当前位置: 仪器信息网 > 行业主题 > >

射线侧偏仪

仪器信息网射线侧偏仪专题为您提供2024年最新射线侧偏仪价格报价、厂家品牌的相关信息, 包括射线侧偏仪参数、型号等,不管是国产,还是进口品牌的射线侧偏仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合射线侧偏仪相关的耗材配件、试剂标物,还有射线侧偏仪相关的最新资讯、资料,以及射线侧偏仪相关的解决方案。

射线侧偏仪相关的资讯

  • 美宇航局筹划更先进的望远镜——X射线成像偏振探测器
    美国宇航局预计在2017年初宣布概念研究方案,航天器的科学仪器预算为1.25亿美元  据腾讯太空(罗辑/编译):在地球轨道上,美国宇航局所管辖的空间望远镜是全球最多的,性能也最为先进,几乎覆盖了所有的观测波段。2018年,美国宇航局将发射迄今最先进的空间望远镜,詹姆斯-韦伯望远镜,这是一具红外线天文台。不过,美国宇航局又在筹划一种更先进的望远镜,主要工作波段为X射线,被命名为X射线成像偏振探测器,目前已经入围了三个方案,预计在2020年底会发射升空,将作为X射线天文学观测上的主力。  目前入围的三个方案都是目前X射线观测上的顶尖水平,比如来自加利福尼亚技术研究所的SPHEREX望远镜,美国宇航局马歇尔太空飞行中心提出的IXPE计划,以及美国宇航局戈达德太空飞行中心的PRAXyS方案。每个科学小组会获得100万美元的资金支持,美国宇航局也会进行为期11个月的任务概念研究。预计在2017年初宣布概念研究方案,航天器的科学仪器预算为1.25亿美元,并安排了5000万美元的发射费用。  IXPE和PRAXyS这两个方案主要目标是个宇宙中高能事件,比如恒星工厂和恒星死亡后的情景,这些过程可产生强大的X射线信号。此外,科学家还希望收集黑洞周围的X射线信号,超致密的中子星、恒星爆炸、遥远星系中央内核的X射线信号等。IXPE采用X射线偏振技术,可以对中子星、脉冲星星云、恒星、黑洞等主要宇宙天体进行研究,符合美国宇航局的任务要求。  PRAXyS方案则使用了一种不同的方法来研究X射线天文学,PRAXyS任务的首席研究员基思认为PRAXyS方案类似于GEMS引力与极端磁场研究项目,后者在2012年被美国宇航局取消。SPHEREX任务概念将对天空进行全面扫描,时间至少持续两年,还可以观测宇宙中的引力波。此外,SPHEREX任务还可以对一些恒星系统演化的早期阶段进行研究,比如冰是否存在于恒星周围。
  • 偏振能量色散X射线荧光光谱仪XEPOS在拉链行业的应用
    相关法规背景 REACH法规即“化学品注册、评估、许可和限制”,是欧盟对进入其市场的所有化学品进行预防性管理的法规,该法规自2007年实施以来,不仅对我国出口化工企业带来了一系列长期的冲击,也对包括纺织、机电、玩具、家具等在内的下游产品企业的生产、管理和出口产生深远影响。近年来,欧盟对于REACH法规的消费品监管内容不断更新,仅2015年就将有(EU) No 474/2014、(EU) No 1272/2013等四个修订案生效,涉及十多种消费产品,同时欧盟对消费品符合REACH法规的执行监管也不断强化,出口企业应引起重视和关注。 REACH法规与消费品密切相关的主要是法规附件XVII,附件中对消费品中可能存在的危险化学物质的使用要求和含量要求有严格的限制,中国消费品因不符合欧盟REACH法规被各成员国海关拒绝进口或责令召回的通报近年来不断增长,已成为我国消费品出口的重要技术壁垒。根据欧盟非食用消费品快速通报系统(RAPEX)的公开数据统计,2014年我国出口欧盟的消费品因不符合REACH法规被通报高达301起,同比上年增长91.7%,其中涉及增塑剂的达180起,涉及重金属的97起。从产品类别来看,针对玩具及儿童用品的通报260起,同比增长111.4%,针对一般消费品的41起,同比增长4.9%。通报数据的快速增长一方面表明,欧盟对于REACH法规的执行监管日趋严格,另一方面也说明,我国输欧消费品在DEHP等禁用化学品的控制上存在较大不足,企业的风险防范意识有待进一步强化。 XEPOS如何帮助拉链行业有效应对欧盟REACH法规 拉链作为服装大类,配件分类,REACH法规对其中可能存在的危险化学物质的使用要求和含量要求有严格的限制。一般而言,人们尤其关注里面含有的各种重金属元素,尤其应用于儿童服装类的拉链,拉链中的铅(Pb)含量更是有着更严格要求。随着企业风险防范意识的强化,不少企业都纷纷购置各种精密分析仪器对产品质量进行监控,以应对相关行业法规。但拉链企业对拉链重金属含量的日常监控中往往会遇到如下问题:(1) 检测时间长,效率低下,影响生产(2) 检测人才的培养成本高(3) 检测结果偏差大,达不到内控要求(4) 送检成本高 SPECTRO XEPOS 台式偏振X射线荧光光谱仪是德国斯派克分析仪器公司推出的新一代仪器,能很好有效地解决上述拉链行业质量监控中所遇到的困惑。在日常的重金属检测中,斯派克台式偏振X射线荧光光谱仪XEPOS有着无与伦比的巨大优势。(1)3-5分钟内可以完成一个样品的检测,检测元素范围:Na-U;(2)操作简单,并不需要十分专业的技术人员操作,节约人力成本;(3)无损检测,无须进行样品前处理,轻松解决样品前处理复杂、耗时、危险等问题。(4)检测下限极低,在某些材质检测方面,偏振式X射线荧光光谱仪(简称ED(P)XRF)灵敏度和检测限都是普通X射线荧光光谱仪(EDXRF)的5-10倍;(5)性能大幅度领先于普通X射线荧光光谱仪。无论是对轻元素还是重金属元素,偏振式X射线荧光光谱仪XEPOS皆有优秀的测试能力。普通的EDXRF虽然也能宣称可以达到Na-U的分析能力,如Na的检测限指标一般是3000ppm,常见重金属为10-30ppm,所以对于某些痕量元素的测试应用意义不大。而偏振ED(P)XRF的元素检测限一般为:Na:100ppm Mg:30ppm Al:30ppm Si:2ppm S:0.6ppm等其的重金属元素检测限一般为(以GB15618-1995,和美国EPA标准为例,硅基,300s测试时间):V:0.6ppm Cr:0.5ppm As:0.7ppm Cu:0.6ppm Cd:0.3ppm Sb:0.7ppm Hg:0.3ppm Pb:0.3ppm La:2.1ppm Ce:2.5ppm Pr:3ppm Nd:4ppm(6)仪器性能认同度高,不少检测单位都有该设备,如中国CQC,TUV实验室,深圳计量院,广州分析测试中心,广东省环保局。企业在有仪器自检的情况下,可以减少甚至无须对样品送第三方检测,降低企业经营成本。 另外,SPECTRO XEPOS可广泛地应用于石油、化工、冶金、矿业、制药、食品、环保、地质、建材、废物处理以及再加工工业等。以油中各种元素的分析为例。使用SPECTO XEPOS,在氦气保护状态下,在300秒钟之内,对于P、S、Cl、Ca、Cu、Zn、Ba的检测下限在1-7μg/g以上。 XEPOS型X射线荧光光谱仪可广泛应用于各种电子材料及塑料中铅、镉、(汞)等元素分析,检出下限低,灵敏度高、稳定性好,可应对欧洲WEEE、RoHS指令以及SONY STM-0083标准。XEPOS型X射线荧光光谱仪真正做到高性能,多功能,一机多用,是企业单位添置精密仪器的,提升自身综合能力的一个不错选择。
  • 天津研制成新型国产通用型工业射线胶片
    技术人员使用粒度分布仪检测卤化银粒径 技术人员使用卤素水分测定仪检测胶片   天津市研制成功新型国产通用型工业射线胶片Ⅳc,该胶片采用创新型设计,使胶片检测钢质材料壁厚范围从30mm扩大至55mm以上,接近或达到国际先进水平。适用于石化管道,航空航天及核电等项目的无损检测。   11月16日,天津美迪亚影像材料有限公司,天津世纪天感影像科技发展有限公司,中科院理化所共同完成新型国产通用型工业射线胶片Ⅳc并进行专家鉴定。   该新型射线胶片Ⅳc既适用于X射线,同时适用于高能射线和伽马射线无损检测,是新型国产通用型工业射线胶片。
  • Advanced Science | 原位生长钙钛矿晶片实现低剂量直接X射线探测成像
    近日,中国科学院深圳先进技术研究院材料所喻学锋、刘延亮团队与医工所葛永帅团队合作,在权威刊物Advanced Science在线发表研究论文“PbI2-DMSO Assisted In-situ Growth of Perovskite Wafer for Sensitive Direct X-ray Detector”。 该成果聚焦钙钛矿直接型X射线探测器中钙钛矿晶片材料缺陷密度高、载流子传输效率低的科学问题,原创性地开发了一种钙钛矿晶体的原位生长技术,极大提高了钙钛矿晶片的光电性能,实现了高效直接X射线探测及扫描成像。本工作为制备高灵敏、高分辨直接X射线探测器提供了新的技术路线,有望应用于未来高端医疗影像诊断和芯片无损检测等领域。喻学锋研究员、葛永帅研究员和刘延亮副研究员为本文共同通讯作者,刘文俊硕士生和史桐雨博士生为本文的共同第一作者。 论文线上截图论文链接:http://doi.org/10.1002/advs.202204512X射线探测在医学诊疗、安防检查、工业无损检测等领域应用广泛。然而,目前商用的闪烁体间接X射线探测器存在二次光电转化效率低、可见光色散等难以克服的问题,导致探测灵敏度低、辐射剂量高、空间分辨率差,无法满足高端医学影像、芯片检测等领域的需求。相比之下,基于半导体材料的直接X射线探测器可通过一次光电转换,直接将X射线转换成电信号,因此可具有更高的光电转换效率、探测灵敏度和空间分辨率。然而,目前常用的直接X射线探测半导体材料面临对X射线吸收弱(硅、非晶硒)、热稳定性差(非晶硒)、造价高昂(碲化镉、碲锌镉)等问题,极大地限制了其推广应用。因此,发展新型高效半导体光电转换材料是直接X射线成像探测器走向应用的关键。   近年来,金属卤化物钙钛矿半导体凭借优异的本征性能,如重原子X光吸收、载流子迁移率高和寿命长等,在直接X射线探测领域备受关注。钙钛矿材料对X射线的探测灵敏度可达100000 μC Gyair-1cm-2,远优于商用的硅、非晶硒、碲锌镉。通过简单等静压方法制备的钙钛矿晶片尺寸和厚度可控,非常适用于直接X射线检测。然而,钙钛矿晶片常常面临晶体生长不完全、电荷缺陷密度高的问题,严重影响了X射线探测器的效率及工作稳定性。 针对上述问题,结合之前的研究基础,从提升钙钛矿结晶度、降低钙钛矿晶片缺陷密度出发,本研究工作创新性地开发了一种PbI2-DMSO固体添加剂,促进了厚钙钛矿晶片的原位再生长,提高了材料的结晶度、降低缺陷密度、提高载流子迁移率和寿命。并且通过减缓钙钛矿的结晶过程,降低成核密度形成连续的大晶粒钙钛矿晶片,进一步促进器件表面晶界融合、提高电荷传输性能,从而获得高效钙钛矿直接X射线探测器。探测器灵敏度可达1.58×104μC Gyair-1cm-2,最低可探测剂量可达410 nGyair s-1,并且用平面扫描的方式,实现了高清X射线探测成像。这项工作为钙钛矿材料开拓了新的应用方向,同时也为高质量钙钛矿晶片的制备提供了一种有效策略,具有很大科学和应用价值。 该研究工作获得了国家自然科学基金重点项目、国家自然科学基金青年项目、中科院青年创新促进会、深圳市杰青及中科院特别研究助理等项目的资助。 原位生长钙钛矿晶片用于高灵敏直接X射线探测X射线探测扫描成像
  • 《自然》:X射线以创纪录精度洞察微芯片“内心”
    科技日报北京8月8日电(记者刘霞)瑞士保罗谢勒研究所、洛桑联邦理工学院、苏黎世联邦理工大学和美国南加州大学科学家合作,首次使用X射线,以4纳米超高精度观测了先进计算机微芯片的“内心”,创造了新的世界纪录。研究团队制作的高分辨率三维图像,有望推动信息技术和生命科学等领域取得显著进展。相关论文发表于新一期《自然》杂志。目前,一块微芯片上能够集成上百亿甚至更多晶体管,其制造过程复杂而精细,对由此产生的结构进行表征和映射面临极大困难。虽然扫描电子显微镜的分辨率可达几纳米,非常适合对微型晶体管进行成像,但它们通常只能生成物体表面的二维图像。若需获取三维图像,则必须逐层检查芯片,而这会破坏芯片结构。X射线能更深入地穿透材料,利用X射线断层扫描技术可在不破坏芯片的情况下,生成三维图像。然而,现有的X射线技术难以对微芯片这类微型结构进行精确成像。为克服这一难题,研究团队使用叠层相干衍射成像技术作为解决方案。这项技术使X射线光束不是聚焦于样品的某个纳米点,而是让样品在纳米尺度移动,使照射在其上的X射线光束的移动路径形成一个精密网格,网格上的每个点都会记录样品的衍射图案。由于单个网格点间距离小于光束直径,成像区域存在重叠,因此可提供足够多的信息,算法据此能以高分辨率重建样本图像。2017年,研究团队成功以15纳米的分辨率对计算机芯片进行了空间成像,创下当时的纪录。此后,他们一直致力于提升这一技术的精度。在最新研究中,通过采用更短的曝光时间和更先进的算法,他们以4纳米的分辨率打破了此前的纪录。研究团队指出,这项技术不限于洞察微芯片的“内心”,还能为生命科学等领域的样品内部精确成像,从而推动相关领域的进一步发展。
  • 跨向理想X射线探测器的一小步-高分辨、非晶硒X射线探测器及其应用
    “对于相干衍射成像(CDI),微米级像素的非晶硒CMOS探测器将专门解决大体积晶体材料中纳米级晶格畸变在能量高于50 keV的高分辨率成像。目前可用的像素相对较大的(〜55μm像素),基于medipix3芯片光子计数、像素化、直接探测技术无法轻易支持高能布拉格条纹的分辨率,从而使衍射数据不适用于小晶体的3D重建。” 美国阿贡国家实验室先进物理光子源探测器物理小组负责人Antonino Miceli博士讲到。相干X射线衍射成像作为新兴的高分辨显微成像方法,CDI方法摆脱了由成像元件所带来的对成像分辨率的限制,其成像分辨率理论上仅受限于X射线的波长。利用第三代同步辐射光源或X射线自由电子激光,可实现样品高空间分辨率、高衬度、原位、定量的二维或三维成像,该技术在材料学、生物学及物理学等领域中具有重要的应用前景。作为一种无透镜高分辨、无损成像技术,CDI对探测器提出了较高的要求:需要探测器有单光子灵敏度、高的探测效率和高的动态范围。目前基于软X射线的相干衍射成像研究工作开展得比较多,在这种情况下科研工作者通常选用是的基于全帧芯片的软X射线直接探测相机。将CDI技术拓展到硬X射线领域(50keV)以获得更高成像分辨率是目前很多科研工作者正在尝试的,同时也对探测器和同步辐射光源提出了更好的要求。如上文提到,KAimaging公司开发了一款非晶硒、高分辨X射线探测器(BrillianSe)很好的解决的这一问题。下面我们来重点看一下BrillianSe的几个主要参数1. 高探测效率 如上图,间接探测器需要通过闪烁体将X射线转为可见光, 只有部分可见光会被光电二极管阵列,CCD或CMOS芯片接收,造成了有效信号的丢失。而BrillianSe选用了具有较高原子序数的Se作为传感器材料,可以将大部分入射的X射线直接转为光电子,并被后端电路处理。在硬X射线探测效率远高于间接探测方式。BrillianSe在60KV (2mm filtration)的探测效率为:36% at 10 cycles/mm22% at 45 cycles/mm10% at 64 cycles/mm非晶硒吸收效率(K-edge=12.26 KeV)BrillianSe在60KV with 2 mm Al filtration的探测效率,之前报到15 μm GADOX 9 μm pixel 间接探测器QE 为13%。Larsson et al., Scientific Reports 6, 20162. 高空间分辨BrillianSe的像素尺寸为8 µm x8 µm,在60KeV的点扩散为1.1 倍像素。如下是在美国ANL APS 1-BM光束线测试实验室布局使用JIMA RT RC-05测试卡,在21keV光束下测试3. 高动态范围75dB由于采用了100微米厚的非晶硒作为传感器材料。它具有较大满井为877,000 e-非晶硒材料,不同入射光子能量光子产生一个电子空穴对所需要电离能BrillianSe主要应用:高能(50KeV)布拉格相干衍射成像低密度相衬成像同步辐射微纳CT表型基因组学领域要求X射线显微CT等成像工具具有更好的可视化能力。此外需要更高的空间分辨率,活体成像的关键挑战在于限制受试者接收到的电离辐射,由于诱导的生物学效应,辐射剂量显着地限制了长期研究。可用于X射线吸收成像衬度低的物体,如生物组织的相衬X射线显微断层照相术也存在类似的挑战。此外,增加成像系统的剂量效率将可以使用低亮度X射线源,从而减少了对在同步辐射光源的依赖。在不损害生物系统的情况下,在常规实验室环境中一台低成本、紧凑型的活体成像设备,对于加速生物工程研究至关重要。同时对X射线探测器提出了更高的要求。KAimaging公司基于独家开发的、专利的高空间分辨率非晶硒(a-Se)探测器技术,开发了一套桌面高效率、高分辨的微米CT系统(inCiTe™ )。可以从inCiTe™ 中受益的应用:• 无损检测• 增材制造• 电子工业• 农学• 地质学• 临床医学• 标本射线照相 基于相衬成像技术获得优异的相位衬度相衬成像是吸收对比(常规)X射线成像的补充。 使用常规X射线成像技术,X射线吸收弱的材料自然会导致较低的图像对比度。 在这种情况下,X射线相位变化具有更高的灵敏度。因为 inCiTe™ micro-CT可以将物体引起的相位变化转为为探测器的强度变化,所以它可以直接获取自由空间传播X射线束相位衬度。 同轴法相衬X射线成像可将X射线吸收较弱的特征的可检测性提高几个数量级。 下图展示了相衬可以更好地显示甜椒种子细节特征不含相衬信息 含相衬信息 低密度材料具有更好的成像质量钛植入样品图像显示了整形外科的钛植入物,可用于不同的应用,即检查骨-植入物的界面。 注意,相衬改善了骨骼结构的可视化。不含相衬信息 含相衬信息 生物样品inCiTe™ 显微CT可实现软组织高衬度呈现电子样品凯夫拉Kevlar复合材料样品我们使用探测器在几秒钟内快速获取了凯夫拉复合材料的相衬图像。可以清楚看到单根纤维形态(左图)和纤维分层情况(右图)。凯夫拉尔复合物3维透视图 KA Imaging KA Imaging源自滑铁卢大学,成立于2015年。作为一家专门开发x射线成像技术和系统的公司,KA Imaging以创新为导向,致力于利用其先进的X射线技术为医疗、兽医学和无损检测工业市场提供最佳解决方案。公司拥有独家开发并自有专利的高空间高分辨率非晶硒(a-Se)X射线探测器BrillianSeTM,并基于此推出了商业化X射线桌面相衬微米CT inCiTe™ 。我们有幸在此宣布,经过双方密切的交流与探讨,众星已与KA Imaging落实并达成了合作协议。众星联恒将作为KA Imaging在中国地区的独家代理,全面负责BrillianSe™ 及inCiTe™ 在中国市场的产品售前咨询,销售以及售后业务。KA Imaging将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。众星联恒及我们来自全球高科技领域的合作伙伴们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯!
  • 用于X射线的消色差透镜问世 有助微芯片等研发
    瑞士保罗谢勒研究所(PSI)的科学家开发了一种突破性的X射线消色差透镜。这使得X射线束即使具有不同的波长也可以准确地聚焦在一个点上。根据14日发表在《自然通讯》上的论文,新透镜将使利用X射线研究纳米结构变得更加容易,特别有利于微芯片、电池和材料科学等领域的研发工作。要想在摄影和光学显微镜中产生清晰的图像,消色差透镜必不可少。它们可以确保不同颜色,即不同波长的光,能够清晰聚焦,从而消除模糊现象。直到现在才开发出一种用于X射线的消色差透镜,这一事实乍一看可能令人惊讶,毕竟可见光消色差透镜已经存在了200多年。它们通常由两种不同的材料组成。光线穿透第一种材料,分裂成光谱颜色,就像穿过传统的玻璃棱镜一样。然后,它通过第二种材料来逆转这种效果。在物理学中,分离不同波长的过程称为“色散”。然而,PSIX射线纳米科学与技术实验室X射线光学与应用研究组负责人、物理学家克里斯蒂安大卫解释说:“这种适用于可见光范围的基本原理并不适用于X射线范围。”对于X射线来说,没有哪两种材料的光学性质在很大的波长范围内有足够的差异,从而使一种材料可以抵消另一种材料的影响。换句话说,X射线范围内材料的色散太相似了。此次,科学家没有在两种材料的组合中寻找答案,而是将两种不同的光学原理联系在一起。这项新研究的主要作者亚当库贝克说:“诀窍是意识到我们可以在衍射镜前面放置第二个折射镜。”PSI用已有的纳米光刻技术来制造衍射镜,并用微米级的3D打印制造出折射结构,成功开发出用于X射线的消色差透镜,解决了上述问题。为了表征他们的消色差X射线透镜,科学家们在瑞士同步辐射光源使用了一条X射线光束线,还使用光刻技术来描述X射线光束,从而描述消色差透镜。这使得科学家们能够精确地探测到不同波长的X射线焦点的位置。
  • 众星携新一代光子计数x射线探测器亮相第二届射线成像会议
    得益于第一届射线成像会议的完美呈现,第二届射线成像会议于期望中在合肥顺利开展。仅仅两天(2018年11月3日-4日)的会议报告时间,来自全国各地的老师百花齐放,各显神通,围绕射线成像领域呈现精彩的报告内容。 本次大会围绕X射线光源和探测器;X射线成像方法及技术;中子、质子及伽马射线成像方法及技术;应用研究等多个议题展开,邀请到来自三大同步辐射光源、中国原子能科学研究院、中国工程物理研究院、中国科学院上海光学精密机械研究所、上海科技大学等多家国家重点研究单位该领域的知名专家和学者到会共同交流,深入探讨以及分享射线成像技术领域取得的最新研究成果。为该领域的发展又增加了一把新的力量。 本次会议北京众星联恒科技有限公司作为赞助商,强势推出代理产品-来自捷克advacam厂家基于Timepix芯片的混合光子计数探测器,并于会议中做了精彩报告。 Advacam公司生产的Timepix光子计数x射线探测器拥有高动态范围,无噪声,高灵敏度,能量甄别-阈值扫描(技术/阈值扫描模式)以及过阈时间分析(TOT模式)以及大面积无缝拼接等特点,在多个领域如小动物显微CT,微米/纳米CT,K边成像,全光谱成像进行材料厚度测量、能量/空间分辨X射线荧光成像拥有显著特点和性能优势。本次报告吸引多位成像用户对本产品的关注,纷纷于会后到我司展台进行咨询,由我司技术支持进行了逐一解答。大会现场图片 我司技术经理于大会中介绍ADVCAM产品 专家学者莅临我司展会深度咨询产品信息 北京众星联恒科技有限公司代理的德国GREATEYES的科学级相机;捷克ADVACA的光子技术x射线探测器(成像);德国X-SPECTRUM的光子计数探测器(衍射)、德国INCOATEC公司光源、德国Microworks的光栅等光学组件、覆盖了X射线领域从光源到探测器的整个产品线,在物质超快过程研究、精细分辨成像等多个领域研究提供重要科学支持,广泛用于光谱和成像等应用。 更多产品信息欢迎来电咨询!
  • 奥然核辐射(αβγ X射线)检测仪畅销
    近日,随着日本福岛核辐射的蔓延,越来越多的民众对核污染产生恐惧。 相关国家的海关、机场、码头以及食品环境监测部门开始加大对核污染监测力度。   平时需求不多的辐射测量仪,一下子进入了我们的视野。近日,我司销售部门接到询问辐射测量仪逐渐增多,其中以Digilert 100最受欢迎,详细信息如下:     货号81910-03   Radiation Alert® Digilert 100同位素辐射测量仪   1. 可同时测量 α,β,γ,X 种射线   2. LCD 4位数字显示器和红色发光二极管报警器   3. 使用温度范围 -10-50℃   4. 检测器类型: M型, 安装ICA窗片的GM盖革计数器.   5. 灵敏度: 1000cpm(mR/hr) 使用Cs-137放射源测定   6. 测定精确度: ±10%以内   7. 定时辐射剂量测定范围0.001 to 100 mR/hr 0 to 100,000 CPM   8. 辐射累计定标计数范围 0-120,000   9. 支持声光报警及数据导出   10. 9V电池,可使用2000小时   注:可用于海关、机场、码头以及食品环境领域的核辐射监测(近期日本核危机,此款仪器畅销)
  • X射线多层膜在静态和超快X射线衍射中的应用
    x射线多层膜在静态和超快x射线衍射中的应用x射线光学组件类型根据x射线和物质作用的不同原理和机制,目前主流的x射线光学组件可以大致分为四类:以滤片、窗片、针孔光阑为代表的吸收型组件;基于反射,全反射原理的各种镜片以及毛细管、波导等反射型器件,还有基于折射原理的各种复折射镜。而本文的主题多层膜镜片,其底层原理和晶体、光栅、波带片一样,都是基于衍射原理。吸收型反射型折射型衍射型滤片窗口针孔/光阑镜片:kb、wolter、超环面镜… … 毛细管:玻璃毛细管、金属镀层毛细管复折射镜:抛物面crl、菲涅尔crl、马赛克crl、… … 晶体光栅多层膜波带片多层膜的原理和工艺一般来说,反射型镜片存在“掠射角小、反射率低”的问题。而多层膜镜片则是通过构建多个反射界面和周期,并使反射界面等周期重复排列,相邻界面上的反射线有相同的相位差,就会发生干涉,如果相位差刚好为2pi的整数倍,则会干涉相长,得到强反射线。从布拉格公式可以看出:多层膜就是通过对d值的控制,来实现波长选择的人工晶体。而在工艺实现方面,目前制备x射线多层膜镜的主要工艺有:磁控溅射、电子束蒸镀、离子束蒸镀。一般使用较多的是磁控溅射或离子束镀膜工艺,即在基板上交替沉积金属和非金属层,通过选择材料,控制镀膜的厚度及周期的选定,实现对硬x射线到真空紫外波段的光的调制。上图为来自德国incoatec的四靶材磁控溅射镀膜系统。可实现多种膜系组合的高精度镀膜。[la/b4c]40 多层膜b-kα(183ev)用多层膜,d:10nm单层膜厚:1-10nm0.x nm的镀膜精度tem: 完美的镀层界面frank hertlein, a.e.m. 2008上图为40层la-b4c多层膜的剖面透射电镜图像和选区电子衍射,弥散的衍射环说明膜层是非晶结构。同时可以明显看到:周期为10nm的膜层界面非常清晰和规则。这套镀膜系统可获得0.x nm的镀膜精度。多层膜的特点示例—单色和塑形多层膜最显著的特点和优势在于可以通过基底的面型控制和镀层的膜厚控制,将x光的塑形和单色统一起来。当然,这是以精度极高的镀膜工艺为前提。下图的数据展示了进行梯度渐变镀膜时,从镜片一端到另一端镀膜的周期设计数值 vs. 实际工艺水平。可以看到:长度为150mm的基底上,单层镀膜膜厚需要控制在3.8-5.7nm,公差需要在1%以内。相当于在1500公里的长度上,厚度起伏要控制mm水平。这是非常惊人的原子层级的工艺水平。frank hertlein, a.e.m. 2008通过面型控制来实线x射线的塑形;通过极高精度的膜厚控制实现2d值渐变—继而实现单色;0.x nm尺度的镀膜误差——需要具备原子层级的工艺水平!多层膜的特点示例—带宽和反射率除了可以通过曲面基底和梯度镀膜实现对x光的塑形和单色,还可通过对膜层材料、膜厚、镀膜层数等参数的设计和控制,来实现带宽和反射率的灵活调整。如窄带宽的高分辨多层膜,以及宽带宽的高积分反射率多层膜。要实现高分辨:首先要选择对比度较低的镀膜材料,如be、c、b4c、或al2o3;其次减小膜的厚度,多层膜的厚度降为10~20å;最后增加镀膜层数,几百甚至上千。from c. morawe, esrf多层膜的特点示例—和现有器件的高度兼容左侧: [ru/c]100, d = 4 nm r 80% for 10 e 22 kev中间: si111 δorientation0.01°右侧: [w/si]100, d = 3 nm r 80% for 22 e 45 kevdcmm at sls, switzerland, m. stampanoni精密、灵活的膜层设计和镀膜控制镀膜材料的组合搭配;d/2d值的设计和控制;带宽和反射率的灵活调整。和现有器件的高度兼容多层膜主流应用方向目前,多层膜的主流应用方向和场景主要有:粉末、x射线荧光、单晶衍射以及同步辐射的单色、衍射、散射装置搭建。粉末衍射x射线荧光单晶衍射同步辐射基于dac的原位高压静态x射线衍射典型的静高压研究中,常利用金刚石对顶砧来获得一些极端条件。在极端的高压、高温下,利用x射线来诊断新的物相及其演化过程是重要的研究手段。x-ray probe利用金刚石对顶砧可以获得极端条件(数百gpa, 几千°c) 利用x射线探针来诊断和发现新物相;由于对x光源、探测器以及实验技术等方面的苛刻要求,尤其是需要将微束的x光,精准的穿过样品而不打到封垫上。长期以来,基于dac的x射线高压衍射实验只能在同步辐射实现。但同步辐射有限的机时根本无法满足庞大的用户需求。不能在实验室进行基于dac的x射线高压衍射实验和样品筛选,一直是广大高压科研群高压衍射实验室体的一大痛点。以多层膜镀膜工艺为技术核心,将多层膜镜片与微焦点x光源耦合,我们可以为科研用户提供单能微焦斑x射线源,使得在实验室实现高压衍射成为可能。下图是利用mo靶(左)和ag靶(右)单能微焦斑x射线源获得的dac加载下的lab6样品的衍射图。曝光时间300s,探测器为ip板,样品和ip板距离为200mm。可以看到:300s曝光获得的衍射数据质量是可接受的。特别地,对于银靶,由于其能量更高,可以压缩倒易空间,在固定的2thelta角范围内,可以获得更多的衍射信息,这对于很多基于dac的静高压应用来说非常有吸引力。dac加载下的lab6样品的衍射数据:多层膜耦合mo靶(左)和ag靶(右)曝光时间300s,探测器为ip板,样品和ip板距离为200mmbernd hasse, proc. of spie vol. 7448, 2009 (doi: 10.1117/12.824855)基于激光驱动超快x射线衍射在利用激光驱动的x射线脉冲进行超快时间分辨研究中,泵浦探针是常用的技术手段。脉宽为几十飞秒的入射激光经分束后,一路用于激发超快x射线脉冲,也就是探针光;另一路经倍频晶体倍频作为泵浦光。通过延时台的调节,控制泵浦激光和x射线探针到达样品的时间间隔,可实现亚皮秒量级时间分辨的测量。而在基于激光驱动的超快x射线衍射实验中,如何提升样品端的光通量?如何获得低发散角的单色光束?如何抑制飞秒脉冲的时间展宽?如何同时兼顾以上的实验要求?都是需要考虑的问题。很多时候还需要兼顾多个技术指标,所以我们非常有必要对各类光学组件和x射线飞秒脉冲源的耦合效果和特点有一个比较清晰的认知。四种光学组件和激光驱动x射线源的耦合效果对比首先我们先对弯晶、多层膜镜、多毛细管和单毛细管四种组件的聚焦效果有个直观的了解。以下是将四种光学组件和激光驱动飞秒x射线源耦合,然后进行了对比。四种光学组件在聚焦和离焦位置的光斑:激光参数:800nm/1khz/5mj/45fs源尺寸:10um 打靶产额:4*109 photons/s/sr这是四种组件的理论放大倍率和实测聚焦光斑的对比。可以看到:弯晶和多层膜的工艺控制精度很高,实测光斑和理论值比较接近。而毛细管的大光斑并不是工艺精度的误差,而是反射型器件的色差导致的,不同能量的光都会对聚焦光斑有贡献,导致光斑较大。而各种组件的工艺误差,导致的强度不均匀分布,则是在离焦位置处的光斑中得到较为明显的体现。ge(444)双曲弯晶多层膜镜片单毛细管多毛细管放大倍率1270.7收集立体角 (sr)+---++反射率--+++-有效立体角 (sr)---+++1维会聚角 (deg)+---++耦合输出通量(ph/s)---+++聚焦尺寸 (μm)2332155105光谱纯度好好差差时间展宽 (fs)++++--激光参数:800nm/1khz/5mj/45fs打靶产额:4*109 photons/s/sr等级: ++ + - --利用针孔+sdd,在单光子条件下,测量有无光学组件时的强度和能谱,可以推演出相应的技术参数。这里我们直接给出了核心参数的总结对比。其中,大多数用户最为关注,同时也是对于实验最为重要的,主要是有效立体角、输出光通量、光谱纯度和时间展宽。可以看到:典型的有效收集立体角在-4、-5sr的水平,而在样品上的输出光通量在5-6次方每秒这样的水平。但是需要指出的是:毛细管并不具备单色的能力,虽然有效立体角大,但输出的是复色光。对于时间展宽的比较,很难通过实验手段获得测量精度在几十到百飞秒水平的结果,所以主要通过理论分析和计算来获得。对于同为衍射型组件的ge(444)双曲弯晶和多层膜镜片,光程差引入项主要是x光在组件内的贯穿深度。对于ge(444),8kev对应的布拉格角约为70度,x光的衰减长度约为28um,对应的时间展宽约90fs。对于多层膜镜片,因为它属于掠入射型的衍射组件,x光的衰减长度在um量级,对应的时间展宽甚至可以到10fs水平,因此这里的数据相对比较保守的。而对于毛细管这种反射型器件,光程差引入项主要是毛细管的长度差。对于单毛细管,光程差在10fs水平,对于多毛细管,位于中心区域和边缘的子毛细管长度是有较大的差异的,光程差可达ps水平。小结1. 弯晶:单色性好、时间展宽较小、有效立体角小、输出通量低;2. 多层膜:单色性好、时间展宽较小、有效立体角大、kα输出通量高;3. 单毛细管:复色、时间展宽很小、有效立体角大、复色光通量高;4. 多毛细管:复色、时间展宽较大、有效立体角最大、复色光通量最高。每一种光学组件都有其适用的场景,对于非单色的超快应用,如超快荧光、吸收谱,毛细管可能更为合适,而对于追求单色的超快应用,如超快衍射,多层膜是比较好的选择,兼顾了单色性、时间展宽和有效立体角(输出通量)三个核心指标!如果您有任何问题,欢迎联系我们进行交流和探讨。北京众星联恒科技有限公司致力于为广大科研用户提供专业的x射线产品及解决方案服务!
  • 射线检测仪测到地球磁场出现裂缝 引发人类关注未来
    地球周围有巨大的地磁防护罩,保护人类和其他生物免受太空射线的伤害。  一项最新地球研究报告说,地球磁场不仅正在减弱,而且出现裂缝,因此包括人类在内的生命随时会受到高能量宇宙射线的威胁。  据物理学网站近日报导,印度科学家使用世界最敏感、最大型的宇宙射线检测仪器于近期观察到地球磁场出现裂缝。  科学家在《物理评论快报》(Physics Review Letter)上指出,因为地磁出现裂缝,所以日冕喷发的巨大等离子能量束冲击地球磁层,引发地磁风暴。  地磁裂缝  这种检测仪器为GRAPES-3 介子望远镜,位于印度乌提(Ooty)的塔塔基础研究院(TIFR)宇宙射线实验室。2015年6月22日,该实验室记录到时间长达2小时的200亿电子伏特(20GeV) 高能量太空粒子束,以每小时250万公里的速度撞击地球,造成很多距北极较近的国家地区出现无线电信号中断。  当时,天空出现绚丽多彩的北极光。科学家说,这是因为地磁遭受那种极高速粒子的冲压而产生磁暴的结果。  而这种磁暴的根本原因是近年强度不断减弱的磁场发生重新联接时出现一种磁场裂缝。  报导说,地球磁场是一种人肉眼看不见的无形保护层,减少我们受宇宙射线的威胁。而这个巨大的防护罩近年来出现明显的变化,因此那些潜在的太空威胁问题变得越来越突出。  地磁分布变化  澳洲Science Alert科技新闻网曾于5月11日报导,科学家注意到,地球磁场保护层已经出现非常明显的变化,如地磁北极发生了偏移。  地球磁场强度近年来一直在减弱,目前地球磁场强度以每10年下降5%的速度减弱,而且减弱速度比以前快10倍。而且地磁的分布特点出现改变,即地磁在某些地区增强,在某些地区减弱。  欧洲空间局(ESA)在5月初布拉格召开的“生命地球研讨会”(The Living Planet Symposium )上报告,地磁北极正快速地朝向亚洲东方偏移。  该报告指出,自1999年以来,地球磁场强度在北美上空减弱3.5%,而在亚洲增强2%。大西洋南部的南美地区,地磁强度异常减弱2%,而且近7年来其减弱趋势一直朝着西部方向发展。  与人类未来有关  科学家推测,地球磁场强度不断减弱的最终结果是地磁两极倒转,造成宇宙射线强烈照射地球,包括人在内的生物因此遭受毁灭性灾难。科学家估计,这种地磁倒转的灾难会每10万年发生一次。  报导说,这种研究结果听起来很可怕。但是实际情况可能不是想像的那么糟糕。欧洲空间局地磁观测项目经理鲁尼弗莱博哈根(Rune Floberghagen)于2014年7月曾解释:“这种磁极突然倒转不是瞬间出现,而是在几千年或者几百年的时间内发生。这种现象在过去的历史发生过许多次。”  而且2014年7月,加州大学等机构于英国皇家《国际地球物理研究杂志》(Geophysical Journal International )发表报告认为,78.6万年前的地球磁场活动曾在6000年内一直处于不稳定状态,最后在100年间发生磁场两极倒转。  加州大学伯克利分校的研究者考特妮斯普莱恩(Courtney Sprain)说:“我们很惊讶,当时地球磁场的两极倒转速度很快。”  科学家根据目前的地磁减弱情况推测地磁南北极会在今后几千年间突然发生倒转。  伯克利分校的地质年代学中心主任保罗瑞尼(Paul Renne)教授表示,虽然尚不清楚将在何时突然发生下一次的地球磁场倒转,但人们需要多思考一旦发生后人类会遭受什么。
  • 1056万!福州大学小角X-射线散射仪等采购项目
    一、项目基本情况1.项目编号:[350001]FJYS[GK]2023039项目名称:福州大学小角X-射线散射仪采购项目采购方式:公开招标预算金额:7,500,000.00元采购包1(小角X-射线散射仪):采购包预算金额:7,500,000.00元采购包最高限价: 7,500,000.00元投标保证金: 75,000.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02109900-其他仪器仪表小角X-射线散射仪1(套)是主要测试目标如下: (1) 尺寸:粒子尺寸和粒径分布、分子量、孔径尺寸和尺寸分布; (2) 结构:片状结构、洁净度、物相鉴定、取向分析; (3) 形状:粒子或分子形状; (4) 表界面分析:表界面结构、比表面; (5) 动力学测试:温度、湿度、拉伸应力、剪切应力。 2. 性能要求: (1) X射线光源光斑大小在0.15-1.5 mm范围内实时、连续、自动改变,精度:0.001 mm; (2) 样品处最大X射线的通量: ≥ 5.0×108 phs/s; (3) 探测器到样品的最大距离≥1800 mm,到样品的最小距离≤45 mm; (4) 样品固定不动,单个二维探测器可连续、自动采集0.009~48 nm-1的q值范围; (5) 样品自动对中:样品台在垂直于入射光路的X/Z(水平/竖直)方向自动移动行程≥ +/- 50mm(0~100 mm),精度:1μm,样品可精确对中; (6) 利用小角探测器采集直通光束,系统数据采集软件可实时显示当前正在采集过程中的直通光及二维小角图谱,且可实时、自动的转换为一维曲线;7,500,000.00工业本采购包不接受联合体投标合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕2.项目编号:[350001]RWZB[GK]2023054项目名称:福州大学圆偏振荧光光谱仪采购项目采购方式:公开招标预算金额:3,060,000.00元采购包1(福州大学圆偏振荧光光谱仪采购项目):采购包预算金额:3,060,000.00元采购包最高限价: 3,060,000.00元投标保证金: 30,600.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02109900-其他仪器仪表圆偏振荧光光谱仪1(套)是详见招标文件3,060,000.00工业本采购包不接受联合体投标合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕。二、获取招标文件时间: 2023-08-16 至 2023-08-23 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:福州大学地址:福建省福州市福州大学城乌龙江北大道2号联系方式:0591-228659172.采购代理机构信息(如有)名称:福建优胜招标项目管理集团有限公司地址:福州市鼓楼区 洪山镇福三路20号华润万象城(一区)(一期)S2#楼4层01-03、05-12、15-18办公联系方式:0591-876793723.项目联系方式项目联系人:林瑞芳电话:0591-87679372网址: zfcg.czt.fujian.gov.cn开户名:福建优胜招标项目管理集团有限公司
  • 科学家成功研制目前最薄X射线探测器
    澳大利亚科学家使用硫化锡(SnS)纳米片制造了迄今最薄的X射线探测器。新探测器厚度不到10纳米,具有灵敏度高、响应速度快的特点,有助于实现细胞生物学的实时成像。  SnS已经在光伏、场效应晶体管和催化等领域显示出巨大的应用前景。澳大利亚莫纳什大学、澳大利亚研究理事会(ARC)激子科学卓越中心的研究人员此次证明,SnS纳米片也是用作超薄软X射线探测器的极佳候选材料。这项发表在《先进功能材料》杂志上的研究表明,SnS纳米片具有很高的光子吸收系数,它比另一种新兴候选材料金属卤化物钙钛矿更灵敏,响应时间更短,只需几毫秒,并且可以调节整个软X射线区域的灵敏度。  X射线大致可分为两种:“硬”X射线可用以扫描身体观察是否存在骨折和其他疾病;“软”X射线具有较低的光子能量,可用于研究湿态蛋白质和活细胞,这是细胞生物学的关键组成部分。水窗是指软X射线的波长范围在2.34—4.4纳米之间的区域,在此范围内,水对软X射线是透明的,X射线会被氮原子和其他构成生物机体的元素吸收,因此,该波长可用于对活体生物样本进行X射线显微。  SnS X射线探测器厚度不到10纳米。相比之下,一张纸的厚度大约为10万纳米,人的指甲每秒大约长出1纳米。此前制造出的最薄X射线探测器厚度在20—50纳米之间。  研究人员称,未来这种X射线探测器或可用来观察细胞相互作用的过程,不仅能产生静态图像,还能看到蛋白质和细胞的变化和移动。  研究人员称,SnS纳米片的灵敏度和效率在很大程度上取决于它们的厚度和横向尺寸,而这些都不可能通过传统的制造方法来控制。使用基于液态金属的剥离方法,研究人员生产出高质量、大面积的厚度可控的薄片,这种薄片可以有效地探测水域中的软X射线光子,通过堆叠超薄层的过程,可进一步提高它们的灵敏度。与现有的直接软X射线探测器相比,它们在灵敏度和响应时间方面有了重大改进。  研究人员希望,该发现将为研制基于超薄材料的下一代高灵敏度X射线探测器开辟新途径。
  • 一文了解X射线成像技术及市场主流仪器品牌
    X射线是一种波长比较短的电磁波,它的波长在0.01~100埃之间,介于γ射线与紫外线之间。因为X射线的穿透能力很强,能透射很多可见光不能透射的物质,因此人们用来对物品内部缺陷进行检测。自从X射线被发现以来,由于其优异的物理化学特性,X射线检测技术取得了飞速的发展,在科学研究、医学检测及工业检测等领域已经有了广泛的应用。通过X射线检测技术的不断发展,现阶段在工业检测中主要有X射线胶片拍片检测技术和X射线实时成像检测技术。 X射线胶片拍片检测技术X射线胶片拍片法是无损检测早期使用的方法。它的工作原理是由X射线管发出X射线;射线透射被检工件后与照相胶片发生胶片感光,胶片感光是一种光化学作用;处理完已感光的照相胶片后,得到工件内部质量密度的射线胶片;最后,观察获得的X射线拍片底片来分析评价并得出评判结论。由于被检工件存在缺陷的部分与正常部分的厚度或者密度存在很大差异,被检测工件有缺陷部分和无缺陷部分使得X射线衰减的程度不同,穿过工件的X射线处于不同程度的吸收,在胶片上显影后出现有差异的影像。X射线胶片拍片检测技术以此为检测基础,X射线照相无损检测技术应用得最为广泛。通过观察胶片上记录的射线信息来判定被检材料和工件的内部是否存在缺陷,在不损坏被检材料和工件的情况下,评估其质量和使用价值。目前工业检测中普遍使用X射线胶片拍片的方法,此技术有较高空间分辨率,可以将实际大小的微小缺陷通过图像清晰地显示出来,且是永久性的。X射线胶片拍片检测技术的缺点在于无法现场直接观察被检测物体的图像。需具有丰富检测经验的人,通过实验对照相参数及胶片冲洗参数进行选择才能使检测效果达到最佳,同时X射线照相检测技术存在着效率低下,不能数字化,难于存储等缺点,尽管可以利用光胶片数字化扫描仪进行数字化,但是效率低的问题仍无法解决,在工业生产过程中检测效率低,严重制约着生产效率。 X射线实时成像检测技术X射线实时成像是一种X射线无损检测方法,是通过屏幕实时显示检测结果图像的方法,利用该图像对检测对象材料进行判断和评估对材料内部缺陷进行定性、定量的分析,从而达到无损检测的目的。X射线实时成像技术按成像原理的不同可以分为X射线图像增强器实时成像技术和X射线数字实时成像检测技术。两种技术对应着两种不同的检测系统,而成像器件的不同是两者的主要差别:X射线图像增强器实时成像检测系统的图像增强器为X射线的接收装置,在CCD上成像后,通过图像采集卡将图像采集并存储到计算机中。X射线图像增强器实时成像系统X射线数字实时成像系统的工作原理是被检测工件的X射线图像由平板探测器直接接收并转化为数字信号,平板探测器与计算机相连,将数字信号传输到计算机中存储和处理。由于采用非晶硅的闪烁检测器以及成像板采集信号,而且成像板由光电倍增器制成,所以X射线数字实时成像检测系统具有很大的动态范围和很高的分辨力,这是胶片拍片法所不能比拟的。X射线数字实时成像系统 工业X射线检测技术的发展经过了X射线胶片拍片检测、X射线荧光检测、图像增强器成像检测和平板探测器成像检测等阶段。X射线胶片拍片检测技术是使用最早,也是最成熟的检测技术,是目前工业检测中普遍使用的方法。随着计算机技术、增强技术、光电材料及接收器件技术的不断发展,现在的研究热点是直接数字化X射线成像技术。其中,X射线数字平板技术的出现使得X射线向数字图像信号的转化成为可能,标志着X射线实时成像时代的到来。 市场主流仪器品牌X射线实时成像技术在国外研究起步较早,而国内对于该技术的研究较晚,如我国适用于特定检测岗位的高精度、高分辨力的多功能X射线成像系统等还有待研究。然而,随着近年来地快速发展,国内与西方国家的差距正在日益减小。当前,我国市场上工业用X射线实时成像设备的主要有YXLON、蔡司、GE、布鲁克、岛津等进口品牌,以及三英精密、日联科技、丹东奥龙、固鸿科技、华日理学等国产品牌。三英精密成立于2013年,是一家专业从事X射线CT检测装备研发和制造的国家高新技术企业,拥有自主核心技术,现已发展为国内X射线CT产品种类齐全的解决方案提供商。公司产品涵盖X射线三维显微镜、显微CT、工业CT、计量CT、平面CT、卧式CT、X射线在线检测设备和移动车载CT检测中心等。日联科技成立于2002年,是一家专业从事X射线技术研究和X射线智能检测装备研发、制造的高新技术企业。在无锡新区自建4万多平米的现代化工厂和研发中心,并在深圳和重庆建立大型制造工厂,在西安设立软件公司,并于北京、沈阳、天津、西安、青岛、武汉、成都、宁波、厦门、乌鲁木齐等地设有销售及服务处。奥龙集团传承50年中国射线仪器研制历史,是X射线仪器和材料试验仪器的开发商和产品制造商,也是X射线检测解决方案的服务商,旗下拥有上海奥龙星迪、丹东奥龙电子、奥龙检测服务、丹东奥龙中科传感技术四个子公司。此外,奥龙集团也是无损检测行业的全球领导厂商——美国GE的合作伙伴。 固鸿科技是一家源于清华大学,集设计开发、生产制造、销售和服务与一体的高新技术企业。主要产品类型为低能工业CT(160Kv-600Kv),高能工业CT(1MeV-15MeV),电子直线加速器(0.95MeV-15MeV),车载式CT及射线照相无损检测系统等。自2005年成立以来,公司已经为全球客户提供了近100套的定制化射线类无损检测设备。华日理学,1995年创立,2018年加入中国广核集团,是生产X射线无损检测设备的专业公司。公司集科研、生产、销售和服务于一体,年产值超过亿元,生产规模、研发技术、市场占有率位居国内前列。公司拥有专业的实体研发、生产、检测基地,建有四个高等级防护的X射线试验室、一个三维成像检测技术公共服务中心、一个EMC试验室和一个高频X射线国际合作实验室,产品已形成六大系列60多个品种,年生产能力可达1000(台)套以上。 YXLON(依科视朗)于1998年成立,总部位于德国汉堡,由飞利浦工业X射线有限公司和丹麦安德烈斯公司合并而成,并迅速成长。2007年成立依科视朗(北京)射线设备贸易有限公司,主要从事X射线为基础的测试设备和系统的批发、进出口,售后和技术服务及转让,X射线为基础的测试设备和系统技术的研究和开发。ZEISS(蔡司)总部位于德国,历史可追溯到1846年,是一家在光学及光电子行业全球领先的集团公司。在全球拥有30多个生产基地、50多个销售和服务中心。ZEISS在四个战略发展领域,即工业解决方案、科研解决方案、医疗技术、消费光学,提供产品和服务,旗下产品X射线成像设备在业内享有盛名。GE(美国通用电气)创立于1892年,总部位于美国波士顿,是一家创造由软件定义的机器,集互联、响应和预测之智,致力变革传统工业的全球数字工业公司。 作为无损检测行业的全球领导厂商,GE在中国设有多家公司,可提供胶片系统、超声、涡流,X射线、计算机射线成像(CR)、数字化射线成像(DR)和工业内窥镜等多个领域的各种便携式检测仪器和大型检测设备。BRUKER(布鲁克)于1960年在德国创立,业务领域包括生命科学分子研究、应用和药物应用、显微镜和纳米分析、工业应用、细胞生物学、临床前成像、临床表型组学、蛋白质组学研究以及临床微生物学等。1997年,布鲁克X射线部门便开始在中国拓展业务。当前,布鲁克在全球拥有6000多名员以及90多个工作地。岛津是测试仪器、医疗器械及工业设备的制造厂商,自1875年创业以来,以光技术、X射线技术、图像处理技术这三大核心为基础,不断钻研领先时代、满足社会需求的科学技术,开发生产具有高附加值的产品。岛津企业管理(中国)有限公司成立于1999年日,目前已在中国设有13个分公司,7个分析中心,60多个技术维修点,开拓了岛津在中国的业务。本文X射线成像技术部分引自:王连之.多功能X射线实时成像系统的研制与应用[D].湖南大学,2020.
  • LIGA技术制作X射线光学元件在X射线显微学中的应用
    LIGA 是德文的制版术Lithographie,电铸成形Galvanoformung 和注塑Abformung 的缩写。自20世纪80年代德国卡尔斯鲁厄原子核研究所为制造微喷嘴创立LIGA技术以来,对其感兴趣的国家日益增多,德、日、美相继投入巨资进行开发研究。该技术被认为是最有前途的三维微细加工方法,具有广阔的应用前景。与传统微细加工方法相比,用LIGA技术进行超微细加工有如下特点:1.可制造有较大深宽比的微结构。2.取材广泛,可以是金属、陶瓷、聚合物、玻璃等。3.可制作任意复杂图形结构,精度高。4.可重复复制,符合工业上大批量生产要求,成本低。LIGA的基本工艺流程如下:x射线掩模制作首先用电子束或激光对薄光刻胶进行第一次曝光,制成初级掩膜,然后经过显影、电镀等工艺步骤制成初级微结构掩膜板(此掩膜板本质上已经是一个高度较低的微结构)。对于高深宽比微结构,需要进一步制备额外的高深宽比掩膜板。X射线光刻(Lithographie)借助上述的初级微结构掩膜板,在厚光刻胶上用X射线进行曝光,然后经过显影、电镀等工艺步骤制成中级微结构掩膜板。由于同步辐射设备KARA(原ANKA)提供的平行x射线束,可确保高纵横比和光滑的侧壁。电镀(Galvanoformung)将上述步骤获得的光刻胶模具置于金属电镀液中进行电镀,即可实现高纵横比、高精度结构的金属零件。聚合物成型(Abformung)为了复制聚合物基板上的精密结构,可以使用上述工艺制作注塑和热压花用的模镶件。可实现微聚合物结构的精确复制。因此LIGA工艺制造的微结构聚合物和金属零件在x射线光学领域有着广泛的应用,包括在在科研机构和工业领域。 在之前的文章中我们介绍了LIGA工艺制造的光栅在X射线相衬成像领域的应用。今天我们准备给大家介绍它在X射线显微学中的应用。X射线显微学目前基于X射线光管的纳米成像的主要结构有两种技术路线(基于同步辐射的CDI等成像技术,今天暂不做讨论): 1.投影几何放大技术2. 基于菲涅尔波带片的扫描透视显微技术或全场透视显微技术等全场透视显微光路扫描透视显微技术上述方法中的Condenser lens通常使用复制技术、或者玻璃毛细拉伸技术来实现;用于聚焦或目镜的菲涅尔波带片(FZP)通常使用电子束光刻和干法刻蚀等复合技术来加工,今天我们着重介绍一下使用LIGA技术加工光束截止器(central stopper 或者central beam stop)和级次选取针孔Order select aperture。 X 射线波带片结构为一系列明暗相间的同心圆环,如上图所示中,每个环带的面积相等,这些明暗相间的圆环分别使用入射X射线透明与不透明的材料,从而使通过相邻透过或不透过的光程相差一个波长,从而在焦点上发生透过不同环带的相同位相光线的叠加。在扫描透视显微光路中为保证只有一阶衍射光入射到样品上,所以选用使用适当尺寸和吸收体厚度的级次选取针孔(OSA)和光束截止器(Central beam stopper)及其他们放置的位置是非常有必要且关键的。基于成熟的LIGA技术,Microworks公司制造一批多功能、性价比高且性能优越的级次选取针孔(OSA)和光束截止器(Central beam stopper)。光束截止器(Central beam stopper)基本参数吸收材料金厚度80µmBeamstop尺寸10 µm to 160 µm,间隔10 µm开口尺寸650 µm载体薄膜自支撑结构,每个圆柱体由3个宽2.5µm的薄鳍支撑。总尺寸4.5mm*4.5mm安装建议光束截止器非常稳定,可以使用简单支架夹持制作过程视频展示级次选取针孔(OSA)同时我们可以根据您的要求定制孔径和光束截止器。选项包括特定形状、大小、高度和或者特定的阵列等。北京众星联恒科技有限公司作为Microworks公司中国区授权总代理商,为中国客户提供Microworks所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供高端的x射线、极紫外产品及解决方案。参考文献:Ohigashi, T., et al. (2020) A low-pass filtering Fresnel zone plate for soft x-ray microscopic analysis down to the lithium K-edge region. Review of Scientific Instruments.李艳丽, 陈代谢, 孔祥东, 门勇, 韩立. X射线波带片的应用及制备[J]. 纳米技术, 2019, 9(2): 41-54.http://x-ray-optics.de/index.php/en/
  • 多晶X射线衍射技术的应用要点
    现代化商用多晶X射线衍射仪具备无损、便捷、测量精度高等很多优点,同时配备有先进的陶瓷光管、高精度的测角仪、高灵敏度的探测器以及各种分析计算软件,因此它的应用范围是非常广泛的,不仅可以实现材料物相的定性表征,还可以对很多参数实现定量化的分析。常规的分析包括:材料的晶型结构分析、点阵参数的测定、物相定量、晶粒尺寸和结晶度计算等,还可以对材料的宏观微观应力以及取向织构进行测定;同时还包括诸如小角散射、薄膜衍射、反射率测定以及微区分析等新的技术。而在X射线衍射分析表征中,样品的制备过程、仪器参数设定以及数据分析这三个步骤往往决定了X射线衍射数据结果的质量。本文主要从这三方面进行阐述,与大家分享下多晶X射线衍射的应用要点。一、样品制备X射线衍射实验的准确性和实验得到的信息质量结果与样品的制备有很大关系,在进行材料的X射线衍射分析时应合理制备样品。样品制备主要分为粉末样品的制备和块状类样品的制备。1. 粉末样品首先要控制它的颗粒粒径,原则上要保证颗粒尺寸适中并且均匀,对于大多数样品来讲可以通过研磨加过筛的方式来实现;而对于受外力易产生晶体结构变化的样品而言,通常采用不研磨直接过筛的方式进行处理。在样品的整个研磨过程中要掌握研磨力度柔和均匀的原则,适中的粒度可以让样品中大部分或全部的晶粒参与衍射,从而可以获得反应样品真实晶体结构信息的实验数据;如果研磨不充分,会造成样品的粒度粗大,从而会引起参与衍射的晶粒数目减少,衍射强度降低,峰形变差,分辨率降低的情况;如果用力过度研磨,对材料的晶体结构会产生不同程度的破坏,衍射强度会降低,同时晶粒细化会带来衍射峰的宽化效应,不利于得到结构清晰的衍射谱图。至于研磨的程度,一般研磨到没有颗粒感,类似面粉的滑腻感即可,也不能研磨的过细。过筛这一步是为了保证样品粒径的均匀性,如果样品颗粒尺寸不够均匀,会产生一定的择优取向。图1是一个矿物样品的分析案例,红色谱图是未经研磨和未经过筛处理的样品,而黑色谱图是样品经过研磨和过筛处理的。从叠加图中可以明显看到:样品经过研磨过筛后,粒径尺寸适中且均匀,这就保证了参与衍射的晶粒数目。在X射线衍射谱结果中,经过处理的样品不论从衍射峰数目、强度、峰型和分辨率都要优于未处理的样品,从而确保了分析结果的真实性。图1 经过处理与未经过处理的矿物样品的叠加X射线衍射谱图在粉末样品的装填方面,需要准备的样品量一般在3g左右,最小不少于5mg。压片方法采用常规的正压法操作,在压片过程中让粉末样品最好能够铺满整个样品槽,关键要让粉末样品压平,如果样品表面不平整、存在凹凸起伏的情况,会导致出射的角度变大或变小,直接引起大角度的某些衍射峰偏移,还会造成入射X射线散射至任意方向,导致探测器接收到的峰值降低。这对于精修分析而言,会造成最终解析的晶体结构常数出现严重错误。压片过程中需要注意的是不要用力压太紧,否则容易影响样品的自由取向。2. 块状类样品从样品形态区分,常见的块状类样品有块状、板片状、圆柱状。在分析过程中需要把握样品的测试面面积、表面洁净度与表面平整程度。测试面的面积通常要大于1cm2,如果面积太小可以将几块样品粘贴在一起进行测试,同时样品的底面要与测试面相平行,从而保证衍射面的水平状态;在测试前,应该尽可能将测试面磨成平面,并进行简单的抛光,这样做不但可以去除金属表面的氧化膜,还可以消除表面的应变层,之后再用超声波清洗去除表面的杂质,保证测试面的平整光滑。二、仪器参数设置1. 扫描参数的设定X射线衍射的扫描方式主要分为步进扫描和连续扫描,步进扫描是将扫描范围按照一定的步进宽度(如常用的0.01度/步或0.02度/步)将整个扫描范围分成若干步,在每一步停留若干秒,并将这若干秒内记录到的总光强度作为该数据点处的强度,一般用于角度范围内的精细扫描,可以获得高质量的衍射数据结果,用于定量分析、线形分析以及精确测定点阵常数、Rietveld全谱拟合精修等应用;而连续扫描是测角仪从起始2θ角度到终止2θ角度进行的匀速扫描,其具备较高的扫描效率。这里面有两个关键参数——步长和扫描速度。步长一般是根据衍射峰的半高宽来决定,最好要小于全谱中最尖锐衍射峰半高宽的1/2。步进扫描的停留时间或者连续扫描的扫描速度要根据步长(数据点间隔)进行设定,要搭配合适,遵循步长小扫速慢,步长大扫速快的原则。否则,在图谱中会出现基线噪声过大和上下波动增大的情况,会把一些可能的弱峰掩盖掉。图2是一个陶瓷样品的分析案例,采用连续扫描模式、5度/分钟的扫描速度分别使用0.01度/步和0.02度/步的步长进行分析测试,可以看出快速扫描速度配合稍大步长的分析效果要好于小步长;下图按照步长小扫速慢,步长大扫速快的原则进行测试,都可以较为准确的表征出晶体的结构信息,特别是慢速扫描的数据质量更高。图2 不同扫描速度与步长匹配得出的X射线衍射谱图对于扫描范围而言,表1列举了一些常见材料的扫描角度范围,对于需要进行精修的衍射数据截止扫描角度一般要到100度或120度。表1 常见材料的扫描角度范围扫描总时间的计算对于衡量总体测试时间成本以及合理选取扫描参数是很有必要的。步进扫描和连续扫描的计算如式(1)、式(2)所示:如从3度到90度使用步进扫描模式采集某样品的衍射谱,步长设定为0.02度/步,停留时间为0.2秒/步,则通过计算可以得到测量总时间为14.5分钟。连续扫描的总测量时间根据式(2)计算,但是实际的总测试时长还需要包括光源移动到起始角度的时间。2. X射线光源的参数设置(1)X射线管的管电压和管电流X射线管的工作电压一般为靶材临界激发电压的3~5倍,以铜靶为例,它的Kα能量为8.04KeV,为了获得靶材的有效激发,电压通常设置为40kV,这里需要说明的是,电压一般不能低于20kV,否则就不能对Cu靶的特征X射线进行有效激发。选择管电流时功率不能超过X 射线管的额定功率,较低的管电流可以延长X 射线管的寿命。除非特殊要求,通常X射线管使用的负荷不超过最大允许负荷的80%左右。(2)靶材的选择依据样品元素成分来合理地选择工作靶的种类,应保证样品中最轻元素(原子序数小于等于20的元素除外)的原子序数比靶材元素的原子序数稍大或相等。如果靶材元素的原子序数比样品中的元素原子序数大2~4的话,那么X射线将被大量吸收因而产生严重的荧光现象,不利于衍射的分析效果(比如分析Fe试样,应该尽量使用Co靶或Fe靶,如果采用Ni靶,则背底噪音会很高)。如果采用不同的靶材对相同材料进行分析,所获得的谱图相同吗?使用不同的靶材,首先其特征X射线波长是不同的,而材料晶体结构的晶面间距值是其固有的。根据布拉格方程可知,样品衍射峰的角度决定于实验使用的波长,因此,采用不同靶材测试相同材料所得衍射图谱中衍射峰的位置是不相同的、呈规律性变化的,与靶材的种类是无关的。(3)狭缝的选择狭缝的大小主要依据材料的表征目的以及探测器的类型来进行选择,原则就是在保证强度的情况下提高分辨率。一般的衍射仪配置有三种可变的狭缝(发散狭缝、防散射狭缝和接收狭缝),另外两个索拉狭缝的层间距是固定的。发散狭缝越大,衍射强度越高,但峰型的宽化越明显;防散射狭缝用于限制由于不同原因产生的附加散射进入探测器,有助于降低背景;接收狭缝越小,分辨率越高,强度越低,反之。分析测试时尽量让发散狭缝和防散射狭缝保持一致,接收狭缝尽量小,这样可以提高衍射谱的分辨率和信噪比,从而获得高质量的衍射结果,还可以起到保护探测器的作用。(4)样品放置高度的控制样品的放置高度对于获得高准确度的数据结果是非常重要的,高度的略微偏移都会对实验结果产生影响,具体来讲就是会造成衍射峰的位移以及衍射峰强度的变化。通过图3可以看出:低于正确的高度,衍射峰向左偏移,同时峰强降低;如果是高于正确的高度,衍射峰向右偏移,样品表面与防散射刀片的间隙更小,衍射峰强明显降低。图3 样品的不同放置高度所得到的衍射谱图三、数据分析1.获取的数据信息和物相定性分析首先,从X 射线谱的峰型中可以得到包括峰位、峰强以及峰型轮廓宽度形状的这些信息,通过衍射峰的峰位和峰强可以对物相进行定性定量分析,同时还可以通过计算获得点阵常数和晶体结构的相关结果;通过峰型轮廓宽度形状可以得到样品峰型的展宽,进而可以计算出晶粒尺寸和微观应力。物相定性分析是X射线衍射分析的基础,最重要的环节就是将样品谱图与标准卡片进行比对,以确定样品的物相组成。比对的过程中要遵循以下4点原则:(1)计算材料的晶面间距d值,这是材料晶体结构所固有的;(2)材料低角度的衍射线与标准卡片的匹配情况;(3)重点关注谱图中的强衍射线;(4)要尤为重视特征线。2.衍射谱比对功能的运用将衍射谱进行叠加比对是衍射数据分析中较为常用的一个方法,比如鉴定药物晶型结构的一致性,通常就采用谱图比对的方法进行晶型分析。在《药典》中明确规定判断两个晶态药物晶型状态的一致性,应满足“衍射峰数量相同、衍射峰强弱顺序一致、衍射峰角度误差范围在±0.2°内以及相同角度衍射峰相对峰强度误差在±5%内”这四个条件。以一批送检的降糖药为例,判断其晶型状态的一致性。首先对两种药物进行谱图叠加比对,如图4所示,可知这两个样品满足“衍射峰数量相同和衍射峰强弱顺序一致”这两个条件。图4 药物X射线衍射谱叠加图而后对两个样品进行衍射峰峰位和强度的定量比对,通过计算可以得出:两个样品的峰位一致,符合“二者2θ值衍射峰位置误差范围在±0.2⁰内”的条件;同时相同位置衍射峰的相对峰强度存在偏差,有的甚至超过了15%,因此不符合“相同位置衍射峰的相对峰强度误差在±5%内”的条件。表2 样品衍射峰的峰位和强度比较通过谱图定性比较和衍射峰的定量计算,比对结果满足前三个条件,但是晶粒生长方向存在差异造成相同角度衍射峰相对峰强度的误差超出了《药典》中给定的范围。X射线衍射谱的比对法可以为挑选药物晶型和优化药物生产工艺参数提供帮助。在分析表征过程中,需要根据样品特性以及表征目的把握好样品制备、仪器参数设置以及数据分析这三方面的要点,以获得准确、高质量的X射线衍射数据,充分发挥出多晶X射线衍射的技术优势,为科学研究、技术创新以及材料评价等方面持续提供强有力的数据支撑。附:作者简介黎爽,高级工程师,2008年就职于北科院分析测试研究所至今,主要应用电子显微镜、X射线衍射仪等大型科学工具作为表征手段,从事材料的电子显微分析、晶体结构表征以及相关科研工作。针对新材料的研究表征,建立了多种特色分析技术,涵盖了材料制备和分析测试表征等方向。特色分析技术广泛应用于日常科研工作中,已通过专业领域内多项能力验证和国家司法鉴定能力验证项目考核。
  • X射线无损检测技术及其在科研和工业领域的应用
    X射线检测作为无损检测中一种相对较重要的检测方法,主要应用在工件内部形状缺陷检测,能够得到缺陷部位的直观图像,此外,还可对长、宽和高度等相关参数进行检测。因此,这项检测技术在各个行业中获得了广泛应用。为促进相关人员深入了解X射线无损检测技术的发展和应用现状,在即将召开的第二届无损检测技术进展与应用网络会议,特别设置射线检测技术专场,邀请了多位业内专家围绕X射线无损检测技术原理、仪器、应用等展开分享。部分报告预告如下:中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维吸收成像技术原理及其应用》(报名听会)程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。中国科学院金属研究所高级工程师 王绍钢《Fe基非晶涂层的无损原位三维表征与评价研究》(报名听会)王绍钢,博士,高级工程师,中国科学院金属研究所沈阳材料科学国家研究中心技术支撑部射线组组长。长期致力于材料科学三维评价技术的开发及应用,进行多项软、硬件开发、改造或升级,在无损多相多维多尺度高分辨精确定量和原位多场动态三维评价等方面取得系列技术突破,相关技术在多个重大任务关键材料或部件自主研制中成功应用;负责公共射线技术平台,建设了具有衍射、成像和谱学的综合X射线表征平台。在Science Advances、Advanced Materials、Acta Materialia等SCI期刊上发表论文60多篇,被引用4900余次,H因子为29。申请发明专利5项,已授权2项。主持或参与国家973课题、国家面上自然科学基金、沈阳材料科学国家研究中心青年人才项目和中科院仪器创新项目等。国内外会议特邀报告、口头报告等40余次。Scientific Reports、Chemical Engineering Journal、 Intermetallics等14本SCI期刊特邀审稿人。曾获2014年中国百篇最具影响国际学术论文,2017年度中国精品科技期刊顶尖学术论文-领跑者5000论文,乌鲁木齐市科学技术进步奖一等奖,中国科学院研究生院优秀毕业生等。报告摘要:本报告将对X射线三维成像技术做个简要介绍,在此基础上,重点汇报如何利用X射线三维成像技术对Fe基非晶涂层进行无损三维表征与评价研究。Fe基非晶涂层具有强度高、抗腐蚀能力和抗磨损能力强等诸多优点,有望应用于油气生产、舰船关键部件以及核废水处理等环境。本报告将围绕非晶涂层实际应用中面临的一些腐蚀、冲击等问题,尝试通过无损三维表征与评价研究,来理解特定环境下的损伤机制,找出影响因素及规律,提高涂层的抗腐蚀和抗冲击性能,保障涂层实际应用的安全性和可靠性。上海理工大学副教授 詹科《X射线残余应力测试及应用》(报名听会)詹科,工学博士,上海理工大学副教授,硕士生导师。上海交通大学材料科学与工程学院获博士学位,2010年-2011年获国家留学基金委资助赴美University of Virginia联合培养。现为机械工程学会高级会员,机械工程学会材料分会委员,残余应力专业委员会副主任委员,中国机械工程学会喷丸技术专业委员会副主任委员,上海市物理学会X射线衍射学术委员会委员。目前主要从事金属基复合材料、材料表面工程、残余应力理论及应用等领域的研究。先后主持及参与多项国家自然科学基金、上海市自然科学基金、中国博士后基金等科研项目,发表SCI/EI 论文30余篇,申报专利10余项,参与编著《现代物理丛书-内应力衍射分析》,《金属材料喷丸强化及其X射线衍射表征》。先后与中国中车、中国船级社、宝钢中央研究院、上海航天装备总厂、新疆金风科技、上海华测等单位开展关键核心零部件的残余应力分析与优化研究。曾受邀作为主讲人开展材料喷丸强化及残余应力测试专题培训。报告摘要:在现代制造业中,从材料-零件-部件-整机装配-使用全寿命周期,残余应力对产品的疲劳,应力腐蚀性能以及尺寸稳定性影响较大,残余应力的检测及调控对提升产品质量及可靠性具有重要意义。在残余应力的测试方法中,X射线衍射方法由于其理论严谨,是残余应力测试最常用的有效方法之一。本报告围绕X射线残余应力测试基本原理及应用,拟介绍以下三部分内容:第一:残余应力的产生及调控方法;第二:X射线残余应力测试方法,介绍X射线残余应力测试基本原理,参数选择,在测试过程中存在的问题;第三:X射线残余应力测试在工程实践中的应用。微旷科技总经理、南京工业大学教授 马毅《极端服役环境X射线CT研发与应用》(报名听会)马毅,工学博士,现为南京工业大学教授、长三角先进材料研究院项目总监,微旷科技(苏州)有限公司联合创始人,担任总经理职务。长期专注于极端服役环境材料失效研究和原位X射线三维成像装备开发。主持完成多项国家自然科学基金和浙江省自然科学基金项目,担任科技部重点研发计划课题负责人,作为骨干参与国家重大科研仪器研制项目。以第一/通讯作者在Acta Mater, Scripta Mater, Int J Fatigue, Eng Fract Mech, Fatigue Fract Eng M等材料和工程权威期刊发表论文50余篇,引用超过1400次。申请发明专利四十余项授权多项。长期多个SCI期刊长期审稿人。报告摘要:本报告主要介绍高性能原位X射线CT设备的研发。该设备基于X射线强穿透能力和计算机断层扫描技术,结合亚微米级精密控制转台和机械控制,实现微米级高分辨X射线CT成像,以及毫米/厘米级试样的三维无损成像。通过配置超高温模块、低温模块、高载荷模块(拉伸/压缩/弯曲/疲劳),构建热-力耦合系统,实现超高温变形、超低温变形以及热冲击、疲劳、蠕变等复杂工况下材料和工程构件的原位CT成像。奥龙集团董事长兼总经理、高级工程师 李义彬《2D、3DX射线智能检测系统》(点击报名)李义彬,高级工程师,毕业于大连理工大学电子工程系,丹东奥龙射线仪器集团有限公司董事长,从事无损检测技术研发工作三十余年。先后取得10余项国家专利,参与制订4项国家及行业标准,获得辽宁省科技进步奖二等奖、三等奖及市科技进步奖项11项。带头承担国家高技术产业化示范工程项目、国家重大科学仪器设备开发专项等国家、省部重点项目6项。先后组织完成了XYD-4010/3型X射线实时检测系统等多项课题研究;其中组织完成的ICT-3400型工业CT无损检测系统课题研究填补了国内空白。任辽宁省人大代表,中国仪器仪表行业协会常务理事,中国仪器仪表学会试验机分会副理事长,辽宁高层次科技专家库专家,中国机械工业科学技术奖仪器仪表专业评审组专家,中国机械工程学会无损检测分会射线检测专业委员会委员,丹东市科学技术协会副主席。报告摘要:2D、3D X射线检测设备不光应用在工业领域,同样应用于科研、航空航天、军工等领域。2D、3D智能检测提高了检测效率,解放了劳动力,并提供了全面且精准的检测结果,是X射线无损检测设备重要发展方向。TESCAN资深应用工程师 袁明春《TESCAN Micro-CT系统及原位动态4D应用介绍》(点击报名)袁明春,无损检测专业硕士,曾在BAM德国联邦材料研究与测试研究所(8.3)、上海材料研究所工作学习过。现就职于泰思肯贸易(上海)有限公司,任动态原位Micro-CT资深应用工程师。主要负责动态原位显微CT和新产品-能谱CT的应用工作以及客户培训工作,熟悉亚微米扫描、真实时4D动态原位超快速扫描以及多尺度联动(大样品)扫描。了解CT系统在电子、半导体、汽车、航空航天、医疗、生物、材料、地矿等众多领域的3D成像和4D动态成像的应用。报告摘要:当下CT系统多专注于三维成像,随着原位实验需求与日俱增,静态3D结果已无法满足科研和工业需求,TESCAN显微CT不仅可实现多尺度的高分辨(亚微米)、高通量三维成像,也可进行长时间连续扫描(几百小时)以及快速“4D”动态成像。本报告将展示如何使用动态CT对原本无法观测的连续变化或只能模拟仿真的实验实现实时观测。岛津企业管理(中国)有限公司市场专员 李惠《应用于工厂快速筛查的三维检测工具》(点击报名)李惠,多年从事NDI产品工作,现负责NDI产品市场专员工作。报告摘要:本报告主要介绍岛津从客户实际应用出发,新研发的X射线台式CT。该设备操作简便、图像清晰,特别适合工厂的快速筛,为产线检测带来新思路。第二届无损检测技术进展与应用网络会议为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网将于2023年9月26-27日召开第二届无损检测技术进展与应用网络会议。本届会议开设射线检测技术、超声检测技术、无损检测新技术与新方法(上)、无损检测新技术与新方法(下)四大专场,邀请二十余位无损检测领域专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨,欢迎大家在线参会交流。一、主办单位:仪器信息网二、支持单位:吉林大学三、参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/ndt2023/)进行报名。扫描下方二维码,进入会议官网报名2、报名并审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人高老师(微信:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)周老师(微信:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • X射线衍射成像技术的相关应用
    X射线衍射成像技术(XRD)是一种重要的材料分析技术,它通过测量材料内原子平面对X射线的衍射来研究和量化材料的结晶性质。以下是X射线衍射成像技术的相关应用:1. 材料科学晶体结构分析:XRD是分析材料晶体结构的主要手段之一,能够确定晶体的晶格常数、晶胞参数、晶体缺陷等。相鉴定与定量分析:可以识别材料中存在的不同相(如固溶体、化合物等),并对各相进行定量分析。应力与应变测量:通过测量材料在特定条件下的XRD图谱变化,可以评估材料内部的应力和应变状态。2. 制药业药物分析:XRD是固态药物分析的关键技术,可用于确定药物的晶体结构、晶型转变、纯度等,对药物开发、测试和生产的各个阶段都大有裨益。药物专利保护:在分离出活性药物后,索引X射线粉末衍射图样可用于确定晶体结构,从而帮助获得专利和保护公司投资。3. 法医学接触者追踪分析:XRD在法医学中主要用于接触者追踪分析,如通过油漆薄片、头发、玻璃碎片等材料的XRD图谱,帮助鉴定和比较物证,有助于对涉嫌犯罪的人定罪或开脱罪责。4. 地质应用矿物勘探:XRD是矿物勘探的关键工具,能够快速识别矿物样本中的矿物种类,并量化不同矿物的存在比例。岩石学研究:通过XRD分析,可以了解岩石的矿物组成、晶体结构等信息,对岩石成因、地质构造等研究具有重要意义。5. 工业领域无损检测:X射线成像技术可用于无损检测材料和产品的缺陷,如金属零件中的裂纹、焊接接口质量等,确保质量控制。质量控制:在制造过程中,XRD可用于检查产品的尺寸、形状和结构特征,及时发现偏差和不符合要求的情况,从而进行调整和改进。6. 半导体行业晶体结构表征:X射线衍射技术可用于分析和表征半导体材料的晶体结构,对研究半导体材料的质量和性能至关重要。缺陷检测:结合X射线显微成像技术,可以检测半导体器件中的缺陷,如晶体管、集成电路和微芯片中的金属连接问题、曝露问题和局部结构缺陷等。7. 玻璃工业缺陷识别:虽然玻璃是X射线无定形物,但XRD可用于识别造成块状玻璃微小缺陷的结晶颗粒。涂层分析:测量结晶涂层的质地、晶粒尺寸和结晶度,以优化涂层性能。综上所述,X射线衍射成像技术在多个领域具有广泛的应用价值,是材料分析、质量控制、法医学、地质勘探等领域不可或缺的重要工具。
  • Advacam公司 Minipix X射线探测器样机免费试用
    MiniPIX是一款来自捷克的掌上型光子计数X射线探测器,内含由欧洲核子研究组织(CERN)研发的Timepix芯片(256 x 256 ,像素大小55 μm)。传感器支持硅厚度300μm/500微米,碲化镉厚度1000μm可选。采用USB2.0的接口读出,速率为45帧/秒。MiniPIX探测器可实现粒子和电离辐射的可视化,内置的能量敏感成像能力为射线成像带来了一个新的维度。紧凑的尺寸使MINIPIX可内置于用于难以成像的管道或受限的空间里。MiniPIX不仅为广大科研工作者提供了更多的选择,也可作为教学工具,为高校课堂的实用教学提供了更多的可能性。产品主要特点:物超所值,与传统X射线探测器相比更高的性价比;体积小巧,形似U盘;通过USB接口连接,笔记本电脑即可运行 (支持Windows, MacOS or Linux);人性化软件操作界面应用方向:能量色散XRD 太空辐射监测 氦离子照相 激光康普顿散射伽玛射线瞄靶 电子背散射衍射北京众星联恒科技有限公司为advacam公司在中国的独家代理,现可提供MiniPIX样机免费试用,如有需要,请联系我司工作人员预约时间。Advacam S.R.O.源至捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微包装、电子产品设计和X射线成像解决方案。Advacam最核心的技术特点是其X射线探测器(应用Timepix芯片)没有缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系,其产品及方案也应用于航空航天领域。
  • 光子计数、像素化X射线探测器用于无损检测
    无损检测(NDT)无损检测(NDT)是指在不破坏样品可用性的条件下,对材料、部件或组件的裂缝等不连续性或特性差异进行检查、测试或评估。基于光子计数X射线能谱成像的无损检测技术提供了样品的额外材料信息,以及卓越的对比度和空间分辨率。标准射线照相X射线成像可以提供被检样品的黑白强度或密度图像,如果图像分辨率和信噪比合适,则可观察到何处有缺陷、杂质或裂纹。而基于光子计数X射线能谱成像的无损检测技术提供了样品的材料信息,同时具有良好的对比度和高空间分辨率。光谱信息可以用于区分不同的材料,可识别感兴趣的材料或计算其在样品中的含量。下图是用WidePIX 5x5 CdTe光子计数探测器获取的一张单次曝光的高分辨率谱图像,不同的材料用不同的颜色表示。ADVACAM推出了一系列为复合材料测试而优化的光子计数X射线探测器,探测器对低能段探测也具有优秀的灵敏度和探测效率,同时有很高的动态范围,十分有利于轻质材料,如碳纤维、环氧树脂等的检测。即使是具有挑战性的缺陷,如深层层压褶皱、弱连接、分层、孔隙率、异物和软材料中的微小裂纹,也可以在55μm或更高的空间分辨率下检测到。搭载Advacam探测器的机器人系统进一步扩展了光子计数X射线探测器的功能。轻质材料及复合材料机器人系统正在检查滑翔机副翼,右侧机械臂上装有Advacam探测器。该机器人系统可以从不同角度进行X光检查,以更好地定位缺陷。高帧率的光子计数X射线探测器还可以对样品进行实时检测,可用于质量控制实验室或在生产线上使用。最后得到的X射线图像揭示了副翼内部复合结构有空洞和杂质。X射线光子计数探测器不仅适用于检测轻质材料,基于高灵敏度的 CdTe 传感器(1mm厚)的探测器也可用于焊缝检测。根据ISO 17636-2标准,可以达到Class B的的图像质量。焊缝检查成像质量在带有像质计IQI和DIQI的BAM-5和BAM-25钢焊接试样上,测试WidePIX 1x5 MPX3 光子计数X射线探测器延迟积分TDI模式下的成像质量。TDI模式是探测器操作的其中一种模式,设备会生成沿探测器运动的物体的连续X射线图像。BAM-5 8.3mm钢焊缝BAM-25 6mm 钢焊缝BAM-5样品背面D13线对的信号BAM-5样品背面10FEEN IQI线对用DIQI测量空间分辨率。分辨出的最窄线对是D13(线宽50μm,间距50μm)。探测器对比度用10FEEN像质计测量。置于8.3mm钢制样品背面包括16号线(0.1 mm厚)在内的线都被分辨出来。8.3mm厚BAM-5样品和6 mm厚BAM-25钢的信噪比测量值SNRm分别为148和190。信噪比受限于X射线管功率。探测器具有24位计数器深度,信噪比可高达4000。归一化信噪比SNRn(根据探测器分辨率归一化),6mm厚钢为336,8.3mm厚钢为262。总结 光子计数探测器能够提供更高的灵敏度、空间分辨率、对比度和信噪比;能量范围从 5 keV 到数百 keV 甚至 MeV,可检测非常轻的复合材料到厚的焊接部件。此外,直接转换光子计数型X射线探测器能够进行X射线能量甄别,即,仅高于一定能量的光子会被记录,此方法能够抑制较低能量的散射辐射并提高图像对比度。通过这种X射线新成像技术,可以检测到过去无法通过传统X射线进行无损检测的样品,无损检测设备制造厂家可以将系统中的探测器升级为光子计数X射线探测器,以扩展系统类型和客户群。Advacam S.R.O.源至捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像相机和X射线成像解决方案。Advacam最核心的技术特点是其X射线探制器(应用Timepix芯片)没有拼接缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,也在积极探索和推广光子计数X射线探测技术在中国市场的应用,目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。同时我们也有数台MiniPIX样机,及WidePIX 1*5 MX3 CdTe的样机,我们也非常期待对我们探测器感兴趣或基于探测器应用有新的idea的老师联系我们,我们可以一起尝试做更多的事情。
  • 【网络研讨会】X射线衍射技术及应用进展
    Webinar仪器信息网:网络讲堂X射线衍射技术是通过对物质进行X射线衍射,分析其衍射图谱,获得物质的成分、内部原子或分子的结构或形态等信息的研究手段。物质结构分析尽管可以采用中子衍射、红外光谱、穆斯堡尔谱等方法,但X射线衍射技术是最有效、应用最为广泛的手段,应用范围已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中。仪器信息网将于2022年7月15日组织“X射线衍射技术及应用进展”主题网络研讨会。在X射线衍射分析中,不同靶材的特征辐射会激发与之对应的某些元素极强的荧光效应,引起测试数据整体背景偏高,弱衍射峰检测灵敏度降低,干扰样品的精确分析。马尔文帕纳科在锐影衍射仪上搭建了独特的高清光路,以准单色化入射光路模块BBHD或聚焦光反射镜模块配合全新的全波长能量色散检测器1Der,为用户提供全元素无荧光干扰的高质量衍射数据。高清光路技术适用于衍射仪中常用的铜、钴、钼、银等靶材,用户可根据样品情况自由选择靶材,获得最佳可能测试结果。此外,传统台式衍射仪受体积限制,一般仅用于常规粉末衍射测试。马尔文帕纳科新一代台式衍射仪Aeris可配备基于PreFIX预校准概念设计的薄膜掠入射附件和透射衍射附件,将样品测试范围拓展至多晶薄膜、高分子、药物等受困于择优取向的轻吸收样品,为空间受限的用户提供更多选择。7月15日(周五),马尔文帕纳科将参与仪器信息网网络讲堂“X射线衍射技术及应用进展主题网络研讨会”,由XRD产品经理王林博士为大家带来《X射线衍射技术多功能化在不同衍射系统上的发展》为主题的报告,向您介绍不断发展的功能附件搭配PreFIX专利技术,解锁立式或台式XRD的新技能。主题网络研讨会现已开放报名通道,期待您的关注和参与!■ 会议日期:2022年7月15日(周五)■ 会议时间:09:30-17:00■ 报告时间:14:30-15:00■ 活动类型:网络会议直播,需提前注册可以通过微信公众号“马尔文帕纳科”在线报名免费会议~ 报告嘉宾介绍 王 林 博士中国区 XRD 产品经理马尔文帕纳科王 林 博士,马尔文帕纳科中国区XRD产品经理。2004年毕业于清华大学物理系获学士学位,2011年于澳大利亚University of Wollongong伍伦贡大学获得博士学位,博士期间研究方向为超导薄膜材料。毕业后即加入帕纳科公司,从事XRD应用研究及技术支持。微观世界大有可为We' re BIG on small!Info关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物理和结构分析,打造出客户导向型创新解决方案和服务,从而提高效率和产生切实的经济影响。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如大程度地提高生产率、开发更高质量的产品及帮助产品更快速地上市。联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn收录于合集 #XRD 12个下一篇【网络研讨会】线上线下同步直播,金属行业X射线分析技术高级培训班
  • 新的X射线世界纪录:以4nm的分辨率观察微芯片内部结构
    Paul Scherrer Institute (PSI) 的研究人员与洛桑联邦理工学院、苏黎世联邦理工学院和南加州大学合作,利用 X 射线技术取得了重大突破。利用 PSI 瑞士光源 SLS 发出的 X 射线,并采用由瑞士XRnanotech公司提供的最外环宽度为30nm,高度为400nm的FZP(菲涅尔波带片)聚焦,以前所未有的高分辨率观察了微芯片内部结构,实现了4nm的图像分辨率,创下了新的世界纪录!这种高分辨率三维图像将为信息技术和生命科学领域的发展带来深远的影响,研究成果已发表在最新一期的《Nature》杂志上。该样本是从商用计算机芯片中提取的,由图中的金色针头支撑。该样本直径不到 5微米(比人类头发的宽度小 20 倍左右),使用聚焦离子束从芯片上切下并放置在针头上。© Paul Scherrer Institute PSI/Mahir Dzambegovic自 2010 年以来,PSI 大分子和生物成像实验室的科学家一直致力于开发显微成像方法,目的是生成纳米级的三维图像。在目前的研究中,他们与洛桑联邦理工学院 (EPFL)、苏黎世联邦理工学院 (ETHZ) 以及南加州大学合作,首次成功拍摄了最先进的计算机芯片微芯片的图像,分辨率达到 4 纳米,即 百万分之四毫米,创下了世界纪录。科学家们没有使用透镜(目前无法使用镜头拍摄此范围内的图像),而是采用了一种称为 叠层成像 ptychography 的技术,即通过计算机将许多单独的图像组合起来以创建一张高分辨率图片。更短的曝光时间和优化的算法是此次显著提高由他们在 2017 年创下的世界纪录的关键因素。在实验中,研究人员使用了 PSI 瑞士光源 SLS 发出的 X 射线,并由瑞士XRnanotech提供的FZP聚焦。频链接:https://youtu.be/aKEhNgUdFvc深入研究微芯片:新型叠层成像技术可生成分辨率为百万分之四毫米的三维图像。© 视频:Paul Scherrer Institute PSI/Benjamin A. Senn、Markus Fischer 和 Tomas AidukasNo.1 介于传统 X 射线断层扫描和电子显微镜之间微芯片是科技的奇迹。如今,先进的集成电路中每平方毫米可以容纳超过 1 亿个晶体管,这一趋势还在不断增长。高度自动化的光学系统用于在洁净室中将纳米级电路迹线蚀刻到硅坯中。一层又一层地添加和移除,直到完成芯片(智能手机和电脑的大脑)可以被切割和安装。制造过程繁琐复杂,表征和绘制最终结构也同样困难。扫描电子显微镜有几纳米的分辨率,因此非常适合对构成电路的微型晶体管和金属互连进行成像,但它们只能产生表面的二维图像。“电子在材料中传播得不够远,” SLS 的物理学家 Mirko Holler 解释道。“要用这种技术构建三维图像,必须逐层检查芯片,在纳米级别去除各个层——这是一个非常复杂和精细的过程,而且会破坏芯片。”然而,使用 X 射线断层扫描可以生成三维和无损图像,因为 X 射线可以穿透材料更深,这个过程类似于医院的 CT 扫描。样品被旋转并从不同角度进行 X 射线照射,辐射的吸收和散射方式各不相同,这取决于样品的内部结构。探测器记录离开样品的光,然后算法从中重建最终的 3D 图像。“这里我们遇到了分辨率问题,” Mirko Holler 解释说,“目前可用的 X 射线镜头都无法以分辨如此微小结构的方式聚焦这种辐射。”No.2 Ptychography——虚拟镜头解决方案是叠层成像。在这种技术中,不是将X射线束聚焦在纳米尺度上,而是使样品在纳米尺度上移动。“我们的样品被移动,使得光束遵循精确定义的网格——就像筛子一样。在网格上的每个点,都会记录衍射图案,” 物理学家解释说。各个网格点之间的距离小于光束的直径,因此成像区域会重叠。这会产生足够的信息,以便在算法的帮助下以高分辨率重建样品图像。重建过程就像使用虚拟镜头一样。Manuel Guizar-Sicairos、Tomas Aidukas 和 Mirko Holler(从左到右)站在 PSI 瑞士光源 SLS 的实验设备前。科学家利用这里产生的 X 射线创下了新的世界纪录。© Paul Scherrer Institute PSI/Mahir Dzambegovic“自 2010 年以来,我们一直在不断完善实验装置和样品定位的精度。2017 年,我们终于成功对计算机芯片进行了空间成像,分辨率达到 15 纳米——创下了纪录,” Holler 回忆道。从那时起,尽管装置和算法进一步优化,但我们仪器的分辨率一直保持不变。“我们将其延伸到了一到两纳米,但这是我们能达到的极限。有些东西限制了我们,我们必须找出它是什么。”No.3 寻找限制因素这项精心的研究终于在在2021 年由瑞士国家科学基金会资助的一个项目开始。除了参与了第一次记录的 Mirko Holler 和 Manuel Guizar-Sicairos 之外,Tomas Aidukas 也加入了该小组。这位物理学家用他的编程经验支持团队并开发了新的算法,最终帮助他们取得了突破。研究人员在减少曝光时间时找到了他们的第一个线索——衍射图像突然变得更清晰了。这让他们得出结论,照射样品的 X 射线束并不稳定,而是发生了微小的移动——光束在摆动。“这类似于摄影,” Guizar-Sicairos 解释说。“当你在晚上拍照时,你会因为黑暗而选择长时间曝光。如果你不使用三脚架这样做,你的动作就会传输到相机上,照片就会模糊。” 另一方面,如果你选择较短的曝光时间,这样光线被捕捉的速度比我们移动的速度快,那么图像就会很清晰。 “但在那种情况下,图像可能是全黑的或充满噪点,因为在这么短的时间内几乎无法捕捉到任何光线。”研究人员也面临类似的问题。尽管现在的图像已经很清晰,但由于曝光时间太短,图像所包含的信息太少,无法重建整个微芯片。NO.4 更短的曝光时间和新的算法为了解决这个问题,研究人员升级了他们的装置,换上了一个更快的探测器,这也是 PSI 开发的。这样他们就可以在每个网格点记录许多图像,每张图像的曝光时间都很短。“数据量非常大,” Aidukas 补充道。当将各个图像加在一起并叠加时,就会产生与使用长曝光时间获得的模糊图像相同的效果。查看最先进的计算机芯片的内部结构。研究人员新开发的叠层技术使研究人员能够绘制出这一工程奇迹的三维结构。图片显示了组成微芯片的不同层。在顶部可以看到较粗的结构。随着层层向下移动,微芯片变得越来越复杂 - 使那里的连接可见需要几纳米的分辨率。© Paul Scherrer Institute PSI/Tomas Aidukas“你可以把 X 射线束看作是样本上的一个点。我们现在在这个特定点拍摄大量单独的照片,”Aidukas 解释道。由于光束在摆动,每幅图像都会略有变化。“ 在一些图片中,光束处于相同的位置,而在另一些图片中,光束已经移动。我们可以利用这些变化来追踪未知振动引起的光束的实际位置。”接下来要做的是减少数据量。“我们的算法会比较各个图像中光束的位置。如果位置相同,则将它们放在同一组中并加和。” 通过对低曝光图像进行分组,可以增加它们的信息内容。因此,研究人员能够使用大量短曝光图片重建具有高光内容的清晰图像。新的叠层扫描技术是一种基本方法,也可以在类似的研究设施中使用。该方法不仅限于微芯片,还可以用于其他样品,例如材料科学或生命科学。文本:Paul Scherrer Institute PSI/Benjamin A. Senn© PSI 免费提供图像和/或视频材料,供媒体报道上述文本内容。不得将此材料用于其他目的,包括将图像和视频材料转移到数据库以及由第三方出售
  • 微区X射线残余应力仪
    成果名称 微区X射线残余应力仪 单位名称 北京师范大学 联系人 常崇艳 联系邮箱 changcy@bnu.edu.cn 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果简介: 基于毛细管的微区X射线残余应力仪样机 国内首台基于毛细管X光透镜的应力仪样机研制成功,并在第三届全国喷丸强化学术会议中成功展示,吸引了广大国内国外学者的关注,成为了本次大会的一大亮点,填补了我国微区便携式残余应力仪的空白,相关实验成果被国外杂志Instrumentsand Experimental Techniques接收。 研发关键 现有国产X光残余应力仪的X光源焦斑尺寸大大超过常规衍射仪的焦斑尺寸,毛细管传输X射线的效率要大大降低。在如此苛刻的条件下完成提高应力仪的光强增益,必定要经过毛细管几何参数的优化设计。具体而言,要先建立正确的光源计算模型;根据光束焦斑尺寸,确定透镜的后焦距;透镜的前焦距、透镜长度和外形曲线,以出射光强最大化为基准依次确定。 研究出低粗糙度的毛细管制作工艺条件是另一项研发关键。通过对拉丝温度、拉丝温度梯度分布、送料速度和拉丝速度等多种参数对毛细管内表面粗糙度的影响研究,以获得宽波段、高效率传输大面积发散X光束的最佳制备工艺条件,可使毛细管的效果发挥至最佳。 仪器创新点 可归纳为以下两方面: 微区X射线残余应力仪是首次使用X射线聚焦元件,真正实现微区的残余应力测定功能的技术产品。 在残余应力测定技术方面,通过毛细管X光透镜的使用,首次在国际上提供以发散和会聚为主要光束成分的两种入射X射线,为研究和发展残余应力测定技术提供了新手段。 性能指标 在微区X射线残余应力仪工作距离160mm处,由金属刀口扫描法测量的微分曲线结果显示,该处的光斑尺寸(FWHM)约0.38mm,光斑全宽约0.9mm。计算得到照射在样品的FWHM面积约为0.113,整个光斑面积约为0.636,达到了微区照射效果。 当使用微区X射线残余应力仪测量直径&Phi 2.5mm的钱江弹簧轴向应力(微曲面样品)时,对比常规X射线残余应力仪(配备&Phi 0.63mm光阑准直器),在不同计数时间下&psi 0° 方向衍射峰高增强10.66倍。同理,衍射强度在&psi 0° 方向增强13.45倍。 当使用微区X射线残余应力仪测量直径&Phi 4mm钢珠(曲面样品)的应力时,应力值测量效果良好,平均应力值在-1295.6MPa左右。而使用常规X射线残余应力仪(配备&Phi 0.4mm光阑准直器)测量样品残余应力则预估值偏差较大,平均应力值仅为-261.8MPa。 应用研发 目前国外品牌X射线残余应力仪产品是以提供微焦斑作为其产品的核心支撑,其优势在于它的焦斑面积小,可使单位面积上的光子数增多,进而提高相对光强。如加拿大PROTO公司旗下诸多产品,焦斑大小仅在0.5mm*0.5mm左右。未来结合微焦斑光源,毛细管X光透镜的优势将得以完全发挥。为此,毛细管X光透镜在微区残余应力方面的研究也会逐步向微焦斑类应力仪倾斜,有望达到微区光强增益在20倍以上。目前已有的实验效果来看,经反复进行优化设计的毛细管X光透镜将很有希望完成这一新目标,前景乐观。 应用前景: 微区X射线残余应力仪将重点应用在轻质合金,细焊缝加工件及弹簧,钢珠等工件的应力测试分析上,涉及领域则既包括高新技术,同时又涵盖常规制造业。如在现代航空航天制造业中,轻质合金部件研制的先进性和可靠性等因素决定着轻质合金材料在现代航空航天制造业中的应用,因此测试分析过程显得尤为必要。而弹簧及其它曲面零件的应力测定,则对确保我国汽车、内燃机、火车、飞机等整机的安全与可靠性,具有极为重要的工程应用价值。 掌握窄焊缝、高应力梯度的残余应力分布规律,需将测试面积控制在极小范围,但这对本身衍射强度极低的钛合金等轻质合金而言,几乎是无法实现的。从国际上最新的测试手段看,中子衍射强度高较为可行,但其运行依赖于中子反应堆,目前仅在法国及德国建有实验基地。因此在我国现有条件下,经济实惠地解决该类问题,微区X射线残余应力仪则是较好的发展方向。而且,随着现代机械领域的迅猛发展,弹簧制造行业无论在生产规模还是产量方面均获得了极大促进,弹簧服役条件的苛刻要求与日俱增,急需研究新的弹簧质量检测方法,微区X射线残余应力仪无疑将成为新选择。 知识产权及项目获奖情况: &ldquo 一种应力仪&rdquo ,专利号ZL201320272397.0, 授权时间:2013年11月06日.
  • 【干货】单波长X射线荧光技术在油品检测中的应用
    测定原理X射线荧光是原子在受到初级X射线束激发后发生电离作用,发射出X射线光子。X射线具有波粒二象性,既可以看作粒子(能量),也可以看作电磁波(波长)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量,根据普朗克公式:E=hc/λ,无论是测定能量,还是波长,都可以实现对相应元素的分析,其效果是类似的。据此,X射线荧光技术进行元素分析时又分为X射线波谱法(波长色散,WDXRF)和X射线能谱法(能量色散, EDXRF)。单波长X射线荧光全称“单波长色散X射线荧光光谱”(Monochromatic Wavelength Dispersive X-ray Fluorescence Spectrometry,缩写为MWDXRF),属于波长色散X射线荧光技术。XOS专利的单波长X射线光路系统可以选择并且聚焦单色光束进行样品激发和进入检测器检测,这样可以大大降低信噪比,并且提供相较于传统XRF更高的精度,以及更快的测量速度。XOS专利的单波长X射线荧光光路系统相关标准目前单波长X射线荧光相关方法标准主要有以下:标准名称测量原理硫含量测定1NB/SH/T 0842-2017轻质液体燃料中硫含量的测定单波长色散X射线荧光光谱法2ASTM D7039汽油和柴油燃料中硫含量的测定单波长色散X射线荧光光谱法(MWDXRF)氯含量测定1NB/SH/T 0977-2019轻质油品中氯含量的测定单波长色散X射线荧光光谱法2ASTM D7536芳烃中氯含量的测定单波长色散X射线荧光光谱法(MWDXRF)3ASTM D4929-2017原油中有机氯的测定方法C中可用单波长X射线荧光方法(MWDXRF)硅含量测定1NB/SH/T 0993-2019汽油及相关产品中硅含量的测定单波长色散X射线荧光光谱法2ASTM D7757汽油和相关产品中硅含量的测定单波长色散X射线荧光光谱法(MWDXRF)应用1——油品中的硫含量测定由于硫元素会造成工艺设备腐蚀、催化剂中毒、产品质量及环境污染等问题,所以硫元素的含量成为衡量石油及石油产品质量的重要指标。单波长X射线荧光光谱法(MWDXRF)目前得到广泛认可的应用之一就是测油品中的硫含量,在300秒的测量时间下最低检测限可达0.15ppm(Sindie Gen3),其相应的方法标准ASTM D7039已经被列为国五、国六成品汽柴油硫含量检测的方法标准之一,还可用于分析:直馏汽油、直馏柴油、精制汽油、精制柴油、催化柴油,甚至硫含量更低的重整原料油等各种中控物料,针对不同的应用场所分别有Sindie系列实验室台式、便携式、在线分析等解决方案,可满足客户多方面的需求。应用2——氯元素含量检测单波长X射线荧光光谱法(MWDXRF)技术应用之二是在氯元素方面的检测。无论是来源于采油助剂的有机氯还是来自有盐水或类似污染物中的无机氯,都可能造成设备腐蚀、催化剂中毒、管路堵塞、影响二次加工及成品油产品质量等各种潜在风险。因此,在石化炼油厂原油加工的整个过程中,氯元素的分析及监控一直都备受重视。典型的样品是氯含量控制在1ppm以下的石脑油,这类样品即使使用传统的库仑法分析,有的效果也不是很好,MWDXRF技术独特的光路结构可使最低检测限达0.07ppm(Clora 2XP),即使是标准型的Clora,其LOD也可以达到0.13ppm,比较常见的分析对象还包括:重整原料油、直馏汽油、直馏柴油和常压装置常一线油等氯含量均在10ppm以内的样品。对应的方法标准是ASTM D7536和NB/SH/T 0977。针对原油中的氯含量分析,由于原油样品含水和颗粒物的特殊性,如果使用常规的静态测量法,测量结果会随着时间的推移而逐渐升高直至样品中的颗粒物质完全沉降。为此,XOS专门推出了Accu-Flow技术,使用一次性螺口注射器使样品以一定速率(20ml/min)连续流过测量杯(模拟在线连续测量的分析过程),很好地解决了静态测量的沉降问题。测量时间对测量结果的影响Accu-Flow技术另外,针对原油电脱盐工艺,XOS的MWDXRF技术也推出了专门的在线解决方案,不但可以实时监测原油脱盐前后中的氯含量,也可以监测脱盐水中的氯含量,使脱盐生产过程对氯含量的监控更加及时有效,帮助工艺及时发现和解决生产波动。在线氯元素监测控制示意图应用3——针对高硫低氯等样品中的氯含量分析单波长X射线荧光光谱法(MWDXRF)技术第三个有针对性的应用是针对高硫低氯等样品中的氯含量分析,由于硫元素Kα的特征波长为0.5373 nm,氯元素Kα特征波长为0.473nm,如果硫元素含量高、氯元素含量低,势必会影响氯元素分析的稳定性和重复性。而且目前石油石化行业常用的油品中氯含量的检测标准SH/T 1757(微库仑法)中明确指出不适用于硫含量大于0.1% (质量分数)的试样,而且样品中水含量对微库仑法影响较大。XOS的单波长X射线荧光光谱法(MWDXRF)可专门针对此类样品,如焦化汽油和焦化柴油样品,有相应的解决方案,比如使用标准型的Clora单波长氯分析仪,可使用手动输入硫含量的方法对硫元素的干扰进行校正,或者使用超低氯Clora 2XP或硫氯一体Sindie+Cl,对硫元素信号可自动检测并自动扣除,大大提高了分析效率和方法的简便性。超低氯Clora 2XP光路示意图硫氯一体Sindie+Cl光路示意图应用4——汽油及相关产品中硅含量的测定单波长X射线荧光光谱法(MWDXRF)技术的第四个应用是针对汽油及相关产品中硅含量的测定,成品油的硅元素主要来自清洗剂或消泡剂等外来污染物,主要的危害有可导致氧气传感器、火花塞、催化转换器出现二氧化硅沉积,影响车辆的正常行驶。MWDXRF测硅元素的方法标准是ASTM D7757和NB/SH/T 0993,ASTM D7757 是截至到目前唯一经ASTM 认证的汽油和乙醇中硅含量的测试方法。该方法可以测试石脑油、乙醇汽油、乙醇调合燃料、重整汽油及甲苯等样品中3-100mg/kg(ppm wt)的硅,仪器的最低检测限(LOD)可达0.65ppm。火花塞结垢燃烧室结垢(图片来源于“对油中掺杂硅是车“病因”!哈尔滨质监部门召开“淮南”油问题专家论证会得出结论“的报道)其他应用另外,单波长技术还有专门针对磷元素的应用,主要用于油品及水中总磷含量的测定,最低检测限LOD可达0.4ppm。八大优点总之,单波长X射线荧光光谱法(MWDXRF)凭借以下八个主要优点,可为广大客户提供专业化的解决方案,大大提高炼化企业分析检测工作的效率:(1)可实现极低浓度的测量;(2)所需浓度下较高的精确度(重复性r:S, 0.6 ppm @ 8 ppm;Cl, 0.14 ppm @ 1 ppm ,Si, 1 ppm @ 10 ppm );(3)单色聚焦光学元件,可消除90% - 95%样品基质效应影响;(4)无需频繁校准,标准曲线可使用6 – 12个月;(5)简易样品制备及仪器操作过程,有效避免人为误差,及不同实验人员之间的偏差;(6)直接测量技术(无需样品转化,比如燃烧或密度换算);(7)无需消耗任何气体,仪器运行只需要电源即可;(8)符合标准方法:S: ASTM D7039, NB/SH/T 0842, ASTM D2622, GB/T 11140,Cl: ASTM D7536, NB/SH/T 0977-2019,Si: ASTM D7757, NB/SH/T 0993-2019等。(作者:上海仪真分析仪器有限公司 XOS市场开发经理 党相锋)
  • 市中心医院分院340.00万元采购X射线衍射仪
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: X射线衍射仪 开标时间: null 采购金额: 340.00万元 采购单位: 市中心医院分院 采购联系人: 杜占 采购联系方式: 立即查看 招标代理机构: 泰安市嘉恒建设工程项目管理有限公司 代理联系人: 王媛 代理联系方式: 立即查看 详细信息 市中心医院分院职业病防治能力提升项目需求公示 山东省-泰安市 状态:预告 更新时间: 2021-09-02 招标文件: 附件1 市中心医院分院职业病防治能力提升项目采购需求公示 一、项目概况及预算情况:基本情况:第一标段为数字化医用X射线摄影系统(DR)、移动式数字X射线机(DR)、尘肺诊断阅片系统各1套;第二标段为听觉诱发电位仪、耳声发射测试仪、纯音电测听仪(诊断型)、纯音电测听仪(便携式)各1套;第三标段为台式肺功能检测系统、便携式肺功能检测系统、心电图机各1套。 项目预算: 本项目预算为340万元,其中第一标段200万元,第二标段:80万元,第三标段:60万元。资金性质为财政性资金。 付款方式:本项目预付款为合同金额的30%,合同签订生效且具备实施条件后5个工作日内支付,合同签订前,中标人须向采购人交付合同金额8%作为质量保证金,货到交付后经乙方安装调试并经甲乙双方联合验收合格后付至合同总价款的100%,质保期满后无质量问题质量保证金无息退付。 二、采购标的具体情况:详见附件 三、论证意见: 无 四、公示时间:本项目采购需求公示期限为3天:自2021年9月2日起,至2021年9月5日止 五、意见反馈方式:本项目采购需求方案公示期间接受社会公众及潜在供应商的监督。 请遵循客观、公正的原则,对本项目需求方案提出意见或者建议,并请于2021-09-06前将书面意见反馈至采购人或者采购代理机构,采购人或者采购代理机构应当于公示期满5个工作日内予以处理。 采购人或者采购代理机构未在规定时间内处理或者对处理意见不满意的,异议供应商可就有关问题通过采购文件向采购人或者采购代理机构提出质疑;质疑未在规定时间内得到答复或者对答复不满意的,异议供应商可以向采购人同级财政部门提出投诉。 六、项目联系方式 1、采购单位:市中心医院分院 地址:泰安市长城路西万官大街336号 联系人:杜占 联系方式:0538-8626738 2.采购代理机构:泰安市嘉恒建设工程项目管理有限公司 地址:山东泰安泰山迎胜东路29鲲鹏商务楼三楼 联系人:王媛 联系方式:0538-6315028 附件: × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:X射线衍射仪 开标时间:null 预算金额:340.00万元 采购单位:市中心医院分院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:泰安市嘉恒建设工程项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 市中心医院分院职业病防治能力提升项目需求公示 山东省-泰安市 状态:预告 更新时间: 2021-09-02 招标文件: 附件1 市中心医院分院职业病防治能力提升项目采购需求公示 一、项目概况及预算情况:基本情况:第一标段为数字化医用X射线摄影系统(DR)、移动式数字X射线机(DR)、尘肺诊断阅片系统各1套;第二标段为听觉诱发电位仪、耳声发射测试仪、纯音电测听仪(诊断型)、纯音电测听仪(便携式)各1套;第三标段为台式肺功能检测系统、便携式肺功能检测系统、心电图机各1套。 项目预算: 本项目预算为340万元,其中第一标段200万元,第二标段:80万元,第三标段:60万元。资金性质为财政性资金。 付款方式:本项目预付款为合同金额的30%,合同签订生效且具备实施条件后5个工作日内支付,合同签订前,中标人须向采购人交付合同金额8%作为质量保证金,货到交付后经乙方安装调试并经甲乙双方联合验收合格后付至合同总价款的100%,质保期满后无质量问题质量保证金无息退付。 二、采购标的具体情况:详见附件 三、论证意见: 无 四、公示时间:本项目采购需求公示期限为3天:自2021年9月2日起,至2021年9月5日止 五、意见反馈方式:本项目采购需求方案公示期间接受社会公众及潜在供应商的监督。 请遵循客观、公正的原则,对本项目需求方案提出意见或者建议,并请于2021-09-06前将书面意见反馈至采购人或者采购代理机构,采购人或者采购代理机构应当于公示期满5个工作日内予以处理。 采购人或者采购代理机构未在规定时间内处理或者对处理意见不满意的,异议供应商可就有关问题通过采购文件向采购人或者采购代理机构提出质疑;质疑未在规定时间内得到答复或者对答复不满意的,异议供应商可以向采购人同级财政部门提出投诉。 六、项目联系方式 1、采购单位:市中心医院分院 地址:泰安市长城路西万官大街336号 联系人:杜占 联系方式:0538-8626738 2.采购代理机构:泰安市嘉恒建设工程项目管理有限公司 地址:山东泰安泰山迎胜东路29鲲鹏商务楼三楼 联系人:王媛 联系方式:0538-6315028 附件:
  • “X射线衍射技术及应用进展” 线上会议日程公布
    p style=" white-space: normal text-align: justify text-indent: 2em " 通过对材料进行X射线衍射,分析其衍射图谱,可获得材料的成分、材料内部原子或分子的结构或形态等信息。物质结构分析尽管可以采用中子衍射、红外光谱、穆斯堡尔谱等方法,但X射线衍射技术是最有效、应用最为广泛的手段。其应用范围,现已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中,成为一种重要的实验方法和结构分析手段。 /p p style=" white-space: normal text-align: justify text-indent: 2em " 为促进相关从业人员深入了解X射线衍射技术的发展和应用现状,仪器信息网将于2020年7月23日举办“X射线衍射技术及应用进展”主题网络研讨会,依托成熟的网络会议平台,为X射线衍射技术相关研究、应用等人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。 /p p style=" white-space: normal text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/29192d2d-4ced-4546-b08d-98097450e5af.jpg" title=" 1920-420.jpg" alt=" 1920-420.jpg" / /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" white-space: normal border: none " tbody tr class=" firstRow" td width=" 595" colspan=" 4" valign=" middle" align=" center" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" color: rgb(227, 108, 9) " strong “X射线衍射技术及应用进展”主题网络研讨会(07月23日) /strong /span /p /td /tr tr td width=" 90" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 13:30-14:00 /p /td td width=" 195" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 原位X射线衍射技术在材料研究中的应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 程国峰 /p /td td width=" 178" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 中国科学院上海硅酸盐研究所研究员 /p p & nbsp /p /td /tr tr td width=" 95" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 14:00-14:30 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 赛默飞实时XRD系统及其特色应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 居威材 /p /td td width=" 178" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 赛默飞世尔科技(中国)有限公司应用工程师 /p /td /tr tr td width=" 95" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 14:30-15:00 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 高分子材料的X射线衍射表征 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 张吉东 /p /td td width=" 178" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 中国科学院长春应用化学研究所研究员 /p /td /tr tr td width=" 95" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 15:00-15:30 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 单晶X射线衍射技术及其在药物研究中的应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 钟家亮 /p /td td width=" 178" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 中国医药工业研究总院副研究员 /p /td /tr tr td width=" 95" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 15:30-16:00 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p X射线衍射技术在药物晶型研究方面的应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 周丽娜 /p /td td width=" 178" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 天津大学工程师 /p /td /tr /tbody /table p style=" white-space: normal text-align: center " span style=" color: rgb(227, 108, 9) " strong 报告嘉宾介绍 /strong /span /p p style=" white-space: normal text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/202007/uepic/986020bf-822e-4dd9-925d-e1a70eb38106.jpg" title=" 程国峰1.png" alt=" 程国峰1.png" style=" max-width: 100% max-height: 100% " / /strong /span /p p style=" white-space: normal " span style=" color: rgb(0, 112, 192) " strong /strong /span /p p style=" white-space: normal text-align: justify text-indent: 2em " 程国峰,中国科学院上海硅酸盐研究所研究员,X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会秘书长。主要研究领域为X射线衍射与散射理论及应用、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《同步辐射X射线应用技术基础》等专译著4部,发布国家标准和企业标准5项,获专利授权6项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文80余篇。 /p p style=" white-space: normal " span style=" color: rgb(0, 112, 192) " strong /strong /span img src=" https://img1.17img.cn/17img/images/202007/uepic/984274bc-49dd-4ed9-9aa6-73f44a2c34d6.jpg" title=" 张吉东1.png" alt=" 张吉东1.png" style=" max-width: 100% max-height: 100% " / /p p style=" white-space: normal text-align: justify text-indent: 2em " 张吉东,中科院长春应化所高分子物理与化学国家重点实验室仪器平台任研究员、博士生导师。98年本科毕业于吉林大学化学系,03年博士毕业于中科院长春应化所,之后到加拿大Carleton大学化学系做博后。06年回到中科院长春应化所高分子物理与化学国家重点实验室仪器平台任副研究员,负责仪器管理与方法学开发。16年12月晋升为研究员,17年6月被聘为博士生导师。目前为中国晶体学会X射线粉末委员会委员,北京同步辐射光源用户委员会委员,吉林省物理学会X射线委员会副主任,吉林省分析测试技术学会副秘书长。至今承担过11个基金委、中科院等的科研项目,发表文章65篇,包括通讯作者文章19篇,参与撰写专著3部。主要的研究方向是高分子薄膜凝聚态结构表征,依托实验室X射线衍射仪及同步辐射装置开展相关方法学研究。 /p p style=" white-space: normal text-align: center " img src=" https://img1.17img.cn/17img/images/202007/uepic/3dc5cfa0-c240-4324-873f-c6c95895fcf6.jpg" title=" 钟家亮1.png" alt=" 钟家亮1.png" style=" max-width: 100% max-height: 100% " / /p p style=" white-space: normal text-align: justify text-indent: 2em " 钟家亮,中国医药工业研究总院副研究员,硕士生导师。中国晶体学会永久会员,中国晶体学会药物晶体学委员会常务委员,上海市科委专家库专家。主要从事药物固态化学研究,包括药物晶型/盐型研究、药物共晶/复合物研究、药物晶型一致性评价研究、手性药物的绝对构型分析研究、结晶工艺优化研究等。主持或参与完成多项十一五、十二五国家新药创制重大专项,国家自然科学基金青年基金项目及企业委托项目等研究课题;已发表研究论文30余篇,申请专利4项(授权2项)。 /p p style=" white-space: normal text-align: center " img src=" https://img1.17img.cn/17img/images/202007/uepic/c83d8d0f-50bb-4e2e-aa05-e34b51aff957.jpg" title=" 周丽娜1.png" alt=" 周丽娜1.png" style=" max-width: 100% max-height: 100% " / /p p style=" white-space: normal text-align: justify text-indent: 2em " 周丽娜,天津大学化工学院国家工业结晶技术研究中心工程师,长期从事药物晶型研究以及固体材料分析等,承担国家自然科学基金项目一项,作为主要参与人累计参加国家自然科学基金项目十余项,作为负责人完成多个关于药物晶型研究分析鉴定方面的企业委托项目,作为一作或通讯作者累计发表相关SCI论文十余篇,并为多个期刊审稿人。 /p p style=" white-space: normal text-align: center " img src=" https://img1.17img.cn/17img/images/202007/uepic/1f35ea59-5bed-43a6-9362-bcbd877a2f3a.jpg" title=" 局威材.png" alt=" 局威材.png" style=" max-width: 100% max-height: 100% " / /p p style=" white-space: normal text-align: justify text-indent: 2em " 居威材,赛默飞世尔科技应用工程师,现主要从事XRD及XRF相关应用开发工作。在XRD方面有着丰富的应用经验,多篇研究成果被中文核心期刊及SCI收录:2015年11月在《Journal of Chemical Crystallography》期刊发表《Hydrogen-Bond Reorganization of a Solid-State Dehydration Process in a Salt of Tris(hydroxymethyl)aminomethane and Sulfosalicylic Acid, Investigated by Powder X-ray Diffraction》;2016年9月在《Powder Diffraction》 期刊发表《Molecular reorientation in a dehydration process of an organic polar salt of 2,4-diaminotoluene/L(+)-tartaric acid》等。 /p p style=" white-space: normal text-align: justify text-indent: 2em " span style=" color: rgb(227, 108, 9) " strong 点击链接或扫描下方二维码,即可进入报名页面,获得与专家及时交流的机会! /strong /span /p p style=" text-align: justify text-indent: 2em " 1、报名链接: /p p style=" white-space: normal text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/X0723/" target=" _self" span style=" color: rgb(0, 112, 192) " span style=" color: rgb(0, 0, 0) " https://www.instrument.com.cn/webinar/meetings/X0723/ /span /span /a /p p style=" text-align: justify text-indent: 2em " 2、参会报名二维码 /p p style=" white-space: normal text-align: justify text-indent: 2em " img src=" https://img1.17img.cn/17img/images/202007/pic/15f59e8e-4a82-4c71-865f-8173a9fe0267.jpg" style=" max-width: 100% max-height: 100% width: 250px height: 250px " width=" 250" height=" 250" border=" 0" vspace=" 0" title=" " alt=" " / /p p style=" white-space: normal text-align: justify text-indent: 2em " br/ /p p br/ /p
  • 瑞士科学家开发X 射线消色差透镜 将很快实现X 射线显微镜商业应用
    仪器信息网讯 近日,瑞士保罗谢尔研究所(Paul Scherrer Institute,简称PSI) 的科学家开发了一种X射线显微镜的突破性光学元件——X 射线消色差透镜。这使得 X 射线束即使具有不同的波长也可以准确地聚焦在一个点上。对应成果于3月14日发表在科学杂志Nature Communications上,成果表示,新型X射线镜头将使使用 X 射线研究纳米结构变得更加容易;这种类型的X射线消色差仪将克服衍射光学和折射光学的色差限制,并为宽带X射线管光源在光谱学和显微镜中的新应用铺平道路。DOI: 10.1038/s41467-022-28902-8用于在微纳米尺度上无损研究物质内部结构和元素组成的X射线技术需要高性能的X射线光学系统。为此,在过去的十年中,人们开发了各种类型的反射、折射和衍射光学元件。衍射和折射光学元件已成为大多数高分辨率X射线显微镜的组成部分。然而,始终遭受固有色差的影响。到目前为止,这限制了它们在窄带辐射中的使用,从本质上说,这类高分辨率X射线显微镜仅限于高亮度同步辐射源。与可见光光学类似,解决色差的一种方法是将具有不同色散功率的聚焦光学和散焦光学结合起来。在这次新成果中,PSI科学实现了X射线消色差仪的首次成功实验,该消色差仪由电子束光刻和镀镍制作的聚焦衍射菲涅耳波带片(FZP)和3D打印双光子聚合制作的散焦折射透镜(RL)组成。利用扫描透射X射线显微镜(STXM)和光学显微镜,科学家演示了在宽能量范围内的亚微米消色差聚焦,而无需任何焦距调整。这种类型的X射线消色差仪将克服衍射光学和折射光学的色差限制,并为宽带X射线管光源在光谱学和显微镜中的新应用铺平道路。消色差镜头对于在摄影和光学显微镜中产生清晰的图像至关重要。它们确保不同颜色(即不同波长的光)具有共同的焦点。然而,迄今为止,X 射线还没有消色差透镜,因此只有单色 X 射线才能实现高分辨率 X 射线显微镜。在实践中,这意味着必须从 X 射线光束光谱中滤除所有其他波长,因此只能有效使用一小部分光,从而导致相对低效的图像捕获过程。由 3D 打印机创建的微结构:由 PSI 科学家开发的创新折射结构与衍射元件相结合,形成一个消色差 X 射线镜头,约一毫米长(或高,如图所示)。打开它的末端,就像一个微型火箭。它是由 3D 打印机使用特殊类型的聚合物创建的。该结构的图像由扫描电子显微镜拍摄。图片来源:Paul Scherrer Institute/Umut SanliPSI 科学家团队已通过成功开发用于 X 射线的消色差 X 射线透镜解决了以上问题。由于 X 射线可以揭示比可见光小得多的结构,创新的镜头将特别有利于微芯片、电池和材料科学等领域的研发工作。比可见光消色差更加复杂对于可见光,消色差透镜的应用已经超过200多年。但对于X 射线的消色差透镜直到现在才被开发出来,这一事实乍一看似乎令人惊讶。可见光的消色差透镜是由一对不同的材料组成,当可见光穿透第一种材料时,分散成不同光谱颜色(就像穿过传统的玻璃棱镜时一样),然后这些光谱再通过第二种材料时就会逆转这种分散效果,聚焦在一个点上。(在物理学中,分散不同波长的过程称为“色散”)消色差聚焦原理:散焦折射透镜(RL)的色度作为聚焦菲涅耳波带片(FZP)色度特性的校正器。b扫描电子显微镜(SEM)显示了通过电子束光刻和镍电镀制作的镍FZP,用于对比测量。c由四个堆叠抛物面组成的RL的SEM图像,使用双光子聚合光刻技术进行3D打印。d使用消色差作为聚焦光学元件的扫描透射X射线显微镜(STXM)和光学成像实验装置的草图。PSI 的X 射线纳米科学与技术实验室 X 射线光学与应用研究组负责人、物理学家 Christian David 解释说:“这种适用于可见光范围的基本原理在 X 射线范围内不再起作用。对于 X 射线,没有任何两种材料的光学特性能够在很宽的波长范围内足以抵消另一种材料的影响。换句话说,材料在 X 射线范围内的色散是太相似了。”两个原理而不是两种材料因此,科学家们没有将寻找答案放在在两种材料的组合中,而是探索将两种不同的光学原理联系在一起。“诀窍是要意识到我们可以在衍射透镜前面放置第二个折射透镜,”新研究的主要作者Adam Kubec说。Kubec 目前是 Christian David 小组的研究员,现在为 XRnanotech 工作,XRnanotech 是 PSI 在 X 射线光学研究过程中的一个衍生公司。“多年来,PSI 一直是 X 射线镜片生产的世界领导者,”David 说,“我们为全球同步加速器光源的 X 射线显微镜提供专门的透镜,称为菲涅耳波带片。” David 的研究小组使用已建立的纳米光刻方法来生产衍射透镜。然而,对于消色差透镜中的第二个元素——折射结构——需要一种新方法,这种方法最近才得以实现:微米级的 3D 打印。这最终使 Kubec 能够制作出一种类似于微型火箭的形状。使用消色差仪演示在不同能量下的 STXM 成像。a)使用消色差获得的图b 中所示的Siemens star样品的 STXM 图像,表明在最佳能量约 6.4 keV 的附近,消色差范围 1 keV。b) Siemens star 测试样品的 SEM 图像,外圈和内圈的径向线和间距 (L/S) 的宽度分别为 400 nm 和 200 nm,见红色箭头。c) STXM 的比较结果是使用消色差 (上) 和传统 FZP (下) 获得的能量范围为 6.0 keV 至 6.4 keV。虽然 FZP 图像的对比度随能量快速变化,但使用消色差获得的图像质量变化很小。潜在的商业应用新开发的镜头使得X射线显微镜实现了从研究应用到商业应用(例如工业)的飞跃。“同步加速器源产生如此高强度的 X 射线,以至于可以滤除除单个波长以外的所有波长,同时仍保留足够的光来产生图像,”Kubec 解释说。然而,同步加速器是大型研究设施。迄今为止,在工业界工作的研发人员被分配了固定的光束时间,在研究机构的同步加速器上进行实验,包括 PSI 的瑞士同步辐射光源 SLS。这种光束时间极其有限、昂贵,且需要长期规划。“行业希望在他们的研发过程中拥有更快的响应循环,”Kubec 说,“我们的消色差 X 射线镜头将在这方面提供巨大帮助:它将使工业公司可以在自己的实验室内操作紧凑型 X 射线显微镜。”PSI 计划与 XRnanotech 一起将这种新型镜头推向市场。Kubec 表示,他们已经与专门在实验室规模上建造 X 射线显微镜设施的公司建立了适当的联系。作为元件安装在瑞士同步辐射光源SLS上进行测试为了测试他们的消色差仪的性能,科学家们在将其作为聚焦光学元件安装在瑞士同步辐射光源SLS的cSAXS光束线上。其中一种方法是非常先进的 X 射线显微镜技术,称为 ptychography。“这种技术通常用于检测未知样本,”该研究的第二作者、Christine David 研究小组的物理学家、X 射线成像专家 Marie-Christine Zdora 说,“另一方面,我们使用 ptychography 来表征 X 射线束,从而表征我们的消色差透镜。” 这使科学家能够精确检测不同波长的 X 射线焦点的位置。他们还使用一种方法对新镜头进行了测试,该方法使样品以小光栅步长穿过 X 射线束的焦点。当改变 X 射线束的波长时,使用传统 X 射线镜头产生的图像会变得非常模糊。但是,在使用新的消色差镜头时不会发生这种情况。“当我们最终在广泛的波长范围内获得测试样品的清晰图像时,我们知道我们的镜头正在发挥作用,” Zdora高兴地说道。David 补充说:“我们能够在 PSI 开发这种消色差 X 射线镜头,并且很快将与 XRnanotech 一起将其推向市场,这一事实表明,我们在这里所做的这类研究将在很短的时间内实现实际应用。”
  • "2013最受关注仪器”X射线、电化学、环境入围名单
    仪器信息网讯 &ldquo 2013最受关注仪器&rdquo -X射线、电化学、环境类入围名单揭晓。 年度最受关注仪器奖,用于表彰本年度受用户关注最高,最畅销的仪器。为用户选购该类别仪器是提供有用的参考。 评选依托仪器信息网庞大的访问数据和用户基础,以仪器在用户中受关注程度的高低作为主要评选标准。将仪器信息网展示的10万余台仪器,按照色谱、光谱、质谱、X射线、电化学、环境监测、实验室常用设备、颗粒分析、热分析、试验机、生命科学、光学12个类别进行分类,通过各台仪器在仪器信息网当年独立访问人数及用户留言数进行综合计算,评选出&ldquo 最受关注仪器&rdquo 入围名单,国、内外各3台仪器,共计72台仪器。 最终获得各类别下&ldquo 最受关注仪器&rdquo 称号的国、内外各1台产品。将在&ldquo 中国科学仪器发展年会&rdquo 上进行揭晓,并举行隆重的颁奖仪式。 2013年仪器领域事件频频,PM2.5,塑化剂,镉大米,食品重金属事件频频曝光,百姓也对食品安全,环境保护方面越来越重视,大家从身边的事情也对分析仪器有了逐渐的了解,甚至一些便携的检测仪器已逐渐开始走向你我的家中。科学分析仪器也慢慢的揭开其神秘的面纱。 通过今年入围的仪器,可以看出国内产品越来越受到用户的亲睐,最受用户关注仪器从评奖以来,国外产品的关注度一直是远远超过同类的国内产品。但近几年的关注数据表明,随着国内生产工艺水平不断改进,厂商对产品的宣传力度不断加大加上国家对科学分析仪器的重视程度越来越高。国内产品的受关注程度已经越来越逼近国外仪器。虽还存在差距,但相信在不久的将来,国产仪器将会走出自己的一篇蓝天,扩展更广阔的市场领域。 敬请期待2014年4月18日举办的&ldquo 2014中国科学仪器发展年会&rdquo ,届时将揭晓国、内外共12个大类的最受用户关注仪器。 &ldquo 2013最受关注仪器&rdquo -X射线、电化学、环境类入围名单(按公司名称拼音首字母排序) X射线类: 国内仪器 XF-8100波长色散X射线荧光光谱仪 北京东西分析仪器有限公司 EDX P730手持式X荧光光谱仪 江苏天瑞仪器股份有限公司 DM1240型X荧光硫钙铁分析仪 上海爱斯特电子有限公司 进口仪器 布鲁克 D8 达芬奇 X射线衍射仪 布鲁克(北京)科技有限公司 SPECTRO XEPOS偏振X射线荧光光谱仪 德国斯派克分析仪器公司 XPert Powder多功能粉末X射线衍射仪 荷兰帕纳科公司 电化学类: 国内仪器 CHI660E电化学工作站 上海辰华仪器有限公司 AKF-1全自动卡尔费休水分测定仪 上海禾工科学仪器有限公司 MP511实验室PH计 上海三信仪表厂 进口仪器 PAR2273电化学工作站 阿美特克科学仪器部(普林斯顿及输力强) FE20- FiveEasy&trade pH计 梅特勒-托利多中国 PGSTAT302N电化学工作站 瑞士万通中国有限公司 环境类: 国内仪器 GDYK-206S甲醛测定仪 长春吉大· 小天鹅仪器有限公司 5B-3C型(V8) COD快速测定仪 兰州连华环保科技有限公司 3012H型自动烟尘烟气分析仪(09代) 青岛崂山应用技术研究所进口仪器 Element arvario TOC 总有机碳分析仪 大昌华嘉商业(中国)有限公司 multi N/C® 3100 总有机碳/总氮分析仪 德国耶拿分析仪器股份公司 LDO便携式溶氧仪 哈希公司
  • 程琳教授团队:毛细管聚焦的微束X射线衍射仪及其应用研究
    毛细管聚焦的微束X射线衍射仪及其应用研究邵金发,程琳*(北京师范大学核科学与技术学院,射线束技术教育部重点实验室 100875)摘要随着自然科学的不断进步,诸多领域都朝着微观层面发展,人们对物质的分析随之深入到微区范畴。微束X射线衍射分析技术是一种无损分析微小样品或样品微区物相结构的有利工具,凭借着无损、微区、空间分辨率高等特点被应用于诸多领域中。本实验室将毛细管X射线聚焦技术与X射线衍射分析技术相结合,自行设计研发了一种新型毛细管聚焦的微束X射线衍射仪。它利用毛细管X光透镜的特点,将X射线源发出的X射线束会聚到微米量级,从而实现对小样品或者样品微区的物相分析,为解决金属文物、陶瓷文物等的无损微区物相分析提供了解决方案。1. 引言微束X射线衍射(micro-X-ray diffraction,µ-XRD)是一种可靠的、无损的物相结构分析技术,已被广泛应用于生物化学、材料科学、地球科学、应力分析等领域[1-6]。目前获得微束入射X射线的方法主要有准直器限束和X射线光学器件聚焦两种。通过准直器限束获得微束入射X射线是最早在微束X射线衍射仪中使用的方法,具体为采用准直狭缝或小孔作为光阑放置在入射光路上,用以减小入射X射线的发散度。但是与此同时,入射光束的强度会因为物理阻挡而降低,导致获得的衍射信息变弱,难以达到理想的分析效果[3,4]。而多毛细管X光透镜利用X射线全反射原理,可将在空心毛细管内表面上的多次全反射的X射线会聚于一焦点。因此可以以较大的角度收集从X射线源产生的X射线,且会聚后X射线的束斑大小可低至几十微米。同时,毛细管X光透镜对Cu-Kα的能量有高达2-3个数量级的放大倍数[7],且具有低的发散度,非常适合微小样品和样品微区物相结构无损分析的研究。目前德国Bruker公司生产的D8系列X射线衍射仪通过添加一个由微焦点X射线源和多毛细管X光透镜集成的附加模块实现μ-XRD分析的功能[8];意大利LANDIS实验室开发了一个集成多毛细管半透镜的μ-XRD衍射[9,10]仪。但由于仪器均缺乏二维、三维自动控制平台,难以实现样品微小测量点的准确定位,更无法实现样品微区的二维μ-XRD分析。面向微小样品和样品微区µ-XRD分析的需求,本实验室自行设计和开发一种新型的微束X射线衍射仪以及相应的计算机控制程序,并且开展了相关分析方法学的研究。2. 仪器组成本实验室设计的毛细管聚焦的微束X射线衍射仪外观如图1所示,其主要由微焦斑X射线管(Cu靶,焦斑大小50 μm×50 μm)、毛细管X光透镜(Cu-Kα能量处束斑大小为100 µm)、接收狭缝、SDD X射线探测器(5.9keV时能量分辨率为145eV,铍窗有效面积25 mm2)、具有20倍放大功能的1400万像素固定焦距CCD摄像头、测角仪,XYZφ四维样品台,以及在LabVIEW语言环境下开发的仪器控制程序等部分组成。图1 微束X射线衍射仪的外观图控制程序的主界面具有微区X射线衍射分析和微区能量色散X射线荧光(micro energy dispersive X-ray fluorescence,μ-EDXRF)分析两种模式,如图2所示。谱图显示区域在探测过程中实时显示X射线探测器探测到的谱图。此外,该仪器使用的高精度自动化三维运动平台可以满足微区的二维μ-XRD分析的需求,以便实现对感兴趣区域内物相分布的分析等相关问题。图2 微束X射线衍射仪控制程序的主界面与Si (4 0 0)的X射线衍射图3. 实验分析3.1 氮化钛薄膜的分析薄膜具有强大的性能,但同时也会因为各种内部或者外部因素而发生失效。因此,薄膜微观区域特征的变化对宏观尺度特征的研究具有重要的作用。本文选择TiN薄膜作为研究对象,以期了解薄膜中TiN晶相生长的择优取向并对其进行快速评估。该TiN薄膜的是利用金属真空蒸汽电弧离子源(MEVVA)先进行离子注入,再经磁过滤真空阴极电弧沉积系统(FCVA)气相沉积而成。被测样品如图3所示,A部分和B部分是TiN薄膜,C部分为304不锈钢衬底,其中A部分更靠近整个样品的边缘,感兴趣的区域标识在中间的矩形条框中(0.5 mm×5.0 mm)。由于图中各部分形状不规则,易被常规X射线仪器的射线束无差别的覆盖,因此在这里进行微区分析十分必要。图3 TiN薄膜与304不锈钢衬底以及被测位置图片在μ-EDXRF分析模式下,X射线管电压为30 kV,管电流为0.5 mA,X射线束与样品表面的夹角θ1和X射线探测器铍窗的中心线与样品表面的夹角θ2均为45°,探测器探测活时间为60 s,测量得到的μ-EDXRF光谱见图4。同时,选择如图3中所示的感兴趣区域,使用微束X射线衍射仪进行µ-EDXRF二维扫描分析。扫描步距为50 μm,每个点的测量条件与μ-EDXRF分析保持一致,每步的探测活时间为500 ms。经过数据处理,得到扫描区域内各元素的分布如图5所示。在µ-XRD分析模式下,X射线管的设置与µ-EDXRF分析模式下相同,测角仪2θ范围为10°~120°,步距角为0.1°,每步的探测活时间为1 s,测量得到的X射线衍射图谱如图6所示。图4 TiN薄膜测量点的μ-EDXRF光谱图5 TiN薄膜扫描区域中Fe和Ti元素的分布图6 TiN薄膜测量点的μ-XRD图从图4可以看出,TiN薄膜测量点a和b的主要荧光峰来自Ti元素,同时,测得的304不锈钢衬底的主要合金元素为Fe、Ni和Cr。通过荧光峰的强度可知,a点Fe与Cr的相对含量较b点高,而b点Ti的相对含量较a点高,即b点处沉积了更多的Ti。从图5中可以看出,从中部到边缘位置Ti的含量发生了明显的改变,这主要受沉积束流在304不锈钢衬底上的覆盖面积所影响,而这种含量的改变与薄膜物相的变化有一定的联系。图6的测量结果表明,在该TiN薄膜中TiN所呈现的取向分别为(1 1 1)、(2 0 0)、(2 2 0)和(3 1 1)。在a点中最强的衍射峰来自于TiN的(2 2 0)晶面;在b点中TiN的(1 1 1)晶面呈现为最强,而(2 2 0)晶面消失了。结合图5中的元素分布可知,Ti的含量在物相变化的过程中起到了重要作用,随着沉积Ti的增加,膜内积聚的内压力促进了相变。因此,使用本微束X射线衍射仪可以实现对TiN薄膜,尤其是镀在微小零件上的薄膜的定点性能监测。同时,借助本微束X射线衍射仪,可从元素组成、元素分布、物相组成几方面对薄膜的微区进行表征。可以帮助认识了薄膜微区的性质,并为宏观的薄膜失效或者薄膜强化提供了研究数据。3.2 清代红绿彩瓷的分析为了评估本仪器对样品微区进行物相二维μ-XRD分析的能力,选取一片清代红绿彩瓷的残片作为研究对象。调节样品台使样品表面感兴趣区域清晰呈现在CCD图像中,并通过鼠标在控制界面的CCD视野中选择具体的目标扫描区域(图7)。选择图7中A(白釉),B(红彩)和C(绿彩)进行μ-XRD分析。µ-XRD分析的测量条件与上文保持一致,所得μ-XRD图如图8所示。从图8中可以看出,A点白釉XRD谱图在15 °~35 °之间出现一个驼峰,这是白釉在高温烧制过程中形成的非晶相所致;同时,经过对比ICCD PDF卡,A点白釉中主要存在的晶相为钾长石KAlSi3O8 (PDF 25-0618)、石英SiO2 (PDF 46-1045)和莫来石3Al2O32SiO2 (PDF 15-0776)等;B点红彩中主要存在的晶相为Fe2O3 (PDF 47-1409)和石英SiO2(PDF 46-1045)等;C点绿彩中主要存在的晶相为Pb8Cu(Si2O7)3 (PDF 31-0464)等。图7 清代红绿彩瓷残片与感兴趣区域图片图8 红绿彩中白釉、红彩和绿彩的μ-XRD图此外,选择如图7中2 mm×2 mm的感兴趣区域,使用微束X射线衍射仪进行µ-XRD二维扫描分析。该区域被划分为21×21个被测试点,扫描步距为100 µm,每个点的测量条件为:X射线管电压为30 kV,电流为0.5 mA,2θ探测范围为24.5°到30.5°,步距角为0.3°,每步探测活时间为0.8 s。由此得到的扫描总谱经数据处理得到的晶相分布图如图9所示。图9 扫描区域中Pb8Cu(Si2O7)3、3Al2O32SiO2、KAlSi3O8和Fe2O3的晶相分布4. 结论本实验室将毛细管X光透镜技术与X射线衍射分析技术相结合,设计和研发成一种新型微束X射线衍射仪。该微束X射线衍射仪具备无损分析微小样品和样品微区的物相结构的能力,且能实现样品微区中感兴趣区域的μ-XRD二维扫描。同时,该仪器还可实现样品的μ-EDXRF分析和μ-EDXRF二维元素分析,可为物相结构的研究提供了元素种类的参考信息,扩展了微束X射线衍射仪的功能。因此,其在材料科学、地球科学和文物保护等领域有着广泛的应用前景。 参考文献[1] Lin C , Li M , Youshi K , et al. The study of chemical composition and elemental mappings of coloredover-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence[J]. Nuclear Inst & Methods in Physics Research B, 2011, 269(3):239-243.[2] Laclavetine K, Ager F J, Arquillo J, et al. Characterization of the new mobile confocal micro X-ray fluorescence (CXRF) system for in situ non-destructive cultural heritage analysis at the CNA: μXRF-CONCHA[J]. Microchemical Journal, 2016, 125: 62-68.[3] Figueiredo E, Pereira M, Lopes F, et al. Investigating Early/Middle Bronze Age copper and bronze axes by micro X-ray fluorescence spectrometry and neutron imaging techniques[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016, 122:15-22.[4] Brai M, Gennaro G, Schillaci T, et al. Double pulse laser induced breakdown spectroscopy applied to natural and artificial materials from cultural heritages[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2009, 64(10):1119-1127.[5] HložEk M, Trojek T, B Komoróczy, et al. Enamel paint techniques in archaeology and their identification using XRF and micro-XRF[J]. Radiation Physics & Chemistry, 2016: S0969806X16300573.[6] Scrivano S, Ruberto C, B Gómez-Tubío, et al. In-situ non-destructive analysis of Etruscan gold jewels with the micro-XRF transportable spectrometer from CNA[J]. Journal of Archaeological Science: Reports, 2017, 16: 185-193.[7] Bonfigli, Francesca, Hampai, et al. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy[J]. Optical Materials, 2016, 58: 398-405. .[8] Berthold, C. , Bjeoumikhov, A. , & Lutz Brügemann. (2009). Fast XRD2 micro diffraction with focusing X-ray microlenses. Particle & Particle Systems Characterization, 26(3), 107-111.[9] Rotondo, G. G. , Romano, F. P. , Pappalardo, G. , Pappalardo, L. , & Rizzo, F. . (2010). Non-destructive characterization of fifty various species of pigments of archaeological and artistic interest by using the portable X-ray diffraction system of the Landis laboratory of catania. Microchemical Journal, 96(2), 252-258.[10] Padeletti, G. , Fermo, P. , Bouquillon, A. , Aucouturier, M. , & Barbe, F. . (2010). A new light on a first example of lustred majolica in Italy. Applied Physics A, 100(3), 747-761.*通讯作者程琳,工学博士,美国加州大学尔湾分校访问学者。现任职于北京师范大学核科学与技术学院,教授,博导。长期从事毛细管聚焦的微束X射线分析技术的研究及相关设备的研发;目前已经成功研发出国内首台毛细管聚焦的微束X射线荧光谱仪和毛细管聚焦的X射线衍射仪等设备并开展相关的分析技术及应用研究;作为项目负责人已经承担多项国家自然科学基金、北京市自然科学基金和北京市科技计划项目等,国家自然科学基金评审专家、北京市高新技术企业评审专家和X-ray spectrometry等国际刊物审稿人。e-mail: chenglin@bnu.edu.cn
  • 无损检测仪器——射线标准起草工作启动
    全国试标委无损检测仪器分技术委员会(以下简称标委会),于2010年4月15日-16日在丹东召开无损检测仪器——射线标准起草工作会议。参加会议的有丹东华日理学电气有限公司、丹东市无损检测设备有限公司、丹东方圆仪器有限公司、丹东通用电器有限责任公司、丹东市东方晶体仪器有限公司、丹东通广射线仪器有限公司、丹东东方电子管厂、丹东计量测试技术研究所、丹东荣华射线仪器仪表有限公司、丹东新力探伤机厂、丹东七宝电器设备制造厂、丹东东方仪器厂、丹东亚业射线仪器有限责任公司、丹东辽东射线仪器有限公司、辽宁仪表研究所有限责任公司十五家单位,参加本次会议的委员和代表24人。   本次会议由辽宁仪表研究所有限责任公司承办,会议由标委会秘书长李洪国主持并致欢迎词。秘书长李洪国系统地回顾、总结了过去一年来所做的工作,并对目前标准化的重点工作及下一步工作计划做了阐述和安排。   到会委员和代表对标委会归口的《无损检测仪器 工业X射线探伤机电气通用技术条件》、《无损检测仪器 工业X射线探伤机 通用技术条件》、《X射线晶体定向仪》、《无损检测仪器 工业软X射线探伤机》、《无损检测仪器 射线探伤用密度计》、《无损检测仪器工业用X射线管系列型谱》、《无损检测仪器X射线应力测定仪 技术条件》、《无损检测仪器工业X射线检测系统》、《无损检测仪器 工业X射线图像增强器成像系统技术条件》、《无损检测仪器 X射线轮胎检测系统》十项行业标准的六项修订标准和四项制订标准草案稿进行了认真、细致地讨论。并提出修改意见:   1、《无损检测仪器 工业X射线探伤机电气通用技术条件》:增加“3.1.5电源电压波动”、“3.1.6电磁干扰” 修改了“3.4保护措施”等。   2、《无损检测仪器 工业X射线探伤机 通用技术条件》:增加了“3.1.6电磁干扰” 修改了“3.2技术性能”和“3.3安全与可靠性要求” 对“4 试验方法”进行了逐条逐句的讨论、修改 删除了“表3”中的“13”等。   3、《X射线晶体定向仪》:对“3.2使用性能”多处做了的修改 将“刻度显示型”删掉等。   4、《无损检测仪器 工业软X射线探伤机》:修改了“5.2.1环境温度” 增加了5.6.2对高压变压器的描述 增加了6.11.3.2的参照图表“表6”等。   5、《无损检测仪器 射线探伤用密度计》:修改了“4.1环境条件”和“4.3安全要求”等。   6、《无损检测仪器 工业用X射线管系列型谱》:将表格做了简化,并根据产品发展及市场需要对表1、表2等做了详尽的修改。   7、《无损检测仪器X射线应力测定仪 技术条件》:修改了“4.1环境条件” 在“4.12散射线照射量率”中增加“参照GB22448-2008中3.1规定进行”并将“散射线照射量率”改为“散漏射线空气比样动能率” 将6.7中“射线照射量率”改为“散漏射线照射量率”等。   会议建议起草单位会后根据修改意见进行整理形成征求意见稿广泛征求意见。全体委员和代表经过两天的共同努力使大会圆满结束。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制