当前位置: 仪器信息网 > 行业主题 > >

射频传感器

仪器信息网射频传感器专题为您提供2024年最新射频传感器价格报价、厂家品牌的相关信息, 包括射频传感器参数、型号等,不管是国产,还是进口品牌的射频传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合射频传感器相关的耗材配件、试剂标物,还有射频传感器相关的最新资讯、资料,以及射频传感器相关的解决方案。

射频传感器相关的资讯

  • 中国科大实现低频射频场的高灵敏里德堡原子传感器
    中国科学技术大学郭光灿院士团队在基于里德堡原子的低频射频电场测量上取得重要进展。该团队史保森、丁冬生课题组利用非共振外差方法实现了基于里德堡原子的低频射频电场精密探测,相关成果以“Highly sensitive measurement of a MHz RF electric field with a Rydberg atom sensor”为题发表在国际应用物理期刊《Physical Review Applied》上。   里德堡原子由于其较大的电偶极矩和极化率等独特性质,在微波测量领域展现出巨大应用潜力。基于里德堡原子的量子传感器在测量精度﹑抗干扰性以及可朔源等方面有望超越传统微波接收系统,因此该研究方向受到广泛关注,例如:美国陆军研究室、桑迪亚国家实验室等开展了相关研究,并取得了重要进展[Physical Review Applied 13, 054034 (2020),Physical Review Applied 15, 014047 (2021)]。尽管里德堡原子传感器在GHz高频微波频段探测取得了重要进展,但在MHz附近的低频波段却遇到困难,测量灵敏度较低,其主要原因在于低频电场与里德堡原子之间的耦合是一种弱的非共振相互作用,受限于光谱测量分辨率,人们难以测量微弱微波电场造成的扰动,这就限制了里德堡原子微波测量向低频波段的扩展。   在本工作中,研究团队基于AC Stark效应和非共振外差技术,通过引入一个本地振荡电场来放大系统对微弱信号电场的响应,最后通过测量探测光的电磁诱导透明光谱得到信号电场的强度。研究团队实现了对30-MHz微波电场(波长近10米)的高灵敏度测量,最小电场强度为37.3µV/cm,灵敏度为−65 dBm/Hz,动态范围超过65 dB。此外,研究团队还演示了1 kHz振幅调制(AM)信号的传输和接收:通过对探测光束信号进行解调,并分别方波和正弦波调制下提取初始调制信息,保真度均达到98%。图1 (a)里德堡态激发 (b)传感器示意图图2 (a)系统灵敏度 (b)和(c)AM解调信号演示 这项工作提高了MHz电场的原子传感器灵敏度,有助于原子电场传感技术的发展。该工作对里德堡原子传感器的在其他领域的应用,如远程通信、超视距雷达和射频识别(RFID)也有参考价值。   中科院量子信息重点实验室硕士研究生刘邦为本文的第一作者,丁冬生教授、史保森教授为本文的共同通讯作者。该成果得到了科技部、基金委、中科院、安徽省重大科技专项以及中国科学技术大学的资助。
  • 半导体情报,科学家利用自旋整流器实现低功率射频能量的高效收集与应用!
    【科学背景】随着无线传感器网络在健康监测、环境监测和物联网(IoT)等应用中的重要性日益增加,如何有效供电成为一个关键问题。当前,许多传感器需要在难以接触的地方进行安装,例如用于空气质量、温度和湿度监测的传感器,这些传感器的电力需求通常无法依赖传统电池供给。因此,开发一种能够从环境中收集能量并转化为电力的技术成为了一个重要研究方向。在众多能源收集技术中,射频(RF)能量收集因其全天候可用、易于获取且可以与小型无线传感器网络集成的优点而备受关注。射频能量收集的关键挑战之一是如何在低功率条件下提高能量转换效率。尽管已有技术如肖特基二极管和隧道二极管在较高功率条件下表现出较高的效率,但在环境射频功率低于 -20 dBm 的情况下,这些技术的效率大幅降低,无法满足实际应用需求。此外,传统射频整流器面临热力学极限和高频寄生阻抗等问题,这些因素严重制约了其在低功率环境下的性能。为此,新加坡国立大学Hyunsoo Yang等科学家们致力于改进自旋整流器的性能。例如,作者的研究团队开发了一种新型的自旋整流器 rectenna,其在 -62 dBm 的射频功率下具有约 10,000 mV mW&minus 1 的高灵敏度,能够在弱且嘈杂的环境中有效收集射频能量。此外,作者还开发了一种基于片上共面波导的自旋整流器阵列,该阵列展示了约 34,500 mV mW&minus 1 的零偏灵敏度和 7.81% 的高效率。作者的研究解决了传统自旋整流器在低功率环境下效率低的问题,通过利用电压控制的磁各向异性(VCMA)驱动的自参量效应,显著提高了灵敏度和检测带宽。这一进展使得作者的自旋整流器可以在 -27 dBm 的低射频功率下为传感器提供无线供电,展现出良好的应用前景。【科学亮点】1. 实验首次展示了高灵敏度自旋整流器(SR)rectenna的应用:本文首次报道了一种具有高灵敏度的 SR rectenna,能够在 -62 dBm 的低射频功率下进行能量收集,达到约 10,000 mV mW&minus 1 的灵敏度。这种 SR rectenna 能够在弱且嘈杂的环境中有效捕获射频能量。2. 通过优化器件特性提升灵敏度:研究中指出,单个 SR 的灵敏度与其内在特性密切相关,包括垂直各向异性、器件几何形状和来自极化层的偶极场。这些因素共同定义了纳米磁体的能量景观,并促使低输入功率下的大角度磁化进动。此外,SR 的灵敏度还与磁隧道结(MTJ)的动态响应相关,尤其是零场隧道磁阻(TMR)和电压控制的磁各向异性(VCMA)系数对增强零偏置整流电压的作用。3. SR 阵列的自参量效应提升了性能:实验还显示了 SR 阵列在没有外部天线或匹配设置的情况下,通过 VCMA 驱动的自参量效应,增强了灵敏度和检测带宽。该 SR 阵列基础的能量收集模块(EHM)能够在 -27 dBm 的低射频功率下为商业传感器供电,展示了其在实际应用中的有效性和高效性。【科学图文】图1:利用自旋整流器Spin rectifiers,SRs的射频Radiofrequency,RF能量收集。图2: 自旋整流器SR整流天线的性能。图3: 宽带和谐振整流的调谐。图4:基于宽带低功率自旋整流器SR的能量收集器energy harvesting module,EHM。图5: 肖特基二极管、自旋整流器SR阵列和SR整流天线之间的整流性能比较。【科学启迪】本文的研究通过优化自旋整流器的设计,包括垂直各向异性和设备几何形状,研究成功实现了在极低射频功率下的高灵敏度检测。这表明,通过精细调控材料和结构特性,可以显著提高纳米尺度整流器的能量转换效率,从而扩展其在低功率环境下的应用范围。其次,本文引入了基于电压控制的磁各向异性(VCMA)的自参量效应,展示了在没有外部天线或匹配设置的情况下,如何通过自参量激发实现更高的灵敏度和更宽的检测带宽。这一发现不仅突破了传统射频整流器在低功率和复杂环境下的性能瓶颈,还为未来开发更高效的射频能量收集模块提供了新的思路。最后,本研究表明,基于自旋整流器的射频能量收集模块在实际应用中具有良好的性能,如在 -27 dBm 的低射频功率下为商业传感器供电。这表明这些整流器不仅具备高灵敏度和高效率,还具备良好的实际应用潜力,适合于未来无线传感器网络和物联网设备的集成与应用。原文详情:Sharma, R., Ngo, T., Raimondo, E. et al. Nanoscale spin rectifiers for harvesting ambient radiofrequency energy. Nat Electron (2024). https://doi.org/10.1038/s41928-024-01212-1
  • 行业应用 | 射频导纳物位技术如何监控火电厂原煤仓料位?
    火力发电占中国超过70%的发电量,全国遍布了成千上百座火电厂,火力发电厂的安全运营对于电力生产商至关重要。在火电厂中,AMETEK DREXELBROOK的物位产品在静电除尘器、输煤程控、气力输送领域以及汽轮机油箱液位监控、润滑油含水测量等领域有非常成熟的应用方案。在输煤程控领域,AMETEK DREXELBROOK的射频导纳物位开关(杆式或平板式)安装在原煤仓上进行低位、高位和高高位料位报警,DR6400/6500系列26/80GHZ雷达料位计安装在罐顶对煤位进行连续监控。下面图片均为AMETEK DREXELBROOK物位产品在现场安装使用的工况照:图1上图1位在原煤仓上的低位报警开关,该工况选用的射频导纳平板开关,开关的安装形式巧妙避免了落煤对传感器的损害,完美的实现了低位报警功能。图2上图2为原煤仓连续煤位测量,采用AMETEK DREXELBROOK DR6500系列80Ghz高频雷达,精确的为客户计算煤位,和开关一起,双重保证原煤仓安全运作。以上用实际应用图片体现了AMETEK DREXELBROOK产品在电厂多个场合的应用,除以上图片所显示实际应用案例之外,还有其他诸多场合,总体火力电厂应用总结如下:AMETEK DREXELBROOK射频导纳产品在国内的火电厂应用非常多,目前开关的使用量累计超过20000台,见证了中国火电厂的发展历程,也维护了火电厂的安全运行。
  • 质谱仪器研制专辑分享二——用于低质荷比离子传输的射频四极杆导向装置的研制
    p style=" text-indent: 2em text-align: justify line-height: 1.5em " 近日,《质谱学报》出版了由复旦大学杨芃原教授组织,全国多家质谱研制相关课题组参与撰写的“质谱仪器研制专辑”,专辑主要包含四极杆的离子光学和串联振荡技术 四极杆的导向装置、四极杆质量分辨自动调节技术、三重四极杆仪器开发平台以及三重四极杆质谱分析软件等硬软件技术 双线形离子阱间离子传输技术和静电轨道离子阱离子切向引入技术 小型飞行时间质谱和离子束诊断飞行时间质谱 复合离子源技术和激光后电离技术 以及集成了质谱技术的超宽波段光解离光谱系统和调控纳微尺度分子组装装置的研制等内容。 /p p style=" text-align: justify line-height: 1.5em "   仪器信息网授权对本专辑内容进行转载,以下为系列分享第二期,题为“ strong 用于低质荷比离子传输的射频四极杆导向装置的研制” /strong 的文章,作者贺飞耀,通讯作者为四川大学段忆翔教授。 /p p style=" text-align: justify line-height: 1.5em "   段忆翔教授,博士生导师,现任四川大学分析仪器研究中心主任,是四川大学分析仪器研究中心的创始人。科技部重大科学仪器设备开发专项项目负责人。自2010年8月回国至今,开发研制了系列激光诱导击穿光谱仪,基于等离子体的便携式光谱仪,质子转移反应质谱仪,离子迁移谱仪等多种分析测试仪器,已申请专利共计80余项,发表SCI论文200余篇。作为项目负责人承担多个国家、省部各种项目。 /p p style=" text-align: justify line-height: 1.5em "   其课题组主要的研究方向有: 新型质谱离子源与质谱技术、激光光谱分析技术、新型生物传感器及光纤传感技术、创新型分析仪器的研发等。 /p p style=" text-align: justify line-height: 1.5em "   离子传输系统是质谱仪的重要组成部分,主要作用是将离子高效率地传输到质量分析器。文章介绍课题组研制了一种用于质子转移反应飞行时间质谱(PTR-TOF-MS)系统的射频四极杆离子导向装置,四极杆长80mm,杆半径2.6mm,内切圆半径2.25mm,该装置可针对性地实现低质荷比挥发性有机化合物(VOC)离子的聚焦传输。利用SIMION8.1离子光学模拟平台对装置的运行环境进行仿真,然后在自行搭建的测试平台上对装置的工作条件,如气压、频率和电压幅值进行测试。结果表明,仿真和测试结果具有较好的一致性,装置的工作气压范围较宽,在0.2-0.3Pa时的传输效率最高;当频率为3-4MHz,电压幅值(Vp-p)为500V左右时,对丙酮、甲苯等低质荷比VOCs(& lt m/z 100)的传输效率接近76%,且离子束直径≤0.7mm。该装置结构简单、成本低、传输效率高,具有潜在的实用价值,有望应用于PTR-TOF MS系统。 /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 以下为全文: /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/55294ba3-ee3b-4a51-81b4-b3374bbcc574.jpg" title=" 2-1.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/356e51c7-46c5-4f46-8b8a-736f2d0b82f9.jpg" title=" 2-2.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/e67497d5-d30a-4397-bd61-d9d94f224799.jpg" title=" 2-3.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/9ab83c14-288b-4340-af4f-8777b1bfc213.jpg" title=" 2-4.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/81272aa9-5927-41fa-859d-e931819754da.jpg" title=" 2-5.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/2bb18278-c628-4143-a84c-4b8d6e5caf15.jpg" title=" 2-6.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/78d1ba65-cb14-452c-90a7-bcf34602c317.jpg" title=" 2-7.png" / /p p style=" text-align: right " span style=" font-size: 18px " strong 来源:《质谱学报》 /strong /span br/ /p
  • 【2023世界传感器大会】无源无线传感与智能微系统分场活动成功举办
    11月5日-7日,由河南省人民政府和中国科学技术协会主办的2023年世界传感器大会在河南郑州举行。中国移动研究院联合中国仪器仪表学会、无源物联网技术联合创新中心、清华大学-中国移动联合研究院承办了无源无线传感与智能微系统分场活动,来自政产学研用各界千余人次参会。会议邀请了加拿大工程院沈卫明院士、河南省科学技术协会王继芬副主席、郑州市政府陈立志副秘书长致辞。来自中国科学院、清华大学、北京大学武汉人工智能研究院、意大利国家应用物理研究所、电子科技大学、上海交通大学等多家国内外学术机构的专家学者发表主题演讲。沈卫明院士在致辞中阐述了智能微系统的发展趋势和尚存技术挑战,强调了智能微系统发展离不开产业通力合作,共同探索新场景新模式。河南省和郑州市政府领导在先后致辞中强调了学术交流是科学创新的重要源泉,倡导各界加强交流,启迪智慧,推动无源无线与智能微系统的发展。来自中国科学院的载人航天工程空间应用系统副总师钟红恩、意大利国家应用物理研究所主任Anna MIGNANI分享了航空航天、食品分析等场景下对于无源无线传感器的需求以及痛点问题,并提出了针对性的解决方案。清华大学仪器科学与技术研究所所长赵嘉昊介绍了智能微系统集成化关键技术和最近研究进展,提出智能微系统未来向微型化和系统化发展,基于先进封装技术,实现低功耗、高密度、异质异构集成。北京大学武汉人工智能研究院执行院长吴志强教授介绍了智能感知和数据智能在社会治理中的重要意义,通过人工智能、大数据、云计算、互联网等信息技术的加持,将会为每一座城市带来更加智能化的社会治理方式。电子科技大学李建教授介绍了无源标签通过集成感知能力、通信能力和标识能力,将在泛在感知、泛在智能的数字化场景中具有广阔应用前景。上海交通大学文玉梅教授介绍了基于RFID的无源自采能技术,通过采集环境中的射频能,转换为电能供传感器工作,实现了传感器终端的去电池化,解决了基于有线或电池的传感器终端存在的难以维护的行业痛点。最后,中国移动通信研究院物联网技术与应用研究所所长肖善鹏作了题为《无源无线智能微系统 构筑数实融合新时代》主题演讲,从无源化、无线化、集成化、智能化等方面,阐述了智能微系统变革的方向,并介绍了无源无线智能微系统融合创新实践。会上同步发布了《先进感知技术白皮书(1.0版)》,中国移动携手产业上下游共同探索传感前沿和传感融合最新的代表性技术,旨在更好的服务产业,加快先进感知技术的研究突破和落地应用。与会专家就智能微系统技术、产品及应用的未来发展进行了充分研讨,一致希望共同推动我国物联网传感器与智能微系统技术创新与应用落地,共建良好的产业发展生态,深度赋能产业数字化转型与升级,携手构筑数实融合新时代。
  • 一次性使用压力监测磁定位射频消融导管获批上市
    近日,国家药品监督管理局经审查,批准了上海微创电生理医疗科技股份有限公司生产的“一次性使用压力监测磁定位射频消融导管”创新产品注册申请。该产品由射频消融导管、连接尾线和尾线连接盒组成。其中导管主体包含高扭矩管身和可弯曲的头部,头部装有铂铱电极,1个头端电极和3个环形电极。该产品在医疗机构中与上海微创电生理医疗科技股份有限公司生产的三维心脏电生理标测系统和心脏射频消融仪配合使用,用于药物难治性、复发性、症状性阵发性房颤的治疗。该产品采用了基于应变片原理压力传感技术、磁场定位技术、头端多孔盐水灌注技术与三维电生理标测系统,可为房颤患者的治疗提供整体解决方案,是国产首个具有压力感知功能的心脏射频消融导管。与传统心脏类射频消融导管相比,该产品可以实时测量导管头端和心壁之间触点压力值,更好的辅助术者完成手术,有效防止术中导管与组织贴靠力过大造成蒸汽爆裂或过小引起消融不完全,可缩短医生学习曲线,达到更优的远期治疗成功率。该产品获批上市有利于该技术的临床应用推广和降低临床治疗费用,使更多房颤患者受益。药品监督管理部门将加强该产品上市后监管,保护患者用械安全。
  • Teledyne7.9亿美元收购英国图像传感器厂商e2V
    2017年3月28日,官方公告资料显示,仪器仪表、数字成像产品和软件供应商Teledyne Technologies Incorporated已完成对英国图像传感器厂商e2v的收购,交易金额总计6.27亿欧元(约合7.89亿美元)。  针对机器视觉市场,e2v提供高性能图像传感器、定制化的摄像头解决方案以及特定应用的标准产品。此外,e2v为宇宙学和天文学提供太空认证的高性能图像传感器及阵列。e2v还为医疗、工业和国防应用制造高可靠性的射频发电组件和子系统。e2v还为航空航天、太空和射频通信应用提供高可靠性的半导体和板级解决方案。  “我们已经关注e2v超过十年了。一直以来,双方之间的业务联系越来越多。事实上,e2v的每一项业务都与Teledyne高度互补。重要的是,双方的产品重叠非常小。” Teledyne首席执行官、总裁兼主席Robert Mehrabian说:“例如,两家公司都是宇宙和天文学成像领域的领导者,但是,Teledyne大部分提供红外探测器,而e2v提供可见光传感器。尽管两家公司都提供微波器件,e2v的主要产品和市场为癌症放疗应用的磁电管,Teledyne则提供固态和真空微波系统,没有磁电管,而且Teledyne主要服务于电子战、雷达和通信等国防市场。不过,Teledyne还为医疗市场提供特殊的X射线传感器。可以看出,我们各自的能力和以工程为中心的文化是非常契合的。”  Robert Mehrabian 补充到:“在机器视觉应用领域,e2v能够凭借其强大的专有的CMOS图像传感器设计能力,增强Teledyne的摄像头和视觉系统业务。Teledyne为政府和商业应用设计先进的混合信号电路,e2v广泛的产品组合将增强我们的市场供应和渠道。”  除交易成本外,该交易的总价值约为6.27亿欧元(约合7.89亿美元),其中考虑到e2v的股票期权和净债务,e2v的收购总值预计约为6.27亿英镑(约合7.89亿美元)。截至2016年3月31日,该财年e2v的销售额约为2.36亿英镑。除去交易相关支出,Teledyne管理层期望该交易能够迅速提振公司每股收益。  Teledyne是仪器仪表、数字成像领域领先的产品及软件供应商,其产品主要应用于,航空航天和国防电子以及工程系统领域,业务位于美国,加拿大,英国以及西欧和北欧等地区。
  • 共进微电子和西电共建“传感器与汽车电子封测关键技术联合实验室”
    2024年1月19日,共进微电子和西安电子科技大学共建的"传感器与汽车电子封测关键技术联合实验室"正式揭牌,该实验室旨在促进封测领域的科研合作,推动封测技术的创新和产业的发展。同时,西安电子科技大学博士生导师、封装系首任主任田文超教授也将担任共进微电子首席科学家。封装测试在传感器和汽车电子芯片性能和可靠性方面扮演着至关重要的角色。联合实验室将在传感器与汽车电子芯片的相关结构设计、材料研究、应力、热、电磁仿真和可靠性验证等方面展开合作。此外,联合实验室还将成为为学生提供实习和培训机会的平台,促进人才培养和技术交流。共进微电子总经理张文燕表示:“共进微电子一直致力于封测技术的研发与创新,而西安电子科技大学在封装领域具有丰富的研究经验和优秀的学术背景。通过合作,我们期待能够取得更多突破性的研究成果,并将其应用于实际生产中。”西安电子科技大学田文超教授也表示:“西安电子科技大学的封装专业是2009年国家首批电子封装技术本科专业,同时也是全国唯一的电子封装类国家级特色专业。通过与共进微电子建立联合实验室,我们将充分发挥双方的优势,推动封装技术的创新,促进企业技术进步和生产力提升。”未来,共进微电子将充分利用联合实验室的优势,夯实并增强共进微电子在传感器与汽车电子芯片的封装能力,为客户提供高质量的封测一体化服务!| 关于共进微电子上海共进微电子技术有限公司,简称“共进微电子”,成立于2021年12月。共进微电子由上交所主板上市公司共进股份(603118)、探针智能感知基金(国家新兴产业创业投资引导基金参股)以及一流的技术和管理团队创立,专注于智能传感器领域的先进封装测试业务。专注于智能传感器及汽车电子芯片领域的先进封装测试业务。共进微电子拥有上海研发销售中心和苏州太仓生产基地。已建设1.8万平米先进的研发中心和生产基地,生产基地包含百级、千级和万级无尘室,建设传感器及汽车电子芯片的封装测试量产生产线。共进微电子拥有完整的封装产线,涵盖从晶圆研磨、切割到前段工艺的固晶、引线键合、点胶、贴盖、回流焊,以及后段工艺的注塑成型、打标、切单。提供多种产品封装类型,包括LGA、QFN、Fan-out、SIP和2.5D/3D等。测试能力包括晶圆测试、CSP测试和成品级测试能力。共进微电子封装测试产品包括惯性、压力、电磁、环境、声学、光学、射频和微流控等传感器和汽车电子芯片。公司以满足客户需求为宗旨,制定完整的封装测试方案、流程及品质管控,为客户提供一站式解决方案,打造集研发、工程、批量生产于一体的专业综合封装测试服务平台。共进微电子致力于建设全球知名的规模大、种类齐全、技术先进的传感器及汽车电子芯片封装测试产业基地和领军企业,填补国内相关领域在批量封装、校准和测试领域的空白,突破产业链瓶颈。
  • 重磅! 郑州2021世界传感器大会隆重开幕!
    群英荟萃,人才集聚,产、学、研各界翘楚共话传感器技术在各领域发展趋势,共商传感产业发展规划,助推传感器产业升级。2021年11月1日,由中国科学技术协会、河南省人民政府主办,中国仪器仪表学会、郑州市人民政府、河南省科学技术协会、河南省工业和信息化厅、河南省发展和改革委员会、河南省科学技术厅、中共河南省委外事工作委员会办公室承办的“2021世界传感器大会”在郑州国际会展中心盛大开幕!本届大会以“感知世界智创未来”为主题,全球传感器领域国际国内组织、专家学者及知名企业代表齐聚绿城,打造技术先进、应用繁荣、产业链完善、营商环境优化的传感器产业生态发展系统, 推动建设郑州• 中国智能传感谷,助推建设全国重要的特色智能传感器产业基地,建设国际知名的智能传感器应用示范城市。2021世界传感器大会开幕式现场中国工程院院士方家熊,中国科学院院士张玉奎,中国工程院院士赵连城,美国医学与生物工程院院士、俄罗斯工程院外籍院士、欧洲科学院院士张学记,加拿大工程院院士沈卫明线下出席此次大会。中国工程院院士倪光南,中国科学院院士李景虹,中国工程院院士周立伟,中国科学院院士都有为,中国科学院院士管晓宏,国际欧亚科学院院士邓中亮,美国医学与生物工程院院士李长明,加拿大工程院院士杨军,英国皇家工程院院士Kenneth TV Grattan等院士专家线上参会,通过“云端”为大会助力。西门子(中国)有限公司数字化工业集团、松下神视有限公司、上海高通半导体有限公司、重庆川仪自动化股份有限公司、中国联通物联网研究院、正泰集团、汉威科技集团有限公司、上海自动化仪表有限公司、上海工业自动化仪表研究院有限公司等企业负责人出席本次大会。近年来,河南省高度重视智能传感器产业发展,准确把握新发展阶段,贯彻新发展理念,构建新发展格局,抢抓新一轮科技革命产业变革机遇,积极布局战略性新兴产业,培育未来发展优势,推动智能制造迈上新台阶,打造河南重要产业转型升级平台,为加快推动经济高质量发展提供有力支撑。主持人 河南省政府副秘书长魏晓伟开幕式在河南省政府副秘书长魏晓伟主持下正式启动。郑州市委副书记、郑州市市长侯红,IO-Link国际委员会代表伊格纳西奥爱德华多塞隆霍利,河南省委常委、副省长费东斌,中国科协党组书记、副主席、书记处第一书记张玉卓分别为大会致辞。郑州市委副书记、市长侯红郑州市委副书记、郑州市市长侯红表示,传感器是数字经济重要的核心技术,万物互联的数据源头。站位“三新”的时代背景,郑州将持续推进“五链”深度融合、“六新”加速突破,聚集研发设计、加工制造、封装测试、材料设备四大关键领域,贯通政、产、学、研、用各个环节,完善“人才+项目+资本+场景”的模式,深化智能传感器的技术、产品、服务、应用创新,推动智能终端、智能网联汽车、软件算法、集成电路、大数据五大关联产业的集聚发展,着力打造具有国际影响力的千亿级智能传感器产业的新高地。IO-Link国际委员会代表伊格纳西奥爱德华多塞隆霍利IO-Link国际委员会代表伊格纳西奥爱德华多塞隆霍利认为,当今情报系统的信息数据传输越来越依赖于智能传感器,传感器是智能制造的基石。在智能时代,随着高性能、高可靠、多功能、复杂的自动测量和控制系统的发展。基于射频、识别技术的物联网,愈加凸显了开发具有感知和认知能力的传感器的重要性和紧迫性。他期待更多的国际合作,来推动人类感知方式不断创新。河南省委常委、副省长费东斌河南省委常委、副省长费东斌进一步强调,河南省将以2021世界传感器大会为契机,努力打造世界传感器大会、核心企业集聚、郑州• 中国智能传感谷三大品牌,着力推动传感器产业“大平台、大中心、大生态”三大发展,也积极完善人才发展和科技创新的政策,深化体制机制改革,为传感器产业发展营造良好的环境。中国科协党组书记、副主席、书记处第一书记张玉卓中国科协党组书记、副主席、书记处第一书记张玉卓指出,推动传感器发展,需要夯实人才和技术储备、需要营造创新生态、需要深化开放合作。推进科技前沿,需要汇聚多元文明智慧,要构建基于信任的国际合作网络,推动开放创新,共商共建规则,推进全球数字治理,促进人工智能、大数据、云计算等技术与智能传感器产业密切合作,激发创新引领的合作动能,推动传感器技术、网络、产业协同发展,促进世界经济可持续繁荣。河南省智能传感器产业链联盟、河南省智能传感器行业协会秘书长授牌仪式郑州中国智能传感谷创新基地授牌仪式开幕式上,汉威科技集团股份公司被授予河南省智能传感器产业链联盟会长单位,河南昊博科技发展集团有限公司被授予河南省智能传感器行业协会秘书长单位;郑州市被授予“郑州中国智能传感谷创新基地”称号。2021世界传感器大会签约仪式把握新机遇,集聚新动能。借着此次大会东风,郑州高新区、鹤壁等地先后分三批次与企业单位进行签约,共计项目24个,总投资额84.42亿元,其中郑州高新区签约项目19个,总投资额达75.78亿元。通过招引一批创新平台、科技孵化、制造业类项目,在传感器核心器件、产业应用以及科技成果转化上持续发力,为传感器产业发展增添新动能。同时,郑州高新区“智能传感器产业大脑”平台正式发布,通过产业地图、产业链全景模块建设,实现高新区传感器产业资源总览、产业诊断、发展路线的产业作战图,支撑传感器产业创新资源集聚、服务科学量化决策,掌握传感器产业要素口径实时的“底数底图底库”,推动传感器产业高质量发展。2021世界传感器大会开幕式现场全球盛会,世界瞩目。“2021世界传感器大会”顺利开幕,本届大会将是传感器领域一场别开生面的国际盛会。大会对于推动我国传感器产业升级、促进工业转型、发展战略性新兴产业、推进现代国防建设、保障和提高人民生活水平具有重要意义!
  • 福禄克携5款温度、压力、电学计量校准产品亮相世界传感器大会
    仪器信息网讯 8月23日,为期三天的2022世界传感器大会在郑州国际会展中心完美落幕,此次传感器大会由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。福禄克(FLUKE)展位本次世界传感器大会,众多知名传感器公司携新品和主推产品参展,同时也吸引了多家仪器企业参加,福禄克(FLUKE)公司也携一系列计量校准产品亮相。据了解,福禄克早在2000年就收购了Wavetek Wandell Goltermann的精密测量部门,从而稳固了其在电气校准市场内已经获得的地位。近几年,福禄克公司又先后收购了以温度计量和校准著称的 HART公司,以及以压力计量和校准而著称的DHI公司,从而使福禄克公司的计量和校准技术和产品覆盖了电学、温度以及压力,成为全面提供计量和校准产品的仪器仪表公司。1586A高精度多路测温仪(下)和外置接线模块(上)1586A高精度多路测温仪可以扫描测量并记录直至40通道的直流电压和电流,电阻,扫描速度可达每秒10个通道。1586A可以配置为多通道的记录仪在现场使用,也可以配置为参考温度计连接方式用于实验室的温度传感器校准。1586A高精度多路测温仪可满足制药,生物,食品,航空航天以及汽车行业的大量的温度分布,传感器校准,温度测量的应用。2271A工业压力校准器这款仪器兼容两个不同精度级别的模块。PM200模块为大部分量程提供 0.02% FS。PM500模块提供0.01%的读数不确定度,确保2271A可用于测试或校准更高精度的变送器和数字仪表。2271A的压力量程达到-100 kPa至20MPa(-15 psi至3000psi),满足较宽范围的压力计和传感器需求。仪器内置支持HART功能的电学测量模块(EMM),因此能够对4-20 mA设备(例如,智能变送器、压力计和开关)进行闭环、全自动校准。此外,该仪器顶部的双测试端口可安装两台被测设备(DUT),提升工作效率。9173高精度干式计量炉干井炉是早期最传统的现场热源。而福禄克最早开发的干式计量炉,其不确定度要远远小于干井炉的不确定度。不确定度越低,客户就越有能力校准准确度更高的传感器。干式计量炉提供了接近恒温槽的性能,但是却不需要昂贵的恒温槽液体。干式计量炉达到预定温度点并且稳定的时间比恒温槽快5到10倍,这样即可节省技术人员的工作时间,提高检定速度。干式计量炉的便携性使其能够到现场进行校准的工作,从而解决了恒温槽在运输上的困难。而此次参展的福禄克9173高精度干式计量炉采用了双段控温技术。传统的炉子在轴向(垂直方向)的温度场很难做到均匀,越接近炉口温度变化就越大。所谓双段控温就是在垂直方向上使用上下两层双路控温的方式,这种新型的模拟和数字控制技术提供了高达±0.005 C的稳定性。而且利用两段控温技术,轴向(垂直方向)的均匀性在60 mm区域内可达到±0.02 ℃。7109A便携式恒温槽在制药、生物科技和食品生产等行业,过程制造工厂大量使用卫生型温度传感器,这些传感器需要定期校准,在校准时必须停止生产。因此,校准效率越高意味着工厂停工时间越短。此外,在有些生产过程中,0.1摄氏度的误差就会造成严重成本损失,温度准确度对于保证质量至关重要。而本次展出的这款7109A便携式校准恒温槽与市面上许多恒温槽相比,系统准确度提高了两倍,能在更短的时间内校准更多的卫生型传感器,工作效率提高四倍。用户可以将4支卡箍式卫生型传感器同时置于恒温槽中进行校准,温度显示准确度达±0.1°C。对于小法兰或没有法兰的卫生型热电阻,校准效率甚至更高。7109A恒温槽覆盖温度范围可达-25°C至140°C,内置测温仪直接用于连接外部参考探头以及被校温度探头。8588A八位半数字多用表8588A是一款八位半数字化标准多用表,专门为校准实验室量身打造,拥有直观的用户界面和彩色屏幕和超过12项的测量功能,包括新增的数字化电压、数字化电流、电容、射频(RF)功率,以及用于交/直流电流的外部分流器,帮助用户将实验室级别的系统测试成本统一整合到单台测量仪器中。8588A拥有1年期直流电压准确度(2.7μV/V@95%置信区间,或3.5μV/V@99%置信区间)和最佳的24小时稳定度(0.5 μV/V@95%置信区间,或0.65 μV/V @99%置信区间),使其能够傲视市场上其他标准数字多用表。8588A还能够在短短1秒内产生稳定的八位半读数,进一步提高速度覆盖范围。
  • 半导体情报,科学家首次开发射频毫米波段的高性能忆阻器!
    【科学背景】记忆电阻器(memristor)是一种能够在电气应力作用下实现两个或多个非易失性电阻状态的设备,近年来被提出用于解决射频开关的挑战。这种效应最早在1960年代的硒铋合金中被报道,随后在包括金属氧化物和二维层状材料在内的许多其他材料中得到观察。通过改变材料的原子或电子结构,memristor能够实现不同的电阻状态,如高电阻态(HRS)和低电阻态(LRS)。尽管最初主要用于存储应用,memristor目前被提议用于数据加密、能效数据计算(如实现向量矩阵乘法引擎和人工神经网络的电子神经元)、以及射频数据传输开关等领域。针对射频应用,memristor的主要优势在于其非易失性,无需额外能量来维持其导电状态,与传统的p-i-n二极管开关相比,后者需要大量直流电流来维持其状态。最新的memristor技术基于相变材料,如GeTe或GeSbTe,通过控制加热器来实现晶态和非晶态之间的转变,从而切换设备的HRS和LRS。这些设备在50 GHz的频率下已有工业展示,并且在学术演示中能够达到高达109个循环的耐久性,但其集成到大型电路中需要精细的热设计,并可能引入不需要的寄生电容。针对RF mmWave应用的多层hBN memristor的开发,沙特阿卜杜拉国王科技大学Mario Lanza教授团队通过使用不同的电极材料展示了多个设备的射频性能和一致性行为。通过一种增强导电性的方法,作者成功地实现了RLRS低于10 Ω(最低可达4.5 Ω),并展示了2,000个循环的耐久性。作者的设备在高达260 GHz的频率下表现出低于2 dB的损耗和超过30 dB的隔离度,从等效电路模型中提取的截止频率为7 THz。此外,作者还报告了在120 GHz时串-并联配置中超过35 dB的隔离度的射频mmWave开关电路。【科学亮点】(1)首次开发了适用于射频毫米波(mmWave)应用的多层氮化硼(hBN)记忆电阻器。这些电阻器展示了在高达260 GHz频率下的射频性能,并通过不同电极材料验证了其稳定的行为。(2)通过采用一种新型的导电性增强方法,成功实现了低于10 Ω的低阻态电阻(RLRS),最低可达4.5 Ω。这种方法使得设备能够经受2,000个循环的使用测试,表现出良好的耐久性。(3)射频性能方面,这些设备展示了在频率高达260 GHz时低于2 dB的插入损耗和超过30 dB的隔离度。通过等效电路模型分析,提取的截止频率高达7 THz,显示出在超高频领域的潜力。(4)作者还报道了在120 GHz时串-并联配置中超过35 dB的隔离度的射频mmWave开关电路,突显了这些记忆电阻器在复杂电路中的实际应用潜力。【科学图文】图1: Au-hBN-Au器件的物理和直流特性。图2:通过脉冲写入-验证协议增强射频RF应用的低阻态low-resistance state,LRS性能。图3:Au–多层hBN–Au开关的毫米波性能。【科学结论】本文开发了多层氮化硼记忆电阻器作为射频毫米波应用中的关键组件。传统射频开关技术在高频率(如120 GHz)下存在插入损耗和隔离度方面的限制,而本研究通过精确控制低阻态电阻,利用脉冲偏置协议实现了9.3 ± 3.7 Ω的优异性能。这种方法不仅提高了射频开关的操作频率,还显著降低了信号传输过程中的能量损失。此外,作者展示了在21个设备中一致的双极性切换特性,证明了多层氮化硼在记忆电阻器中的可靠性和稳定性。这些成果不仅推动了射频毫米波技术的前沿,还为未来高速数据传输、增强现实和物联网等应用领域提供了新的解决方案。通过这些研究,作者不仅拓展了记忆电阻器在射频领域的应用潜力,还为探索更高频率、更低能耗的射频开关提供了有力支持。原文详情:Pazos, S., Shen, Y., Zhang, H. et al. Memristive circuits based on multilayer hexagonal boron nitride for millimetre-wave radiofrequency applications. Nat Electron (2024). https://doi.org/10.1038/s41928-024-01192-2
  • 2012年我国医用射频与核磁仪器市场规模119亿元
    近年来我国各级医院都在努力通过改造医院软硬件条件,不断更新医疗诊断设备以提高提高医疗服务收入,因此对质量好、多功能的大中型器械医疗设备的需求也在持续增长。根据驰昂咨询(Sinotes)最新统计数据显示,2012年我国医用射频与核磁仪器市场规模达119.8亿元人民币,同比增长21.1%。    图1. 2007至2012年我国医用射频与核磁仪器市场规模与增长   射频与核磁仪器主要包括X射线设备、CT设备、MRI设备等。X射线设备由于市场普及度较高,在射频与核磁仪器市场上占有较大比重,而CT及MRI设备则是增长较快的射频与核磁仪器类别。    图2. 2012年我国医用射频与核磁仪器市场份额
  • 美研制出增强拉曼散射传感器 灵敏度提高10亿倍
    据美国物理学家组织网3月22日(北京时间)报道,美国科学家研制出一种超灵敏传感器,可使用其增强的拉曼散射来探测包括癌症信号、炸药等物质,其灵敏度比普通拉曼散射传感器增强了10亿倍。   拉曼散射是指光通过介质时由于入射光与分子运动相互作用而引起光的频率变化,1928年由印度物理学家钱德拉塞卡拉拉曼发现。在拉曼散射中,一束单色光照射到一个物体后,其反射光会包含另外两种频率的光,这两种光的频率仅与该物体的分子组成相关,这就潜在地提供了一种有效识别物质的方法。但由于这种额外的光太微弱,科学家几十年来很难将拉曼散射付诸于实践。   上世纪70年代,科学家研制出表面增强拉曼散射(SERS)技术,可以通过将所鉴别物质放在粗糙的金属表面或金、银小粒子之上来增强拉曼信号。但科学家随后发现,这种增强的拉曼信号仅出现在传感器表面的几个随机点上,很难预测其具体位置,仍然非常微弱。   而普林斯顿大学电子工程系教授斯蒂芬周领导的团队摒弃了以往设计和制造拉曼传感器的方法,研发出一种全新的SERS结构:一块芯片上布满一行行由金属和半导体组成的小柱子。   新传感器获胜的“秘密武器”就是这些小柱子的排列方式:每个柱子上部和底部各有一个由金属制成的中空部分 柱壁上布满直径约为20纳米的金属粒子(等离子体纳米点),金属粒子之间有2纳米左右的空隙。金属粒子和空隙能显著增强拉曼信号 中空部分能捕捉光信号,让光多次而不是仅一次地通过等离子体纳米点,从而也能增强拉曼信号。迄今为止,该芯片的灵敏度比不经过拉曼增强而研制出的传感器高10亿倍,而且其灵敏度非常稳定,能可靠地应用于感应设备中。   除灵敏度大增之外,借助纳米压印技术和纳米粒子自组装技术,新芯片能实现高质量、规模化制造,研究人员已经在4英尺的晶片上制造出这些传感器。   美国海军研究实验室的科学家也在进行相关实验,希望军队也能使用该技术探测化学物质、生物试剂和炸药。
  • 中科院推出RFG系列射频电源与自动匹配器
    中国科学院微电子所射频电源(RFGenerator)课题组(www.rf-power.net)从1984年开始研发电子管射频电源(13.56MHz),1985年研制成功500W-10KW电子管射频电源,获得“六五”攻关荣誉证书以及“FD-2反应离子刻蚀机与超精细刻蚀研究”项目二等奖。   从2010年开始在极大规模集成电路制造装备与成套工艺专项(国家02重大专项)项目资金支持下,研发晶体管射频电源(13.56MHz),2011年研发成功300W-3000W晶体管射频电源,获得第七届国际发明展览会银奖。   经过二十多年的发展完善,产品的性能不断提高,规格齐全,目前开发成熟的电子管与晶体管射频电源产品有:300W、500W、1KW、1250W、1.5KW、2KW、3KW、5KW、6KW、8KW、10KW等多种规格以及不同功率的400KHz高频电源及不同功率的稳流源与自动匹配器。年销售电子管与晶体管射频源占国内市场份额的70%以上。   目前射频电源组分为三个部门:产品研发部,产品生产部,产品推广与售后服务部。   产品研发部:有专业研发人员7人,其中硕士及以上比例100%,具有教授级职称2人,具有博士学历3人,从清华大学,中科院电工所,中国科学技术大学引进资深射频技术与自动控制专家3人,目前已建立起一支由高级研发顾问领导的国际化研发人才团队。   产品生产部:有专业技术工程师17人,具有500平方专业射频电源生产与测试车间(可以进行ESD,EMC等测试),年生产能力达3000台套,库房常年备有库存,可保证给客户随时发货。   产品推广与售后服务部:有专业推广销售人员4人,专业售后服务人员2人,其中硕士及以上比例100%。   射频电源广泛应用于等离子体研究,集成电路工艺设备,太阳能光伏工业,LED制程,薄膜生长,射频感应加热,医疗领域的消毒与理疗美容,常压等离子消毒清洗等领域。   中国科学院微电子研究所射频电源组网址:www.rf-power.net
  • 虹科新品 | 全新升级更高性能可编程射频测试设备上线!——数字衰减器
    新品发布全新升级的射频测试设备你拥有了吗,在延续其小巧的身型、可编程、USB供电控制等经典特色的同时,虹科最新发布的便携式射频测试设备具有更高的带宽、更优秀的性能、更棒的测试体验,包括数字衰减器、信号发生器、射频开关、混频器、射频功率计和功率放大器等,满足您的个性化需求与不同应用场景。虹科便携式可编程数字衰减器具有高达40GHz频率范围和120dB的衰减控制范围,可直接从附带的图形用户界面(GUI)为固定衰减、扫描衰减斜率进行轻松编程,对于希望开发自己界面的用户,虹科提供LabVIEW驱动程序、Windows API DLL文件、Linux驱动程序、Python示例等,满足不同的应用需求。数字衰减器虹科HK- LDA-802-32200-8000MHz高分辨率数字衰减器,32通道,衰减范围为120dB,步长0.1dB虹科HK-LDA-802-32数字衰减器是一个机架式、32通道、高动态范围、双向、50欧姆的步进衰减器。它提供120dB的衰减控制范围,频率范围为200-8000MHz,步长为0.1dB,同时提供USB和以太网接口。特点● 可靠且可重复的固态数字衰减器● 免费的GUI、Windows Linux和MAC SDK,以及LabVIEW驱动程序● 单次或重复的可编程衰减斜率● 可通过GUI或SDK对衰减曲线进行编程● USB和以太网控制● 可设置静态IP或DHCP● 密码保护的web GUI应用● WiFi,WiFi 6E,3G,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-802-16200-8000MHz高分辨率数字衰减器,16通道,衰减范围为120dB,步长为0.1dB虹科HK-LDA-802-16数字衰减器是以机架方式进行安装,具有16通道高动态范围、双向、50Ω的步进式衰减器。它提供120dB的衰减控制范围,频率范围为200-8000MHz,步长为 0.1dB,同时提供USB和以太网接口。特点● 可靠且可重复的固态数字衰减器● 免费的GUI、Windows Linux和MAC SDK,以及LabVIEW驱动程序● 单次或重复的可编程衰减斜率● 可通过GUI或SDK对衰减曲线进行编程● USB和以太网控制● 可设置静态IP或DHCP● 密码保护的web GUI应用● WiFi,WiFi 6E,3G,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-608V-4200-8000MHz高分辨率数字衰减器,4通道,衰减范围为60 dB,步长为0.1dB虹科HK-LDA-608V-4数字衰减器是一款高精度、双向的50欧姆步进式衰减器,具有4个独立控制的衰减通道,提供200-8000MHz的校准衰减,典型精度应用● WiFi,WiFi 6E,3G,4G,5G,LTE,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-4030.1-40GHz高分辨率数字衰减器,单通道,衰减范围为31.5 dB,步长为0.5 dB,USB/以太网控制虹科HK-LDA-403数字衰减器是一个双向的、50欧姆的步进衰减器,提供从0.1到40GHz的衰减控制,步长为0.5dB,同时提供USB和以太网接口。通过连接衰减器的扩展总线,可以从一台PC控制多个HK-LDA-403设备。特点● 可靠且可重复的固态数字衰减器● 免费的GUI、Windows Linux和MAC SDK,以及LabVIEW驱动程序● 可编程的衰减斜率和衰减曲线● 可直接从电脑或自带电源的集线器上操作多个设备● 易于携带的USB供电设备应用● WiFi,WiFi6E,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-203B1-20GHz USB可编程数字衰减器,单通道,衰减范围为63 dB,步长为0.5dB,USB/以太网控制虹科HK-LDA-203B数字衰减器是双向、50Ω步进衰减器,在1-20 GHz频率范围内提供63 dB的衰减控制,步长为0.5 dB,提供USB和以太网接口,易于携带。特点● 可靠和可重复的固态数字衰减● 免费的GUI, Windows和Linux SDK, LabVIEW驱动程序● USB和以太网控制● 可设置静态IP或DHCP● 密码保护的web GUI应用● WiFi,WiFi 6E,3G,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-VMA-Q8X8SE衰减矩阵8x8衰减矩阵,频率范围为500–6000MHz,衰减范围为90dB,步长0.1dB,集成式服务器虹科HK-VMA-Q8X8SE衰减矩阵是一个机架式8输入8输出的无阻塞测试仪器,集成了Windows服务器,可独立操作,提供90dB的衰减控制范围,频率范围为500-6000MHz,在所有64种路径组合上步长为0.1dB,可以很容易地对固定衰减、扫频衰减斜率和衰减曲线进行编程。虹科HK-VMA-Q8X8SE采用交流供电,通过机箱后面的一个以太网端口进行控制,射频输入信号通过后面板进入,在前面板获得输出信号。特点● 可靠和可重复的固态数字衰减● 包括Windows和Linux SDK● 可编程的衰减曲线● 以太网控制● 集成服务器应用● WiFi,WiFi 6● LTE,5G,6G● MIMO、多点无线电衰减模拟器● 半导体测试和鉴定● 自动测试设备(ATE)★虹科HK-DAT306K30GHz宽频数字微波步进衰减器虹科HK-DAT306K是一款独立的宽带数字微波衰减器,额定频率为1-30GHz,衰减量从0到60dB不等,最小步长为0.50dB,插入损耗通常低于10dB。虹科HK-DAT306K是一个三重控制设备,衰减设置可以通过用户界面、USB端口串行命令或以太网接口来改变。特点● 最大输入功率:+28.0dBm● 40GHz精密2.92mm K型连接器● USB供电和控制(虚拟COM串口-115.2Kbps)● 音频反馈、LED和OLED显示● 用于PC的简单控制软件● 标准以太网连接● 提供6GHz、12GHz、22GHz等不同型号应用● 电子战● 自动测试环境● 一般射频实验室使用● 控制系统● 卫星通信● 生产验证● 教育/大学实验室● 航空航天/国防研究● 无线基础设施● 雷达系统● 无线基础设施
  • 小型传感器监测食品污染
    新华网首尔12月25日电 韩国工程师日前说,他们发明了一种小型传感器,可以作出准确、实时的回应,有助于开展食品安全和环境保护工作。 设在大田、由郑奉铉领导的韩国生命科学和生物技术研究所说,该设备使用了世界上最小的生物芯片传感器,还利用表面等离子体共振(SPR)技术来监测DNA和蛋白质是否存在受污染迹象。 研究人员计划利用SPR技术及相关的生物芯片,通过接收被扫描物体表面反射的激光共振信号,来辨别分子层面的结构。 该研究所首席研究员郑奉铉说,这种新装置一只手就能提起来,与那些只能用在实验室的笨重机器形成鲜明对比。这种装置可以进行需要迅速反应的“即时检验”,这在应对与食品有关的问题及环境问题时至关重要。 专家说,这种生物芯片传感器经过改造,也有助于制药和检测供水系统,还可能应用于军事领域。 研究人员说,一旦研发成功,这种机器可以创造价值5000亿韩元(约合3.72亿美元)的全球市场,因为对高科技分析机器存在很大需求。 这家由韩国教育科技部提供科研经费的国有生物工程实验室说,它已经为这一生物芯片的主要部件申请了知识产权保护,其中包括高速转镜和电子束调制装置。
  • 韩国研发出小型传感器监测食品污染
    韩国研究人员日前宣布,他们发明了一种小型生物芯片传感器,可快速、准确地对食品和环境污染进行检测。   据韩联社报道,由郑奉铉领导的韩国生命科学和生物技术研究所研发的这种生物芯片传感器利用表面等离子体共振技术,即通过接收被扫描物体表面反射的激光共振信号来辨别 分子层面的结构,从而检测被测对象的DNA和蛋白质是否受到污染。   郑奉铉说,与那些只能用在实验室的笨重检测设备相比,这种可单手提起的新装置可进行“即时检验”,大大提高了检测效率。这种生物芯片传感器经过改造后,还可用于药品、供水系统的检测,甚至可以应用于军事领域。   据悉,韩国生命科学和生物技术研究所已为这种生物芯片传感器的主要部件申请了知识产权保护。
  • 华兴源创5G射频测试系统获得韦尔半导体批量订单
    2021年8月30日,在嘉盛半导体(苏州)有限公司举行了华兴源创5G射频测试系统交付仪式以及上海韦尔半导体股份有限公司、嘉盛半导体(苏州)有限公司、苏州华兴源创科技股份有限公司三方战略合作签约仪式。经过长达3年的潜心研究,由华兴源创自主研发的4台射频测试系统TS-1800,在韦尔半导体和嘉盛半导体大力支持下,顺利进入嘉盛半导体(苏州)有限公司的量产线用于韦尔半导体射频开关的测试。在中国大陆射频芯片封测产业,不得不提到嘉盛半导体苏州公司,全球超过一半的射频开关产品从这里完成封测。本次华兴源创交付的TS-1800射频测试系统,最核心的射频信号矢量信号收发仪板卡(VST)及射频矢量信号网络分析仪板卡(VNA)均为从底层架构完全自主研发,因此可以说是国内首台完全自主创新的5G射频测试系统。TS-1800设计的最高收发频率可达Sub6GHz,可满足所有5G射频开关(Switch)、低噪放大器(LNA)、功率放大器(PA)、滤波器(Filter)、射频调谐(Tuner)等射频前端芯片的测试,打破了国内在5G射频专用测试领域完全依赖进口设备和进口射频矢量板卡的局面。TS-1800射频测试系统的技术亮点主要有1.在硬件设计方面,TS800利用“高功率多频段复用技术”, HP Multi-band TM. 使客户在更换产品时,无需Loadboard硬件更换,只需控制切换即可实现不同的频段的高功率测试。这项技术区别于其他射频设备,实现轻松切换,进一步提高产能。2.在数据处理方面,TS1800 采用Auto-Detect 智能算法。这个强大的智能算法的成功应用,进一步提高测试精度,确保测量的稳定性和一致性。3.TS1800的优于分时系统利用双TX通道和双RX通道集成于一卡的优势实现低功率和高功率实时并行测试的技术,在测试时间上拥有竞争优势。4.高度集成的完全自主研发板卡在测试成本方面拥有天然的竞争优势。上海韦尔半导体股份有限公司董事副总经理纪刚代表公司出席了仪式。他表示韦尔半导体作为一家中国设计公司在保证芯片品质的基础上一直积极推进测试设备的国产化,目前公司的分立器件和模拟芯片的测试已经比较多的采用国产测试设备了,但其他产品的量产测试设备还是依靠海外测试供应商。2年多前豪威集团和华兴源创首先启动了合作,目前在其代工厂已采用华兴源创测试机加分选机的解决方案。经过2年多的不断改善,华兴源创的测试解决方案在效率、稳定性等多项关键指标上已经达到国际同类水平。今天交付的4台5G射频专用测试设备主要用于公司射频开关、LNA等前端芯片的测试,由于射频测试设备的技术门槛很高,截止目前我们基本上全部采用海外品牌测试机,此次首次采购数量不多,但意义重大。首先是韦尔半导体和华兴源创的战略合作又往前发展了一步,从一个品类变成了两个品类,其次今后韦尔半导体的射频前端芯片非常有机会能逐步通过采用高性价比的国产测试解决方案来提高产品竞争力。苏州华兴源创科技股份有限公司董事长陈文源出席了仪式,他表示:首先要感谢韦尔半导体和嘉盛半导体对华兴源创的信任和大力支持,因为公司作为半导体测试设备的新厂商,成败的关键因素之一就是一定要有几家下游铁杆客户不离不弃的陪跑。在韦尔半导体项目推进过程中接收端在高频5GHz范围左右扑捉小信号峰值的时候出现过数值不稳定现象,这是一个集硬件,算法,和信号完整性交织在一起的复杂问题。在韦尔半导体的信任和支持下我们工程师们历经约1个月的奋战,应用了严谨的鱼骨法问题解决方式,做了数十次DOE,终于找到原因,并用精巧的算法实现了稳定地抓取每一次数据的解决方案,这为今天的顺利交付奠定了扎实的基础。其次今天交付的设备,对于华兴源创只是万里长征开始的第一步,我们将持续投入研发,通过与海外同类畅销机型的对比以及从满足客户的各种需求出发,不断升级完善产品,希望在不久的将来,华兴源创的5G射频测试解决方案能成为国内射频芯片厂商乃至全球射频芯片厂商心目中的最佳测试解决方案。出席此次仪式的还有上海韦尔半导体股份有限公司运营总监蒋海林、生产运营高级总监褚彩萍、封装总监俞江彬、嘉盛半导体(苏州)有限公司总经理李操权、运营总监石岩、销售总监朱勤、测试总监向国平、苏州华兴源创科技股份有限公司运营中心长姚夏、董事会秘书朱辰、半导体事业部总监黄龙。华兴源创是行业领先的工业自动化测试设备与整线系统解决方案提供商,基于公司在电子、光学、声学、射频、机器视觉、机械自动化等多学科交叉融合的核心技术为客户提供从整机、系统、模块、SIP、芯片各个工艺节点的自动化测试设备。目前华兴源创产品已经服务于平板显示、半导体、可穿戴、新能源车等多个领域。
  • 中科院最新推出RFG系列高端2000W射频电源(3U风冷系列)
    为满足半导体设备客户的需求,中科院射频电源组(www.rf-power.net)经过2个月的设计研发,于2013年3月正式推出固态RFG-2000高端型射频电源(3U风冷系列),此型号适用于大腔室刻蚀等半导体设备。此型号带有RS232/RS485/USB通讯协议,模拟口通讯,脉冲调制,相位同步与移相等功能。 固态RFG-2000高端型射频电源(3U风冷系列)   中国科学院微电子所射频电源(RF Generator)课题组从1984年开始研发电子管射频电源(13.56MHz),1985年研制成功500W-10KW电子管射频电源,获得“ 六五”攻关荣誉证书以及“FD-2反应离子刻蚀机与超精细刻蚀研究”项目二等奖。   从2010年开始在极大规模集成电路制造装备与成套工艺专项(国家02重大专项)项目资金支持下,研发晶体管射频电源(13.56MHz),2011年研发成功300W-3000W晶体管射频电源,获得第七届国际发明展览会银奖。   经过二十多年的发展完善,产品的性能不断提高,规格齐全, 目前开发成熟的电子管与晶体管射频电源产品有:300W、500W、1KW、1250W、1.5KW、2KW、3KW、5KW、6KW、8KW、10KW等多种规格以及不同功率的400KHz高频电源及不同功率的稳流源与自动匹配器。   年销售电子管与晶体管射频源占国内市场份额的70%以上。   目前射频电源组,实行组长负责制,下设三个部门:产品研发部,产品生产部,产品推广与售后服务部。   产品研发部:实行部长负责制,有专业研发人员7人,其中硕士及以上比例100%,具有教授级职称2人,具有博士学历3人,从清华大学,中科院电工所,中国科学技术大学引进资深射频技术与自动控制专家3人,目前已建立起一支由高级研发顾问领导的国际化研发人才团队。   产品生产部:实行部长负责制,有专业技术工程师17人,具有500平方专业射频电源生产与测试车间(可以进行ESD,EMC等测试),年生产能力达3000台套,库房常年备有库存,可保证给客户随时发货。   产品推广与售后服务部:实行部长负责制,有专业推广销售人员4人,专业售后服务人员2人,其中硕士及以上比例100%。   射频电源广泛应用于等离子体研究,集成电路工艺设备,太阳能光伏工业,LED制程,薄膜生长,射频感应加热,医疗领域的消毒与理疗美容,常压等离子体消毒清洗等领域。   中国科学院微电子研究所射频电源组网址:www.rf-power.net
  • 广电计量将举办无线射频产品SRRC、FCC、R&TTE认证等研讨会
    依据《中华人民共和国无线电管理条例》,第五章第二十七条,生产的无线电发射设备,其工作频率、频段和有关技术指标应当符合国家有关无线电管理的规定,并报国家无线电管理机构或者地方无线电管理机构备案。无线射频产品型号核准制度在中国是强制的认证制度。   频谱资源属于国家资源,因此每个国家对于无线射频产品的管理,也是强制性要求,除中国SRRC认证外,美国FCC认证,欧盟的R&TTE认证,是全球针对无线射频的主要法规要求。   如何让您的产品更顺利,更快捷的满足这些技术壁垒,迅速占有市场,特举办该研讨会,与各厂家共同发展。   【主要内容】   l 《中国无线电管理条例》法规解读以及有关新规定   l 中国无线电发射设备型号核准(SRRC)及测试规范   l 无线射频产品的美国FCC认证   l 无线射频产品的欧盟R&TTE认证   l 无线射频产品的其他地区(如巴西,日本,韩国,东南亚等地)认证要求   l 无线射频产品的模块认证   l 无线射频产品在船用产品,车用产品,飞机产品,及军品中的特殊要求   【适合对象】   电子企业技术研发人员、检测人员、质量控制人员、采购人员,相关部门领导   【举办单位】   l 广州广电计量检测股份有限公司   【演讲嘉宾/议题】   演讲题目:   无线射频产品SRRC、FCC、R&TTE认证等多国要求   演讲嘉宾:   吴煜民:GRGT电磁兼容检测中心中心总监,从事产品检测认证工作十余年,精通通信行业检测及认证,   在无线通信产品性能测试,射频测试,EMC测试,多国认证等业务领域拥有丰富经验。   【会议安排】 日期 2012年 7月26日(星期四) 时间 10:00-17:00 地点 成都市永丰路45号 长盛帝都国际酒店 3楼会议室 议程 9:30-10:00 签到 10:00-12:00 无线电管理条例以及相关新规及中国无线电发射设备型号核准认证流程及测试要求 12:00-13:30 午饭 13:30-14:30 FCC认证及R&TTE认证等多国要求 14:30-15:00 茶歇、互动交流、答疑 15:00-15:30 无线射频产品的模块认证 15:30-15:40 茶歇 15:40-16:30 无线射频产品在船用产品,车用产品,飞机产品,及军品中的特殊要求 16:30-17:00 互动交流、答疑、   【费用】 A、听课免费(不办理相关证件)        B、提供讲义教材       C、免费提供午餐   Registration form报名回执 课程名称:《无线射频产品SRRC、FCC、R&TTE认证等多国要求》 日期 2012年7月26日 公司名称: 公司地址: 联络人: 电话: 传真: E-mail: 参加人: 职位: 手机: E-mail: 参加人: 职位: 手机: E-mail: 请写下您感兴趣的问题,我们的专业讲师将在现场为您作详细解答 问题1: 问题2: 温馨提示:* 请将以上报名表于2012年7月22日前回传到我司,以便为您预留座位。 * 为方便签到,请携带您的名片入场。 * 会务组联系方式: 广州广电计量检测股份有限公司 成都分公司 地址:成都市高新西区西芯大道4号创新中心A219室 联系人: 曾永 电话:028-66259369 传真:028-66259366 手机:13882274060 电邮:zengy@grg.net.cn  * 为方便签到,请携带您的名片入场。   * 会务组联系方式:广州广电计量检测股份有限公司 成都分公司   地址:成都市高新西区西芯大道4号创新中心A219室   联系人: 曾永   电话:028-66259369 传真:028-66259366   手机:13882274060   电邮:zengy@grg.net.cn   交通指引:成都市永丰路45号 长盛帝都国际酒店 3楼会议室   交通路线: 84路 52路 92路 28路 11路 51路 408路
  • 英国Pickering公司推出新款基于MEMS的射频开关模块
    Pickering Interfaces与Menlo Microsystems的合作将新的开关技术引入PXI射频多路复用开关,以显著地提高性能。2023年6月26日,于英国Clacton-on-sea。Pickering Interfaces公司作为生产用于电子测试及验证领域的信号开关与仿真解决方案的主要厂商,于今日发布了一款采用新的开关技术的PXI/PXIe射频多路复用开关模块新产品。新款基于MEMS的射频多路复用开关是无线通讯和半导体测试的理想选择,与传统 EMR(电磁继电器)开关相比,操作寿命大大延长(高达300倍)、切换速度更快(高达60倍)、带宽更高,射频功率处理能力更强。插入损耗也与EMR相当,并且远低于固态开关。   新产品家族基于Menlo Microsystems的Ideal Switch®构建。这是首款性能特性能够支持要求严苛的射频测试环境,比如半导体、消费者无线设备和各种S波段的应用(包括移动服务、卫星通讯和雷达)的商用MEMS组件。“Pickering多年来一直在密切关注MEMS(微机电系统)技术,”Pickering Interfaces的开关产品经理Steve Edwards说。“Menlo Micro凭借Ideal Switch成为第一家提供满足射频测试所需规格的量产MEMS开关的公司。”   Menlo Microsystems的创始人兼全球营销高级副总裁Chris Giovanniello指出:“我们与Pickering Interfaces的合作伙伴关系建立在专注于下一代射频产品和应用的五年合作之上。“现在,我们的 Ideal Switch 已被Pickering用来构建首批射频多路复用开关,我们期待进一步推进我们的创新技术的发展。”   40-878 (PXI)和42-878 (PXIe)是50Ω 4:1 射频多路复用开关。为了适应不同规模的测试应用,40/42-878系列提供单组、双组或四组多种规格选择,都仅占用一个PXI或 PXIe机箱插槽。用户可以灵活地选择机箱,最大程度地减少所需插槽的数量。40-878也可以在Pickering的所有LXI/USB模块化开关机箱中安装使用。因此,受PXI、LAN或USB控制的不同的开关解决方案具有相同水平的高性能。该模块提供SMB或MCX连接器,用户可以选择最适合其应用的接口。另外,Pickering还提供类型齐全的线缆解决方案。   Pickering的开关产品经理Steve Edwards对新产品作了说明:“40/42-878系列提供大于30亿次的操作寿命,远超基于EMR的解决方案(通常为1千万次操作),最大程度地减少由于继电器损坏或需要维护造成的系统停机。仅50us的切换速度使得这些开关可以在EMR的一次切换时间内进行多次切换,因此最大程度地减短了测试周期时间,以及提高了系统吞吐量。快速切换的优点使得这款产品适用于类型广泛的各类应用。”   “另外,40/42-878提供4GHz的带宽(现有的EMR产品带宽为3GHz),可以支持新的更高频率的测试要求,因此有助于延长测试系统的使用寿命。提高了带宽的同时也提高了射频承载功率,超过了EMR解决方案的10W功率。”Edwards说:“最后,与固态解决方案不同,40/42-878中使用的MEMS开关具有低插入损耗,在4GHz时通常小于1.4db —— 与EMR解决方案相当,但具有基于MEMS设计的所有优势。”   40/42-878系列随附驱动程序,可在所有主流的软件编程环境中使用。在操作系统方面,支持所有微软当前的Windows版本和主流的Linux版本,以及其他实时硬件在环(HiL)工具。另外,Pickering为所有模块提高三年质保。
  • 毛军发院士任主任!深圳大学射频异质异构集成全国重点实验室获批
    据报道,近日,深圳大学2022年牵头或参与申报全国重点实验室6项,其中牵头组建申报的“射频异质异构集成全国重点实验室”已获批立项建设。该实验室系深圳大学建校以来的首个全国重点实验室,也实现了深圳本土高校“零的突破”。据介绍,射频异质异构集成重点实验室经国家有关部委批准立项,由深圳大学牵头建设,上海交通大学和中兴通讯股份有限公司参与共建。实验室主任为深大校长、中国科学院院士毛军发。实验室将围绕射频异质异构集成的关键科学技术问题,开展系统深入的原创性、前瞻性基础研究和核心技术攻关,认识基本原理,掌握理论方法与核心技术,形成射频异质异构集成能力、平台和标准,研制一系列面向国家重大需求的射频异质异构集成电路系统。实验室的研究方向与内容为:耦合多物理场理论与设计方法学、射频异质异构集成工艺、可测性与测试表征、射频异质异构集成电路研制与应用。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 将实验设备制成便携工具 杭电学生自研射频微波网络测量仪
    第八届浙江省国际“互联网+”大学生创新创业大赛决赛中获得“金钥匙奖”颁奖。 将一台手掌大小的长方形仪表盒子线头接上一段射频电路,仪表显示屏上随即出现电波图形… … 8月上旬,在杭州电子科技大学通信工程学院科协创新实验室内,一款由该院学生团队联合研发的便携式矢量网络分析仪进行应用演示。 “如果电波图形和被测试电路板上已绘制好的电波图形吻合,说明该射频电路发射性能优良,反之则说明该电路传输信号有问题。”该设备核心研发人员、杭电通信学院大三学生江逸宁介绍说,团队凭此在7月底落幕的第八届浙江省国际“互联网+”大学生创新创业大赛决赛中获得“金钥匙奖”,从而拿到这一赛事全国总决赛的入场券。 记者了解到,这一分析仪可用于检查信号发射状况,分析出基站天线、电缆接触状况等影响网络的变量,并进行修复,从而恢复基站正常功能。 射频电路的网络测试,具有广泛应用场景。比如当前在高校开展广泛的电子信息类学科竞赛,普遍要用到无线信号传递。通常智能车的通信模块、航模比赛的遥控装置等就要用到射频电路发射信号。 “在电子竞赛中深感现有市场上网络测试仪器使用起来不便或太贵,所以我们想自己研发性价比高、使用方便的网络测试仪,目标是使其成为射频微波领域的‘万用表’。”该项目主要负责人、杭电通信学院大三学生王来龙说。 “实验室用到的电子网络测试仪、基站维护领域的驻波仪等设备,通常价格不菲以及被国外垄断。”该团队指导老师、杭电通信学院教授张福洪说,他们鼓励学生研发推出具备类似功能甚至可实现部分替代的仪器。 据介绍,这一分析仪由学生团队通过自主设计核心电路优化仪器电路结构、使用国产全自主芯片以及提升机器学习方法研制而成,基于团队成员的快速锁相环、数模转换器等专利,使频率测量的效率大为提高,同时降低了生产成本。 “同学们从实践出发,学以致用,促进电子测试仪器的国有化,推动测量仪器进一步发展,是一次大胆而创新的尝试。”中国电子学会嵌入式系统专家委员会委员严义教授对此表示。
  • Nature|潘建伟、白春礼团队合作,首次实现利用射频场相干合成三原子分子
    中国科学技术大学潘建伟、赵博等与中国科学院化学所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。在该研究中,他们在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月10日,这一重要研究成果发表在国际权威学术期刊《自然》杂志上。图:从超冷原子和双原子分子混合气中利用射频场合成三原子分子的示意图量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现这一目标需要制备大规模的量子纠缠并进行容错计算,仍然需要长期不懈的努力。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,它能够在某些特定的问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材料设计中具有广泛的应用前景。超冷分子将为实现量子计算打开新的思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级非常复杂,通过直接冷却的方法来制备超冷分子非常困难。超冷原子技术的发展为制备超冷分子提供了一条新的途径。人们可以绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。利用光从原子气中合成分子的研究可以追溯到上世纪八十年代。激光冷却原子技术的出现使得光合成双原子分子得以快速的发展,并在高精度光谱测量中取得了广泛的应用。在光合成双原子分子取得成功之后,人们开始思考能否利用量子调控技术从原子和双原子分子的混合气中合成三原子分子。在2006年发表的综述文章[Rev. Mod. Phys. 78,483, (2006)]中,美国国家标准局的Paul Julienne教授等人回顾了光合成双原子分子过去二十年的发展历史,并指出从原子和双原子分子的混合气中合成三原子分子是未来合成分子领域的一个重要研究方向。由于光合成的双原子分子气存在密度低、温度高等缺点,一直无法用来研究三原子分子的合成。后来随着超冷原子气中Feshbach共振技术的发展,利用磁场或射频场合成分子成为制备超冷双原子分子的主要技术手段。从超冷原子中制备的双原子分子具有相空间密度高、温度低等优点,并且可以用激光将其相干地转移到振动转动的基态。自2008年美国科学院院士Deborah Jin和叶军的联合实验小组制备了铷钾超冷基态分子以来,多种碱金属原子的双原子分子先后在其他实验室中被制备出来,并被广泛地应用于超冷化学和量子模拟的研究中。超冷基态分子的成功制备重新唤起了人们对合成三原子分子的研究兴趣。2015年,法国国家科学研究中心的Olivier Dulieu教授等在理论上分析了从原子双原子分子混合气中合成三原子分子的可行性 [Phys. Rev. Lett. 115, 073201 (2015)]。 但由于三原子分子的相互作用极其复杂,无法精确计算,因而理论上无法预测三原子分子的束缚态的能量以及散射态和束缚态的耦合强度。中国科学技术大学的研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振,相关成果发表于《科学》杂志 [Science 363, 261 (2019)]。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的成功观测为合成三原子分子提供了新的机遇。但由于原子和分子的Feshbach共振非常复杂,理论上难以理解,能否和如何利用Feshbach共振来合成三原子分子依然是实验上的巨大挑战。在该项研究中,中国科学技术大学的研究小组和中科院化学所的研究小组合作,首次成功实现了利用射频场相干合成三原子分子。在实验中,他们从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。他们成功地在钠钾分子的射频损失谱上观测到了射频合成三原子分子的信号,并测量了Feshbach共振附近三原子分子的束缚能。这一工作为量子模拟和超冷化学的研究开辟了一条新的道路。超冷三原子分子是模拟量子力学下三体问题的理想研究平台。三体问题极其复杂,即使经典的三体问题由于存在混沌效应也无法精确求解。在量子力学的约束下,三体问题变得更加难以捉摸。如何理解和描述量子力学下的三体问题一直都是少体物理中的一个重要难题。此外,超冷三原子分子可以用来实现超高精度的光谱测量,这为刻画复杂的三体相互作用势能面提供了重要的基准。由于计算势能面需要高精度地求解多电子薛定谔方程,超冷三原子分子的势能面也为量子化学中的电子结构问题提供了重要的信息。该研究工作得到了科技部、自然科学基金委、中科院、安徽省、上海市等单位的支持。论文链接: https://www.nature.com/articles/s41586-021-04297-2
  • 自激式全固态ICP射频源研制及产业化重大专项启动会在聚光科技召开
    2016年11月18日,由聚光科技(杭州)科技股份有限公司(以下简称“聚光科技”)牵头承担的国家重大科学仪器设备开发专项“自激式全固态ICP射频源研制及产业化”项目开题会议在杭州顺利召开。浙江省科技厅乐斌、中科院电工研究所韩立所长助理、浙江大学金钦汉教授、浙经事务所徐永标教授、上海环境监测中心大气环境监测室段玉森主任、浙江地质矿产研究所胡勇平教授、中国科学院高能物理研究所刘宇研究员、杭州信雅达科技有限公司赖月林总经理、杭州电子科技大学程知群教授、浙江工业大学莫卫民教授等领导、项目专家成员以及合作单位相关负责人近22人出席会议。与会人员合影  首先由项目承担单位聚光科技党委书记陈荧平致欢迎辞,随后浙江省科技厅乐斌对项目实施过程中几点要求及评价体系等方面发表重要讲话,并希望项目组进一步加强合作,祝愿聚光科技在后续项目的实施过程中取得圆满成功。 浙江省科技厅乐斌发表重要讲话  中国地质大学(武汉)金星教授向各位领导及专家组就项目总体情况进行了介绍,本专项重点研制具有自主知识产权、达到国际一流水平的自激式全固态ICP射频源设备,在此基础上进行工程化、产业化,同时建立一条规模生产线,年产能达500台套,项目完成后3年内年销售量300台套以上,支持ICP类分析仪器销售500台套。 中国地质大学金星教授作项目介绍  本专项将研制工作在27.12 MHz频率的自激式全固态ICP射频源,频率稳定度优于0.01%,功率稳定性优于0.1%,输出功率在0.6~1.7 kW之间连续可调。  在应用开发方面,本项目针对ICP射频源在光谱和质谱中的应用,将研制的ICP源集成在国产ICP-OES和ICP-MS上,实测灵敏度、背景噪声、检出限和长短期稳定性等主要性能指标,并与采用进口ICP射频源的国产ICP-OES和ICP-MS进行横向比较,以验证本项目研制的ICP射频源的性能是否满足ICP-OES和ICP-MS的要求。形成的测试报告和应用示范效果,对于ICP射频源在国产ICP-MS中的推广应用将起到一个良好的带动作用。  在产业化方面,本项目将依托产业化承担单位的基础,按照产品开发(IPD)流程进行产品开发,参考ISO 9001:2001质量标准进行管理,建立全面的ICP射频源产品质量管理体系、物料质量管理规范和产品订单履行规范,保证ICP射频源的小试、中试和规模生产顺利实施。建立相应质量管理体系,建设生产线,实现自激式全固态ICP射频源年销售量300台套以上。  通过本项目的实施,将给国家带来巨大的经济社会效益。  一、为环境、食品等行业的仪器设备提供核心部件,提升我国检测设备的研制和应用水平  在水、土壤环境质量检测、水质重金属污染突发事件和食品重金属检测领域等行业,本项目研制成功的ICP源将为这些领域重金属检测设备ICP-OES和ICP-MS提供先进的核心部件,促进国产高端元素检测设备的技术成熟,保障检测行业的检测事业发展。先进的检测设备将大大提升水质、土壤环境的检测能力,促进环境安全和食品安全的总体控制。环境和食品安全保障手段的加强,必将提高人民的生活水平,从而产生巨大的社会效益。  二、 促进元素检测技术水平的提高  通过实施项目,我国元素检测设备和检测质量控制产品的研制水平将会有很大提高,必将进一步促进整个国产化元素检测关键设备的产业化、标准化、系列化,形成关键检测设备核心模块的产业化基地,促进国产元素检测设备的市场化推广。  三、替代进口,节约外汇  目前国内高端的ICP-OES和ICP-MS设备基本购买国外产品,市场被进口设备长期垄断,价格昂贵、仪器的维护费用高、周期长。本项目研制的具有我国自主知识产权的ICP射频源,技术指标达到国外同类产品水平,将极大的促进国产ICP-OES和ICP-MS在技术上成熟,达到国外同等先进水平,能够胜任国内元素检测各种复杂的应用环境;同时实现国产化应用、本土化维护和成本的降低,完全可替代进口产品,降低了成本,不仅促进仪器企业降低成本提高产品竞争力,也帮助国产ICP类分析仪器在整个元素检测仪器市场提高竞争力。  四、拉动内需,促进就业  本项目涉及光学、化学、机械加工、生物学、微加工、电子学、材料科学等多行业,能够促进ICP-OES和ICP-MS等分析仪器行业的进步,项目的实施将带动相关产业的发展,增加就业岗位。  总之,通过本项目的实施,将实现具有自主知识产权的自激式全固态射频电源的国产化和产业化,将在杭州建立一条拥有年产能力500台套ICP射频源的生产线,并实现批量销售,项目完成后年销售量超过300台套。通过本项目研究成果的推广,将促进国产ICP-OES和ICP-MS等高端无机分析仪器的产业化,提升国产仪器的市场竞争力。  随后,各仪器开发单位分别就各承担任务的总体目标、工作难点、技术路线、实施计划等方面进行了专题汇报,经过专家组多次提问及内部讨论,形成了专家意见,为项目的顺利实施奠定了坚实的基础。
  • 传感器:智能时代的“慧眼”
    如果把智能系统比作“人”,那么传感器就是“人”的感觉器官。不同类型的传感器,感知周围环境并把数据传递给系统进行计算,对情况进行实时分析、判断和应对。随着数字化智能化不断深入,各式各样传感器的用武之地大为拓宽,为人类创造美好生活发挥着巨大作用。一部智能手机里有上百个传感器:有用于摄像的CMOS图像传感器,有用于检查环境明暗的环境光传感器,还有用于导航的地磁传感器、陀螺仪,等等。正是基于这些传感器,手机里的各种应用软件才能流畅工作,手机才能成为集工作、生活、娱乐于一体的便携式智能设备,带来人们生活方式的巨大变化。风云卫星上的可见和红外光电传感器,能够不分昼夜地获取大气信息,精准预测天气,甚至在月球上、火星上都有传感器工作,帮助人类探索宇宙奥秘。比人的感官更敏锐、更强大传感器是信息系统的“慧眼”。它就像人类的眼睛、耳朵、皮肤等器官一样,感知周围环境,帮助我们认识多姿多彩的世界。不同之处在于,传感器比人的感官更敏锐、更强大。客观世界所包含的信息多样程度,远远超出我们感官的能力范围。人的眼睛无法观察红外辐射和紫外辐射,耳朵听不见次声波和超声波,对于“不见踪影”却时刻产生影响的磁场也无法感知。这些超出感官范围的信息,传感器都能“感受”到。随着生产力发展,人类越来越需要全方位地感知世界。1821年,科学家利用材料因温差产生电压的原理,研制出世界上第一个传感器——温度传感器。最初,人们直接利用光、热、电、力、磁等物理效应制备各种传感器,这些传感器尺寸大、灵敏度低、使用不方便。上世纪70年代,出现了将敏感元件与信号电路进行一体化设计的集成传感器,如热电偶传感器、霍尔传感器、光敏传感器等。这类传感器由半导体、电介质、磁性材料等固体元件构成,输出模拟信号。上世纪末开始,数字化传感器快速发展,通过“模拟/数字”转换模块,实现数字信号输出。数字化传感器集成智能化处理单元,可以自动采集、处理数据,并能根据环境自动调整工作参数,数码相机中的光敏元件就是其代表产品。总的来说,传感器的工作原理是某些物质的电学特性会随环境因素变化。例如铂在不同温度下电阻率不同,硅在可见光照射下电阻会减小,石英受到压力后表面会产生电荷,等等。利用电阻与温度的对应关系,可以制成温度传感器,进一步给敏感元件添加隔热结构,依据敏感元件温度变化与红外辐射能量之间的关系,可以制成红外传感器。在此基础上,还可以根据目标温度与红外辐射能量之间的关系,制造出非接触测温传感器。人们熟悉的用来测量体温的额温枪就利用了这一原理。借助丰富的物理和化学效应,人们制备出灵敏度比狗鼻子高1000倍、可以“闻到”气体分子的“电子鼻”,以及可以在黑夜中观察物体的红外相机等种类丰富、功能强大的传感器。没有传感器就没有数字化、智能化数字化是对事物属性的量化,并用数字将其表达为抽象结果。借助现代信息技术,人们可以存储、处理、传播各种数字化信息。传感器可以将事物蕴含的各种信息转换成电信号,并利用数模转换电路将电信号用数字表达,是数字化的有效工具。当你拿出手机拍照片或视频时,光敏传感器会将接收的光强度信号转换成电信号,再按一定的规则用数字表达、存储,最终形成手机屏幕上的影像。数字化基于传感器获取信息。数字化系统需要处理的信息量非常庞大,仅靠人工或者传统设备无法获取,凭借传感器则能够实时、高效、精准、快速地获取,于是有了城市大数据、天气大数据、医疗大数据、农业大数据等。利用各类传感器,人们可以召开远程会议、学习网络课程、扫码支付甚至直播带货,由此发展出数字经济业态。数字经济涉及的云计算、物联网、人工智能、5G通信等各类技术,都与传感器息息相关。没有传感器就没有数字化和智能化。传感器是智能化系统的第一关,它的水平决定了智能化系统及其仪器设备的水平。传感器技术已经成为国际上信息高端器件领域的研究前沿,在人工智能、智慧城市、5G通信、航空航天、生命健康等领域均发挥着不可替代的作用。比如一辆汽车会安装压力、温度、位置、声音、光、电等超过100种传感器,由车载电脑进行处理,帮助驾驶员作出判断。对数据的智能化分析降低了驾驶汽车的难度,让汽车变得更安全、更好开。更进一步,无人驾驶汽车通过传感器实时获取道路信息,一旦发现障碍物,便通过智慧分析及时避让。城市中高楼大厦、桥梁、隧道等建筑,也需要通过视频、温度、压力和烟雾等传感器实时监控安全状况,当数据汇总到一起,智能化系统便会及时分析,凝练出少量关键信息供使用者作出决策。甚至在未来,人类的感官也可以借助传感器变得更加强大,构建起智能化系统。智能传感器开拓新应用场景当前,各类传感器都处在进一步提升性能、降低成本,向数字化、智能化、小型化微型化、绿色低碳、可穿戴等方向进化,呈现出蓬勃发展态势。其中,智能传感器、柔性传感器、新原理传感器的研发具有代表性意义,有望塑造新的工作生活方式。发展智能传感器是重要趋势。借助智能传感技术,人们设计制造出具备获取、存储、分析信息功能的各种传感单元及微系统,实现低成本、高精度信息采集。智能传感器广泛应用在机器人、无人驾驶、智能制造、运动定量监测等方面,还可用于开发无创或微创健康监测器件等。近年来流行的动态血糖仪是个很好的例子。糖尿病患者将柔性传感器无痛置入身体,传感器每5分钟测一次血糖值,并传送到手机应用中。患者可以观察血糖曲线变化,及时通过饮食和运动等方法调节血糖,有的患者甚至由此告别了药物和胰岛素治疗。此外,人们还在研发可降解电子器件,让智能传感器更好助力低碳环保生活。发展柔性传感器是另一趋势。许多应用场景要求传感器制备在柔性基质材料上,并具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点。目前制备柔性传感器的常用传感材料有碳基材料(炭黑、碳纳米管和石墨烯等)、金属纳米材料(金属纳米线、金属纳米颗粒等)、高分子聚合物和蛋白纤维等。例如一种具有可拉伸、抗撕裂和自我修复能力的交联超分子聚合物薄膜电极材料,可用于制造下一代可穿戴和植入式柔性电子器件。将集成多功能的柔性传感器与柔性印制电路结合,可以制成“智能带”,把它穿戴在身体的不同部位,可实时监测与分析生理信息,帮助人们特别是感官退化的群体了解自身健康状况。新原理传感器也在不断出现。在基础研究领域,新的规律陆续被发现,人们正利用这些科学新认知制备传感器。同时,技术进步也对基础研究提出新要求。在生活中,人们希望提高相机的像素、灵敏度、速度等性能参数;在高速实验中,需要可以记录飞秒尺度信息的条纹相机;在量子通信中,需要灵敏度达到单光子的光电探测器;在空天科技中,需要实现对高速运动物体和冷目标的探测,等等。这就要求科学家们进一步探索物理世界,发现新现象新规律,提升传感器性能。随着科技快速发展,新材料新工艺不断投入应用,性能更强、种类更丰富、智能化水平更高的传感器将创造更多工作生活新场景,帮助人们“感受”美好生活。(作者:褚君浩,系中国科学院院士、中国科学院上海技术物理研究所研究员)
  • BL-ZFS总辐射传感器中标:湖南大学
    2012年11月份,湖南大学光伏实验室关于太阳辐射强度传感器的采购项目,我公司提供的型号:BL-ZFS型总辐射传感器中标此采购项目,并得到客户好评!一、概述总辐射表采用光电转换感应原理,与各种辐射记录仪或辐射电流表配合使用,能够精确地测量出太阳的总辐射,该系列辐射表的感应元件采用了绕线电镀式多接点热电堆,其表面涂有高吸收率黑色涂层,感应元件的热接点在感应面上,而冷接点位于仪器的机体内,以便直接取环境温度。当有光照时,冷热接点产生温差即产生电势差,进而将光信号转换为电信号输出,在线性误差范围内,输出信号与太阳辐射成正比。 为了减小环境温度对辐射仪器输出的影响,则在辐射表内部附加了温度补偿装置,通过调整热敏电阻的温度系数来实现对辐射表输出电势的自动补偿。辐射表被广泛地应用于太阳能利用、气象、农业、建筑、材料老化、大气污染及生态考察等部门。二、技术参数1、 灵 敏 度:7~14μV/Wm-22、 响应时间:≤30s3、 内 阻:约230Ω4、 稳 定 性:±2%(一年内灵敏度变化率)5、 余 弦:≤±5%(晴天太阳高度角为10o时对理想值的偏差)6、 温度特性:±2%(-20℃~+40℃)7、 重 量:1.5千克8、 测量范围:0~2000W/m29、 信号输出:0~20mV(配合DL-2标准电流变送器使用可输出4~20mA)10、测量精度:工作表<5%;标准表<2%11、测量光谱范围:280~3000nm
  • 柯力传感领投点联传感天使轮 开拓精密测量传感器市场
    2023年7月,宁波柯力传感科技股份有限公司(“柯力传感”)与深圳点联传感科技有限公司(“点联传感”)正式签署协议,完成天使轮投资。柯力传感是此次点联传感天使轮融资的领投方。   深圳点联传感科技有限公司正式成立于2022年,是由多名清华大学博士领衔的高层次人才硬核团队,精密仪器专业出身,专注传感检测研究15年。   点联传感在精密光学系统、高速硬件电路以及综合检测算法方面有深厚的研究基础,依托底层高速高精度CMOS激光测量传感器技术框架,逐步拓展对射式、反射式以及同轴共聚焦的产品矩阵,实现对工业品形位尺寸的精密检测与定位,提高生产效率与性能。未来,点联传感将在产学研基础上,进一步构建名校传感器成果转化平台,立志解决中国工控及其他领域中高端传感器卡脖子问题。据悉,柯力投资点联传感主要是基于以下三个方面的考虑:   第一、当前国内精密测量传感器的发展仍处于起步阶段,未来是一个确定性的发展机会,是柯力布局传感器行业的重要市场方向。   第二、高精密测量传感器有一定的技术壁垒,需要依赖技术型团队才能打造升级产品,形成品牌。点联传感团队是由多名精密仪器专业出身的博士组成,专业技术能力强。   第三、通过柯力投资与赋能,可以快速提升点联传感的客户拓展能力,整体价值实现1+1>2。   当前,中国制造业正在向高精度、智能化的方向转型升级。高精度工控传感器是制造装备的基础要素,柯力传感对点联传感的投资与赋能,将助力其成为中国制造业转型升级过程中的国内外一流传感器品牌,同时,也将加速柯力从单一物理量传感器向多物理量传感器融合的步伐与进程。
  • CBIFS:生物传感器在食品致病微生物检测中的应用
    仪器信息网讯 2012年3月27-28日,由北京食品学会及北京食品协会联合主办,太平洋国际展览有限公司承办的“第五届中国北京国际食品安全高峰论坛(CBIFS)”在中国国家会议中心召开 。本次高峰论坛旨在为食品行业及食品安全检测部门提供更加广泛的学习和交流机会,针对当前重要的食品安全热点难点问题展开深入探讨,发布最新的食品安全前端技术和应用解决方案。论坛吸引了800余名业内人士参加、60余家企业参展,仪器信息网作为合作媒体亦参加了本次会议。   在“微生物、毒素及致病菌检测”专题研讨会上,军事医学科学院微生物流行病研究所杨瑞馥研究员作了主题为“生物传感器在食品致病微生物检测中的应用”的报告,简要介绍了上转发光技术、国内外上转发光技术研究进展以及该技术在食品致病菌检测中的应用,现对该报告作简要报道: 报告人:军事医学科学院微生物流行病研究所 杨瑞馥教授 报告题目:生物传感器在食品致病微生物检测中的应用   上转发光技术与金标技术类似,但金标技术不能定量,受环境因素影响大,且检测结果不能长期保存,而上转发光技术正好克服这些缺点。   杨瑞馥研究员等利用上转发光技术,经过多年实验,研制出能进行定量检测的生物传感器,研制历程跨过了纳米颗粒研制、试剂研制、仪器研制到仪器应用几个阶段。   纳米颗粒经由稀土元素烧制,通过活化修饰,再与抗体或抗原结合,利用上转换发光材料在红外光激发下发射可见磷光的特性,通过对免疫层析试纸条上经生物反应而结合上去的上转换发光材料颗粒的含量进行检测,计算出被测样品中特定生物分子的浓度。   该试剂环境耐受性强(耐受 PH3-7的范围),不易猝灭,最突出的特点是自然界没有上转发光,因此使得样本处理变得简单,点样之后就能检测,没有本底干扰。   国外对上转发光技术的研究始于上世纪90年代,但因为没有清楚了解纳米颗粒的特性,控制不好反应效果。因此,杨瑞馥研究员对上转发光技术的研究可说是走在了国际前列。   杨瑞馥研究员等研制的基于上转发光技术的生物传感器通过了可靠性试验,在我国首台航母上得到了安装,也进入了生产线和临床。该生物传感器还可应用于食品致病微生物的检测,已开发相关的微生物类检测试剂十几种,曾在世博会期间被用于食品样品的快速检测,特异性达到100%,检测结果重现性好。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制