。
    留言咨询
  • HORIBA在拉曼光谱领域拥有50年的专业经验,新推出的LabRAM Soleil™ 高分辨超灵敏智能拉曼成像仪结构紧凑、体积小巧,将带给您前所未有的体验。 LabRAM Soleil™ 只需较少的人工干预即可one day工作24小时,这得益于仪器的:高度自动化、高光通量、物镜自动识别、光学反射镜自动切换、SmartSampling™ 和QScan™ 提供的超快速成像、4块光栅快速全自动切换、光路自动准直以及LabSpec 6 智能软件功能。 结构紧凑型高分辨超灵敏智能拉曼成像仪LabRAM Soleil™ 设计紧凑且保证激光安全,提供多种光学观察模式和高光谱成像功能:占用面积1m21级激光安全大样品室反射/透射照明明场/暗场/落射荧光/相位差和差分干涉差(DIC)显微镜ViewSharpTM 超快速三维表面形貌技术QScan™ 激光矢量片层扫描技术——无需移动样品即可进行高质量3D共焦成像XYZ 3D共聚焦成像,深度剖析(单点或QScanTM片层扫描)标配低波数拉曼散射(30 cm-1)光致发光(PL)、电致发光、光电流、上转换发光纳米空间分辨率光谱:耦合AFM和SEM可以实现NanoRaman™ (TERS)、纳米PL和阴极发光 专注于您的工作,其它的交给仪器!忘掉拉曼成像前冗长乏味的准备操作!LabRAM Soleil™ 提供先进的自动化功能,结合EasyImage™ 易成像工作流技术,它较大减少了参数设置上花费的时间,并且极大程度上确保了稳定性和再现性: 真正的自动操作系统EasyImage™ :有操作向导,简单快速自动校准:根据环境条件在几秒钟内自动检查并重新校准SmartID™ : 不用担心使用错误的物镜倍数或者错误的参数远程维护超快速成像:拉曼成像从未有如此之快!LabRAM Soleil的光学稳定性加上专利保护的显微图像-拉曼匹配精度,使得高质量拉曼成像速度可以提高100倍以上:SmartSampling™ :基于新的成像法则,首先获取信号贡献多的样品点信号,将成像时间由几小时缩短为几分钟TurboDrive™ :光栅快速驱动,快至400nm/s4种SWIFT™ 功能:SWIFT™ :普通超快速成像SWIFT™ XS:Ultra模式(快速拉曼成像,高达每秒1400条光谱)和高对比度模式(读出速率提升和信号增强)SWIFT™ XR:多窗口扩展快速成像技术,适用于需要采集大范围PL光谱或大范围高分辨拉曼光谱,同时又要保证超快速成像的样品Repetitive SWIFT™ :信噪比增强快速成像技术,不断重复以改善信噪比解决各类分析问题从材料研究到聚合物研究,从生物分析到药物分析,LabRAM Soleil可以很轻松地应用于各个领域。得益于其先进的模块化和灵活性,LabRAM Soleil无论对于学术研究或者工业质量控制都是一套完美的显微拉曼系统。可配置4个内置激光器和6块不同的滤光片1分钟内可快速切换4块光栅标准低波数:低至30cm-1大样品室: 444(H) x 509 (L) x 337 (W) mm具有很高的稳定性,维护操作简单 LabSpec6软件:轻松驾驭LabRAM Soleil的全部功能!LabSpec 6软件将各种技术做成应用程序包,力求操作简便,可根据用户需要定制界面。软件的现代化和智能设计助您快速获取拉曼成像,即使您不是一个专家,也能轻松获取完美的拉曼成像图。先进的多变量分析方法MVAPlus™ :轻松分析百万条光谱,即使是“困难”的样品,也能极大程度地对其中的分子进行鉴别和定量分析。ProtectionPlus确保符合FDA 21 CFR Part 11和GMP / GLP的要求ParticuleFinder™ 能自动对颗粒进行形态和化学分析,几秒内即可对颗粒进行分类EasyImage™ 自动化的工作流程使得用户只需一键点击即可获得拉曼成像
    留言咨询
  • 一、产品介绍便携式/叶绿素荧光成像仪HXIN-PSIMAGE100不仅可用于叶绿素荧光成像,还可用于植物、动物或其组织器官及菌落等绿色荧光蛋白(GFP)分布异质性成像分析研究。该系统由四组高亮度发光二极管提供高强度测量光或适度可持续光,高强度测量光脉冲可以使荧光信号成像测量在很高的背景光下进行。荧光信号通过高灵敏度CCD摄像头探测成像,动态荧光图像可以通过所附带的软件进行分析。 二、硬件参数1. 荧光光源:蓝光450nm(460nm可选),测量光强度0.5 μmol m-2 s-1,最大光化光强度 3700 μmol m-2 s-1,饱和脉冲强度 8200 μmol m-2 s-1。2. 吸光系数测量光源:红光650 nm(660nm可选)和近红外(780 nm)LED,用于测量样品PAR 吸光系数。3. 信号检测:光谱范围350~1100 nm,1920*1080像素,成像面积24×32 mm,采集速率30 帧/秒,带选择性锁相放大器。4. 成像功能:获得Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、ETR等参数进行成像分析。5. 光强异质性:测量区域光强异质性小于 ±7%。6. 光学滤光片:6种高质量光学干涉滤光片,包括荧光、红光、绿光、蓝光、花青素和近红外滤光片。7. 程序测量:可程序测量荧光诱导曲线、快速光曲线和暗弛豫,也可手动测量。8. 项目管理:预约存多次测量的植物影像及参数,延时(缩时)摄影功能。
    留言咨询
  • 红外干涉仪 400-860-5168转3339
    红外干涉仪 完美融合创新设计及尖端技术,M-Wave 339干涉仪是艺术级LUPI(不等光程激光干涉仪),操作于3.39um/10.6um波长(或其他指定波长),是用于测试中波红外成像组件/系统和光材料均匀性的理想仪器。 规格参数精确度 (未标定) 精确度 (已标定) 重复性基础设备孔径 扩束器孔径相机分辨率变焦镜头 采集模式 激光类型 波长*输出功率≥束偏振 0.01 λ RMS 波前误差 @ 3.39μm 0.004 λ RMS 波前误差 @ 3.39μm 0.001λ RMS 波前误差 @ 3.39μm 25.4mm 直径101.6mm 直径640 x 512 像素1X to 6X相移HeNe3.39 μm、10.6um2 mW线性 包装尺寸系统光轴高度激光安全等级 重量 分析软件 744mm x 407mm x 275mm115mmCDRH IIIb激光产品3B类60 lbs (主机) ESDI Intelliwave LE-2 or Apre Reveal控制装置手动参考光倾斜电动激光功率衰减器电动6x连续变焦电动聚焦WFOV调整模式 / NFOV测量模式单一出厂设置参考臂反射器 (98%)配件/可选扩束镜 (75mm, 100mm, 150mm, 200mm)90度伸缩肘管电动控制项目的遥控器5轴镜片/窗口夹具高度调节器自动聚焦测量设备
    留言咨询
  • 组织血流成像仪 400-860-5168转4032
    激光散斑血流成像仪采用新兴的LSCI (laser speckle contrast imaging,激光散斑衬比分析成像)技术设计,以独有的非接触、高分辨、全场快速成像的技术优势,为临床医疗及生命科学基础研究提供了一种全新有效的血流监测及血流成像的手段。仪器无需任何造影剂,时间分辨率可达毫秒量级,空间分辨率可达微米量级,实现了科研及医疗人员实时观察微血管的血流分布状态及血流数值相对变化的功能需求。型号:HR PRO型号:ZOOM仪器特点:超高的成像精度:成像精度作为产品最核心的功能,在相同操作下,能够看到更清楚的血管细节。以脑部为例,我们的仪器能够看到小鼠脑部末端毛细血管。卓越的相应速度:设备的响应速度在200毫秒以内,为同类产品中最快。在对动物进行血流阻断或恢复实验后能够迅速显示变化。小巧的输出文件:仪器单个输出文件只有3兆左右,数据可连续记录数个小时。通过数十年的算法积累,实现了优秀的数据处理能力,在保持高清完整的实验数据的前提下,将记录文件做到更小。方便的使用体验:通过业内独有的显微镜一体式成像,在显微镜下对动物进行手术操作即可实时显示血流图像。无需额外再配显微镜进行操作,最大化方便用户使用体验。稳定的工作距离:在显微镜下完成聚焦成像即可在系统中实现实时成像,工作距离稳定,视野调节不影响空间位置,方便了手术操作。特色的反光处理:独特的侧向发射光很好地规避了垂直入射带来的反光问题,仅仅需要简单操作即可清晰看到,无需额外加生理盐水。简洁的软件操作:血流仪附配的软件操作简单,只需半小时左右即可轻松上手;图像清晰,内部优化参数已经通过长期实践优化完善,无需客户处理;选择自由度高,能够分析任意时间段、任意区域的血流值,可以选择任意时间作为参考;自动化导出报告,能够自动生成包括血流柱状图、折线、表格等数据,并生成报告,方便分析。技术原理简介:激光散斑(laserspeckle):当激光照射在相对粗糙(和光的波长相比)的组织表面上,经过不同光程的散射光之间相互干涉,形成随机干涉图样,即散斑。当被激光照亮的区域经过CCD 成像系统时,产生颗粒状或斑纹状像面散斑。如果散射介质(如血细胞)在运动,图象中的每一个象素将产生随时间变化的散斑图样。该图样在时间和空间上的强度变化包含着散射介质的运动信息。通过分析散斑强度在时间和强度变化的空间统计特性,可获得定量的流速信息。设备细节:案例分析:小鼠颈动脉栓塞模型的血流变化案例分析:MCAO模型—在MCAO模型制备后15分钟即可在正常脑皮层及轻度缺血区域观察到侧支循环出现。 肠系膜模型—能够十分清晰的看到肠系膜的血流图,微小血管循环也能比较清晰的看到。大鼠脑部—通过对大鼠颅骨进行适当处理,能够清楚地看到大鼠脑部微小血管支路。对血管进行阻塞抑制,也能够实时显示。小鼠下肢—通过小鼠下肢的自身对照,能够看清各部位的血流丰度。光化学诱导缺血—在光化学抑制脑部区域缺血后,能够很清晰的看到血流图上的变化。中医针灸治疗机理研究 技术参数:参数型号HR Pro(高分辨率)WF(大视场范围)激光波长785nm785nm工作距离110mm90-500mm采集相机分辨率2048*20482048*2048血流成像速度100fps100fps空间分辨率可达2μm/pixel37-125μm/pixel血流成像模式高分辨成像、快速成像,反应速度200ms内图像配准组织结构/彩色图像与血流图像达到像素级严格配准感兴趣区域(ROI)血流均值分析ROI流速均值在线/离线分析,支持任意形状及数量的ROI选择、复制、删除,ROI位置与大小自由拖放编辑TOI血流均值分析支持任意时间段内血流均值及血流均值相对变化的分析 血管管径分析功能任意选择多根血管,在线/离线分析管径变化事件打标功能支持用户对采集过程中的特征性时刻进行打标记录定位网格支持任意密度的定位网格,便于用户对观测对象进行精确定位运动矫正功能支持对观测对象在观测过程中发生的移动/运动进行自动矫正,无需再进行平移ROI等操作即可实现对长时间图像序列的数值分析血流图像采集方式具备连续采集、指定时间间隔采集方式数据存储格式原始流速数据/标准图像/视频等多种数据保存格式血氧测试功能可实时显示、定量分析氧合血红蛋白浓度、脱氧血红蛋白浓度、血容和血氧饱和度★电源要求220V交流电如果需要测量组织某一个点位的血流量,可以选择:激光多普勒血流仪激光多普勒血流仪适合对多种组织器官进行点式或线式的快速扫描,我们可以根据您的研究对象和实验方向,推荐合适的型号和配置,敬请来电咨询。LAB型号的血流仪广泛应用于脑缺血实验、皮肤肌肉血流量测定、脏器血流量测定、皮瓣血流量、牙龈牙髓测定等各种器官、组织血流量测定。型号:LAB 单通道型号型号:LAB 2ch 双通道型号激光血流仪的主要功能特点: 用于大鼠、小鼠脑血流测定,各组织脏器血流测定等; 测试范围广,根据所要检测的组织选用相应的探头; 探头校准数据自动存储于芯片中,实现了探头的免校准,即插即用; 分析软件功能强大,自动生成报告,提供长时间连续监测; 可选配多通道配置,同时对多多个部位或只动物进行测量; 可将多台主机与一台计算机相连;主要参数: 用于连续测量组织血流 测试激光:780nm 半导体激光,CLASS 1M 级别 信号带宽:24HZ-24KHZ 时间常数:0.1, 1, 3 sec 测定项目:组织血流量:0–1000.0(mL/min/100g 相当),血流变化曲线 受光强度模拟信号输出:0– 10V 血流模拟信号输出:0– 10V 光纤探针:100/140 μm 测定范围:约 1mm 直径范围内 测定深度:0.5mm – 1mm 工作温度范围:5-40℃ 使用湿度范围:0-90%激光多普勒血流有多种款式和型号可选,可提供:大、小鼠脑血流量测量(脑缺血模型)皮肤肌肉血流量测量、动物海马血流量测量、皮瓣灌注量测量、血管活性研究测量、牙龈血流量测量、各组织脏器血流量(肝、脾、肾等)测量、肠系膜血流量测量、烧伤创面血流灌注量测量;组织氧含量测量、糖尿病足的足趾末端压力测定等。敬请来电咨询。更多信息,敬请来电咨询。 请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • HORIBA在拉曼光谱领域拥有50年的专业经验,新推出的LabRAM Soleil&trade 高分辨超灵敏智能拉曼成像仪结构紧凑、体积小巧,将带给您前所未有的体验。LabRAM Soleil&trade 只需较少的人工干预即可一天工作24小时,这得益于仪器的:高度自动化、高光通量、物镜自动识别、光学反射镜自动切换、SmartSampling&trade 和QScan&trade 提供的超快速成像、4块光栅快速全自动切换、光路自动准直以及LabSpec 6 智能软件功能。 结构紧凑型高分辨超灵敏智能拉曼成像仪LabRAM Soleil&trade 设计紧凑且保证激光安全,提供多种光学观察模式和高光谱成像功能: √ 占用面积1m2 √ 1级激光安全大样品室 √ 反射/透射照明 √ 明场/暗场/落射荧光/相位差和差分干涉差(DIC)显微镜 √ ViewSharpTM 超快速三维表面形貌技术 √ QScan&trade 激光矢量片层扫描技术——无需移动样品即可进行高质量3D共焦成像 √ XYZ 3D共聚焦成像,深度剖析(单点或QScanTM片层扫描) √ 标配低波数拉曼散射(30 cm-1) √ 光致发光(PL)、电致发光、光电流、上转换发光 √ 纳米空间分辨率光谱:耦合AFM和SEM可以实现NanoRaman&trade (TERS)、纳米PL和阴发光专注于您的工作,其它的交给仪器!忘掉拉曼成像前冗长乏味的准备操作!LabRAM Soleil&trade 提供先进的自动化功能,结合EasyImage&trade 易成像工作流技术,它大大减少了参数设置上花费的时间,并且大程度上确保了稳定性和再现性: √ 真正的自动操作系统 √ EasyImage&trade :有操作向导,简单快速 √ 自动校准:根据环境条件在几秒钟内自动检查并重新校准 √ SmartID&trade : 不用担心使用错误的物镜倍数或者错误的参数 √ 远程维护超快速成像:拉曼成像从未有如此之快!LabRAM Soleil的光学稳定性加上保护的显微图像-拉曼匹配精度,使得高质量拉曼成像速度可以提高100倍以上: √ SmartSampling&trade :基于新的成像法则,首先获取信号贡献多的样品点信号,将成像时间由几小时缩短为几分钟 √ TurboDrive&trade :光栅快速驱动,快至400nm/s √ 4种SWIFT&trade 功能 SWIFT&trade :普通超快速成像 SWIFT&trade XS:Ultra模式(快速拉曼成像,高达每秒1400条光谱)和高对比度模式(读出速率提升和信号增强) SWIFT&trade XR:多窗口扩展快速成像技术,适用于需要采集大范围PL光谱或大范围高分辨拉曼光谱,同时又要保证超快速成像的样品 Repetitive SWIFT&trade :信噪比增强快速成像技术,不断重复以改善信噪比解决各类分析问题从材料研究到聚合物研究,从生物分析到药物分析,LabRAM Soleil可以很轻松地应用于各个领域。得益于其先进的模块化和灵活性,LabRAM Soleil无论对于学术研究或者工业质量控制都是一套完美的显微拉曼系统。 √ 可配置4个内置激光器和6块不同的滤光片 √ 1分钟内可快速切换4块光栅 √ 标准低波数:低至30cm-1 √ 大样品室: 444(H) x 509 (L) x 337 (W) mm √ 具有很高的稳定性,维护操作简单LabSpec6软件:轻松驾驭LabRAM Soleil的全部功能!LabSpec 6软件将各种技术做成应用程序包,力求操作简便,可根据用户需要定制界面。软件的现代化和智能设计助您快速获取拉曼成像,即使您不是一个专家,也能轻松获取完美的拉曼成像图。 √ 先进的多变量分析方法MVAPlus&trade :轻松分析百万条光谱,即使是“困难”的样品,也能大程度地对其中的分子进行鉴别和定量分析。 √ ProtectionPlus确保符合FDA 21 CFR Part 11和GMP / GLP的要求 √ ParticuleFinder&trade 能自动对颗粒进行形态和化学分析,几秒内即可对颗粒进行分类 √ EasyImage&trade 自动化的工作流程使得用户只需一键点击即可获得拉曼成像技术指标光学设计高效率全反射式采用超宽带电介质反射镜共焦设计高效率全反射式采用超宽带电介质反射镜共焦针孔自动机械针孔三维空间滤波激光波长可选325nm、532nm、638nm、785nm等激光光路支持6路自动,独立优化控制激光偏转方向采用超宽带电介质反射镜光栅扫描速度400nm/s采用TurboDriveTM 闭环快速直驱光栅技术光栅数量不限支持4块光栅全自动切换低波数拉曼30cm-15cm-1可选Fast Alignment 新一代自动准直技术15s 光路准直时间内置PSD位敏探测器光谱模式多达6种全自动光谱模式拉曼、PL、ULF、上转换发光等等瑞利滤光片每个滤光片均由计算机控制激光阻挡优化成像多达8种光谱成像技术详情请咨询HORIBA销售工程师激光安全Class1 安全的激光安全等级尺寸898mm x 797mm x 806mm重量120Kg功耗满负荷运转时 600 W环保和安全设计1根电源线1根通讯线
    留言咨询
  • 多功能光栅光谱仪实验装置,YTR-6308简介YTR-6308多功能光栅光谱仪是一款以光栅作为分光元件的光谱仪,其基本原理是当不同波长的光束以相同的入射角入射到光栅上时,不同波长的光束同一级衍射的主极大位置不同,从而达到分光的目的。其优点是具有较宽的光谱测量范围和较高的分辨率,综合性能突出,是目前使用最为广泛的光谱仪器。该光栅光谱仪专为物理实验教学开采用开放式的结构设计,学生可以直观的观看光谱仪的内部光路和结构。同时采用了光电倍增管和线阵式CCD作为光电传感器,既可以获得高分辨率光谱,也可以快速获得宽光谱。使学生更加充分理解和掌握光谱仪的工作原理。该仪器可以很好的使用在氢氘光谱实验,钠原子光谱等实验。特点对称式C-T光路结构,采用可视化的结构设计,帮助学生理解和掌握光谱仪结构组成和工作原理双光路设计,分别使用高品质光电倍增管和线阵CCD作为光电探测器,使得学生更能深入的理解和掌握探测器的性能和实验仪器优缺点和用途专业的光谱分析实验软件,包含:光谱测量、透过率测量、反射率测量、吸光度测量和色度学测量等多种实验模块(有些实验模块需要另配附件)实验内容热辐射光源光谱测定波长准确性的测定和修正氢原子光谱测定及里德堡常量测量吸收光谱的测量CCD测量的波长定标颜色测透过率测量吸光度测量浓度测量透镜焦距测量实验,YGP-6212简介YGP-6212透镜焦距测量实验学习的知识点有几何光学基本定律、透镜成像、显微镜、望远镜。几何光学是光学的重要分支之一,它的应用十分广泛,尤其是在设计光学仪器的光学系统等方面显得十分方便和实用。透镜作为光学仪器的基本元件,可以组建各种光学系统,在成像系统、图像摄取、遥感等领域中已经得到广泛应用。光学显微镜是一种常见的助视光学仪器,它对推动科技进步,尤其是生物学和医学,起到了重要作用;望远镜是另一种常见的助视光学仪器,它对天文学及物理学的发展起到了重要的推动作用。本实验装置可完成《理工科类大学物理实验课程教学基本要求(2023版)》中透镜焦距测量实验的基础内容、提升内容、进阶内容以及高阶内容。特点器材丰富,可以组建各种光学系统;实验内容满足分层次教学要求;通过配置COMS相机及相应的软件,使实验既有鲜明的数字化特点,又保留了手动读数的特色实验内容a)基础内容用自准直法、位移法测量凸透镜焦距;物像距法测量凹透镜焦距。b)提升内容自准直法测量凹透镜焦距;光学成像系统共轴的粗、细调节;透镜成像的景深、成像位置判断与视差消除。c)进阶内容用薄透镜自组显微镜和望远镜;探究常用显微镜结构和性能参数。d)高阶内容观测凸透镜的球差和色差;观测显微成像系统的像散。光的干涉和衍射实验,YGP-6213简介光的干涉和衍射现象是波动光学的重要内容。光干涉现象曾经是奠定光波动性的基石,在波动光学中有重要的意义。而光衍射现象,则是光束传播中,几何光学无法解释的现象,是光波动性的主要标志之一。研究光的干涉和衍射不仅有助于进一步加深对光的波动性的理解,同时还有助于进一步学习近代光学实验技术,如光谱分析、晶体结构分析、全息照相、光信息处理等。本实验同时用单缝、多缝、圆孔、方孔等进行实验,能够明显地展现出衍射、干涉的特征,并利用光强分布探测器测量光强的相对分布,实时给出光强与位置的关系曲线,以及用面阵相机研究衍射图像的两维光强分布情况,实现实验的数字化。特点采用光强分布探测器,无需扫描结构,实时测量光强一位置的分布曲线,响应时间最快可达毫秒级。利用光强分布探测器可以精确测量8级以上衍射条纹,位置测量精度可达0.01mm。利用面阵相机可以研究衍射图像的两维光强分布情况。一体化狭缝组设计,切换方便,易于实验。实验内容a) 基础内容 研究激光通过双缝后形成的干涉图案,测量双缝形成的干涉光强分布,说明干涉条纹的极大值位置与理论预见的一致性。 研究激光经过单缝后形成的衍射图案,测量单缝形成的衍射光强分布,说明衍射条纹的极小位置与理论预见的一致。b) 提升内容 研究激光通过多缝后形成的干涉图案,理解多缝衍射与多光束干涉的原理。c) 进阶内容 观察激光经过圆孔和方孔后的衍射现象,利用面阵相机研究衍射图像的两维光强分布情况。d) 高阶内容 利用COMS相机研究激光经过多孔后形成的衍射图案,利用COMS相机研究衍射图像的两维光强的分布情况光的偏振实验,YGP-6214简介光的偏振现象是波动光学的重要内容。利用这种现象研制的各种光学元件和仪器,在探测物质结构、激光与光电子技术领域有着极其重要和广泛的应用。YGP-6214光的偏振实验装置主要包含:光传感器、转动传感器、激光光源、精密调节架、升降调节架、连接杆、托板和观察屏组成。该实验装置利用先进的传感器技术和智能软件,可以实现连续的数据采集和实时绘制实验数据曲线,极大的提升了实验效率,使学生将更多的精力用于实验本身的原理学习、数据分析和结果讨论上,更加能够透彻的学习、理解和掌握实验。特点无线光传感器,USB2.0和蓝牙通讯,3档可调,适用于不同强度光源的测量。无线转动传感器,USB2.0和蓝牙通讯,角分辨率0.18°。安全的激光光源。数字实验室分析软件,编辑性强,通用程度高。实验内容理解和掌握偏振片的基本原理,使用方法。理解和掌握激光器的偏振特性。通过研究和验证马吕斯定律,掌握光的起偏和检偏原理和方法。研究3片偏振片光强与偏振片角度的关系曲线,进一步掌握光的偏振特性。等厚干涉实验(含牛顿环实验),YGP-6215简介YGP-6215等厚干涉实验(含牛顿环实验)学习的知识点有牛顿环、等厚干涉、光程差、曲率半径。牛顿环和空气劈尖的等厚干涉原理在生产实践中具有广泛的应用,它可以用于检测透镜的曲率,测量光波的波长,精确的测量微小长度、厚度和角度,检验物体表面的光洁度、平整度等。本实验装置可完成《理工科类大学物理实验课程教学基本要求(2023版)》中牛顿环实验的基础内容、提升内容、进阶内容以及高阶内容。特点开放的构架,可以让学生看到所用镜片的类型和位置。可以让学生练习搭建各种光学系统。配套有测微目镜与CMOS相机两种读数方式,即实现实验数字化的同时,保留了传统手动读数的方式。多种光源,更多的分立器件,便于师生开展各种探索研究,比如:同时观察透射和反射的牛顿环,波长测量等实验内容a)基础内容测定平凸球面透镜的球面半径。b)提升内容用劈尖干涉测量细丝直径。c)进阶内容测定平凹球面透镜的球面半径。d)高阶内容用透射和反射两种方法观察牛顿环,并测量绿光、紫光、黄光的波长。更多精彩,请关注下方!的P-tP
    留言咨询
  • 激光干涉仪原理和方法:随着光通讯行业的飞速发展,特别是通讯行业手机、平板等对成像质量要求的不断提高,必须对手机面板摄像孔的光学玻璃的透射波前进行检测和分析。光学玻璃的透射波前是指一个标准的波形(平面波、球面波等)被透射或反射后的波形,它主要用于光学成像的像质评价。随着透射光学系统(如手机平板等摄像系统等)的成像质量要求越来越高,迫切需要高精度的光学玻璃透射波前的检测手段。高精度的检测方法主要是用干涉法检测波前畸变。 激光干涉仪其工作原理是将待测手机平板放于干涉仪的参考平面镜和标准反射镜中间,从标准参考镜反射的光和标准反射镜的光相干涉,干涉条纹则反映了手机面板摄像孔透射波前的好坏。技术参数硬件部分产品型号SDI-635-10PV产品名称激光干涉仪测试结构斐索型立式结构测试口径有效口径Ф10mm测试光源半导体激光光源(波长635nm)对准视场±0.5度标准镜面形精度λ/20标准配件1、激光干涉仪主机一台 2、10mm平面透射标准镜,λ/20 3、10mm平面透射反射镜,λ/20 4、手机面板测试平台(带XY固定) 5、移相控制器一台 6、移相干涉条纹分析软件一套 7、电脑、液晶显示器一套设备重量约16KG电源AC220V50HZ软件部分软件名称移相算法分析项目透过波前PV值、RMS值、干涉条纹数PV值测试重复性±0.039λ条纹数测试精度±0.5条测试时间1.5秒测试数据可存EXCEL
    留言咨询
  • OCT共路干涉仪 400-860-5168转2255
    OCT共路干涉仪特性低插入损耗平坦的波长响应带有源抗混叠滤波器的集成平衡信号探测用于660纳米对准光束输入紧凑型设计;带电源INT-COM-1300干涉仪可用于扫频源系统内部,用于共路OCT应用。它集成了光纤耦合网络,与外部共路干涉仪探头一起使用。这种耦合器为实现平坦波长响应,以及非常低的偏振相关耦合损耗进行了优化。集成的高增益平衡探测器包括了有源抗混叠滤波器,将数字条纹信号中的混频产生降至最小,从而提高成像质量。Item #INT-COM-1300Optical Wavelength Range1250 - 1350 nmFiber TypeCorning SMF28eFiber PortFC/APCInsertion Loss: 1300 nm IN to Probe* Insertion Loss: 1300n m IN to VOA IN* Insertion Loss: 660 nm IN to Probe Port* ElectricalDetector Material/TypeInGaAsDetector Wavelength Range800 - 1700 nmMaximum Responsivity (Typical)1.0 A/WOutput Bandwidth (3 dB)DC - 15 MHzTransimpedance Gain51 kV/ADC-Offset ± 5 mVSaturation Power**70 uW @ 1300 nmMaximum Input Power (Damage Threshold)**20 mWOutput Impedance50 Ω Optical ConnectorsFC/APCElectric Outport PortSMAPower Supply± 12 V, 200 mAGeneralSize 120 mm x 80 mm x 21 mm(4.42" x 3.15" x 0.827")*) 在中心波长测量,包含接头损耗**) 耦合进探头或者VOA输出端口 下面的图1给出了INT-COM-1300内部光学网络和一个基本的OCT应用装置的原理图。图1:INT-COM-1300原理图 INT-COM-1300的内部光纤网络是为扫频傅里叶域OCT系统设计的,该系统中干涉仪的参考臂和样品臂信号都沿着共路配置传播。这两个臂的反射光合束产生干涉条纹,被集成的平衡探测器中的一个通道探测到。探测器的第二个通道可能被用来补偿干涉信号中的直流成分,并用一个外部可变光学衰减器(VOA)来控制到达探测器第二个通道的光通量。95/5光纤耦合器用于把输入光分为两部分,其中95%的光束被传输到一个环行器内,然后通过WDM耦合器。WDM耦合器把入射的1300纳米光和瞄准激光合在一起,方便对准。光从WDM耦合器的探测端口出射,用于样品观察。从样品反射回来的光再次经过WDM耦合器,然后通过环行器,被平衡探测器的一个通道探测到。来自入射光分光的5%光通过一个斜率补偿耦合器传输到VOA IN端口。这个额外的耦合器用于补偿波长相关耦合比。这两个耦合器的设计使VOA IN信号几乎不依赖OCT激光器的波长,能实现宽带直流偏置补偿。这在下面的波长响应曲线中给出。图2是从1300纳米输入到探测端口测量的INT-COM-1300耦合率,而图3是从输入端口到VAO端口输入端测量的耦合率。图2:从输入耦合到探测端口的波长响应图3:从输入耦合进VAO输入端口的波长响应
    留言咨询
  • PG150-PC平面干涉仪 400-860-5168转1374
    产品简介:PG150-PC激光平面干涉仪是一种使用方便的光学精密计量仪器,主要用于平面类光学元件检定和校准光学平晶(包括玻璃、金属、陶瓷等),配备高精度的成像系统和图像采集系统,精密平面 标准镜等一系列高精技术,通过优化光学系统和机械系统结构,可实现高精密平面光学元件的测量。 产品型号PG150-PC激光平面干涉仪技术参数测量方式:菲索干涉原理有效口径:150mm光源:半导体激光 635nm连续变倍:固定倍率显示方式:电脑软件或独立显示器平面标准镜:精度PV ≤λ/20电源:AC100-240V 50/60Hz产品规格仪器尺寸:40cm x 40cm x 90cm 仪器重量:75kg标准配件标准镜材料:石英 康宁7980
    留言咨询
  • 迈克尔逊型干涉仪 400-860-5168转2255
    迈克尔逊型干涉仪 特性偏振相关耦合比(PDCR)的波动最小带有源混叠的集成平衡型信号探测指示光束输入(660纳米)以辅助对准包含干涉仪电源 迈克尔逊型INT-MST-1300B干涉仪组件设计用于波长范围在1250到1350纳米内,带有平衡探测装置的光学相干层析成像系统中。为了使用更快的扫描激光器,集成探测器的带宽已经增大到高达100MHz。该模块包括用于迈克尔逊干涉仪的光纤耦合网络,输出为参考臂和样品臂。内部所用的耦合器已经进行优化,具有平坦的波长响应和非常低的偏振相关耦合损耗。光纤的长度是与干涉仪的两臂均匹配,误差在0.2毫米以内,同时为了提高系统的坚固性和易用性,还配有FC/APC带角度的光纤适配器。为了抑制数字条纹信号中降低成像质量的混频的产生,集成的高增益的平衡型探测器(带宽100MHz)包含了一个有源的混叠滤波器。 为了支持将INT-MST-1300B对准到光学系统中,在组件中包含了一个660纳米指示激光器的附加输入,和一个专门设计的组合了扫描激光光源(1300纳米)和准直激光器(660纳米)的WDM耦合器。Item #INT-MSI-1300BOpticalInterferometer Wavelength Range1250 - 1350 nmFiber TypeSMF-28e+Input/Output PortFC/APCInsertion Loss*from 1300 nm IN to Sample Armand to Reference Arm Insertion Loss*from 660 nm IN to Probe4.5 dB MaxPath Length Difference0.2 mm MaxElectricalDetector Material/TypeInGaAs/PINTypical Responsivity Max1.0 A/WOutput Bandwidth (3 dB)DC - 100 MHzTransimpedance Gain100 kV/ASaturation Power**35 µ WMaximum Input Power**250 mWElectrical OutputSMADC Offset Power Supply± 12 V, 200 mA(PICO M8 con.)General Size4.72" x 3.15" x 0.827"(120 mm x 80 mm x 21 mm)* 包括输入和输出尾纤的接头损耗,在中心波长处测量。** 使用高阻抗负载,半值为50欧的阻抗,来测量相对输出功率的跨阻抗增益。图1显示了在时域OCT系统中的INT-MSI-1300B的示例装置。中心波长为1300纳米的输入宽带光源,通过一个环形器和宽带50/50熔融耦合器。来自干涉仪样品臂和参考臂的背反射光在50/50熔融耦合器中合束,产生干涉条纹,经过环形器和WDM耦合器后输入到平衡探测器。平衡探测器的输出信号被数据采集装置获取,经过处理后得到重建的OCT图像。图2描述了通过将参考臂的移动反射镜替换为固定式反射镜,IN-MSI-1300B如何集成到频域OCT系统中。图1: 在时域OCT设计中的INT-MSI-1300B的示意图图2: 在示例傅里叶域OCT设计中的INT-MSI-1300B的示意图干涉仪两臂的内部光纤长度匹配在0.2毫米以内,同时50/50熔融耦合器和平衡探测器的输入之间的光程也经过匹配,以获得最佳的噪声抑制(即最大的共模抑制比CMRR)。内部耦合器已经进行了优化,具有平坦的波长响应和非常低的PDCR(偏振相关耦合比),这使得探测信号几乎与输入的偏振变化无关。图3显示了在参考臂端和样品臂端输入功率的百分比。在1300纳米(中心波长)测量的两个端口的功率相等。图 3: INT-MSI-1300B在1300纳米测量的IN端口到样品臂和参考臂端口的耦合效率
    留言咨询
  • 完美融合创新设计及尖端技术M-WAVE 339 IR红外干涉仪M-Wave 339是艺术级LUPI(不等光程激光干涉仪),操作于3.39um波长,是用于测试中波红外成像组件/系统和光材料均匀性的理想仪器。 M-WAVE 339 IR 规格说明规格结构参数精确度 (未标定) 精确度 (已标定) 重复性基础设备孔径扩束器孔径相机分辨率变焦镜头采集模式0.01 λ RMS 波前误差 @ 3.39μm0.004 λ RMS 波前误差 @ 3.39μm 0.001λ RMS 波前误差 @ 3.39μm25.4mm 直径101.6mm 直径640 x 512 像素1X to 6X相移 激光规格激光类型波长输出功率≥ 束偏振 HeNe3.39 μm2 mW线性*根据要求可用定制激光 主机包装尺寸 (长、宽、高) 系统光轴高度电源电压激光安全等级 重量 分析软件 744mm x 407mm x 275mm115mm120 VAC, 60 HzCDRH IIIb激光产品3B类60 lbs (主机) ESDI Intelliwave LE-2 or Apre Reveal 控制装置手动参考光倾斜电动激光功率衰减器电动6x连续变焦电动聚焦WFOV调整模式 / NFOV测量模式单一出厂设置参考臂反射器 (98%) 配件扩束镜 (75mm, 100mm, 150mm, 200mm)90度伸缩肘管电动控制项目的遥控器5轴镜片/窗口夹具高度调节器自动聚焦深测量设备 可选扩束镜 (75mm, 100mm, 150mm, 200mm)90度伸缩肘管电动控制项目的遥控器5轴镜片/窗卡组高校准立管自动聚焦测量装置
    留言咨询
  • 干涉测量实验装置 400-860-5168转0185
    仪器简介: 该仪器主要利用导轨、支架及光学组件、如双棱镜分成两束光,将两束光相遇产生的明暗相间的干涉条纹用读数显微镜测出条纹间距,再用二次成像绘测出一大、一小两个缝像(即虚光源S1、S2)之间的距离代入公式即可。 技术参数: 成套性: 导轨、二维调整架、干板架、白屏、单面可调狭缝、低压钠灯、双棱镜、牛顿环、透镜、读数显微镜、双缝
    留言咨询
  • HORIBA在拉曼光谱领域拥有50年的专业经验,新推出的LabRAM Soleil™ 高分辨超灵敏智能拉曼成像仪结构紧凑、体积小巧,将带给您前所未有的体验。 LabRAM Soleil™ 只需较少的人工干预即可一天工作24小时,这得益于仪器的:高度自动化、高光通量、物镜自动识别、光学反射镜自动切换、SmartSampling™ 和QScan™ 提供的超快速成像、4块光栅快速全自动切换、光路自动准直以及LabSpec 6 智能软件功能。 结构紧凑型高分辨超灵敏智能拉曼成像仪 LabRAM Soleil™ 设计紧凑且保证激光安全,提供多种光学观察模式和高光谱成像功能: √ 占用面积1m2 √ 1级激光安全大样品室 √ 反射/透射照明 √ 明场/暗场/落射荧光/相位差和差分干涉差(DIC)显微镜 √ ViewSharpTM 超快速三维表面形貌技术 √ QScan™ 激光矢量片层扫描技术——无需移动样品即可进行高质量3D共焦成像 √ XYZ 3D共聚焦成像,深度剖析(单点或QScanTM片层扫描) √ 标配低波数拉曼散射(30 cm-1) √ 光致发光(PL)、电致发光、光电流、上转换发光 √ 纳米空间分辨率光谱:耦合AFM和SEM可以实现NanoRaman™ (TERS)、纳米PL和阴极发光 专注于您的工作,其它的交给仪器! 忘掉拉曼成像前冗长乏味的准备操作!LabRAM Soleil™ 提供先进的自动化功能,结合EasyImage™ 易成像工作流技术,它大大减少了参数设置上花费的时间,并且极大程度上确保了稳定性和再现性: √ 真正的自动操作系统 √ EasyImage™ :有操作向导,简单快速 √ 自动校准:根据环境条件在几秒钟内自动检查并重新校准 √ SmartID™ : 不用担心使用错误的物镜倍数或者错误的参数 √ 远程维护 超快速成像:拉曼成像从未有如此之快! LabRAM Soleil的光学稳定性加上专利保护的显微图像-拉曼匹配精度,使得高质量拉曼成像速度可以提高100倍以上: √ SmartSampling™ :基于新的成像法则,首先获取信号贡献多的样品点信号,将成像时间由几小时缩短为几分钟 √ TurboDrive™ :光栅快速驱动,快至400nm/s √ 4种SWIFT™ 功能 SWIFT™ :普通超快速成像 SWIFT™ XS:Ultra模式(快速拉曼成像,高达每秒1400条光谱)和高对比度模式(读出速率提升和信号增强) SWIFT™ XR:多窗口扩展快速成像技术,适用于需要采集大范围PL光谱或大范围高分辨拉曼光谱,同时又要保证超快速成像的样品 Repetitive SWIFT™ :信噪比增强快速成像技术,不断重复以改善信噪比 解决各类分析问题 从材料研究到聚合物研究,从生物分析到药物分析,LabRAM Soleil可以很轻松地应用于各个领域。得益于其先进的模块化和灵活性,LabRAM Soleil无论对于学术研究或者工业质量控制都是一套完美的显微拉曼系统。 √ 可配置4个内置激光器和6块不同的滤光片 √ 1分钟内可快速切换4块光栅 √ 标准低波数:低至30cm-1 √ 大样品室: 444(H) x 509 (L) x 337 (W) mm √ 具有很高的稳定性,维护操作简单 LabSpec6软件:轻松驾驭LabRAM Soleil的全部功能! LabSpec 6软件将各种技术做成应用程序包,力求操作简便,可根据用户需要定制界面。软件的现代化和智能设计助您快速获取拉曼成像,即使您不是一个专家,也能轻松获取完美的拉曼成像图。 √ 先进的多变量分析方法MVAPlus™ :轻松分析百万条光谱,即使是“困难”的样品,也能极大程度地对其中的分子进行鉴别和定量分析。 √ ProtectionPlus确保符合FDA 21 CFR Part 11和GMP / GLP的要求 √ ParticuleFinder™ 能自动对颗粒进行形态和化学分析,几秒内即可对颗粒进行分类 √ EasyImage™ 自动化的工作流程使得用户只需一键点击即可获得拉曼成像 光学设计高效率全反射式采用超宽带电介质反射镜共焦设计高效率全反射式采用超宽带电介质反射镜共焦针孔自动机械针孔三维空间滤波激光波长可选325nm、532nm、638nm、785nm等激光光路支持6路自动,独立优化控制激光偏转方向采用超宽带电介质反射镜光栅扫描速度400nm/s采用TurboDriveTM 闭环快速直驱光栅技术光栅数量不限支持4块光栅全自动切换低波数拉曼30cm-15cm-1可选Fast Alignment 新一代自动准直技术15s 光路准直时间内置PSD位敏探测器光谱模式多达6种全自动光谱模式拉曼、PL、ULF、上转换发光等等瑞利滤光片每个滤光片均由计算机控制激光阻挡优化成像多达8种光谱成像技术详情请咨询HORIBA销售工程师激光安全Class1 安全的激光安全等级尺寸898mm x 797mm x 806mm重量120Kg功耗满负荷运转时 600 W环保和安全设计1根电源线1根通讯线注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途
    留言咨询
  • LISICO 乐思科 3D光学干涉轮廓仪采用全新的、高精度干涉图谱成像控制、精密计算技术。优势:降低三维纳米显微技术产品化的成本扩大技术的测量范围拥有独立自主的核心技术统一的核心技术平台、针对不同的产业,不同的辅助软件、辅助硬件配置,系列检测技术和系统多年半导体检测技术研发和产业化经验所有的关键硬件来自美国、德国日本等PI,纳米移动平台及控制Nikon,干涉物镜NI,信号控制板和Labview64控制软件TMC 隔震平台计算机软硬件技术平台VS2012/64位,.NET/C#/WPFIntel Xeon 计算机原理:干涉测量技术:快速灵活、超纳米精度、测量精度不受物镜倍率影响应用1. 在太阳能产业的应用激光开孔形貌图,薄膜太阳能电池技术2. 在集成电路产业的应用
    留言咨询
  • Profilm3D和 Profilm3D-200光学轮廓仪经济实惠,是一套非接触式基于白光干涉法的3D表面形貌测量系统。最新一代的白光干涉仪拥有新的成像模式,性能和价值得到了大幅提升。Profilm3D系列通过简单、灵活的程式设置测量纳米级至毫米级表面,可进行单次扫描或在多个点位自动测量,来支持研发和生产环境。产品描述Filmetrics Profilm3D和Filmetrics Profilm3D-200白光干涉仪能够高分辨率地测量亚纳米级分辨率的表面形貌。这些机台支持垂直扫描和相移干涉测量法。Profilm3D采用TotalFocus&trade 技术,可以产生令人惊叹的3D自然彩色图像,每个像素都处于聚焦状态。最新一代的 Profilm3D引入了加强版粗糙度成像技术,可用于测量更粗糙的表面、更高的斜率以及更低的反射率表面。在Profilm3D测量技术中,测量的垂直分辨率不依赖于物镜的数值孔径,能够同时以大视场进行高分辨率的测量。通过将多个视场拼接到单次测量中,可以进一步增大测量区域。Profilm3D还具有简单、创新的用户界面和自动化功能,支持从研发到生产的各种工作环境。我们的Profilm软件包采用先进的基于云的ProfilmOnline网络服务、Android和iOS的移动应用程序以及高级Profilm桌面软件,可提供灵活的数据存储、可视化功能以及分析解决方案。主要功能● 垂直扫描和相移干涉测量,可用于测量从纳米级到毫米级的表面特征● TotalFocus 3D成像技术对整个测量范围内的每个像素的聚焦能力都进行了优化● 真彩色成像可生成实际的样品颜色,增强可视化效果,尤其是对于细小或埋藏的特征● 粗糙度增强模式 (ERM) 可提高条纹的对比度,从而提高透镜等斜率较大的表面的保真度,并改善了粗糙表面上的信噪比● 自动对焦功能具有行业领先的长压电行程范围,可扫描高度相隔甚远的多个表面● 具有长行程范围的自动化 X-Y 样品台,非常适合分布测绘和拼接扫描● 使用简便的软件包带有高级 Profilm 桌面、基于云的 ProfilmOnline 和移动应用程序,可用于灵活的数据存储、可视化功能以及分析● TotalFocus成像,即使在高度变化大于物镜焦深的表面上,也能产生令人惊叹的真彩图像,并且每个像素都在焦点上主要应用● 台阶高度:从纳米级到毫米级的3D台阶高度● 纹理和形状:3D粗糙度、波纹度、翘曲度和形状的纹理表征● 边缘倒角:3D边缘轮廓测量● 缺陷表征:3D缺陷表面形貌、缺陷表征● 对大型透明薄膜的表面进行高分辨率扫描● 高粗糙度,低反射率,划痕表征适用行业● 大学,实验室和研究所● 硅和化合物半导体● 精密光学和机械● LED:发光二极管● 功率器件● 数据存储● MEMS:微机电系统● 汽车● 医疗设备● 还有更多:请与我们联系并探讨您的要求应用行业举例3D和闪存打印Profilm3D 可以轻松测量加工过的不锈钢的丝印。测量印刷层的厚度及均匀性,并对分层、覆盖均匀性和表面粗糙度进行表征。Profilm3D 设计提供了简单的样品安装和软件界面,从而简化制造和质量控制工艺监控。金属精加工 / 微加工 / 模具加工Profilm3D 可用于金属精加工和模具加工,例如切割锯对压电材料的切割深度进行量化时切割锯的关键校准。该系统还可以同时测量加工部件的表面粗糙度和关键尺寸。半导体后端封装凸点的共面性对于确保优质键合至关重要,Profilm3D 可快速生成共面性、间距一致性、尺寸等测量结果。其他应用包括掩模制造,激光打标,光刻胶图案,以及其他研发和工艺认证。光学该扫描可显示通过电子束曝光技术创造出的一个微型菲涅耳透镜。对于透镜等陡峭表面,粗糙度增强模式下的 Profilm3D 现在可以测量高达 60° 的坡度。生物学Profilm3D 非常适合测量生物样品,例如玻璃上的四苯基卟啉(TPP)薄膜。用 50 倍的 Mirau 物镜在 2 倍放大下对 TPP 成像,会显示出薄膜生长的情况。该图像是使用 TotalFocus&trade 色彩技术生成的,能显示样品的实际颜色。选配件Profilm3D 系列Filmetrics Profilm3D 白光干涉仪具有电动 X-Y 向和 Z 向样品台,行程为 100 毫米,同时具有手动倾斜样品台。该系统支持相移和垂直扫描干涉测量法,能对 3D 表面形貌进行高分辨率测量。Filmetrics Profilm3D-200 白光干涉仪不仅具有与 Profilm3D 相同的功能,还提供了一个更大的电动 X-Y 样品台,支持 200 毫米 × 200 毫米的行程。Profilm 软件包Filmetrics Profilm 软件包全面、易懂、快速且便于使用。3D 数据操作和分析功能(如调平、滤波、台阶高度、粗糙度和表面形貌分析技术)均包含于基本配置中。Profilm 支持 ISO 粗糙度的计算方法,以及 ASME 等本地标准。只需单击一下,即可将 Profilm 中的数据上传至 ProfilmOnline 平台,从而轻松、安全地存储数据并进行共享。ProfilmOnline 网络应用程序Filmetrics ProfilmOnline 作为 Profilm 软件包的一部分,它是一种基于云的 3D 数据可视化和分析平台。在ProfilmOnline中您可共享、存储、查看和分析 3D 数据,无论您使用的是计算机还是移动设备。安卓和 iOS 的操作系统均可使用此应用,并支持多种文件格式。为了安全起见,可以对数据进行加密。物镜四位转台可安装放大倍率从 5 倍到 100 倍不等的物镜,支持纳米级、微米级和宏观形貌应用。5 倍物镜是迈克尔逊干涉物镜。10 倍、20 倍、50 倍和 100 倍物镜使用的是 Mirau 干涉物镜。样品台X-Y 和 Z 轴的电动样品台是 Profilm3D 系统的标准配置。Profilm3D X-Y 样品台的行程为 100 毫米 x 100 毫米,Profilm3D-200 的行程为 200 毫米 x 200 毫米。Z 向样品台的范围为 100 毫米。可程序化控制所有运动轴的行程。手动倾斜样品台是标准配置,运动角度为±5°。Profilm3D 系列光学轮廓仪还有一个手动的 R-theta 晶圆样品台,适配直径为 50 毫米至 200 毫米的晶圆。此外,Profilm3D-200 支持用于容纳 200 毫米晶圆的适配器。防震台Filmetrics Profilm3D 系列提供 Accurion Nano30 系列桌面主动防震系统,该系统在所有六个自由度中均使用电动驱动主动隔震。台阶高度标准片Filmetrics Profilm3D 系列包含有定制的铬-硅 10μm 台阶高度标准片,标准片上是有铬涂层的蚀刻台阶。0.1 µ m,2 µ m 和 4 µ m 等多种台阶高度标准片也可以选购。相关产品
    留言咨询
  • 显微凝视型高光谱成像仪显微凝视型高光谱成像仪Model 4200M显微镜系统是一个外围设备,增加了显微镜的高光谱成像功能。显微凝视型高光谱成像仪系统可以在各种生物、材料、环境中对纳米尺度的样品进行观察和光谱分析。显微技术中的高光谱成像,高光谱成像为生命科学领域的显微镜学提供了实质性的好处,如: ①大量目标的并发成像和定位②通过使用具有多个荧光团的单个激发源来简化多路成像,这些荧光团通过其光谱特征进行识别③ 通过成像跨区域的斯托克斯位移分布来跟踪荧光团的局部微环境样本等。显微凝视型高光谱成像仪主要参数:波长范围400-1000nm光谱通道数300-600光谱分辨率4nm像素2.3MP连接USB工作温度20°C ± 5°C湿度65% non-condensing位深 8 or 16 bit供电电压18 VDC (optical head only)尺寸重量230x120x200mm,1.4kg显微凝视型高光谱成像仪主要特点: 全光谱覆盖:当前的多光谱显微镜相机提供的光谱通道数量有限,空间分辨率降低。这是他们在焦平面成像阵列上使用滤色器阵列 (CFA) 的架构的直接结果。 其他基于光栅的高光谱显微镜相机需要对样品进行机械扫描,因此价格昂贵且需要定期校准。4200M 显微镜系统是市场上少有一款能够以可承受的价格以高空间和光谱分辨率扫描整个 VIS-NIR 系统的凝视高光谱显微镜系统。 波长选择性:4200M 显微镜系统的独特属性之一是其波长选择性。在许多显微成像应用中,可以从高光谱数据立方体中选择光谱带的子集,以man大化从每次扫描中检索到的信息。通常,这些子集取决于所使用的染料组以及被询问的样品类型。由于多光谱相机以及基于光栅的高光谱扫描相机的光谱波段是“硬连线”的,无论是通过 CFA 还是通过耦合到焦平面阵列的光栅,导致该波段子集的优势缺少。无论真正需要多少波段,都必须检索完整的数据立方体,或者必须处理完整的镶嵌多光谱图像。4200M 显微镜系统可以编程为仅扫描波长的一个子集,从而可以缩短扫描时间并生成更小的数据集——所有这些都对用户有益,尤其是在高通量应用中。下图是4200M高光谱显微镜系统在石英钨卤灯照明下,放大10倍后采集的肺癌组织的max大帧图像(假绿色)。像素群是相似的光谱分布(伪彩色),聚类中心可以被认为是端元或代表光谱。显微凝视型高光谱成像仪应用领域:▲ 刑事侦查:可疑文件鉴定、痕迹探测、可燃液体残留分析、犯罪现场勘查等;▲ 天文地理:地质遥感、矿石检验、天文观测等;▲ 材料分析:各种塑料、金属、垃圾等材料检验等;▲ 农业生产:农作物生长情况及病虫害监测、农作物选种、农产品等级分类等;▲ 食品安全:瓜果蔬菜农药残留检测、肉类产品食用品质及表面污染物检测等;▲ 药品检测:药片中的有效成分含量及其分布检测等;▲ 环境监测:水体水质污染监测、土壤污染检测、大气污染物监测等;▲ 文物保护:艺术品鉴别、文物古迹修复等。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
    留言咨询
  • 法布里珀罗干涉仪 FPI 法布里珀罗干涉仪(Fabry-Perot Interferometer,FPI 100)是一款共聚焦扫描 FPI,它自带光电探测器单元,设计用于测量和控制连续波激光器的模场分布。其主要特点有: 激光模式分析简单方便可选八种反射镜用于波长范围 300 到 3000 纳米自由光谱范围 1GHz 或 4GHz标准反射镜反射率 99.8%,对应 finesse 大于 400可选配光纤耦合器套件 – 方便使用 FC/APC 光纤接头进行耦合光电二极管更换套件 – 可见光/近红外/红外,通过内置聚焦透镜自动对准用户规定 finesse 值扫描选项 – 集成光电二极管放大器的独立扫描发生器 miniScan 杭州谱镭光电技术有限公司(HangzhouSPL Photonics Co.,Ltd)是一家专业的光电类科研仪器代理商,致力于服务国内科研院所、高等院校实验室、企业研发部门等。我们代理的产品涉及光电子、激光、光通讯、物理、化学、材料、环保、食品、农业和生物等领域,可广泛应用于教学、科研及产品开发。 我们主要代理的产品有:微型光纤光谱仪、中红外光谱仪、积分球及系统、光谱仪附件、飞秒/皮秒光纤激光器、KHz皮秒固体激光器、超窄线宽光纤激光器、超连续宽带激光器、He-Ne激光器、激光器附件及激光测量仪器、光学元器件、精密机械位移调整架、光纤、光学仪器、光源和太赫兹元器件、高性能大口径瞬态(脉冲)激光波前畸变检测干涉仪(用于流场、波前等分析)、高性能光滑表面缺陷分析仪、大口径近红外平行光管、Semrock公司的高品质生物用滤波片以及Meos公司的光学教学仪器等。 拉曼激光器,量子级联激光器,微型光谱仪,光机械,Oceanoptics,Thorlabs 。。。热线电话: / 传真:网址: /邮箱:
    留言咨询
  • 激光干涉仪 400-891-3319
    仪器简介: ML10 Gold 高性能激光干涉仪是机床、三坐标测量机及其它定位装置精度校准 用的高性能仪器。由于采用了独特的专利设计及最新的光电子技术,使ML10 Gold 激光干涉仪比市场上其它型号的激光干涉仪具有更高的性能和更先进的任选功能。 ML10 Gold 激光干涉仪提供有进行机器位置、几何精度测量的全套光学器件。 ML10 Gold 激光测量系统所有功能都设计与Laser 10 软件配合使用。除了测 量和分析诊断功能外,此软件包的标准配置还包括动态测量、旋转轴测量、双轴测 量和电子水平仪及千分表程序接口模块。 该激光干涉仪系统由激光头ML10 Gold、环境监测补偿器EC10,计算机接口卡 PC10* 或PCM20* 及高精度的光学器件组成。全部器件放在一个配小车的提箱内, 一人便可携带全部系统赴异地进行机器精度检定,大大改善了激光干涉仪的便携 性。 该激光干涉仪系统通过接口与IBM 兼容的PC 机(包括笔记本计算机)连接, 在灵活、直观的软件控制下进行自动测量,既节省了测量时间,又避免了人为误 差,并能按国际上通行的标准进行数据分析处理,如ISO230-2、JIS-B6330、 VDI3441、VDI2617、ASME B89等并适用中国国家标准GB17421-2000等,以便于按 不同标准进行机床精度的评定和比较。 技术参数: 1.线性测量分辨率: 0.001&mu m 2.线性测量范围: 40m(或任选80m) 3.线性测量精度: ± 0.7ppm 4.最高测量速度: 60m/min 5.长期稳频精度: ± 0.05ppm 主要特点: ML10 Gold是全球最畅销的用于长度计量的激光干涉仪,其最大的优点是所有测量功能均采用激光干涉原理,性能稳定,使用可靠,功能扩展性强,价格适中.
    留言咨询
  • 马赫-曾德尔干涉仪 400-860-5168转2255
    特性两种型号可供选择:中心波长为850纳米或者1300纳米适合扫频源输出频率监测,带平衡探测输出低插入损耗平坦的波长响应集成的信号探测,用于功率监测和k-时钟信号紧凑型设计MZI干涉仪时钟箱规格SpecificationsINT-MZI-850INT-MZI-1300OpticalInterferometer Wavelength Range780-925 nm1225-1375 nmFree Spectral Range103.3 GHz ± 5%Fiber TypeNufern 780HP&trade Corning SMF-28&trade Input/Output ConnectionFC/APC Pigtail, 50 cm LongInsertion Loss* ElectricalDetector Material/TypeSi/PINInGaAs/PINDetector Wavelength Range320-1000 nm800-1700 nmTypical Responsivity (max.)0.53A/W1.0A/WMZI Output Bandwidth (3dB)DC-200 MHzConversion Gain Power Monitor**30 V/W (± 25%)60V/W (± 25%)Conversion Gain MZI Output**30 V/W (± 25%)60V/W (± 25%)Saturation Power100 mW @ 850 nm50 mW @ 1300 nmMaximum Input Power250 mW (Photodiode Damage Threshold)Electrical OutputSMAImpedance50 Ω DC-Offset ± 5 mVPower Supply± 12V, 200 mAGeneral Size120 x 80 x16 mm*包括输入和输出尾纤的接头损耗,在中心波长处测量。**使用高阻抗负载,相对于输出功率的转换增益测量结果。当阻抗为50欧姆时,该值减半。工作原理:迅速扫频激光光源通常用正弦调谐元件来实现OCT成像应用所需的光学频率扫描速度。需要准确和可靠的OCT信号重新校准,这样最终数据点在频率上才是等间距的。当使用可调谐激光器作为输入时,Thorlabs的MZI系列干涉仪时钟箱组件设计用来产生周期性(正弦)的K时钟信号。为了得到K时钟信号,正弦信号的最大值和最小值在频域必须等间隔(见下面的图1)。两个最值之间的差值是由自由光谱响应决定的,对于MZI系列该差值是103.3GHz。图1:MZI时钟信号下面的图2是该系统的原理图。内部光纤网络利用5%的输入光产生功率监测和K时钟信号。剩余的光传输到输出尾纤。特殊设计的耦合器用于为传输信号和功率监测信号实现平坦的波长相应(如下面的图3和图4)。MZI的两个信号都是用超低噪声的放大平衡光电探测器探测的。图2:MZI系列时钟箱原理图 图3:INT-MZI-1300从输入到输出的耦合比 图4:INT-MZI-1300从输入到功率监测的耦合比
    留言咨询
  • ZYGO新型VerifireHDX激光干涉仪是为超高精度的光学元件和系统设计和制造的,可以获得元件表面的中频特征信息。系统包含现有VerifireHD的所有功能-比如QPSI和长寿命稳频的激光器,并增加了重要的增强功能,如刷新行业水平的分辨率和成像能力,仪器传递函数(ITF)、出众的中频特征分析和大坡度表面测试,同时也兼具了ZYGODynaPhase® 系列动态采集技术,可以去除震动引起的问题并且能够在近乎任何环境中准确计量。特殊设计优化的分辨率和性能VerifireHDX激光干涉仪系统具有全新的光学设计,经过严格设计,可为其所配的3.4kx3.4k(1160万像素)传感器提供突破像素限制的性能,呈现增强的图像,可以显示出较低分辨率干涉仪难以辨识的表面特征。这种超高的空间分辨率不会以牺牲速度为代价,该系统在全分辨率下以帧率96Hz运行,比其它高分辨率干涉仪速度快10倍,那些由于采样速度较慢在采样的时候会引入震动误差从而测试能力受限。功率谱密度(PSD)和衍射分析工具完善了VerifireHDX激光干涉仪系统的中频特征分析能力,并通过简单直观的用户界面来分析和报告综合表面特性。光学面形测试下的中频特征分析高质量的参考光学元件和配件UltraFlat™ 和UltraSphere™ 超高精度透射平面和球面,面形可以达到λ/40PVr或更高,并且严格控制PSD特征进行制造,以*优化中频特征。推荐将这些高精度参考光学元件与VerifireHDX激光干涉仪一起配合使用,以完整实现和提升系统的性能。无论它们是被用于垂直构型还是水平构型,UltraFlat透射平板面形精度不变,从而在测试设置中提供更大的灵活性。超高精度平面和球面透射元件Mx™ 软件ZYGO自主设计研发的Mx™ 分析软件提供强大的操作功能和完整的数据分析功能,包括Zernike,斜率,PSD/MTF/PSF,棱镜角度,角锥以及更多。该软件集仪器控制,数据采集和分析软件包与一体,集成了制造过程控制,运行自动化和报告关键中频特征等工具包。软件操作界面简单,直观。它还包括了基于Python的脚本和远程控制接口,以实现更大的灵活性并集成到复杂的测试设置中。Mx软件,泽尼克分析结果ITF仪器传递函数-它是什么,为什么它是重要的很多年来,大家一直关注于光学元件表面的形状误差,但随着对光学系统性能需求的增加,控制中频特征(MSF)也变得同样重要。对于一些极高性能应用,需要严格控制MSF特性以减少光散射并提高光学效率。在校正形状误差方面非常有效的小工具确定性抛光技术也会将不期望得到的中频特征赋予光学表面。根据表面特性的频率和斜率,传统的干涉仪系统-非常适合测量表面形状-由于分辨率有限,无法测量和量化较高频率的表面特性。分辨率的缺失意味着更高的频率细节被过滤(见右图),并且在测量结果中可能根本不显示。这是仪器传输函数(ITF)的所在。激光干涉仪系统由于其自身的设计(光学设计,相机,波长)会衰减和过滤部分表面信息,决定了该系统的ITF(测量光学表面的空间频谱的能力)。VerifireHDX激光干涉仪系统具有高分辨率3.4kx3.4k传感器和优化的光学设计,具有比任何商业上可获得的干涉仪系统更高的ITF,使其成为可靠测量和量化光学表面中频特性的宝贵工具。这为光学设计师们提供了一种新能力,可以自信地指定光学表面到更高精度,并定义ITF测试要求来达到系统性能目标。用特殊设计的台阶板测量到的相位数据,台阶板上刻有密集的40nm台阶,按不同频率沿着径向发散变化。
    留言咨询
  • (1)HL球面镜激光干涉仪HOOL L8200A应用领域●光学镜片检测●光学组件检测●相机镜头检测●安防镜头和车载镜头检测●航空航天成像系统检测●超精密机械件检测●科研和高等教学仪器等众多领域●不同F数的球面类(凸面、凹面)光滑表面面形测量●不同F数的柱面类(凸面、凹面)光滑表面面形测量●非球面类(凸面、凹面)光滑表面面形测量●光学组件和系统透射波前精度测量●材料包括各类玻璃、塑料、陶瓷等●内容包括表面光圈、局部形变的测量、球面曲率半径的测量等 (2)HL球面镜激光干涉仪HOOL L8200A产品综述 现场高效球面检测干涉仪是一种高性能模块化组合检测干涉仪。它采用国内独特的组合式激光干涉模块作为核心部件,主要用于检测高精度快速球面和大曲率半径球面面形。 通过模块化的设计理念,针对不同的光源、镜头口径、成像方式,不仅在测量过程中拆卸方便, 也可适用于多种被测面的测量,大大降低检测成本。 (3)HL球面镜激光干涉仪HOOL L8200A参数性能测量原理:斐索干涉原理光源波长:632.8nm样品准直:使用两个光点电源:220V 50HZ /11 0V 60HZ操作系统:Windows7/10, 32/64bitCCD分辨率:1280*960像素软件:H&L-p数字化相移分析软件精密度:入/600 PV重复性:入/500 PV重复性:入/1000 RMS透射平面镜精度:1/10 PV曲率半径监测范围:2-500mm检测效率:20秒/次◆材质均匀性◆超精密平面/球面面形测量◆光学系统装调和校准◆光学组件透射波前测量◆光学均匀性测量◆平行度测量◆角锥角度测量 ◎◎我们会倾听您的需求,支持特殊需求定制 部分客户群体:苏州计量院,上海计量院,福建计量院,上海光机所,石家庄13所, 上海现代先进超精密制造中心有限公司UPEC,长春理工,上海理工等。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制