当前位置: 仪器信息网 > 行业主题 > >

深部热疗仪

仪器信息网深部热疗仪专题为您提供2024年最新深部热疗仪价格报价、厂家品牌的相关信息, 包括深部热疗仪参数、型号等,不管是国产,还是进口品牌的深部热疗仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合深部热疗仪相关的耗材配件、试剂标物,还有深部热疗仪相关的最新资讯、资料,以及深部热疗仪相关的解决方案。

深部热疗仪相关的资讯

  • 武汉大学药学院黎威教授课题组:可穿戴式自供电微针贴片用于增强深部黑色素瘤治疗
    黑色素瘤是一种与表皮层黑色素细胞密切相关的高度恶性皮肤癌。经皮递药是手术替代或者补充治疗皮肤癌的有效方法,它可使药物能够穿透皮肤屏障并直接作用于肿瘤部位。然而,随着黑色素瘤的进展,表皮黑色素瘤细胞会持续浸润真皮,形成皮肤深部黑色素瘤。深部皮肤肿瘤的有效治疗依赖于经皮给药系统中的增强药物渗透。虽然微针(MNs)和离子导入技术在经皮给药方面已展现出效率优势,但皮肤弹性、角质层的高电阻和外部电源要求等需求挑战,仍然阻碍了它们治疗深部肿瘤的有效性。基于此,武汉大学药学院黎威教授和姜鹏副教授课题组设计开发了一种集成柔性摩擦电纳米发电机(F-TENG)的可穿戴自供电载药微针(MNs)贴片,旨在增强深部黑色素瘤的治疗。微针由水溶性微针基质材料与带负电荷的pH响应纳米粒子(NPs)混合而成,其中纳米粒子中装载着治疗药物。该装置充分利用MNs和F-TENG的优势(F-TENG能够利用个人机械运动产生电能),治疗性NPs可以在MNs贴片插入皮肤后渗透到深层部位,在酸性肿瘤组织中迅速释放药物。在深部黑色素瘤小鼠模型对比实验中,使用集成的F-MNs贴片的治疗效果优于普通MNs贴片,预示这集成F-MNs贴片在深部肿瘤治疗的巨大潜力。该贴片通过摩方精密microArch® S240(10μm精度)制备完成,相关研究成果以题为“Enhancing Deep-Seated Melanoma Therapy through Wearable Self-Powered Microneedle Patch”的文章发表在《Advanced Materials》。武汉大学药学院博士研究生王陈媛、硕士研究生何光琴和博士研究生赵环环为共同第一作者,武汉大学药学院黎威教授和姜鹏副教授为共同通讯作者。首先,研究者采用气体扩散法合成了具有pH响应性质的Ce6@CaCO3 NPs, Ce6@CaCO3 NPs为100 nm左右均匀分布的球形结构,表面修饰PEG进一步增强纳米粒子的胶体稳定性。在pH = 7.4的中性环境中,纳米粒子维持稳定的结构,使得封装的药物难以释放。在pH = 5.5的酸性环境中,纳米粒子结构被破坏,可实现药物的快速释放(如图1)。图1 Ce6(DOX)@CaCO3-PEG NPs的合成与表征a) Ce6(DOX)@CaCO3-PEG NPs的合成和药物释放过程示意图。b)合成Ce6@CaCO3 NPs的TEM图像。c)游离Ce6、游离DOX和Ce6(DOX)@CaCO3-PEG的紫外可见光谱(蓝色和黑色虚线矩形分别表示Ce6和DOX的特征吸收峰)。d) DLS测定的Ce6(DOX)@CaCO3-PEG NPs的粒径分布。e) Ce6@CaCO3和Ce6(DOX)@CaCO3-PEG NPs的Zeta电位。f) Ce6(DOX)@CaCO3-PEG NPs在不同pH值(7.4、6.5和5.5)的PBS中孵育0.5 h后的代表性TEM图像。g) Ce6(DOX)@CaCO3-PEG NPs在不同pH值(7.4、6.5和5.5)的PBS中随时间变化的水动力直径变化。Ce6(DOX)@CaCO3-PEG NPs在不同pH值PBS中h) DOX或i) Ce6的体外释放谱。每个点代表平均值±SD (n = 3个独立重复实验)。***p 图2 Ce6(DOX)@CaCO3-PEG NPs的体外行为a) B16-F10细胞对Ce6(DOX)@CaCO3-PEG NPs的摄取。b) Ce6(DOX)@CaCO3-PEG NPs孵育4 h后细胞摄取量的定量测定c)激光照射下游离Ce6或Ce6@CaCO3-PEG孵育后B16-F10细胞的细胞活力。两种处理的Ce6浓度相当。d)游离DOX或Ce6(DOX)@CaCO3-PEG孵育后B16-F10细胞的细胞活力。两种处理的DOX浓度相当。e) 660 nm激光照射不同处理下B16-F10细胞内ROS检测。f)用Ce6@CaCO3-PEG或Ce6(DOX)@CaCO3-PEG NPs处理B16-F10细胞在激光照射或不照射下的细胞活力。g)不同处理后B16-F10细胞的活/死测定。这些处理具有相同的DOX或Ce6浓度。绿色荧光:钙素-AM 红色荧光:碘化丙啶(PI)。每个点代表平均值±SD (n = 3个独立重复实验)。*p . ns表示无显著性。同时,研究者通过硅橡胶和导电织物制备了一种典型的接触和分离模式的柔性摩擦电层F-TENG,可以通过接触通电和静电感应的耦合效应将生物机械能转化为交流电(AC)输出。然而,为了有效地为离子电泳系统供电,交流输出必须转换成直流(DC)。因此,作者制作了电源管理系统(PMS),将F-TENG的交流转换为直流,同时显著放大电流。最后将柔性的F-TENG与载药微针结合,制备成一种可穿戴的装置(如图3)。 图3 一种工作在接触分离模式下的柔性TENG (F-TENG)。a) F-TENG的原理图(左)和照片(右)。b) F-TENG工作机理示意图。c)短路电流,d)开路电压,e) F-TENG的转移电荷。f)连接整流桥和LED灯的F-TENG输出电流。g)连接电源管理系统和LED灯的F-TENG输出电流。(f)和(g)中的插图是15秒内电流峰值的放大视图和LED灯的光学照片。h)手动驱动F-TENG连接到PMS的电流。i)可穿戴式F-MN贴片原理图。可穿戴的F-MN贴片j)贴在人体手臂上之前和k)贴在没有皮肤穿刺的情况下的演示照片。 微针通过真空浇筑法,将载药的纳米粒子与水溶性基质PVA/suc混合后填入PDMS模具中制备得到,并用导电的PPy作为微针背衬填入。制备好的微针与F-TENG通过导电胶连接得到F-MN装置。此外,将偶联FITC荧光的葡聚糖作为模型药物被微针递送到到皮肤后,通过荧光分布可以看出连接F-TENG的微针装置具有更高效和深部的药物递送(如图4)。图4 F-MN贴片的制备与表征。a) MN贴片制作工艺示意图。b)制备的MN贴片的光学图像和c) SEM图像。d) FITC -葡聚糖负载MN贴片的代表性明场(左)和荧光显微镜图像(右)。e)右旋糖酐-MN贴片插入后大鼠皮肤代表性明场和荧光显微镜图像。f)荧光图像和g)植入或不植入F-TENG的大鼠皮肤后残余MNs的相应荧光强度(FI)。h)代表性显微镜图像,i)药物穿透深度,j)外用葡聚糖溶液或葡聚糖-MN贴片加F-TENG或不加F-TENG后大鼠皮肤组织切片对应的荧光强度。每个点代表平均值±SD (n = 3个独立重复实验)。*p 表示无显著性。微针尺寸:高850 μm,尖端直径10 μm,底座直径400 μm.而后,作者在小鼠体内观察F-TENG产生电流的能力以及在体内药物递送的效果。将F-MN装置应用在小鼠肿瘤部位后,F-TENG能够将运动产生的机械能转化为电能,在小鼠体内维持恒定的电流,有效促进微针中负载的药物向更深部的肿瘤渗透,同时也提高了药物在体内的递送效率和作用时间(如图5)。 图5 F-MN装置提高了体内给药效率。a)经F-MN贴片处理的荷瘤小鼠照片。(插图:治疗小鼠时,MN贴片被连接。正极连接小鼠左前肢,负极连接MN贴片)。b) F-MN贴片作用于肿瘤部位的示意图。c)治疗过程中通过MN贴片的电流。d)不同处理小鼠给药后24 h的荧光图像。红色虚线圈表示肿瘤部位。e)不同处理的荷瘤小鼠及肿瘤部位照片。f)代表性图像,g)相应的药物穿透深度,h)局部应用NPs或MN贴片或f -MN贴片后肿瘤部位组织切片在体内的相对荧光强度。每个点代表平均值±SD (n = 3个独立重复实验)。*p 图6 F-MN贴片在B16-F10黑色素瘤小鼠中的抗肿瘤行为。a)处理过程示意图。b)不同肿瘤深度荷瘤小鼠的代表性超声图像和c)肿瘤组织的组织学切片。d) (c)中的深度量化。e)五组不同处理小鼠的平均肿瘤生长曲线。f)第9天各给药组小鼠肿瘤重量。g)第9天各组离体肿瘤形态。h)各组小鼠治疗后体重。i)各治疗组小鼠存活率曲线。j)各组肿瘤组织切片H&E、Ki67、TUNEL染色分析。每个点代表平均值±SD (n = 5个独立重复实验)。*p 图7 F-MN贴剂的体内生物安全性评价。a)各组主要器官切片H&E染色分析。不同处理后小鼠血清生化指标b)丙氨酸转氨酶(ALT)、c)血尿素氮(BUN)、d)肌酐(CR)、e)总胆红素(TBIL)各组全血中f)白细胞(WBC), g)红细胞(RBC), h)血小板(PLT)的数量。数据以mean±SD (n = 5个独立重复实验)表示,ns表示无统计学意义。结论:在这项研究中,作者开发了一种与F-TENG集成的可穿戴自供电MN贴片,并首次用于治疗深部实体肿瘤。F-MN贴片能够通过可溶解的纳米颗粒将载药的纳米颗粒递送到皮肤中,并通过纳米发电机将个人机械运动转化为电能,从而提供足够的驱动力将治疗性纳米颗粒推进深部肿瘤,进而显著提高药物递送穿透效率。在到达酸性肿瘤位置后,pH响应性NPs表现出快速解离和释放化学分子(DOX)和光敏剂(Ce6),从而显示出强大的协同根除肿瘤细胞的能力。在小鼠深部黑色素瘤模型中,单次给药这种F-MN贴片能够实现明显的肿瘤生长抑制。此外,荷瘤小鼠的生存期明显延长,体内生物安全性令人满意,这表明了该贴片在临床治疗深部实体瘤方面具有很大的潜力。这种有效的装置具有出色的传输能力,可以很轻松地将生物大分子或治疗性NPs经皮输送到深部,将来也可局部或全身用于治疗其他疾病,如糖尿病。
  • 我国深部探测关键仪器研发获重大突破
    记者从2月15日在京召开的“深部探测技术与实验研究专项”2011年度成果汇报交流会上获悉,我国深部探测关键仪器装备自主研发取得了重大突破。   该专项首席科学家、中国地质科学院副院长董树文介绍,我国自主研发的地震勘探系统和电磁探测系统实现了关键技术的重大突破,掌握了磁芯材料和低频微弱信号检测等磁传感器的关键技术,研制了感应式宽频带磁传感器原理样机,性能指标与国外同类产品相当。   由专项自主研发的无人机航磁探测系统,在低磁无人机制作、高可靠性自驾导航仪研制、氦光泵航空磁力仪与超导航空磁力仪配套的数据预处理系统开发方面均取得了重大阶段性成果。   该专项与企业合作研制生产的我国第一台万米大陆科学钻探钻机处于国际先进水平。本月底,该钻机将运抵大庆油田,联合国际大陆科学钻探计划(ICDP),实施中国地质调查局和国家深部探测技术与实验研究专项联合资助的松辽盆地科学钻探2井,计划钻进6600米。   专项还建成以三维地质目标模型为中心的综合研究一体化集成分析平台,通过“红蓝军”(引进和自主研发平台)两条路线同时推进,加速了跟进国外软件发展的步伐。   据记者了解,专项投入近3亿元用于深部探测关键仪器设备的自主研发,以期打破国外长期对高端设备的垄断格局,旨在为后续国家地壳探测工程的立项申报和全面实施提供支撑。
  • 3.26亿深部探测关键仪器项目有重大进展
    1月26日,由吉林大学承担的“深部探测关键仪器装备研制与实验”项目(以下简称SinoProbe-09)举行2012年度成果交流会。会上,SinoProbe-09首席科学家、吉林大学“千人计划”专家黄大年介绍了项目总体情况。各课题负责人就课题完成情况、取得的阶段性成果进行汇报交流,并对研究过程中遇到的问题和难点进行了探讨。深部探测技术与实验研究专项(SinoProbe)总负责人董树文、吉大常务副校长赵继等专家、领导参加了交流会。   SinoProbe-09由黄大年任首席科学家,吉林大学地球探测科学与技术学院、仪器科学与电气工程学院、建设工程学院、地球科学学院、计算机科学与技术学院等校内单位,中国科学院地质与地球物理研究所、遥感应用研究所、电子所、大气所等多个单位共同参与项目研究。目前,SinoProbe-09-01课题研制的软件平台进一步完善了高端平台功能联合,并进入具体数据测试阶段 SinoProbe-09-02、SinoProbe-09-03、SinoProbe-09-04课题研制的陆地大功率电磁勘探系统、无人机航磁探测系统、无缆自定位万道地震勘探系统,通过比对,核心指标均接近或达到国外同类产品 SinoProbe-09-05课题与四川宏华集团联合完成了我国首台万米大陆科学钻探装备主体集成验收 SinoProbe-09-06课题建设的仪器装备实验基地具备实验示范条件并有重大发现。   会议还邀请了12位来自中国地质科学院、中国科学院、中国地质大学、东北石油局、吉林省地质矿产勘查开发局、吉林省地矿建设集团有限公司、长春理工大学、吉林大学等单位的专家进行指导。   “深部探测关键仪器装备研制与实验”作为公益性行业专项项目已于2010年正式启动,项目三年总预算额为3.26亿元(人民币),正式批复下拨2.95亿元(人民币),其中2010年共到位资金6556万元(人民币)。该项目的启动,是吉林大学引进高端人才的成功范例,也吉林大学争取大型项目历史上国家投资额度最大,汇集我国高校、科研院所中高层次技术优势力量规模最广的项目之一。
  • 投资3.26亿 深部探测关键仪器装备研制与实验项目正式启动
    日前,由国土资源部组织,以吉林大学地球探测科学与技术学院引进的国家“千人计划”特聘教授黄大年为首席专家,吉林大学牵头联合国内相关大学和中国科学院等多个研究所共同承担的国家公益性项目“深部探测技术与实验研究专项”中的第九项,即“深部探测关键仪器装备研制与实验”等项目任务书签字仪式在北京举行。   国土资源部科技与合作司司长姜建军,吉林大学副书记兼副校长韩晓峰,项目负责人以及其他项目承担单位法人及代表出席了签字仪式。专家组宣读了任务书评审意见,姜建军与承担单位代表签订项目任务书,韩晓峰代表学校在任务书上签字。   此次共有62个项目参加签字仪式,分别来自吉林大学、中国地质科学院、中国科学院、国土资源部航空物探遥感中心、中国地矿局、中国地质大学、中南大学、长安大学、成都地质矿产研究所、郑州矿产综合应用研究所等单位。   “深部探测关键仪器装备研制与实验”作为公益性行业专项项目已于2010年正式启动,项目三年总预算额为3.26亿元(人民币),正式批复下拨2.95亿元(人民币),其中2010年共到位资金6556万元(人民币)。该项目的启动,是吉林大学引进高端人才的成功范例,也吉林大学争取大型项目历史上国家投资额度最大,汇集我国高校、科研院所中高层次技术优势力量规模最广的项目之一。
  • 段振豪任国际重大科学计划“地球深部碳观测”共同主席
    日前,中国科学院地质与地球物理研究所段振豪研究员接到国际重大科学计划——地球深部碳观测(Deep Carbon Observatory)秘书长Constance Bertka来函,聘请他担任该重大研究计划的共同主席,主管该计划的四个方向之一:碳的物理化学。   今年九月,该计划的创始人委员会推选段振豪研究员担任这一职务。作为共同主席,他近期的工作包括组织一个由世界各国知名学者组成的科学指导委员会,领导该委员会开展未来两年的研究工作,招收美国与其它国家合作培养的博士后,起草未来十年的研究规划。担任这一职务后,段振豪研究员将领导国际上的科学家(包括知名科学家)一起开展前沿性研究工作。   作为“碳的物理化学”这一方向的第一负责人,段振豪研究员亦被选为该重大计划的执委会委员,该委员会成员包括美国、英国、法国、俄罗斯等国的院士和美国、日本、加拿大的知名教授。该执委会的前身为创始人委员会,其任务是为该重大计划的发起、组织、规划献计献策,其成员是由主要国家的十分有影响的科学家领导组成,中科院地质地球所朱日祥院士为该委员会委员。今后该计划运行将由执委会执行。   地球深部碳观测重大研究计划是由美国前矿物协会主席Robert Hazen博士和卡耐基地球物理研究所所长Russell Hemley院士发起、并由Sloan基金委资助的重大国际研究计划。该计划希望带动全世界10亿美元的投入和1000名科学家参与,其研究方向包括深部生命、深部碳库和通量、能源与环境,碳的物理化学。该计划对深部的定义是:从CO2的临界压力所对应的深度(约73大气压、地表以下500米)到地核(约6370公里)。为鼓励有志的年轻人参加这一研究,未来两年碳的物理化学这一方向将利用25万美元招收3-4名博士后。
  • 袁亮代表:加强深部煤炭安全开采与环境保护科技支持
    能源安全是国家安全的基石,生态环境是人类生存和发展的根基。全国人大代表、中国工程院院士、安徽理工大学校长袁亮在接受《中国科学报》采访时表示,“在实现碳达峰碳中和目标的背景下,我们亟需加强深部煤炭资源安全高效开采与煤矿区生态环境保护基础研究,加快推进高水平科技自立自强,更好保障国家能源安全、支撑美丽中国建设。”今年是袁亮履职全国人大代表的第六年。作为一名煤炭工业科研工作者,他始终关注着煤炭安全开采、生态环境保护等问题。在今年全国两会上,袁亮共提交了8份代表建议,其中有6份建议都是关于促进煤炭行业高质量发展,例如,“关于加大深部煤炭安全开采与环境保护科技支持的建议”“关于开发废弃矿山绿色资源支撑双碳目标政策支持的建议”“关于支持淮河流域能源资源开发与产业、生态协调发展的建议”……当前和今后相当长的一段时期内,煤炭仍将是我国能源供应体系中的主体能源。据统计,2022年煤炭占一次能源消费比重达56.2%,较好以煤炭安全保障的确定性应对了地缘事件与极端天气等的不确定性。然而,我国煤炭资源分布差异大,开采条件极其复杂,多数煤炭资源在深部,在5.97万亿吨煤炭资源储量中,埋深1000米以深的占53%。袁亮认为,“兜底保障国家能源安全必须开采深部煤炭。”在调研中,袁亮发现,随着煤炭开采由浅部走向深部,其开采环境、技术装备、灾害防治等都面临着前所未有的挑战。同时,煤炭开采导致土地资源破坏及生态环境恶化,开采沉陷造成我国东部平原矿区土地大面积积水受淹或盐渍化、西部矿区水土流失和土地荒漠化加剧,煤矿区生态环境保护迫在眉睫。对此,袁亮建议:首先,要加快布局深部煤炭安全开采与环境保护国家级科研平台。支持在深部煤炭安全开采与环境保护领域具有领先创新能力的国家级科研平台重组全国重点实验室,开展多场耦合致灾机理、煤与瓦斯共采理论、瓦斯动力灾害防治、绿色低损害开采、深地原位实验等基础研究,打造深部煤炭安全开采与环境保护国家战略科技力量。其次,积极推动深部煤炭安全开采与环境保护实现高水平科技自立自强。鼓励和支持围绕深井煤炭安全高效开采、黄淮海煤粮复合区生态环境保护等重点领域开展科研攻关,加强前瞻性核心关键技术及装备储备。发挥国家作为重大科技创新组织者的作用,以率先进入深部开采、灾害特征显著的中东部典型矿区为切入点,布局深部煤炭安全开采与矿区生态环境保护国家重大专项、重点研发计划、重大科研仪器研制、自然科学基金等重点项目,夯实基础研究地基。最后,引导煤炭企业发挥“出题人”“答题人”“阅卷人”作用。鼓励和支持煤炭头部企业围绕深部煤炭安全开采与环境保护现实难题,采用“揭榜挂帅”等方式攻克关键技术。支持建设黄淮海冲积平原等煤粮复合区典型矿区深部煤炭资源安全开发与环境治理示范工程,引领我国深部煤炭资源低损伤安全开采与区域生态环境一体化绿色低碳发展。
  • 中科院深部探测专项启动课题结题验收
    深部探测技术与实验研究专项(以下简称&ldquo 专项&rdquo )课题结题验收工作近日正式拉开序幕。中国科学院地质与地球物理研究所承担的&ldquo 地面电磁探测(SEP)系统研制&rdquo 成为第一个通过结题验收的课题。   验收组专家一致认为,课题组经过3年多的艰苦攻关,自主研制了整套地面电磁探测系统,包括大功率发射机、多通道采集站、系列磁传感器和三维电磁数据处理软件,并取得了一系列创新性成果。室内及野外测试结果表明,整套仪器性能稳定,硬件、软件系统均达到了研制目标和考核指标,接近国外同类仪器的水平。MT感应式传感器优于国外同类产品,技术研究整体处于国内领先水平。地面电磁探测系统完成了5个实验场地的对比测试。   此外,课题组还发表论文52篇,申请专利33项(其中发明专利21项)、软件著作权9项,培养研究生49名。   会后,深部探测专项负责人、首席科学家董树文研究员总结道:此次验收课题的准备工作充分,资料记录细致完整、验收程序规范,尽管不同类型的课题验收还会有不同的附加要求,但其基本程序相似。此次结题验收是其他48个即将陆续启动的深部专项课题的良好示范。   据悉,本次课题结题验收的流程包括网上预审、收集检测数据、课题负责人做成果报告以及专家组集中审阅。鉴于仪器研制课题的特点,专家组在验收会议召开之前,还特意对地面电磁探测系统进行了野外仪器检测。
  • 深部岩土力学与地下工程国家重点实验室通过验收
    11月2日上午,科技部在中国矿业大学文昌校区国家重点实验室会议室组织召开了中国矿业大学深部岩土力学与地下工程国家重点实验室的建设验收会议。科技部基础研究管理中心副处长吴根,教育部科技司基础研究处副处长明媚,以中国科学院地质与地球物理研究所研究员黄鼎成为组长的七位验收专家组成员,中国矿业大学校长葛世荣,副校长缪协兴、刘炯天,中国矿业大学(北京)副校长姜耀东出席了验收会。 出席会议的还有江苏省科技厅科研机构与条件处副处长李太生,徐州市科学技术局副局长王建华,中国矿业大学岩土工程学科带头人、教授崔广心,深部岩土力学与地下工程实验室副主任何满潮以及学校党政办公室、学科处、研究生院、科技处、人事处、财务处、实验室与设备处、力学与建筑工程学院和资源与地球科学学院等部门负责人、重点实验室研究人员。验收会由科技部基础研究管理中心副处长吴根主持。   会上,中国矿业大学校长葛世荣代表学校对与会专家的到来表示热烈欢迎,并结合中国矿业大学百年办学历史和发展现状,强调了深部岩土力学与地下工程国家重点实验室的建设对于学校教学、科研和人才培养的重要促进作用。他说,学校对于重点实验室的建设高度重视,实验室坚持立足于国家深部资源开发和地下空间利用战略,瞄准深部地质环境与岩土介质相关科学问题和重大地下工程领域的关键技术难题开展了一系列研究并取得了显著进展。同时他表示,实验室的建设与发展离不开上级主管部门的关心和支持,离不开各位专家的指导和帮助。   科技部基础研究管理中心副处长吴根从总体要求、建设验收内容、会议程序和注意事项四个方面介绍了国家重点实验室建设验收的有关要求。   中国矿业大学副校长、深部岩土力学与地下工程国家重点实验室主任缪协兴就实验室基本信息、研究方向与进展、团队建设与人才培养、研究平台建设、实验室管理运行机制和实验室合作与交流等六个方面向专家组详细汇报了实验室的建设情况。   中国矿业大学副校长刘炯天、中国矿业大学(北京)副校长姜耀东分别代表实验室依托单位就实验室建设期间的支持和管理运行情况作了介绍。刘炯天副校长说,学校始终坚持“重点支持、关键保障、做好服务”原则,高度重视深部岩土力学与地下工程国家重点实验室的建设,从学科建设、人才保障、经费和空间条件保障、运行保障等方面为实验室的建设提供良好条件,推动实验室的顺利运行。姜耀东副校长也表示,中国矿业大学(北京)对实验室的建设将全力支持、重点保障。   随后,验收专家组与实验室相关人员进行了座谈,并现场考察了实验室的建设情况。经过考察、讨论,专家组一致认为,实验室定位准确,目标集中,重点突出,在相关理论和技术研究方面取得了重要进展和突破,解决了一些重大工程关键技术难题,产生了显著的经济和社会效益,形成了富有创新活力、团结奋进的学术团队,建立了以学术团队为研究单元的运行模式和创新机制,完善了各项管理规章制度,初步形成了“人本、学术、包容、规范”的文化氛围,按计划完成了条件和平台建设目标,进一步提升了实验室的创新能力,依托单位对实验室建设高度重视,在学科建设、经费投入、试验用房和运行机制等方面给予了大力支持,实验室圆满完成了建设任务,达到了预期建设目标。同时,专家组建议,实验室应进一步加强年轻学术领军人才的培养力度,进一步吸引海外知名学者来实验室合作研究。   中国矿业大学校长葛世荣表示,中国矿业大学将认真听取专家组的建议,以这次建设验收作为新的起点,以创新引领全局,进一步完善管理和运行机制,加大人才引进力度,吸引更多的海内外优秀人才,加强实验室平台建设,力争早日实现“坚持科学持续发展、引领深部地下方向”的目标。   最后,教育部科技司基础研究处副处长明媚、江苏省科技厅科研机构与条件处副处长李太生分别代表教育部和江苏省教育厅发表了讲话。明媚副处长强调,学校要对国家重点实验室的建设给予重视和条件保障,并充分利用好国家重点实验室这个平台,在科技创新、人才培养、优势学科建设等方面做出应有的成绩。李太生副处长表示,江苏省将对中国矿业大学深部岩土和地下工程国家重点实验室的建设给予大力支持和帮助,也希望实验室能为江苏地方经济建设,尤其是工程技术方面的研究做出一定的贡献。
  • 吉大深部探测关键仪器装备研制与实验项目获检查
    8月4-5日,中国地质科学院的专项管理办公室组织检查小组对吉林大学负责的“深部探测关键仪器装备研制与实验”项目的进展情况、财务管理以及招标采购执行情况进行了全面中期检查。专项负责人董树文研究员以及各类技术和财务专家共十人认真听取了吉林大学的有关汇报,并到研发现场进行了细致考察。   该项目由吉林大学地球探测科学与技术学院黄大年教授担任项目首席科学家,刘财教授担任项目技术负责人,包括大型地学软件项目、大功率地震勘探系统研制项目、超深大陆科学钻探项目和野外实验与示范项目。经过两天的汇报、质询与审查,专家组高度评价了吉林大学的项目执行情况,对吉大项目管理规范、招标管理和财务管理程序给予了肯定,并就学校和专项管理层之间的沟通与互动、具体技术方案和执行要求、人员以及资金设备投入力度等问题提出了具体的意见和建议。   吉林大学常务副校长赵继、党委副书记兼副校长韩晓峰以及财务处、招标与采购中心、科技处、学科建设办公室、地球探测科学与技术学院、仪器科学与电气工程学院、建设工程学院、计算机科学与技术学院等校内单位有关负责人全程参与了汇报检查过程。   据了解,该项目是吉林大学历史上获国家投资额度最大、汇集我国高层次技术优势力量规模最广的项目之一,为提高我国在地球深部探测仪器装备的自主研发能力、突破国外对核心技术的垄断和封锁具有重要的现实和长远意义。项目从2010年9月启动至今,各方面都取得了显著成绩和进展,体现了吉林大学对大型科研项目规范管理的能力以及综合学科联合攻关产生的强大科研能力。通过汇报检查,项目在执行进度、工程质量和各项管理方面进一步明确了工作方向和改进提高细节,为加速推进项目进程,高质量完成任务奠定了基础。
  • 当超声“碰到”神经元,脑科学有了新工具——记国家重大科研仪器研制项目“基于超声辐射力的深部脑刺激与神经调控仪器”
    项目组科研人员与同行专家交流合影。 研究团队供图中国科学院深圳先进技术研究院(以下简称深圳先进院)实验室里,一台高精尖仪器一排排控制灯交替闪烁。一万多个探头发出超声波形成的操控声场,如同“上帝之手”穿过实验动物的颅骨,直抵大脑深处,精准“触碰”一些神经元,产生仅仅几微米的细微形变,被磁共振仪敏锐捕捉到。“亮了!亮了!”深圳先进院研究员郑海荣看到,磁共振图像上黑漆漆的实验动物大脑中间出现白色的小亮点,犹如在脑科学的未知宇宙中点亮一颗新的星球。2019年初,郑海荣团队迎来里程碑式的一天,这也是他们在国家自然科学基金国家重大科研仪器研制项目支持下开发“基于超声辐射力的深部脑刺激与神经调控仪器”的第4年。如今项目顺利结题,这台原创的高端科研仪器已进入产业化阶段。“科研需要一股不服输的韧劲!”回首研发历程,郑海荣向《中国科学报》表示,“6年来,一步步攻克科学难题、一个个突破工程难关,离不开整个团队攀登科学高峰的坚定信念和持久韧劲。”解脑科学“刚需”之急近年来,帕金森病、阿尔茨海默氏症、抑郁症、癫痫等脑疾病得到越来越多的关注,患者数量剧增,脑疾病带来的经济负担和社会负担越发严重,已成为我国人口老龄化面临的重要社会问题之一。然而,从科学上看,脑疾病发病机制仍不清晰,其诊治仍然是重大医学难题。“国际上脑科学研究者已经认识到,帕金森病、抑郁症等疾病多与深部脑区核团病变有关,对核团及其所在环路的神经调控是疾病治疗和科学研究的基本途径之一。”郑海荣表示。多年来,科学家将电、磁、光等技术与神经科学相结合,产生了脑深部电刺激、磁刺激、光遗传学等神经刺激与调控技术。但是,由于各自物理属性的不同,如何实现无创、精准对大脑深部进行有效调控仍面临严峻挑战。因此,脑科学面临的“刚需”是开发出一种适用于灵长类动物和人类、可无创到达大脑深部的刺激与调控工具。2013年前后,从事物理医学成像研究的郑海荣开始思考,有没有可能利用超声波来操控神经元活动。这个想法并不是天方夜谭。据了解,超声是一种机械波,医学上利用超声波在人体组织中的波散射来成像,就是大家熟悉的B超。早在几十年前,科学家曾观察到,超声波能够通过“声辐射力”让声场中的微小颗粒产生移动。不过,从来没有人尝试过专门设计一台这样的仪器,用超声波辐射力实现对大脑中神经元的“隔空探物”。基于此前对超声辐射力的研究,郑海荣团队下决心对“基于超声辐射力的深部脑刺激与神经调控仪器”进行自主研发,经多轮严格论证,2015年获得国家自然科学基金国家重大科研仪器研制项目支持。啃原创仪器“硬骨头”“虽然我们之前做过体量小一些的成像仪器,但这个项目从科学验证到工程实践面临的挑战非常大,刚开始心里也不太有底。”郑海荣坦承。一开始,他们就做好了啃“硬骨头”的打算。这台仪器共有4个关键部件,包括超声面阵辐射力产生与发射部件、超声电子指向与时间反演控制部件、磁共振导航超声刺激定位部件和多模态刺激反应监测部件。其中,超声面阵辐射力产生与发射部件中包含16384个阵元的面阵列超声辐射力发生器。“我们做的是原创仪器,不仅仪器国际上没有,连其器件和部件在国际市场上也买不到现成的,只能利用基础材料、元器件和芯片,在深圳自主设计、自主加工、自主调试和验证。”郑海荣介绍。更大的困难还在科学和工程上。他们遇到的第一道难题便是如何让超声波安全“穿过”颅骨。在体外实验阶段,研究人员已经实现了用面阵列超声换能器发射的声辐射力“点亮”神经元。为模拟动物体内环境,仪器部件被置于水中,如果跨过颅骨能“击出”水花则代表超声辐射力发挥作用。“外边(超声)打得挺激烈,(颅骨)里边却没丝毫动静、一点水花都没有,超声波几乎完全被颅骨散射和吸收了。”在前期屡败屡战的实验中,大家互相鼓励坚持下去。郑海荣说:“就像在挖一条隧道,没挖通之前总是黑暗笼罩,谁也不知道已经挖了多少,但只要确定大概的方向,坚持下去,终究会看到光明。”为打通这条“隧道”,他们回到科学理论中,引入非均匀多层介质中的“时间反演”理论,对每一个声信号通道的时空传播特征进行模拟、计算、调控与调试,实现各通道间纳秒级高精度控制,最终成功让上万个超声通道协同工作,“齐心协力”安全地穿过颅骨,精准聚焦在预定靶点,而且不引起脑组织损伤。一个通俗的解释是,就像北京2022年冬奥会开幕式《雪花》节目中,从节目结束时每位小演员的站位开始,通过“倒放”的方式确认每位小演员的出发时间、地点和行走路径。第二道难题是如何用核磁共振成像灵敏地检测到超声辐射力给神经元带来的4~5微米的精细变化。这事关刺激的精准,但超声本身“看不到”颅内自己的轨迹。为此,在项目支持下,他们坚持不懈开展攻关,发挥磁/声兼容的优势,创造性地研制了“快速磁共振射频激发与梯度编码成像技术、磁共振声辐射力成像技术”,用于监测超声辐射力刺激引起的微形变,有效地提高磁共振成像的时空分辨率和灵敏度,实现磁共振对于声波轨迹和靶点的敏感捕捉和可视化。2019年初,项目进行到第4年,研究团队终于解决这个问题,在“隧道”中迎来一束光明。合作才能融通高端科研仪器的研制不仅需要开创前沿科学理论,也要挑战诸多工程技术极限,只有团队相互协作、密切配合,才能实现共同的目标。该项目汇集了来自多家科研机构、不同学科背景的多个团队,70多位研究人员在统一的目标下开展分工合作。据郑海荣介绍,由他带领的深圳先进院团队主要承担超声辐射力高密度面阵辐射力发生器、万通道电子控制系统及实时磁共振刺激定位成像部件等仪器主体部分研制。强梯度声场设计工作主要由中国科学院声学研究所团队承担,刺激效果对标与标定工作由清华大学团队承担,神经生物学基础机制工作由浙江大学等团队承担,刺激的应用效果工作由首都医科大学、苏州大学团队承担。几年实践下来,多学科交叉团队形成了一套行之有效的工作机制和组织模式。“我们整个大仪器团队划分为12个小组,每周召开一次小组会,每月召开一次大组会,会议纪要有厚厚的几大本。”郑海荣介绍。研究成员表示,这样的机制形成了不同学科背景研究人员之间相互交流和学习、围绕同一目标共同攻关的良好氛围,为高效解决问题奠定了基础。如今,这台由中国科学家独创的高端仪器已经成为脑科学研究领域的“抢手货”。团队核心成员之一、深圳先进院研究员牛丽丽告诉《中国科学报》,目前已经有超过40家国内外科研机构使用了超声刺激仪器,主要应用在有癫痫、帕金森病、抑郁症、成瘾等疾病的小动物和非人灵长类大动物实验中,其有效性和安全性得到了验证。面向未来,让更多科学家用上这种仪器、助力人类脑疾病诊疗,是团队成员共同的期待。
  • “基于超声辐射力的深部脑刺激与神经调控仪器研制”项目交流会召开
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/c5d7fbe2-cabb-46af-9480-850fcfaf5d28.jpg" title=" tpxw2017-10-30-01.jpg" / /p p   国家重大科研仪器研制项目“基于超声辐射力的深部脑刺激与神经调控仪器研制”年度交流会议于2017年10月24日在深圳召开。来自国内相关专业的7位同行专家、3位项目监理专家、中国科学院条件保障与财务局领导以及基金委医学科学部有关人员参加本次年度交流会议。 /p p   专家组分别听取项目负责人郑海荣研究员以及子课题负责人的项目进展报告,并进行现场实地考察和认真讨论。专家组认为,该项目已完成阶段性目标,部分仪器已初步用于生物医学实验研究并获得较好成果,研究项目目前进展良好,同时针对项目实施中存在的问题给出意见和建议。国家重大科研仪器研制项目旨在鼓励和培育具有原创性思想的探索性科研仪器研制,着力支持原创性重大科研仪器设备研制,期望该研究能为医学科学研究提供新颖的手段和工具。 /p
  • NIR-II半导体聚合物点:链堆积调节和深部组织中的高对比度血管成像
    研究内容:近红外二区(NIR-II)窗口的荧光成像在研究血管结构和血管生成方面引起了人们的极大兴趣,为早期疾病的精确诊断提供了有价值的信息。然而,由于荧光团的强光子散射和低荧光亮度,对深层组织中的小血管成像仍然具有挑战性。本文描述了作者在荧光探针设计和图像算法开发方面的共同努力。首先,使用聚合物共混策略来调节大型刚性NIR-II半导体聚合物的链堆积行为,以产生紧凑明亮的聚合物点(Pdots),这是小血管体内荧光成像的先决条件。进一步开发了一种稳健的Hessian矩阵方法来增强血管结构的图像对比度,特别是小血管和弱荧光血管。与原始图像相比,在全身小鼠成像中获得的增强的血管图像在信噪比(SBR)方面表现出超过一个数量级的改善。利用明亮的Pdots和Hessian矩阵方法,作者最终进行了颅骨NIR-II荧光成像,并在携带脑肿瘤的小鼠和大鼠模型中获得了高对比度的脑血管系统。Pdots探针开发和成像算法增强的研究为深层组织的NIR-II荧光血管成像提供了一种很有前景的方法。图1.(a)NIR-II半导体聚合物的分子结构。(b)由纯NIR-II半导体聚合物制备的聚集体或线状聚合物纳米结构的TEM图像。(c)通过将短刚性半导体聚合物与NIR-II半导体聚合物共混得到小球形Pdots的TEM图像。首先,作者研究了由两组氟取代的半导体聚合物制备的NIR-II Pdots的大小和形态,单纯的NIR-II聚合物纳米颗粒是通过再沉淀法制备的,透射电子显微镜(TEM)观察纳米粒子呈现大尺寸和线状形态。通过混合NIR-II聚合物和CN-PPV获得的Pdots的大小和形态发生了显著变化。从TEM图像可以看出,所有六种类型的混合Pdots均表现出小尺寸和球形形态,与纯CN-PPVPdots相似。CN- PPV聚合物在Pdots形成过程中具有协同效应,迫使大的刚性聚合物主链折叠并扭曲NIR-II聚合物的链堆积,从而形成小尺寸的球形形态。这表明混合具有小共轭长度的传统半导体聚合物是制备小尺寸球形NIR-II Pdots的可靠策略。图2. m-PBTQ4F Pdots与不同比例的(a)PSMA聚合物、(b) PS-PEG-COOH聚合物和(c) CN-PPV聚合物混合的TEM图像。实验证实,只有共轭聚合物,才能有效调节NIR-II半导体聚合物的链堆积行为,产生小球形的Pdots。作者研究了不同质量分数的NIR-II聚合物m-PBTQ4F分别与PSMA、PS-PEG-COOH和CN-PPV共混制得的纳米粒子的形态变化。对于PSMA和PS-PEG-COOH,所得到的大多数纳米颗粒都呈短丝状形态。虽然通过共混(1:1比例)可以减小粒子的尺寸,但粒子的尺寸分布很大,在透射电子显微镜中仍观察到部分椭圆形的纳米粒子。相反,当m-PBTQ4F与CN-PPV混合时,随着CN-PPV分数的增加,观察到了向单分散球形Pdots的明显形态演变。这些结果表明,共混刚性共轭聚合物可以有效调节NIR-II半导体聚合物的链堆积,得到致密的球形Pdots,而柔性两亲聚合物没有类似的效果。图3. (a)聚乙二醇化CN-PPV Pdots、m-PBTQ4F Pdots和 (b) 聚乙二醇化m-PBTQ4F/CN-PPV混合Pdots的吸收和发射光谱。(c)聚乙二醇化m-PBTQ4F/CN-PPV Pdots的流体动力学直径和TEM图像。(d)在808 nm连续辐射下ICG和Pdots在相同质量浓度的水中的光稳定性。为了使Pdots具有更长的血液循环时间,将m-PBTQ4F和CN-PPV聚合物组成的小尺寸Pdots进一步用两亲性PS-PEG-COOH官能化。观察三种类型Pdots的吸收和发射光谱,发现混合Pdots的吸收光谱与纯m-PBTQ4F和CN-PPV Pdots的吸收光谱一致。此外,混合的Pdots在可见光和NIR-II区域显示出双发射峰。动态光散射(DLS)测量和TEM结果显示,混合的Pdots呈球形,流体动力学直径约为20 nm。以临床批准的染料ICG为对照,对Pdots的光稳定性进行了表征,在808 nm激光持续照射2 h下,Pdots的荧光保持接近原始强度的88%,而ICG在10 min内完全光漂白,表明Pdots具有优异的光稳定性。与不同浓度的Pdots孵育24小时后的细胞存活率测定显示,Pdots的细胞毒性最小,静态溶血试验结果显示,Pdots的溶血活性可忽略不计。此外,在注射Pdots的小鼠的主要器官的苏木精和伊红(H&E)染色图像中未观察到明显异常。总之,这些结果表明聚乙二醇化m-PBTQ4F/CN-PPV Pdots是具有高亮度、光稳定性和生物相容性的小尺寸探针,有望用于体内成像应用。图4. (a)用于血管图像分割的Hessian矩阵方法示意图。(b)俯卧位采集的小鼠NIR-II荧光图像与(c)横截面强度分布。(d)仰卧位采集的小鼠NIR-II荧光图像与(e)横截面强度分布。首先进行预处理以抑制图像中的背景信号并增强血管的几何特征。进一步估计一系列的尺度因子,构造了平滑的高斯核,然后与图像进行卷积,得到Hessian矩阵的元素。然后,考虑管状结构的具体情况,推导出Hessian矩阵的特征值,最终得到血管增强图像。作者通过使用Pdots探针和Hessian矩阵方法展示了活小鼠的高对比度全身血管成像。。在静脉注射Pdots探针的小鼠的NIR-II荧光图像中,虽然注射的Pdots属于最亮的荧光团,但原始图像中几乎无法将荧光信号较弱的小血管与周围背景区分开,经Hessian矩阵法处理后,原始图像中的许多小直径血管和模糊血管均得到明显增强。从仰卧位的同一只小鼠的原始图像和增强图像中,血管结构明显增强,而来自肝脏的信号受到抑制,因为该方法只能提取具有管状结构的目标。图像处理后两条小血管的SBR较原图像增强了约13倍,说明Hessian矩阵算法对于提高全身荧光血管成像中弱小荧光血管的SBR有很强的效果。图5. 颅骨和头皮完整的小鼠的脑脉管系统的体内NIR-II荧光图像。(a)野生型C57BL/6小鼠和ND2:SmoA1小鼠的脑脉管系统NIR-II荧光图像以及(b)放大图像。(c)使用血管分割和量化算法,对野生型和荷瘤小鼠的脑血管系统中的血管长度和血管分支进行定量比较。接下来,作者使用NIR-II Pdots和Hessian矩阵法探索了小鼠脑深部组织血管成像。对正常小鼠和携带脑肿瘤的转基因ND2:SmoA1小鼠进行了头皮和颅骨脑部成像。与野生型动物相比,由于肿瘤的发展,ND2:SmoA1小鼠显示出更扭曲和紊乱的脑脉管系统,从原始荧光图像中很难识别横窦和小直径血管的轮廓,经Hessian矩阵法图像处理后,原始图像中多条小血管明显增强,横窦结构清晰。为了评估肿瘤生长中的血管形态,还定量分析了血管长度和血管分支,这些在原始图像中是无法获得的,因为它们的图像对比度低。从增强图像中提取的血管长度和血管分支统计分析表明,转基因脑肿瘤小鼠的这两个参数均显著高于野生型小鼠。血管形态的定量评估为研究肿瘤血管生成和诊断肿瘤恶性提供了一种有效方法。图6. 切除肝脏中血管的离体成像。(a)注射NIR-II Pdots期间肝脏中血管树的原始和增强图像以及(b)放大图像。(c)切除肝脏的照片。(d)从Pdots注射整个过程的NIR-II图像中获得的血管长度和(e)血管分支。(f)沿(b)中白色虚线标记的位置强度分布。接下来,进一步证明了使用NIR-II Pdots和Hessian矩阵方法在体外可视化大鼠肝脏血管结构的可行性。由于肝组织的强散射和吸收以及肝血管的复杂结构,肝血管成像是一项复杂的任务。原始图像在高度混浊的肝组织中显示出非常弱的荧光信号,而Hessian-matrix增强图像显示出高得多的SBR,肝血管成像中SBR的20倍以上增强。这些结果验证了Hessian矩阵用于血管成像的有效性,并为研究肝脏疾病中血管结构的发展提供了工具。图7. (a)颅骨完整的SD大鼠的脑脉管系统的体内NIR-II荧光图像和Hessian基质增强图像与(b)横截面强度分布。(c)大鼠切除的脑组织的亮场和荧光图像。(d) H&E染色图像。(e)健康大鼠和荷瘤大鼠脑切片荧光图像。最后,作者探索了大鼠模型中原位成胶质细胞瘤的颅骨内脑血管成像。由于颅骨更厚且光子散射更强,因此将大鼠脑可视化比将小鼠脑可视化更具挑战性。图像经Hessian矩阵法处理后,原始图像中的小直径血管明显增强,脑血管结构更加清晰可见且增强图像中的SBR有明显改善,与小鼠脑和肝血管成像结果一致。此外,进行离体NIR-II荧光成像,在来自不同组的切除的脑器官的亮场和荧光图像中,模型组肿瘤部位可见亮荧光,而对照组和假组未检测到明显信号。该结果表明,由于渗透性和滞留性增强(EPR)效应,Pdots在脑肿瘤中有效蓄积。对照组和荷瘤组脑切片的H&E染色图像,证实了脑中肿瘤的发展。除了链式堆积调制时,CN-PPV聚合物的混合也赋予Pdots橙色发射,从而能够通过常规共焦成像对组织切片进行显微镜检查,脑切片的共焦荧光图像表明Pdots在脑肿瘤中明显积聚。总之,这些结果证明了使用NIR-II荧光Pdots和Hessian矩阵法进行的大鼠脑高对比度颅骨血管成像。总结:作者设计了荧光Pdots并且开发了一种图像算法,用于小动物的高对比度血管成像。作者提出了一种聚合物共混策略,该策略可以有效地调节大的刚性NIR-II半导体聚合物的链堆积行为,产生用于小血管体内荧光成像的致密明亮的Pdots。此外,作者开发了一种有效的Hessian矩阵方法来增强血管结构的图像对比度,特别是小的和弱荧光的血管。在全身小鼠成像中,与原始图像相比,增强的血管图像在SBR中表现出超过一个数量级的改善。进一步证明了使用NIR-II Pdots和Hessian矩阵法离体可视化大鼠肝脏血管结构的可行性。原始图像显示高度混浊的肝组织的血管网络非常模糊,而Hessian矩阵图像在肝血管成像中显示SBR增强20倍以上。利用明亮的Pdots和Hessian矩阵法,最终进行了颅骨内荧光成像,并在荷脑肿瘤的小鼠和大鼠模型中获得了高对比度的脑脉管系统。本研究将成像算法与NIR-II荧光Pdots相结合,显示出其在体内促进肿瘤血管生成及其他微循环相关疾病定量成像与研究的潜力。参考文献Chen, D. Qi, W. Liu, Y. Yang, Y. Shi, T. Wang, Y. Fang, X. Wang, Y. Xi, L. Wu, C., Near-Infrared II Semiconducting Polymer Dots: Chain Packing Modulation and High-Contrast Vascular Imaging in Deep Tissues. ACS Nano 2023, 17 (17), 17082-17094.⭐ ️ ⭐ ️ ⭐ ️ 近红外二区小动物活体荧光成像系统 - MARS NIR-II in vivo imaging system高灵敏度 - 采用Princeton Instruments深制冷相机,活体穿透深度高于15mm高分辨率 - 定制高分辨大光圈红外镜头,空间分辨率优于3um荧光寿命 - 分辨率优于 5us高速采集 - 速度优于1000fps (帧每秒)多模态系统 - 可扩展X射线辐照、荧光寿命、一区荧光成像、原位成像光谱,CT等显微镜 - 近红外二区高分辨显微系统,兼容成像型光谱仪 有不同型号的样机可以测试,请联系:艾中凯(博士)132 6299 1861⭐ ️ ⭐ ️ ⭐ ️ 恒光智影 上海恒光智影医疗科技有限公司,被评为“国家高新技术企业”,上海市“科技创新行动计划”科学仪器领域立项单位。 恒光智影,致力于为生物医学、临床前和临床应用等相关领域的研究提供先进的、一体化的成像解决方案。 与基于可见光/近红外一区的传统荧光成像技术相比,我们的技术侧重于近红外二区范围并整合CT, X-ray,超声,光声成像技术。 可为肿瘤药理、神经药理、心血管药理、大分子药代动力学等一系列学科的科研人员提供清晰的成像效果,为用户提供前沿的生物医药与科学仪器服务。⭐ ️ ⭐ ️ ⭐ ️ 上海恒光智影医疗科技有限公司地址:上海市浦东新区张江高科碧波路456号 B403-3室网址:www.atmsii.com邮箱:ai@atmsii.com电话:132 6299 1861 (同微信)
  • Nature:可实时追踪脑信号的植入设备Harmoni
    日前,来自梅奥诊所(Mayo Clinic)等机构的研究人员在美国神经科学学会年会(Society for Neuroscience' s annual meeting)上报告称,他们研制出了一台名为 Harmoni 的深部脑刺激(DBS)植入设备,首次能够在进行电刺激的同时,监测大脑内部的电反应和化学反应。该设备已经在大鼠和猪等实验动物身上进行了测试。 深部脑刺激技术长期以来被用于治疗运动障碍,但现在已迅速发展为针对包括抑郁症、抽动秽语综合征、强迫症甚至老年痴呆症等神经疾病的一种实验性疗法。尽管相关治疗取得了一些令人鼓舞的成果,但关于植入大脑深部的刺激设备所传递的电脉冲是如何影响神经回路和改变患者行为的,科学家所知并不多。现在,这个深部脑刺激设备原型或许能够提供一些答案。未参与这项研究的凯斯西储大学生物医学工程师 Cameron McIntyre 表示:“这是我们此前在人类身上无法真正获取的新数据。”该团队希望,这个设备能够确定大脑中哪些电信号和化学信号与一些症状的存在和严重性实时相关,比如帕金森氏症患者所经历的震颤。这些信息有助于揭示脑深部刺激在何处和如何发挥其对大脑的治疗性影响,以及为什么有时候会失败。 Harmoni 是基于现有深部脑刺激技术的电子记录能力研发而成的,其增添了应用于动物研究的化学传感技术。该设备采用一种被称为快速扫描循环伏安的方法,在大脑内施加一个局部电压变化,将电子短暂拉离特定的神经递质,从而产生可以测量的电流。神经递质是大脑中激活或抑制神经元的化学物质,每个神经递质分子生成的电化学签名不同,每隔 10 毫秒,就可以根据签名来识别神经递质并估测它的浓度。研究团队已经利用大鼠和猪对 Harmoni 系统的一部分进行了测试。手术中,他们先通过功能性磁共振成像技术找到对植入部位的电脉冲作出响应的大脑区域,然后在此插入化学和电子传感器,就能够合成一幅显示神经元如何受激并释放出何种神经递质作为响应的图像。动物实验的初步结果表明,通过刺激底丘脑核, Harmoni 能够测量出大脑尾状核中神经递质多巴胺水平的上升。而这正是建议用深部脑刺激法治疗帕金森氏病采用的机制之一。该设备的人体试验也在逐步推进中。但研究项目负责人、梅奥诊所的神经外科医生 Kendall Lee 表示,这项研究还处于早期阶段,他们正设法让记录电极更耐用,同时让设备更加小型化,以便能够植入患者体内。研究的合作者、孟菲斯大学神经科学家 Charles Blaha 强调,还需要深入了解大脑的健康和紊乱状态分别用何种电化学签名来描述,以及如何刺激大脑才能使其保持健康模式。
  • Science 和 Nature 子刊连续发文!TESCAN 综合矿物分析仪助力固体地球科学前沿问题研究
    近期,北京大学地球与空间科学学院许成研究员、张立飞教授和费英伟教授联合团队合作发现来自地幔过渡带(深约400公里处)的超高压矿物和古元古代现代板块构造的岩石学证据,在地球深部物质组成和板块构造启动时限等科学问题上取得了重大突破,研究成果相继发表于权威科学期刊Science Advances(2017年)和Nature Communications(2018年)上。其中一些重要的矿物学和岩相学工作是由捷克孟德尔大学宋文磊博士和Jind?ich Kynicky博士与TESCAN总部应用部门(位于捷克布尔诺)使用TESCAN综合矿物分析仪(TIMA)合作完成。 地球内部的结构组成和板块构造运动的起始是当今固体地球科学研究最前沿、最具挑战地球内部的结构组成和板块构造运动的起始是当今固体地球科学研究最前沿、最具挑战性的关键科学问题。俗话说,上天不易,入地更难。人类对于地球内部的了解还非常有限,固体地球的半径达 6400 公里,而目前人工钻探最深仅到 12 公里。科学家只能通过出露于地表的岩石或深部岩浆携带的捕虏体来推测地球的深部物质组成。 (图片来源于网络)板块构造是地球区别于其它太阳系类地行星的主要特征,它不仅影响着地幔的组成和演化,而且还控制着地球的水圈和大气圈,对地球上生命的起源具有重大意义,然而对现今板块构造启动的时间和机制的认识仍然存在很大分歧。近期,北京大学地球与空间科学学院许成研究员、张立飞教授和费英伟教授联合团队合作发现来自地幔过渡带(深约 400 公里处)的超高压矿物和古元古代现代板块构造的岩石学证据,在地球深部物质组成和板块构造启动时限等科学问题上取得了重大突破。研究的成果相继发表于权威科学期刊 Science Advances(2017年)和Nature Communications(2018年)上。其中一些重要的矿物学和岩相学工作都是使用TESCAN综合矿物分析仪(TIMA)完成,文中也对TIMA分析方法进行了具体解读。 △ 研究成果发表在 Science Advances (2017年) △ 研究成果发表在 Nature Communications (2018年)许成团队首次在我国华北克拉通中北部的内蒙古丰镇和河北怀安一带的幔源火成碳酸岩内发现了极少量的厘米级榴辉岩捕虏体(许成等,2018)。榴辉岩(由俯冲板块在深俯冲过程中遭受超高压变质作用形成)主要由绿辉石和石榴石组成,其次为蓝晶石、石英、帘石、多硅白云母和角闪石等。通过各种矿物温压计和 THERMOCALC 程序计算获得其峰期矿物组合石榴石+绿辉石+蓝晶石位于 2.5-2.8 GPa和 650-670℃ 的稳定范围,对应 250 (±15)℃ GPa-1 的低温古俯冲带地热梯度。 △ 图 1:TIMA 解离分析碳酸岩内榴辉岩捕虏体及其矿物组成(修改自许成等,2018)石榴石内独居石 U-Pb 定年确定其变质峰期年龄为 18.4 亿年,这是迄今为止记录的最“冷”的古元古代俯冲带中低温高压变质作用。“冷”的深俯冲作用很可能在古元古代非常普遍,但全球的低温记录很容易被后来陆内碰撞所产生的高温变质作用覆盖。板块构造何时启动一直存在争论,其主要原因在于缺少岩石学证据。该发现提供了直接的岩石学证据表明古元古代存在现代板块深俯冲。这些碳酸岩的地球化学特征显示其地幔源区含有俯冲的地壳物质,进一步表明地球早期已存在地壳物质深俯冲进入地幔,从而导致地幔深部碳循环。此外,科研团队还在这些榴辉岩的石榴石内发现了超硅石榴石(超高压矿物,主要在深源金刚石或者陨石冲击坑中有零星发现)包体(许成等,2017),分析显示该矿物具有高的三价铁 Fe3+(Fe3+/全Fe~0.87),远高于目前金刚石内发现的超硅石榴石(Fe3+/全Fe △ 图 2:TIMA拍摄的榴辉岩捕虏体中的超硅石榴石(Maj):图 (A) 为石榴石(Grt-II)中超硅石榴石包体的背散射图;图 (B) 显示超硅石榴石包体的铁和铝含量明显高于赋存矿物石榴石(引自许成等,2017) 高温高压合成实验标定其形成压力为14GPa,起源于地幔过渡带(400公里)。该发现为碳酸岩岩浆起源于地幔过渡带提供了直接的矿物学证据,同时异常富三价 Fe 超硅石榴石说明地幔过渡带存在局部富氧成分,这与俯冲地壳物质相关。这一发现对人们认识深部地幔的物质组成和演化具有非常重要的意义。 上述成果中 TIMA 分析工作(图1和图2)是由捷克孟德尔大学的宋文磊博士与 Jind?ich Kynicky 博士和 TESCAN 扫描电镜公司总部(捷克布尔诺)TIMA 应用部门合作完成。由于捕虏体结构复杂、矿物类型多样、颗粒繁多且大小不等(毫米至微米级),有时与寄主岩石和矿物在结构和成分上差别并不显著,因而普通光学显微镜、扫描电镜、激光拉曼和电子探针等分析仪器对于寻找和识别这些包含在捕虏体中且非常稀少的来自地球深部的(高压)矿物效果并不明显,研究过程相当耗时且仅限于对局部的观察,极易遗漏重要信息。全球著名扫描电镜公司 TESCAN 的综合矿物分析仪(TIMA,图4)可以很好的解决以上问题。该仪器是利用扫描电镜的岩石矿物自动定量化分析系统,具有将电镜和能谱高度集成的独特技术,能进行极高分辨率的 BSE 与 EDX 快速全谱成像和大范围面扫描自动拼接功能,可以完成对整个样品的快速、准确的多元素面扫描;其配备的矿物处理专业软件可以辅助分析扫描结果,实现各种矿物相的快速鉴定、分布模式、含量测算以及自定义矿物寻找功能,避免相似结构和成分的分析误差,揭示样品的整体形态、矿物含量、结构构造和矿物共生组合特征。对于以上研究样品量很少的榴辉岩,通过其各矿物含量估算的有效全岩成分将提高变质岩视剖面图温压计的可靠性,同时还可以查明矿物相内部和不同矿物相之间的显微结构关系以及对含量很少(如用于准确定年的锆石和独居石)或未知矿物的辨别,从而获取捕虏体的起源和演化的关键信息。 △ 图 4:TESCAN 综合矿物分析仪(TIMA) 上述科研成果表明,固体地球科学的研究越来越侧重于地质样品的微观结构、精细矿物学和微区原位分析测试。TIMA 对矿物的结构分析和定量解析达到微米的尺度,相对于传统光学显微镜和扫描电镜具有非常大的优势。TIMA 可以对岩芯、岩屑、岩石、矿石、精矿、尾矿、浸出渣或冶炼产品等进行快速定量矿物分析,能有效识别岩石类型,测量矿物种类和分布、颗粒大小、解离或锁定各种参数。此外,还提供亮相搜索模块,可以快速准确鉴定出铂族金属、金银矿和稀土元素。TIMA 已广泛应用于地质、石油、矿业和冶金等领域。目前,北京大学和中南大学今年已经引进了 TESCAN TIMA 综合矿物分析仪,目前设备正在安装调试中,期待 TIMA 用户做出更多重要的研究成果!
  • 我国成功研制出世界首台帕金森治疗仪
    我国科学家研制的世界首台帕金森治疗仪2月28日在哈尔滨市通过了科技成果鉴定。这一成果标志着世界性医学难题帕金森病有了新的治疗方法,突破了国际上治疗帕金森病主要依赖药物和手术的局限,填补了国内外空白。   帕金森病是世界性医学难题,全球大约有400多万患者,中国已超过200万,且每年新增近10万。目前,药物治疗只能控制症状而不能治愈,且不能停止或改善疾病的发展,其日益突出的失效现象和不良反应引起了医学界的广泛关注。手术治疗主要有毁损术、脑深部电刺激术和组织细胞移植术,毁损术因其对脑神经的破坏不可逆,还会产生很多并发症,有的终身致残,现已不主张采用 脑深部电刺激术,即安装脑起搏器,因其需要在脑内植入异物而存在风险,且费用高昂,约12万-26万之间,有条件做手术的医院和患者十分有限,目前我国接受手术治疗的患者尚不足2000例 组织细胞移植术,利用立体定向技术向脑内移植能够产生多巴胺的神经细胞,如胎脑或神经干细胞,尚处于探索中。   奥博帕金森治疗仪项目已于2011年1月31日获得了国家医疗器械产品注册证。这一课题组负责人孙作东研究员是“脑细胞激活论”创立者,他经过多年的脑科学基础理论研究与临床实践,对帕金森病的治疗提出了新观点,即:激活多巴胺能神经元是治疗帕金森病的关键,并率领科研团队应用内源性神经递质调控技术,历时五年终于研制成功了奥博帕金森治疗仪。该仪器突破了国际上治疗帕金森病主要依赖药物和手术的局限,是治疗帕金森病的又一新方法,填补国内外空白。   据介绍,奥博帕金森治疗仪是黑龙江省“十一五”科技攻关项目,特别适用于轻、中度帕金森病,可明显改善因此所导致的震颤、僵直、运动迟缓等症状。仪器分医用型和家用型,家用型因其操作方便,治疗成本可控制在2万元以内,易被患者所接受。该项目已被黑龙江省政府列为“十二五”期间战略性新兴产业重大生物工程项目拟予以重点支持。奥博帕金森治疗仪为非介入治疗,安全有效,是独立的治疗手段之一,特别适用于轻、中度帕金森病,可明显改善因此所导致的震颤、僵直、运动迟缓等症状。仪器分医用型和家用型,家用型因其操作方便,治疗成本可控制在2万元以内,更易被患者所接受。
  • GE医疗携创新技术隆重亮相2011RSNA北美放射学会年会
    GE承诺以科技创新提升护理水平、舒适度体验和医疗效率,满足医患需求   2011年11月29日,芝加哥 - 今天,GE医疗集团(纽约证券交易所:GE)携空前数量的新产品和解决方案亮相北美放射学会年会(RSNA 2011),隆重庆祝又一硕果累累的创新之年。GE医疗对产品创新加速投资,以致力于为患者和医疗机构不断提升护理水平、舒适度体验和设备可用性,并为不同地域和临床环境的医务人员带来更高的工作效率。 GEHC at RSNA 2011   GE医疗集团总裁兼首席执行官约翰-迪宁(John Dineen)表示:“对于GE医疗来说,北美放射学会年会是一年一度与放射科医生和其他医疗专家进行深度接触的绝佳良机,我们可以利用这次机会,展示我们领先的技术是如何满足不断变化的临床需求。近年来,我们逐步提高对产品的投资,得到的市场反馈是极其正面的。今年我们重点亮相的所有创新成果,都是基于GE“健康创想”战略,其核心是助力实现降低医疗成本、提升医疗品质、增加医疗可及性的承诺。”   本周GE医疗的活动展望   GE医疗全世界各地的专家和员工将与参会人员进行交流,并展示新技术,讨论医疗成像和医疗护理的发展趋势。   产品新闻:在RSNA上,我们将首次向公众发布一个具有革命性意义的全新介入式成像产品。接下来的几天中,我们会重点推出一系列全面的、跨产品线的技术,这些技术将把成像清晰度带入新的水平,重新定义“低辐射”,并能帮助医务人员更准确地诊断疾病。   Tweetchat.:GE以Twitter(推特)这种在线论坛的方式举行一次“tweetchat(推特聊天)”。此项活动为与会者提供与两名GE医疗高级技术专家直接交流的机会,讨论的话题围绕着影响行业发展的重要趋势展开。   顶尖医疗专家与GE医疗专家的视频讨论:与会的顶尖医疗专家和GE专家,通过一系列视频,再现年会现场的活力和那些激动人心的新闻。本周内这些视频将在GE医疗新闻室与大家见面(http://newsroom.gehealthcare.com/)。   超越影像   医疗成像正在不断进化,已经不止是简单的影像。为了满足不断变化的临床医疗需求,提供更高水平的医疗服务,医务人员需要更具灵活性、更便于移动、更强大以及更便于使用的产品和解决方案。   GE医疗致力于通过本次北美放射学会年会,展示许多基于GE领先科技的解决方案。   病患护理   GE的PET/CT+MR解决方案是混合成像的下一步发展方向。这些技术的结合可以提供脑部、胸部和前列腺的清晰影像,帮助医生观察毛细血管状况,将心脏解剖和功能可视化,检查微小病灶,监控治疗反应。这种综合技术使病患护理管理的发展前景更加光明。   Veo*是全球首个基于5个模型的迭代重建技术,它改变了医生使用CT的方式。Veo用户可在超低剂量情况下获得高清晰的影像,Veo可以将辐射剂量降低95%,控制全身大范围扫描剂量在1个毫希弗之内(1mSv),让患者享受更加安全无忧的CT检查。 低剂量技术产品展区   DoseWatch是一种全方位的辐射剂量管理平台,可以追踪管理患者接受的辐射剂量,提高成像安全性。   GE的SenoBright*技术帮助医务人员更好地诊断乳腺癌。能谱增强乳腺X射线技术可整合两种高质量影像,提供更加清晰的乳腺影像。与其他检查方式相比,这种成像技术可以大幅减少患者等待时间。   GE的CoreScan*技术,可以通过身体成分分析将“腹部”脂肪进行量化处理,以帮助解决全球肥胖流行病的问题,也有助于专业医生制定个性化治疗方案和管理代谢性疾病。   患者和医疗护理提供者的舒适度体验   带有GEM线圈的MR750w是GE最新型大孔径3.0T磁共振系统,其人性化的设计帮助更多的病患得到更好的检查,在增加病变扫描范围的同时最大程度增加病患的舒适度。   全数字化的Optima* XR220amx是GE的全新移动X光系统,其设计目的是扩展应用范围,迅速移动以及方便行动不便的病人摆位。Optima* XR220amx是众多基于FlashPad® 数字无线探测器平台的新一代GE X光产品之一。GE 创新的FlashPad® 数字无线检测器,可以实现在降低辐射量的前提下提高影像质量。   在全新的Innova IGS 630中,有一项突出的功能--AngioViz,它只需一副图像即可帮助神经介入科医师快速定位脑部的缺血性血管位置。而在全新的Discovery IGS730中,首次向公众展示了革命性的激光定位技术,并展示了其在预见性和精确定位方面的卓越能力。   生产力   Centricity*放射移动应用解决方案,使得放射医生能够通过iPad和iPhone进行远程诊断和影像复审。   与GE以前的超声设备不同,目前GE超声设备上的HDlive技术可提供高清晰的解剖解析度。这种技术能帮助提高超声对深部组织的识别,加强超声对深部组织的敏感性,最终增加医生的诊断信心并改善和病人的交流。   GE的 LOGIQ E9系列全身应用超声仪中的容积导航技术,能够通过融合其它各种影像技术的图像或者多种模式的超声图像来增加医生的诊断信心。   GE医疗在2011年北美放射学会年会   北美放射学会年会在芝加哥举行,是一年一度展示医疗成像领域最新创新成果的平台。如果阁下有机会参与这次年会,欢迎到GE医疗集团位于麦考密馆(McCormik Place)南厅3335号的展位来参观。在为期一周的展会中,GE医疗会通过以下数字平台发布新闻:   ● 在线宣传:http://newsroom.gehealthcare.com/press-kits/ge-healthcare-at-rsna-2011/   ● Twitter:请关注@GEHealthcare和我们的标签 #GERSNA   ● YouTube 频道:http://www.youtube.com/gehealthcare   ● 网络相册:http://www.flickr.com/people/gehealthcare/   关于GE医疗集团   GE医疗集团通过提供革新性的医疗技术和服务,开创医疗护理的新时代。我们在医学成像、信息技术、医疗诊断、患者监护系统、药物研发、生物制药技术、卓越运营和整体运营解决方案等领域拥有广泛的专业技术,能够帮助客户以更低的成本为全世界更多的人提供更优质的服务。此外,我们还和医疗行业领袖一道,正努力通过全球政策,打造成功的、可持续的医疗体系。   我们的“健康创想”愿景普及全球。我们不断通过创新在世界范围内推动降低医疗成本、增加医疗机会、提高医疗质量和效率。GE医疗集团总部设在英国,是通用电气公司(纽约证券交易所:GE)下属的业务集团之一。GE医疗集团的员工分布于全球100多个国家和地区,致力于为医疗专业人士和患者服务。欲了解更多有关GE医疗集团信息,请访问公司网站www.gehealthcare.com。有关更多近期新闻,请访问http://newsroom.gehealthcare.com。   媒体联络人:   GE医疗中国   刘曼娜   电话:+8610 – 58069876   电邮:manna.liu@ge.com
  • 13个研发项目曝光,各大厂商在研制哪些材料物性仪器?
    伴随各大上市仪器公司2022年度财报陆续发布,仪器信息网于前段时间特别制作专题,#仪器公司2022财报解读。在上市仪器公司披露的海量数据中,有一项数据特别引起了编辑的注意,其中涉及各大国产仪器厂商当前在研的重点仪器项目,以及项目进展、项目意义,甚至项目的投入金额。各大仪器厂商正忙着研制什么创新仪器?仪器信息网本周带您关注仪器厂商在研项目,本期关注材料物性仪器篇。注:以下信息由仪器信息网整理自上市仪器公司公开资料。苏试试验项目名称:高频电磁振动试验系统项目目的:主要用于航空航天、汽车零部件等高随机加速度振动测试,如四代机的动力部分零部件测试。项目进展:样机完成测试拟达到的目标:提高系统可靠性,为高加速度和高频振动提供技术支撑。 预计对公司未来发展的影响:补充公司原有产品应用细分领域,实现国内同领域产品进口替代,打造新的业绩增长点。项目名称: 惯性导航产品综合环境试验系统 项目目的:为惯性导航及控制系统提供相应的温湿度环境及相应的空间转角位置环境,能为航空航天、地面及海上装备所应用以验证相关产品环境适应性及可靠性。 项目进展:设计阶段拟达到的目标:通过产品的研发并实现产品多样化,为民用领域、航空领域、载人航天、探月工程等提供验证系统设备支持。预计对公司未来发展的影响:扩充公司产品线,满足市场需求,扩大公司影响力。项目名称: 氢燃料电池用燃烧空气调节系统 项目目的:氢燃料电池具有能量转换效率高、零排放、无噪声等优点,相应技术进步可推动氢气制备、储藏、运输等技术体系的发展升级。本系统为氢燃料电池的环境可靠性试验设备提供辅助支撑。 项目进展:设计阶段拟达到的目标:实现氢燃料电池工作过程中对大流量新风的需求,并达到预设温度、露点指标,满足氢燃料电池综合环境可靠性验证产品相关配套需求。 预计对公司未来发展的影响:提高公司综合类环境试验设备对各种试验需求的满足性,满足市场需求,提高产品市场竞争力,扩大市场份额。 项目名称:新能源电机性能试验方法的研发 项目目的:建立新能源汽车电机环境可靠性试验方法,通过试验暴露其设计、元器件、零部件、材料选用及工艺等方面缺陷和薄弱环节,探索产品的寿命期限,为产品验证、设计验证和改进设计提供依据。 项目进展:已完成拟达到的目标:通过新能源汽车上的电机与充放电设备、水冷机、温湿度试验箱等进行联调试验,模拟实际使用中可能遇到的各种环境问题,实现温度、湿热、振动、淋雨、光照、盐雾等环境可靠性试验检测。预计对公司未来发展的影响:完善公司新能源检测领域软硬件配置,提升技术实力,增强市场竞争力。 项目名称:宇航类产品热设计试验方法的研发项目目的:建立模拟宇航产品在轨道运行时所处的复杂真空—热环境,进行宇航产品热试验来验证产品的热设计和检验组件的热性能。项目进展:已完成拟达到的目标:完善气候模拟试验箱,在不同温变速率、不同温度范围、不同温湿度范围的气候模拟试验箱。通过温度试验数据验证客户研发阶段热分析仿真结果,实现宇航产品热设计试验验证。 预计对公司未来发展的影响:完善公司宇航领域软硬件配置,增强市场竞争力。 项目名称:一种用于机柜试验的可调装置项目目的:设计一种用于机柜试验的可调装置,通过调整部件实现对不同规格机柜的固定,从而完成试验需求,减少试验周期与成本。 项目进展:已完成拟达到的目标:研发出一种用于机柜试验的可调装置,通过部件之间的相互配合达到机柜的限位。该装置可重复利用,减少材料浪费,节约成本。 预计对公司未来发展的影响:该装置市场前景广阔,通用性强,解决了因型号、规格不同而无法通用的问题,提高市场竞争力并为其他领域提供技术借鉴参考。 项目名称:飞机燃油控制系统模态试验技术研究 项目目的:用于确定飞机燃油系统的结构特性,通过模态实验的手段获得系统的结构特性,为系统的特性分析、故障诊断和预报以及结构的动力特性的优化提供数据支撑。项目进展:已完成拟达到的目标:满足多家客户的模态实验需求,形成飞机燃油控制系统模态试验方法,改进动圈电液转接装置,使其性能更加稳定。 预计对公司未来发展的影响:对公司在环境适应性领域形成特色能力和开拓市场份额有着重要意义。 项目名称:一种轴承加速寿命试验的离心力供润滑方法研究 项目目的:改变供油方式,解决贫油问题的发生。 项目进展:初步完成拟达到的目标:通过离心供油方式,形成润滑油膜,避免贫油问题发生,从而提高轴承转速及使用寿命。 预计对公司未来发展的影响:通过离心供油方式,形成润滑油膜,避免贫油问题发生,从而提高轴承转速及使用寿命。 项目名称:一种可选择性单面腐蚀纳米器件的TEM解析装置 项目目的:在TEM及DB-FIB的样品处理及样品前制备中,提升腐蚀控制精度,优化样品质量,进而达到最终微观结构在品质上与竞争对手有明显差异化。 项目进展:已完成拟达到的目标:通过选择性单面腐蚀能够有效获得微观结构所需分析表面,广泛应用于TEM、SEM、EBSD以及金相等微观观察,对材料分析及失效分析皆能有效提升腐蚀制备精准度,并增加样品前处理的手段与方案。 预计对公司未来发展的影响:延展TEM分析服务既有优势,扩大技术领先地位,增加公司技术护城河,提升样品腐蚀精准度,提升人工腐蚀效率,实现TEM分析能力差异化。 钢研纳克项目名称:基于中子衍射的高速列车车轮残余应力表征技术研究 项目目的:通过对中子衍射技术的发展,突破大尺寸构件深部残余应力表征技术,应用于高速列车车轮不同服役状态残余应力无损表征。项目进展:基于CARR堆及JPARC中子衍射谱仪,搭建了全尺寸高铁车轮表征专用台架,发展了基于中子衍射的高铁车轮残余应力表征方法。 拟达到的目标:完成基于中子衍射的高速列车车轮残余应力表征专用测试工装的设计及加工。预计对公司未来发展的影响:预计将增加企业经济效益,提升技术核心竞争力。 项目名称:高温异形工件高精度尺寸传感测量系统开发集成 项目目的:针对高温异形工件,研制高精度尺寸传感测量系统。 项目进展:积累了高温实际车轮的相关数据 拟达到的目标:研制高温异形轧件尺寸检测系统,实现关键尺寸的快速准确测量。 预计对公司未来发展的影响:预计将增加企业经济效益,提升技术核心竞争力。 项目名称:超声法残余应力检测技术及高能去应力装置开发 项目目的:以工程机械用高强度薄钢板为主要研究对象,开展高强度结构钢板残余应力的调控与超声检测技术攻关。 项目进展:超声去应力装置完成实验及测试,高能去应力调研阶段 拟达到的目标:开发多波束变频控压高能去应力装置原型机,构建基于超声波检测方法的数据库以及开发零应力试样。 预计对公司未来发展的影响:预计将增加企业经济效益,提升技术核心竞争力。 项目名称:钢水多成分直接传感测量系统开发与工程化 项目目的:新能源汽车配套零件等检验有委托第三方实验室完成的趋势。建立相应的金属材料检测实验室,补足相关配套检验的短板项目进展:在研 拟达到的目标:建立满足新能源汽车零件金属材料检测的认可实验室,具备自研检测技术能力,并对外提供检测校准服务。预计对公司未来发展的影响:实验室建成后其检测能力符合国内外对于新能源汽车零件相关金属性能检测标准的要求,可以为市场提供第三方高精度新能源汽车等金属材料、零件检测服务,为公司带来一定的经济效益。
  • 从光子CT到脑神经刺激器 多款全球高端医疗设备器械进博会首发
    多项全球首创技术亮相作为全球最大的高端医疗影像设备制造商,GE医疗CT和西门子医疗持续四年参加进博会。 GE医疗方面向第一财经记者介绍道,如何实现5G环境下医疗影像设备实时应用支持场景落地是行业近年来关注的热点。为此,GE医疗在今年的进博会上将展示精准医疗科技创新和5G多场景下智慧医疗解决方案,比如创新的5G磁共振远程应用指挥中心方案,能够突破磁共振机房射频环境复杂等难点。第一财经记者了解到,西门子医疗也将在今年的进博会上展示多款全球首创技术,包括一款近日刚刚获得美国FDA许可的光子计数CT技术。FDA评价称,这项技术标志着十多年来CT影像领域的重大突破,提供了全新的成像方式,通过对每一个射入X光子的直接读数而生成影像。西门子医疗还将进行一款超高端PET/CT影像设备的全球同步首发,并展示全球首台临床科研双模7T磁共振设备,该设备将配合中国“脑计划”等重大科学研究项目。此外,新飞龙 2.0血管造影系统也将迎来中国首发。这款设备拥有全自动介入手术流程管理,能将医生从繁琐的机器操作中解放出来。医疗器械巨头美敦力将展示全球首款可自动识别大脑疾病状态的脑深部神经刺激器,可以通过感知技术探测大脑深部网络信号,将深部神经刺激(DBS)带入数字化时代。这款产品同时可兼容1.5T和3.0T磁共振,能控制缓解特发性震颤、帕金森病、难治性癫痫等症状。瑞典放疗巨头医科达(Elekta)也是第四次参加进博会,该公司今年将发布一款全新医用直线加速器以及智慧放射治疗解决方案,软硬件协同,使治疗更加精准高效。视力保健和眼镜制造企业依视路陆逊梯卡集团也宣布将以合并后的全新身份参展第四届进博会,多款创新产品将于进博会首发。其中包括两款重磅儿童青少年近视控制产品,一款产品是与库博光学合作的全球首款获得美国FDA和中国国家药品监督管理局(NMPA)批准的减缓儿童眼轴长度变化的日抛型软性接触镜;另一款是计划明年在中国市场上市的延缓儿童青少年近视进展的镜片。在仪器方面,依视路陆逊梯卡将全球首发首次将生物学参数测量、角膜曲率测量和屈光度测量结合在一起的依视路自动验光生物测量仪。医疗器械设备本土化创新集采是本土化过程中一个绕不开的话题。参加进博会的外企高管普遍认为,政府集采行为符合逻辑,因为标准化的产品可以通过大批量的集中采购去除中间商的水分,使价格更加透明,同时也将迫使厂商不断通过创新提升服务。“以骨科行业为例,从长期的发展来看,人工关节带量采购有助于促进行业规范发展,产品降价可以促进人工关节置换手术在基层患者中渗透率提升。”全球骨科龙头企业捷迈邦美中国总裁李永明对第一财经记者表示。但集采导致的价格下降对于任何公司而言都是一个极大的挑战。骨科集采后,产品平均降价幅度超过80%。“这就要求企业在很多方面做出改变和调整,比如采用本土化的设计理念和技术,在考虑成本的情况下,设计出来适应于中国的产品,以应对价格的大幅度下降,并支撑未来业务的长期发展。”李永明对第一财经记者表示。危重症治疗领域顶尖企业德尔格集团也将在今年进博会上展示重症医学领域的最新技术,覆盖从手术室到重症监护室的全场景解决方案。德尔格大中华区CEO潘嘉博(Gabor Polivka)在进博会前接受第一财经记者采访时强调了该公司在中国实现本土化战略的重要性。潘嘉博表示,德尔格作为一家传统的德国家族医疗企业,始终坚持德国原厂制造,但唯独在中国市场例外,德尔格正在不断扩大中国的生产和本土供应链的布局,来应对这个全球最大的医疗市场快速增长的患者需求。“我们已经有了未来5-6年的中国本土化产品的战略规划,将覆盖低、中、高端所有产品线。”潘嘉博对第一财经记者说道,“新冠疫情以来,全球的供应链非常脆弱,但这也加速了德尔格本土化的进程,我们必须去响应这些挑战。”潘嘉博向第一财经记者介绍称,德尔格在中国生产呼吸机预计将于近期上市,麻醉机也计划于明年上市。此外,为了更好地配合中国医院信息化建设的需求,德尔格还将于明年发布云平台解决方案,向智慧医疗迈出重要一步。
  • 国产首台质子治疗系统获批上市 共178款国产创新医疗器械获批
    近年来,国家药品监督管理局全面贯彻落实党中央国务院有关深化医疗器械审评审批制度改革要求,积极推动创新医疗器械、国家重点研发计划和重大科技专项医疗器械上市,促进产业创新高质量发展,更好满足患者健康需要。2022年9月26日,国家药品监督管理局批准了上海艾普强粒子设备有限公司生产的“质子治疗系统”创新产品注册申请。该产品是“十三五”期间科技部重点研发计划“数字诊疗装备专项”的重点支持项目,也是我国首台获准上市的国产质子治疗系统。该产品的获批上市,标志着我国高端医疗器械装备国产化又迈出一步,对于提升我国医学肿瘤诊疗手段和水平,具有重大意义。该产品由加速器系统和治疗系统两部分组成。其中加速器系统包括注入器系统、低能传输系统、主加速器系统、高能束流传输系统和辅助电气系统,治疗系统包括固定束治疗系统、180°旋转束治疗系统和治疗计划系统。产品提供质子束进行放射治疗,在实现肿瘤部位高剂量的同时,可降低周围正常组织剂量,特别是靶区后组织的剂量,适用于治疗全身实体恶性肿瘤和某些良性疾病,具体适应症应由临床医师根据实际情况确定。使用者应当严格按照产品批准的适用范围使用产品,同时应当严格遵守卫生健康部门的诊疗规范。在该产品的注册申报过程中,国家药监局按照“提前介入、专人负责、全程指导,科学审批”的原则,在标准不降低、程序不减少的前提下,积极沟通,多方协调,加大产品注册申报指导,加快审评审批进程,在保证安全、有效的基础上推动产品尽快上市,满足患者使用高水平医疗器械的需要。国家药监局已批准的创新医疗器械全名单:国家药监局已批准的创新医疗器械序号产品名称生产企业注册证号1基因测序仪深圳华因康基因科技有限公司国械注准201434021712恒温扩增微流控芯片核酸分析仪博奥生物集团有限公司国械注准201534005803双通道植入式脑深部电刺激脉冲发生器套件苏州景昱医疗器械有限公司国械注准201532109704植入式脑深部电刺激电极导线套件苏州景昱医疗器械有限公司国械注准201532109715植入式脑深部电刺激延伸导线套件苏州景昱医疗器械有限公司国械注准201532109726MTHFR C677T 基因检测试剂盒(PCR-金磁微粒层析法)西安金磁纳米生物技术有限公司国械注准201534011487脱细胞角膜基质深圳艾尼尔角膜工程有限公司国械注准201534605818Septin9基因甲基化检测试剂盒(PCR荧光探针法)博尔诚(北京)科技有限公司国械注准201534014819乳腺X射线数字化体层摄影设备科宁(天津)医疗设备有限公司国械注准2015330205210运动神经元存活基因1(SMN1)外显子缺失检测试剂盒(荧光定量PCR法)上海五色石医学研究有限公司国械注准2015340229311三维心脏电生理标测系统上海微创电生理医疗科技有限公司国械注准2016377038712呼吸道病原菌核酸检测试剂盒(恒温扩增芯片法)博奥生物集团有限公司国械注准2016340032713脱细胞角膜植片广州优得清生物科技有限公司国械注准2016346057314植入式迷走神经刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准2016321098915植入式迷走神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2016321099016药物洗脱外周球囊扩张导管北京先瑞达医疗科技有限公司国械注准2016377102017冷盐水灌注射频消融导管上海微创电生理医疗科技有限公司国械注准2016377104018胸骨板常州华森医疗器械有限公司国械注准2016346158219正电子发射及X射线计算机断层成像装置明峰医疗系统股份有限公司国械注准2016333215620人工晶状体爱博诺德(北京)医疗科技有限公司国械注准2016322174721骨科手术导航定位系统北京天智航医疗科技股份有限公司国械注准2016354228022低温冷冻消融手术系统海杰亚(北京)医疗器械有限公司国械注准2017358308823一次性使用无菌冷冻消融针海杰亚(北京)医疗器械有限公司国械注准2017358308924可变角双探头单光子发射计算机断层成像设备北京永新医疗设备有限公司国械注准2017333068125全降解鼻窦药物支架系统浦易(上海)生物科技有限公司国械注准2017346067926经皮介入人工心脏瓣膜系统杭州启明医疗器械有限公司国械注准2017346068027介入人工生物心脏瓣膜苏州杰成医疗科技有限公司国械注准2017346069828一次性可吸收钉皮内吻合器北京颐合恒瑞医疗科技有限公司国械注准2017365087429左心耳封堵器系统先健科技(深圳)有限公司国械注准2017377088130分支型主动脉覆膜支架及输送系统上海微创医疗器械(集团)有限公司国械注准2017346324131折叠式人工玻璃体球囊广州卫视博生物科技有限公司国械注准2017322329632腹主动脉覆膜支架系统北京华脉泰科医疗器械有限公司国械注准2017346143433植入式心脏起搏器先健科技(深圳)有限公司国械注准2017321157034人类EGFR基因突变检测试剂盒(多重荧光PCR法)厦门艾德生物医药科技股份有限公司国械注准2018340001435可吸收硬脑膜封合医用胶 山东赛克赛斯药业科技有限公司国械注准2018365003136血管重建装置微创神通医疗科技(上海)有限公司国械注准2018377010237miR-92a检测试剂盒(荧光RT-PCR法)深圳市晋百慧生物有限公司国械注准2018340010838丙型肝炎病毒核酸测定试剂盒(PCR-荧光探针法)北京纳捷诊断试剂有限公司国械注准2018340015739脑血栓取出装置江苏尼科医疗器械有限公司国械注准2018377018640定量血流分数测量系统博动医学影像科技(上海)有限公司国械注准2018321028241人EGFR/ALK/BRAF/KRAS基因突变联合检测试剂盒(可逆末端终止测序法)广州燃石医学检验所有限公司国械注准2018340028642全自动化学发光免疫分析仪北京联众泰克科技有限公司国械注准2018322029343人EGFR、KRAS、BRAF、PIK3CA、ALK、ROS1基因突变检测试剂盒(半导体测序法)天津诺禾致源生物信息科技有限公司国械注准2018340029444复合疝修补补片上海松力生物技术有限公司国械注准2018313029245正电子发射断层扫描及磁共振成像系统上海联影医疗科技有限公司国械注准2018306033746EGFR/ALK/ROS1/BRAF/KRAS/HER2基因突变检测试剂盒(可逆末端终止测序法)南京世和医疗器械有限公司国械注准2018340040847植入式骶神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2018312040948植入式骶神经刺激器套件北京品驰医疗设备有限公司国械注准2018312041049人类SDC2基因甲基化检测试剂盒(荧光PCR法)广州市康立明生物科技有限责任公司国械注准2018340050650人类10基因突变联合检测试剂盒(可逆末端终止测序法)厦门艾德生物医药科技股份有限公司国械注准2018340050751医用电子直线加速器广东中能加速器科技有限公司国械注准2018305052052瓣膜成形环金仕生物科技(常熟)有限公司国械注准2018313053453神经外科手术导航定位系统华科精准(北京)医疗科技有限公司国械注准2018301059854医用直线加速器系统上海联影医疗科技有限公司国械注准2018305059955多孔钽骨填充材料重庆润泽医药有限公司国械注准2019313000156生物可吸收冠状动脉雷帕霉素洗脱支架系统乐普(北京)医疗器械股份有限公司国械注准2019313009357病人监护仪深圳迈瑞生物医疗电子股份有限公司国械注准2019307015458腹主动脉覆膜支架及输送系统微创心脉医疗科技(上海)有限公司国械注准2019313018259左心耳闭合系统北京迈迪顶峰医疗科技有限公司国械注准2019313027860左心耳封堵器系统上海普实医疗器械科技有限公司国械注准2019313027961调强放射治疗计划系统软件中科超精(安徽)科技有限公司国械注准2019321028162数字乳腺X射线摄影系统上海联影医疗科技有限公司国械注准2019306028063正电子发射及X射线计算机断层成像扫描系统湖北锐世数字医学影像科技有限公司国械注准2019306036464经导管植入式无导线起搏系统Micra Transcatheter Leadless Pacemaker system美敦力公司Medtronic Inc.国械注进2019312029765经导管主动脉瓣膜系统上海微创心通医疗科技有限公司国械注准2019313049466一次性使用血管内成像导管南京沃福曼医疗科技有限公司国械注准2019306060167无创血糖仪博邦芳舟医疗科技(北京)有限公司国械注准2019307060268植入式左心室辅助系统重庆永仁心医疗器械有限公司国械注准2019312060369脱细胞角膜植片青岛中皓生物工程有限公司国械注准2019316067970冠状动脉造影血流储备分数测量系统苏州润迈德医疗科技有限公司国械注准20193070969山东华安生物科技有限公司国械注准2020313019779药物球囊扩张导管上海微创心脉医疗科技股份有限公司
  • 帕金森治疗新策略,有望2022年临床试验
    p   帕金森作为全球第二大常见的神经衰退性疾病,影响着约2%的60岁以上人群。这一疾病的特征是大脑黑质区域中多巴胺能神经元的变性死亡、慢性神经炎症、线粒体功能障碍以及由α-突触核蛋白错误折叠形成的路易小体的过度累积。 /p p   发表于《Science Translational Medicine》期刊的这一最新研究由昆士兰大学的科学家们完成。他们以PD小鼠为模型证实,α-突触核蛋白累积会促进大脑小胶质细胞发生炎症反应。而口服抗炎药可以改善小鼠的运动机能,减缓神经炎症、损伤以及α-突触核蛋白累积。 /p p style=" text-align: center " img title=" 201811051645256707.jpg" alt=" 201811051645256707.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/c08327ad-cb08-433e-9007-ecda80171c06.jpg" / /p p   DOI: 10.1126/scitranslmed.aah4066 span id=" _baidu_bookmark_start_5" style=" line-height: 0px display: none " ? /span /p p   strong  免疫系统过度活跃 /strong /p p   虽然目前的治疗方案可以改变患者的症状,但是并没有解决疾病本身。“PD的现有疗法,包括左旋多巴制剂和深部脑刺激,可以控制症状,但是对病理却几乎没有影响。” 团队负责人、Trent Woodruff副教授表示道。 /p p   在帕金森早期,患者的大脑中小胶质细胞中会发生慢性炎症。在最新研究中,Trent Woodruff团队发现,NLRP3炎性小体在患者大脑中表达上调,特别是多巴胺能细胞丧失部位。慢性NLRP3激活可能是驱动PD病理学和多巴胺能神经变性的关键机制。 /p p    strong 小分子抑制剂 /strong /p p   不同于传统的治疗策略,即阻止有毒蛋白的累积,Trent Woodruff团队试图采用一种替代疗法——专注于大脑中的小胶质细胞(负责清除大脑中的有毒蛋白)。对于帕金森这类神经性疾病而言,免疫系统可能会过度活跃,进而引发炎症和大脑损伤。 /p p   研究人员选择了小分子抑制剂MCC950(最初称为CP-465773,一种含磺酰脲的化合物,是IL-1β翻译后修饰过程的抑制剂),用于检测阻断NLRP3活化的效果。他们以小鼠为模型证实,每天口服一次MCC950可以阻断大脑中小胶质细胞炎症小体NLRP3的激活,阻止脑细胞的损失,从而显著改善运动功能。 /p p   “MCC950可以阻断NLRP3激活,能够有效‘冷却大脑’,降低小胶质细胞炎症活动,让神经元正常运作。我们的研究结果表明,NLRP3炎症小体在在啮齿动物的PD样病理学中发挥关键作用,有望作为一种可行的治疗靶点,可减轻神经毒性α-突触核蛋白累积和多巴胺能神经元损伤。”研究人员解释道。 /p p   他们计划改良这一候选药物,并希望在2020年开展临床试验。“MCC950对中枢神经系统抑制NLRP3的效力和特异性,结合其长期给药后的神经保护功效和安全性,使其成为潜在的候选药物。” Trent Woodruff解释道。 /p p   参考资料: /p p a title=" Parkinson’s Disease Drug That Cools “Brains on Fire” Could Enter Human Trials in 2020" href=" https://www.genengnews.com/news/parkinsons-disease-drug-that-cools-brains-on-fire-could-enter-human-trials-in-2020/" target=" _blank" https://www.genengnews.com/news/parkinsons-disease-drug-that-cools-brains-on-fire-could-enter-human-trials-in-2020/ /a /p p a title=" Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice" href=" http://stm.sciencemag.org/content/10/465/eaah4066" target=" _blank" http://stm.sciencemag.org/content/10/465/eaah4066 /a /p p    /p p /p
  • 中国水产科学研究院推出MOFs仿生材料新成果
    酚类化合物是一种细胞原浆毒,其毒性作用是与细胞原浆中蛋白质发生化学反应,形成变性蛋白质,使细胞失去活性,它所引起的病理变化主要取决于毒物的浓度,低浓度时可使细胞变性,高浓度时使蛋白质凝固,低浓度对局部损害虽不如高浓度严重,但低浓度时由于其渗透力强,可向深部组织渗透,因而后果更加严重。酚类化合物不仅可通过生活饮用水直接进入人体,也可经水体及水体微生物转移到水产品中,在水产品中富集,并通过食物链对人体造成潜在的危害,被人体吸收后的酚类化合物,通过体内解毒功能,可使其大部分丧失毒性,并随尿排出体外,若进入人体内的量超过正常人体解毒功能时,超出部分可以蓄积在体内各脏器组织内,造成慢性中毒,出现不同程度的头昏、头痛、皮疹、精神不安及各种神经系统症状和食欲不振、吞咽困难、流涎、呕吐和腹泻等慢性消化道症状。当水中酚类化合物 0.1—0.2mg/L,鱼肉有异味;大于5mg/L时,鱼中毒死亡,因此水产品中酚类化合物的快速检测技术研究意义重大。近日,中国水产科学研究院研究团队在Sensors and Actuators B: Chemical杂志在线发表了题目为“Synthesis of Yolk/Shell Heterostructures MOF@MOF as Biomimetic Sensing Platform for Catechol Detection”的研究论文,研究团队可控合成异质核壳结构的金属有机骨架材料(MOFs),此MOFs仿生材料不但实现了天然酶选择性催化酚类化合物的功能而且克服了天然酶易变性的缺点,在快速检测、工业催化和生物技术领域应用前景广阔。在仿生材料的合成过程中,首先用聚乙烯吡咯烷酮(PVP)作为结构导向剂包覆多孔配位网络(PCN-222)核,然后对沸石型咪唑框架(ZIF-8)进行改性,提出了构建明确和分级的卵黄/壳PCN-222@ZIF-8杂化催化剂的策略。基于PCN -222@ ZIF -8的卵黄/壳传感器对邻苯二酚有高选择性,但对多巴胺或左旋多巴无选择性。基于PCN-222@ZIF-8混合材料的传感器显示出比基于PCN -222的传感器高10倍的灵敏度,检测限(LOD)为33 nmol L-1。这项工作为MOF@MOF仿生传感器的构建和其他应用开辟了新的途径。仿生MOF@MOF材料制备原理图透射电镜监控仿生MOF@MOF材料合成过程Sensors and Actuators B: Chemical是分析化学领域的顶级学术期刊,影响因子达7.1。据了解,改论文的通讯作者为质标中心吴立冬副研究员,硕士研究生曹强和肖雨诗为论文的共同第一作者。此项工作还得到了中央级公益性科研院所基本科研业务费专项资金项目(2020GH09)和(2020TD75)的支持。
  • 国家药监局批准注册208个医疗器械产品 含多类分子检测试剂盒
    2022年1月,国家药品监督管理局共批准注册医疗器械产品208个。其中,境内第三类医疗器械产品151个,进口第三类医疗器械产品21个,进口第二类医疗器械产品33个,港澳台医疗器械产品3个(具体产品见附件)。  特此公告。附件:2022年1月批准注册医疗器械产品目录序号产品名称注册人名称注册证编号境内第三类医疗器械1髋关节假体-金属股骨头天津正天医疗器械有限公司国械注准202231300012组配式髋关节假体柄系统天津正天医疗器械有限公司国械注准202231300023一次性使用输液接头保护帽圣光医用制品股份有限公司国械注准202230300034一次性使用不可吸收组织闭合夹常州舣舟医疗器械有限公司国械注准202230200045一次性使用内镜消化道黏膜下填充剂山东威高药业股份有限公司国械注准202231300056一次性使用冠状动脉球囊扩张导管东莞天天向上医疗科技有限公司国械注准202230300067冠状动脉球囊扩张导管广东博迈医疗科技股份有限公司国械注准202230300078可解脱带纤维毛弹簧圈栓塞系统上海申淇医疗科技股份有限公司国械注准202231300089直管型胸主动脉覆膜支架系统上海微创心脉医疗科技(集团)股份有限公司国械注准2022313000910导管鞘杭州启明医疗器械股份有限公司国械注准2022303001011输送导管泓懿医疗器械(苏州)有限公司国械注准2022303001112一次性使用导管鞘组深圳市业聚实业有限公司国械注准2022303001213造影导管科睿驰(深圳)医疗科技发展有限公司国械注准2022303001314紫杉醇药物释放冠脉球囊导管贝朗医疗(苏州)有限公司国械注准2022303001415新型冠状病毒(2019-nCoV)核酸检测试剂盒(荧光PCR法)新羿制造科技(北京)有限公司国械注准2022340001516新型冠状病毒(2019-nCoV)IgG抗体检测试剂盒(化学发光法)广州市康润生物科技有限公司国械注准2022340001617新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法)艾康生物技术(杭州)有限公司国械注准2022340001718新型冠状病毒2019-nCoV核酸检测试剂盒(联合探针锚定聚合测序法)广州微远医疗器械有限公司国械注准2022340001819植入式可充电脊髓神经刺激器北京品驰医疗设备有限公司国械注准2022312001920植入式脊髓神经刺激器北京品驰医疗设备有限公司国械注准2022312002021植入式脊髓神经刺激电极北京品驰医疗设备有限公司国械注准2022312002122植入式脊髓神经刺激延伸导线北京品驰医疗设备有限公司国械注准2022312002223植入式脊髓神经刺激电极北京品驰医疗设备有限公司国械注准2022312002324神经外科手术导航定位系统华科精准(北京)医疗科技有限公司国械注准2022301002425环柄注射器及配件乐普(北京)医疗器械股份有限公司国械注准2022303002526一次性使用连接管浙江伏尔特医疗器械股份有限公司国械注准2022314002627可吸收生物膜陕西佰傲再生医学有限公司国械注准2022317002728吸收性氧化再生纤维素止血材料杭州协合医疗用品有限公司国械注准2022314002829带袢钛板常州苏川医疗科技有限公司国械注准2022313002930股骨头北京华康天怡生物科技有限公司国械注准2022313003031一次性使用麻醉穿刺包河南省健琪医疗器械有限公司国械注准2022308003132人工髋关节组件山东新华联合骨科器材股份有限公司国械注准2022313003233合成树脂牙山八齿材工业(常熟)有限公司国械注准2022317003334一次性使用高压延长管上海康德莱医疗器械股份有限公司国械注准2022303003435带线锚钉山东威高骨科材料股份有限公司国械注准2022313003536椎体融合器创辉医疗器械江苏有限公司国械注准2022313003637一次性使用精密过滤输液器 带针河北中捷医疗器械有限公司国械注准2022314003738一次性使用泵用输液器 带针北京伏尔特技术有限公司国械注准2022314003839椎间融合器北京贝思达生物技术有限公司国械注准2022313003940一次性使用钝末端注射针郑州普湾医疗技术有限公司国械注准2022314004041中空螺钉江苏乾瑞医疗器械有限公司国械注准2022313004142一次性使用无菌胰岛素注射器普昂(杭州)医疗科技股份有限公司国械注准2022314004243去白细胞血小板保存袋山东威高集团医用高分子制品股份有限公司国械注准2022310004344一次性使用人体动脉血样采集器山东威高集团医用高分子制品股份有限公司国械注准2022322004445髋关节假体-翻修型股骨柄嘉思特华剑医疗器材(天津)有限公司国械注准2022313004546一次性使用连通板东莞市一星医疗科技有限公司国械注准2022314004647一次性使用连通板深圳市库珀科技发展有限公司国械注准2022314004748高压造影注射系统管路深圳市迈威生物科技有限公司国械注准2022306004849超声血管导引穿刺针及附件昊朗科技(佛山)有限公司国械注准2022303004950一次性使用精密过滤输液器山东威高集团医用高分子制品股份有限公司国械注准2022314005051一次性使用Y型连接器深圳市库珀科技发展有限公司国械注准2022303005152膝关节假体 TMK胫骨垫片北京爱康宜诚医疗器材有限公司国械注准2022313005253一次性使用防针刺伤静脉留置针山东新华安得医疗用品有限公司国械注准2022314005354球囊导引导管禾木(中国)生物工程有限公司国械注准2022303005455一次性使用补液管路广东百合医疗科技股份有限公司国械注准2022310005556金属髓内针苏州爱得科技发展股份有限公司国械注准2022313005657一次性使用输液器 带针山东威高集团医用高分子制品股份有限公司国械注准2022314005758一次性使用可调弯标测导管科塞尔医疗科技(苏州)有限公司国械注准2022307005859一次性使用陡脉冲消融电极针上海睿刀医疗科技有限公司国械注准2022307005960磁共振成像系统上海联影医疗科技股份有限公司国械注准2022306006061麻醉深度监护仪深圳市威浩康医疗器械有限公司国械注准2022307006162X射线计算机体层摄影设备赛诺威盛医疗科技(扬州)有限公司国械注准2022306006263便携式电子镇痛泵巨翊医疗科技(苏州)有限公司国械注准2022314006364磁共振成像系统北京万东医疗科技股份有限公司国械注准2022306006465微波消融仪安徽硕金医疗设备有限公司国械注准2022301006566婴儿培养箱山东博科保育科技股份有限公司国械注准2022308006667神经外科手术导航定位系统北京柏惠维康科技有限公司国械注准2022301006768放射治疗轮廓勾画软件广州柏视医疗科技有限公司国械注准2022321006869超声软组织切割止血设备宁波海泰科迈医疗器械有限公司国械注准2022301006970全自动核酸检测分析系统奥然生物科技(上海)有限公司国械注准2022322007071全自动核酸检测分析系统嘉兴市艾科诺生物科技有限公司国械注准2022322007172X射线计算机体层摄影设备航卫通用电气医疗系统有限公司国械注准2022306007273乙型肝炎病毒表面抗原测定试剂盒(直接化学发光法)北京健安生物科技有限公司国械注准2022340007374梅毒螺旋体抗体检测试剂盒(直接化学发光法)北京健安生物科技有限公司国械注准2022340007475人类免疫缺陷病毒抗原抗体检测试剂盒(化学发光法)厦门市波生生物技术有限公司国械注准2022340007576甲胎蛋白(AFP)测定试剂盒(磁微粒化学发光免疫分析法)北京北方生物技术研究所有限公司国械注准2022340007677丙型肝炎病毒抗体检测试剂盒(直接化学发光法)北京健安生物科技有限公司国械注准2022340007778乙型肝炎病毒核心抗体检测试剂盒(直接化学发光法)北京健安生物科技有限公司国械注准2022340007879幽门螺杆菌抗体分型检测试剂盒(斑点印迹法)深圳市伯劳特生物制品有限公司国械注准2022340007980人运动神经元存活基因1(SMN1)检测试剂盒(PCR-荧光探针法)深圳会众生物技术有限公司国械注准2022340008081人MTHFR(C677T)基因分型检测试剂盒(荧光-PCR法)杭州百迈生物股份有限公司国械注准2022340008182ABO血型正反定型及Rh血型检测卡(微柱凝胶法)深圳市爱康试剂有限公司国械注准2022340008283A群轮状病毒、腺病毒、诺如病毒抗原检测试剂盒(乳胶层析法)北京英诺特生物技术股份有限公司国械注准2022340008384植入式脑深部电刺激延伸导线套件北京品驰医疗设备有限公司国械注准2022312008485双通道可充电植入式脑深部电刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准2022312008586植入式脑深部电刺激电极导线套件北京品驰医疗设备有限公司国械注准2022312008687双通道植入式脑深部电刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准2022312008788锁定型金属接骨螺钉江苏百纳医疗科技有限公司国械注准2022313008889锁定型金属接骨板江苏百纳医疗科技有限公司国械注准2022313008990一次性使用正压静脉留置针威海洁瑞医用制品有限公司国械注准2022314009091一次性使用防针刺静脉留置针苏州鱼跃医疗科技有限公司国械注准2022314009192交联透明质酸钠凝胶常州百瑞吉生物医药有限公司国械注准2022314009293一次性使用闭合夹苏州奥芮济医疗科技有限公司国械注准2022302009394半月板缝合钉山东威高骨科材料股份有限公司国械注准2022313009495血液透析干粉天津市海诺德工贸有限公司国械注准2022310009596一次性使用输液器山东威高集团医用高分子制品股份有限公司国械注准2022314009697椎间融合器苏州苏南捷迈得医疗器械有限公司国械注准2022313009798一次性使用防针刺静脉采血针山东新华安得医疗用品有限公司国械注准2022322009899腹主动脉覆膜支架系统北京华脉泰科医疗器械有限公司国械注准20223220099100高压注射连接管沈阳新智源医疗用品有限公司国械注准20223060100101软组织水平牙种植体及附件杭州民生立德医疗科技有限公司国械注准20223170101102一次性使用高压连接管荆州市益海科技有限公司国械注准20223060102103透明质酸钠防粘连凝胶浙江景嘉医疗科技有限公司国械注准20223140103104股骨交锁式髓内钉常州市康辉医疗器械有限公司国械注准20223130104105腔静脉滤器系统先健科技(深圳)有限公司国械注准20223130105106非锁定空心接骨螺钉卓迈康(厦门)医疗器械有限公司国械注准20223130106107颅内球囊扩张导管微创神通医疗科技(上海)有限公司国械注准20223030107108腹腔内窥镜手术系统上海微创医疗机器人(集团)股份有限公司国械注准20223010108109磁共振成像系统浙江朗润医疗科技有限公司国械注准20223060109110婴儿培养箱蚌埠依爱电子科技有限责任公司国械注准20223080110111输液泵深圳迈瑞科技有限公司国械注准20223140111112超导型磁共振成像系统北京万东医疗科技股份有限公司国械注准20223060112113全膝关节置换手术导航定位系统北京和华瑞博医疗科技有限公司国械注准20223010113114麻醉蒸发器深圳迈瑞生物医疗电子股份有限公司国械注准20223080114115定量血流分数检测仪博动医学影像科技(上海)有限公司国械注准20223070115116电子支气管内镜上海澳华内镜股份有限公司国械注准20223060116117电动直线型切割吻合器苏州英途康医疗科技有限公司国械注准20223010117118
  • 中国地质科学院2023年度十大科技进展出炉:涉及光谱一项
    3月2日,在中国地质科学院2024年科技创新工作会议上,中国地质科学院2023年度十大科技进展正式公布。其中,涉及X射线荧光光谱仪科技进展成果一项。中国地质科学院2023年度十大科技进展成果序号成果名称牵头单位主要完成人1西藏陆相火山岩区发现首例高硫化浅成低温热液型金矿中国地质科学院矿产资源研究所陈伟、唐菊兴、宋扬等2大数据研究范式揭示岩浆深部物源时空演化及其成矿制约中国地质科学院地质研究所王涛、童英、郭磊等3青藏高原大型地震断裂带的变形机制中国地质科学院地质研究所李海兵、王焕、张蕾等4华南地壳架构控制关键金属成矿系统的形成和就位中国地质科学院地质研究所张智宇、侯增谦、吕庆田等5西藏南部新生代东西向伸展作用的深部岩浆作用响应中国地质科学院地质研究所曾令森、高利娥、胡古月等6柴达木盆地卤水钾盐迁聚规律与找矿新突破中国地质科学院矿产资源研究所张永生、侯献华、郑绵平等7CNX-808波长色散X射线荧光光谱仪研发与产业化国家地质实验测试中心邓赛文、陶迪、李松等8二氧化碳地质封存与利用场地多尺度精细评价方法中国地质科学院(院部)何庆成、李采、郭朝斌9华北燕辽大火成岩省和哥伦比亚超大陆巨型裂谷系及其资源效应中国地质科学院地质力学研究所张拴宏、赵越、杨振宇等10“化学地球”大科学计划揭示全球化学元素分布循环规律中国地质科学院地球物理地球化学勘查研究所王学求、张必敏、周建等中国地质科学院2023年度十大科技进展成果简介一、西藏陆相火山区发现首例高硫化浅成低温热液型金矿1.创新应用斑岩-浅成低温热液成矿理论,集成遥感高光谱、化探、物探等技术方法手段,首次在西藏多旋回火山深覆盖区发现高硫化浅成低温热液型金矿-鑫龙金矿(矿体视厚度达55米,真厚度约10.5米,平均品位17.97g/t)。2.在外围发现郎美拉中硫型金矿以及鑫龙东铜、茶仑铅银等矿点,证实了该地区存在斑岩-浅成低温热液型铜金成矿系统,为后续西藏陆相火山岩区斑岩-浅成低温热液型铜金矿找矿突破提供重要支撑。二、大数据研究范式揭示岩浆深部物源时空演化及其成矿制约1.创建国内首个岩浆岩数据库及研究平台,核心数据和平台功能在某些方面已优于国际已有数据库。2.编制发布了全球岩浆岩图、亚洲岩浆岩图、深时岩浆岩图等。3.探索创新“数据+编图+研究”三位一体的研究范式,构建了亚洲花岗岩时空演化格架,提出亚洲大陆3种方式、5阶段的聚合模式;通过全球8个典型造山带同位素数据分析与填图,揭示其深部物质架构,量化显生宙巨量地壳生长及其成矿制约,提出造山带分类和物质造山带新概念,丰富地壳生长理论。4成果突显了新的研究范式在解决重大科学问题方面的重要作用。成果发表于 Nature旗下的 Commun. Earth Environ.及 Natl. Sci. Rev.、Geology、Earth Sci. Rev.、GRL、GR等期刊。三、青藏高原大型地震断裂带的变形机制1.首次发现大地震可在地壳浅部含水断层泥中发生熔融作用;确定了龙门山映秀-北川断裂带晚三叠世逆冲-左行走滑的大地震活动,揭示了汶川茂县断裂带存在大地震活动和还原性孕震环境,并确定了新生代时期存在三期不同构造变形阶段,提供了青藏高原东缘不存在下地壳流机制的新证据;发现强震频发的鲜水河断裂带具有长期蠕滑变形行为,提出深部流体促进弱断层局部强化从而诱发地震的新机制。2.评审专家认为成果改变了传统观点,在断层动力学方面提供了新见解,为完善断裂作用理论做出有益贡献。3.成果提高了对大型断裂带变形作用和强震发生机制的认识,为地震危险性评估提供了科学依据,服务支撑国家重大工程建设。4.成果发表在《Geology》《Tectonics》《Earth-Science Reviews》《Geophysics》《Gondwana Research》等刊物上。四、华南地壳架构控制关键金属成矿系统的形成和就位1.聚焦华南陆块,首次开展了大陆尺度的中酸性岩浆岩锆石Hf同位素填图,重新界定了板块及成矿带的边界和重要矿床的空间归属。结合地震波速层析成像结果,刻画了华南陆块呈现新生、古老和再造地壳并置的空间架构,认为新生地壳和再造地壳均形成于元古代和中生代多阶段的不同动力学背景下。与花岗岩相关的W–Sn–Nb–Ta和REE矿床产于再造地壳域,多阶段的地壳改造和中生代地壳高温熔融事件导致这些关键金属元素被释放到壳源岩浆中。与W–Sn矿床相比,REE矿床主要产于有较多新生幔源物质注入的强改造地壳块体中。斑岩/矽卡岩/浅成低温热液型Cu–Au矿床产于富Cu的新生地壳域,而火山岩型U矿和斑岩/层控型Ag–Pb–Zn成矿系统却更多的产于古老地壳域及其边缘。依据构造–岩浆活动史和地壳属性,研究认为江南造山带西南段和南岭以北的三角区是W–Sn–Nb–Ta矿床的勘查远景区,而云开地体是Cu–Au矿床勘查的有利靶区。2.此项研究示范性证明,同位素填图技术方法在刻画地壳物质架构和金属矿床形成、就位等方面具有重要作用。研究成果发表在《Geology》国际地学刊物上。五、西藏南部新生代东西向伸展作用的深部岩浆作用响应1.发现了喜马拉雅造山带首例中新世幔源碳酸质岩浆岩;确定了最老的~30Ma钾镁煌斑岩;揭示了藏南岩石圈顺次部分熔融作用。这些新发现限定了藏南裂谷系的启动不晚于~30Ma,为检验喜马拉雅构造演化与深熔作用的耦合关系提供了关键证据,为解译世界上陆内伸展作用过程中岩石圈深部熔融的精细模式提供了典型实例。2.研究成果发表在《Chemical Geology》《Geological Society of America Bulletin》和《Lithos》等国际主流刊物上。六、柴达木盆地卤水钾盐迁聚规律与找矿新突破1.通过古气候、古构造和Sr同位素物源分析,认为柴达木盆地北部上新世-早更新世古盐湖沉积的含钾盐岩,由反冲构造推至阿尔金山上,再经淋滤溶解形成的含钾卤水储集在阿尔金山麓带砂砾层中,创新完善了“承袭式”成钾理论。2.通过地震剖面解译识别出黑北凹地深部赋存巨厚的砂砾型储卤层,资源所钾盐团队会同柴综院实施“探采一体化”柴钾1井,探获下更新统1021.95m巨厚优质松散砂砾储卤层、稳定涌水量8586m3/d、氯化钾平均含量0.53%的高产工业品位卤水钾矿。大浪滩-黑北凹地有望形成继察尔汗、罗布泊之后中国第3个亿吨级大型钾盐资源基地。3.指挥中心西宁中心创新应用盐湖“反S型”迁聚规律,拓展了马海盐湖老矿区外围找矿新空间。七、CNX-808波长色散X射线荧光光谱仪研发与产业化1.创造性地提出并实现了波谱、能谱和元素分布分析一体化功能。2.首次实现了高端X射线仪器国产化和产业化,拥有完全自主知识产权,整体性能达到国内领先水平,打破了国外高端XRF仪器的长期垄断,可完全替代进口产品,促进了中国高端分析仪器的发展。产品具有制样简单、精度高、绿色环保、能同时进行多元素快速分析等特点,可满足地质调查、钢铁、建材、矿山、新材料等分析领域的需求,实现了Be-U,0.0001%-100%的宽范围无机元素测试。现已成功实现产业化,取得了良好的社会和经济效益,提升了我国在该领域的国际影响力。3.研究成果获中国分析测试协会2023年BCEIA金奖。八、二氧化碳地质封存与利用场地多尺度精细评价方法1.针对咸水层、枯竭油气藏为封存目标的场地,从封存容量及可注入性、盖层封闭性及封存安全、场地建设影响及经济性三个方面,创新了统一的、分阶段二氧化碳地质封存场地选址指标体系,兼具科学性与易操作性,牵头编制形成《二氧化碳地质封存场地评价指标体系》国家标准(报批稿)。2.构建了场地封存性能多尺度评价方法,通过分子-孔隙-岩心-场地多尺度静态-动态综合评价技术体系,有效克服了前期评价与工程实际存在较大误差的难题,研发了自主知识产权的大规模数值模拟软件GPSFLOW,实现了千万级网格规模高效、精细评价,进一步揭示了二氧化碳多场耦合作用下的运移规律,为注入方案设计、实时监测和预测提供了强大的工具。应用于低渗油气藏驱替提高采收率工程取得显著成效。结合我国油气藏实际地质条件,在重大工程场地开展二氧化碳注入与驱替提高采收率试验,提出兼顾经济效益与环境效益的协同优化方案,有效指导实际工程,为国家碳达峰碳中和战略提供了重要的地质科技支撑。九、华北燕辽大火成岩省和哥伦比亚超大陆巨型裂谷系及其资源效应1.在华北克拉通新识别出一个侵位于13.2亿年并由大规模辉绿岩床群构成的燕辽大火成岩省。2.确定华北燕辽与北澳代理姆大火成岩省是被大陆裂解分割开的同一个大火成岩省,建立了华北与北澳克拉通在哥伦比亚超大陆中18~13亿年的长期连接关系。3.首次提出晚前寒武纪全球性黑色页岩系与大火成岩省可能有时空及成因联系,并可作为地层断代标志,为晚前寒武纪地质年代表划分及界限年龄限定提供了新思路。4.首次厘定了哥伦比亚超大陆中形成于14~13亿年,长度15000千米的巨型裂谷系,提出该裂谷系是哥伦比亚超大陆裂解的重要标志,并控制了世界典型超大型稀土矿床的形成,具有较好的稀土及金属成矿潜力。5.成果发表在《EPSL》《Geology》《PR》和《科学通报》等刊物。十、“化学地球”大科学计划揭示全球化学元素分布循环规律1.实施“化学地球”大科学计划, 提出元素大范围迁移和循环理论,制订国际标准6 份;建立覆盖全球1/3陆地面积的地球化学基准网,制作第一张《全球地球化学基准图》,揭示全球关键化学元素分布规律;建立首个化学属性“数字地球”,实现科学数据大众化应用。2.全球地球化学基准委员会主席 David Smith 认为“中国地球化学基准图对科学界具有持久价值,对实现戈尔德施密特厘定地球化学元素分布规律愿景具有重要贡献”。“化学地球”大数据平台受广泛关注,网站点击量达670万次。3.成果涵盖与战略资源、生态环境、全球变化和绿色发展等有关的60个关键元素地球化学基准图,为全球战略资源成矿物质背景、全球土壤碳基准与碳循环、全球重金属风险状况、绿色土地分布等提供了权威科学数据。
  • 胸主动脉支架系统获批上市,共160款国产创新医疗器械获批
    近日,国家药品监督管理局经审查,批准了杭州唯强医疗科技有限公司生产的创新产品“胸主动脉支架系统”注册。该产品由近端胸主动脉覆膜支架系统和远端胸主动脉裸支架系统组成。近端胸主动脉覆膜支架系统封堵B型夹层近端破口,促使假腔内血栓化;远端胸主动脉裸支架系统扩张降主动脉远端真腔,促进主动脉真腔重塑。其中支架的结构设计使其具有良好的柔顺性及一定的径向和轴向支撑力。胸主动脉覆膜支架和胸主动脉裸支架分别预装在对应的输送器中,输送器的设计可保证释放过程的稳定性及支架精准定位。主动脉夹层起病急,进展快,病死率高,支架类产品已成为腔内介入治疗该类疾病的主要手段。该产品适用于治疗Stanford B型夹层,支架近端锚定区长度≥15mm,且病变符合以下条件之一:1.存在远端破口,有处理远端病变的必要性;2.夹层累及范围较广,且存在远端真腔塌陷;3.夹层伴远端灌注不良。该产品的上市将为患者带来新的治疗选择。药品监督管理部门将加强该产品上市后监管,保护患者用械安全。国家药监局已批准的创新医疗器械全名单:国家药监局已批准的创新医疗器械序号产品名称生产企业注册证号1基因测序仪深圳华因康基因科技有限公司国械注准201434021712恒温扩增微流控芯片核酸分析仪博奥生物集团有限公司国械注准201534005803双通道植入式脑深部电刺激脉冲发生器套件苏州景昱医疗器械有限公司国械注准201532109704植入式脑深部电刺激电极导线套件苏州景昱医疗器械有限公司国械注准201532109715植入式脑深部电刺激延伸导线套件苏州景昱医疗器械有限公司国械注准201532109726MTHFR C677T 基因检测试剂盒(PCR-金磁微粒层析法)西安金磁纳米生物技术有限公司国械注准201534011487脱细胞角膜基质深圳艾尼尔角膜工程有限公司国械注准201534605818Septin9基因甲基化检测试剂盒(PCR荧光探针法)博尔诚(北京)科技有限公司国械注准201534014819乳腺X射线数字化体层摄影设备科宁(天津)医疗设备有限公司国械注准2015330205210运动神经元存活基因1(SMN1)外显子缺失检测试剂盒(荧光定量PCR法)上海五色石医学研究有限公司国械注准2015340229311三维心脏电生理标测系统上海微创电生理医疗科技有限公司国械注准2016377038712呼吸道病原菌核酸检测试剂盒(恒温扩增芯片法)博奥生物集团有限公司国械注准2016340032713脱细胞角膜植片广州优得清生物科技有限公司国械注准2016346057314植入式迷走神经刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准2016321098915植入式迷走神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2016321099016药物洗脱外周球囊扩张导管北京先瑞达医疗科技有限公司国械注准2016377102017冷盐水灌注射频消融导管上海微创电生理医疗科技有限公司国械注准2016377104018胸骨板常州华森医疗器械有限公司国械注准2016346158219正电子发射及X射线计算机断层成像装置明峰医疗系统股份有限公司国械注准2016333215620人工晶状体爱博诺德(北京)医疗科技有限公司国械注准2016322174721骨科手术导航定位系统北京天智航医疗科技股份有限公司国械注准2016354228022低温冷冻消融手术系统海杰亚(北京)医疗器械有限公司国械注准2017358308823一次性使用无菌冷冻消融针海杰亚(北京)医疗器械有限公司国械注准2017358308924可变角双探头单光子发射计算机断层成像设备北京永新医疗设备有限公司国械注准2017333068125全降解鼻窦药物支架系统浦易(上海)生物科技有限公司国械注准2017346067926经皮介入人工心脏瓣膜系统杭州启明医疗器械有限公司国械注准2017346068027介入人工生物心脏瓣膜苏州杰成医疗科技有限公司国械注准2017346069828一次性可吸收钉皮内吻合器北京颐合恒瑞医疗科技有限公司国械注准2017365087429左心耳封堵器系统先健科技(深圳)有限公司国械注准2017377088130分支型主动脉覆膜支架及输送系统上海微创医疗器械(集团)有限公司国械注准2017346324131折叠式人工玻璃体球囊广州卫视博生物科技有限公司国械注准2017322329632腹主动脉覆膜支架系统北京华脉泰科医疗器械有限公司国械注准2017346143433植入式心脏起搏器先健科技(深圳)有限公司国械注准2017321157034人类EGFR基因突变检测试剂盒(多重荧光PCR法)厦门艾德生物医药科技股份有限公司国械注准2018340001435可吸收硬脑膜封合医用胶 山东赛克赛斯药业科技有限公司国械注准2018365003136血管重建装置微创神通医疗科技(上海)有限公司国械注准2018377010237miR-92a检测试剂盒(荧光RT-PCR法)深圳市晋百慧生物有限公司国械注准2018340010838丙型肝炎病毒核酸测定试剂盒(PCR-荧光探针法)北京纳捷诊断试剂有限公司国械注准2018340015739脑血栓取出装置江苏尼科医疗器械有限公司国械注准2018377018640定量血流分数测量系统博动医学影像科技(上海)有限公司国械注准2018321028241人EGFR/ALK/BRAF/KRAS基因突变联合检测试剂盒(可逆末端终止测序法)广州燃石医学检验所有限公司国械注准2018340028642全自动化学发光免疫分析仪北京联众泰克科技有限公司国械注准2018322029343人EGFR、KRAS、BRAF、PIK3CA、ALK、ROS1基因突变检测试剂盒(半导体测序法)天津诺禾致源生物信息科技有限公司国械注准2018340029444复合疝修补补片上海松力生物技术有限公司国械注准2018313029245正电子发射断层扫描及磁共振成像系统上海联影医疗科技有限公司国械注准2018306033746EGFR/ALK/ROS1/BRAF/KRAS/HER2基因突变检测试剂盒(可逆末端终止测序法)南京世和医疗器械有限公司国械注准2018340040847植入式骶神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2018312040948植入式骶神经刺激器套件北京品驰医疗设备有限公司国械注准2018312041049人类SDC2基因甲基化检测试剂盒(荧光PCR法)广州市康立明生物科技有限责任公司国械注准2018340050650人类10基因突变联合检测试剂盒(可逆末端终止测序法)厦门艾德生物医药科技股份有限公司国械注准2018340050751医用电子直线加速器广东中能加速器科技有限公司国械注准2018305052052瓣膜成形环金仕生物科技(常熟)有限公司国械注准2018313053453神经外科手术导航定位系统华科精准(北京)医疗科技有限公司国械注准2018301059854医用直线加速器系统上海联影医疗科技有限公司国械注准2018305059955多孔钽骨填充材料重庆润泽医药有限公司国械注准2019313000156生物可吸收冠状动脉雷帕霉素洗脱支架系统乐普(北京)医疗器械股份有限公司国械注准2019313009357病人监护仪深圳迈瑞生物医疗电子股份有限公司国械注准2019307015458腹主动脉覆膜支架及输送系统微创心脉医疗科技(上海)有限公司国械注准2019313018259左心耳闭合系统北京迈迪顶峰医疗科技有限公司国械注准2019313027860左心耳封堵器系统上海普实医疗器械科技有限公司国械注准2019313027961调强放射治疗计划系统软件中科超精(安徽)科技有限公司国械注准2019321028162数字乳腺X射线摄影系统上海联影医疗科技有限公司国械注准2019306028063正电子发射及X射线计算机断层成像扫描系统湖北锐世数字医学影像科技有限公司国械注准2019306036464经导管植入式无导线起搏系统Micra Transcatheter Leadless Pacemakersystem美敦力公司Medtronic Inc.国械注进2019312029765经导管主动脉瓣膜系统上海微创心通医疗科技有限公司国械注准2019313049466一次性使用血管内成像导管南京沃福曼医疗科技有限公司国械注准2019306060167无创血糖仪博邦芳舟医疗科技(北京)有限公司国械注准2019307060268植入式左心室辅助系统重庆永仁心医疗器械有限公司国械注准2019312060369脱细胞角膜植片青岛中皓生物工程有限公司国械注准2019316067970冠状动脉造影血流储备分数测量系统苏州润迈德医疗科技有限公司国械注准2019307096971一次性使用有创压力传感器苏州润迈德医疗科技有限公司国械注准20193070970
  • 国产差示扫描量热仪:科技创新助力材料研究
    在科学研究和工业生产中,差示扫描量热仪(DSC)是一种重要的热分析工具,用于分析物质的热性质和化学反应过程。上海和晟 HS-DSC-101 差示扫描量热仪国产差示扫描量热仪为科研人员提供了精确、可靠的实验数据。在材料科学领域,DSC被广泛应用于研究材料的热稳定性、玻璃化转变温度、熔点、结晶度等关键参数。此外,DSC还被用于检测材料的化学反应温度、焓变等数据,为材料的合成、改性和优化提供了有力支持。国产差示扫描量热仪的广泛应用,不仅推动了国内科研水平的提升,也为国内工业生产提供了有力支持。在塑料、橡胶、涂料、医药等领域,DSC被广泛应用于产品的质量控制和研发过程中。总之,国产差示扫描量热仪在材料科学领域的应用已经取得了显著成果。未来,随着技术的不断进步和应用领域的拓展,国产差示扫描量热仪将继续发挥重要作用,为科学研究与工业生产提供更加强有力的支持。
  • 塑料包装袋和铝塑包装袋在使用热封试验仪测试热封性能时的区别
    在快节奏的现代生活中,包装袋的密封性能直接关系到商品的质量和保质期。塑料包装袋和铝塑包装袋是两种常见的包装材料,它们在结构和材料特性上有所不同,因此在使用热封试验仪测试热封性能时,也需要采取不同的测试策略和参数配置。材料特性塑料包装袋:通常由单一塑料材料制成,如PE(聚乙烯)、PP(聚丙烯)等。具有较好的柔韧性和透明度。热封温度和热封强度通常较低。铝塑包装袋:由铝箔和塑料薄膜复合而成,具有金属层。阻隔性好,不透光,适合保护敏感物质。热封温度和热封强度通常较高。测试目的塑料包装袋:测试塑料包装袋的热封性能,主要评估其密封的可靠性和一致性。重点在于确保包装的完整性和内容物的保护。铝塑包装袋:测试铝塑包装袋的热封性能,除了评估密封性外,还需考虑铝层的保护作用。重点在于确保包装的气密性和光阻隔性。测试参数配置塑料包装袋:热封温度:根据塑料材料的熔点和热稳定性设定。热封速度:通常较快,以适应塑料材料的热封特性。热封压力:适中,以确保密封而不损伤材料。铝塑包装袋:热封温度:需要更高的温度以确保铝层和塑料层的充分粘合。热封速度:可能较慢,以保证铝层和塑料层之间的良好结合。热封压力:较高,以确保金属层的热封效果。测试方法塑料包装袋:通常采用直线热封或脉冲热封。测试时,可能需要关注热封后的平整度和密封线的连续性。铝塑包装袋:可能需要采用特殊的热封技术,如超声波热封或高频热封。测试时,除了关注密封性,还需评估铝层的完整性和热封后的阻隔性能。结果评估塑料包装袋:结果评估通常基于热封强度和密封质量。可能需要进行气密性测试和视觉检查。铝塑包装袋:结果评估除了热封强度外,还需考虑铝层的保护性能。可能需要进行阻隔性能测试,如氧气透过率测试。安全与维护塑料包装袋和铝塑包装袋:在测试过程中,都应遵循安全操作指南,确保操作人员的安全。定期对热封试验仪进行维护和校准,以保证测试结果的准确性。通过上述分析,我们可以看到,塑料包装袋和铝塑包装袋在使用热封试验仪测试热封性能时,需要根据它们的材料特性和测试目的来选择合适的测试参数和方法。正确的测试策略不仅能确保包装的质量和性能,还能提高产品的市场竞争力。
  • 赛陆医疗完成超亿元pre-A轮融资,首款中高通量测序仪已经量产
    测序和空间组学平台创新者——深圳赛陆医疗科技有限公司(Salus Biomed,以下简称“赛陆医疗”、“赛陆”或“公司”)近日完成pre-A轮融资,其中pre-A1轮由锲镂投资独家投资,pre-A2轮由前海长城基金和锲镂投资共同领投,隆平生物参与投资。至此,赛陆医疗pre-A轮融资完美收官,合计融资金额超亿元。本次pre-A轮融资资金将主要用于赛陆医疗自主知识产权的基因测序平台和全球领先的超分辨空间组学产品的申报和持续研发,以及其他创新产品的探索。此前赛陆医疗在天使轮也获得真格基金、品峰医疗等投资机构和产业方的投资。此次赛陆医疗pre-A轮融资的顺利完成,体现了投资人对公司团队和产品的高度认可;同时,公司产品已经正式进入商业化阶段,新一轮融资的完成也将促进产品的迅速推广。赛陆医疗深耕测序和空间组学版块,致力于实现国产设备在技术上的迭代和创新,打破了海外企业在高端临床/科研上游市场上的垄断。与时竞“赛”,开启测序自由之“陆”基因测序行业已逐步走向成熟,应用领域包括:无创产前基因检测、微生物检测、肿瘤诊断治疗、辅助生殖、多组学研究、人群队列基因测序计划、新药研发与创新等。快速增长的测序下游应用极大地提升了对上游设备和试剂的需求,与此同时信息安全、基因安全等突出问题给全国产化测序仪提出了新的挑战。赛陆医疗作为一家以自主开发的测序技术为核心的平台型企业,在测序板块,公司通过整体设计和核心模块优化,在表面化学、测序酶、光学模组和数据分析等多个领域实现创新和迭代。结合这些专有技术和多个领域的新发展,公司成功开发出灵活、模块化、高性能且国产化的测序平台,可适配不同应用场景和通量需求。赛陆首款定位中高通量的测序仪Salus Pro™已经实现量产,并在临床和科研应用中展现出差异化优势;经多个应用场景测试、反馈,Salus Pro™能够更好地满足用户多维度诉求。与时竞“赛”,开启测序自由之“陆” ——这是赛陆在设计之初对Salus Pro™的定位,Salus Pro™是一款能够真正驱动临床测序走向开机自由的产品,激活下游应用的推广,并最终实现临床价值。Salus Pro™测序仪突破衍射极限 布局超分辨空间组学空间组学是研究细胞之间以及基因表达之间的空间位置信息和相互作用关系的科学,为深入研究组织细胞功能、微环境互作、发育过程谱系追踪、疾病病理学等提供了重要工具,对医学临床和医药研发至关重要。以肿瘤为例,影响肿瘤治疗效果的核心因素是肿瘤微环境TME的异质性,表现在不同类型细胞和基因表达的空间分布差异,这会使得所有基因和信号通路相关的疗法大打折扣。相较单细胞转录组,空间转录组可以提供多一个维度的研究数据去解析生命现象。因此,2020年《Nature Methods》杂志将空间转录组学评选为Method of the Year。时至今日,空间转录组的应用已然如浪潮一般涌来。在空间组学板块,基于自有高通量测序平台,结合赛陆自有的突破光学极限的超分辨成像技术,公司推出多款全球领先的超分辨空间组学芯片,拥有超分辨解析和大组织承载能力。赛陆研发的组学芯片已经实现亚微米级别分辨率,超过美国10X genomics Visium™数百倍,能够获取组织内亚细胞器水平的转录组信息,在尖端科研设备领域一举迈入最顶尖行列。公司已经和多家知名研究机构合作,推进极具特色的超分辨空间组学工具在科学研究和临床诊断上的应用,打造全球领先的组学企业。空间组学芯片赛陆医疗创始人、CEO赵陆洋博士表示:“基因组、转录组等多组学研究工具,可以深入揭示生命发展的底层信息,能够给生命健康管理带来全方位的数据支撑。赛陆医疗作为测序和空间组学平台上游创新者,力争通过自主研发,在测序领域提升性能和构建国产化民族品牌,在空间组学领域实现全球领先的超分辨解析和国产尖端科研工具的突破。十分荣幸本轮融资继续受到投资人的支持,这将极大加速赛陆的发展,增强本土企业在多组学领域的竞争力,并助力中国生物医药行业在科研和临床端的良性发展。赛陆愿意和众多生态伙伴一起,抓住全面国产化的历史机遇,扮演好时代赋予的角色,在生命科学上游工具的赛道上勇担大任。”锲镂投资创始人张昆表示:年轻的科学家和企业家往往极具创新性和创造力。坦率地说,我在想配置年轻科学家的时候接触到赵博士及其领导的团队,被年轻科学家们的好奇心、求知欲以及拼搏的精神以及发自内心的热爱所感染,也亲眼见证了赛陆团队成立以来的潜心研发和赛陆产品的快速成熟。由于技术上天然的高壁垒,在生命科学的核心工具基因测序仪器领域,呈现出玩家极少、且国外企业独大的格局。这样的行业背景,直接导致下游服务机构和企业得不到良好的服务,同时因为供应和议价权等问题,整体经营状况有极大压力。因此,坚持自主创新、强调全面国产、力争打破“卡脖子”的赛陆医疗,在行业的上游关键设备进行布局,就显得尤为可贵。非常期待在赵博士领导下,赛陆团队全力以赴不负所托,构建出物美价优并为合作伙伴提供好服务、为员工及股东持续创造价值、为人类健康持续做出贡献。前海长城基金投资总监毛志伟表示:前海长城基金基于对基因测序仪行业的理解,认为赛陆医疗是国内少数具有超强创新能力的高通量测序平台研发和制造企业,也有独具特色的超分辨成像技术的储备,在更高通量的下一代机型研发上,赛陆医疗具备全球竞争力。公司目前围绕测序仪的团队建设比较强大,未来后劲很足。赛陆医疗聚集测序、组学、半导体、光学等行业人才,团队执行力强,研发进展迅速,充分发挥了后发优势。将来还有超分辨成像技术和空间组学的星辰大海值得期待,愿赛陆医疗后发先至,在更高的维度实现超越,助力下游企业在空间组学上进行新的探索。隆平生物创始人、CEO吕玉平博士表示:赛陆医疗拥有自主知识产权的高通量、国产化的测序平台,突破了基因测序领域的卡脖子技术,尤其是在性能质量及通量保持领先的基础上,测序成本大幅降低,这一点对于生物育种行业尤为重要。低成本的测序技术使得生物育种行业大规模应用测序技术辅助分子育种成为可能,有望对生物育种行业产生革命性的影响。应用测序技术可以提高育种过程中基因组和基因挖掘的基础研究水平,推动新品种培育、新技术研发。隆平生物作为行业领先的生物育种性状研发企业,通过与赛陆医疗的深度合作,可以增强隆平生物在主要粮食作物(玉米、大豆、水稻等)等功能基因鉴定、解析和应用能力,加速公司在生物育种性状研发的技术创新和产品创制。关于赛陆医疗赛陆医疗成立于2020年10月,公司专注于开发自主知识产权的上游测序平台,并基于其上构建了全球领先的超分辨空间组学平台,实现基因组学和空间组学产品的自主开发及科研临床端转化。赵陆洋博士领衔的科学家创业团队,突破了以往测序产品在通量、成本、分辨率、自动化等方面的瓶颈,同时实现了平台的国产化。公司成立2年来迅速发展,现已拥有国际领先的测序和组学平台,可以为中下游应用提供全面的解决方案,并已和多家机构开展合作。关于锲镂投资锲镂投资是一家源于信任的服务型投资机构,始终坚信无论时代如何变化,一定有符合时代的创业者最终会成为推动社会进步的企业家。通过持续的努力,帮助创业者、科学家、投资人做好有效的连接服务,而不仅是单纯的投资。对于锲镂投资而言,不仅是进一步践行『锲而不舍 金石可镂』的信念,更希望是一群人努力让社会变得更美好,为社会持续创造价值。锲镂投资成立以来深入围绕生物医药、医疗器械以及合成生物学上下游领域,进行重点布局,已投资企业包括华大智造(688114)、华大因源、态创生物、菁良基因、纽福斯、小藻科技、大族机器人、华源再生、吉美瑞生等等。关于前海长城基金前海长城基金,是一家专注于生物医疗、半导体、新能源、新材料等战略性新兴产业领域的专业投资机构。以长期主义作为价值投资的支点,践行特色投资的价值理念,遵循“宽赛道、全链条、选龙头、人为本”的投资逻辑,专注于“投早、投小、投新、投硬、投国产替代、投专长领域”的投资策略,致力于成为创业投资领域“专精特新”隐形冠军。公司先后投资优秀企业达60余家,包括新产业生物(300812)、康泰生物(300601)、华大智造(688114)、通锐微、美诺华(603538)、必贝特、佳创视讯(300264)、久日新材(688199)、利和兴(301013)等。关于隆平生物隆平生物技术(海南)有限公司于2019年5月在海南三亚崖州湾科技城成立,是国投集团旗下,国投创益管理的央企乡村投资基金控股,隆平高科、新洋丰、新希望等产业资本及红杉资本、大湾区共同家园基金等金融资本为战略股东的生物育种领军企业。公司以创建国际一流的农业生物“芯片”研发平台为目标,聚焦玉米、大豆等主要农作物关键性状改良及精准生物育种产品研发。目前已建成分子生物学、遗传转化、性状分析及一年四代回交等研发技术平台,具有和跨国种企在转基因、基因编辑等领域同等的研发实力和技术开发能力。公司经过三年多的发展,已完成多轮融资,是中国生物育种发展最快的研发型龙头企业。
  • nature子刊:三光子高分辨显微镜助力研究神经科学重要问题
    p   正如医生们使用超声波检查,CT和MRI扫描身体,天文学家利用太空望远镜,自适应光学器件和不同波长的光线进一步观察宇宙,神经科学家们也在寻求新的方法来观察大脑内部的结构。 strong 最近出现的三光子显微镜让他们比以往更深入地了解脑细胞。 /strong 现在,基于对该技术的实质性改进,麻省理工学院的科学家们已经开展了第一项研究:通过每个视觉皮层,特别是下面神秘的“亚平面”结构,观察活跃小鼠大脑的神经活动。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/c9fa18d7-98e2-4073-be2a-d7d4a6eb1847.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 图片来源:Murat Yildirim et. al. /span /p p   该研究发表在Nature Communications杂志上,研究小组表明,当老鼠受到视觉刺激时,他们可以测量所有六层视皮层和亚平面中神经元之间的活动模式,提供小鼠如何处理视觉信号的信息。此外,通过一系列仔细的实验,研究人员能够证明他们发出的光线,以及回收的光线,既没有损坏,也没有改变他们测量的细胞的特性。 /p p   总之,本文描述了一种 strong 新型三光子显微镜,该显微镜经过优化,能够提供快速,短,低功率的光脉冲,能够在不引起任何功能性干扰或物理损伤的情况下到达深部目标,然后检测由细胞发出的荧光。高效率地生成具有清晰分辨率和快速帧速率的图像 /strong 。 /p p   “我们有动力展示我们可以用三光子显微镜技术处理清醒状态下的动物,这样我们就可以提出神经科学的重要问题,”Yildirim说。 “你可以认为你拥有世界上最好的显微镜,但在你问这些问题之前,你不知道你会得到什么结果。” /p
  • “诊疗装备与生物医用材料”重点专项2022拟启动78个方向
    近日,科技部发布“十四五”国家重点研发计划“诊疗装备与生物医用材料”重点专项2022年度项目申报指南(征求意见稿),向社会征求意见和建议。征求意见稿中提到,2022年度指南部署坚持全链条部署、一体化实施的原则/要求,围绕前沿技术创新(含青年科学家项目)、重大产品研发、应用解决方案研究、应用评价与示范研究、监管科学与共性技术研究5个任务,拟启动78个方向。1. 前沿技术研究及样机研制1.1 诊疗装备前沿技术研究及样机研制1.1.1 便携式模块化机动急救手术技术研究及样机研制1.1.2 多维度自反馈可调式胸外心脏按压技术研究及样1.1.3 级联光子符合成像技术研究及样机研制1.1.4 牙齿内及周边软组织的高场MRI精细成像技术研究及样机研制机研制1.1.5 无创多模电磁精准调控技术研究及样机研1.1.6 基于电子直线加速器的X射线超高剂量率产生技术研究及样机研制1.1.7 动脉粥样硬化精准诊疗一体化技术研究及样机研制1.1.8 术中微电极记录技术研究及样机研制1.1.9 微型介入式人工心脏技术研究及样机研制1.1.10 人工耳蜗内耳重复递送电极技术研究及样机研制1.2 生物医用材料前沿技术研究及样机研制1.2.1 经导管微创介入心衰治疗材料及输送器械关键技术研究1.2.2 口腔黏膜病损修复用对称核苷生物医用材料研究1.2.3 炎症组织微环境调控的抗菌、促再生创面修复材料研究1.2.4 基于重组人胶原蛋白的三维光刻通孔多梯度高仿生真皮支架研制1.2.5 促口咽类瘘管修复的有机-无机杂化生物材料研究1.2.6 新型鼻、耳、泪道系统药物缓释支架研究1.3 体外诊断设备和试剂前沿技术研究及样机研制1.3.1 病原微生物快速鉴定、药敏检测技术研究与原型产品研制1.3.2 新型肿瘤药敏分析技术研究及原型产品研制1.3.3 单分子免疫检测技术及原型产品研制2. 重大产品研发2.1 诊疗装备重大产品研发2.1.1 高性能急救转运呼吸机研发2.1.2 用于高原作业的便携式变压吸附与膜分离耦合制氧系统研发2.1.3 双探头可变角人体SPECT/CT一体机研发2.1.4 基于光泵磁强计的脑磁图系统研发2.1.5 分离式变场术中磁共振成像系统研发2.1.6 基于CMOS的DSA用大面积X线平板探测器研发2.1.7 眼科手术导航显微镜研发2.1.8 激光扫描超广角共聚焦眼底成像系统研发2.1.9 荧光共聚焦显微内镜核心部件研发2.1.10 全飞秒激光角膜屈光手术装置研2.1.11 磁共振影像引导加速器研发2.1.12 基于国产化核心部件的系列束流模块研发2.1.13 危重症肺通气/肺灌注床边可视化无创监测系统研发2.1.14 具有免疫调节功能的肿瘤多模态热物理治疗装备研发2.1.15 植入式心脏再同步治疗起搏器研发2.1.16 植入式心律转复除颤器研发2.1.17 植入式闭环脑深部电刺激器研发2.1.18 经呼吸道诊疗机器人系统研发2.1.19 磁共振监测下精准适形激光消融机器人系统研发2.1.20 颅底-颌面肿瘤与畸形智能微创手术机器人系统研发2.1.21 智能影像引导穿刺机器人系统研发2.1.22 多模态情感交互式诊疗装备研发2.2 生物医用材料重大产品研发2.2.1 高性能多级结构生物活性人工骨研发2.2.2 新型高强度可吸收PLA或PLGA复合生物活性骨固定器械研发2.2.3 抗凝血涂层产品研发2.2.4 龋病预防和治疗矿化材料研发2.2.5 脑心电学器官组织修复产品研发2.2.6 具有良好生物愈合的复合型人工角膜研发2.2.7 高品质医用金属粉体材料及增材制造金属植入体研发2.2.8 碳纤维/聚醚醚酮复合骨科植入材料研发2.3 体外诊断设备和试剂重大产品研发2.3.1 病原微生物检测流水线全自动化系统研发2.3.2 智能化全自动医用流式细胞仪研发2.3.3 高性能实验室流水线全自动化系统研发2.3.4 便携式基因测序仪研制和临床产品研发2.3.5 体外诊断试剂关键原材料研发2.3.6 全自动高通量液相悬浮芯片系统研发2.3.7 术中分子病理快速检测系统研发2.3.8 临床高通量基因检测全自动一体化系统研发3. 应用解决方案研究3.1 基于国产创新PET/MR的神经系统疾病诊疗解决方案研究3.2 基于无创心磁图技术的冠脉微循环障碍临床诊断解决方案研究3.3 基于国产创新一体化放疗设备的临床新技术解决方案研究3.4 基于高诱导成骨活性材料的斜外侧腰椎椎间融合术临床应用解决方案研究3.5 周围神经缺损修复产品临床应用解决方案研究4. 应用评价与示范研究4.1 国产胸腔镜、腹腔镜及手术器械应用示范研究4.2 机器人远程诊疗与手术体系的研究与应用示范5. 监管科学与共性技术研究5.1 在用MRI和PET/CT检测校准及临床质控技术研究5.2 脉冲式激光治疗设备可溯源在线检测及临床质控技术研究5.3 放射治疗装备安全有效性评价体系研究5.4 医用手术机器人质量评价技术研究5.5 医疗器械中应用的纳米材料质量控制及评价技术研究5.6 组织工程类医疗器械产品安全性有效性评价技术研究5.7 恶性肿瘤早期诊断及筛查产品监管科学研究5.8 应急救治系列装备可靠性共性关键技术研究和评价体系构建6. 青年科学家项目6.1 诊疗装备青年科学家项目6.2 生物医用材料青年科学家项目6.3 体外诊断技术青年科学家项目7. 科技型中小企业研发项目7.1 诊疗装备科技型中小企业研发项目7.2 生物医用材料科技型中小企业研发项目7.3 体外诊断设备和试剂科技型中小企业研发项目附件:“诊疗装备与生物医用材料”重点专项2022年度项目申报指南(征求意见稿).pdf
  • 一文了解材料热动力学概念
    p strong 1.热、动力学概述 /strong /p p   自然界中发生的一切物理、化学和生物代谢反应,通常都伴随着热效应的变化,人们对热本质的认识经历了漫长曲折的探索历程。 /p p   20世纪初,Planck、Poincare、Gibbs等科学家以宏观系统为研究对象,基于热力学第一、二定律,并定义了焓、熵、亥姆霍兹和吉布斯等函数,加上P、V、T等可以直接测定的客观性质,经过归纳与演绎推理,得到一系列热力学公式和结论,用来解决能量、相和反应平衡问题,这便是经典热力学的基本框架。经典热力学研究的对象是系统中的物质和能量的交换,它是不断逼近极限的科学,只讨论变化前后的平衡状态,不涉及物质内部粒子的微观结构。 /p p   Boltzmann等人将量子力学与经典热力学相结合,形成了统计热力学。统计热力学属于从微观到宏观的方法,它从微观粒子的性质出发,通过求统计概率,定义出系统或粒子的配分函数,以此为桥梁建立起与宏观性质的联系。 /p p   时间是热力学中非常重要的独立变量,怎样处理时间变量是区别不同层次热力学的标志,在物理学中利用熵增来描述时间的单向性。热力学研究可能性,动力学研究现实性,即变化速率和变化机理。动力学是反应进度与时间的函数关系,系统的行为状态和输出只取决于起始状态和随后的输入。 /p p   自然界中发生的好多现象都是在非平衡态进行的不可逆过程,这就推动了热力学由平衡态向非平衡态发展。20世纪50年代,Prigogine I、Onsager L等人形成了非平衡态热力学(Non-equilibrium Thermodynamics),局域平衡假设是非平衡态热力学的中心假设。其中,Onsager L于1931年确立了唯象系数的倒易关系,Prigogine 在1945年提出了非平衡定态的最小熵增原理,适用于接近平衡状态的线性非平衡体系。对于远离平衡态的系统,以Progogine为首的布鲁塞尔学派经过多年的努力,建立了著名的耗散结构理论,后来通过云街、贝纳德对流实验等一些自组织现象(见图1)得以证实,耗散结构理论指出远离平衡的开放系统可以形成有序状态,打开了物理科学通向生命科学的窗口。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/436c0be6-c410-4216-9391-914804187287.jpg" title=" 图1 一些自组织现象.png" alt=" 图1 一些自组织现象.png" width=" 400" height=" 313" border=" 0" vspace=" 0" style=" width: 400px height: 313px " / /p p style=" text-align: center " strong 图1 一些自组织现象 /strong /p p   目前,热动力学不再仅仅是研究热现象基本规律的科学,它和系统理论、非线性科学、生命科学、宇宙起源等密切相关,其应用涉及物理学、化学、生物、工程技术,以及宇宙学和社会学科[1]。 /p p strong 2.材料热力学的形成和发展 /strong /p p   现代材料科学的进步和发展一直受到热力学的支撑和帮助,材料热力学是经典热力学与统计热力学理论在材料科学领域的应用,其形成和发展正是材料科学走向成熟的标志之一。 /p p   从1876年Gibbs相律的出现,1899年H. Roozeboom把相律应用到多组元系统,1900年,Roberts-Austen构建了Fe-Fe3C相图的最初形式,为钢铁材料的研究提供了理论支撑 再到20世纪初,G. Tamman等通过实验建立了大量金属系相图,有力推地动了合金材料的开发 50年代初R. Kikuchi提出了关于熵描述的现代统计理论,为热力学理论和第一性原理结合起来创造了条件 60年代初M. Hillert等对于非平衡系统热力学的研究,导致了失稳分解领域的出现,丰富了材料组织形成规律的认识 70年代由L. Kaufman、M. Hillert等倡导的相图热力学计算(CALPHAD),使材料研究逐渐进入到根据实际需要进行材料设计的时代[2]。 /p p   2011年6月,美国宣布了一项超过5亿美元的“先进制造业伙伴关系”计划,核心内容之一是“材料基因组计划(materials genome initiative, MGI)”,其目的是为新材料的发展提供必要的工具集,通过强大的计算分析减少对物理实验的依赖,加上实验与表征方面的进步,显著加快新材料投入市场的种类与速度,开发周期可从目前的10~20年缩短至2~3年,图2比较了传统材料设计与现代材料设计的流程。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/1f972848-2ff1-4a22-9f2f-766750dfbfc7.jpg" title=" 图2 传统材料设计与现代材料设计流程对比.png" alt=" 图2 传统材料设计与现代材料设计流程对比.png" width=" 400" height=" 371" border=" 0" vspace=" 0" style=" width: 400px height: 371px " / /p p style=" text-align: center " strong 图2 传统材料设计与现代材料设计流程对比 /strong /p p   材料热力学研究固态材料的熔化与凝固、固态相变、相平衡关系与成分、微观结构稳定性、相变的方向与驱动力等。为了描述各种不同类型物相的自由能、焓、熵等,曾提出过各种唯象的或统计的热力学模型,比如,理想溶体模型、正规溶体模型、亚正规溶体模型、准化学模型、原子缔和模型、中心原子模型、双亚点阵模型、集团变分模型(CVM)、Bragg-Williams近似、Bethe近似、Ising近似、Miedema近似等。扩散是动力学研究的主要内容,包括凝固过程中晶核的形成和长,以及在热处理过程中合金的均匀化、溶质原子的分布与再分配,可通过菲克第一、二定律推导。 /p p   热力学计算的涵盖范围很广,分析和理解材料学问题的重要工具有:Gm-x图、相图、TTT曲线、CCT曲线等。其中,最成功的核心应用是相图计算。相图依据获得的方法可以分为三类: /p p   1、实验相图:利用实验手段(DSC、DTA、TG、X射线衍射、电子探针微区成分分析等),以二、三元系为主。 /p p   2、理论相图,也称第一性原理计算相图,不需要任何参数,利用Ab initio method实现的理论计算相图,只在个别二元和三元体系材料设计方面有少量报道。 /p p   3、计算相图,其核心是理论模型与热力学数据库的计算机耦合。目前国际上流行的软件多采用CALPHAD模式,包括Thermo-Calc、Pandat、FactSage、Mtdata、JMatPro等。CALPHAD模式中对溶体自由能的描述大部分采用亚正规溶体模型,流程如图3所示,它是根据体系中各相的特点,集热力学性质、相平衡数据、晶体结构等信息于一体,建立热力学模型和自由能表达式,然后基于多元多相平衡的热力学条件计算相图,最终获得体系的具有热力学自洽性的相图和描述各相热力学性质的优化参数。 /p p style=" text-align: center "   例如,王翠萍,刘兴军,大沼郁雄等人利用CALPHAD方法评估了Cu-Ni-Sn三元系各相的热力学参数,其计算结果与实验值吻合得很好,如图4所示,他们还计算了该三元系中bcc相的有序无序转变及fcc相的溶解度间隙,对利用析出强化以及Spinodal分解开发高强度和高导电性的新型Cu基合金的组织设计具有一定的指导意义[3]。 br/ strong img src=" https://img1.17img.cn/17img/images/201809/uepic/a0a89f13-1022-49a1-9fd6-5604b5b5b379.jpg" title=" 图3 CALPHAD方法流程图.png" alt=" 图3 CALPHAD方法流程图.png" width=" 400" height=" 401" border=" 0" vspace=" 0" style=" width: 400px height: 401px " / /strong /p p style=" text-align: center " strong 图3 CALPHAD方法流程图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/bae8d53e-6ea5-4648-881d-ddedb81a12f2.jpg" title=" 图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3].png" alt=" 图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3].png" / br/ 图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3] /strong /p p   动力学计算以热力学计算为基础,引入以时间为变量的扩散动力学模型和原子移动性数据库,通过大量的迭代运算,获得材料热力学状态随时间的变化关系。 /p p strong 3.在材料各领域的应用 /strong /p p   任何一个体系,热力学、动力学和物质结构三方面是密切联系的。金属材料的微观结构和热力学性质影响凝固和热处理过程中的生成相和微观组织演变。例如,对于Al-Cu系合金,溶质原子在固溶时过饱和析出,造成球对称畸变 在时效硬化时,首先形成G.P. Zone,接着溶质原子在低指数晶面上发生聚集、有序化,最终生成非共格θ(Al2Cu)平衡相。在凝固或均匀化过程中生成的相尺寸大于0.5μm时,受载时界面出现位错塞积,成为裂纹源 当尺寸介于0.005~0.05μm,并且呈细小弥散分布时,可阻碍再结晶和晶粒长大。当然,热、动力学理论目前已经渗透到了材料各个领域,成为一种有效的理论指导和必要的分析手段。 /p p strong (1)传统钢铁行业 /strong /p p   钢铁研究总院作为国内最大的专业钢铁材料研发机构,是最早引入热力学计算方法和软件的单位之一,先后在节镍型不锈钢设计、V-N 微合金化技术、LNG 用 9 Ni 低温钢等方面都取得了丰硕的研究成果[4]。 /p p strong (2)金属基复合材料 /strong /p p   范同祥、李建国、孙祖庆等人采用热力学、动力学模型,在复合材料增强相与基体界面反应控制、反应自生增强相种类选择、复合材料体系设计以及制备工艺等方面做了大量研究[5]。 /p p strong (3)纳米材料 /strong /p p   2000年,美国亚利桑那州立大学的Chamberlin在研究铁磁体的临界行为时用到纳米热力学(Nanothermodynamics)一词,Giebultowica、Hill等人证明了纳米热力学在处理纳米体系的生长和物理化学性能时的巨大作用,中国科学院大连化学物理研究所的谭志诚团队在纳米材料低温热容方面也做了大量研究[6]。 /p p strong (4)形状记忆合金 /strong /p p   Lidija GOMIDZELOVIC等人采用Muggianu模型并结合实验,使用Thermo-Calc软件计算了形状记忆合金Cu-Al-Zn在293K时的相图,并探讨了组织性能[7]。 /p p   此外,在Mg基储氢材料、石墨烯界面及其吸附性能都有热力学计算机模拟的相关应用。 /p p strong 4.热动力学的发展趋势 /strong /p p   几乎没有一种实用材料的结构在热力学上是稳定的,扩散、相变、位错的产生和运动,以及材料的形变和断裂都涉及各种非平衡,这就需要在实际应用中将CALPHAD模式与其他理论相结合,使其更加逼真地模拟现实情形,比如:与第一性原理(First-Principles)、密度泛函理论(Density functional theory,DFT)、相场理论(Multiphase Field Method)相结合 与材料物理冶金模型相结合,对材料硬度、强度、延伸率等做出预测 引入晶胞和析出相的形核、长大、粗化模型,计算材料的CCT、TTT相变曲线、晶粒尺寸、形核率等物性参数。 /p p   在未来,包括热力学和动力学在内的多尺度集成计算模拟配合专业数据库,实现材料设计阶段、模拟材料生产制备和服役的全流程,从而预测材料的组织演变和宏观性能,并在制备过程中对组织性能进行精确调控,是材料热、动力学发展的主要趋势[8,9]。 /p p strong 参考文献 /strong /p p [1]徐祖耀,材料热力学,高等教育出版社,2009 /p p [2]戴占海,卢锦堂,孔纲. 相图计算的研究进展[J]. 材料研究导报,2006,4(20):94-97 /p p [3]王翠萍,刘兴军,马云庆,大沼郁雄,貝沼亮介,石田清仁. Cu-Ni-Sn三元系相平衡的热力学计算[J]. 中国有色金属学报, 2005(11): 202-207. /p p [4]董恩龙,朱莹光,潘涛. LNG用9Ni低温压力容器钢板的研制[C],全国低合金钢年会论文集. 北戴河:中国金属学会低合金钢分会,2008:741-749 /p p [5]范同祥,张从发,张荻.金属基复合材料的热力学与动力学研究进展[J]. 中国材料进展, 2010, 29(04): 23-27 /p p [6]姜俊颖,黄在银,米艳,李艳芬,袁爱群. 纳米材料热力学的研究现状及展望[J].化学进展,2010,22(06):1058-1067. /p p [7]Lidija GOMIDZELOVIC, Emina POZEGA,Ana KOSTOV,Nikola VUKOVIC,Thermodynamics and characterization of shape memory Cu-Al-Zn Alloy [J].Transactions of Nonferrous Metals Society of China, 2015, 25(08): 2630-2636 /p p [8]Liux J, Takaku Y, Ohnuma I, et al. Design of Pb-free solders in electronic packing by computational thermodynamics and kinetics [J]. Journal of Materials and Metallurgy, 2005, 4(2): 122-125 /p p [9]Chen Q, Jeppsson J, Agren J. Analytical treatment of diffusion during precipitate growth in multicomponent systems [J]. Acta Materialia, 2008, 56:1890-1896 br/ br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制