当前位置: 仪器信息网 > 行业主题 > >

深层沉降仪

仪器信息网深层沉降仪专题为您提供2024年最新深层沉降仪价格报价、厂家品牌的相关信息, 包括深层沉降仪参数、型号等,不管是国产,还是进口品牌的深层沉降仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合深层沉降仪相关的耗材配件、试剂标物,还有深层沉降仪相关的最新资讯、资料,以及深层沉降仪相关的解决方案。

深层沉降仪相关的资讯

  • 沉降篮选不出来?再也不用纠结啦!
    一般在做药物溶出实验时,漂浮着的胶囊片无法保证其溶解速率。此时我们可以使用一个小块的,松散的,具有非活性的金属材料固定药物并使其沉在溶媒中,就能够使药物溶解有较好的重现性。而这个东西,也就是我们常说的沉降篮。目前市场售卖的沉降装置型号众多,其外型种类,规格也都各不相同,这时候,可能会有实验老师纠结症发作,面对琳琅满目的沉降篮一时不知如何选择。其实,沉降篮的选择很简单。今天月旭科技就带大家来认识一下各种沉降篮,力求消除您对沉降篮的“纠结”。“沉降篮” 的种类从外型上分类,沉降篮有圆柱形沉降篮,弹性螺旋形沉降篮,三叉形沉降篮,O形沉降篮和异形沉降篮等。首先介绍的是圆柱形沉降篮,这是应用较为通用型的沉降篮,但也并非适用于所有剂型,如下图中央的便是药典记载的沉降篮,型号为CUSBSK-JP:弹性螺旋形沉降篮因为简单易用,性价比高,而被很多用户采用,也是我们常推荐的类型,常用于各种尺寸的胶囊剂、片剂等。三叉形沉降篮外观独特,非常适合用于栓剂,也适用于1-3号胶囊。O形沉降篮由316不锈钢和O形圈组成,zui大适用于大尺寸的0号胶囊。异形沉降篮应用不多,一般用于片剂/胶囊和贴剂等剂型,但是这种沉降篮由于其阻挡药物的面积zui小,其溶出效果也是zui好的。“沉降篮” 的材质许多沉降篮的材质采用316不锈钢(316 SS),质地坚硬,应用范围广,耐用性好,寿命长。然而有时药片对金属敏感,亦或者强腐蚀性溶媒易破坏316 SS时,也可选择PTFE材质或有PTFE涂层的沉降篮。同时也有一些沉降篮带有磁性,可以用于一些投料部分有相应磁性设计的溶出仪。“沉降篮” 的选择沉降篮的选择,zui先要考虑的是尺寸。选择沉降篮的尺寸应从以下因素考虑:1、沉降篮和制剂必须有较小的接触面积,否则会影响其溶出速率;2、沉降篮尺寸应比制剂略大,但又不至于让药剂在篮内严重浮动;3、螺旋沉降装置间距应尽可能的宽,避免堵塞影响溶出速率。总结一下其实很简单,我们只需要选取尺寸略大于药物的沉降篮即可,如果有很多个沉降篮符合这个条件,那么我们可以选取其中沉降篮间隙zui大的那一款,当然也为了成本考虑,我们建议优先推荐从螺旋型沉降篮中选择。如果您还是有困惑的话,也可以将片剂的长,宽,高参数,或胶囊剂的直径,长度参数告知月旭科技的工程师,我们会根据您的药剂尺寸,推荐合适的沉降篮。当药剂在溶出过程中崩解成小颗粒,需要将小颗粒继续沉降药物时,需根据颗粒大小,选择合适的篮孔径目数。“沉降篮” 的使用维护1、在维护保养方面,需要注意每次用完,立即用去离子水冲洗,如需用洗涤剂,建议用中性温和的清洗剂,洗完再用去离子水冲洗。2、冲好用软布吸干水分,不能用力擦拭表面。3、如使用加热干燥,温度不可超过90℃。4、尤其PTFE镀层沉降篮不可使用超声清洗。
  • 文章推荐 | 使用梯度法、涡动相关法和两种新型开路仪器的氨沉降测量
    荷兰应用科学院(TNO, the Netherlands Organisation for Applied Scientific Research)和荷兰国家公共卫生与环境研究所(RIVM, National Institute for Public Health and the Environment)的联合研究团队发表了一篇题为“ Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods "的研究论文,已发表于《Atmospheric Measurement Techniques》。实验项目:使用梯度法、涡动相关法和两种新型开路仪器的氨沉降测量项目地点:荷兰 Ruisdael 观测站合作伙伴:荷兰应用科学院和荷兰国家公共卫生与环境研究所的联合研究团队部署仪器:HT8700大气氨激光开路分析仪项目简介:氨的干燥沉积(NH3)是荷兰大气向土壤和植被的氮沉积的最大因素,导致富营养化和生物多样性的损失。然而,学术界对于氨通量测量的数据十分有限,而且通常最多只有月度分辨率。造成这种情况的一个重要原因是在干燥条件下测量氨通量非常困难。过去,没有一种技术可以被认为是氨通量测量的黄金标准,这使得新技术的测试和判断其质量变得复杂。 这项研究展示了两种新型测量装置的相互比较结果,旨在以半小时分辨率测量氨的干沉降。在为期五周的比较期内,研究人员在荷兰 Cabauw 的 Ruisdael 观测站并排运行了两种光学开路的通量观测技术:其一是使用梯度法通量技术新型 RIVM-miniDOAS 2.2D 仪器,其二是宁波海尔欣光电科技有限公司推出的使用涡度协方差技术的HT8700大气氨激光开路分析仪。HT8700大气氨激光开路分析仪部署于荷兰的观测站RIVM-miniDOAS 2.2D和HT8700大气氨激光开路分析仪均为开路式光学仪器,在测量过程中直接测量氨在大气中的含量。除此之外,它们在测量原理和从测量浓度得出沉积值的方法上存在很大差异。在迎风地形均匀又没有附近障碍物时,两种不同的技术显示出非常相似的结果(r = 0.87)。观察到的通量从约80 ng NH3 m-2 s-1 的沉降到约140 ng NH3 m-2 s-1 的排放不等。无论是在绝对通量值还是实时的通量和浓度变化,两种截然不同的技术中获得了相似的结果,这证实了两种仪器都能够在至少几周的连续时间内以高时间分辨率测量氨通量。不过这个相关性也会受到其他因素影响,例如当风向受到附近障碍物干扰时。HT8700与定制化RIVM-miniDOAS 2.2D 仪器所测量的氨通量变化显示高度的一致性此外,论文中还讨论了两个系统的技术性能(例如,正常运行时间、精度)和实际局限性。miniDOAS 系统的正常运行时间达到了 100%,但在这次活动中对两台仪器进行了定期校准(占7周正常运行时间的35%)。而HT8700在下雨期间和下雨后不久数据有效性较低,并且其早期产品使用的光学镜面涂层可能会退化,导致约21%的数据缺失(针对此问题的升级版光学镜面已经交付客户使用)。虽然HT8700在恶劣天气条件下的独立运行时间有限,在适当的情况下,该系统仍然可以提供良好的结果,为未来的升级迭代版本打开了良好的前景,将能适用于业务化的实时氨通量监控应用。这些仪器所提供的崭新的高时间分辨率数据将促进对氨干沉降过程的研究,从而更好地理解氨沉降过程,并更好地对化学传输模型进行参数化。HT8700大气氨激光开路分析仪产品升级自动清洁自动清洁系统使用清洗和喷气功能来清除下镜面的灰尘,免除常规的手动清理。并采用了一种全新的镜面涂层技术,增强耐腐蚀性,以保证实地的长期观测。降雨传感如遇降雨天气,系统收集的数据为无效数据。增设降雨识别芯片,通过传感装置实时反馈至系统。并将降雨期间收集的数据特殊标注,便于使用者筛选有效数据。镜片加热在野外工作过程中会遇到低温条件,普通镜片易积水雾,影响镜片反射效率。开发加热系统,增设加热组件,可将镜片温度提至高于环境温度。确保反射能力不受低温、冷凝、降雨影响,使仪器分析结果更精准、更可靠。HT8700搭载升级版光学镜面,进行全新一轮野外测试通过这次研究,我们可以看到,RIVM-miniDOAS 2.2D和HT8700大气氨激光开路分析仪在测量氨沉降方面具有很高的潜力和应用价值。尽管这两种仪器在测量原理和数据处理方法上存在差异,但在一定条件下,它们都能提供准确可靠的测量结果。此外,通过不断的技术升级和改进,HT8700大气氨激光开路分析仪的性能和稳定性得到了进一步提高,为未来的氨沉降测量提供了更好的工具和手段。总之,这项研究提供了有关氨沉降测量的新思路和新方法,为未来的环境保护和生态学研究提供了新的工具和手段。我们相信,随着技术的不断进步和研究的深入,我们将能够更好地了解氨沉降过程,为保护环境、维护生态平衡和促进可持续发展做出更大的贡献。
  • 布鲁克海文沉降粒度仪在碳黑粒径分布测量中的应用
    p    strong Testa Analytical Solutions注册公司发布了一份技术报告,描述了如何使用他们的BI系列圆盘式离心/沉降粒度仪精确测量碳黑样品的粒径。 /strong /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201806/insimg/d966dc87-88fd-44fd-852a-876a29b9fb20.jpg" title=" BI-DCP圆盘式离心-沉降粒度仪.jpg" width=" 500" height=" 340" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 340px " / /strong /p p   碳黑作为耐磨填料被 span style=" color: rgb(255, 0, 0) " 广泛应用于轮胎制造业,以及许多其他橡胶材料的生产中 /span 。碳黑还被 span style=" color: rgb(255, 0, 0) " 用作涂层、涂料、塑料、印刷油墨和黑色着色剂中的颜料 /span 。 /p p   由于碳黑聚合物的粒径分布(PSD)与分散体的热学及力学性能关系紧密,碳黑PSD的测量成为其质量控制的重要组成部分。 span style=" color: rgb(255, 0, 0) " 尽管谱图上经常只出现单个峰,但非团聚态碳黑的典型粒径分布范围却十分宽泛,可从10nm到500nm以上。 /span /p p   作者介绍了使用圆盘式离心/沉降粒度仪测量粒径的原理,他们证明了为获取更精确测量的消光修正的重要性。 /p p   给出了ASTM系列碳黑参比材料(A4-F4)的结果,并比较了不同参比材料的差异。讨论了不同样品制备方式,给出了这些制备方式随时间的稳定性。 /p p   该报告的结论是,考虑到小粒径尺寸及典型分布的幅度,BI系列圆盘式离心/沉降粒度仪是测量碳黑粒径的优选仪器。BI系列圆盘式离心/沉降粒度仪不仅是一个坚固的仪器,且它的工作原理发展良好。如果进行了所有的修正,使用BI系列圆盘式离心/沉降粒度仪对碳黑样品粒径分布测量的精确性是非常卓越的。 /p
  • 盐雾试验箱故障处理之沉降量过高或过低
    众所周知盐雾沉降量是判定盐雾试验箱是否合格的最核心参数,标准中规定盐雾沉降量:1-2ml/80cm2.h。导致盐雾试验箱沉降量不合要求的原因有下列几种: 沉降量过高 1、把塔尘的距离调低一点; 2、把喷雾压力调小一点; 沉降量过低 1、把塔尘的距离调高一点; 2、把喷雾压力调大一点 另外,盐雾试验箱沉降量过低还有一个原因是全新的设备第一次做试验或设备长时间没有做试验。因为,试验箱收集漏斗与计量筒是通过硅胶管连接的,漏斗收集盐液→通过管道→流到计量筒,若设备是第一次试验,管道非常干燥,盐液经过时会被吸附一部分。因此,刚开始试验很可能量会很少或没有,只要16小时后就完全正常了。
  • 长岛中日合作酸沉降监测项目投入运行
    日前,国家环保部在长岛设立的中日合作酸沉降监测项目完成了所有设备的安装、调试工作,正式投入运营。   中日合作酸沉降监测项目由中国和日本两国政府合作开展,包括大气污染监测系统、离子色谱、降水自动采集系统等,全部为日、美、欧进口设备,价值逾百万元,均由日方无偿提供。   长岛环保部门是我国承担中日合作酸沉降监测项目唯一的县级环保部门和山东省唯一承担该项任务的单位。近年来,长岛环保部门着眼当前环保最新讯息,立足环保领域最高标准,争取海岛环保最大利益,不断争取、升级环保监测设施的建设,既保护了海岛可持续发展的生态环境,又为国家和国际提供了大量详实的空气质量监测数据。这次中日合作酸沉降监测项目落户长岛,是继2004年国家环保部门在长岛设立环境空气自动监测站、并网监测空气背景值之后,使长岛的监测领域和监测深度得到进一步拓宽和加深,提高了长岛在国家乃至国际环境监测领域的地位。
  • 森林加剧大气持久性有机污染物的干湿沉降
    持久性有机污染物(POPs)是一类具有半挥发性、环境持久性、高毒性和生物富集性的有机污染物。由于POPs能够在全球迁移并对生态环境和人类产生负面影响,世界各国于2001年签署了《关于持久性有机污染物的斯德哥尔摩公约》,以便逐步消除POPs的使用和排放。尽管最近二十年来各国政府为POPs做出了巨大的努力并取得了较好的效果,但自上世纪40年代以来就进入环境中的POPs则依然保存在地表环境介质中。尤其是森林植被和林下土壤富含有机碳,为POPs的提供了良好的条件。因此,森林对POPs全球循环的作用和机制已成为POPs研究的重要课题。中国科学院青藏高原研究所郭莉平等对全球森林POPs研究进行了归纳整理,发现森林吸收已经成为大气POPs向地表沉降的重要机制。其中,叶片吸收及POPs随叶片凋落的沉降是林下POPs干沉降最主要的途径;雨水(穿透雨)冲刷则缩短了POPs在叶片表面的滞留时间。这些过程像“泵”一样高效地将大气中的POPs携带到地表,使森林成为全球POPs的“汇”。这一效应也被研究者归纳为“森林过滤效应”。这些过程不仅使林区大气POPs浓度减少1/2—2/3,而且还有效阻止了POPs向极地及高山等生态脆弱地区的迁移。森林过滤效应的主要过程示意图。论文作者供图郭莉平介绍,通过近期的文献分析还显示在气候变化的作用下,全球森林正发生深刻的变化,即:森林的“汇”作用也因此减弱。POPs在叶片、土壤富集和食物链传递过程中均会发生流失和降解,同时,近年来频繁发生的森林火灾更使富集了大量POPs的森林成为POPs的“二次排放源”。鉴于此,郭莉平等提出应着眼于森林POPs高精度/在线观测技术的开发,以详细探究POPs在森林中迁移和沉降规律为基础,探讨气候变化对森林POPs迁移循环的影响;相关的研究将有助于拓展大气污染物干湿沉降研究的范围、丰富POPs全球循环研究的理论和方法。上述内容以《森林地区持久性有机污染物的沉降和释放》为题发表于《地球环境学报》第14卷第2期“大气污染物干湿沉降”专辑。硕士研究生郭莉平为第一作者,龚平研究员为通讯作者。该综述的撰写得到国家自然科学基金项目(41925032,41877490)和中国科学院青年创新促进会(CAS2017098)项目的共同资助。
  • 氮沉降调控森林土壤碳排放的格局及机制获揭示
    中科院华南植物园副研究员郑棉海团队联合美国康奈尔大学教授骆亦其等科研人员,研究揭示长期氮沉降调控热带森林土壤碳排放的格局及机制。相关研究12月1日发表于《自然地球科学》(Nature Geosciences)。同月5日该期刊再次以研究简报(Research Briefing)的形式进行了报道。人类活动所导致的大气CO2增加已成为当前重要的科学话题并引起了广泛的政治和社会关注。土壤是陆地生态系统最大的碳库,至少有一半的土壤有机碳储存于森林中。热带和亚热带森林主导全球森林碳循环,它们占据全球森林78%总碳排放和55%总碳吸收。人类活动也导致大气氮沉降加剧。氮沉降通过影响植物生长和微生物活性改变森林土壤呼吸及碳排放,但目前学术界关于氮沉降如何影响森林土壤呼吸的认识主要源于短时间尺度的研究。由于氮沉降是个长期的生态环境过程,缺乏长期且连续的研究将无法准确认识氮沉降调控森林土壤碳排放的格局及机制。研究人员依托我国最早建立的模拟森林氮沉降研究平台——广东省鼎湖山国家级自然保护区,发现长期氮沉降对南亚热带森林土壤碳排放的影响呈现阶段性变化。研究平台包括3种典型森林类型:季风常绿阔叶林、针阔叶混交林和马尾松针叶林。9-13年长期氮添加处理后,森林土壤呼吸呈现“无显著变化-显著降低-无显著变化”的三阶段格局。相比低、中氮处理,高氮处理缩短了三阶段格局的时间。在整个实验过程,氮添加累计减少土壤CO2排放总量为6.53-9.06 Mg CO2 ha-1,氮添加减少土壤CO2排放的效率为5.80-13.13 Mg CO2 Mg N-1。研究人员还基于鼎湖山模拟氮沉降样地测定的849项有关土壤、植物和微生物碳氮循环数据,构建了氮沉降调控热带森林土壤碳排放的机理框架。这些结果表明过去许多短期氮添加实验无法准确反映森林土壤呼吸响应氮沉降的格局。该研究成果为氮沉降促进热带森林土壤碳固持现象提供了重要证据,也为全球气候变化的预测和生态系统碳中和目标的实现提供新的依据。上述研究得到国家自然科学基金重点项目、面上项目、中科院青促会项目和中国生态学会青年人才托举工程项目等资助。郑棉海副研究员为该论文第一作者,张炜副研究员和莫江明研究员为共同通讯作者。此外,鲁显楷研究员、黄娟副研究员、毛庆功助理研究员、王森浩博士,以及合作者骆亦其教授、叶清研究员和刘菊秀研究员、岭南师范大学张涛博士也参与该项工作。
  • T700AS紫外可见分光光度计 测定纳米金沉降过程
    T700AS紫外可见分光光度计测定纳米金沉降过程摘要纳米金颗粒及纳米棒应用于免疫分析、生物传感器等领域,通过与蛋白、核酸适配体、壳聚糖等结合可以检测到不同的目标物。胶体金的颗粒大小、颗粒分布、浓度等信息可以通过紫外光谱进行分析。本文使用新产品T700AS紫外分光光度计,测试纳米胶体金沉降过程中随时间的光谱变化情况。T700AS紫外可见分光光度计的波长扫描速度最大可达30000 nm/min,在数秒中完成宽范围光谱扫描,适用于动态变化过程中的测定。关键词紫外可见分光光度计;纳米金;快速扫描;T700AS纳米金作为优异的稳定和可视化检测的标记物被应用于医疗、食品、环境等领域。本文用北京普析的T700AS测试纳米胶体金颗粒聚集过程,以其快速扫描的特征,可以在数秒中完成光谱扫描过程,得到准确结果。 👉 实验方法1.1 仪器设备T700AS紫外可见分光光度计1cm玻璃比色皿1.2 测试条件1.3样品纳米金溶液5mL,加入0.5mL 20%的氯化钠溶液👉 结果与分析2.1 纳米胶体金聚集沉降测试(1)纳米胶体金溶液测试结果(图2-1):图2-1 稳定状态的纳米金胶体溶液谱图(2)加入氯化钠10秒后测试结果(图2-2):图2-2 加入氯化钠后10秒钟的测试谱图(3)加入氯化钠30秒后的测试结果(图2-3):图2-3 加入氯化钠30秒后谱图(4)加入氯化钠60秒后的测试结果(图2-4):图2-4 加入氯化钠60秒后谱图(5)加入氯化钠120秒后的测试结果(图2-5):图2-5 加入氯化钠120秒后谱图(6)加入氯化钠180秒后的测试结果(图2-6):图2-6 加入氯化钠180秒后谱图(7)加入氯化钠300秒后的测试结果(图2-7)图2-7 加入氯化钠300秒后谱图(8)沉降过程的变化趋势(图2-8)(表2-1)图2-8 加入氯化钠5分钟内变化情况谱图比较表2-1 纳米金随时间聚集沉降最大吸收峰的变化👉 结论本文使用紫外可见分光光度计T700AS对纳米金胶体溶液在盐作用下的聚集沉降过程进行追踪测试,光谱扫描结果准确,速度快。T700AS紫外可见分光光度计可以有效应用于需要追踪光谱变化及需要快速进行光谱扫描的测试,并且为保障在短时间大量样品的光谱扫描测试打下基础。关注我们~了解更多精彩内容
  • 文章推荐 | 量子级联激光开路分析仪检测农田氨干沉降的日变化
    氨(NH3)是大气中最重要的碱性气体。农业活动,特别是施用合成肥料后的氨挥发,是人为氨排放的主要来源之一,也是农田养分流失的重要途径。这些氮(N)负荷有利于生态系统作为初级生产的营养投入,但也会导致许多环境和公共卫生问题,如生物多样性丧失、富营养化和雾霾污染。因此,特别是在农业地区,准确定量氨挥发和沉积通量对于了解地方和区域氮预算至关重要。然而,氨通量的现场测量仍然存在巨大的不确定性和挑战。 到目前为止,涡流协方差(EC)技术,基于同时测量地面上的湍流空气运动和气体浓度,是测量生态系统和大气之间的能量和质量交换的最直接的方法。对于氨通量测量,EC比其他方法有优势,因为它可以直接量化氨发射和沉积通量,并产生代表场尺度上空间平均的时间连续数据。然而,在过去,由于缺乏快速响应(≥10Hz)和高灵敏度的氨分析仪,特别是那些可以由现场太阳能电池驱动的分析仪,EC的应用受到了严重的限制。海尔欣昕甬智测推出一种采用量子级联激光吸收光谱技术的HT8700大气氨激光开路分析仪。根据实验室和现场测试,该仪器已被证明是在各种环境条件下测量氨通量的有效工具。 HT8700大气氨激光开路分析仪开创性的开路设计用于氨气测量基于量子级联激光技术,自主研发、设计、生产了的开路分析仪,具有低功耗(太阳能供电)、高精度(亚ppbv级)、快响应(10Hz)等特点,特别适合于地面氨排放和大气氨沉降通量的涡动相关法高频自动连续监测。 本研究采用HT8700大气氨激光开路分析仪,在全球氨热点地区之一华北平原的一个典型农业站点进行了氨通量测量。该实验时间持续了5周,并在小麦季节进行。本研究的主要目的是调查该农业基地秋季氨通量的特征,并量化氨对农田的干沉积和氨挥发造成的氮损失。
  • 浙江省辐射防护协会发布《沉降物中γ核素测量技术规范》团体标准征求意见稿
    各有关单位及专家:由浙江省辐射防护协会归口、杭州湘亭科技有限公司联合浙江省辐射环境监测站、常州环宇信科环境检测有限公司起草的团体标准《沉降物中γ核素测量技术规范》,已完成征求意见稿。根据《浙江省辐射防护协会团体标准管理办法》有关规定,为保证标准的科学性、严谨性和适用性,现公开征求意见。公开征求意见期间,请有关单位及专家认真审阅标准文本,对本标准提出宝贵建议和意见,并于2024年4月1日前以邮件方式将《浙江省辐射防护协会团体标准征求意见表》(附件3)反馈至浙江省辐射防护协会。逾期未回复按无意见处理。联系人:夏林芝,0571-87356614邮 箱:2102701967@qq.com地 址:浙江省杭州市西湖区文一路306 号(邮编:310012)浙江省辐射防护会2024年3月1日 沉降物中γ核素测量技术规范(征求意见稿)编制说明.pdf浙江省辐射防护协会关于《沉降物中γ核素测量技术规范》团体标准征求意见的函.pdf浙江省辐射防护协会团体标准征求意见表.doc沉降物中γ核素测量技术规范-征求意见稿 .pdf
  • 宁夏化学分析测试协会发布《食品加工环境(洁净区)沉降菌的测定方法》等2项团体标准征求意见稿
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《食品加工环境(洁净区)沉降菌的测定方法》等2项团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2023年11月19日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com 序号团标名称1食品加工环境(洁净区)沉降菌的测定方法2食品加工环境(洁净区)浮游菌的测定方法 宁夏化学分析测试协会2023年10月19日关于团标征求意见函 -10.19.pdf团标表格7-专家意见表.doc食品加工环境沉降菌的测试方法(1).pdf食品加工环境浮游菌的测试方法(1).pdf
  • 110万!湛江湾实验室深层海水分析子平台设备采购项目
    项目编号:HTRX-ZJ2022-001项目名称:湛江湾实验室深层海水分析子平台设备采购项目预算金额:110.3000000 万元(人民币)最高限价(如有):110.3000000 万元(人民币)采购需求:合同包1(湛江湾实验室深层海水分析子平台设备采购项目):合同包预算金额:1,103,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1干燥机械鼓风干燥箱1(台)详见采购文件2,000.00-1-2其他货物药品冷藏箱1(台)详见采购文件6,000.00-1-3其他货物高端超纯水机1(台)详见采购文件40,000.00-1-4其他货物数显双列六孔水浴锅台1(台)详见采购文件3,000.00-1-5其他货物超声清洗仪1(台)详见采购文件6,000.00-1-6其他货物高压灭菌器1(台)详见采购文件40,000.00-1-7其他货物恒温生化培养摇床1(台)详见采购文件9,000.00-1-8其他货物低温真空蒸馏设备1(台)详见采购文件153,000.00-1-9其他货物刮板式蒸发器1(台)详见采购文件150,000.00-1-10其他货物双光束扫描型紫外分光光度计1(台)详见采购文件40,000.00-1-11其他货物1/万分析天平1(台)详见采购文件31,500.00-1-12其他货物pH计1(台)详见采购文件4,000.00-1-13其他货物电导仪1(台)详见采购文件25,000.00-1-14其他货物溶解氧测定仪1(台)详见采购文件5,000.00-1-15其他货物生物显微镜1(台)详见采购文件1,500.00-1-16其他货物总有机碳分析仪1(台)详见采购文件450,000.00-1-17其他货物低温恒温槽1(台)详见采购文件5,000.00-1-18其他货物磁力搅拌器2(台)详见采购文件2,000.00-1-19其他货物高压平板膜片测试设备1(台)详见采购文件95,000.00-1-20其他货物高速冷冻离心机1(台)详见采购文件25,000.00-1-21其他货物集热式磁力搅拌器1(台)详见采购文件1,000.00-1-22其他货物立式冷藏冷冻箱1(台)详见采购文件5,000.00-1-23其他货物磁力加热搅拌器1(台)详见采购文件4,000.00-合同履行期限:合同所约定的全部义务履行完毕之日止本项目( 不接受 )联合体投标。
  • 国土资源部:饮用水取自深层水质整体良好
    p   国土资源部近日发布的一组数据显示,2015年全国202个地市级行政区的5118个地下水监测点中,较差级和极差级的水质监测点占比超过60%。这引发了民众对自来水质量安全的广泛担忧。 /p p   对此,专家在接受《经济日报》记者采访时表示,这些监测数据主要是指浅层地下水,而浅层地下水并非地下水饮用水的主要水源。目前,饮用水大多取自深层地下水,也即地表下1000米的地下水,水质整体良好,不易受到污染。 /p p   据了解,地下水占我国水资源总量的三分之一,全国657个城市中,400个以地下水为饮用水源。水利部今年1月《地下水动态月报》显示,浅层地下水中可直接饮用的仅占19.8%,其余80.2%都不适合人类饮用。为保证安全,目前地下水饮用水源主要取自深层地下水,而不是浅层地下水。 /p p   国土资源部发布的《国土资源公报》显示,2015年全国202个地市级行政区开展了地下水水质监测,监测点数为5118个。国土资源部部长姜大明此前也表示,我国地下水和氮污染和重金属污染较为严重,有机污染开始凸显。地下水污染呈现由浅向深、由点向面的发展趋势。 /p p   有关专家表示,为切实保护地下水水质,要进一步完善法律法规,对开发利用地下水采取更加谨慎的态度和更为严格的保护,严控各种污染源,并努力做到地下水“工业限用、农业慎用、主要饮用”,特别是深层承压地下水,原则上只作为应急和战略储备水源。 /p p br/ /p
  • 中国石化在四川盆地深层页岩气勘探取得重要突破
    近日,中国石化在四川盆地深层页岩气勘探取得重要突破,部署在资阳市的资阳2井完钻井深6666米,测试获日产125.7万立方米高产工业气流,日无阻流量306万立方米;部署在乐山市的金页3井完钻井深5850米,测试获日产82.6万立方米高产工业气流,此前,金石103HF井也取得重大突破。上述探井目标储层均为寒武系,多井、多地获得高产页岩气证实了深层、超深层寒武系页岩具备规模增储潜力,有望成为页岩气新的接替层系,对推动我国页岩气勘探开发和保障国家能源安全具有十分重要的意义。此次实现突破的寒武系页岩时代老,埋藏更深,页岩厚度薄、规模改造难度大,至今未能实现商业突破。西南油气分公司不断进行实践探索和理论创新,形成了新的页岩成藏模式,在乐山市部署的金石103HF井于2022年10月首次实现寒武系页岩气勘探重大突破。其后,在乐山、资阳地区部署的金页3井、资阳2井等多井接连获得高产工业气流。
  • 价值56万美元的双光子深层光激活成像显微镜落户中科院生物物理所
    中国科学院生物物理研究所膜蛋白结晶自动化加样工作站及双光子深层光激活成像显微镜采购项目中标及成交结果公告   采购人名称:中国科学院生物物理研究所   采购代理机构全称:东方国际招标有限责任公司   采购项目名称:中国科学院生物物理研究所膜蛋白结晶自动化加样工作站及双光子深层光激活成像显微镜采购项目   招标编号:OITC-G11022117   定标日期:2011年6月16日   招标公告日期:2011年5月5日   中标结果: 包号 设备名称 中标供应商名称 中标/成交金额 1 膜蛋白结晶自动化加样工作站 上海腾泉生物科技有限公司 USD 149,000.00元 2 双光子深层光激活成像显微镜 徕卡仪器有限公司 USD 560,000.00元   评标委员会成员名单:杨新科 戴琳 张连清 郝艾芳 李雪梅   本项目联系人:吴旭 徐薇薇   联系电话:68729913   感谢各供应商对于本项目的积极参与,并请未获中标的供应商于即日起5个工作日内来我公司办理保证金退回事宜(来前请先电话联系)。   东方国际招标有限责任公司   2011年6月17日
  • Cell |清华大学研究团队开发新型双光子显微成像术,实现深层活体时空跨尺度观测
    双光子显微镜是对深层散射组织进行活体观测不可或缺的仪器,以其远超单光子显微成像的穿透深度而受到生命科学和医学研究的广泛关注。然而,传统双光子显微成像的点扫描成像模式从根本上限制了其成像通量与三维感知速度,极易受复杂活体成像环境干扰,同时激发点巨大的瞬时光强会对活体生物样本造成持续性的非线性光损伤,导致高速三维成像时长严重受限,极大地制约了病理学、免疫学和脑科学的发展。2023年5月12日,清华大学戴琼海、吴嘉敏、祁海作为共同通讯作者在 Cell 期刊发表了题为:Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue 的研究论文。该研究首次提出了基于空间约束的多角度衍射编码,实现非相干光孔径合成;建立了双光子合成孔径显微术(Two-photon synthetic aperture microscopy,2pSAM),“化点为针”,通过多角度针状光束的扫描在实现高速三维感知的同时,将双光子成像光毒性降低了1000倍以上;融合了戴琼海院士团队2021年同样在 Cell 上所提出的数字自适应光学架构,具备高速多区域像差矫正能力,即使在恶劣复杂活体环境下依然保持近衍射极限的空间分辨率,并进一步提升了传统双光子成像的穿透深度。基于此,2pSAM能够在哺乳动物深层散射组织中非侵入式地观测大范围亚细胞级动态变化,将毫秒级三维连续观测时长从数分钟提高到数十小时,为系统性地研究大规模细胞在不同生理与病理状态下的交互作用打开了大门。交叉研究团队利用2pSAM在小鼠活体观测到了一系列新现象,包括急性脑损伤后脑组织内周的多细胞互作,神经元在超长时程连续观测下展现出对视觉刺激的表征稳定性与功能多样性,以及首次完整高速记录下了小鼠免疫反应过程中淋巴结生发中心的形成过程,为病理学、脑科学和免疫学的研究打开了新窗口。传统双光子显微镜使用“点扫描”的方案对三维样本进行扫描,类似于共聚焦荧光显微镜,由于双光子成像的非线性效应使其能够获得数倍于单光子成像的穿透深度。例如,双光子显微镜在小鼠大脑皮层的最大穿透深度可以达到1 mm。然而,这种点扫描方式严重限制了双光子显微镜的三维成像速度与数据通量,并且由于在聚焦点位置极大的瞬时光强带来了非常严重的非线性光损伤隐患。2pSAM采用了轴向景深拓展的“针扫描”方案,通过改变针状光束的不同倾角实现样本三维信息的多角度投影,类似CT一样实现快速三维成像;同时,受到雷达成像中合成孔径方法的启发,通过在像面处引入针孔所带来的空间衍射编码约束,实现了非相干光的孔径合成,将多角度信息融合为大数值孔径对应的高空间分辨率;进一步利用样本的时空连续性先验,有效避免了视角扫描带来的时间分辨率损失。这样一种全新的计算双光子成像架构,在保留双光子本身深层组织穿透能力的同时,将有效成像通量提升了三个数量级以上。图1. 双光子合成孔径显微术(2pSAM)系统图除此之外,样本引起的光学像差给显微成像带来的分辨率与信噪比损失十分严重,随着成像深度的增加这种降质尤为明显。目前双光子成像中的硬件自适应光学技术主要面临着以下一些问题:1、成像系统复杂、成本高昂;2、有效校正视场有限,大视场多区域校正速度缓慢。2pSAM通过激发光编码获得了超精细的四维空间角度光场数据,能够使用数字自适应光学架构(DAO),无需在光学系统中增加额外的波前传感器或者空间调制器,就能实现信号采集与自适应像差校正的解耦,在后处理端完成大范围多区域自适应光学,显著提升在复杂成像环境中的空间分辨率与信噪比。图2. 双光子合成孔径显微术(2pSAM)结合数字自适应光学(DAO)与传统双光子显微镜(TPM)面对复杂成像条件下的结果对比。从左至右依次为:正常条件下拍摄,物镜校正环不匹配情况下拍摄,物镜为水镜且缺乏浸润水的情况下拍摄,物镜与样本之间增加散射胶带后进行拍摄长时间的激光照射会对活体样本产生严重的光毒性。研究团队发现,传统双光子显微成像由于使用飞秒激光激发与高NA会聚,在样本局部会产生巨大的瞬时光强,由此所产生的非线性光毒性在以往被极大地低估了,而一旦在长时程成像过程中,就会不断积累损伤从而影响细胞正常状态。与之对比,2pSAM化点为针,通过轴向景深拓展,在保持同样荧光激发效率的前提下,将瞬时峰值功率降低了1000倍,从而有效解决了非线性光损伤的问题。一方面能显著减少荧光探针的光漂白,对于同一类易淬灭染料,在同样激发光强下,传统双光子仅能拍摄几十个三维体,而2pSAM能够连续拍摄几十万个三维体而没有明显的信号衰减。除此之外,团队还对小鼠脑皮层中的小胶质细胞与脑损伤过程中的中性粒细胞进行了连续成像测试,发现即使使用较弱的光强,传统双光子显微成像在连续拍摄半小时以上时仍会导致大量细胞凋亡,而在2pSAM成像过程中细胞保持了正常的表型,并且相比于对照组结果无明显差异。团队通过一系列在体与离体实验充分证明了2pSAM能够将传统双光子成像的光毒性下降三个数量级以上,为长时程高速活体组织成像打开了新窗口。图3. 小鼠大脑急性开窗损伤后的皮层免疫细胞成像,TPM(左)与2pSAM(右)光漂白对比(GIF图)图4. 离体B细胞(GFP,蓝色通道)连续拍摄实验:使用PI标记细胞凋亡(红色通道),对比TPM(左)与2pSAM(右)的光毒性(GIF图)生发中心(Germinal center,GC)是次级淋巴器官中的动态组织区域,是被抗原激活后的B细胞在趋化作用引导下聚集形成的结构,也是产生高亲和力抗体及形成长期免疫记忆关键场所。但是由于GC形成的随机性和免疫细胞本身对光损伤的敏感性,完整的GC形成过程从未被高速长时间的清晰记录过。借助2pSAM,得以首次完整清晰地观测到了免疫反应下GC形成的全部过程。研究人员将带有荧光标记的抗原特异性B细胞回输到小鼠体内,随后将抗原接种到腹股沟附近以诱导引流淋巴结中生发中心的形成,并于免疫后90到110个小时内(生发中心未形成期),在大视场下持续地对淋巴结中抗原特异性B细胞的动态行为进行追踪,成功揭示了GC形成过程中B细胞的分裂增殖是GC形成的主因,辅助以周围活化B细胞的聚集。由于拍摄时长达十余小时,淋巴结本身会产生剧烈的形变,2pSAM通过多视角信息能够进行实时轴向聚焦位置反馈,实现自动对焦,有效避免了长时程拍摄过程中的样本漂移。 图5. 小鼠腹股沟淋巴结免疫反应后生发中心形成过程的完整观测和记录(GIF图)研究人员进一步借助2pSAM在患有创伤性大脑损伤(Traumatic brain injury,TBI)的小鼠和正在接受视觉条纹刺激的GCaMP转基因小鼠进行脑皮层组织的细胞动态观测。在TBI小鼠受伤区域磨薄颅骨后观测到了外周免疫细胞中性粒细胞在浸润后与内周星形胶质细胞的相互作用,如通过直接接触定向产生迁移体(migrasome)来传递物质和信息。对GCaMP转基因小鼠开颅恢复2周后进行视觉上的条纹刺激,进一步证实了长达数小时内小鼠视觉皮层神经元钙信号对不同方向条纹选择性表达的持续性和稳定性,同时也通过长时程功能数据挖掘出了多种单细胞水平的神经响应类型,体现了神经元的功能多样性。这些现象对于传统双光子显微镜而言都极具挑战,特别是会由于光毒性本身导致会导致细胞异常表现,比如会导致神经元在长时程拍摄过程中响应强度不断下降。
  • 三大结构调整再难也得突破 代表委员高度关注打赢蓝天保卫战,聚焦深层次问题
    p   全国两会期间,不少代表委员和民主党派高度关注打赢蓝天保卫战。 /p p   综合来看,相关发言和提案议案,聚集结构性调整这一深层次问题,呼吁尽快制定并严格执行打赢蓝天保卫战三年作战计划。 /p p    strong 关注一 /strong /p p strong   大气治理进入攻坚期,深层次问题凸显 /strong /p p   《大气污染防治行动计划》是党中央、国务院推进生态文明建设、坚决向污染宣战、系统开展污染治理的重大战略部署,是针对环境突出问题开展综合治理的首个行动计划。 /p p   行动计划实施5年来,通过加快调整以煤为主的能源结构、加快淘汰落后产能、推进重点行业提标改造、加强“车、油、路”统筹、提升大气环境监管能力等空气质量改善的重大工程和重大措施,解决了多项大气污染防治难题。全国空气质量总体改善,重点区域明显好转。 /p p   在珠三角,2017年,PM2.5年均浓度为34微克/立方米,在国家三大重点区域中率先突围。 /p p   在京津冀, 2017年PM2.5年均浓度比2013年下降39.6%,58微克的“北京蓝”成为人们争相晒出的朋友圈。 /p p   ...... /p p   不过,在看到成绩的同时,也要清醒地认识到,当前大气污染防治形势依然严峻。 /p p   “大气污染治理都要基于各自地理气候条件,很难‘一招行天下’,即便是京津冀地区的先进打法,我们也只能部分借鉴运用。”全国人大代表、四川省环保厅厅长于会文说,“我们也要看到,环境问题还有反复性,稍一松劲就反弹。当前是滚石上山、逆水行舟,退一步就有可能前功尽弃。” /p p   “京津冀、长三角、珠三角地区的大气污染防治取得了明显成效,空气质量改善幅度明显。但是有些区域的改善程度和效果并不像三大区域一样好,比如长株潭地区空气质量改善幅度就低于全国水平。而且,已经取得的成绩并不稳定,还需巩固与加强。” 全国政协委员、湖南省环保厅副厅长潘碧灵说。 /p p   目前,我国大气污染防治工作已经进入攻坚期,新老环境问题并存,生产与生活、城市与农村、工业与交通环境污染交织,末端治理减排空间越来越小,环境压力居高不下。 /p p   农工党中央今年对长三角、珠三角等多地进行了专项调研,发现部分地区、部分时段空气质量超标问题仍然突出,以煤为主的能源结构、以重化工为主的产业结构、以公路货运为主的运输结构尚未转变,污染物排放量大。 /p p   过去几年,三大结构调整均有所突破,但没有取得显著进展。打赢蓝天保卫战三年作战计划将把着重解决产业结构问题、能源结构问题、交通结构问题作为主攻方向,确立具体的战役,一个战役接着一个战役打。 /p p   “人民群众对美好生活的向往,就是我们工作奋斗的目标与方向。必须以环境质量改善为核心,下更大决心推动大气污染防治,决不可有丝毫放松。”全国政协委员王济光说。 /p p    strong 关注二 /strong /p p strong   深层次结构调整难度大、十分复杂 /strong /p p   根据调研结果,两会期间,农工党中央提交了关于《多措并举,打赢新一轮蓝天保卫战》重点提案,建议加速推进能源生产和消费革命,构建清洁低碳、安全高效的能源体系 结合乡村振兴战略,积极稳妥推进煤改气、煤改电等工程 加严标准、扩大范围,严格控制各类大气污染物排放。 /p p   这恰与打赢蓝天保卫战三年作战计划的主攻方向不谋而合,为解决产业结构、能源结构、交通结构等问题提供了思路。 /p p   然而,不少委员坦言,相比较前期的治理“散乱污”企业、控制工业企业排放等措施来说,进一步调整产业结构、能源结构、交通结构,十分复杂,难度更大,任务十分艰巨。 /p p   全国政协委员、广东省环保厅厅长鲁修禄表示,为应对金融危机,早在“十五”时期,广东就开始进行产业结构调整,从被动到主动,再到以污染减排倒逼调整转型,实现了经济发展与环境保护双赢。 /p p   “对于广东来说,产业结构进一步调整难度升级,牵一发而动全身。广东人口密集、产业密集,调整起来难度非常大。”鲁修禄说。 /p p   同样的问题也考验着西部地区的重庆。目前,整个重庆主城区范围内,没有一家电厂、水泥厂、化工厂、砖瓦窑,进一步减排空间十分有限。而最有可能削减污染物排放总量的汽车行业,则是成渝两地的经济支柱,同样牵一发而动全身。 /p p   “我们每下降一微克,压力都很大。” 全国政协委员、重庆市环保局副局长余国东说。 /p p   潘碧灵表示,调整产业结构不是一天两天就能实现的,需要一个长期的过程。 /p p   交通结构方面,近年来,我国交通运输污染已经成为最主要的大气污染源之一。但是,长期以来针对固定污染源和机动车的减排体制机制,对于交通运输污染综合减排有很大的不适应性。 /p p   这主要表现在,从观念看,重交通工具减排,轻交通结构优化。从体制看,部门污染减排职责未落实到位。从工作部署看,缺乏系统性和协调性。目前,我国交通运输污染减排的部署不够系统、减排目标不够高,国家还没有从大气污染防治、改善空气质量的角度系统性提出交通运输减排目标任务。从基础工作看,行业排放数据不清。交通运输行业污染减排的科技支撑薄弱,污染物排放底数不清、情况不明,缺乏水运、民航、铁路等排放数据,对改善城市空气质量的指导性不强。 /p p    strong 关注三 /strong /p p strong   制定打赢蓝天保卫战三年作战计划,更严格控制污染 /strong /p p   潘碧灵建议,可以从调整能源结构入手,推动深层次问题的解决。从具体措施来讲,可以通过采用外电输入、发展清洁能源、使用山西或内蒙古等地的煤以及推广气化煤服务等实现。“能源结构调整应该站在全国范围内考虑。全国一盘棋,比如将能源富集的山西、西北地区作为国家重要的能源基地,借助清洁电气化、加速脱碳化、能源高效化等措施,推动能源转型。”潘碧灵说。 /p p   于会文在建议中也提到,现阶段,我国水电和火电资源的分布和利用很不均衡。“全国范围内若缺乏科学合理的电力跨省统筹调度,将导致大量资产闲置和资源浪费。四川水电资源非常丰富,以清洁水电替代传统能源,实施电能替代,对促进能源清洁化发展意义重大。”于会文说。 /p p   于会文表示,应进一步完善基于能耗和污染排放绩效的电力调度,健全电力跨省统筹调度机制,加快长距离输电网络建设,加快清洁电力输送,加强水电大省的丰枯期水电与火电大省的电力互补。 /p p   全国政协委员、福建省泉州市政协副主席骆沙鸣对此表示认可。他建议,还应将节能作为国家战略,尽快加强《节约能源法》与《可再生能源法》相衔接。大力推进电网、油气管网和电动汽车充电设施的建设,推动以电代煤、以气代煤,实现能源的清洁化、高效化,真正改变在节约能源工作上重宣传轻落实、重开采轻管理、重处罚轻整改的倾向。 /p p   在骆沙鸣看来,加大《中华人民共和国环境保护税法》,也可以倒逼企业在能源使用方面的转型升级。 /p p   各地也在利用我国经济由高速增长阶段向高质量发展阶段转变的大好时机,坚决地调整产业结构、能源结构和运输结构,从源头上减少污染。 /p p   于会文表示,四川去年10月印发了《四川省2017~2018年秋冬季大气污染综合治理攻坚行动方案》,列出十大攻坚任务,注重淘汰落后产能,同时着眼长远,谋划布局,优化产业结构和能源结构,从城市空间格局、产业布局、生产生活方式等根本处入手,处理好治标与治本的关系。 /p p   鲁修禄介绍,广东将以继续降低污染物排放量为目标,向结构调整要空间,巩固提高空气质量达标的稳定性,夯实环境质量持续改善的基础。目前,在深圳,全市已经实现1.63万辆公交车100%纯电动化。2018年,广州将推行这一政策,逐步实现公交车电动化。 /p p   余国东表示,重庆将以控制交通污染为重中之重。同时,持续开展工业污染、扬尘污染、生活污染治理。加强区域联防联控和预警预报,有效应对污染天气。 /p p   为打赢蓝天保卫战,农工党中央提案建议,应当组织权威机构对《大气污染防治行动计划》的实施效果进行第三方评估,并在此基础上认真制定和严格实施打赢蓝天保卫战三年作战计划。 /p p   此外,农工党还建议,在国家实施打赢蓝天保卫战三年作战计划的过程中,建立更严格的二氧化氮、二氧化硫、细颗粒物等污染物排放约束性指标体系,并将臭氧污染问题纳入其中。 /p p   “只有坚持全面、系统、精准治理,才能真正打赢蓝天保卫战。”余国东说。 /p
  • 电子贴片可监测深层血红蛋白 有助及时发现并干预危及生命的疾病
    美国加州大学圣地亚哥分校工程师开发了一种电子贴片,可监测深层组织中包括血红蛋白在内的生物分子,这为医疗专业人员提供了前所未有的获取关键信息的途径,可帮助发现危及生命的疾病,如恶性肿瘤、器官功能障碍、脑出血或肠道出血等。研究成果发表在15日的《自然通讯》杂志上。研究人员表示,体内血红蛋白的数量和位置,提供了有关特定位置血液灌注或积聚的关键信息。体内低血液灌注或导致严重的器官功能障碍,与心脏病发作和四肢血管疾病等有关;而脑部、腹部或囊肿等部位异常积血,提示可能出现脑出血、内脏出血或恶性肿瘤。持续监测可帮助诊断这些情况,有助于及时采取挽救生命的干预措施。这种新型、灵活、外形小巧的可穿戴贴片可舒适地贴在皮肤上,进行无创长期监测。它可在深层组织中以亚毫米空间分辨率对血红蛋白进行三维映射,精确到皮肤以下几厘米,而其他可穿戴电化学设备一般只能感知皮肤表面的生物分子。它还能实现与其他组织的高对比度。由于其光学选择性,它可通过集成具有不同波长的不同激光二极管,以扩大可检测分子的范围及潜在的临床应用。该贴片在其柔软的有机硅聚合物基质中配备了激光二极管阵列和压电换能器。激光二极管将脉冲激光发射到组织中,组织中的生物分子吸收光能,并将声波辐射到周围介质中,压电换能器接收声波,声波在电气系统中进行处理,以重建波发射生物分子的空间映射。鉴于其低功率激光脉冲,它也比具有电离辐射的X射线技术安全得多。研究团队计划进一步开发该设备,包括将后端控制系统缩小为用于激光二极管驱动和数据采集的便携式设备,从而大大扩展其灵活性和潜在的临床实用性。
  • 应用分享 | 近红外二区荧光成像技术用于血管靶向光动力治疗的深层组织成像和动态监测
    论文摘要△图1 论文部分截图。血管靶向光动力治疗(V-PDT)是治疗血管相关疾病的一种有效手段,但是目前对深层血管在V-PDT过程中形貌及功能变化的实时、高分辨可视化监测依然是一个重大挑战。近红外二区 (NIR-II) 荧光成像具有背景干扰低、分辨率高及穿透深度深等优点,近年来被广泛应用于深层组织成像及血管相关变化的动态监测。应用报道近期,中科院理化技术研究所开发了一种明亮、高稳定的聚集诱导发射(AIE)荧光团(PTPE3 NP),用于V-PDT期间超过1300nm窗口的血管功能障碍的动态荧光成像。△图2 PTPE3纳米粒子对多尺度血管系统的近红外二区荧光体内成像。PTPE3 NP具有高亮度和高分辨率,不仅可以获得全身和局部血管系统(后肢、肠系膜和肿瘤)的高清晰度图像,而且可以实现跟踪血液循环过程的高速视频成像;由于NP血液循环时间长以及良好的光/化学稳定性,在V-PDT过程中shou次通过荧光成像成功显示肠系膜和肿瘤血管功能障碍。此外,可以实时监测血流速度的降低以用于精准评估V-PDT的疗效。目前,这篇论文已在《Biomaterials》进行了发布,想要查看完整英文版全文的读者,可以复制下方链接获取。https://linkinghub.elsevier.com/retrieve/pii/S0142961223001382△图3 论文部分截图。值得一提的是,论文中拍摄的近红外二区荧光图像所使用的设备为北京睿光科技有限责任公司自主研发的NirVivo-Pro近红外二区小动物活体荧光成像系统。产品推荐NirVivo-Pro 活体荧光成像系统是北京睿光科技自主研发的一款专门用于近红外二区的光学成像系统。该系统可实现高质量荧光图像的采集及图像处理,实时地观察基因在活体动物体内的表达、肿瘤的发生、生长、转移及药物的治疗效果,对同一个动物进行时间、环境、发展和治疗影响跟踪,可用于生命科学、医学研究及药物开发等应用领域。产品特点:采用-80℃科学级红外相机,曝光可达5分钟;支持电动切换显微成像和宽视野成像镜头;多路光纤匀化照明,支持多种波长激光器;自主知识产权软件,支持自动曝光,自动对焦;
  • 科研干货 | 3D类器官深层智能成像分析加速精准用药流程
    如今研究人员正越来越多的应用3D 细胞培养、微组织和类器官技术来填补2D 细胞培养与体内动物模型之间的差距。这是因为3D 模型能够更好地模拟微环境、细胞间相互作用和体内生物过程,因此相较于生化检测和2D 模型,3D 模型可提供更具生理相关性的条件。此外,其形态学和功能分化程度更高,这也赋予了它们更接近体内细胞的特征,并且从比体内动物模型具有更高的稳定性和可操作性,易于自动化,提高评估效率和准确性。然而,3D 类器官模型面临着诸多挑战,您需要合适的工具才能克服它们。比如在细胞显微成像分析环节,大而厚的细胞样品成像难度极高;同时处理3D 细胞实验产生的海量数据则是最为严峻的挑战——而3D 类器官深层智能高内涵成像分析系统结合近红外荧光探针整合方案,助您看的更深、更准、更快。国内外一线科学家团队典型案例多伦多大学David Andrews 教授团队利用患者活检肿瘤样本,建立PDC 模型,并通过高内涵Opera Phenix 对进行高通量图像采集。除分析常见的细胞活力指标,如细胞核形态、线粒体膜电位和凋亡之外,David Andrews 团队进一步利用机器自学习的优势来深度挖掘药物处理后的表型变化,利用对照药物,研究通过多指标分析定义多种表型,并以此为基础进行临床抗肿瘤药物的药效预测。通过分析药物处理后的PDC 细胞表型,不仅能预测针对特定病人的药物治疗有效性,还能挖掘药物对应的细胞表型,做到了细胞表型-药物相互作用的深度分析。图源:多伦多大学David Andrew 教授中国军事科学院王韫芳课题组,建立微肝球模型 (Liver biomatrices scaffolds, LBSs),结合高内涵筛选系统Operetta CLS 和多功能酶标仪Ensight,从细胞活力、分化、代谢功能、环境相互作用和药效预测等多个指标上预测药物肝毒性机及其毒理机制研究。图源:中国军事科学院王韫芳教授高分辨率成像设计,助您看清三维每一处细节高内涵成像分析系统专为3D 类器官模型研究而设计,可协助您快速方便地从3D 样品中获取信息量丰富、更具生理相关性的数据:转盘共聚焦成像可快速采集光学切片图像,而且具有优异的信噪比和X-Y-Z 高分辨率。共聚焦转盘上的针孔只允许来自焦平面的光通过,而非焦平面的光信号被阻挡在针孔外,大大提升了获取图像的信噪比。在最小激发光强度下,以极高的帧速进行图像采集,因此转盘共聚焦成像是3D 球状细胞团和活样品成像的理想之选,不仅采集速度快,且光漂白效应极低。水浸式物镜的数值孔径比空气物镜更高,可捕捉到比空气物镜多高4 倍的光信号,因此可在X-Y-Z 方向都提供更高的分辨率。这意味着可以更快地捕捉到更多细节,并能对3D 深层结构进行成像,此外,对脆弱的活细胞样品进行成像时,可将光损伤将至最低。人肝脏微组织图像,类器官以 Hoechst(核,蓝色)和 CellMask™ Deep Red 质膜染料(红,细胞膜)3D 检测方法比传统的2D 检测方法更具挑战性,但这也正是研发过程中至关重要的一部分。其中一个挑战是如何从3D 细胞模型获取高质量图像。因为,诸如细胞核这类对象通常会沿着Z 轴变形,无法被正确分割。如本技术说明所述,当使用相同对象进行测试时,水浸式物镜能够显著改善3D 图像质量并检测到两倍于空气物镜的细胞核。红外荧光试剂,实时监测3D 肿瘤微环境红外 (NIR) 荧光试剂专为体内临床前成像设计。NIR 解决方案对于肿瘤学研究极有应用价值,同一肿瘤模型既可进行体外研究,也可通过异种移植物进行体内研究。靶向和可活化的NIR 试剂,最大激发波长低于700 nm,适用于多种基于高内涵类器官成像为基础的体外肿瘤模型。 为分析肿瘤相关生物标志物组织蛋白酶和基质金属蛋白酶的活性并使低氧区可视化 ,分别使用 100 μM NIR 试剂ProSense® 680 (NEV10003)、MMPSense® 680 (NEV10126)和HypoxiSense® 680 (NEV11070) 对3D 肿瘤组织染色。ProSense 680 试剂(左)显示出对整个微组织的均匀染色。MMPSense 680 试剂(中)在单独的细胞中被强烈活化,并在3D 组织内显示出微弱的荧光信号。HypoxiSense 680 试剂(右)对微组织染色后,核心区域显示出最强荧光,指示肿瘤组织的缺氧状态。NIR探针染色人肿瘤类器官的明场和荧光图像叠加,生成特征性染色图样低氧在恶性肿瘤以及快速发展的肿瘤中是一种普遍的现象,肿瘤内部血液供应不足产生的低氧环境与肿瘤的生理过程息息相关,包括基因调控、血管形成、信号通路的转导等。对于低氧相关通路的研究也是肿瘤治疗的新方向。为了研究低氧条件,在球体形成过程中接种不同数量的细胞,从而产生不同大小的微组织,HypoxiSense 680 荧光探针可指示肿瘤微环境内的低氧状态。扫描下方二维码,即可购买珀金埃尔默荧光探针智能化图像分析,从3D到切片一网打尽Harmony 软件已开发出针对大型3D 高内涵数据集的3D 可视化和分析工具,能够对诸如囊肿、微组织或球状细胞团块等3D 对象进行容量分析。除了此处所示的形态和位置属性, Harmony 还可以计算其他的3D 形态、3D 强度和3D 纹理属性,以对3D 细胞模型进行详细的表型鉴定。此外,为了避免空图像等无用数据,Harmony 的 PreciScan 提供了低倍率的预扫描和高倍率的再扫描自动化工作流程,用于球状细胞团块的目标成像或其他小概率事件。配置Harmony 高内涵软件以及Preci-scan 智能目标扫描模块,该系统可以轻松获取低倍镜扫描结果,自动化智能识别微组织所在位置, 进行居中位置优化后,在高倍镜进行高分辨率X-Y-Z 成像数据采集。智能排除空白区域或不符合采集条件的破损组织区域。这一功极大的节约了采集和分析的效率,让您在单次扫描就可以自由获取不同倍数的多倍率数据信息,是类器官成像分析,稀有细胞事件采集分析的理想解决方案。到目前为止,由于仍无适用于3D 高内涵数据分析的软件,即使是高质量的3D 图像也很难从中提取信息。由于3D 图像分析软件包是为在传统显微镜上采集单个样品而开发,因此通常以单个分析包的形式提供。用这样的软件包处理这种基于微孔板的高内涵数据费时费力,需要大量的用户交互和额外的数据转换步骤。Harmony 软件是一款集3D 图像采集、3D 可视化和3D 分析为一体的单一软件包,省去了采集和分析之间的数据转换。总而言之,配备了水浸式物镜和Harmony 软件的Operetta CLS 高内涵分析系统能够克服3D 分析中最关键的挑战,并为更多生理相关细胞培养模型的3D 成像和3D 表型鉴定提供了理想的一体化软件包。另外高内涵都成像分析系统可兼容组织切片,获得多色全视野组织切片影像数据。凭借其强大的自动化成像光路设计和智能化的Harmony 分析软件,能在快速准确评估多色标记的免疫荧光组织切片,不仅提高了成像效率,同时也可对批量图像数据进行全自动智能化定量分析。图源:多伦多大学David Andrew 教授以上案例进一步证明,无论是针对患者来源的细胞、微器官和组织切片模型,高内涵成像分析系统都凭借其强大的人工智能分析能力,可更快速适应用户自定义的自动化智能化细胞/微器官/组织成像及全方位分析需求,以加速临床前基础研究,促进科研转化和精准用药指导。
  • 抱朴守真,科研创新在路上——记湖南大学电镜专家陈江华及团队
    p   北京4月27日电 教育部首批认定200所高校的201个团队为“全国高校黄大年式教师团队”。湖南大学陈江华教授带领的材料科学与工程教师团队成功入选。面对这项荣誉,陈江华教授平静地说:“把手头的科研做好,把学生带好,多出好成果,这是我作为‘师者’的理想”。 /p p style=" text-align: center" img style=" width: 450px height: 391px " src=" http://img1.17img.cn/17img/images/201805/insimg/3219b7ab-3792-41c4-91f7-1cf7c8cbce7e.jpg" title=" 1.png" height=" 391" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p    strong 不忘初心 回国从教 /strong /p p   20世纪90年代中期,一位亚洲学者成为世界上第一台球差矫正高分辨电镜的试用研究员,用这种电镜技术解决了汽车用铝合金研究中的一个重大科学难题,为当今球差矫正电镜技术的蓬勃兴起作出了重要贡献。他,就是现任湖南大学教授的著名电镜研究专家陈江华。 /p p   2006年,在海外生活工作了12年的陈江华回到祖国,受聘为湖南大学首席科学家、教授、博导,兼材料科学与工程学院院长。海外求学工作十余年,他始终心系祖国,渴望施展抱负。回国十余年来,他始终坚守教学科研一线,在湖南大学建成国际先进、有特色的原子成像技术平台,在普通场发射透射电镜的基础上,成功实现了波函数重构(EWR)原子成像技术和高角环形暗场扫描透射电镜(HAADF-STEM)原子成像技术,成为世界上能够真正掌握软件校正物镜像差的原子成像技术的三个实验室之一,并在此基础上组建了高水平团队,做出了在国际上有重要影响的科研成果。 /p p   目前,陈江华教授带领的材料科学与工程团队已发展到48人,其中双聘院士1人、千人计划兼长江学者1人、青年千人2人、教授6人、副教授2人、高工2人。团队成员结构合理、勇于创新,在教学科研和服务社会方面成绩显著。团队10余名教师和博士后都获得了一个以上国家自科基金课题 陈江华教授在 Science,Nature materials,Acta Materialia,Ultramicroscopy等著名学术期刊发表过SCI收录论文100余篇,SCI引用3500余次,授权发明专利14项 团队为高校和企业培养高水平人才60余人 先后承担科技部973课题、国家自然科学基金重大科研仪器研制项目、国防基础研究课题、高铁材料重大横向课题等 4000余万元的科研项目。 /p p   strong  抱朴守真 创新育人 /strong /p p   “一流大学的教师一定要把最新的科学研究成果及时融入到教育教学中,这不仅有利于提升人才培养质量,还能推动学生加入到一流科研中,成就一流人才。科学研究是培养创新性人才最重要的途径,尤其在研究生阶段,科研育人应该成为主导。写好科技论文是研究生培养的关键,把实验数据与结果上升到创新性工作成果,本身就是创造的过程。导师要花大力气在这个环节才能使研究生能力有本质的提高。”多年来,陈江华教授始终坚持抱朴守真、创新育人理念,致力于培养高分辨电镜技术和铝合金材料领域的高素质人才。 /p p   在学生们的眼中,陈教授既是良师,又是益友。不管治学方面对学生们要求有多严,但他从来不严厉批评学生。他经常在食堂和同学们一起吃饭,边吃边聊边讨论问题。或者在晚饭后与学生一起长距离散步,在融洽放松的气氛中,为他们答疑解惑,关心他们的生活起居。 /p p   每年陈江华教授会带研究生去世界各地参加国际学术会议,将学生带到科研创新思潮汇聚的前沿,与国际知名学者面对面交流。具备优良科研潜力的学生,经陈教授推荐介绍,在荷兰代尔夫特理工大学高分辨电镜中心、浙江大学电镜中心等国内外知名研究团队留学及培养,从事更前沿的科研训练。 /p p   在陈江华教授的精心培养与带动下,团队先后培养博士后4名、博士生14名、硕士生近50名,指导本科生100余名。博士生毕业后多数在知名高校从事球差矫正电镜等大型精密仪器的技术负责及轻合金材料研究工作,例如中南大学、西北工业大学、南京工业大学等。硕士毕业生中涌现了以中兴通讯公司海外技术经理陈敬、上汽大众公司技术主管刘路等为代表的技术骨干。部分硕士生继续在牛津大学、布鲁内尔大学、代尔夫特理工大学、悉尼大学等国际知名高校留学。 /p p    strong 科研创新在路上 /strong /p p   “我一直以为,研究新材料不能靠‘撞运气’。单纯依靠研究大量原材料,在偶然间发现了某一种材料的优异性能,然后总结科研成果、完成课题‘交差’,这是不行的。我们也不能靠单纯模仿国外的材料产品和材料工艺,只知道材料及相关工艺的终态,而不知如何达到细致工程。这样研究出的成果,是无法批量化应用,是经不起时间检验的。我们的新材料产业要突破瓶颈、更上台阶,就必须真正摸透材料的本质和规律,知其然且知其所以然。就像医生看病一样,病人感冒了,就要诊断出是细菌感染还是病毒性感冒,找到病灶对症下药。” /p p   因为这段媒体采访,陈江华教授得到一个“材料医生”的雅号。作为在欧洲参与早期阶段现代电镜技术发展的华人科学家,他为推动世界第一台球差矫正电镜的成功作出了实质贡献,并因此荣获2006年度美国加州郭可信教育基金会授予的“郭可信杰出科学家”奖。回国后,他带领材料科学与工程团队,以湖南大学高分辨电镜中心平台为依托,继续探索创新,发展了独特的软件矫正电镜技术和相关配套的定量电子显微技术,丰富了现代电子显微学的理论及方法。 /p p    strong 社会服务见实效 /strong /p p   “电镜只是一种手段,实际的研究对象主要是在大飞机、高铁、地铁、汽车上用的铝合金材料。”陈江华教授利用先进的高分辨电镜技术,第一个在国际上揭示出轿车车身用铝合金板材强度变化的微观规律,并在国内推动全铝汽车生产。“全铝汽车的优点是,车身实现轻量化后,在不影响安全性的前提下,耗油量最高可降低30%以上,这让汽车更节能更环保。”他研究的6000系列铝合金,目前已在奥迪、奔驰等高档轿车的车身、车门广泛应用,同时还能应用于大飞机制造等航空工业以及高铁、地铁等轨道交通上。 /p p   江水泱泱,日夜流华。心系祖国、万里归来的陈江华教授,已深深扎根在岳麓山下、湘江之滨。多年来春风化雨、教书育人,潜心研究、奉献社会,已成为海外高层次人才回国任教的优秀榜样。愿他带领的“黄大年式”材料科学与工程教师团队能为湖南大学“双一流”建设添砖加瓦,为祖国教育事业奉献硕果,为实现中华民族伟大复兴的“中国梦”作出新贡献。 /p
  • 安徽首次发布降尘监测结果及排名情况
    p   为贯彻落实《打赢蓝天保卫战三年行动计划》有关要求,加强信息公开和社会监督,进一步推动降尘治理,改善区域环境空气质量,根据生态环境部制订的《汾渭平原、长三角地区城市环境空气降尘监测方案》,安徽省首次发布降尘监测结果及排名情况。 /p p   降尘,又称“落尘”,是指自然降落于地面的空气颗粒物,其粒径多在10微米以上,计量指标单位为一定时间内单位面积上地表沉降物质的量。降尘可以产生更小的颗粒物,成为环境空气中各类二次反应的载体。降尘量与工地、道路、堆场等尘源的对应关系非常明确。安徽省自2019年起开展环境空气降尘监测工作。降尘监测范围为全省16个市141个点(含16个对照点),降尘监测为每月一次,降尘量排名采用降尘量大小来确定,排名越小表明降尘量越小,降尘量相同的城市以并列计。开展降尘监测,对城市精细化管理程度的提升很有帮助。减少降尘,同样是蓝天保卫战的重要一环。 /p p   安徽《全省16个地级市降尘量排名(2020年1月)》显示:池州、黄山、合肥市排名前三位,其中池州市降尘量最小(0.8吨/平方千米· 月) 淮北、安庆市降尘量相同(3.9吨/平方千米· 月)并列13位 排名最后的六安市降尘量为4.2吨/平方千米· 月。芜湖市1月份未按时开展降尘监测工作。 /p p   降尘量反映城市精细化管理水平 /p p   很多北方城市居民有这样的感受:一天不清理,桌面、窗台就是一层灰。即便蓝天在增多,“灰大”也让人烦恼。 /p p   习惯了PM2.5等空气监测常见指标,公众对新的降尘监测结果难免有点好奇。其实,这个监测由来已久。 /p p   中国环境监测总站大气室主任唐桂刚告诉记者,大气粉尘自然沉降量监测是开展较早的大气污染物例行监测项目,后来由于环境空气质量新标准发布,大家更关注PM2.5、PM10等污染物,但有些地方降尘监测并没有停。“比如在容易遭受沙尘侵害的新疆,降尘监测就非常有意义,所以这项工作一直在持续。” /p p   从全国面上讲,既然已经有PM2.5、PM10等六项主要污染物监测,为什么还要把降尘监测重新纳入视野? /p p   唐桂刚说,降尘量与工地、道路、堆场等尘源的对应关系非常明确,也就是说,降尘量直接反映城市扬尘管理做得怎么样。“虽然尘是可沉降的,对人体伤害没有那么大,但降尘量对城市管理的意义非常重要。监测并发布这些数据,对城市精细化管理程度的提升很有帮助。” /p p   中国环境监测总站高级工程师程麟钧告诉记者,PM2.5来源复杂,有一次生成也有二次生成的,研究表明,降尘可以产生更小的颗粒物,成为环境空气中各类二次反应的载体。因此,减少降尘,同样是蓝天保卫战的重要一环。 /p
  • 增强基元的研究推动拉曼光谱向更深层次发展
    仪器信息网讯 2014年7月28日,由HORIBA Scientific(Jobin Yvon光谱技术)主办的2014年第一届拉曼学院在上海大学开课,来自全国各科研院所、高校的老师、学生及HORIBA拉曼产品的代理商200多位代表参加。   在第二天的课程中,&ldquo 拉曼增强&rdquo 是提到的最多的一个词:为什么要增强、增强的手段和机理、增强的应用等。   大家都知道,自1974年Fleischmann 等人第一次在吡啶吸附的粗糙银电极上观察到表面增强拉曼散射(SERS)信号以来,SERS的研究得到了快速的发展。由于SERS克服了传统拉曼光谱与生俱来的信号微弱的缺点, 可以使得拉曼强度增大几个数量级。   基底的制备在拉曼增强的研究中起到至关重要的作用,在今天的报告中,厦门大学的任斌教授从基本的原理出发详细介绍了增强基元(增强基底或者针尖)的制备方法,可以说增强基元制备方法的每一次进步和革新对拉曼增强的研究来说都起到极大的推动作用。据介绍,从最初的电化学粗糙/沉淀、真空沉淀方法,到纳米粒子的合成(单分子SERS),SERS的研究取得了突破性的进展;之后,壳层隔绝纳米粒子增强拉曼光谱(SHINERS)的研究又进一步扩大了SERS的应用对象;此外,针尖增强拉曼光谱(TERS)技术提出后也引起了大家的关注,并在基础研究领域和工业应用领域得到了广泛的应用。   为了拓展SERS在表面科学中的应用,需要从没有或者只具弱SERS效应的非金、银、铜材料表面以及光滑甚至原子级平整的单晶模型体系获得拉曼信号。为了解决该问题,就需要借助金或银强的电磁场增强效应来增强非(弱)SERS活性材料表面物中的信号,这是一种&ldquo 借力&rdquo 的思维。厦门大学李剑峰教授课题组从&ldquo 借力&rdquo 的思维出发,发展了壳层隔绝纳米粒子增强拉曼光谱(SHINERS)技术。据介绍,该项技术具有很高的灵敏度,甚至只要将合成的具有超薄二氧化硅壳的金纳米粒子直接洒在待测样品的表面就可以达到预期的实验效果。 任斌 教授 报告:表面增强拉曼光谱和针尖增强拉曼光谱-从原理,实验方法到应用 李剑锋 教授 报告:表面增强拉曼光谱:从&ldquo 借力&rdquo 思维到壳层隔绝纳米粒子增强拉曼光谱   作为一种强大的表面表征技术,TERS可以达到10nm的空间分辨率和检测灵敏度,而且可以同时得到表面的形貌信息和化学指纹信息。厦门大学的王翔博士在报告中详细介绍了针尖增强拉曼光谱的发展以及在材料、物理、化学和生命科学等领域的应用概况。   此外,国立台湾大学的王俊凯博士还介绍了基于二维表面等离基元基底的拉曼增强效应以及基于拉曼增强的快速临床微生物检测平台等相关的研究成果。(撰稿:叶建) 王翔 博士 报告:针尖增强拉曼光谱的发展和应用 王俊凯 博士 报告:(1)基于二维表面等离基元基底的拉曼增强效应 (2)基于拉曼增强的快速临床微生物检测平台
  • 生态环境部首次发布降尘监测结果 管理多下功夫 城市少落尘土
    p   你知道一平方公里的范围内,一个月会落下多少“尘土”吗?在太原,今年10月,这个数量平均是15吨。降尘量反映城市管理水平,也影响百姓生活。 /p p   近日,生态环境部发布了2018年10月“2+26”城市降尘监测结果,这是降尘监测信息首次全面公开。明年起,京津冀及周边地区、长三角、汾渭平原三个大气污染防治重点区域将每月发布降尘量监测结果。未来,待相关标准完善之后,降尘量还可能全面纳入大气污染防治工作考核。 /p p   生态环境部有关负责人19日发布了2018年10月京津冀大气污染传输通道“2+26”城市降尘监测结果,这是降尘监测信息首次全面公开。 /p p   降尘,又称“落尘”,是指自然降落于地面的空气颗粒物,其粒径多在10微米以上,计量指标单位为一定时间内单位面积上地表沉降物质的量。降尘监测有啥意义?对蓝天保卫战的作用何在?记者采访了相关人士。 /p p   降尘量反映城市精细化管理水平 /p p   很多北方城市居民有这样的感受:一天不清理,桌面、窗台就是一层灰。即便蓝天在增多,“灰大”也让人烦恼。 /p p   根据生态环境部发布的结果,10月,“2+26”城市降尘量均值范围在2.9—15.0吨/月· 平方公里之间,平均为7.3吨。其中,晋城、长治、廊坊等22个城市降尘量小于9.0吨,达到秋冬季大气污染防治攻坚方案要求 开封、濮阳、菏泽、聊城、阳泉和太原市等6个城市降尘量大于9.0吨,其中太原市降尘量最大,达15.0吨。 /p p   这些数据,可以说直接跟居民家里的灰尘多少相关,太原也因此被网友调侃为最“土”城市。 /p p   习惯了PM2.5等空气监测常见指标,公众对新的降尘监测结果难免有点好奇。其实,这个监测由来已久。 /p p   中国环境监测总站大气室主任唐桂刚告诉记者,大气粉尘自然沉降量监测是开展较早的大气污染物例行监测项目,后来由于环境空气质量新标准发布,大家更关注PM2.5、PM10等污染物,但有些地方降尘监测并没有停。“比如在容易遭受沙尘侵害的新疆,降尘监测就非常有意义,所以这项工作一直在持续。” /p p   从全国面上讲,既然已经有PM2.5、PM10等六项主要污染物监测,为什么还要把降尘监测重新纳入视野? /p p   唐桂刚说,降尘量与工地、道路、堆场等尘源的对应关系非常明确,也就是说,降尘量直接反映城市扬尘管理做得怎么样。“虽然尘是可沉降的,对人体伤害没有那么大,但降尘量对城市管理的意义非常重要。监测并发布这些数据,对城市精细化管理程度的提升很有帮助。” /p p   中国环境监测总站高级工程师程麟钧告诉记者,PM2.5来源复杂,有一次生成也有二次生成的,研究表明,降尘可以产生更小的颗粒物,成为环境空气中各类二次反应的载体。因此,减少降尘,同样是蓝天保卫战的重要一环。 /p p   三大重点地区明年起每月发布监测结果 /p p   京津冀及周边地区、长三角、汾渭平原三个大气污染防治重点区域2018—2019秋冬大气污染防治攻坚方案中,都对城市降尘量提出了明确要求,京津冀、汾渭平原各城市平均降尘量不得高于9.0 吨/月· 平方公里,长三角城市的要求更为具体,苏北城市不得高于7.0吨/月· 平方公里,其他城市不得高于5.0 吨/月· 平方公里。程麟钧说,要求的差异主要来自自然条件。北方气候干燥,植被盖度低,裸露土壤面积较大,尤其在秋冬季,降尘量总体高于南方城市。 /p p   从这次发布的监测结果看,即便是同一省份的城市,降尘量也差异巨大。比如,山西晋城市10月平均降尘量只有每平方公里2.9吨,而同省的阳泉、太原位列榜单后两位,数据分别为14.8吨和15.0吨。同一城市不同点位的最大值与最小值差异也很大,比如北京最大值为13.7吨,最小值为3.0吨,反映了一个城市之内不同区域的扬尘管理水平差异。 /p p   除已开始发布监测结果的“2+26”城市外,按照要求,另外两大重点区域明年1月起也将开始发布降尘监测结果。众所周知,环境监测网的建设不可能一蹴而就,涉及选址布点、设备招标、运行维护等。发布在即,两个区域准备好了吗? /p p   唐桂刚告诉记者,按照计划,截至11月30日,两个区域的布点数量、位置已经确定。相对于其他污染物监测,降尘监测技术上相对简单,两个区域的准备工作正在有序推进,明年按期发布没有问题。 /p p   降尘标准即将重新修订,未来可能全面纳入考核 /p p   降尘量反映城市管理水平,也影响百姓生活。要蓝天,要更干净的好环境,减少降尘量必不可少。 /p p   程麟钧告诉记者,其实,各地在降低尘量方面都做了不少工作,很多城市的降尘量最近几年都在明显下降。 /p p   以天津市为例,天津市生态环境监测中心的数据显示,2010年,全市平均降尘量为每月每平方公里10.59吨,2011年为每月每平方公里10.63吨,而此次发布的月均值已经降至6.8吨,进步非常明显。 /p p   监测的意义在于对管理的促进,但只发布不考核,似乎还不够给力。程麟钧告诉记者,考核的前提是完备的标准和长期的数据积累,这样才能做到可比对。原有标准制定于1994年,已经不能满足污染防治的工作需求。 /p p   新标准修订还在准备阶段,因为制定标准需要大量的数据积累,目前一直延续监测的地区有新疆、天津和长三角的一些城市,中国环境监测总站从2017年5月开始对“2+26”城市所有区县进行全面监测。 /p p   有条件的地方已对降尘量开展考核。比如,南京2014年开始就逐月公布各区降尘量排名并纳入考核。今年,南京空气中PM10浓度一度明显上升,全市有针对性地狠抓扬尘治理。 /p p   南京市扬尘办的数据显示,在受北方沙尘暴影响的情况下,今年4月,全市平均降尘量依然下降到了每平方公里4.23吨。 /p p   “从去年5月对‘2+26’城市328个区县开展降尘监测以来,我们每月都会以内部通报的形式把这些数据反馈给地方。”程麟钧表示,地方非常在意这些数据,一些监测结果不好的地方还会到中国环境监测总站来复核数据,找出问题,回去制定相应的对策。这反映了地方提升精细化管理水平的决心,也体现了环境监测对城市环境管理的积极促进作用。 /p p   据介绍,相较发达国家,我国的降尘量还处在高位,想要更多蓝天,加强扬尘综合治理是必不可少的一条管控措施。 /p p   《蓝天保卫战三年行动计划》已经明确“实施重点区域降尘考核”,唐桂刚表示,未来待标准完善之后,降尘量可能全面纳入大气污染防治工作考核。 /p
  • 2100 | 末次盛冰期以来长江中游沉积环境驱动的地下水流系统演化
    地下水是水文循环的重要组成部分,广泛用于饮用水、工农业活动以及战略储备。然而,人类活动的加剧(如水利工程建设、地下水过度开采、农药和生活污水排放)以及天然劣质地下水在大型流域中的广泛分布,导致地下水环境恶化。因此,水资源的合理管理和水环境的有效保护至关重要,基于地下水流系统(GFS)理论,全面理解地下水流模式(即更新速率、流径及演化趋势)有助于准确评估水文通量和预测污染物分布。汉江平原是长江流经三峡后第一个接收沉积物的大型河湖盆地。复杂的沉积环境、地下水-地表水强烈相互作用以及人为改造自然环境的共同作用,形成了汉江平原独特的GFS格局。了解汉江平原地下水循环演化及其控制机制,对于促进GFS的实际应用和该地区地下水资源保护具有高度紧迫性和挑战性。基于此,在本研究中,来自中国地质大学(武汉)的研究团队在汉江平原腹地和过渡区进行了相关研究,旨在:(1)基于沉积物粒度特征、粘土孔隙水稳定同位素和古气候指标重建汉江平原第四纪含水层系统的沉积环境;(2)深入理解末次盛冰期(LGM)以来沉积环境驱动的GFS演化模式。作者于2015年和2017年在汉江平原腹地和过渡区钻了两个钻孔G01和G05,深度分别为200 m和185 m。从钻孔中收集沉积物样品,分析其粒度分布,地球化学和矿物成分。并从钻孔G01和G05中分别采集了19个和17个粘土样品,利用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)提取粘土孔隙水,并进一步分析其δ18O。江汉平原第四纪沉积相、河系和主要钻孔分布。【结果】G01(a)和G05(b)钻孔孔隙水δ18O、沉积物OSL年龄、粘土矿物和地球化学指标的垂向分布以及第四纪古气候演化阶段。古气候阶段G01和G05钻孔孔隙水δ18O值、 粘土矿物和沉积物地球化学指标。【结论】基于水文地质条件、粒度分布特征、沉积物年代学、古气候指标和现存地下水年龄等综合分析,阐明了江汉平原沉积环境驱动的GFS演化模式。该研究的主要发现总结如下:在江汉平原第四纪含水层沉积环境的演化历史中,沉积相主要为河流相、湖泊相和河湖相,由中深层含水层的粗粒相过渡到浅层含水层的细粒相。这意味着水动力条件逐渐减弱并趋于稳定。此外,湖泊相沉积层厚度向平原腹地方向增加。自LGM以来,江汉平原气候演化和沉积相之间具有一定的耦合关系。沉积环境从LGM期间深下切侵蚀环境转变为末次冰消期(LDP)快速冲填粗粒沉积物的河流相环境,然后转变为全新世暖期(HWP)具有细粒沉积物的稳定湖泊相环境。这些变化与长江水位的波动密切相关。基于江汉平原现存地下水年龄的分布,自LGM以来,GFS的演化模式可分为三个阶段。阶段I(22-13 ka B.P.),长江水位急剧下降造成的强水势差增加了地下水的驱动力,极大促进了该阶段区域GFS充分发展,其环流深度达到第四纪底部。随着阶段II地下水驱动力的快速削弱(13-9 ka B.P.),区域GFS再循环深度下降至深层含水层上部,而阶段I的区域GFS逐渐深埋于盆地中。作为阶段III(9 ka B.P.至今)稳定在低水位地下水驱动力,阶段I和阶段II的区域GFS保存在盆地深处,被认为是一个停滞系统(地下水年龄在10 -20 ka之间)。此外,区域GFS(地下水年龄为4-10 ka)和中间GFS(地下水年龄为1-6 ka)共同被认为是稳定体系。随着微地形的充分发育,垂直于河流方向的浅层地下水流形成了活跃的局部GFS(地下水年龄 100 a)。
  • 张福根教授:不同激光粒度仪测试结果不一致的深层原因分析
    p style=" text-indent: 2em " 在粒度测量的诸多手段中,激光粒度仪无疑占据着统治地位。但在激光粒度仪的实际应用中,人们经常遇到一个令人困惑的现象:同一个样品给不同品牌甚至同一品牌不同型号的激光粒度仪测量时,所得结果有很大差异(指大于合理的允许误差范围)。 span style=" text-indent: 2em " 剔除取样代表性、操作过失等人为因素的影响,作者认为这种差异本质上来自于当前各种激光粒度仪的内在技术缺陷。 /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " 本文首先简述激光粒度仪的工作原理,阐明在理想条件下不同仪器应该能得到相同的测试结果的道理。然后讨论当前具有代表性的几种激光粒度仪的光学系统缺陷,这些缺陷造成承载被测颗粒大小信息的散射光分布信号不能被完全接收,从而导致最终的误差。不同仪器有不同的光学缺陷以及为弥补光学缺陷采取了各自独立的软件修饰方法,导致相互间结果出现差异。 /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " 另外作者所在研究团队发现,对透明颗粒,激光粒度仪得以建立的基本物理规律(颗粒越小,散射角度越大)在有些粒径区间并不成立,我们称之为爱里斑的反常变化(ACAD)现象[1]。如果用通常的(把散射光分布转换成粒度分布)反演算法,该现象会导致反常区域内测量结果的不稳定或明显偏离真实(例如出现不应有的多峰分布)。为了掩饰这种偏差,不同的仪器厂家也用了不同的修饰方法,从而导致相互之间结果的不可比。下文将逐一展开讨论。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" font-size: 18px color: rgb(0, 176, 80) " 一、激光粒度仪的工作原理 /span /strong /h1 p style=" text-indent: 2em " 激光粒度仪所依据的物理原理是:当光束照射到颗粒上时,会偏离原来的传播方向。当颗粒较大,尤其当颗粒具有较强的吸收性时,这种偏离的规律可以用光的衍射理论[2]描述,因此该仪器在诞生时的正式名称是“激光衍射法粒度分析仪”。但是在更一般的情况下,例如颗粒尺寸小于光波长,或者颗粒尺寸与光波长的尺度相近,并且对照明光透明,衍射理论不再适用,这时就需要用严格建立在麦克斯韦电磁波理论基础上的米氏散射理论[3]来描述。近年来国际上越来越多地把这种仪器称为“静态光散射法粒度分析仪”。 /p p style=" text-indent: 2em " 这里强调“静态”,是因为还有一种“动态”光散射粒度仪,又称为“动态光散射纳米粒度仪”。这是两种不同原理、适用于不同粒径范围的粒度分析仪,但都用激光作为光源,且都利用了颗粒的散射光信号。静态光散射粒度仪认为在某个测量点上,散射光的信号不随时间变化(因而是静态的),测量粒度是利用不同散射角上的散射光信号,即散射光的空间分布;而动态光散射粒度仪是在一个固定的散射角上测量散射光随时间的变化。 /p p style=" text-indent: 2em " 在一定条件下,颗粒越大,散射光的分布范围越广,见图1。当颗粒为理想圆球时(粒度测量中,都假设颗粒是理想圆球),散射光斑由中心的亮斑和外围一系列明暗相间的同心圆环组成,这样的光斑称为“爱里斑(Airy& nbsp Disk)[2]”。中心亮斑包含了衍射光(从一般意义上说,颗粒的散射光可近似看成衍射光和几何散射光的相干叠加,但是几何散射光不包含颗粒大小的信息,换言之,颗粒大小信息只包含在衍射光的分布中)总能量的83.8%[2],因此通常把中心亮斑的角半径(从光斑中心点到第一个暗环的角距离)作为爱里斑的半径,或作为颗粒对光的散射角,如图1中的。业界普遍认为:颗粒越小,越大。或者说:颗粒大小与爱里斑大小有一一对应关系。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0a92c26f-9514-44bb-81eb-2b9a575840f3.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图1& nbsp & nbsp & nbsp 颗粒对光的散射现象示意图 /strong /p p style=" text-indent: 2em " 激光粒度仪的原理图见图2。从激光器发出的细激光束经过空间滤波和准直,成为一束平行、纯净的扩展光束,然后照射到测量池内。被测颗粒分散悬浮在池内的分散介质(例如,水)中。入射光如果遇到颗粒,就被散射,形成散射光;没有遇到颗粒的光仍然是平行光,沿着原来的方向传播。后者经过傅里叶透镜后被会聚到光电探测器的中心,并穿过中心上的小孔,被中心探测器接收。散射光经过傅里叶透镜后,相同散射角的光被聚焦到探测器的同一点上。因此探测器上的一个点代表一个散射角。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/30adc066-e066-49ea-a9b0-fa68ea9f5877.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图2& nbsp & nbsp & nbsp 激光粒度仪工作原理示意图 /strong /p p style=" text-indent: 2em " 探测器由多个独立的探测单元组成,每个单元对应一个散射角区间。单元序号从探测器的中心往外,逐渐增大。探测单元的中心对应的散射角以及单元的接收面积均随着序号增大呈指数式增大。每个单元输出的光电信号正比于投射到该单元上的散射光功率(习惯上称为“光能”)。所有单元输出的信号组成了散射光能分布。虽然任意大小的颗粒的散射光斑的中心亮斑都是中心强而边缘弱,但是散射光能分布的峰值则总是处在某个探测单元上。颗粒越小,散射光斑越大,散射光能分布的峰值就越往外,如图3所示。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/44cd191a-2d5a-4371-8182-a1550ac56046.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图3& nbsp & nbsp 散射光能分布示例 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 664px height: 461px " src=" https://img1.17img.cn/17img/images/202008/uepic/8cf88b1b-9997-41d5-888c-b955ff8a0543.jpg" title=" 4.png" alt=" 4.png" width=" 664" height=" 461" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 从形式上看,仪器通过测量直接得到散射光的分布后,求解上述线性方程组,就可得到粒度分布 ,即粒度分布。但实际上该方程的系数矩阵的阶数高达30以上,通常是病态的,不能直接求解,而只能通过一种特定的迭代算法求出。这个迭代算法是激光粒度仪的关键技术之一,称作“反演算法”。 /p p style=" text-indent: 2em " & nbsp 由于现实的仪器都存在测量误差,即直接测量得到的散射光分布 & nbsp 与被测颗粒散射形成的真实的散射光分布有一定的偏差,因而通过反演计算获得的粒度分布也与真实的粒度分布有一定的偏差。在此将反演计算得到的粒度分布记为 ,& nbsp & nbsp 与之对应的光能分布为 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 664px height: 279px " src=" https://img1.17img.cn/17img/images/202008/uepic/023a9645-5777-486c-b9ed-bd67278142bf.jpg" title=" 5.png" alt=" 5.png" width=" 664" height=" 279" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 从以上叙述可以看出,激光粒度仪能给出准确测量结果的要素有三: /p p style=" text-indent: 2em " (1)获得足够准确的散射光能分布; /p p style=" text-indent: 2em " (2)粒径与散射光能分布之间有足够好的一一对应关系(下文称为“特异性”) /p p style=" text-indent: 2em " (3)反演算法合格(通过模拟计算可以验证) /p p style=" text-indent: 2em " 激光粒度仪经过几十年的发展,已经有多种公开报道的可用于实际的反演算法[4],实现上述第(3)条并不难。所以,只要第(1)、(2)条得到满足,就可获得足够准确的粒度分布数据。而正确的结果只有一个,因此如果不同的激光粒度仪都能给出正确的结果,那么这些结果在合理的误差范围内就应该是一致的。下面看一个实测的例子: /p p style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 图4是两种不同仪器测量同一样品的测量数据。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/930ad661-7e73-4959-ac40-7bbf2d0edac8.jpg" title=" 6.jpg" alt=" 6.jpg" style=" text-indent: 2em max-width: 100% max-height: 100% " / /p p style=" text-align: center text-indent: 0em " (a)真理光学LT2200仪器的测量结果 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/248a96bb-e7d6-4c67-abda-dab786cc7b47.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-indent: 0em text-align: center " (b)某国外仪器的测量结果 /p p style=" text-align: center text-indent: 0em " strong 图4& nbsp 两种激光粒度仪测同一种陶瓷介子粉的测试报告 /strong br/ /p p style=" text-indent: 2em " 这两种仪器给出的D50值分别为75.76µ m和75.93µ m,相对误差0.2%;D90值分别为127.02& nbsp µ m和126.13& nbsp µ m,相对误差0.7%;D10值分别为41.51µ m和44.28µ m,相对误差6.5%。可见这两个结果的吻合度相当好。 /p p style=" text-indent: 2em " 下文讨论造成仪器之间结果不一致的两个内在因素。 span style=" text-indent: 2em " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 80) font-size: 18px " 二、大角散射光测量盲区对亚微米颗粒测量的影响 /span /h1 p style=" text-indent: 2em " 颗粒的散射光分布在0到180° 的所有方向上。当颗粒远大于光波长时,散射光的中心光斑主要分布在前向较小的角度上。随着颗粒的减小,散射光的分布范围逐步扩大,直至后向(大于90° )。因此,一台理想的激光粒度仪应该能够在全角度上测量散射光。然而目前商品化的激光粒度仪都不能完全覆盖0到180° 的范围。 /p p style=" text-indent: 2em " 图2所示的激光粒度仪的光学系统是经典的光学系统。早期的激光粒度仪几乎全都采用这种光路。它只能测量前向的散射光,其最大散射角的接收能力受傅里叶透镜的孔径限制。现存的采用经典光路的仪器的透镜孔径对测量池中心的最大张(半)角,从空气中看为40° 。如果颗粒悬浮在水介质中,那么从水中看,该系统能接收的最大散射角只有29° 。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/70eab1d0-34e5-4aca-bcbe-278bb8d77fe9.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图5& nbsp 逆傅里叶变换系统示意图 /strong /p p style=" text-indent: 2em " 图5是当前较流行的一种光学系统,称为“逆傅里叶变换系统”。它用会聚光照明被测颗粒。通过数学推导可以知道,在小散射角上,它与经典傅里叶变换系统一样,也能实现同方向散射光的理想聚焦。但在大角度上聚焦不良,不过可通过光学计算,在散射光能矩阵上对聚焦不良带来的不利影响加以弥补。它的好处是突破了傅里叶透镜孔径对系统接收角的制约,扩展了激光粒度仪的测量角。 /p p style=" text-indent: 2em " 虽然突破了傅里叶透镜孔径的限制,它的测量角的上限还要受光线全反射规律的限制。假设颗粒处在水中,散射光从水中传播到玻璃再到空气,经过了两次折射。由于空气的折射率低于水的折射率,由光的折射定律可以知道,光线在空气中的出射角总是大于水中的入射角。当照明光垂直入射到测量池时,水中散射光的散射角等于散射光对玻璃的入射角。当水中的散射角约为49° 时,空气中的出射角等于90° ,如图6(a)所示。 /p p style=" text-indent: 2em " 散射角再增大时,散射光将被玻璃/空气界面完全反射,不能出射到空气中。这种现象称为“光的全反射”,而此时的入射角称为“全反射的临界角”。实际的激光粒度仪不可能把探测单元放置在90° 的位置。例如某国外仪器空气中的最大角探测器位置为60° (见图6(b)),对应于水中的散射角为41° 。所以该仪器能接收的最大前向散射角是41° 。在后向上也放置了最大60° 的探测器,故后向只能接收139° (=180° 41° )以上的 散射光。这样,这种光学系统就存在41° 到139° 的测量盲区,盲区跨度共98° ,见图8(a)。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 314px " src=" https://img1.17img.cn/17img/images/202008/uepic/3e096d92-88f4-479c-9808-233c5400f1a1.jpg" title=" 9.png" alt=" 9.png" width=" 500" height=" 314" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 真理光学提出了一种斜置的梯形窗口方案,见图7。在该方案中,窗口玻璃倾斜10° 放置,可把散射光的临界角扩展7° 左右,同时前向玻璃加厚,把玻璃/空气界面的一部分做成30° 的斜面,使原本在玻璃/空气界面上接近或大于临界角的散射光的入射角小于临界角。这种结构能让可接收的最大散射角(在水中看)扩展到80° ,后向的最小散射角则减到45° ,测量盲区为80° 到135° ,盲区跨度共55° ,见图8(b)。& nbsp & nbsp & nbsp & nbsp /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 557px " src=" https://img1.17img.cn/17img/images/202008/uepic/bf64a724-c11f-4ca3-b5ce-44dfb1b6587d.jpg" title=" 10.jpg" alt=" 10.jpg" width=" 500" height=" 557" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 图7& nbsp & nbsp 斜置的梯形测量窗口示意图 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b795291d-52ad-4d40-9fc4-b8e3ad37af0a.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图8& nbsp 两种典型的逆傅里叶变换系统的散射光测量盲区 /strong /p p style=" text-indent: 2em " 图9(a)是0.3,0.25,& #8230 , 0.05& nbsp µ m的颗粒产生的理想的散射光能分布图,其中假设探测器的面积和位置如本文第1节所述,光波长为0.633& nbsp µ m,颗粒折射率为1.59,介质折射率为1.33。如果采用通常的逆傅里叶变换系统接收,能得到的实际散射光能分布范围如图9(b)所示。用这种光路测量散射光,丢失了0.3& nbsp µ m及以细颗粒散射光能分布的所有峰值信息,而峰值信息所包含的粒度特征最多,即特异性最强。图9(c) 是斜置梯形窗口系统能获得的散射光能分布曲线,基本包含了所有颗粒的峰值信息。据此可以大体推断,后者对测量0.3µ m以细颗粒有更好的效果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/7b617d96-cd21-42fe-ab14-c07932f50905.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-indent: 0em text-align: center " (a)散射光的全角度分布图 /p p style=" text-indent: 0em text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b791938f-c40a-433b-a01b-6ad5838f5343.jpg" title=" 13.jpg" alt=" 13.jpg" / & nbsp /strong /p p style=" text-indent: 0em text-align: center " (b)通常的逆傅里叶变换系统能接收的散射光分布 /p p style=" text-indent: 0em text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/eb6b3e68-866c-42e1-8601-4780c83d6dfa.jpg" title=" 14.jpg" alt=" 14.jpg" / /strong & nbsp (c)采用斜置梯形窗口的逆傅里叶变换系统能接收的散射光分布 /p p style=" text-align: center text-indent: 0em " strong 图9& nbsp & nbsp 多种细颗粒(小于0.3µ m)的散射光能分布以及实际被接收到的光能分布 /strong /p p style=" text-indent: 2em " 下面举一个实际测量例子。样品是一种水性石墨烯。图10(a)是用真理光学LT3600Plus仪器(采用了斜置梯形窗口技术)测得的粒度分布。图10(b)是对应的实测光能分布与反演拟合的光能分布的对比。所得结果D50、D10、D90分别为0.135µ m、0.047 µ m和0.405 µ m,粒度分布曲线呈单峰,拟合残差1.27%,数值在合理范围内。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/56de073e-fb37-4161-82b2-065fa3ae79bb.jpg" title=" 15.jpg" alt=" 15.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图10& nbsp & nbsp 一种水性石墨样品用真理光学LT3600Plus测量的结果 /strong /p p style=" text-indent: 0em text-align: center " strong (a)粒度分布;(b)实测光能与拟合光能对比曲线 /strong /p p style=" text-indent: 2em " 图11是某国外仪器(采用通常的逆傅里叶变换光学系统)对上述水性石墨烯的测量结果。图11(a)和(d)都是该仪器在同一次取样进行多次测量时给出来的粒度分布数据,两个结果来回跳动;图(b)和(d)是对应的实测光能和拟合光能分布的对比曲线。按照结果1,D50、D10、D90分别为0.084µ m、0.055µ m和0.477 µ m;按照结果2,D50、D10、D90分别为0.119µ m、0.062 µ m和0.227 µ m。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b824343e-5812-45c4-bce0-b2e068f7388c.jpg" title=" 16.jpg" alt=" 16.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图11& nbsp & nbsp 一种水性石墨样品用某国外仪器测量的结果 /strong /p p style=" text-indent: 0em text-align: center " strong (a)粒度分布1;(b)实测光能与拟合光能对比曲线1 /strong /p p style=" text-indent: 0em text-align: center " strong (c)粒度分布2;(b)实测光能与拟合光能对比曲线2 /strong /p p style=" text-indent: 2em " 和图10所示结果对比,看得出来两种仪器的结果相差颇大。不过可以基本判定真理光学仪器的结果更加可靠。理据是:真理光学的结果(A)结果稳定,(B)粒度分布的峰形比较合理,(C)拟合残差比较小;而国外仪器的结果(A)测量结果在两组数之间来回跳动,很不稳定,(B)其中一种结果是双峰,不符合常理,(C)两种结果的光能拟合情况都很差,残差都在7%以上。 /p p style=" text-indent: 2em " 各家仪器都有自己独特的光路,但都未能完全解决全角度测量问题,不过各家解决的程度有不同,因而遇到颗粒很小的情况时,有的测量结果更接近真实,有的有较大偏离,从而造成结果不一致。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-family: arial, helvetica, sans-serif " strong span style=" font-size: 18px color: rgb(0, 176, 80) " 三、爱里斑的反常变化(ACAD)对0.4µ m10µ m粒度测量的困扰 /span /strong /span /h1 p style=" text-indent: 2em " strong 3.1& nbsp & nbsp ACAD现象及其规律 /strong & nbsp & nbsp /p p style=" text-indent: 2em " 自激光粒度仪诞生直到前不久的近50年来,业内人士都不曾怀疑过这样的光散射规律:& nbsp 颗粒越小,散射光的分布范围越大(爱里斑越大),即散射光的分布范围随着颗粒的减小而单调增大,从而保证了颗粒大小与散射光分布之间的一一对应关系。这是激光粒度仪能够正常工作的物理基础。但是真理光学和天津大学的联合研究团队却发现[& nbsp 1],对于透明颗粒,上述规律在某些特定的粒径区间不成立,即有时会出现颗粒越小,爱里斑也越小的现象。 /p p style=" text-indent: 2em " 图12是波长取0.633µ m,颗粒折射率1.59,介质折射率1.33时,2至4µ m之间的各种颗粒的散射光斑图样。其中3µ m颗粒的爱里斑尺寸是7.98° ,而3.5µ m颗粒的爱里斑尺寸则是13.31° ,出现了反常现象,我们称之为爱里斑的反常变化(Anomalous& nbsp Change& nbsp of& nbsp Airy& nbsp Disk,ACAD)。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/a3b9bd33-50a4-4238-b6bb-c7e195895891.jpg" title=" 17.jpg" alt=" 17.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图12& nbsp & nbsp 爱里斑的反常变化现象 /strong /p p style=" text-indent: 0em text-align: center " img style=" max-width: 100% max-height: 100% width: 664px height: 94px " src=" https://img1.17img.cn/17img/images/202008/uepic/5466a2bf-0e34-4d60-aef8-563ced5c2c4e.jpg" title=" AAA.png" alt=" AAA.png" width=" 664" height=" 94" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 蓝色曲线是采用米氏理论计算得到的爱里斑尺寸随无因次参量变化的曲线,红色曲线则是用夫琅禾费衍射理论计算得到的爱里斑尺寸变化曲线。由于米氏理论是物理学界公认的严格理论,因此蓝色曲线的结果反映了爱里斑变化的真实情况。图中的m表示颗粒相对于分散介质的相对折射率(本例中,实部为1.59/1.33=1.20),其虚部为0,表示颗粒是透明的。从中可以看出,爱里斑尺寸随着粒径的增大而振荡变化。虽然总体趋势是减小的,但在某些局部是增大的,我们把这样的区域称为反常区,而把反常区内蓝色曲线和红色曲线的交点称作反常区的中心,图中共有3个反常区。 /p p style=" text-indent: 2em " 我们进一步推导出反常区中心位置的一般公式: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/3b4b49c7-4e34-4f6b-b133-0b17f2954913.jpg" title=" BBB.png" alt=" BBB.png" / /p p style=" text-indent: 2em " (1)爱里斑的反常现象存在于任意的透明颗粒中。 /p p style=" text-indent: 2em " (2)对任一给定的折射率,都有无数多个反常区。 /p p style=" text-indent: 2em " (3)即使相对折射率小于1,例如水中的气泡,也会发生反常现象。 /p p style=" text-indent: 2em " 不过由于粒径分段时,序号越大,段间隔也越大,所以会干扰粒度分布反演计算的主要是第一个反常区,令k=1,得 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/50c20884-7c84-4285-96c8-2c29163bf224.jpg" title=" ccc.png" alt=" ccc.png" / /p p style=" text-indent: 2em " 从上式可以计算任意折射率的透明颗粒的第一个反常区中心位置。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/f6019ad6-a2d4-490a-b435-dd01f6457d90.jpg" title=" 18.jpg" alt=" 18.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图13& nbsp & nbsp 爱里斑尺寸随无因次参量的变化 /strong /p p style=" text-indent: 2em " 颗粒如果具有吸收性,那么随着吸收系数的增大,反常现象会逐步减弱,直至消失。在图14中,图(a)表示颗粒吸收系数为0.05时的爱里斑大小随无因次参量的变化曲线,可以看出,曲线的振荡幅度显著减小;图(b)表示颗粒吸收系数为0.10时,曲线的振荡完全消失。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/03a274c8-4d56-4052-9c0a-25e6d8498cb5.jpg" title=" 19.jpg" alt=" 19.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图14& nbsp & nbsp 反常现象随着颗粒吸收系数的增大而减弱 /strong /p p style=" text-indent: 2em " strong 3.2& nbsp & nbsp ACAD对粒度测量的困扰& nbsp & nbsp & nbsp /strong /p p style=" text-indent: 2em " ACAD将导致在反常区附近一个爱里斑尺寸最多可对应3个不同的粒径。如图15,等3个不同的无因次参量对应的爱里斑尺寸都是10° 。从散射光能分布看,反常现象会导致光能分布峰值位置出现颠倒。在正常的散射情况下,颗粒越大,散射光能的峰值位置越靠近坐标的中心;而在图16中,4.0µ m颗粒的峰值位置在3.5微米峰值位置的外侧。可见不论从散射光强分布(爱里斑)角度还是散射光能分布角度看,ACAD都导致了颗粒尺寸与散射光场分布的一一对应关系的破坏,从而使处在反常区的颗粒的粒度测量结果变得不稳定或者结果不真实(一般体现为粒度分布曲线的振荡,见图17)。文献[5]对此有更严谨的论证。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/cad6ffb6-1581-412f-b399-14274f5b71a8.jpg" title=" 20.jpg" alt=" 20.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图15& nbsp & nbsp 同一爱里斑尺寸对应3个不同的粒径& nbsp /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9c4d156e-24cb-451f-bed2-8d6cd2ffae49.jpg" title=" 21.jpg" alt=" 21.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图16& nbsp 在反常区附近散射光能分布的峰值位置出现了颠倒 /strong /p p style=" text-indent: 2em " span style=" text-indent: 2em " 图17& nbsp 是某国外仪器用“通用模式”测量3.0µ m聚苯乙烯微粒标样的结果,出现了两个峰,并且两个峰的峰值位置都不在3.0µ m上。聚苯乙烯颗粒的折射率为1.59,分散在水中时,相对折射率为1.20。从表1可以查到,反常中心位置为3.20& nbsp µ m。可见该颗粒正好处在反常区中心附近,故而得不到正确的测量结果。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ff19f16e-aa24-4082-b60b-1e56c8b82ed9.jpg" title=" 22.jpg" alt=" 22.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图17& nbsp & nbsp 某国外仪器用“通用模式”测量3.0µ m聚苯乙烯微粒标样的结果 /strong /p p style=" text-indent: 2em " 尽管ACAD作为一种客观的物理现象,一直都存在,并且困扰着激光衍射法粒度测量技术的应用,但是在本团队的论文发表前,都没有公开的相关报导,仪器制造商更没有提出解决这一困扰的根本办法。目前所做的,对单分散样品(大多指标准微粒),厂家提供的操作指引上指定选“单峰窄分布”模式,这时对聚苯乙烯材料的3µ m标样,进行“特殊处理”,以得到看上去正确的结果。对一般的透明样品,如果粒径分布范围部分或全部处在反常区,则在进行反演分析时,人为给折射率加上一个虚部,例如,0.1。对一个给定的颗粒折射率,只要人为加上去的吸收系数足够大,那么在计算散射矩阵(各种粒径散射光能分布的组合)时,光能分布峰值位置颠倒的情况就会消失。但颗粒实际还是无吸收的,强行认为颗粒有吸收,将造成实测的光能分布与反演计算时认为的光能分布不相符。在不加修饰的情况下,反演结果将在粒径1µ m附近鼓起一个假峰(Ghost& nbsp Peak)。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0f7136f6-c723-48ff-88e4-db914e4f69ac.jpg" title=" 23.jpg" alt=" 23.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图18& nbsp & nbsp 人为给透明颗粒加吸收系数造成反演数据出现假峰 /strong /p p style=" text-indent: 2em " 下面用一个数值模拟的例子进行说明。图18(a)中的蓝色曲线是事先设定的一种颗粒样品的粒度分布。假设颗粒透明,折射率为1.50,处在水介质中。它对应的散射光能分布如图(b)中的蓝色曲线所示。假如给颗粒加上一个0.1的吸收系数,那么该颗粒样品产生的散射光能分布如图(b)中的红色曲线所示。蓝、红两种曲线相比,蓝色曲线在35到45单元之间鼓起一个小峰,这个小峰等效于一定比例的绿色曲线,也可视为某种粒度分布对应的散射光能分布。图18(b)中三种曲线或散射光能分布用公式可表达为 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 21px " src=" https://img1.17img.cn/17img/images/202008/uepic/4c2c1f38-4beb-4d73-8420-e51489fb0299.jpg" title=" 24.png" alt=" 24.png" width=" 600" height=" 21" border=" 0" vspace=" 0" / br/ /p p style=" text-indent: 2em " 式中,是e sub R /sub 、e sub 0 /sub 、e sub D /sub 是归一化、矢量形式的散射光能分布,分别表示无吸收颗粒的散射光能分布(即本实验设定颗粒真实的光能分布)、吸收系数为0.1时相同颗粒样品产生的散射光能分布,以及这两种光能分布之差。后者等效于一个粒径1µ m左右的颗粒样品产生的散射光能分布。因此,如果用0.1吸收的散射矩阵去反演计算一个透明颗粒样品产生的光能分布,如图18(b)中蓝色曲线所示的散射光分布,就会得到图18(a)中红色曲线所示的粒度分布,这个粒度分布相较于蓝色曲线所示的粒度分布(即原本的粒度分布),在1µ m附近多了一个假峰。 /p p style=" text-indent: 2em " 下面再举一个实际测试的例子。图19是一种陶瓷泥浆样品实际测量得到的粒度分布曲线。蓝色曲线表示吸收系数取0得到的粒度分布,红色曲线表示吸收系数取0.1得到的粒度分布。两条曲线相比,红色曲线在1µ m附近颗粒含量明显偏高。 /p p style=" text-indent: 2em " 所以给透明颗粒人为加吸收系数,虽然能掩饰ACAD带来的测试结果不稳定或者振荡,但同时会使1µ m附近产生一个假的峰,或者引起1µ m附近颗粒含量的测试值高于实际值。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/6aa48cfb-e661-4bd7-a47b-55c4fda3bf9d.jpg" title=" 25.jpg" alt=" 25.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图19& nbsp & nbsp 一种陶瓷泥浆样品的实测粒度分布 /strong /p p style=" text-indent: 2em " 为了修饰这个假峰,某国外仪器在算法上强行抹平这个假峰。但这会带来新的问题:如果被测样品在1µ m附近真的有一个峰,也会被强行抹掉,从而造成测量结果的失真。 /p p style=" text-indent: 2em " 图20是一种人为配制出来的三个峰的二氧化硅样品。用国外仪器测量时,如果取“通用模式”,则结果如图(a)所示,只有一个峰;如果取“多峰窄分布模式”,则在主峰的右侧(大颗粒侧)出现一个小峰。该样品用真理光学LT3600测量时,共有3个峰:在主峰的左右各有一个小峰,左侧的小峰在1到3µ m之间。图21是该样品的电镜照片。从图(a)460倍放大照片看,确实存在30µ m左右的大颗粒;从图(b)8000倍放大照片看,也存在1µ m到2µ m颗粒。可见1到3µ m的颗粒是真实存在的,而国外仪器没有测到这些颗粒。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/3e8ab13f-8d7a-4661-a744-51e8adb0ea73.jpg" title=" 26.jpg" alt=" 26.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图20& nbsp 一种二氧化硅样品“”的粒度测量结果 /strong strong style=" text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/616caea4-21d1-4f17-bf0c-d4ef061356e1.jpg" title=" 27.jpg" alt=" 27.jpg" / /strong /p p style=" text-indent: 0em text-align: center " strong 图21& nbsp & nbsp 一种二氧化硅样品的电子显微镜照片 /strong /p p style=" text-indent: 2em " 从本节的讨论可以看出,当被测的透明颗粒处在反常区时,通常的反演算法得出的粒度分布是不稳定或者振荡的。目前大多数仪器厂家的处理办法是,在反演计算时给颗粒加上吸收系数。这会使得反演得到的粒度分布曲线稳定、平滑,但是同时在1µ m附近鼓起一个假的峰,或者1µ m附近颗粒含量变高。也有的厂家在算法上强行抹平这个假峰,但会导致仪器在1µ m附近测量灵敏度降低。真理光学团队在对ACAD规律透彻理解的基础上,改进了反演算法,使其能在大多数情况下对处在反常区的透明颗粒进行真实的粒度分布反演,如图20(c)的结果。对3µ m聚苯乙烯标样也能成功反演。 /p p style=" text-indent: 2em " 所以,由于ACAD的困扰,造成各个仪器厂家采取了不同的、有些是修饰性的(并非符合科学的)算法,从而导致相互间结果不一致。 /p p style=" text-indent: 2em " strong 3.3& nbsp & nbsp ACAD影响的粒径范围以及对激光粒度仪用户的建议 /strong span style=" text-indent: 2em " & nbsp /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/d97f35cb-9fbe-4a00-9be0-546df3eb57ae.jpg" title=" 28.png" alt=" 28.png" width=" 664" height=" 112" border=" 0" vspace=" 0" style=" text-indent: 2em max-width: 100% max-height: 100% width: 664px height: 112px " / /p p style=" text-indent: 2em " 如果介质折射率区1.33,空气中波长取0.633& nbsp µ m,那么可以得到如表1所示的分别用无因次参量和粒径表达的各种折射率下第1个反常区中心位置的数值。 /p p style=" text-align: center text-indent: 0em " strong 表1& nbsp & nbsp 各种折射率下的反常区中心位置 /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/a349395c-f611-4105-900a-8013cc4eb93d.jpg" title=" 29.png" alt=" 29.png" / /strong /p p style=" text-indent: 2em " 假设颗粒分散在水中,那么m=1.05对应于绝对折射率1.40,接近已知固体材料折射率的下限,此时反常区的中心粒径为13.0µ m。m=2.40对应于绝对折射率3.19,接近已知固体材料折射率的上限,此时反常区的中心粒径为0.396µ m。在颗粒折射率未知的情况下,如果被测颗粒的粒径大于13& nbsp µ m,那么就可确定颗粒不在反常区内,不论用哪家的粒度仪,都不必给颗粒人为地加吸收系数(颗粒实际有吸收的情况除外),这样各种激光粒度仪得到的粒度测试结果应该是基本一致的,就如本文图4所举的例子。 /p p style=" text-indent: 2em " 如果颗粒折射率已知,又是不吸收的,可以查表1或者用本小节的公式计算第1个反常区中心的位置,如果被测粒径分布不在反常区中心附近,那么也不必人为给颗粒加吸收系数,这样可以得到更真实因而也更可比的结果。 span style=" text-indent: 2em " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 16px color: rgb(0, 176, 80) " strong 四、结语 /strong /span /h1 p style=" text-indent: 2em " 激光粒度测试技术发展到今天,还不能说是很完善的技术。本质原因是物理上存在两大缺陷:大角散射光测量盲区和爱里斑的反常变化(ACAD)。前者影响0.3µ m以细颗粒的测量,后者影响0.4µ m至13µ m颗粒的测量。所以,概略地说,对于13µ m以粗颗粒的测量,当前技术是比较成熟的,不同仪器的测量结果应该有较好的可比性。 /p p style=" text-indent: 2em " 对0.3µ m以细颗粒的测量,有的厂家解决得好一些,有些差一些,但是都没有完全解决。这需要全体激光粒度仪厂家的共同努力。如果都能解决全散射角的测量问题,那么各家仪器的测量结果就应该是一致的。 /p p style=" text-indent: 2em " 对0.4µ m至13µ m的颗粒,最根本的是要解决ACAD条件下的反演算法问题。目前真理光学已经较好地解决了这个问题,但其他品牌多采取人为加吸收系数的办法,这只让测试结果看上去比较正常,数值则已偏离实际;而且不同的厂家对由此引起1µ m附近的假峰的处理方法不一,造成相互间结果难以对比。对于用户来说,可参照表1的数据或者同一节中的公式,先查找或计算被测样品的反常区中心位置,如果被测粒度远离反常中心,则尽量不要给透明颗粒加吸收系数,这样能得到更真实的粒度结果,不同仪器的用户都能这么做,相互间的可比性也更好。 /p p style=" text-indent: 2em " 最后,呼吁中国市场上的所有激光粒度仪厂家,能够正视激光粒度测试技术内在的缺陷问题,努力解决这些问题,尽快实现粒度测试结果的全面可比。 span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-indent: 2em " strong 参考文献 /strong /p p style=" text-indent: 2em " 1.& nbsp & nbsp Linchao Pan et. al.& nbsp Anomalous change of Airy disk with changing size of spherical particles. Journal of Quantitative Spectroscopy & amp Radiative Transfer 170 (2016) 83–89 /p p style=" text-indent: 2em " 2. & nbsp M.& nbsp 玻恩,E.& nbsp 沃耳夫.& nbsp 光学原理(上册).& nbsp 科学出版社 & nbsp 1978. P.517 /p p style=" text-indent: 2em " 3.& nbsp & nbsp Van de Hulst HC.& nbsp Light scattering by small particles. New York: Dover 1981 /p p style=" text-indent: 2em " 4. & nbsp Santer R , Herman M . Particle size distributions from forward scattered light /p p style=" text-indent: 2em " using the Chahine inversion scheme. Appl Opt 1983 22:2294–301 . /p p style=" text-indent: 2em " 5.& nbsp & nbsp Linchao Pan et. al. Indetermination of particle sizing by laser diffraction in the /p p style=" text-indent: 2em " anomalous size ranges. Journal of Quantitative Spectroscopy & amp Radiative Transfer 199 (2017) 20–25 /p p style=" text-indent: 2em " strong 作者简介: /strong /p p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% float: left width: 110px height: 124px " src=" https://img1.17img.cn/17img/images/202008/uepic/cb2b6104-1423-4066-b06f-ec34a1cec7f1.jpg" title=" 张福根:不同激光粒度仪测试结果不一致的深层原因分析.jpg" alt=" 张福根:不同激光粒度仪测试结果不一致的深层原因分析.jpg" width=" 110" height=" 124" border=" 0" vspace=" 0" / 珠海真理光学仪器有限公司首席科学家,天津大学兼职教授、博导。主要从事颗粒表征、微粉材料制造和3D测量及显示技术的研究和产品开发。主持了多种型号的激光粒度仪、电阻法颗粒计数器、图像法粒度仪以及3D测量和显示设备。发表学术论文30多篇,获得专利授权30多项。曾担任中国颗粒学会副理事长、常务理事,现任全国颗粒表征与分检及筛网标准化技术委员会副主任委员,中国颗粒学会颗粒测试专委会副主任。 /p p style=" text-indent: 2em text-align: justify " (注:本文由张福根教授供稿,文章为张老师结合其所在团队的科研成果,与读者进行分享交流,不代表仪器信息网本网观点) /p
  • 400多个城市地下水污染严重 检出毒物
    4月22日,是世界地球日。图为中国林业大学的师生在北京中国地质博物馆参观。 新华社发 王振摄   今天是第43个世界地球日。地下水的超采与污染问题引发热议。   据国土资源部今天公开的消息透露,在我国北方地区65%的生活用水来自地下水 同时,50%的工业用水和33%的农田浇灌也源自地下水。全国657个城市中,有400多个城市以地下水为饮用水源。   国土资源部认为,超采与污染正在危及地下水安全。   600多城市半数不同程度缺水   由中国国家自然科学基金委和中国地质调查局联合资助的《中国地下水科学的机遇与挑战》研究报告称,在过去的几十年中,我国地下水的提取量以每年25亿立方米的速度增加。   同时,由于城市污水、生活垃圾、工业废弃物污液以及化肥农药等的渗漏渗透,一些地区的地下水品质已经恶化。   我国新一轮全国地下水资源评价成果发现,全国适宜开采或饮用地下水地区,每平方千米年均可开采资源量已由15万立方米减少到6万立方米,北方地下水可采资源量减少了56亿立方米。据专家介绍,这是由于区域降水量变化、人类工程活动导致地下水补给量减少以及部分地区水文地质参数发生变化等原因造成的。   尽管近20年来全国用水量急剧增长,地下水开采量以平均每年25亿立方米的速度增加,但仍有数千万人饮用水问题亟待解决,全国600多座城市中有一半左右不同程度存在缺水,部分省(区、市)存在与饮用水水质有关的地方病区,比如北方丘陵山区,多分布高氧水、高砷水、低碘水和高铁锰水,引发了克山病、大骨节病、氟中毒、甲状腺肿等。   近60个城市地下水严重超采   有统计显示, 全国以城市和农村井灌形成的地下水超采区400多个,总面积达到62万平方公里,主要分布在华北平原(黄淮海平原)、山西六大盆地、关中平原、松嫩平原、下辽河平原、西北内陆盆地的部分流域(石羊河、吐鲁番盆地等)、长江三角洲、东南沿海平原等地,严重超采城市近60个。   地下水超采带来的直接后果,就是地下水位下降,形成地下水降落漏斗,引发地面沉降。   据透露,目前,全国已形成大型地下水降落漏斗100多个,面积达15万平方公里,主要分布在华北、华东地区。中国科学院院士王光谦表示,到目前,北至哈尔滨,南到海口,东达上海,西到乌鲁木齐。几乎所有大中城市都因超采地下水而出现地下漏斗。   由中国地质科学院水文地质环境地质研究所完成的《华北平原地下水可持续利用能力》项目研究显示,华北平原浅层地下水每年超采26.4亿立方米,深层地下水每年超采12.4亿立方米,已无开采潜力。历经近50年的地下水开采和超采,华北平原形成了环渤海复合大漏斗,面积达7.2万平方公里。   不合理开采地下水引发的地面沉降,在全国70多座城市不同程度存在。其中,沉降中心累计最大沉降量超过2米的有上海、天津、太原。在河北平原、西安、大同、苏锡常等地区,过量开采地下水还导致了地裂缝,对城市基础设施构成严重威胁。   此外,地下水超采还引发了岩溶塌陷、海水入侵、土壤盐渍化等问题,西北部分地区由于地下水位下降,出现了植被退化、土地沙化、荒漠化加剧等问题。   地下水检测出微量有毒有机物   国土资源部新一轮全国地下水资源评价成果显示,全国地下水环境品质“南方优于北方,山区优于平原,深层优于浅层”。   按照《地下水品标准》进行评价,全国地下水资源符合Ⅰ类—Ⅲ类水质标准的占63%,符合Ⅳ类—Ⅴ类水质标准的占37%。南方大部分地区水质较好,符合Ⅰ类—Ⅲ类水质标准的面积占地下水分布面积的90%以上,但部分平原地区的浅层地下水污染严重,水质较差。其中,中部平原区水质较差,滨海地区水质最差。根据对京津冀、长江三角洲、珠江三角洲、淮河流域平原区等地区地下水有机污染调查,主要城市及近郊地区地下水中普遍检测出有毒微量有机污染物,但超标率较低。   2009年,经对北京、辽宁、吉林、上海、江苏、海南、宁夏和广东等8个省(区、市)641 眼井的水质分析,水质Ⅰ类—Ⅱ类的占总数2.3%,水质Ⅲ类的占23.9%,水质Ⅳ类—Ⅴ类的占73.8%。全国202个城市的地下水水质以良好——较差为主,深层地下水品质普遍优于浅层地下水。   2010年,国土资源部和水利部联合对全国182个城市开展地下水水质监测工作。结果表明,4110个水质监测点中,较差——极差级的监测点占57.2%。与2009年比较,全国主要城市的地下水水质状况,其中呈变好趋势的城市分布在华东地区,水质呈变差趋势的地区主要集中在华北、东北和西北地区。   地下水一旦污染极难治理   据专家介绍,地下水污染与地表水污染有着明显的不同。污染物进入到地下含水层以及在含水层中运动都比较缓慢,若不进行定期专门监测,很难及时发觉。   专家称,近年来,我国城市急剧扩张,导致城市污水排放量大幅增加,由于资金投入不足、管网建设相对滞后、维护保养不及时等原因,管网漏损致使污水外渗,造成地下水污染。同时,部分行业也对地下水环境安全造成威胁。   此外,土壤中一些污染物易于淋溶,对相关区域地下水环境安全也构成威胁。大量化肥和农药的使用以及部分地区长期利用污水灌溉,对农田及地下水环境也构成危害,农业区地下水氨氮、硝酸盐氮、亚硝酸盐氮超标和有机污染日益严重。   “地下水污染是很难治理的。即使查明污染原因并消除了污染源,地下水质仍需要很长的时间才能恢复。”专家认为,地下水一旦被污染,恢复和治理需要十几年甚至几十年。
  • 安徽地质环境监测规划发布 将建524个水环境监测站点
    p   由安徽省地质环境监测总站承编的《安徽省地质环境监测规划(2016-2020年)》日前经省国土资源厅同意发布实施。这是安徽省首部地质环境监测规划。根据《规划》内容,到2020年,全省地下水环境监测站点将达到524个,自动化监测率大于80%,专门监测孔全部实现自动化监测。 /p p   《规划》系统总结了安徽省地质环境监测取得的主要成绩,指出存在的主要环境地质问题及监测工作不足,并分析地质环境监测的形势与需求,提出“十三五”地质环境监测规划目标。同时,对规划期的突发性地质灾害监测、地面沉降监测、地下水环境监测、矿山地质环境监测及地质遗迹监测等进行规划性部署。 /p p   2020年前,安徽省在保持全省地质灾害隐患群测群防网络全覆盖的基础上,将系统推进地质灾害监测预警体系建设。到2020年,安徽省建成地面沉降监测分层标18个/6组、光纤监测孔2个,初步建设地面沉降严重区与深层地下水监测相结合的地面沉降监测网 主要利用卫星遥感技术进行大中型露采矿山地质环境动态监测,矿山监测数量比达55%,并对3处地质遗迹进行保护性监测。 /p p   地质环境监测是自然资源调查监测评价及保护的重要基础性、公益性工作,为自然资源、环境保护等主管部门履行管理职责提供科学依据,是生态文明建设的重要内容。 /p
  • 一文了解原子层沉积(ALD)技术的原理与特点
    什么是原子层沉积技术原子层沉积技术(ALD)是一种一层一层原子级生长的薄膜制备技术。理想的 ALD 生长过程,通过选择性交替,把不同的前驱体暴露于基片的表面,在表面化学吸附并反应形成沉积薄膜。 20 世纪 60 年代,前苏联的科学家对多层 ALD 涂层工艺之前的技术(与单原子层或双原子层的气相生长和分析相关)进行了研究。后来,芬兰科学家独立开发出一种多循环涂层技术(1974年,由 Tuomo Suntola 教授申请专利)。在俄罗斯,它过去和现在都被称为分子层沉积,而在芬兰,它被称为原子层外延。后来更名为更通用的术语“原子层沉积”,而术语“原子层外延”现在保留用于(高温)外延 ALD。 Part 01.原子层沉积技术基本原理 一个完整的 ALD 生长循环可以分为四个步骤: 1.脉冲第一种前驱体暴露于基片表面,同时在基片表面对第一种前驱体进行化学吸附2.惰性载气吹走剩余的没有反应的前驱体3.脉冲第二种前驱体在表面进行化学反应,得到需要的薄膜材料4.惰性载气吹走剩余的前驱体与反应副产物 原子层沉积( ALD )原理图示 涂层的层数(厚度)可以简单地通过设置连续脉冲的数量来确定。蒸气不会在表面上凝结,因为多余的蒸气在前驱体脉冲之间使用氮气吹扫被排出。这意味着每次脉冲后的涂层会自我限制为一个单层,并且允许其以原子精度涂覆复杂的形状。如果是多孔材料,内部的涂层厚度将与其表面相同!因此,ALD 有着越来越广泛的应用。 Part 02. 原子层沉积技术案例展示 原子层沉积通常涉及 4 个步骤的循环,根据需要重复多次以达到所需的涂层厚度。在生长过程中,表面交替暴露于两种互补的化学前驱体。在这种情况下,将每种前驱体单独送入反应器中。 下文以包覆 Al2O3 为例,使用第一前驱体 Al(CH3)3(三甲基铝,TMA)和第二前驱体 H2O 或氧等离子体进行原子层沉积,详细过程如下:反应过程图示 在每个周期中,执行以下步骤: 01 第一前驱体 TMA 的流动,其吸附在表面上的 OH 基团上并与其反应。通过正确选择前驱体和参数,该反应是自限性的。 Al(CH3)3 + OH = O-Al-(CH3)2 + CH4 02使用 N2 吹扫去除剩余的 Al(CH3)3 和 CH4 03第二前驱体(水或氧气)的流动。H2O(热 ALD)或氧等离子体自由基(等离子体 ALD)的反应会氧化表面并去除表面配体。这种反应也是自限性的。 O-Al-(CH3)2 + H2O = O-Al-OH(2) + (O)2-Al-CH3 + CH4 04使用 N2 吹扫去除剩余的 H2O 和 CH4,继续步骤 1。 由于每个曝光步骤,表面位点饱和为一个单层。一旦表面饱和,由于前驱体化学和工艺条件,就不会发生进一步的反应。 为了防止前驱体在表面以外的任何地方发生反应,从而导致化学气相沉积(CVD),必须通过氮气吹扫将各个步骤分开。 Part 03. 原子层沉积技术的优点 由于原子层沉积技术,与表面形成共价键,有时甚至渗透(聚合物),因此具有出色的附着力,具有低缺陷密度,增强了安全性,易于操作且可扩展,无需超高真空等特点,具有以下优点: 厚度可控且均匀通过控制沉积循环次数,可以实现亚纳米级精度的薄膜厚度控制,具有优异的重复性。大面积厚度均匀,甚至超过米尺寸。 涂层表面光滑完美的 3D共形性和 100% 阶梯覆盖:在平坦、内部多孔和颗粒周围样品上形成均匀光滑的涂层,涂层的粗糙度非常低,并且完全遵循基材的曲率。该涂层甚至可以生长在基材上的灰尘颗粒下方,从而防止出现针孔。 ALD 涂层的完美台阶覆盖性 适用多类型材料所有类型的物体都可以进行涂层:晶圆、3D 零件、薄膜卷、多孔材料,甚至是从纳米到米尺寸的粉末。且适用于敏感基材的温和沉积工艺,通常不需要等离子体。 可定制材料特性适用于氧化物、氮化物、金属、半导体等的标准且易于复制的配方,可以通过三明治、异质结构、纳米层压材料、混合氧化物、梯度层和掺杂的数字控制来定制材料特性。 宽工艺窗口,且可批量生产对温度或前驱体剂量变化不敏感,易于批量扩展,可以一次性堆叠和涂覆许多基材,并具有完美的涂层厚度均匀性。
  • 如何唤醒“沉睡”的科研仪器
    ■ 核心提示   科学搞得好不好,和仪器有关系,但是仪器往往不是决定性的因素。   目前对科学仪器设备究竟是一种什么性质的资产或资源缺乏研究和认识,对于其所有权、使用权、共享权和管理权尚无明确可行的制度安排。   大家对仪器还存在一种“敬畏”心理,不敢也不愿在现有商品化仪器的基础上进行改进、改装的尝试。   通过多种形式的共享机制增进仪器设备的利用与共享价值,同时,还必须建立起科研仪器设备的利用与共享增值评价指标体系。   购买仪器是否合理,其核心标准是一般的和资深的科学家都能从这些设备的使用中真正地获益。   “我们到底是用仪器搞科学,还是用科学搞仪器?”这是北京大学工学院先进材料与纳米技术系特聘研究员黄岩谊2年前在其科学网博客上所写的一篇博客的标题。   他在文章里写道:回国以后,我发现这些年国内科研机构的仪器设备已经达到世界一流了,在数量上也不显弱势,但许多仪器都没有发挥出应有的用处,很多仪器摆放在装修豪华的实验室内,在专人负责下闲置,直到几年后更新时直接报废。   看来,科研仪器闲置实在已经不是个新话题了。但日前媒体的一篇报道再次将人们的视线聚拢到了那些被闲置的仪器设备上。该报道称:一些科研单位对于仪器设备的态度是“只要拥有,别无他求”,由此带来的设备闲置造成了巨大的浪费。北京市审计局2008年公布的一项审计结果显示,6所高校部分设备设施购入后形成闲置,涉及金额2941万元。   尽管科研仪器闲置的现象并不新鲜,但它的“生命力”如此之强,不得不让人认真思考,这些现象背后有哪些深层次原因?如何才能让闲置的科研仪器真正有效地运转起来?   ——闲置背后的深层原因——   仪器的真正价值和科学维护被忽视   中国社会科学院哲学所科技哲学研究室主任、副研究员段伟文认为,造成科研仪器闲置的深层次原因包括认识、评估、管理和制度上的一些误区。   “目前对仪器与科研的关系的认识往往缺乏整体观,脱离了科研实际”,段伟文说。他指出,一方面,孤立地强调仪器设备的技术先进性和高价格,简单地将其与先进的科研条件和高水平的科研挂钩,而自觉不自觉地忽视了仪器设备的真正价值在于其有效利用和共享;另一方面,见物不见人,重视仪器设备的购置而忽视其运行维护人员的专业化配置。   在国内读书时,黄岩谊总是幻想着世界上一流大学里有着最先进的仪器设备,那里的研究人员因此可以做出让自己望尘莫及的工作。到美国加州理工学院后,那里的实验室震撼了他:“我的眼前像是一个很长时间没有整理过的博物馆的仓库,摆在我面前的许多仪器的服役期明显超过了我的年龄,和零散存在的一些现代仪器混搭在一起”。   在以后的工作中,黄岩谊慢慢体会到,仪器完全是为科学思想服务的,科学搞得好不好,和仪器有关系,但是仪器往往不是决定性的因素。“在国内的许多实验室堆放着世界上最先进的仪器设备,但是却做着与投入很不成比例的研究工作”。   仪器的使用权和共享权缺乏明确规定   在评估和管理上,段伟文认为,目前在很大程度上还停留在固定资产的评估和管理层面,过于强调仪器的市场价格和财产价值等“死”的和必然折旧的价值,而尚未能对其运行价值、共享价值等“活”的增值进行评估和管理。   就制度而言,段伟文认为,目前对科学仪器设备究竟是一种什么性质的资产或资源缺乏研究和认识,对于其所有权、使用权、共享权和管理权尚无明确可行的制度安排。   ——如何实现有效运转——   建立购置申请备案制度和公共调配托管制度   如何才能让闲置的仪器有效地运转起来呢?段伟文开出的“药方”是,一方面要认真研究并借鉴国外的经验,另一方面更重要的是要结合中国科研实际建立起有助于改善科研仪器闲置的制度与机制。   首先,从入口着手,在学科建设、实验室建设和课题申请环节,建立起各类仪器设备购置申请备案制度;要使这个制度得以运行,必须尽快建立起科研机构和高校的科研仪器设备基本信息数据库。   其次,应该在全国建立起科研仪器设备公共调配托管制度,充分发挥现有基础条件平台的作用,使闲置的仪器流动起来,最大限度地减少因课题完成和仪器更新等带来的浪费;其关键性的机制在于要建立起相应的托管增值机制,即通过多种形式的共享机制增进仪器设备的利用与共享价值,同时,还必须建立起科研仪器设备的利用与共享增值评价指标体系。   让仪器使用者更加主动   段伟文更多的是从宏观的角度来考虑如何实现仪器有效的被运转,而黄岩谊则从微观的角度出发,关注如何让人更主动地去运转仪器。他说,“现在的商品化仪器已经不太娇贵了,但是在仪器管理上还一直没有开放,无法像国外的大学一样让学生自由使用”。   仪器不够开放的同时,大家对仪器还存在一种“敬畏”心理,不敢也不愿在现有商品化仪器的基础上进行改进、改装的尝试。“墨守成规地使用已有的商品化仪器中预置的功能,能做出什么有创造性的工作呢?”黄岩谊反问道。   黄岩谊甚至设想,如果有时间,他愿意在学校里试开一门关于仪器使用的课,希望同学们可以多花一点时间考虑怎么设计并建设一个合适的仪器用于科研问题的解决,而不是看着那些加工精美的商品化仪器,然后想:还有什么别人没做过的,我可以做一做?   ——它山之石——   仪器购买前要经过同行审查   在仪器的共享和使用上,国外又是怎么做的呢?“坦白说,在美国、欧洲和日本,也存在仪器被闲置的问题,但据我所知,这些问题可能不像中国那么普遍”,美国宾州州立大学物理学教授陈鸿渭说。   “在国外,购买设备的前提是他们真的需要解决重要公开的科学问题,而且越是昂贵的设备,越需要详尽的证明购买的合理性”,陈鸿渭说。购买合理性的一个核心标准是,一般的和资深的科学家都能从这些设备的使用中真正的获益。“这意味着,在拨款购买此类设备时,我们需要一个公正、科学、透明的同行审查体制”。   “设备服务中心”统一运行昂贵仪器   陈鸿渭介绍,在美国的研究型大学里,昂贵的设备,例如电子显微镜、净化室、电子束曝光技术等,经常放在一起并由“设备服务中心”(Central Facility)来运行。设备服务中心的运行的费用由所有使用这些设备的研究组通过“使用者付费”(user fees)来支付,而该中心的经理会向用户成员组成的委员会作报告。   该中心招收的技术人员都是拥有博士和硕士学位的,中心的职责之一是培训技术人员使用这些设备,职责之二是按时对设备进行“常规”维修。对于许多特别昂贵和精密的设备,设备中心会与制造商签订维修合同。在这种情况下,制造商会派技术人员做定期维护。这种合同的费用很大,是设备费用的10%甚至15%。   用户支付的费用从哪里来呢?陈鸿渭说,负责很多研究组的教授们可以通过研究项目从政府机构,如美国国家科学基金会等,获得资助。尽管至少在用户或者教授们看来,缴纳的费用很高,但这些钱仍不够支付设备的正常运转所需的费用,因而这些设备常会得到大学的资助。   由于设备服务中心需要吸引尽可能多的用户来获利,因此这些仪器设备的开放时间很长,以方便用户使用。陈鸿渭介绍,在宾州,很多科研仪器设备保持每周七天,每天二十四小时的全天候开放,很多研究生和博士后都在使用它们。   ——成功案例——   北科大分析检验中心向社会开放   北京科技大学分析检验中心,在科大校园里的一幢外表并不起眼的四层小楼的顶层。该中心仅有一个被隔成2小间的办公室和一个会议室,但中心的业绩却是一组令人兴奋的数字。   据初步统计,2008年,北京科技大学设备平均机时利用率由2005年(试点前)的40%提高到73%,服务收入从试点前的80多万元增加到目前的450多万元,服务客户620家,发出报告2300份。   成立于2005年12月的北京科大分析检验中心有限公司,依托北科大在新材料研究与制备技术方面的学科优势和丰富科技资源,在满足教学和科研的基础上,这个独立法人公司托管实验室的对外业务,向社会全面开放,成为学校科技资源对外开展分析检验服务的唯一窗口。   “市场化运作、企业化运行是我们在机制创新上的最大亮点。和社会上那些大的检验公司相比,尽管我们的规模还不大,但是我们的优势在于可以帮助企业在产品的研发阶段,提供一些个性化的检测服务,同时还会帮助分析为什么会得到这样的检测结果,甚至帮忙请科大相关的专家来提供咨询服务。”公司总经理范铁军说。   据介绍,现在中心已整合了全校材料领域1100多台(套)、价值1.8亿元的检测仪器设备,计划年底将扩充到2.8亿元,占学校总科研资产份额的70%。几年来的实践,分析检验中心已能够实现自循环,并体现出较强的生存和发展能力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制