当前位置: 仪器信息网 > 行业主题 > >

砂浆贯入仪

仪器信息网砂浆贯入仪专题为您提供2024年最新砂浆贯入仪价格报价、厂家品牌的相关信息, 包括砂浆贯入仪参数、型号等,不管是国产,还是进口品牌的砂浆贯入仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合砂浆贯入仪相关的耗材配件、试剂标物,还有砂浆贯入仪相关的最新资讯、资料,以及砂浆贯入仪相关的解决方案。

砂浆贯入仪相关的论坛

  • 砂浆流变仪

    请问大家哪个型号的流变仪,可以检测砂浆的流变曲线,及屈服应力,砂浆的直径最大5mm,谢谢

  • 【资料】CA砂浆流动度测定仪的使用原理和工作时间是什么?

    CA砂浆流动度测定仪(漏斗)的使用原理:CA砂浆流动度与可工作时间是保证板式轨道CA砂浆现场灌注施工质量的重要指标。从乳化沥青与水泥砂浆掺合到一起后,CA砂浆的固化作用就开始了,砂浆的粘性逐渐增加,流动性逐渐丧失而最终固化。  为确定CA砂浆流动度指标,试验采用容积为650ml的特制漏斗进行测定,将拌和好的砂浆注入漏斗,打开出口开始,至砂浆全部流出所经历的时间,即为流动度。适当的流动度对于砂浆的性能与灌注质量非常重要,流动度过小,砂浆材料会出现离析,影响其强度和耐久性;流动度过大,砂浆粘稠,就难以将轨道板与基础间的填充密实,直接影响灌注质量。  然而影响CA砂浆流动度的因素很多,在拌和方式、投料顺序一定的条件下,流动度随温度、外加剂、主要原材料的配合比、水灰比的变化而不同。  CA砂浆流动度测定仪CA砂浆的可工作时间是指CA砂浆处于规定的流动度范围内所经历的时间。这个时间应该较长而不至影响现场砂桨的灌注施工。因为考虑到现场从砂浆拌和站配制好的运输过程、灌注作业所需要的时间,规定CA砂浆的可工作时间不少于30min。所以操作人员要注意工作时间和使用。资料来源于:http://www.czfangyuan.net/czfyyq-Article-116304/

  • 【分享】CA砂浆流动度测定仪操作时的注意事项

    CA砂浆流动度测定仪的材质是选用80mm的优质铜材,精密加工而成,测定仪的内外壁经特殊处理圆滑光亮,并配有三角支架,较之数据更准确而且方便操作。 1、在使用CA砂浆流动度测定仪开机前必须接好接地线装置,工作中不可随意拆除,以免发生触电事故。  2、在流动测定仪工作时,工作人员的手不准伸入搅拌锅内,以免发生意外。发现机器有故障应立即停机,找专业人员检查。  3、搅拌完成后将料桶及搅拌叶拆下后清洗,勿用水直接冲洗,防电器箱进水容易造成漏电、断路。

  • 建筑材料保温砂浆导热系数测试方法对比以及测试方法选择注意事项

    建筑材料保温砂浆导热系数测试方法对比以及测试方法选择注意事项

    [color=#cc0000]摘要:本文介绍了葡萄牙里斯本大学Gomes等人2018年发表的研究工作来说明隔热砂浆导热系数测试方法选择和正确使用的重要性,讨论和指出了测试中存在的问题,并提出了更合理的测试方法和测试过程建议,以期实现更有效和准确的砂浆材料热物理性能测试。[/color][color=#cc0000]关键词:导热系数、隔热砂浆、稳态法、瞬态法、气凝胶[/color][align=center][color=#cc0000][img=保温砂浆导热系数测试方法,690,519]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152125464573_7771_3384_3.png!w690x519.jpg[/img][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 概述[/b][/color]  为了满足建筑物对室内舒适性和能源效率要求日益增长的需求,已经开发出各种具有良好热性能的新型材料,例如结合了轻质骨料和纳米材料的隔热砂浆,以及添加了相变微胶囊的同时具有隔热和蓄热功能的隔热砂浆。  评价这些隔热砂浆隔热性能的重要物理性能参数是导热系数,而隔热砂浆导热系数会受到砂浆温度、硬化状态、干燥状态和水分含量的影响,同时还有多种测试方法可以用来测量砂浆的导热系数,这使得隔热砂浆导热系数的测试评价非常混乱,很多测试结果千差万别。为了评估各种因素对砂浆导热系数的影响以及各种测试方法在砂浆导热系数测试中的准确性,我们特别选取了葡萄牙里斯本大学Gomes等人在2018年发表的研究工作来说明测试方法选择和正确使用的重要性。  葡萄牙里斯本大学Gomes等人针对添加了发泡聚苯乙烯颗粒和二氧化硅气凝胶的隔热砂浆,在其硬化状态(固化28天)、干燥状态和不同水分含量条件下,测试了砂浆的导热系数。测试方法分别采用了两种稳态法和两种瞬态法。为了对这些测试方法进行比较,将所有测试结果都转换23℃下的导热系数。  本文将对Gomes等人的对比测试工作进行简要介绍,讨论和指出测试中存在的问题,并提出了更合理的测试方法和测试过程建议,以期实现更有效和准确的砂浆材料热物理性能测试。[b][color=#cc0000]2. 隔热砂浆以及样品制作[/color][/b]  在该测试对比研究中评估了两种隔热砂浆:  (1)具有发泡聚苯乙烯颗粒(EPS)()的工业隔热砂浆;  (2)在先前的工业隔热砂浆中掺入二氧化硅气凝胶(Ag)配方()。  砂浆是市售的保温砂浆,由矿物粘合剂(水泥和石灰)和轻质骨料(100%的EPS颗粒,直径小于3 mm)组成。此外,它还含有颜料、流变剂、树脂、空气夹带剂和疏水剂。另一种研究的砂浆配方是在砂浆中加入二氧化硅气凝胶,质量百分比为100%,即二氧化硅气凝胶质量与工业砂浆总质量的比值。  这种二氧化硅气凝胶具有非常低的导热系数(0.018~0.020 W/mK),堆积密度范围为60~100,并且是无定形半透明的,不具有反应性且具有良好的耐火性。  图2-1示出了混合后的砂浆,以及用于不同后续试验测量方法的各种模具(立方体,板材和圆柱形)。[align=center][img=2-01.隔热砂浆及其模具,690,333]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151936059557_5449_3384_3.png!w690x333.jpg[/img][/align][align=center][color=#cc0000]图2-1 隔热砂浆及其模具[/color][/align]  在生产两种砂浆之后,固化过程包括:(1)将样品放入聚乙烯袋中7天,进行湿固化;(2)从袋子中取出样品;(3)根据ISO 1015-11干燥固化21天。该程序在环境条件受控的室内进行:空气温度为20±5℃,相对湿度为50%。[b][color=#cc0000]3. 测试方法[/color][/b]  在这项研究中,和的导热系数采用了稳态和瞬态两类方法:  (1)两种稳态方法——热流计法(HFM),两种不同的设备,编号为1和2,以及Lee盘法。  (2)两种瞬态方法——改进型瞬态平面源法(MTPS)和瞬态热线法(TLS)。  表3-1显示了每种砂浆配方和试验评估的样品数量。[align=center][color=#cc0000]表3-1 被测样品数量和形状尺寸[/color][/align][align=center][color=#cc0000][img=表3-1 被测样品数量和形状尺寸,690,305]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151936425198_2929_3384_3.png!w690x305.jpg[/img][/color][/align][color=#cc0000]3.1. 导热系数稳态测试方法[/color]  稳态法导热系数测量是在已知厚度的样品上建立稳定的温度梯度,并测量从一侧到另一侧的热流。这些方法被认为是导热系数测量中最准确的方法,但另一方面,可能有一些缺点,例如在样品上达到稳态温度梯度需要很长时间,在某些情况下,需要校准样品,导致测量耗时很高。  在Gomes等人的研究中,根据EN ISO 8301应用了热流计法。对于这些测试,选择两种设备,一种是来自Holometrix的Rapid K(HFM1)和Senff等人描述的热流计法测量装置(HFM2),并使用不同尺寸的样品。在热流计方法中,样品位于两个等温加热板,热板和冷板的中间,一旦通过应用一维的傅里叶定律得到稳态,则可根据公式(1)确定导热系数。图3-1是该方法的示意图,图3-2表示该测试装置。[align=center][img=3-01.热流计法测量原理图,500,414]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151937304248_9888_3384_3.png!w690x572.jpg[/img][/align][align=center][color=#cc0000]图3-1 热流计法测量原理图[/color][/align][align=center][color=#cc0000][img=3-02.热流计法导热仪,690,459]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151937563278_2363_3384_3.png!w690x459.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 热流计法导热仪[/color][/align]  在Gomes等人的研究中,还采用了一种Lee式圆盘稳态测试方法,这种方法的测试仪器如图3-3所示。[align=center][color=#cc0000][img=3-03.Lee热盘稳态法测量装置,690,558]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151938151927_4397_3384_3.png!w690x558.jpg[/img][/color][/align][align=center][color=#cc0000]图3-3 Lee式热盘稳态法测量装置[/color][/align][color=#cc0000]3.2. 导热系数瞬态测试方法[/color]  瞬态方法是动态方法,是对由源发送的电热脉冲响应的测量,通过对所定义时间间隔测量的温度的数学模型进行计算。这些方法具有一些优点,例如测试过程简单快速,可同时测量不同热性能参数以及无需校准样品,但只有当样品与环境达到热平衡时才能发挥作用。  在Gomes等人的研究中,使用了改进型瞬态平面源(MTPS)和瞬态热线法(TLS),使用Applied Precision公司的设备ISOMET 2114,分别使用平面和线源探针。这些测量符合ASTM D5334、ASTM D5930和EN ISO 22007-2标准。所有测试均在20±3℃的平均参考温度下进行。图3-4和图3-5显示了用两种探头对样品的测量。  必须指出的是,使用MTPS测量时,将样品置于隔热材料板上以防止样品和工作台之间的热传导。通过TLS测量样品时用针头探针进行穿孔,使探针(100 mm)完全穿透到样品中并与砂浆完全接触。[align=center][color=#cc0000][img=,690,458]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152126392089_727_3384_3.png!w690x458.jpg[/img][/color][/align][align=center][color=#cc0000]图3-4 改进型瞬态平面热源法装置 ISOMET[/color][/align][align=center][color=#cc0000][img=图3-5 瞬态热线法装置 ISOMET,690,718]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151938546587_9416_3384_3.png!w690x718.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-5 瞬态热线法装置 ISOMET[/color][/align][b][color=#cc0000]4. 导热系数测试方法的对比分析[/color][/b]  在Gomes等人的研究中采用五种不同的设备来评估隔热砂浆的导热系数,每种都具有鲜明的特征和方法。  通过稳态方法(HFM1,HFM2和Lee式圆盘)评估导热系数需要很长时间才能达到测试样品的稳态温度梯度。此外,在某些情况下,需要进行初始校准测量(使用具有已知导热系数的样品),从而为该过程增加了更多时间。由于所选择的稳态测量程序中的步骤数量增加,这些方法也比采用的瞬态方法更依赖于操作员,例如,操作员的数据记录直到达到稳定状态(HFM1,HFM2和Lee式圆盘)和/或设备和样品操作(Lee式圆盘)。  HFM1方法需要最大的样品,在研究工作中,由于材料的稀缺性,并不总是可以生产。然而,它是许多已发表研究中使用的标准方法,允许与其他类型的材料直接比较。  HFM2方法需要比HFM1更小的样品,更容易生产,并且具有更高的测量范围,但其准确性和再现性很差,限制了其与其他方法测量结果的比较。  另一方面,Lee式圆盘法非常耗时,在测量过程中需要遵循许多步骤,这会导致相关错误的增加。尽管Lee式圆盘法的精度和重现性值很差,但它所用的样品尺寸最小。如果材料数量有限制,这种方法在开发新产品时非常有利。  通过瞬态方法(MTPS和TLS)评估导热系数比稳态方法花费的时间少得多,并且由于操作简单,并且测量程序的步骤减少,因此也不易发生操作错误。这两种方法都具有特定的准确性和可重复性。  MTPS方法需要比TLS和HFM更小的样本。但是,作为限制因素,它的阈值下限测量范围为0.04 W/mK,高于砂浆的某些导热系数值。  TLS方法是样本大小要求方面的排列第二的方法,样品尺寸要求仅次于HFM1方法,但它更快更容易操作,阈值下限测量范围为0.015 W/mK,这使得它非常有效评估低导热系数新型隔热砂浆的方法。  表4-1显示了所研究的导热率方法的定性比较分析。可以得出结论,在创新型隔热砂浆的开发的初始阶段,由于需要小样品,Lee式圆盘是一种有趣的评估方法。对于第二个开发阶段,它可以使用HFM2或MTPS和TLS方法,后者更快,更容易并且具有已知的准确性和再现性。HFM1方法仅适用于最终发展阶段,当有材料可用时,可以将获得的结果与其他研究进行比较。[align=center][color=#cc0000]表4-1 不同测试方法比较[/color][/align][align=center][color=#cc0000][img=表4-1 不同测试方法比较,690,351]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151939209178_5457_3384_3.png!w690x351.jpg[/img][/color][/align]  所有方法的导热系数均有显著变化,为0.056(平均值)±0.008 W/mK,为0.034(平均值)±0.007 W/mK(28天固化,转化温度为23℃),其对应于高达14%的偏差和21%的偏差。因此,导热系数测量方法的影响在新型隔热砂浆研究中至关重要。[b][color=#cc0000]5. 结论[/color][/b]  在Gomes等人的研究中,主要关注两种隔热砂浆(EPS和EPS+二氧化硅气凝胶)的导热性,采用了四种不同的测量方法——两种稳态方法和两种瞬态方法——使用了5种不同的设备和样品几何形状进行了测试。此外,还讨论了引入气凝胶和水分含量的影响。  与EPS基砂浆相比,以质量百分比为100%的工业砂浆引入二氧化硅气凝胶降低了砂浆的导热系数高达55%,对于干堆积密度观察到相同的趋势。  两种隔热砂浆对水分含量具有高度敏感性,具有指数趋势,这在掺入气凝胶后并未明显受到影响。值得一提的是,研究砂浆的脆性本身可能会误导水分含量带来的影响。  考虑到用于分析砂浆导热系数的所有方法及其不同的操作温度,所有结果都转换为23℃,由此可以直接比较所有方法的测试结果。观察到所有方法测试结果之间存在显著差异,在28天固化以及转化温度为23℃时,EPS基砂浆高达14%(0.056±0.008 W/mK),EPS+气凝胶砂浆高达21%(0.034±0.007 W/mK),而且通常用稳态法比用瞬态法得到更低的导热系数值。  每种方法的适用性以及它们之间的差异严格与设备的特性(量程、准确性和再现性)、样品大小、测试时间和操作的简便性(设备操作员的依赖性和测量过程中的复杂性)相关。  结果还表明,瞬态方法(MTPS和TLS)适用于小样品,与稳态方法(HFM1,HFM2和Lee的磁盘)相比,需要更少的测试时间、操作员依赖性和测量程序的复杂性。然而,标准中提到了稳态方法可以用来与其他公布的结果进行比较,特别是当新型材料的数量较多而不受限制时。  研究还证实,EPS基砂浆导热系数的所有测量结果均高于工业砂浆制造商的标称值(0.042 W/mK)。但是,制造商的技术文件缺乏关于测试条件的信息(例如测试温度或转换程序、水分含量、方法/设备的准确度、样品大小和测量范围),这使得测量结果很难进行比较。  通过此项研究所获得的结果,强调了对于具有低导热系数值材料的评估,指定导热系数测试条件和选择测试方法的重要性,否则材料性能和测试条件的变化规律很容易被测试方法和测试仪器的误差所掩盖。  [b][color=#cc0000]6. 评述[/color][/b]  通过上述对葡萄牙里斯本大学Gomes等人研究工作的介绍,可以详细了解保温砂浆从样品制备、处理、测试方法选择和导热系数测试的全过程,了解不同测试方法进行比对的具体步骤,对认识和掌握保温砂浆热物理性能的测试评价技术很有帮助。但他们的研究工作还存在一些不足,研究还停留在实验室检测的探索阶段,特别是在测试技术方面还需要进一步开展更深入的工作以真正满足新型保温砂浆的研制和生产需要。存在的不足和还需开展的工作主要体现以下几个方面:  (1)在多种测试方法对比测试过程中,通常会采用标准参考材料来进行对比测试,通过热物理性能稳定的标准参考材料来最大限度降低样品性能波动的影响,真正实现对测试方法自身测量精度的考核和对比。而在葡萄牙里斯本大学Gomes等人所进行的多种测试方法对比测试中,并未采用导热系数为0.03 W/mK附近的相应标准参考材料,如ASTM SRM 1450d,所以他们的对比测试误差中很大一部分是自制保温砂浆样品带来的影响,并不能对各种测试方法做出非常客观的评价。  (2)葡萄牙里斯本大学Gomes等人研究工作中所采用的测试方法没有问题,尽管论文发表时间为2018年,但文中所采用的测试设备普遍都比较陈旧,测量精度也相应的较差。以文中所提到的EPS基砂浆高达14%(0.056±0.008 W/mK),EPS+气凝胶砂浆高达21%(0.034±0.007 W/mK)的测试误差,在实际工程应用中对保温砂浆进行导热系数测试,就显着测量太差,这往往会造成实际建筑材料成本的无法准确控制,或实际隔热效果无法达到设计效果。以近些年来的导热系数测试技术发展水平,采用标准化的瞬态平面热源法(TPS)导热系数测试仪器完全可以在测量范围和精度方面满足要求,而且样品尺寸也非常小。  (3)综上所述,针对保温砂浆类材料导热系数等热物理性能参数的测试,稳态法保留热流计法,而瞬态法则建议采用精度更高的瞬态平面热源法。  [b][color=#cc0000]7. 参考文献[/color][/b]  (1) Gomes, M. Glória, et al. "Thermal conductivity measurement of thermal insulating mortars with EPS and silica aerogel by steady-state and transient methods." Construction and Building Materials 172 (2018): 696-705.  (2)ISO 8301 - Thermal insulation - determination of steady-state thermal resistance and related properties - Heat flow meter apparatus.  (3) L. Senff, G. Ascens?o, D. Hotza, V.M. Ferreira, J.A. Labrincha, Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars, Energy Build. 127 (2016) 980-990.   (4)Applied Precision Ltd., Isomet 2114 Thermal properties analyzer user’s guide, Version 120712, USA, n.d.  (5) American Society for Testing and Materials, ASTM D5334 - standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure.   (6)American Society for Testing and Materials, ASTM D5930 - Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique.   (7)ISO 22007-2 - Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (hot disc) method, Switzerland, 2015.[align=center]=======================================================================[/align]

  • WOCA 2022 亚洲混凝土世界博览会|亚洲混凝土展|地坪展|砂浆展

    [color=#333333]WOCA 2022 亚洲混凝土世界博览会|亚洲混凝土展相约魔都![/color][font=等线]World of Concrete Asia 亚洲混凝土世界博览会作为全球混凝土行业知名的展会品牌“混凝土世界博览会”系列的亚洲站,以混凝土地面建设为中心,向混凝土立面建筑发展,包含建筑原材料,混凝土建筑添加剂、混凝土建筑设备、设施及建筑材料设备等,打造混凝土建筑行业一站式展览平台。为推动亚洲地区建筑混凝土行业的绿色发展国际化、多元化的展览平台[/font][font=等线]。[/font][font=等线] [/font][b][font=等线]【组织机构】[/font][/b][font=等线][font=等线]主办单位:[/font]Informa Markets[/font][font=等线]联合主办单位:中国建筑材料联合会地坪产业分会、中国建筑材料联合会混凝土外加剂分会、中国散装水泥推广发展协会预拌砂浆专业委员会、上海市混凝土行业协会[/font][font=等线][font=等线]支持单位:美国混凝土协会[/font]ACI、中国建筑业协会混凝土分会、中国机电产品进出口商会、中国五矿化工进出口商会[/font][b][font=等线] [/font][font=等线]【预计展会规模】[/font][/b][font=等线][font=等线]展出面积[/font]57000㎡,品牌展商720多家,专业观众37000多人次[/font][font=等线] [/font][b][font=等线]【展品范围】[/font][font=等线]通用混凝土[/font][/b][font=等线]混凝土搅拌设备、混凝土生产设备、混凝土运输设备、现浇混凝土、预制混凝土、混凝土切割设备,破碎设备,爆破技术等、混凝土检测仪器及设备、混凝土加固技术及设备、装饰混凝土及颜料、透水砖、水泥、特种水泥,白水泥[/font][b][font=等线]混凝土表面处理[/font][/b][font=等线]整平设备、抹光设备、抛光设备、抛丸设备、吸尘[/font][font=等线]/清洁设备、小工具类、耗材、混凝土外加剂[/font][b][font=等线]地面系统[/font][/b][font=等线]地坪设计、环氧地坪聚氨酯地坪、磨石地坪、卷材地坪、运动地坪、水泥基自流平、其他地坪[/font][b][font=等线]水泥基及石膏基相关[/font][/b][font=等线]砂浆、砂浆生产设备、包装设备、运输设备、喷涂设备、砂浆添加剂[/font][b][font=等线]砂石[/font][/b][font=等线]破碎设备、再生骨料利用加工、建筑垃圾处理设备、尾矿处理、给料筛分设备、砂石类型、运输设备、环保及清运设备、配套及周边、开采运输设备[/font][b][font=等线]混凝土产业生态修复及环境治理[/font][/b][font=等线]建筑垃圾管理和回收、废弃物能源化及资源化、建筑固废处理环境服务、建筑再生料的生产和销售、建筑再生料供应商、废水处理设备、建筑施工噪音污染解决方案及设备、建筑绿色环保材料及其他、砂石固废及处理、砂石环保技术设备[/font][b][font=等线]模板脚手架及生产设备[/font][/b][font=等线]模板类、脚手架类、加工生产设备[/font][font=等线] [/font][b][font=等线][color=#333333]【参展费用】[/color][/font][font=等线][font=等线]光地(最小[/font]36平方米起)[/font][/b][font=等线][/font][font=等线][font=等线]展位费用[/font] [font=等线]人民币[/font] 1,460 元 / 每平方米,并且按6%加收增值税[/font][font=等线][/font][font=等线]* 包括:展位面积、展位保安、观众邀请函、公共区域清洁、展会会刊录入、展商胸牌、媒体宣传等[/font][b][font=等线][font=等线]标准展位(最小[/font]9平方米起)[/font][/b][font=等线][/font][font=等线][font=等线]展位费用[/font] [font=等线]人民币[/font] 1,570 元 / 每平方米,并且按6%加收增值税[/font][font=等线][/font][font=等线]* 包括:展位面积、展位搭建及拆卸、展位围板、2盏射灯、1张桌子、2把椅子、1个电源插座、展位楣板、展位地毯、每日展位清洁和保安、展会会刊录入、参展商胸牌、媒体宣传等[/font][b][font=等线][font=等线]研讨会([/font]30分钟一场)[/font][/b][font=等线][/font][font=等线][font=等线]费用[/font] [font=等线]人民币[/font]8,000元/场,并且按6%加收增值税[/font][font=等线] [/font][font=等线]展位预订:[/font][url=https://www.wocasia.cn/yudingzhanwei/][u][font=等线][color=#0000ff]https://www.wocasia.cn/yudingzhanwei/[/color][/font][/u][/url][font=等线] [/font][b][font=等线]联系方式[/font][/b][font=等线]Ada Feng 冯女士[/font][font=等线][/font][font=等线][font=等线]电话:[/font]+86 21 6157 7251[/font][font=等线][/font][font=等线][font=等线]电邮:[/font]Ada.Feng@informa.com[/font][font=等线]/[/font] [font=等线]info@wocasia.com[/font][font=等线][font=等线]微信客服:[/font]W[/font][font=等线]OCA-XIAOTONG[/font][color=#333333][/color]

  • NJ-160A型水泥净浆搅拌机调整与保养

    NJ-160A型水泥净浆搅拌机调整与保养1、调整:本机出厂已将搅拌叶与搅拌锅之间的间隙调整到2±1mm范围。搅拌叶与搅拌锅的工作间隙调整,可松开调节螺母转动搅拌叶使之上下移动,再用检测杆检测正确间隙后,再旋紧调节螺母即可。或松开电机与立柱,减速箱法兰与电动机连接的螺钉,正确后再拧紧螺钉。2、保养:(1) 应保持工作场地清洁,每次使用后应彻底清除搅拌叶与搅拌锅内、外残余砂浆,并清扫散落和飞溅机器上的砂浆及脏污物,揩干后,套上护罩,防止灰尘。(2) 本机无外部加油孔。传动箱内蜗轮付、齿轮付及轴承等运动部件每季加二硫化钼润滑脂一次,加油时可分别打开轴承盖,支座与立柱导轨之间,升降机构之间应经常滴入机油润滑,每年保养一次,将本机全部清洗并加注润滑油和润滑脂。(3) 机器运转时遇有金属撞击噪声,应首先检查搅拌叶与搅拌锅之间的间隙是否正确。(4) 使用搅拌锅时,要轻拿轻放,不可随意碰撞,以免造成搅拌锅变形。(5) 当更换新的搅拌锅或叶片时,均应按前述方法调整间隙。(6) 应经常检查电气绝缘情况,在20℃±5℃相对湿度50%~70%时的冷态绝缘电阻≥5MΩ。

  • 【求购】采购一批试验室仪器设备清单

    [B]仪器设备清单仪器设备名称 规格型号 数量(台/套) 技术指标 价格(元)压力试验机 2000kN 1 2000KN万能材料试验机 1000kN 1 1000KN水泥抗折抗压试验机 1 300 kN恒压砼抗渗仪 ST-40 1电子天平 1 5Kg/20mg天平 1 200g/0.01mg静水力学天平 1 5Kg/1g水泥净浆搅拌机 SJ-160 1水泥胶砂搅拌机 JJ-5 1水泥胶砂振实台 ZT-96 1流动度测定仪 NLD-2 1雷氏沸煮箱 CF-A 1雷氏夹测定仪 1水泥稠度测定仪 1标准养护箱 YH-40B 1 20+1℃负压筛 FSY150-A 1电热干燥箱 1 300℃/1℃维勃稠度仪 1砂浆稠度仪 1砼坍落度筒 1砼震动台0.8米 1砼搅拌机 1 50L含气量测定仪 HX-50 1 0-0.25MPa压力泌水仪 1震筛机 1砂石标准套筛 1 0.08~100mm容积升一套 1 1~30L针片状规准仪 1砼贯入阻力仪0-1200N 1 1200/5N四用游标卡尺0-125mm 1恒温恒湿系统 1砼标准试模 150*150*150 20砼标准试模 100*100*100 6砼抗折标准试模 550*150*150 4砼抗折标准试模400*100*100 4砼抗渗试模 1砂浆试模 7.07*7.07*7.07 10水泥软练试模 40*40*160 10邮件地址:xiangzhi137@163.com[/B]

  • 【求助】请各位朋友,帮忙分析两个红外图(毕业论文急用)

    [em09508]将苯丙乳液改性水泥砂浆和普通水泥砂浆养护一定龄期后碾碎,然后与溴化钾混合研磨压制成晶片,测定其红外吸收光谱。根据普通水泥净浆旧峰的消失、减弱、迁移或增强来分析乳液对水泥砂浆的影响,判断水泥水化过程中聚合物乳液是否参与化学反应?

  • 【原创】石油石化行业标准大全

    1、石油工程建设腐蚀与防护序号 标准号 标准名称 01 SYJ0007-1999 钢质管道及储罐防腐蚀工程设计规范 02 SY/T 0017—96 埋地钢质管直流排流保护技术标准03 SY/T 0019—97 埋地钢质管道牺牲阳极阴极保护时间规范 04 SY/T 0023—97 埋地钢质管道阴极保护参数测试方法 05 SY/T 0026—1999 水腐蚀性测试方法06 SY/T 0029—98 埋地钢质检查片腐蚀速率测试方法 07 SYJ 0032—2000 埋地钢质管道交流保护技术标准 08 SYJ 0036—2000 埋地钢质管道强制电流阴极保护设计规范 09 SY/T 0037—1997 管道防腐层阴极剥离试验方法10 SY/T 0038—1997 管道防腐层特定可弯曲性试验方法11 SY/T 0039—1997 管道防腐层化学稳定性试验方法12 SY/T 0040—1997 管道防腐层抗冲击性试验方法(落锤试验法)13 SY/T 0041—1997 管道防腐层与金属粘接的剪切强度试验方法 14 SY/T 0042—2002 防腐蚀工程经济计算方法标准15 SY/T 0043—1996 油气田地面管线和设备涂色标准16 SY/T 0047—1999 原油处理容器内部阴极保护系统技术规范17 SY/T 0059—1999 控制钢制设备焊缝硬度防止硫化物应力开裂技术规范18 SY/T 0060—92 油田防静电接地设计规定19 SY/T 0061—92 埋地钢质管道外壁涂覆有机覆盖层技术规定 20 SY/T 0062—2000 管道防腐层针入度试验方法(钝杆法)21 SY/T 0063—1999 管道防腐层检漏试验方法22 SY/T 0064—2000 管道防腐层水渗透性试验方法23 SY/T 0065—2000 管道防腐层耐磨性能试验方法(滚简法)24 SY/T 0066—1999 钢管防腐层厚度的无损测量方法(磁性法)25 SY/T 0067—1999 管道防腐层耐冲击性试验方法(石灰石落下法)26 SY/T 0072—93 管道防腐层高温阴极剥离试验方法标准27 SY/T 0078—93 钢质管道内腐蚀控制标准 (含有:标准条文说明)28 SY/T 0084—94 管道防腐层环状弯曲性能试验方法29 SY/T 0085—94 管道防腐层自然气候暴露试验方法30 SY/T 0086—2003 阴极保护管道的电绝缘标准31 SY/T 0087— 95 钢质管道及储罐腐蚀与防护调查方法标准32 SY/T 0088—95 钢质储罐罐底外壁阴极保护技术标准33 SY/T 0094—1999 管道防腐层阴极剥离试验方法(粘接电解槽法)34 SY/T 0095—2000 埋地镁牺牲阳极试样试验室评价的试验方法 35 SY/T 0096—2000 强制电流深阳极地床技术规范 36 SY/T 0526.1-22-93(22个标准) 煤焦油瓷漆覆盖层 底漆 干提取物灰分测定石 油 工 程 建 设 施 工01 SY/T 0306—96 滩海石油工程热工采暖技术规范02 SY/T 0315—97 钢质管道熔结环氧粉末涂层技术规范03 SY/T 0319—98 钢质储罐液体环氧涂料内防腐层技术标准04 SY/T 0320—98 钢质储罐氯磺化聚乙烯外防腐层技术标准05 SY/T 0321—2000 钢质管道水泥砂浆衬里技术标准06 SY/T 0323—2000 玻璃纤维增强热固性树脂压力挂表道施工及验收规范07 SY/T 0326—20 02 钢制储罐內衬环氧玻璃钢技术标准08 SY/T 0379—98 埋地钢质管道煤焦油瓷漆外防腐层技术标准09 SY/T 0401—98 输油输气管道线路工程施工及验收规范10 SY/T 0407—97 涂装前钢材表面预处理规范11 SY/T 0413—2002 埋地钢质管道聚乙烯防腐层技术标准12 SY/T 0414—98 钢质管道聚乙烯胶粘带防腐层技术标准13 SY/T 0415—96 埋地钢质管道硬质聚氨酯泡沫塑料防腐保温层技术标准14 SY/T 0420—97 埋地钢质管道石油沥青防腐层技术标准15 SY/T 0422—97 油田集输管施工及验收规范16 SY/T 0442—97 钢质管道熔结环氧粉末内涂层技术标准17 SY/T 0447—96 埋地钢质管道环氧煤沥青防腐层技术标准18 SY/T 0457—2000 钢质管道液体环氧涂料内防腐层技术标准19 SY/T 0468—2000 石油建设工程质量检验评定标准 防腐保温钢管制作20 SY/T 0546—96 腐蚀产物的采集与鉴定21 SY/T 0599—97 天然气地面设施抗硫化物应力开裂金属材料要求22 SYJ 4006—90 长输管道阴极保护工程施工及验收规范23 SY 4056-93 石油天然气钢质管道对接焊缝射线照相及质量分级24 SY 4065-93 石油天然气钢质管道对接焊缝超声波探伤及质量分级25 SY/T 4074—95 钢质管道水泥砂浆衬里涂敷工艺26 SY/T 4075—95 钢质管道粉煤灰水泥砂浆衬里离心成型施工工艺27 SY/T 4076—9 5 钢质管道液体涂料内涂层风送挤涂工艺28 SY/T 4077—95 钢质管道水泥砂浆衬里风送挤涂工艺29 SY/T 4078—95 钢质管道内涂层液体涂料补口机补口工艺30 SY/T 4080—95 管道、储罐渗漏检测方法31 SY/T 4091—95 滩海石油工程防腐蚀技术规范32 SY/T 4092—95 滩海石油工程保温技术规范01 SY/T 5856—93 油气田电业带电作业安全规程 02 SY/T 5984—94 油(气)田容器、管道和装卸设施接地装置安全检查规定03 SY/T 6360—97 易燃、可燃液体常压储罐的內外灭火04 SY/T 63 19—97 防止静电、闪电和杂散电流引燃的措施05 SY/T 6340— 98 石油工业防静电推荐作法06 SY/T 6460—2000 易燃和可燃液体基本分类07 SY/T 6536—2002 钢质水罐內壁阴极保护技术规范2、石油工程建设施工01 SY/T 0306—96 滩海石油工程热工采暖技术规范02 SY/T 0315—97 钢质管道熔结环氧粉末涂层技术规范03 SY/T 0319—98 钢质储罐液体环氧涂料内防腐层技术标准04 SY/T 0320—98 钢质储罐氯磺化聚乙烯外防腐层技术标准05 SY/T 0321—2000 钢质管道水泥砂浆衬里技术标准06 SY/T 0323—2000 玻璃纤维增强热固性树脂压力挂表道施工及验收规范07 SY/T 0326—20 02 钢制储罐內衬环氧玻璃钢技术标准08 SY/T 0379—98 埋地钢质管道煤焦油瓷漆外防腐层技术标准09 SY/T 0401—98 输油输气管道线路工程施工及验收规范10 SY/T 0407—97 涂装前钢材表面预处理规范11 SY/T 0413—2002 埋地钢质管道聚乙烯防腐层技术标准12 SY/T 0414—98 钢质管道聚乙烯胶粘带防腐层技术标准13 SY/T 0415—96 埋地钢质管道硬质聚氨酯泡沫塑料防腐保温层技术标准14 SY/T 0420—97 埋地钢质管道石油沥青防腐层技术标准15 SY/T 0422—97 油田集输管施工及验收规范16 SY/T 0442—97 钢质管道熔结环氧粉末内涂层技术标准17 SY/T 0447—96 埋地钢质管道环氧煤沥青防腐层技术标准18 SY/T 0457—2000 钢质管道液体环氧涂料内防腐层技术标准19 SY/T 0468—2000 石油建设工程质量检验评定标准 防腐保温钢管制作20 SY/T 0546—96 腐蚀产物的采集与鉴定21 SY/T 0599—97 天然气地面设施抗硫化物应力开裂金属材料要求22 SYJ 4006—90 长输管道阴极保护工程施工及验收规范23 SY 4056-93 石油天然气钢质管道对接焊缝射线照相及质量分级24 SY 4065-93 石油天然气钢质管道对接焊缝超声波探伤及质量分级25 SY/T 4074—95 钢质管道水泥砂浆衬里涂敷工艺26 SY/T 4075—95 钢质管道粉煤灰水泥砂浆衬里离心成型施工工艺27 SY/T 4076—9 5 钢质管道液体涂料内涂层风送挤涂工艺28 SY/T 4077—95 钢质管道水泥砂浆衬里风送挤涂工艺29 SY/T 4078—95 钢质管道内涂层液体涂料补口机补口工艺30 SY/T 4080—95 管道、储罐渗漏检测方法31 SY/T 4091—95 滩海石油工程防腐蚀技术规范32 SY/T 4092—95 滩海石油工程保温技术规范01 SY/T 5856—93 油气田电业带电作业安全规程 02 SY/T 5984—94 油(气)田容器、管道和装卸设施接地装置安全检查规定03 SY/T 6360—97 易燃、可燃液体常压储罐的內外灭火04 SY/T 63 19—97 防止静电、闪电和杂散电流引燃的措施05 SY/T 6340— 98 石油工业防静电推荐作法06 SY/T 6460—2000 易燃和可燃液体基本分类07 SY/T 6536—2002 钢质水罐內壁阴极保护技术规范3、油气储运01 SY/T 5918—94 埋地钢质管道沥青防腐层大修理技术规定02 SY/T 5919—94 埋地钢质管道干线电法保护技术管理规程03 SY/T 6151— 95 钢质管道管体腐蚀损伤评价方法04 SY/T 6063—94 埋地钢质管道防腐绝缘层电阻率现场测量技术规定4、化工防腐蚀标准

  • 【原创】蠕动泵应用领域全解

    蠕动泵应用领域全解化工业:酸、碱、溶剂、悬浮物、分散体系    石化业:原油、稠油、油脂、泥浆、污泥    涂料业:树脂、溶剂、着色剂、油漆    日化业:洗涤剂、香波、乳液、乳剂、手霜、表面活化剂    陶瓷业:泥浆、瓷浆、石灰浆、陶土浆    采矿业:煤浆、岩浆、泥浆、砂浆、炸药浆、润滑油    水处理:石灰浆、软性沉淀物、污水、化学品、废水    食品业:液态半固体、巧克力、盐水、醋、糖浆、菜油、大豆油、蜂蜜、动物血    饮料业:酵母、糖浆、浓缩物、气液混合物、葡萄酒、果汁、玉米    医药业:溶剂、酸、碱、植物提炼液、软膏、血浆    造纸业:粘合剂、树脂、油漆、油墨、颜料、双氧水    电子业:溶剂、电镀液、清洗液、硫酸、硝酸、废酸、腐蚀性酸、抛光液    纺织业:染料化学品、树脂、胶    建筑业:水泥浆、粘合剂、岩石浆、天花板面漆    汽车业:抛光乳剂、油、冷却剂、汽车底漆、油乳胶、清漆、清漆添加剂、脱脂液、油漆    家具业:粘合剂、清漆、溶剂、色剂、白木胶、环氧树脂、淀粉粘合剂    冶金铸造业:金属浆、氢氧化物和碳化物浆、灰尘洗涤浆

  • 【分享】混凝土力学性能检测项目

    1. 混凝土力学性能:抗压强度、轴心抗压强度、静力受压弹性模量、劈裂抗拉强度、抗折强度、圆柱体劈裂抗拉强度、芯样切割抗压强度、喷射混凝土切割抗压强度;2. 混凝土耐久性能:慢冻、收缩、抗渗、碳化;3. 普通混凝土拌和物:稠度、凝结时间、泌水和压力泌水、表观密度、含气量;4. 配合比设计:普通混凝土配合比设计、轻骨料混凝土配合比设计、喷射混凝土配合比设计、砌筑砂浆配合比设计、净浆配合比设计;5. 建筑砂浆:稠度、密度、分层度试验、立方体抗压强度、抗冻性能、静力受压弹性模量;6. 聚合物砂浆增加:抗压抗折、压折比、拉伸粘结强度、可操作时间、吸水量;7. 砂:筛分析、表观密度、吸水率、含水率、堆积密度和紧密密度、含泥量、泥块含量、云母含量、碱活性、石粉含量;8. 石:筛分析、表观密度、吸水率、含水率、堆积密度和紧密密度、含泥量、泥块含量、针状和片状颗粒总含量、岩石抗压强度、压碎指标值、碱活性;

  • 国家质监总局发布计量新法规公告(2012年第206号)

    关于发布JJG567-2012《轨道衡检衡车检定规程》等10个国家计量技术法规的公告(2012年第206号公告) 根据《中华人民共和国计量法》有关规定,现批准JJG567-2012《轨道衡检衡车检定规程》等10个国家计量技术法规发布实施。编号名称批准日期实施日期备注JJG567-2012轨道衡检衡车检定规程2012-12-122013-06-12代替JJG567-1989JJF1371-2012加速度型滚动轴承振动测量仪校准规范2012-12-122013-03-12JJF1372-2012贯入式砂浆强度检测仪校准规范2012-12-122013-03-12JJF1373-2012动弹仪校准规范

  • 混凝土纳米压痕仪器求助

    我想做混凝土材料:骨料与水泥砂浆之间、以及新旧砂浆之间的界面过度区的纳米压痕试验。我查了一下资料,这个界面过度区的宽度大概在50微米宽度左右。然后加载的最大加载力为1200微牛。。我先请教一下前辈们:1 纳米压痕仪器: 海思创hysitron TI 950与海思创hysitron TI 900之间有什么区别,我目前联系的大都是海思创TI 900?能够满足要求吗2 制样时,怎样打磨抛光?抛光选取的是水基金刚石悬浮液吗?3 水泥基试验的结果是否离散性比较大4 还有其他要注意的吗?5 大家还知道有哪些学校有海思hysitron创纳米压痕仪(买不起)

  • 求知网会议论文一篇

    【序号】:1【作者】:何代华【题名】:EVA改性砂浆与钢板和瓷砖粘接强度的比较【会议】:商品砂浆的科学与技术【年、卷、期、起止页码】:2011【全文链接】:http://cpfd.cnki.com.cn/Article/CPFDTOTAL-EUGQ201111001014.htm

  • 保温材料用电子万能试验机用途与标准

    微机控制电子万能试验机是专门针对复合砂浆保温系统、聚苯板薄抹灰外墙保温系统、硬质聚氨脂发泡复合板外墙保温系统及其它外墙保温系统及屋面保温材料进行各种理化性能试验测试研制的。本机适用标准:JC/T992-2006《墙体保温用膨胀聚乙烯板胶粘剂》JC/T993-2006《外墙外保温用膨胀聚乙烯板抹面胶浆》JC/T547-2005《陶瓷地砖胶粘剂》JG149-2003《膨胀聚苯板薄抹灰外墙外保温系统》JC890-2001《蒸压加气混凝土用砌筑砂浆与抹面砂浆》JC/T907-2002《混凝土界面处理剂》JG158-2004 《胶粉聚苯颗粒外墙外保温系统》DBJ01-38-2002《外墙外保温施工技术规程 聚合物水泥砂浆胶粘剂》DBJ/T01-50-2002《外墙外保温施工技术规程 柔性耐水腻子》

  • 利用气质联用与不分流玻璃砂芯衬管对食品基质进行多残留农药分析

    摘要:食品基质中的农药可能对进样口条件(包括衬管中的屏障类型,无论是玻璃毛、浅凹坑还是烧结砂芯)非常敏感。利用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/串联四极杆质谱 (GC/MS/MS) 多残留农药分析方法评估安捷伦超高惰性不分流烧结玻璃砂芯衬管的有效性。结果证明,使用砂芯衬管使 22 种农药在 1–500 ng/mL 的范围内实现了线性校准。在第yi组基质进样时,砂芯衬管还获得了与常用的玻璃毛衬管相媲美的响应和峰形,但在 70 次基质进样后,砂芯衬管保持了更高的峰响应。前言:农药对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-串联质谱 (GC/MS/MS) 系统中的活性位点很敏感,因此使用惰性流路至关重要;但是,某些食品基质会改变流路的惰性。之前的研究表明,基质匹配校准标样和带有屏障(例如玻璃毛)的衬管可延长色谱柱使用寿命和分析寿命[1,2]。填充有玻璃毛的进样口衬管通常用于提供挥发位点,并用作收集非挥发性基质化合物的屏障。但是,玻璃毛也会引入活性位点,因为其不规则的表面可能没有完全去活,或者可能在玻璃毛的断裂点形成新的活性位点。玻璃毛的一种替代品是烧结玻璃砂芯衬管,这种衬管也提供了屏障和挥发位点,且不存在玻璃毛断裂或在衬管内移动的风险。不分流衬管在单锥衬管的底部(类似于不分流玻璃毛衬管中玻璃毛的位置)具有砂芯。使用一组浓度范围为 1–500 ng/mL 的 22 种农药的基质匹配校准标样,对烧结砂芯衬管进行测试。为考察每根衬管的进样重复性和一组衬管之间的重现性,利用含有低浓度 (10 ng/mL) 农药的食品基质进行 GC/MS/MS 分析,对不分流砂芯衬管和两种不分流玻璃毛衬管进行测试。对烧结砂芯衬管与玻璃毛衬管进行比较,以确定它们在农药分析中的有效性以及衬管性能的相似性或差异性,因为玻璃毛衬管常用于农药分析。实验部分:选择七种食品基质进行分析:草莓、李子、洋葱、柿子椒、橙子、牛油果和菠菜。按照 QuEChERS 方法萃取各种基质,并采用适合基质的分散 SPE 技术进行基质净化。所有七种基质遵循相同的 QuEChERS 萃取方案: 1. 将 15 克均质化食品加入 50 mL 离心管中 2. 加入两粒陶瓷均质子和 15 mL 水,对样品进行涡旋混合 3. 然后用 15 mL 酸化乙腈(含 1% 乙酸的乙腈)对样品进行萃取,并涡旋混合 2–5 分钟 4. 将 QuEChERS 萃取盐(部件号 5982- 7555)加入每个样品中,并将样品机械振荡 5 分钟,然后在 5000 rpm 下离心 5 分钟 5. 然后将每个乙腈萃取液样品(顶层)转移至适当的 dSPE 净化管中对于牛油果将约 10 mL 牛油果提取物从离心管中移至新管中,并加入 2 mL 水。将混合物摇匀。使用两个 Captiva EMR-Lipid 6 mL 小柱(部件号 5190-1004),将提取物/水混合物移入每个小柱中,使其在约 20 分钟内穿过小柱滴出,进入收集管。在大部分提取物通过小柱后,利用多管真空装置使少量剩余液体通过小柱进入收集管中。将收集管中的液体倒入 15 mL 离心瓶中,加入 Bond Elut EMR-Lipid 除脂萃取盐包(部件号 5982-0102),并在 5000 rpm 下将内容物离心 5 分钟。然后将最终的牛油果提取物转移至储存瓶中。对于所有其他基质将 8 mL 乙腈/食品提取物加入用于一般水果和蔬菜的 QuEChERS dSPE(部件号 5982-5058)中,涡旋混合 2 分钟,然后在 5000 rpm 下离心 5 分钟。将各种最终食品提取物转移至单独的储存瓶中。农药标样购得 22 种农药(浓度为 10 ppm)的定制混标。用丙酮将 10 ppm 标样稀释至 1、2、5、10、20、50、100、200 和 500 ng/mL,制得一组九个校准浓度的标样。将六种氘代 PAH 的混合物作为内标 (ISTD) 加入各种校准混标中,其中各自浓度均为 40 ng/mL。将磷酸三苯酯 (TPP) 作为替代物以 200 ng/mL 的浓度加入各种混合物中。表 1 按洗脱顺序列出了农药化合物,并在表格底部列出了内标和替代物。结论:安捷伦超高惰性不分流砂芯衬管适用于通过 GC/MS/MS 检测食品中的农药。砂芯衬管使 22 种目标农药在 1–500 ng/mL 的浓度范围内成功实现了校准,平均校准系数 (R2 ) 为 0.996。砂芯衬管提供了与不分流玻璃毛衬管类似的响应,但与玻璃毛衬管相比,在 70 次基质匹配进样过程中,随着基质进样次数的增加,砂芯衬管能够更好的保持峰面积。此外,获得了优异的重复性和重现性,所有砂芯衬管的 RSD% 值均低于 16%,玻璃毛 B 衬管的 RSD% 值低于 20%,表明去活效果以及农药与衬管的相互作用是一致的。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制