当前位置: 仪器信息网 > 行业主题 > >

射线生物仪

仪器信息网射线生物仪专题为您提供2024年最新射线生物仪价格报价、厂家品牌的相关信息, 包括射线生物仪参数、型号等,不管是国产,还是进口品牌的射线生物仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合射线生物仪相关的耗材配件、试剂标物,还有射线生物仪相关的最新资讯、资料,以及射线生物仪相关的解决方案。

射线生物仪相关的论坛

  • 推荐一款做生物大分子的X射线衍射仪

    各位好,能否推荐一款能做生物大分子结构的X射线衍射仪,主要是蛋白和蛋白复合物。本人对这个技术不是很懂,领导布置的任务让我先帮忙调研一下。最好能直接推荐哪几个公司的哪几个型号,能讨论优劣那就更好了。谢谢!

  • 【原创】X射线荧光光谱仪基础知识普及(一)X射线

    X射线波长小于0.01nm的称超硬X射线,在0.01~0.1nm范围内的称硬X射线,0.1~10nm范围内的称软X射线。X射线具有很强的穿透力,医学上常用作透视检查,工业中用来探伤。长期受X射线辐射对人体有伤害。X射线可激发荧光、使气体电离、使感光乳胶感光,故X射线可用电离计、闪烁计数器和感光乳胶片等检测。晶体的点阵结构对X射线可产生显著的衍射作用,X 射线衍射法已成为研究晶体结构、形貌和各种缺陷的重要手段。特点  X射线的特征是波长非常短,频率很高,其波长约为(20~0.06)×10-8厘米之间。因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的。所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。X射线在电场磁场中不偏转。这说明X射线是不带电的粒子流,因此能产生干涉、衍射现象。  X射线谱由连续谱和标识谱两部分组成 ,标识谱重叠在连续谱背景上,连续谱是由于高速电子受靶极阻挡而产生的 轫致辐射 ,其短波极限λ 0 由加速电压V决定:λ 0 = hc /( ev )为普朗克常数, e 为电子电量, c 为真空中的光速。标识谱是由一系列线状谱组成,它们是因靶元素内层电子的跃迁而产生,每种元素各有一套特定的标识谱,反映了原子壳层结构 。同步辐射源可产生高强度的连续谱X射线,现已成为重要的X射线源。  X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。当在真空中,高速运动的电子轰击金属靶时,靶就放出X射线,这就是X射线管的结构原理。  放出的X射线分为两类:  (1)如果被靶阻挡的电子的能量,不越过一定限度时,只发射连续光谱的辐射。这种辐射叫做轫致辐射,连续光谱的性质和靶材料无关。  (2)一种不连续的,它只有几条特殊的线状光谱,这种发射线状光谱的辐射叫做特征辐射,特征光谱和靶材料有关。X射线的危害x射线和其他辐射线,一般对人的伤害分为两种,一是通过能量传递,对人体细胞的DNA进行破坏,称为物理效应,还有一种是,由射线对人体组织内水发生电离,产生自由基,这些自由基再和生物大分子发生作用,导致不可逆损伤,称为生物效应。x射线以生物效应为主。辐射作用于生物体时能造成电离辐射,这种电离作用能造成生物体的细胞、组织、器官等损伤,引起病理反应,称为辐射生物效应。辐射对生物体的作用是一个非常复杂的过程,生物体从吸收辐射能量开始到产生辐射生物效应,要经历许多不同性质的变化,一般认为将经历四个阶段的变化: ①物理变化阶段:持续约10-16秒,细胞被电离; ②物理-化学变化阶段:持续约10-6秒,离子与水分子作用,形成新产物; ③化学变化阶段:持续约几秒,反应产物与细胞分子作用,可能破坏复杂分子;④生物变化阶段:持续时间可以是几十分钟至几十年,上述的化学变化可能破坏细胞或其功能。辐射生物效应可以表现在受照者本身,也可以出现在受照者的后代。表现在受照者本身的称为躯体效应(按照显现的时间早晚又分为近

  • 【分享】X射线衍射分析的实验方法及其应用

    【分享】X射线衍射分析的实验方法及其应用

    自1896年X射线被发现以来,可利用X射线分辨的物质系统越来越复杂。从简单物质系统到复杂的生物大分子,X射线已经为我们提供了很多关于物质静态结构的信息。此外,在 各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用,人们对晶体的研究日益深入,使得X射线衍射分析成为研究晶体最方便、最重要的手段。本文主要介绍X射线衍射的原理和应用。[B]1、 X射线衍射原理[/B]  1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理 。衍射线空间方位与晶体结构的关系可用布拉格方程表示:[img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191408_119327_1703280_3.jpg[/img]

  • 【资料】XRF测试仪的危害-X射线对人体的影响及危害

    有危害应该是确定的 但只要防护得当,您不是每天都接触的话,对身体不会有明显的影响。 x射线和其他辐射测试仪线,一般对人的伤害分为两种,一是通过能量传递,对人体细胞的DNA进行破坏,称为物理效应,还有一种是,由射线对人体组织内水发生电离,产生自由基,这些自由基再和生物大分子发生作用,导致不可逆损伤,称为生物效应。 x射线以生物效应为主。XRF属于X射线 对人体产生危害的主要是X射线 射线防护专家吴毅教授发表观点认为:X射线在穿透人体时,会对人体产生轻度危害,引起人体生物大分子及水分子的电离和激发反应,产生有害效应,无任何防护的照射就会对人体造成射线损伤。 射线对人体造成的伤害,绝大部分会长期潜伏在体内,破坏免疫系统 分析仪的X射线不会直接穿透人体的,但也需要防护装置,即使是在有防护装置不直接接触的情况下,日积月累,也是一件很可怕的事情。 可以这么说 具体的危害 一年两年是看不出来的 X射线对人体的影响及危害 第一节辐射损伤的概述 辐射损伤是一定量的电离辐射作用于机体后,受照机体所引起的病理反应。 急性放射损伤是由于一次或短时间内受大剂量照射所致,主要发生于事故性照射。在慢性小剂量连续照射的情况下,值得重视的是慢性放射损伤,主要由于X线职业人员平日不注意防护,较长时间接受超允许剂量所引起的。 电离辐射不仅能引起全身性急慢性放射损伤,而且也能引起局部的皮肤损害。在发现X线后第二年,X线管的制造者格鲁贝的手就发生了特异性皮炎。1899年史蒂文斯首先报道了X线对皮肤的伤害。 人类的经验已证明,X线的应用可以给人类带来巨大的利益(如放射诊断、放射治疗等),但是在应用中如果不注意防护或使用不当。也可造成一定的危害(如个体受到损伤或人群中癌症发病率增高等)。因此,本章从辐射防护的需要出发,介绍辐射损伤的有关基本知识,以便深入理解辐射防护标准的制定依据和搞好防护的必要性。 一、辐射损伤机理 X线照射生物体时,与机体细胞、组织、体液等物质相互作用,引起物质的原子或分子电离,因而可以直接破坏机体内某些大分子结构,如使蛋白分子链断裂、核糖核酸或脱氧核糖核酸的断裂、破坏一些对物质代谢有重要意义的酶等,甚至可直接损伤细胞结构。另外射线可以通过电离机体内广泛存在的水分子,形成一些自由基,通过这些自由基的间接作用来损伤机体。 辐射损伤的发病机理和其它疾病一样,致病因子作用于机体之后,除引起分子水平,细胞水平的变化以外,还可产生一系列的继发作用,最终导致器官水平的障碍乃至整体水平的变化,在临床上便可出现放射损伤的体征和症状。对人体细胞的损伤,只限于个体本身,引起躯体效应。而对生殖细胞的损伤,则影响受照个体的后代而产生遗传效应。单个或小量细胞受到辐射损伤(主要是染色体畸变,基因突变等)可出现随机性效应。辐射使大量细胞或受到破坏即可导致非随机性效应。在辐射损伤的发展过程中,机体的应答反应则进一步起着主要作用,首先取决于神经系统的作用,特别是高级神经活动,其次是取决于体液的调节作用。由此可知,高等动物的疾病不能仅仅归结于那些简单的或孤立的细胞中所产生的过程,它包含着十分复杂的过程。二、影响辐射损伤的因素 射线作用于机体后引起的生物效应与很多因素有关。如射线的性质和强度;个人特性,如敏感性、年龄、性别、既往病史和健康状况,工作环境等。 (一)辐射性质 辐射性质包括射线的种类和能量。不同质的射线在介质中的传能线密度(LET)不同,所产生的电离密度不同,因而相对生物效应有异。X线和射线的生物效应基本一样。而中子的LET大得多,1—10兆电子伏的快中子产生的生物效应比x线、r射线大10倍。 同一类型的射线,由于射线能量不同产生的生物效应也不同。例如,低能x线造成皮肤红斑所需照射量小于高能X线。这是因为低能x线主要被皮肤所吸收,而高能x线照射时,能量可达深层组织,这不仅对放射治疗有价值,而且在射线防护中很有意义。 (二)X线剂量 射线作用于机体后,所引起的机体损伤直接与X线剂量有关。以不同剂量照射动物,可以发现当剂量达到一定量时才开始出现急性放射病征象,继续增加剂量时,则可出现死亡,剂量越大,死亡率越高,当增加到一定大的剂量时,则100%的动物发生死亡。 (三)剂量率 剂量率即单位时间内的吸收剂量。一般说来,总剂量相同时,剂量率越高,生物效应越大。但当剂量率达到一定值时,生物效应与剂量率之间失去比例关系。在极小的剂量率条件下,当机体损伤与其修复相平衡时,机体可长期接受照射而不出现损伤。小剂量长期照射,当累积剂量很大时,便可产生慢性放射损伤。 (四)照射方式 总剂量相同,单方向照射和多方向照射产生的效应不同。一次照射和多次照射,以及多次照射之间的时间隔不同,所产生的效应也有差别。 (五)照射部位和范围 机体各部位对于射线的辐射敏感性不同,所谓辐射敏感性是指机体由电离辐射的抵抗能力,即辐射的反应强弱程度或时间快慢,辐射敏感性高的组织容易受损伤。细胞对辐射的一般规律是,处于正常分裂状态的细胞对辐射是敏感的,而正常不分裂的细胞则是抗辐射的。 人体各组织对射线的敏感性大致有以下顺序: 1.高度敏感组织 淋巴组织(淋巴细胞和幼稚的淋巴细胞); 胸腺(胸腺细胞);骨髓组织(幼稚的红、粒和巨核细胞); 胃肠上皮,尤其是小肠隐窝上皮细胞; [color=#DC143C]性腺(精原细胞、卵细胞); 胚胎组织[/color]。 2.中度敏感组织 感觉器官(角膜、晶状体、结膜); 内皮细胞(主要是血管、血窦和淋巴管内皮细胞); 皮肤上皮(包括毛囊上皮细胞); 唾液腺; 肾、肝、肺组织的上皮细胞。 3.轻度敏感组织 中枢神经系统; 内分泌(性腺除外); 心脏。 4.不敏感组织 肌肉组织; 软骨和骨组织; 结缔组织。 同一剂量,生物效应随照射范围的扩大而增加,全身照射比局部照射危害大。 (六)环境因素 在低温、缺氧情况下,可延缓和减轻辐射效应。此外、受照者的年龄、性别、健康情况、精神状态及营养状况等不同,所产生的效应亦不同。由此可见,机体对射线的反应受各种因素的影响。

  • 【分享】基础知识--α射线

    α射线是核衰变时放出的重粒子。一般来讲能发生α衰变的天然放射性核素都是一些重核,其中最轻的是142Ce,比较准确地说只有相对原子质量A140的原子核才能发生α衰变。α射线是由高速运动的α粒子组成的,它在磁场中偏转方向与正离子流相同。带有两个正电荷,其内有二个中子和二个质子,所以它也是氦原子核。 α 射线的电离本领强,其穿透力很弱。在空气中的射程只有几个厘米,如果遇到固定物质或者液体物质时,射程更要缩短。数千分子一厘米厚的铅片或一张普通的纸,就可以完全挡住粒子辐射α射线。但因它的电离本领强,进入生物体后,能引起很大的损伤。所以对 α射线,主要防止进入体内后的体内辐射。 从防护的意义上经常见到的几种主要粒子射线有:α射线、β射线、中子射线[flash]http://ng1.17img.cn/bbsfiles/images/2017/10/20098150216_01_0_3.swf[/flash]

  • X射线衍射仪!

    请教各位大侠,粉末X射线衍射仪,单晶X射线衍射仪和多晶X射线衍射仪在结构和应用性能有什么区别啊?

  • 【史料】X射线的发现推动了化学进展(唐有祺)

    X射线的发现推动了化学进展--纪念伦琴发现X射线100周年唐有祺(北京大学物理化学研究所) "如果至今没有发现X射线晶体学,就无法想象今日的化学是什么样的。"这是瑞士化学、晶体学教授邓尼兹 (J. D. Dunitz) 在"X射线分析和有机分子的结构"一书中写的一句话,表明了X射线在化学进展中所起的作用,以下通过回忆X射线晶体学的诞生,X射线晶体结构分析和化学的关系,来纪念伦琴发现X射线100周年。一、X射线晶体学的诞生 1895年11月8日德国维尔茨堡大学物理研究所所长伦琴发现了X射线,自X射线发现后,物理学家对X射线进行了一系列重要的实验,探明了它的许多性能,根据狭缝的衍射实验,索末菲 (Sommerfeld) 教授指出,X射线如是一种电磁波的话,它的波长应当在1埃上下。 在发现X射线的同时,经典结晶学有了很大的进展,230个空间群的推引工作使晶体构造的几何理论全部完成,当时虽没有办法测定晶胞的形状和大小以及原子在晶胞中的分布,但对晶体结构已可臆测。根据当时已知的原子量、分子量、阿尔伽德罗常数和晶体的密度,可以估计晶体中一个原子或一个分子所占的容积,晶体中原子间距离约1-2埃。1912年,劳埃 (Laue) 是索末末菲手下的一个讲师,他对光的干涉现象很感兴趣,刚巧厄瓦耳 (P. Ewald) 正随索末菲进行结晶光学方面的论文,科学的交流使劳厄产生了一种极为重要的科学思想:晶体右以用作X射线的立体衍射光栅,而X射线又可用作量度晶体中原子位置的工具,刚从伦琴那里取得博士学位的夫里德里克 (W. Friedrich) 和尼平 (P. Knipping) 亦在索末末菲教授处工作,他们自告奋勇地进行劳厄推测的衍射实验,他们使用了伦琴提供的X射线管和范克罗斯 (Von. Groth) 提供的晶体,最先对五水合硫酸铜晶体进行了实验,费了很多周折得到了衍射点,初步证实了劳厄的预见。后来他们对辉锌矿、铜、氯化钠、黄铁矿、沸石和氯化亚铜等立方晶体进行实验,都得了正面的结果,为了解释这些衍射结果,劳厄提出了著名的劳厄方程,劳厄的发现导致了X射线晶体学和X射线光谱学这二门新学科的诞生。 劳厄设计的实验虽取得了正面的结果,但X射线晶体学和X射线光谱学成为新学科是一些得力科学家共同努力的结果。布拉格父子 (W. H. Bragg, W. L. Bragg)、莫塞莱 (Moseley)、达尔文 (Darwin) 完成了主要的工作。通过他们的工作认识到X射线具有波粒二重性;X射线中除了连续光谱外,还有波长取决于阴极材料的特征光谱,发现了X射线特征光谱频率和元素在周期表中序数之间的规律;提出了镶嵌和完整晶体的强度公式,热运动使衍射线变弱的效应,发展了X射线衍射理论。W. L. 布拉格在衍射实验中发现,晶体中显得有一系列原子面在反射X射线,他从劳厄方程引出了布拉格方程,并从KCl和NaCl的劳厄衍射图引出了晶体中的原子排列方式。W. L. 布拉格在劳厄发现的基础上开创了X射线晶体结构分析工作。 伦琴在1901年由于发现X射线成为世界上第一个诺贝尔物理奖获得者,而劳厄由于发现X射的晶体衍射效应也在1914年获得了诺贝尔物理奖。二、X射线晶体结构分析和化学 W. L. 布拉格开创的X射线晶体结构分析工作把X射线衍射效应和化学联系在一起。当NaCl等晶体结构被测定后,使化学家恍然大悟,NaCl的晶体结构中没有用NaCl表示的分子集团,而是等量的 离子和 离子棋盘交叉地成为三维结构。当时X射线结构分析中的位相问题是通过强度数据和强度公式用试差法来解决的,只能测定含二、三十个参数的结构,这些结构虽简单,但使无机物的结构化学有了真正的开始。从1934年起,帕特孙 (Patterson) 法和其他应用付里叶级数的方法相继提出,位相问题可通过帕特孙函数找出重原子的位置来解决,使X射线晶体结构分析摆脱了试差法。 1954年 X射线晶体结构分析的逐渐广泛使用,提供了许多分子内部的结构信息。鲍林氢量子力学和近代化学理论结合起来,建立和发展了现代结构化学。他提出的电负性计算方法和概念、原子杂化轨道理论和价键学说以及关于离子化合物结构的规则 是阐明各种复杂物质构造及性质的有力武器。他根据晶体结构测定得到的数据提出的a-螺旋体二级结构模型,为研究生物大分子的奥秘打开了通道。 1964年诺贝尔化学奖获得者霍奇金 (D. M. C. Hodgkin) 是世界上获得这项荣誉为数极少几个女科学家之一,是擅长X射线晶体结构分析的女化学家。她用X射线晶体结构分析测定了配尼西林的晶体结构,在1949年又成功地测定出维生素 的更为复杂的空间构型和构象,从而为合成维生素 和其它复杂的化合物开辟了道路。她还测定了胰岛素生物大分子的晶体结构。维生素 的晶体结构的测定使帕特孙函数重原子法到了里程碑的水平。 1962年诺贝尔化学奖获授予佩鲁茨 (M. F. Perutz) 和肯德鲁 (Sr. J. C. Kendrew) 二位生物、结晶学家。他们发展了X射线晶体结构分析技术,通过浸泡把重原子引入到蛋白质中,然后用同晶置换法解决位相问题,测定了鲸肌红蛋白和马血红蛋白的空间精细结构。从发现蛋白质有肽链结构到完全搞清楚蛋白质分子的精细的空间结构,前后差不多经过了半个世纪。在生物学对蛋白和核酸这两类大分子的三维结构研究无法前进的时候,X射线晶体结构分析为生物化学研究带来了突破。当今X射线晶体结构分析已成为生物大分子研究中的有力工具。 1985年诺贝尔化学奖授予晶体学家豪甫特曼 (H. Hauptman) 和卡尔 (J. Kale)。他们一直从事直接法的研究,用数学处理手段,从实验测得的结构振幅中找出包含的位相信息。直接法获得成功使X射线晶体结构分析中的位相问题基本上得到了解决。直接法可测定各种类型化合物的晶体结构,特别适作于重原子法无法测定的有机化合物的晶体结构。位相问题的解决使X射线结构分析和化学的关系更密切了。 至今X射线晶体结构分析有了很大的发展,这是和科学技术的进步紧密相关的。计算机技术,自动化技术等进展都把X射线结构分析技术提高到新的水平。现在衍射强度收集已完全自动化,计算机控制的四圆衍射仪已进入实验室,为化学家掌握和使用。X射线晶体结构分析已成为鉴定化合物的结构最可靠的方法。据1988年的统计,约有65000种化合物,30000种无机化合物和400种生物大分子的晶体结构已被测定。现每年约有5000种新化合物的晶体结构在各类杂志中报道。X射线晶体结构分析是研究原子在三维空间中结合的有力手段,它的发展必将进一步推动化学进展。

  • X射线衍射仪与X射线荧光光谱仪有什么不同?

    X射线衍射仪简称XRD( X-ray diffractometer ),特征X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。X射线荧光光谱仪简称XRF( X Ray Fluorescence ),人们通常把X射线照射在物质上而产生的次级X射线叫X射线荧光(X—Ray Fluorescence),而把用来照射的X射线叫原级X射线。所以X射线荧光仍是X射线。一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。X射线照在物质上而产生的次级 X射线被称为X射线荧光。利用X射线荧光原理,理论上可以测量元素周期表中铍以后的每一种元素。在实际应用中,有效的元素测量范围为9号元素 (F)到92号元素(U)。

  • 【资料】X射线荧光光谱法进展(共32讲)

    [B][center]X射线荧光光谱法的进展(1)——X射线光谱法的发展历程[/center][/B]X射线荧光(以下简称XRF)光谱法的基本原理是当物质中的原子受到适当的高能辐射的激发后,放射出该原子所具有的特征X射线。根据探测到该元素特征X射线的存在与否的特点,可以定性分析;而其强度的大小可作定量分析。该法具有准确度高,分析速度快,试样形态多样性及测定时的非破坏性等特点,它不仅用于常量元素的定性和定量分析,而且也可进行微量元素的测定,其检出限多数可达10-6,与分离、富集等手段相结合,可达10-8。测量的元素范围包括周期表中从F~U的所有元素。一些较先进的X射线荧光分析仪器还可测定铍、硼、碳等超轻元素。而多道XRF分析仪,在几分钟之内可同时测定20多种元素的含量。伦琴在1895年发现X射线。其后1927年用X射线光谱发现化学元素Hf,证实可以用X射线光谱进行元素分析。1948年美国海军实验室首次研制出波长色散X射线荧光光谱仪。20世纪60年代中期开始在工业部门推广这项技术,我国在那时开始引进刚开始商品化的早期X射线荧光光谱仪。山于半导体探测器的出现,70年代开始出现能量色散X射线光谱仪。由于微型计算机的出现,70年代末到80年代初,使X光谱分析技术无论在硬件、软件还是方法上都有突飞猛进的发展。进入90年代以来,随着空间、生物、医学、环境和材料科学的发展,其需求进一步刺激X射线光谱学的发展,主要体现在各种新探测器、新激发源及相关元器件的开发上,新器件的优越性又促成新的测试技术。X射线光谱学又面临一个大发展的局面。由于XRFA在主次量元素分析上的无可比拟的优势,以及现代X射线荧光光谱仪器的发展,XRFA已经成为一门成熟的成分分析技术,在冶金、地质、建材、石油、生物、环境等领域均有广泛的应用。

  • 【原创】每周学物理——第一讲 固体X射线物理基础

    一,X射线的本性X射线是在1895年由德国学者使琴在研究阴极射线的时候发现的。这种射线有下面一些特性:①肉眼不能观察到,但可使照相底片感光、萤光板发光和使气体电离;②能透过可见光不能透过的物体;②这种射线沿直线进行,在电场与磁场中它并不偏转,在通过物体时不发生反射、折射现象,通过普通光栅亦不引起衍射;④这种射线对生物有很厉害的生理作用。由于这种射线的性质长久不明,故称X射线。后来才称为伦琴射线。 ]912年德国学者劳埃以晶体作为光栅,X射线通过时发生了衍射现象,从而肯定了X射线的电磁波性质。 进一步的研究证明x射线是一种波长很短的电磁波,其波长介于γ射线和紫外线之间,由0.01到川10埃 度量X射线波长的单位有二种; ①埃(Å ),1Å =10-8cm,10; ②毫微米(nm),1nm=10Å ; 按照现代物理学的概念,X射线除了波动性质之外,还呈现为不连续的“量子流”。X射线的量子性质表现在其与物质相互发生作用时(吸收、散射)。 量子能量(ε)如下列公式所示: ε=hμ式中h——普朗克常数。等于6.62xl0—27尔格/秒 μ——射线的频率。由式可以看出,射线的频率愈大,则量子的能量愈高。二,X射线的产生 产生x射线的方法,是使快速移动的电子骤然停止止其运动,则电子的动能可部分转变成X光能 电子式X射线管如图2—l所示。[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902171133_133532_1644912_3.gif[/img]X射线管是一个由玻璃制造的圆柱形瞥子,管中气压在10-6厘米水银汞柱以下,管中有两个金属的电极,阴极为钨丝卷成,由两根导线通入3—4安培的电流,即在钨丝用围产生大量的热电子,在阴极和阳极之间加以高压电(30一50千伏),钨丝周围的热电于即向阳极作加速度移动。阳极为某种金隅的磨光面,当高速运动的电子与阳极(或称“靶”)相碰时,即骤然停止运动,此时电子的能量大部分变为热能,一部分变成光能,于是由靶面射出X射线。

  • 【分享】x射线危害

    X射线是由德国物理学家伦琴在80多年前首先发现的。它曾轰动了世界。开始时没有搞清它的性质,就以代数中的未知数“X”来命名,所以大家称它为X射线。其实它和无线电波、可见光、红外线、紫外线一样,都是一种电磁波,不过它的波长较短,只有可见光波长的几万分之一而已。 X射线的发现,在科学史上是一个划时代的事件,它为我们打开了原子能时代鳆大门。现在工业探伤,地质研究都离不开它,医学上更为重要,不仅用于诊断,还用它来治疗疾病,挽救了大量在死亡线上挣扎的“苦人儿”,对人类作_出了不可磨灭的贡献。但随着X线的发现和使用,同时也招来了前所未有的放射线危害。1902年报道了第一例由于X射线照射引起的皮肤癌,1912年又发现了第一例X射线工作者的白血病,从此就逐步引起了人们对X射线危害的重视,经过医学家和生物学家多年来的观察研究,发现X射线通过人体组织时,使构成组织的细胞损伤和人体内的液体发生电离,导致火体组织和细瓶的结构、功能发生改变或破坏。这种损害作用和x光机的性能、防护条件,接受射线照射量的多少有关。X光机的照射量可通过仪器测定。一般说,剂量小,损害轻,剂量大,损害重,而且剂量在人体内能够累积。剂量学中所用的单位有伦琴(简称伦)、拉德和雷姆等,在不同情况下用不同单位。如测量X光机本身时用伦琴作单位,人或生物吸收的量则用拉德作单位,在防护时常用雷姆作单位。对X射线来说,上述这些单位的数值近似《为便于理解,比如说,100拉德相当于100伦琴或雷姆》。 剂量多少与主要危害 1,如果短时间内全身受到lOO拉德以上剂量照射,就会得急性放射病;当剂量达到600拉德时,就有致命危险。得了急性放射病,金身各系统各器官都会受到损伤,最明显的是血掖制造障碍,血细胞破坏,出血、岖吐、腹泻、发烧,病人抵抗力下降,严重的甚至可能、因大出血或败血症而死亡。 2,如果全身长期受到远远超过每年5雷姆的慢性照射,人就感到疲乏、无力、头昏、头痛,失眠或嗜睡、记忆力减退、消瘦等。详细检查一下,发现血液有改变,尤其是白血球、血小板减少,内分泌、生殖等系统都有不同程度的病变。这可能是患了慢性放射病。其中极少数人,在数年至数十年后,还可能得白血病和其它恶性肿瘤。据美国20-10年代的统计,放射科医生的白血病要比其他医生高若干倍。日本1996~1972年分析发现,放射工作人员的皮肤癌明显增高。 3,射线对生殖系统也有明显的危害,能杀死生殖细胞,或使生殖细胞结构发生改变。据有人认为,男子受到50拉德X线照射,可使精景显著减少,200拉德以上照射,精子就消失,女子受到150拉德以上照射,可引起月经暂停如剂盈继续增大,可引起永久停经。因而上述情况可能引起不育,但对性欲的影响一般较小。另外还可能引起流产和死胎增加,或使他们的后代发生先天性畸形。根据有人观察,人体只要经过一次X线透视,就会使人体内的细胞染色体畸变增加,而染色体是遗传物质的贮存库。当受到100拉德剂量照射时,会使畸变率增加一倍。因此,为了保护人类后代,国际放射防护专门机构提出;具有生育年龄的人,30年内总的照射剂量不要超过5雷姆。

  • X射线衍射仪

    想知道X射线衍射仪高压开启但不使用光管,会对X射线衍射仪的光管寿命产生影响吗?

  • 【转帖】X射线对人体的影响和危害-大家谈谈自己的亲身感受

    X射线对人体的影响及危害 第一节辐射损伤的概述 辐射损伤是一定量的电离辐射作用于机体后,受照机体所引起的病理反应。 急性放射损伤是由于一次或短时间内受大剂量照射所致,主要发生于事故性照射。在慢性小剂量连续照射的情况下,值得重视的是慢性放射损伤,主要由于X线职业人员平日不注意防护,较长时间接受超允许剂量所引起的。 电离辐射不仅能引起全身性急慢性放射损伤,而且也能引起局部的皮肤损害。在发现X线后第二年,X线管的制造者格鲁贝的手就发生了特异性皮炎。1899年史蒂文斯首先报道了X线对皮肤的伤害。 人类的经验已证明,X线的应用可以给人类带来巨大的利益(如放射诊断、放射治疗等),但是在应用中如果不注意防护或使用不当。也可造成一定的危害(如个体受到损伤或人群中癌症发病率增高等)。因此,本章从辐射防护的需要出发,介绍辐射损伤的有关基本知识,以便深入理解辐射防护标准的制定依据和搞好防护的必要性。 一、辐射损伤机理 X线照射生物体时,与机体细胞、组织、体液等物质相互作用,引起物质的原子或分子电离,因而可以直接破坏机体内某些大分子结构,如使蛋白分子链断裂、核糖核酸或脱氧核糖核酸的断裂、破坏一些对物质代谢有重要意义的酶等,甚至可直接损伤细胞结构。另外射线可以通过电离机体内广泛存在的水分子,形成一些自由基,通过这些自由基的间接作用来损伤机体。 辐射损伤的发病机理和其它疾病一样,致病因子作用于机体之后,除引起分子水平,细胞水平的变化以外,还可产生一系列的继发作用,最终导致器官水平的障碍乃至整体水平的变化,在临床上便可出现放射损伤的体征和症状。对人体细胞的损伤,只限于个体本身,引起躯体效应。而对生殖细胞的损伤,则影响受照个体的后代而产生遗传效应。单个或小量细胞受到辐射损伤(主要是染色体畸变,基因突变等)可出现随机性效应。辐射使大量细胞或受到破坏即可导致非随机性效应。在辐射损伤的发展过程中,机体的应答反应则进一步起着主要作用,首先取决于神经系统的作用,特别是高级神经活动,其次是取决于体液的调节作用。由此可知,高等动物的疾病不能仅仅归结于那些简单的或孤立的细胞中所产生的过程,它包含着十分复杂的过程。二、影响辐射损伤的因素 射线作用于机体后引起的生物效应与很多因素有关。如射线的性质和强度;个人特性,如敏感性、年龄、性别、既往病史和健康状况,工作环境等。 (一)辐射性质 辐射性质包括射线的种类和能量。不同质的射线在介质中的传能线密度(LET)不同,所产生的电离密度不同,因而相对生物效应有异。X线和射线的生物效应基本一样。而中子的LET大得多,1—10兆电子伏的快中子产生的生物效应比x线、r射线大10倍。 同一类型的射线,由于射线能量不同产生的生物效应也不同。例如,低能x线造成皮肤红斑所需照射量小于高能X线。这是因为低能x线主要被皮肤所吸收,而高能x线照射时,能量可达深层组织,这不仅对放射治疗有价值,而且在射线防护中很有意义。 (二)X线剂量 射线作用于机体后,所引起的机体损伤直接与X线剂量有关。以不同剂量照射动物,可以发现当剂量达到一定量时才开始出现急性放射病征象,继续增加剂量时,则可出现死亡,剂量越大,死亡率越高,当增加到一定大的剂量时,则100%的动物发生死亡。 (三)剂量率 剂量率即单位时间内的吸收剂量。一般说来,总剂量相同时,剂量率越高,生物效应越大。但当剂量率达到一定值时,生物效应与剂量率之间失去比例关系。在极小的剂量率条件下,当机体损伤与其修复相平衡时,机体可长期接受照射而不出现损伤。小剂量长期照射,当累积剂量很大时,便可产生慢性放射损伤。 (四)照射方式 总剂量相同,单方向照射和多方向照射产生的效应不同。一次照射和多次照射,以及多次照射之间的时间隔不同,所产生的效应也有差别。 (五)照射部位和范围 机体各部位对于射线的辐射敏感性不同,所谓辐射敏感性是指机体由电离辐射的抵抗能力,即辐射的反应强弱程度或时间快慢,辐射敏感性高的组织容易受损伤。细胞对辐射的一般规律是,处于正常分裂状态的细胞对辐射是敏感的,而正常不分裂的细胞则是抗辐射的。 人体各组织对射线的敏感性大致有以下顺序: 1.高度敏感组织 淋巴组织(淋巴细胞和幼稚的淋巴细胞); 胸腺(胸腺细胞);骨髓组织(幼稚的红、粒和巨核细胞); 胃肠上皮,尤其是小肠隐窝上皮细胞; 性腺(精原细胞、卵细胞); 胚胎组织。 2.中度敏感组织 感觉器官(角膜、晶状体、结膜); 内皮细胞(主要是血管、血窦和淋巴管内皮细胞); 皮肤上皮(包括毛囊上皮细胞); 唾液腺; 肾、肝、肺组织的上皮细胞。 3.轻度敏感组织 中枢神经系统; 内分泌(性腺除外); 心脏。 4.不敏感组织 肌肉组织; 软骨和骨组织; 结缔组织。 同一剂量,生物效应随照射范围的扩大而增加,全身照射比局部照射危害大。 (六)环境因素 在低温、缺氧情况下,可延缓和减轻辐射效应。此外、受照者的年龄、性别、健康情况、精神状态及营养状况等不同,所产生的效应亦不同。由此可见,机体对射线的反应受各种因素的影响。

  • 欢迎chemsay担任X射线仪器-X射线衍射仪版主

    欢迎chemsay担任X射线仪器-X射线衍射仪版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请参见这个帖子:http://www.instrument.com.cn/bbs/shtml/20071101/1042199/

  • 欢迎iangie担任X射线仪器-X射线衍射仪版主

    欢迎iangie担任X射线仪器-X射线衍射仪版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请参见这个帖子:http://www.instrument.com.cn/bbs/shtml/20071101/1042199/

  • 欢迎xujun16担任X射线仪器-X射线衍射仪版主

    欢迎xujun16担任X射线仪器-X射线衍射仪版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请参见这个帖子:http://www.instrument.com.cn/bbs/shtml/20071101/1042199/

  • 欢迎vincent8788担任X射线仪器-X射线衍射仪版主

    欢迎vincent8788担任X射线仪器-X射线衍射仪版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请参见这个帖子:http://www.instrument.com.cn/bbs/shtml/20071101/1042199/

  • 欢迎feixiong5134担任X射线仪器-X射线衍射仪版主

    欢迎feixiong5134担任X射线仪器-X射线衍射仪版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请参见这个帖子:http://www.instrument.com.cn/bbs/shtml/20071101/1042199/

  • X射线衍射仪对人体是否有伤害?

    X射线衍射仪没接触过,但无损探伤的X射线机倒是知道,X射线机对人体危害非常危险,X射线衍射仪的操作者长时间使用,是不是也有很大伤害,怎么来加以保护人身安全呢?====版主模式====标题稍微改了一下.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制