当前位置: 仪器信息网 > 行业主题 > >

高度控制仪

仪器信息网高度控制仪专题为您提供2024年最新高度控制仪价格报价、厂家品牌的相关信息, 包括高度控制仪参数、型号等,不管是国产,还是进口品牌的高度控制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高度控制仪相关的耗材配件、试剂标物,还有高度控制仪相关的最新资讯、资料,以及高度控制仪相关的解决方案。

高度控制仪相关的论坛

  • 【分享】制药质量控制系统(FE LIMS)产品在京获得高度关注

    5月18-19号, 由全国医药技术市场协会主办的第二届中国药品安全与质量控制大会在北京西郊宾馆顺利举行。全国医药市场技术协会常务副会长兼秘书长陆明海、总后卫生部药品仪器检验所副所长姜雄平、国家药监局药品认证管理中心主任药师梁之江和国家药监局药品审评中心程鲁蓉等领导出席了本次会议并发表重要报告。珠海飞企软件有限公司应邀参加了本次大会,并依据大会主题 “责任和使命与我们同在”做了制药行业质量控制技术报告。 珠海飞企软件有限公司LIMS事业部总负责人李孟科总监作为邀请嘉宾在大会上做了关于“信息化推动企业质量管理可控、可持续和创新”的行业技术报告,针对当前行业质量现状与药品事故,以及药企在生产与质量控制方面的难题,详细介绍了基于新版GMP标准的制药质量控制系统(FE LIMS),提出以质量控制与质量保证为核心,对物料和生产进行集中管控,为企业关键负责人提供最为客观、及时、准确、可靠的产品质量信息和过程控制参数,帮助企业降低成本,对药品进行全生命周期管理,最终实现新版GMP在企业的完美落地。 李孟科总监的报告引起了与会领导及药企代表们的高度关注,代表们纷纷到珠海飞企的展台进行产品咨询,并多次提出了要求引进制药质量控制系统(FE LIMS)的强烈意愿。 珠海飞企软件有限公司历经多年的实践,专门为广大制药企业提供基于新版GMP标准的全面质量控制解决方案,以实验室管理为核心,包括从物料进厂、仓储检验、生产过程控制、成品检验、放行、质量投诉和跟踪等相关质量过程控制的技术运用,及如何帮助制药企业建立完整的质量保证和质量控制体系,降低企业经营成本,完善质量风险控制,顺利通过新版GMP。

  • 室外噪声的控制

    在建筑设计上,主要通过以下四个方面的措施来控制室外噪声:  建筑平面规划制定合理的城市规划是控制室外噪声的一个重要措施。其原则是,根据噪声特点和要求的安静程度,按功能进行建筑分区,或在建筑平面上进行合理布置,避免交通干线穿越住宅区或安静程度要求较高的地区。为控制飞机噪声,应合理地选择机场规模、位置,至市区的距离和跑道布置。  隔声屏障在声源和建筑物之间用实心物体遮挡直达声。人造的或天然的物体,例如实心围篱、围墙、土堤、山丘或其他建筑物都可应用,也可利用地形起伏和深入地面的路堑来达到屏障的目的。这种用屏障隔声的方法,对高频声最为有效,一般可降低噪声中的高频部分15~25分贝。隔声屏障的隔声原理在于它可以将波长较短的高频声反射回去,使屏障后区噪声明显下降,形成声影区。对于波长较长的低频声,则容易产生绕射,因而隔声效果较差。附图表示在噪声源和人之间插入一屏障时,屏障的有效高度h与进入声影区的θ角的关系曲线,λ为声音的波长。  建筑环境噪声控制  绿化降噪绿化屏障可兼收降噪的效果。其降噪效果取决于树木高度、栽植密度和种植面积的宽度,以及树丛的枝叶层是否延伸到地面。由于实际情况的复杂多变,加上测量条件的差异,绿化带噪声衰减值的实测数据有较大出入。此外,绿化可以点缀环境,创造宁静的气氛,对人产生良好的心理效果。  外墙构件降噪外墙隔声主要取决于窗的结构。大多数建筑物是用单层窗,隔声性能差。利用阳台或花台栏板对声波的遮挡作用,加上室内平顶或上层阳台底面的吸声处理,可减少这部分表面对交通噪声的反射声能。  以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 升级试验机的拉伸装置中的控制器

    改造升级方案加热炉的改造将原有的一个固定对开式电阻加热炉,改造升级为两个移动对开式电阻加热炉。具体改造方法是在试验机上增加旋转臂炉架,如所示。旋转臂炉架分前臂和后臂两部分,分别与试验机底座上的立柱和加热炉连接。通过调节旋转臂炉架的位置不仅能相对试验机调整加热炉的高度,而且能方便地将高温炉炉膛和试验机的夹头中心轴线调整到适当的位置。  可旋转的对开式电阻加热炉示意图两个可移动对开式电阻加热炉的主要参数如下:外形尺寸320mm440mm,炉膛尺寸80mm320mm,均热带150mm,加热炉上、中和下三段发热体(镍铬电热合金丝)的直径均为1.0mm,绕制成螺旋体。加热炉上、中和下三段发热体的最大功率分别为1000,2000和1000W,试样上绑扎热电偶(K型热电偶)与加热炉上、中和下三段发热体和各段温度控制器对应。高温拉伸夹具的改造改造前拉杆和试验机保持相对的固定关系,在进行完一次高温拉伸试验后要等待高温拉杆冷却到室温状态(或接近室温)后,才能进行下一次高温拉伸试验的控温过程。为提高工作效率,对试验机的高温拉伸夹具也进行了改造。重新设计了高温拉伸夹具,在夹具的上部分增加隔热板,在隔热板上增加可以调节高度的悬挂固定杆,从而有效地解决了高温拉杆和试验拉棒在高温环境中产生的热膨胀变形问题。悬挂固定杆(根据不同试样的长度调节以保证试样位于加热炉的中央)可以保证高温夹具位置在高温炉中保持相对固定,解决了不同试样造成的在加热炉内的相对位置不同的问题,提高了控温过程中的精度。另外,加入悬挂固定杆后,相当于增加了一个把手,实现了在高温试验过程结束后将已拉断试样快速拿出,将另一支含有高温试样的拉杆装入加热炉内,从而有效地提高了加热炉的利用效率。  同时把以上设计为两个可以移动的加热炉,在试验机后侧两端分别增加一个支柱,可以再次提高一倍的工作效率。最后,将高温夹具设计为上下两部分可以与拉伸试验机分离的结构部件,待保温结束后再与拉伸试验机连接进行高温拉伸试验,其他时间可以利用该试验机进行常温拉伸等试验,从而可以实现试验机的最大利用率。温度控制器的升级该试验机高温装置原温度控制仪表功能很简单,主要存在如下缺点:由于其控制方式为加热、保持和停止三位式控制,存在着温度控制波动大、温度控制精度差和加热功率不可调节等缺点,因而能源浪费大,加热效率低;该温度控制仪表老化严重,存在着温度控制失灵等故障,仪表控制精度难以满足相关高温拉伸试验标准的精度要求,而且此仪表要求日常频繁维护。因此,对试验机高温拉伸装置中的温度控制器进行了升级,优化了控制器的控制参数。通过调研,笔者决定采用国产宇电A1-808P仪表替代原控制仪表,主要增加了程序控制和手动调节等方便试验控制的功能。A1-808P仪表属于智能型控制仪表,在整个温度控制中可以人工干涉控制参数,以保证试验的精度要求。在应用人工智能调节算法功能后,能自动学习系统特性。当自整定完成后,虽然初次控制时效果不太理想,但第二次使用时便能获得非常精确的控制。

  • 微机控制弹簧试验机技术特点

    微机控制弹簧试验机是目前市场上自动化程度最高的弹簧试验机了,一般客户在选型的时候出了了解必须的技术参数意外,我们还会考虑客户做试验机是不是够多,需要查看的数据是不是有特殊要求,甚至当地质监局是不是有特殊要求等。一般的客户会选购自动弹簧试验机,多数是液晶显示的,一般质监局,质检公司或者对自动化程度要求较高的我们建议微机控制弹簧试验机。这样一步到位省去了以后的很多升级改造。下面简单描述微机控制弹簧试验机的技术特点:a、拉伸试验:对各种拉伸弹簧做拉伸试验;压缩试验:对各种压缩弹簧做压缩试验。b、测量方法:通过变形测力值、通过高度测力值、通过力值测变形、通过力值测高度.c、批量试验:对相同参数的试样,一次设定后可顺次完成;批量检测;不用单独设参数。d、试验软件:中文WINDOWS界面,菜单提示,鼠标操作;e、显示方式:数据和曲线随试验过程动态显示;能够观察到弹簧做实验过程中的变化;相对于前两种过程更直观。f、四种曲线:力值--位移曲线、力值--变形曲线、位移--时间曲线、变形--时间曲线g、过程实现:试验过程、测量、显示和分析等均由微机完成;h、自动保存:试验结束,试验数据和曲线自动保存;后期能够查询到以往的数据;不用单独的记录下来。i、试验报告:可按用户要求的格式编制报告并打印;j、适用于院校和质检部门的抽检。

  • 水塔自动供水控制器原理是什么

    水塔自动供水控制器原理是什么

    [font=宋体][color=#1E1F24]水塔自动供水控制器是一种用于控制供水系统,保持水塔水位在一定范围内的装置。其基本原理是利用水位传感器来检测水塔中的水位高度,并将检测结果与设定值进行比较,从而控制水泵的运行状态,以达到自动供水的目的。[/color][/font][font=宋体][color=#1E1F24]当水位低于设定值时,控制器会启动水泵,将水从水源输送到水塔中,直到水位达到设定值。当水位高于设定值时,控制器会关闭水泵,停止供水。同时,控制器还会控制电磁阀的开启和关闭,以控制水塔的出水量,从而保持水塔水位的稳定。[/color][/font][align=center][img=自动补水器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/09/202309181648219012_8230_4008598_3.jpg!w673x582.jpg[/img][/align][font=宋体][color=#1E1F24]此外,[url=https://www.eptsz.com]水塔自动供水控制器[/url]还可以通过设置不同的参数来实现不同的控制功能,例如定时开关机、水位报警等功能。这些功能可以根据实际需求进行设置和调整,以达到更好的使用效果。[/color][/font]

  • 如何控制废气排放?

    [font=仿宋][size=21px]垃圾焚烧厂排放的废气主要来自于焚烧过程所产生的烟气,其主要污染物为粉尘、氯化氢(HCl)、二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、氟化氢(HF)、有机污染物、二恶英及重金属等。[/size][/font][font=仿宋][size=21px]通过计算机控制系统可以实现垃圾焚烧、热能利用、烟气处理等过程的高度自动化,控制设定的燃烧条件(如炉膛温度高于850℃,烟气停留时间大于2秒,保持烟气湍流流动和适度的过氧量),使焚烧系统在额定工况下运行,原始排放物浓度降到最低,并保证二噁英等有机物的彻底分解。[/size][/font][font=仿宋][size=21px]安装各种有效的烟气处理设备,如布袋除尘、活性炭吸附有害物质等,并使用烟气在线监测仪——以连续监测每条焚烧线的烟气排放指标,确保垃圾焚烧厂烟气污染物排放达到规定标准要求。[/size][/font]

  • 如何控制废气排放?

    [font=仿宋][size=21px]垃圾焚烧厂排放的废气主要来自于焚烧过程所产生的烟气,其主要污染物为粉尘、氯化氢(HCl)、二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、氟化氢(HF)、有机污染物、二恶英及重金属等。[/size][/font][font=仿宋][size=21px]通过计算机控制系统可以实现垃圾焚烧、热能利用、烟气处理等过程的高度自动化,控制设定的燃烧条件(如炉膛温度高于850℃,烟气停留时间大于2秒,保持烟气湍流流动和适度的过氧量),使焚烧系统在额定工况下运行,原始排放物浓度降到最低,并保证二噁英等有机物的彻底分解。[/size][/font][font=仿宋][size=21px]安装各种有效的烟气处理设备,如布袋除尘、活性炭吸附有害物质等,并使用烟气在线监测仪——以连续监测每条焚烧线的烟气排放指标,确保垃圾焚烧厂烟气污染物排放达到规定标准要求。[/size][/font]

  • 如何控制废气排放?

    [font=仿宋][size=21px]垃圾焚烧厂排放的废气主要来自于焚烧过程所产生的烟气,其主要污染物为粉尘、氯化氢(HCl)、二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、氟化氢(HF)、有机污染物、二恶英及重金属等。[/size][/font][font=仿宋][size=21px]通过计算机控制系统可以实现垃圾焚烧、热能利用、烟气处理等过程的高度自动化,控制设定的燃烧条件(如炉膛温度高于850℃,烟气停留时间大于2秒,保持烟气湍流流动和适度的过氧量),使焚烧系统在额定工况下运行,原始排放物浓度降到最低,并保证二噁英等有机物的彻底分解。[/size][/font][font=仿宋][size=21px]安装各种有效的烟气处理设备,如布袋除尘、活性炭吸附有害物质等,并使用烟气在线监测仪——以连续监测每条焚烧线的烟气排放指标,确保垃圾焚烧厂烟气污染物排放达到规定标准要求。[/size][/font]

  • 如何控制废气排放?

    [font=仿宋][size=21px]垃圾焚烧厂排放的废气主要来自于焚烧过程所产生的烟气,其主要污染物为粉尘、氯化氢(HCl)、二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、氟化氢(HF)、有机污染物、二恶英及重金属等。[/size][/font][font=仿宋][size=21px]通过计算机控制系统可以实现垃圾焚烧、热能利用、烟气处理等过程的高度自动化,控制设定的燃烧条件(如炉膛温度高于850℃,烟气停留时间大于2秒,保持烟气湍流流动和适度的过氧量),使焚烧系统在额定工况下运行,原始排放物浓度降到最低,并保证二噁英等有机物的彻底分解。[/size][/font][font=仿宋][size=21px]安装各种有效的烟气处理设备,如布袋除尘、活性炭吸附有害物质等,并使用烟气在线监测仪——以连续监测每条焚烧线的烟气排放指标,确保垃圾焚烧厂烟气污染物排放达到规定标准要求。[/size][/font]

  • 大家是怎么控制ICP房间的湿度的

    ICP房间买了两台家用除湿器,但是除湿效果不行,房间大概有个80平米,一到夏天湿度就接近80%,通风管上的冷凝水多的厉害。现在考虑买个工业除湿器,就是有一米左右的高度,功率1000多w,是否可行,另外请问大家你们是怎么控制湿度的,工业除湿器哪家用的好,请推荐

  • 盐雾箱加热及喷雾控制系统,想您所想,急您所急

    盐雾箱加热及喷雾控制系统,想您所想,急您所急

    [b] 盐雾箱[/b]是当今卖的很火热的一款设备,很多客户,都喜欢选购它。如果有一天,你功成名就,千万不要让金钱名利控制你的行动,而忽视给你帮助的人,因为是他们给你更多动力,而陪伴是长情的告白。那盐雾箱加热及喷雾控制系统是怎么样的呢,接下来我们一起来看看吧。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/04/202104241433238003_6959_1037_3.jpg!w348x348.jpg[/img][/align]  l、采用塔式喷雾器(塔尖高度可调节)。  2、喷雾方式:连续、间隙任选,试验定时范围:0-999小时、分、秒、任意设置。  3、采用自动和手动两种加水系统补充压力桶,实验室水位防止盐雾箱因为供水不足导致超高温损伤仪器。  4、超大盐水箱可连续喷雾72小时不用补充盐水。  5、温度控制输出功率均由微电脑演算,可以高精度及高效率之用电效益。  本盐雾箱采用U型合金高速加温电热管,纯钛制发热管拥有超长使用寿命及完全独立系统不影响盐雾试验及控制线路。

  • 微机控制冲击试验机操作规范

    1、测量试样尺寸。如有条件可用投影仪检查试样缺口处的形状尺寸及加工精度是否符号标准要求,剔除不合试验要求的试样,然后对试样编号,并记下各试样缺口横截面处的尺寸。2、确定试验温度。将试样放入保温容器中,使用确切的介质保温。冷却介质液面高于试样25mm以上。待达到选定的试验温度并稳定后开始计算保持时间,保温时间一般不少15分钟。取样的手钳应和试样一起保温。3、检查冲击试验机,使摆锤刀口处于两支承钳口的中心。校正钳口间的距离为 。并检查其空打时指针是否从上止点(最大刻度)带至下止点(零刻度)证明确无能量损耗,方能进行正式试验,然后举起摆锤,将摆锤固定于规定的高度,同时把指针拨到最大刻度处,使微机控制冲击试验机控制杆处于冲击试验的预备位置。4、用手钳取出试样,尽快稳定地放于支座上,缺口背向摆锤刀口,并保证缺口平分面和摆锤刀口心中线重合。其偏差不应超过0.2mm。为满足这一要求,放试样时可用标准样板使缺口对准钳口中,分别处于钳口的中心,或用试样端面作为基准,在支座上放置定位块,使试样的缺口平分面处于钳口的中心,但试祥从冷却筒取出直到被冲断,时间间隔应不超出5 秒。5、拉动控制杆,使摆锤自由落下,冲断试样,从刻度盘上读出冲击吸收功( J ),要求精确到1( J )。6、拉动控制杆,使摆锤停止摆动。捡起冲断的试样,记下试样号及冲击吸收功Akv。同时将微机控制冲击试验机冲断的试样浸于无水酒精中,以防止断口锈蚀,待冲击试验结束后,用电吹风吹干试样,并评定结晶状断口面积百分数,记入试验记录中。实验注意事项:1、操作摆锤冲击试验机时需严格按照安全操作规程进行,在摆锺摆动平面内严禁站人或堆物。2、在试样未放妥时,绝不能随便抬高控制杆,以免摆锤落下伤人。3、摆锤未刹停前。绝不能在微机控制冲击试验机附近跑动或捡被冲断的试样。

  • 微机控制压力试验机操作规程

    1、打开压力试验机、控制箱、计算机的电源开关。2、启动计算机,运行试验程序,进入试验操作界面,在“数据编辑窗口”中按左上角的小按钮切换到“数据浏览窗口”,在新建记录中输入委托单位等信息,如果遇到编号重复的对话框时,修改编号范围的值,最后按“返回”按钮回到数据编辑窗口。3、检查“数据编辑窗口”中是否准备好实验的数据,而且数据应该是“未完成”。4、调整压力机油缸的高度。5、放好当前编号相对应的试样,按“启动”按钮。6、程序自动加载,试样破型后,自动下行,并且开始倒计时,手工取下已破型的试样,放好下一块试样,倒计时结束后,油缸继续上行,进行下一试块的破型实验,如果试样没放好,但压力机开始上行,按“重做”按钮。7、做完一组试验,系统自动停止,试验数据程序自动计算并保存。8、继续下一组试验,请按“数据编辑窗口”中右上角的记录控制按钮,使下条记录变成为当前记录即可,再转至步骤5和6。9、试验结束后开闭电源,打扫干净。

  • 【原创大赛】实验室质量控制之样品质量控制

    [align=center][/align][align=left]检测数据的质量受到了各种因素的影响和制约。检测数据的质量保证是一个复杂的系统工程,仅靠实验室的质量控制是不够的。检测质量保证应该是科学管理水平和检测技能的综合体现。检测数据的失真或者不可靠,可引起评价结果的偏差,说明检测管理中的失控,最终将导致整个检测工作的失败,因此保证检测数据的质量是检测机构的重要工作内容。检测数据的质量应具有代表性、可靠性和可比性。分析数据的代表性,可靠性和可比性的实现和保证,体现了实验室的全面质量管理水平和检测技术水平。[/align]检测报告是检测机构或实验室的”产品”,它经过培训考核合格的检验人员,用检定或者校准有效的分析仪器,按照标准分析方法在严格的分析质量控制操作,有实验室技术人员审核把关,授权签字人签署,保证了对检测报告的公证性,权威性和科学性的保证条件.但是认可只是承认检测实验室的测试能力和条件,每一份报告书的质量还是要靠质量体系的有效运行。分析质量保证的目的是获得高度可信的分析结果,它包括从样品的采集,保存,运输,分析测试直至检测报告的编制审核和批准,归档等全部过程,主要内容包括:健全的组织机构,明确的岗位职责,对检测工作计划的制定,条件保证,运输实施。质量保证工作中,样品的质量控制是一个重要组成部分。对测试样品的控制主要表现在以下这么几个方面。供检验用的样品的质量虽不属于实验室检验的内容,但它却直接影响分析结果的质量,如样品的代表性,均匀性,可能遇到的玷污,不稳定组分的保存方法,运输途中的变化等。如食品分析中规定的粮食样品分层采取后,再按四分法保证样品的代表性和均匀性。包装的成品需根据生产的批量抽取一定数量的样品来保证其代表性。又如水样的采集要求空间重复样,空间重复样是对一个水体的横向或纵向断面上同时采集的水样,以了解被分析组分在断面上的变化。这些因素都必须予以重视并在采制样品时加以控制。保证样品质量的几个有效措施:一是,采样瓶和采样器的空白。采样器空白与采样器一起带到现场,一起运送到实验室进行分析。可以发现采样瓶对样品质量的影响。二是,平行样品。平行样品是了解样品受到系统因素和偶然因素影响以及从采集到分析之前的变化等影响的最好方法。三是,时间重复样。是指在一定时间内,按规定时间间隔,连续在同一采集点采集的样品,用以了解因各种组分时间变化的影响。四是,加标样品。有些样品的基体组成是很复杂的,它可以影响或干扰分析结果,在样品中加入在测量范围内不同浓度的被测组分的标准物,配成加标样品.分析这些样品可以获得系统因素影响或偏性的资料,这些分析数据的表达或校正是极为重要的。五是,对采样人员的专业技术要做要求,经过考试或者考核取得上岗资格。六是,样品的接收。接收样品时,对样品状态、颜色、包装等等进行仔细确认,并在样品接受单中填写或详细描述清楚并记录(尤其是样品状态,条件允许时以图片或者视频形式予以记录保存),在检测报告中也要有对样品的描述,不然事后遇到麻烦很难解决,甚至给实验室带来官司。列如,某一检测机构接受了一家企业一个检测检品,测定某一成份是否合格。检测结果显示合格,随后厂家投资近千万建厂生产后,再次送样检测,检测结果不合格,厂家不干了,认为监测数据不准导致他们决策失败,要求检测机构赔偿损失,最后打起了官司。经过对第一次送检样品出具的检测报告仔细分析,查到了原因,最后在样品状态描述一览找到了证据。第一次送检的样品是无色透明的液体,第二次送检的样品是混浊状不透明的液体。实验室赢得了官司。七是,样品的保存。样品的保存时间和保存条件(常温、2-8摄氏度冰箱保存、-20摄氏度低温保存),一定要按照标准或规范要求的条件去做,否则会影响检测结果。[align=center][/align][align=center][/align][align=center][/align]

  • 中药颗粒剂如何质量控制?

    中药颗粒剂如何质量控制? 为了保证颗粒剂成品质量的一致性和稳定性,从休止角、堆密度、吸湿性三个方面对半成品的质量进行了控制,具体方法和结果如下: 一、 休止角的测定: 取适量半成品颗粒,用固定漏斗法测定休止角,结果见下表: https://ng1.17img.cn/bbsfiles/images/2024/09/202409182050407176_6502_2204446_3.png!w552x189.jpg 结果表明,该颗粒休止角小于40度,流动性好,易于分装。 二、堆密度的测定:称取一定量的半成品颗粒,装入10ml量筒中,以一定高度落下(尽可能控制高度一致),使松紧适宜,以重量及容积计算其堆密度,结果见下表: https://ng1.17img.cn/bbsfiles/images/2024/09/202409182052049344_2683_2204446_3.png!w533x205.jpg 实验结果表明,该颗粒剂的平均堆密度为0.50 g/ml,为成品的包装提供了依据。 三、颗粒剂吸湿性的研究: 取底部盛有NaCl过饱和溶液的玻璃干燥器,干燥器内置一称量瓶,放入25℃恒温干燥箱内恒温24小时,此时干燥器内的相对湿度为75%。取样品5g,精密称定,置称量瓶中, 将盛皿盖打开,与25℃恒温干燥箱内保存,每隔一定时间称重一次,计算各时间的吸湿百分率,结果见下表. https://ng1.17img.cn/bbsfiles/images/2024/09/202409182137529912_59_2204446_3.png!w511x182.jpg 以测定时间为横坐标,颗粒吸湿率为纵坐标绘制曲线,即得颗粒吸湿平衡曲线,结果见下图: https://ng1.17img.cn/bbsfiles/images/2024/09/202409182139027276_8927_2204446_3.png!w492x207.jpg 由颗粒吸湿平衡曲线可见,本颗粒剂在168小时内基本不在吸湿,吸湿百分率为19.21。 临界相对湿度的测定:水分对固体制剂稳定性影响很大,而环境的湿度是颗粒剂稀释的一个重要来源,为了尽量减少颗粒吸潮,本研究测定了扶正固本颗粒(无糖型)的临 界相对湿度,为控制该制剂的制备及分装车间的相对湿度提供参考依据。 测定方法:取样品颗粒14份,分为2组,每组7份,每份2g,置于敞口的称过重量并编号的称量瓶中,精密称定,打开称量瓶盖,分别放入不同湿度的玻璃干燥器中,在25℃ 烘箱放置168小时,取出称量瓶,加盖后精密称定,计算样品的水分含量,结果见下表.以水分百分含量为纵坐标,相对湿度为横坐标作曲线,结果见下图. https://ng1.17img.cn/bbsfiles/images/2024/09/202409182140178751_4701_2204446_3.png!w555x661.jpg 可见,相对湿度在[font=宋体]61%以下时,颗粒的吸水率较小,而在61%以上,颗粒吸湿性明显增加。同时,根据吸湿曲线显示,该品种的临界相对湿度为61%,故在制粒、分装的过程中,环境湿度必须控制在61%以下,以减少水分对药物性质及稳定性的影响。

  • 今日分享内容:如何控制废气排放?

    [font=仿宋][size=21px]垃圾焚烧厂排放的废气主要来自于焚烧过程所产生的烟气,其主要污染物为粉尘、氯化氢(HCl)、二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、氟化氢(HF)、有机污染物、二恶英及重金属等。[/size][/font][font=仿宋][size=21px]通过计算机控制系统可以实现垃圾焚烧、热能利用、烟气处理等过程的高度自动化,控制设定的燃烧条件(如炉膛温度高于850℃,烟气停留时间大于2秒,保持烟气湍流流动和适度的过氧量),使焚烧系统在额定工况下运行,原始排放物浓度降到最低,并保证二噁英等有机物的彻底分解。[/size][/font][font=仿宋][size=21px]安装各种有效的烟气处理设备,如布袋除尘、活性炭吸附有害物质等,并使用烟气在线监测仪——以连续监测每条焚烧线的烟气排放指标,确保垃圾焚烧厂烟气污染物排放达到规定标准要求。[/size][/font]

  • 我国将更加严格有效的控制汞污染

    《关于汞的水俣公约》外交全权代表大会于10月9~12日在日本熊本市举行。由环境保护部总工程师万本太任团长,外交部、工信部等单位派出人员组成的中国政府代表团参加了本次大会。中国代表在签署公约后发言,介绍了中国在建设生态文明和美丽中国方面所做的工作。他指出,中国正处于经济发展转型的关键阶段,环境保护面临着巨大压力和挑战。中国政府对应对汞污染在内的环境污染防治工作高度重视。中国政府签署汞公约标志着中国的政治承诺,虽然我们在未来汞的履约方面面临巨大压力,我们将以签约为契机,与国际社会共同努力,采取更加严格有效的控制措施和手段,减少汞的生产、使用和排放。同时,他呼吁发达国家为发展中国家积极提供资金和技术支援,支持发展中国家做好前期履约准备工作,以推动各国批约,同时应在今后履约中为发展中国家提供资金技术援助,以帮助广大发展中国家切实实现公约目标。 会议通过的《关于汞的水俣公约》以水俣命名,意在纪念上世纪五六十年代在日本水俣发生的汞污染事件,警醒各方对汞污染问题予以重视。该公约是里约+20会议以后国际社会通过的第一个多边环境条约,对于控制汞污染具有十分重要的积极意义,其签署必将促进我国的重金属污染防治工作。中国代表团在达成公约的5次政府间谈判中,积极主动,在重点议题谈判上发挥了积极建设性作用,为公约成功达成做出了重要贡献,得到了各方高度评价。中国自前年先后开展了汞污染源调查和燃煤电厂汞试点监测,随着公约将在第50个国家提交批准书之后第90天正式生效,我国下一步将采取更加严格有效的控制汞污染措施。

  • 【资料】关于活性污泥法工艺参数控制方面问题

    关于活性污泥法工艺参数控制方面问题有不少网友问过我关于活性污泥工艺参考数控制方面的问题,虽然这方面专业书上都有介绍,但大多是局限于理论上的,所以对工艺运行参数有一个实践应用中的理解问题,如回流污泥量和回流比,如果按专业书介绍的方法来控制将会造成很大的负面影响,据我所知,不少处理装置都存在不少问题。以下根据回复网友在关于这方面的提问,以问答形式说明关于回流污泥量和回流比的问题,供各位参考。问:污泥回流比是回流污泥量与进水量之比,相关专业书认为活性污泥工艺中污泥回流比应该相对稳定,如果这样的话,回流污泥量就要根据进水量的变化而变化,实际运行中是否应该这样控制?答:不能这样做,在运行管理中,污泥回流比只能起参考作用,我们说的回流污泥量也不含有浓度的概念,实际上回流污泥量是不可任意调节的,它受限于污泥性质和二沉池运行状态等因素。问:为什么你说回流污泥量不含浓度的概念? 答:这就要说到二沉池的作用,二沉池的作用主要是泥水分离和回流污泥浓缩,如要增加回流污泥量,必须增加二沉池的出泥量,这样二沉池的污泥层会下降,使污泥在二沉池的浓缩时间减少,此时,进曝气池的回流污泥量虽增加,但回流污泥的浓度却下降,回流至曝气池的污泥绝对量并不会增加。 问:按你这样说,如果进水水量增加了,为了使污泥负荷相对稳定,又如何来增加曝气池污泥浓度呢?答:增加曝气池污泥浓度的办法就是停止剩余污泥排放或少排泥。问:不少专业书上都介绍了回流污泥量的估算式,如:用污泥沉降体积、污泥指数等方法来估算回流污泥量,按你前面所说的,难道这些估算方法都不对吗? 答:也不能这样说,书上的这些估算式中不可能都考虑到污泥性质和二沉池的运行状况等诸多因素的,是纯理论性的,它可使我们了解主要参数的相互间关系,从这个意义上说没有错,如果在日常运行中完全按估算式来控制,那就错了,有时甚至会造成严重的负面影响和后果。问:能解释一下“有时甚至会造成严重的负面影响和后果”这话的意思吗? 答:由于活性污泥系统的污泥是在曝气池和二沉池之间循环流动的,按前面的计算法,污泥沉降性能差是就要增加污泥回流比,这样的话,由于回流量增加,废水在曝气池的实际停留时间相对减少,而进二沉池混合液量又增加,使二沉池进水水能增大,严重影响泥水分离,更易造成漂泥,从而造成恶性循环。 问:以你之见,在日常运行中回流污泥量应该如何控制呢?答:尽可能稳定回流污泥量,污泥回流比可以变化,当然回流污泥量的稳定也是相对而言的,可根据二沉池污泥层的高度来小范围调节,而不是有些专业书说的根据进水量来调节。 如前所述,二沉池的作用主要是泥水分离和回流污泥浓缩。故在这种情况下,应该在不影响泥水分离的前提下,二沉池的污泥层应该适当高一些,这样回流污泥量虽然减少,但其浓度会提高,进入曝气的污泥量并不会减少。问:你说回流比可以有较大的变化,难道运行中就不用控制了答:没错!要控制的是回流污泥量,我认为回流比是设计参数而不是工艺运行参数,在设计上有用,如污泥污泥管的通量和回流污泥泵的配制等。上篇关于回流污泥量控制原则中说到“在不影响泥水分离的前提下,二沉池污泥层应适当控制高一些”,可能有人会有疑问或异议,并担心产生其他负面影响,如沉淀池污泥易缺氧,在有硝酸氮存在时易发生反硝化而导致部分污泥上浮。 要说明的是:我只是说污泥层“适当”控制高一些,我上篇中提出回流污泥量要相对稳定,并没说不能调节,但只能是小范围内波动;沉淀池污泥层高易引起污泥缺氧而发生反硝化与污泥层高有关系,但防止这样的情况发生关键是要在曝气池缺氧区尽可能去除硝酸氮,没有反硝化功能的系统,也可在好氧区控制同步硝化-反硝化条件来降低硝酸氮,此外,曝气池DO控制高一些也可减少或避免上述情况的发生,也就是说对类似的问题要有正确的综合分析思路。

  • 自动奶茶机如何实现精准流量控制-光学流量计

    自动奶茶机如何实现精准流量控制-光学流量计

    在自动奶茶机的应用中,光学流量计是一种实现精准流量控制的重要工具。它利用叶轮切割光通路产生的脉冲信号,通过计算转轮的转动次数来测量水流量的多少。这种测量方式具有以下特点:不含磁铁:光学流量计采用纯光学感应原理,不涉及磁性材料,因此不会对水质产生磁化或磁性干扰,从而更好地保护水质。对水质保护更好:由于其纯光学感应的特性,光学流量计不会对液体造成任何污染或损害,特别适合用于需要高度清洁和保护液体的场合。适合透光率高的液体:光学流量计主要适用于透光率高的液体,如水等。对于透光性较差的液体,其测量结果可能会有所差异。[align=center][img=,531,347]https://ng1.17img.cn/bbsfiles/images/2024/01/202401051556166823_2341_4008598_3.jpg!w531x347.jpg[/img][/align]适用多种场景:[url=https://www.eptsz.com]光学流量计[/url]的应用范围广泛,不仅适用于自动奶茶机等餐饮设备,还可用于工业生产、家庭、医院等领域的水流量测量和控制。总的来说,光学流量计通过纯光学感应原理实现精准的流量控制,具有不含磁铁、对水质保护更好、适合透光率高的液体等特点。在自动奶茶机中,它的应用有助于确保奶茶的精准配比和水流量的稳定控制,提供给消费者更好的饮用体验。同时,其广泛的应用场景也证明了光学流量计在流量控制领域的卓越性能和价值。

  • 【转帖】实验室质量管理体系中的文件控制

    目前我国许多大型的医学实验室通过了实验室质量体系认证,中小型实验室由于水平限制,认证的条件不具备,多是按照IS015189“医学实验室一质量和能力的专用要求”建立了自己实验室的质量管理体系。由于质量体系首先是建立在“过程方法模式”上⋯,是一个文件化的过程,所以文件的编写过程和管理过程实际上是“文件化的质量管理体系”建立和完善的过程。文件控制是为了保证每一个人拥有最新、有效的版本。如何保持文件现行有效,如何避免管理体系文件难于操作、僵化失效,是必须高度关注的问题。为此医学实验室应当充分识别质量体系的所有过程,分析每个过程的输入、输出、所需资源及相关活动,以文件化的形式进行管理,推动质量体系的持续改进 。笔者就实验室文件控制的管理实践做一交流。体系建立时的文件控制编写:体系中质量手册应由实验室主管编写,程序文件由相关部门的负责人编写,作业指导书和记录由熟悉试验项目的工作人员编写。编写前必须进行充分的培训。审核:实验室主管负责对质量手册的审核,部门负责人对程序文件进行审核,授权人员对作业指导书和记录审核。文件审核要考虑到适宜性、有效性和充分性。审核后文件的编号、流水号、版本号、修订次数等校对无误后,按部门登录于《内部文件~览表》中。批准:文件正式开始运行前,应得到实验室主管或有关授权人员的批准。发放:应根据工作需要确定文件的发放范围、数量进行发放,并填写文件发放与回收记录》。要确保在相应场所,都应有现行的、经过授权的文件版本。每份文件的批准页面加盖“受控”印章后发行。

  • 生态环境部联合有关部门发布《甲烷排放控制行动方案》

    [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202311/t20231107_1055437.html]《甲烷排放控制行动方案》[/url](以下简称《甲烷方案》)已经国务院同意,并由生态环境部联合有关部门对外公开发布。《甲烷方案》是我国开展甲烷排放管理控制的顶层设计文件。  甲烷作为全球第二大温室气体,具有增温潜势高、寿命短的特点,主要来源于煤炭、油气生产、农业和废弃物处理等领域。我国高度重视甲烷控排工作,2007年我国制定的《中国应对气候变化国家方案》提出控制甲烷排放相关要求;“十二五”和“十三五”的控制温室气体排放工作方案中均提出控制甲烷等非二氧化碳温室气体相关措施;“十四五”规划和《中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》等文件均对甲烷管控做出要求。  2020年9月以来,习近平主席在多个重大国际场合表示中国将加强甲烷等非二氧化碳温室气体管控。编制并发布《甲烷方案》是落实党中央、国务院决策部署的重要举措,是推动我国高质量发展、推进减污降碳协同增效的内在要求,是我国积极应对气候变化的自主行动,也是对全球气候治理的积极贡献。  下一步,我们将组织落实好《甲烷方案》,不断夯实基础能力,加强甲烷排放管理控制,处理好甲烷管控和能源安全、粮食安全、产业链供应链安全和保障人民生活等方面的关系,积极推动落实重点领域甲烷管控任务与措施,推动降碳、减污、扩绿、增长,为积极应对全球气候变化作出中国贡献。

  • 气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]手工流量控制系统和电子流量控制系统[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]稳定可靠、精确度良好的气体流量(压力)控制对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的准确性和可靠性而言至关重要。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作时需要稳定可靠、精确度良好的气体流量(压力)控制,包括载气、检测器气体和其他辅助气体流量控制,以获得良好的保留时间和峰面积的重现性。[/font][font=宋体]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量系统,分为手工流量控制和电子流量控制两种形式,在实际使用场合下各有其优劣。电子流量控制因其高精度、高重复性、易用性、可编程等特性,在现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]气体控制系统中的使用日益广泛。[/font][align=center][font=宋体]手工流量(压力)控制系统优势和缺点[/font][/align][font=宋体]手工流量控制系统一般由恒压阀、恒流阀、针型阀、背压阀、压力表、流量计和阻尼器等部件组成。需要通过色谱工作者手工操作,调节各种阀针旋钮,读取压力表数值和使用流量计辅助工作,以实现系统气体流量的控制。[/font][font=宋体]手工流量控制系统的优势:制造成本较低,工作可靠性较好,对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]实验室环境要求不高、维护和维修成本较低、系统抗污染能力较强,可以在无电源状态下工作。[/font][font=宋体]手工流量控制系统使用的各种阀,机械结构较为坚固,色谱工作者只需要保证气源清洁干净,阀本身不容易损坏。装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量部分的常见故障往往与气源不良有关,例如气源中含有水、固体颗粒物或油污等。[/font][font=宋体]实验室空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量较差、灰尘严重或者存在一定腐蚀性气体时,对于手工流量控制系统的影响不大。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口连接的针型阀或者背压阀,可能有样品流过内部,如果维护不足,可能会造成污染。采用手工流量控制方式的仪器,针型阀或背压阀的清洗维护方法较为简单,如果需要更换,维修成本也比较低。[/font][font=宋体][font=宋体]某些意外情况下例如实验室意外断电时,装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气并不会停止工作,可以保护色谱柱和检测器,例如[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]TCD[/font][font=宋体]、强极性色谱柱。但是需要注意[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]火焰的问题,如果意外断电情况下,检测器容易发生积水问题,会造成检测器内部发生锈蚀或者损坏喷嘴等后果。[/font][/font][font=宋体]手工流量控制系统的缺陷:[/font][font=宋体][font=宋体]一、[/font] [font=宋体]重现性差,调控精度低[/font][/font][font=宋体] [font=宋体]手工流量控制系统使用的机械部件控制精度较低,并且由于螺杆调节存在间隙、机械磨损、弹性元件疲劳等问题,该系统难以获得良好的重复性,面临复杂样品或复杂分析系统,手工流量控制系统往往难以应对。机械阀调节联合压力表指示的调控方式也难以实现较高的调节精度。[/font][/font][font=宋体][font=宋体]例如精密多阀多柱分析系统、反吹系统、中心切割分析系统、[/font][font=Times New Roman]PONA[/font][font=宋体]分析等,这些系统要求保留时间的重复性较高,往往要求[/font][font=Times New Roman]0.01min[/font][font=宋体]范围的偏差,这些情况下手工流量控制器难以达到要求。[/font][/font][font=宋体][font=Times New Roman]1.1 [/font][font=宋体]螺纹间隙造成调节问题。[/font][/font][font=宋体][font=宋体]机械阀一般采用螺杆的方式实现阀调节,但是由于螺纹存在间隙将会造成调节问题,如图[/font][font=Times New Roman]1[/font][font=宋体]所示,螺杆顺时针旋转和逆时针旋转到相同角度时,螺杆在左右方向上移动距离存在一定程度的偏差。[/font][/font][font=宋体]色谱工作者旋转阀旋钮时需要注意操作手法,尽量减弱此现象造成的调节偏差。以带有刻度盘的稳流阀为例,建议规定阀旋钮的操作方向,例如逆时针。如果当前刻度低于设定值,可以直接逆时针旋转至设定刻度;如果当前刻度高于设定值,需要顺时针旋转至旋钮刻度低于设定值,然后再逆时针旋转旋钮。[/font][align=center][img=,424,165]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434357590_9342_1604036_3.jpg!w690x269.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]螺杆转动存在间隙问题[/font][/font][/align][font=宋体][font=Times New Roman]1.2 [/font][font=宋体]机械部件磨损[/font][/font][font=宋体]阀部件由于机械运动,总是不可避免的存在磨损问题,造成调节偏差。[/font][font=宋体][font=Times New Roman]1.3 [/font][font=宋体]弹性元件的机械变形或疲劳[/font][/font][font=宋体]压力表和机械阀中存在弹簧管或弹性膜之类的弹性元件,长期受压使用后会发生机械变形,造成弹性变化,最终造成偏差。[/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434421573_5012_1604036_3.jpg!w615x435.jpg[/img][font='Times New Roman'] [/font][/align][font=宋体]一般情况下,仪器停机之后,需要将机械阀调节至关机状态,有些气路中安装有泄压阀以保护压力表和调节阀。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配套的气源钢瓶,分析结束关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统之后,建议将所有压力表泄压为零,并关闭减压阀。[/font][font=宋体]二、 [/font][font=宋体]调节不方便、调节速度慢。[/font][font=宋体]流量或压力的修改,靠色谱工作者手工操作完成,最终的精度和稳定性与操作习惯相关。如果某台[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]需要开展多个分析项目,需要修改不同分析条件时,流量的调节比较费时费力。[/font][font=宋体]机械阀旋钮的调节位置一般不能与输出压力或流量直接相关,某些机械阀设计有刻度盘,但是不能彻底解决问题,调节螺杆注意手法。[/font][font=宋体]恒流阀的调节惯性较大,调节速度较慢。[/font][font=宋体]三、体积笨重[/font][font=宋体]各种阀一般不能单独工作,稳压阀和背压阀一般需要压力表协助工作,稳流阀、针型阀一般需要流量计辅助工作,才可以保证调节的准确性。调节和显示部件较多,手工流量控制系统体积较大,系统较笨重。[/font][font=宋体]三、 [/font][font=宋体]无法编程工作[/font][font=宋体]手工流量控制系统难以实现程序升压(程序升流)或程序降压(程序降流)功能。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制系统的优势的缺陷[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制系统一般由比例电磁阀,电子压力传感器、电子流量传感器,控制线路和阻尼器等部件组成,基于传感器和计算机技术,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中央处理器([/font][font=Times New Roman]CPU[/font][font=宋体])的程序控制下协同工作,实现高精度的流量(压力)控制,现代[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]装备有高精度电子流量控制器是总体发展趋势。[/font][/font][font=宋体]电子流量控制系统的优势:可以编程控制,调节方便快速,精度和重现性好。[/font][font=宋体][font=Times New Roman]1 [/font][font=宋体]重现性好[/font][/font][font=宋体][font=宋体]随着现代电子技术和计算机技术的发展,采用电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以达到较高的保留时间和峰面积重复性性能,高端的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]保留时间重复性指标一般[/font][font=Times New Roman]RSD[/font][font=宋体]小于[/font][font=Times New Roman]0.01%[/font][font=宋体],峰面积相对标准偏差一般小于[/font][font=Times New Roman]1%[/font][font=宋体],并且可以长期稳定运行。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统重新开关机,无需校准和调节也可以达到开关机之前的稳定状态。[/font][/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]调节精度高[/font][/font][font=宋体][font=宋体]以进样口为例,现代的高端[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以实现[/font][font=Times New Roman]0.01kPa[/font][font=宋体]的压力或[/font][font=Times New Roman]0.01ml/min[/font][font=宋体]的流量控制精度。[/font][/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]调节方便、速度快[/font][/font][font=宋体]色谱工作者可以简单的在色谱数据工作站输入目标流量和压力,电子流量控制器可以在数秒的时间范围内完成调节。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]体积小,重量轻[/font][/font][font=宋体][font=宋体]电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或者[/font][font=Times New Roman]EFC[/font][font=宋体])是现代机械、电子计算机技术的结晶,所有的流量控制部件可以集成在在几十[/font][font=Times New Roman]cm[/font][font=宋体]见方,重量不超过[/font][font=Times New Roman]1kg[/font][font=宋体]的模块中。[/font][/font][font=宋体][font=Times New Roman]5 [/font][font=宋体]可以编程[/font][/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以方便的实现程序升压(程序升流)、程序降压(程序降流)或者定时开关等复杂气流控制功能。[/font][font=宋体]电子流量控制器的缺陷:制造成本高,实验室环境要求高,维护和维修成本高,必须在有电源的状态下工作,需要经常校准。[/font][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]对气源要求较高。一旦发生气源不良问题,例如气源含水、固体颗粒物或油污,会造成电子流量控制器输出流量发生错误,甚至造成流量控制器损坏。实验室湿度较大,存在较多灰尘、有机蒸汽或者腐蚀性气体都可能会对电子流量控制器造成不良影响。[/font][font=宋体]安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口的电子流量控制器对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的维护有更高的要求,如果样品沸点较高并且浓度较大,分流出口捕集阱需要加强维护,否则可能造成电子流量控制器的污染或者损坏。该类型的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总体维护和维修的成本较高。[/font][font=宋体]由于电子元器件的特性,某些压力或流量传感器会发生电气性能变化,造成输出流量或压力的不正确,需要经常进行校准。[/font][align=center][font=宋体]小结[/font][/align][font=宋体]综述手工流量控制系统和电子流量控制系统的优势和缺陷。[/font]

  • 质量控制的含义及意义?

    质量控制是质量管理的一部分,致力于满足质量要求。目的在于监视过程并取得准确可靠的数据和结果。质量控制包括质量控制程序和质量控制计划。质量控制的意义、程序及人员分工是什么?

  • 岛津多道荧光光谱仪控样的控制范围

    岛津多道荧光光谱仪控样的控制范围是怎么来的呀?定值可以从化学法得到,控制范围软件说明书没有提到呀!控样的校正系数应该是分析控样后自动得到的吧?高手指点下吧?

  • 实验室温度控制问答的翻译

    我觉得慢慢读英文的过程也是慢慢理解这些问题的过程,再说让我改成中文难免会有些歪曲一部分理论。不过既然大家都要求,我也就花点时间翻译一下,直接翻译了,有些语句不顺或者拗口的地方请大家提出来我再做详细解释。先翻译了前一部分,我一有时间就会在这个帖上继续翻译的。整个的内容也在这个版的实验室温度控制常见问题那个帖中,大家也可以看看那个帖。有疑问的再提,我们再讨论:)1.什么是工作温度范围工作温度范围是指在没有外界制冷的情况下温度控制器自己所能达到的温度范围。这个温度限一般为20度的外界温度.2.什么是运行温度范围运行温度范围是被控制电信号限制的温度范围。举例来说,加热控制器的工作温度范围可以通过各种方式在操作温度范围中缩小。3.什么是温度稳定性温度稳定性就是在温度浴槽一个精确测量点上多次测量温度的差值。4.什么是温度均匀性?温度均匀性就是在温度浴槽中多个测量点上温度的差值。这对温度的校准特别重要。对JULABO温度循环器而言温度均匀性和稳定性只有微小的不同。其中黏度浴槽和温度专用校准槽提供了最好的温度均匀性。5.JULABO在显示方面有什么特点和优势?JULABO的显示屏在远距离和各个角度都能非常清晰的进行数据显示。多行LED显示屏不仅显示实际和设定温度,而且能显示最高和最低报警温度以及安全断电温度。另外,多行LED显示屏还可以显示电子控制水泵的泵压奇数以及振荡水浴的震荡频率。6.JULABO高端产品以高亮度VFD温度显示为其显示特色这种显示技术目的是为了提高显示亮度,清晰度和对比度和更简便的操作支持。它可以同时显示出浴槽内实际温度,设定温度和外循环实际温度,而且还可以显示出用户选择的泵压级别。7.JULABO什么型号的仪器可以提供交互式操作支持?JULABO的 'HighTech' 系列, 快速动态温度系统 'Presto' and高温控制系统 'Forte HT'以及 LC6 程序控制器可以提供LED/LCD多重显示面板。除了显示实际和设定温度外,还可显示众多的系统参数。例如循环控制方式(外循环或者内循环)。加热和制冷功率以及外循环设定温度等。8.PID和ICC温度控制技术有什么不同?JULABO PID1 PID2 PID3控制技术有固定的XP TV TN参数。有时为了提高外循环控制的温度稳定性,这些参数在PID2 和PID3控制技术下可以手动更改。ICC是世界上最先进和绝对唯一的温度控制技术,它可以根据温度控制的具体需要自动更改和优化XP TV TN 参数,以获得最好的温度稳定性在上面提到过的高JULABO的 'HighTech' 系列, 快速动态温度系统 'Presto' and高温控制系统 'Forte HT'以及 LC6 程序控制器中运用了这个先进的技术。9.TCF(特色温度控制技术)提供了什么优势?内外差极限:当仪器进行外部温度控制时,这个功能允许客户任意设定浴槽温度和外循环温度的最大差值。这样做可以保护温度控制设备,也可以保护整个反应釜中的玻璃设备,防止冷热变化引起的破裂。Dynamics:这个功能允许客户在内部温度控制时进行aperiodic和normal PID behavior中转换Aperiodic:从实际温度达到设定温度的精确度特别高,但可能因为要避免温度的过冲而花费较长的时间。normal PID behavior:能在很快的时间中到达设定温度,但可能因升温速度快而在达到设定温度时有一定的温度过冲。极限设定:在进行外部温度控制时可以设定控制浴槽内的最高和最低极限温度,控制器在工作过程中是不允许超过这个设定极限的。Co-speed factor:和Aperiodic一样,它也可以控制达到设定温度时的温度过冲现象,唯一的不同在于它的设定是在仪器进行外部温度控制时进行的。10.JULABO水泵的主要功能在Economy‘ and ‘TopTech‘ 系列中,水泵是无机械磨损和热磨损的设计,它主要是用来为浴槽内循环和一些小型的封闭体系的水循环提供动力。在MC, ME and ‘Presto‘中,水泵的泵压级别可以调节在HighTech‘系列中,所有的泵都有加压和抽吸两种模式,它可以达到设定的压力,抽吸力和流速来完成对外循环或者封闭体系的水循环。在外接各种反映釜时,它可以被调节到合适的压力,从而避免由于意外压力对反映釜体系造成的损伤

  • 采用串级PID控制法实现注塑工艺高压压力精密控制的解决方案

    采用串级PID控制法实现注塑工艺高压压力精密控制的解决方案

    [color=#990000]摘要:针对高压电气比例阀压力控制精度较差的问题,特别是为了满足客户在超长管件注塑过程中提出的±1%压力控制稳定性要求,本文介绍了相应的解决方案,解决方案的核心技术是采用串级PID控制方法。方案一是基于现有精度较差的高压电气比例阀,通过外置高精度的压力传感器和压力调节器来提高压力控制稳定性;方案二是采用高精度的低压电气比例阀驱动背压阀来实现高压压力精密控制;方案三是在方案二基础上增加外置高精度的压力传感器和压力调节器来进一步提高压力控制稳定性。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~[/color][/align][size=18px][color=#990000][b]一、背景介绍[/b][/color][/size]作为一种先进的注塑成型方法,气体压力控制技术被逐步应用于塑料制品的成型,以解决常规注塑产品存在的尺寸精度差、表面凹痕及翘曲变形等缺陷,从而提高产品质量。在以往注塑成型工艺的气体压力控制中,普遍采用高压电气比例阀,但存在压力恒定控制稳定性较差的问题。最近有客户针对细管注塑成型提出了高精度气体压力控制要求,具体如下:(1)气体压力控制范围:1~3MPa。(2)控制方式:在任意设定压力点处进行长时间恒压控制。(3)长期压力稳定性:优于±1%。针对高压电气比例阀压力控制精度较差的问题,特别是为了满足客户在超长管件注塑过程中提出的±1%压力控制稳定性要求,本文将详细介绍相应的解决方案。[size=18px][color=#990000][b]二、高压压力精密控制解决方案[/b][/color][/size][size=18px][color=#990000]2.1 外置压力传感器和调节器的串级控制法[/color][/size]目前注塑工艺中所采用的高压电气比例阀为SMC ITVX2030,压力控制范围为0.01~3MPa,能够满足指标要求,但控制精度较差,为±3%FC。为了提高压力控制精度,方案之一是采用串级控制法,即通过外置高精度的压力传感器和压力控制器构成主控回路,由高压比例阀构成辅助回路。由此,通过这种两个串级PID控制回路,充分利用串级控制法具有高精度的特点,来实现高压压力的高精度稳定控制。此方案的结构布局如图1所示。[align=center][img=外置压力传感器和调节器的串级控制法示意图,500,308]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282250456396_1585_3221506_3.png!w690x426.jpg[/img][/align][align=center]图1 外置压力传感器和调节器的串级控制法示意图[/align][size=18px][color=#990000]2.2 低压电气比例阀驱动高压背压阀[/color][/size]高压压力控制常用的另外一种控制方式是压力放大技术,即采用工作压力较低但精度较高的电气比例阀作为先导阀,驱动一个可工作在高压条件下的背压阀(或气动减压阀),其整体结构如图2所示。[align=center][img=低压电气比例阀驱动高压背压阀示意图,550,202]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282248571168_9189_3221506_3.png!w690x254.jpg[/img][/align][align=center]图2 低压电气比例阀驱动高压背压阀示意图[/align]这里的背压阀相当于一个线性压力放大器,其放大倍数则是实际工艺压力除以比例阀工作压力。由此,可通过调节电气比例阀的驱动压力来控制背压阀的压力输出。如图2所示,这种背压阀高压压力控制方法是一种典型的开环控制,尽管背压阀是对比例阀的输出压力进行线性放大,但其线性度一般较差,这主要是受电气比例阀和背压阀的自身线性度影响。因此,为了实现高精度的压力控制,还需对此方案进行改进以形成闭环控制回路。[size=18px][color=#990000]2.3 高压背压阀串级控制法[/color][/size]为了解决上述比例阀作为先导阀驱动背压阀进行高压压力控制过程中存在的线性度和控制精度较差的问题,可以引入串级控制法,即在图2所示的控制系统中接入一个较高精度的压力传感器和PID控制器,如图3所示,由此对高压管件的压力控制形成一个闭环控制。[align=center][img=高压背压阀串级控制系统结构示意图,600,306]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282249303319_6557_3221506_3.png!w690x353.jpg[/img][/align][align=center]图3 高压背压阀串级控制系统结构示意图[/align]在图3所示的串级控制法高压压力控制装置中,安装了一个外接压力传感器用于直接监测背压阀的输出压力,压力传感器检测到的压力信号传输给外置的PID控制器,外置PID控制器根据设定值或设定程序采用PID算法进行计算后将控制信号传送给电气比例阀,比例阀根据此控制信号再经其内部PID控制器来调节先导压力输出,从而使得背压阀的输出压力快速接近压力设定值并始终保持一致。[size=18px][color=#990000][b]三、总结[/b][/color][/size]从上述的高压压力控制方案中可以看出,所采用的串级控制是一个双控制回路,具有两个独立的PID控制回路。串级控制法(也称级联控制法)是一种有效提升控制精度的传统方法,但在具体实施过程中,需要满足的条件是:主控回路的压力传感器和PID控制器(这里是外置压力传感器和PID控制器)精度一般要比辅助回路的传感器(这里是电气比例阀内置的压力传感器和PID控制器)要高。因此,为了实现±1%以上精度的高压压力控制,我们推荐的配套方案是采用0.1%精度的外置压力传感器和超高精度PID控制器(技术指标为24位ADC、16位DAC和双浮点运算的0.01%最小输出百分比)。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制