当前位置: 仪器信息网 > 行业主题 > >

时钟控制器

仪器信息网时钟控制器专题为您提供2024年最新时钟控制器价格报价、厂家品牌的相关信息, 包括时钟控制器参数、型号等,不管是国产,还是进口品牌的时钟控制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合时钟控制器相关的耗材配件、试剂标物,还有时钟控制器相关的最新资讯、资料,以及时钟控制器相关的解决方案。

时钟控制器相关的论坛

  • NI推出高性能嵌入式控制器

    自1976年成立,30多年来,美国国家仪器公司(NI)帮助测试、控制、设计领域的工程师与科学家解决了从设计、原型到发布过程中所遇到的种种挑战。通过现成可用的软件,如LabVIEW, 以及高性价比的模块化硬件,NI帮助各领域的工程师不断创新,在缩短产品问世时间的同时有效降低开发成本。如今,NI为遍布全球各地的30,000家不同的客户提供多种应用选择。NI总部设于美国德克萨斯州的奥斯汀市,在40个国家中设有分支机构,共拥有5,200多名员工。在过去连续十二年里,《财富》杂志评选NI为全美最适合工作的100家公司之一。作为最大的海外分支机构之一,NI中国拥有完善的产品销售、技术支持、售后服务和强大的研发团队。 近日,由NI研发的高性能嵌入式控制器NIPXIe-8115已成功上市,该产品配备了最新的Intel?第二代Core?i5双核处理器,能够缩短测试时间,是多核应用程序的理想选择。 为了提高PXI系统的稳定性,NIPXIe-8115控制器配备了In-ROM和硬盘驱动诊断功能,确保实现PXI嵌入式控制器的操作性能。除了高性能的CPU以外,NIPXIe-8115控制器还配备了6个USB2.0端口、2个可连接多台显示器的显示端口、双千兆以太网、GPIB、串行和并行端口。全新的NIPXIe-8115将诊断分析功能与NI备用硬盘驱动和内存相结合,提高了操作性能,从而减少了停工时间,并确保给应用程序带来最小的影响。 NIPXIe-8115控制器采用IntelCorei5-2510E处理器,添加了2.5GHz的基本时钟频率功能。并且还采用IntelTurboBoost技术,基于应用类型自动增加时钟频率。举例来说,当运行只生成单处理线程的应用程序时,CPU会将一个未使用的内核置于空闲状态,并将活动内核的时钟频率从2.5GHz提高至3.1GHz。这样,无需多线程的软件应用程序,就能采用最新的CPU。它既可在双核、也可在高性能的单核模式下操作,这种灵活性使得控制器可适用于各种应用,包括高性能的自动化测试和工业控制。 该产品具有多种外设I/O端口以及6个行业领先的USB2.0端口。该产品In-ROM和硬盘驱动诊断功能能够判定控制器的健康状况,从而提高操作性能,并最大限度地减少系统停工时间。将控制器与NILabVIEW系统设计软件结合,工程师可在各类测试、测量和控制应用中提升开发效率。

  • 一种智能温湿度控制器的设计

    一种智能温湿度控制器的设计蔡昀羲 (上海安科瑞电气有限公司 上海嘉定 201801)摘 要:介绍了一种智能温湿度控制器的设计方法及应用,最多实现三路温湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。关键字:SHT11,STC89C58RD+,温湿度控制,RS4850  引言  随着电力系统规模越来越大、电压等级越来越高,供电可靠性也要求更加严格。供配电设备环境的温度、湿度是影响设备运行的重要因素。温度过高会加速仪器设备元器件老化,缩短其使用寿命,甚至直接导致设备损坏;低温、潮湿,设备表面产生凝露则有可能发生爬电、闪络等事故。  基于以上考虑,在中高压开关柜、箱变、端子箱等供配电设备中进行温度、湿度控制是十分必要的。本文将介绍一种WHD型智能温湿度控制器的设计方法,最多实现三路温度、湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。1  硬件电路设计1.1 硬件设计的总体思路  硬件系统以单片机为核心,按功能可划分为:电源供电、温湿度测量、控制输出、人机对话以及通讯五个部分,如图1所示。  电源供电电路将AC220V或其他类型辅助电源转化为系统工作所需的直流电源。单片机将传感器测得的温湿度值进行比较、处理,确定输出控制部分继电器的工作状态,并显示和发送温湿度数值及输出控制部分的工作状态信息。人机对话部分具有按键信息录入功能,用户可根据实际情况,通过按键编程设置系统的工作参数。http://www.acrel.cn/cn/download/common/upload/2011/02/21/93834hw.jpg1.2 硬件的具体电路及原理  核心器件单片机选用STC公司的STC89C58RD+型单片机,它是一款兼容51内核的增强型8位机,片上资源丰富,抗干扰能力突出。STC89C58RD+(D版本)支持6时钟/机器周期,内含32K字节用户程序空间,片上集成1280字节RAM,16K字节EEPROM空间;支持ISP/IAP功能,无须专用编程器;片上还集成了看门狗电路及MAX810专用复位电路。  温湿度的测量选用SENSIRION公司开发的数字式温湿度一体传感器芯片SHT11。该传感器可同时测温度、湿度,并提供全程标定的数据输出,所以使用该传感器既可以降低硬件成本,又方便了整机测试。其技术参数如下表所示:  温度参数:   参数条件典型单位分辨率0.01℃精度0~60±1℃量程范围-40~120℃  湿度参数: 参数条件典型单位分辨率0.03%RH精度20%~80%±3%RH量程范围0~100%RH  该传感器与CPU之间的通讯采用二线制方式,即DATA(数据)线和CLK(同步时钟脉冲)线。测量三路温度、湿度时,CPU与传感器的连接电路如图2所示。CPU通用I/O口中的P1.0和P1.1,P1.2和P1.3,P1.4和P1.5分别与三路温湿度传感器SHT11连接,其中P1.0、P1.2、P1.4分别作为各路通讯的DATA(数据)线,P1.1、P1.3、P1.5分别作为各路通讯的CLK(同步时钟)线,DATA线需外加10KΩ的上拉电阻将信号提高至高电平(详情请参考SHT11数据手册)。实际使用时,传感器与控制器之间(即图中虚线部分)以屏蔽线连接,经验证,CPU与传感器之间的最大通讯距离为10米。如果使用74HC245或其他芯片提高I/O口的驱动能力,可增加通讯距离,但会降低系统的抗干扰性能,因此不予采纳。 http://www.acrel.cn/cn/download/common/upload/2011/02/11/151636j0.jpghttp://www.acrel.cn/cn/download/common/upload/2011/02/11/152021lg.jpg  系统采用LED数码管显示温度、湿度值,界面简洁明了。三路传感器测得的温度、湿度值以循环方式依次显示,显示部分共有7位数码管,其中4位用于显示温度值(显示范围:-40.0~100.0),并在编程状态下显示菜单及参数,2位用于显示湿度值(显示范围:0~99),1位用于显示当前显示或操作对应的传感器的编号(1~3)。数码管显示采用动态扫描方式,其驱动电路由集成电路74HC595及74HC164构成。74HC595是一款带有输出门锁功能的8位串行输入、并行输出(或串行输出)的移位寄存器,用于数码管的段驱动;74HC164的串行输入、并行输出功能用于扫描显示每一位数码管,如图3所示。  系统采用继电器或可控硅作为控制输出,电源部分采用开关电源方案,通讯部分采用RS485接口,具体电路设计请参考相关书籍,此处不予赘述。2  软件设计方法  系统软件设计包括以下四个部分:主程序、测量控制模块、显示模块及通讯模块。  主程序完成上电或复位初始化,复位看门狗,查询按键信息等功能,程序设计流程如图4所示。 http://www.acrel.cn/cn/download/common/upload/2011/02/11/15341zh.jpg  程序初始化包括配置CPU的SFR,设置I/O口初始状态,从EEPROM读取工作参数,设置看门狗定时器的复位时间等。需要注意的是,一般只在主程序中喂狗,看门狗的复位时间时要设置的比测量程序中可能出现的最长等待时间还要长。以下给出主程序的部

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 自动水位控制器开关

    自动水位控制器开关

    [font=&][color=#333333]自动水位控制器开关,也称为鱼缸自动补水器,是一种用于鱼缸或水族箱的设备,可以自动监测和控制水位,确保鱼缸中的水位始终保持在适当的范围内。它通常包括一个水位传感器和一个控制开关。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]水位传感器是自动水位控制器的核心部件,它可以通过不同的原理来检测水位。其中,光电液位传感器是一种常用的水位传感器。它利用发射器和接收器之间的光束来检测水位。当水位低于设定值时,光束被阻挡,接收器接收到的光信号减弱,从而触发控制开关,启动补水装置。当水位达到设定值时,光束不再被阻挡,控制开关停止补水。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]鱼缸自动补水器的工作原理如下:首先,将水位传感器安装在鱼缸中,确保传感器的位置能够准确地检测到水位。然后,将补水装置连接到自动水位控制器,并将补水管放入鱼缸中。当水位低于设定值时,光电液位传感器会触发控制开关,启动补水装置,补充鱼缸中的水。当水位达到设定值时,光电液位传感器会停止触发控制开关,补水装置停止工作。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]选择合适的自动水位控制器开关时,需要考虑以下几个因素:首先,根据鱼缸的大小和水位需求,选择适当的控制开关和水位传感器。其次,考虑自动水位控制器的稳定性和可靠性,选择具有高品质和可靠性的产品。此外,还需要考虑自动水位控制器的安装和操作便捷性,以及价格和性价比。[/color][/font][font=&][color=#333333][/color][/font][align=center][img=鱼缸补水器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/07/202307071357083064_4373_4008598_3.jpg!w673x582.jpg[/img][/align][font=&][color=#333333] [/color][/font][font=&][color=#333333]总之,自动水位控制器开关是一种方便实用的设备,可以帮助鱼缸或水族箱保持适当的水位。通过光电液位传感器的检测和控制,自动水位控制器可以自动补充鱼缸中的水,确保鱼类的生活环境稳定和舒适。选择合适的自动水位控制器开关时,需要考虑水位需求、稳定性、可靠性、安装便捷性和价格等因素,以确保其能够满足鱼缸的需求。[/color][/font][font=&][color=#333333][/color][/font]

  • 一种智能温湿度控制器的设计

    摘 要:介绍了一种智能温湿度控制器的设计方法及应用,最多实现三路温湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。关键字:SHT11,STC89C58RD+,温湿度控制,RS4850  引言  随着电力系统规模越来越大、电压等级越来越高,供电可靠性也要求更加严格。供配电设备环境的温度、湿度是影响设备运行的重要因素。温度过高会加速仪器设备元器件老化,缩短其使用寿命,甚至直接导致设备损坏;低温、潮湿,设备表面产生凝露则有可能发生爬电、闪络等事故。  基于以上考虑,在中高压开关柜、箱变、端子箱等供配电设备中进行温度、湿度控制是十分必要的。本文将介绍一种WHD型智能温湿度控制器的设计方法,最多实现三路温度、湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。1  硬件电路设计1.1 硬件设计的总体思路  硬件系统以单片机为核心,按功能可划分为:电源供电、温湿度测量、控制输出、人机对话以及通讯五个部分,如图1所示。  电源供电电路将AC220V或其他类型辅助电源转化为系统工作所需的直流电源。单片机将传感器测得的温湿度值进行比较、处理,确定输出控制部分继电器的工作状态,并显示和发送温湿度数值及输出控制部分的工作状态信息。人机对话部分具有按键信息录入功能,用户可根据实际情况,通过按键编程设置系统的工作参数。1.2 硬件的具体电路及原理  核心器件单片机选用STC公司的STC89C58RD+型单片机,它是一款兼容51内核的增强型8位机,片上资源丰富,抗干扰能力突出。STC89C58RD+(D版本)支持6时钟/机器周期,内含32K字节用户程序空间,片上集成1280字节RAM,16K字节EEPROM空间;支持ISP/IAP功能,无须专用编程器;片上还集成了看门狗电路及MAX810专用复位电路。  温湿度的测量选用SENSIRION公司开发的数字式温湿度一体传感器芯片SHT11。该传感器可同时测温度、湿度,并提供全程标定的数据输出,所以使用该传感器既可以降低硬件成本,又方便了整机测试。其技术参数如下表所示:  温度参数:   参数条件典型单位分辨率0.01℃精度0~60±1℃量程范围-40~120℃  湿度参数: 参数条件典型单位分辨率0.03%RH精度20%~80%±3%RH量程范围0~100%RH  该传感器与CPU之间的通讯采用二线制方式,即DATA(数据)线和CLK(同步时钟脉冲)线。测量三路温度、湿度时,CPU与传感器的连接电路如图2所示。CPU通用I/O口中的P1.0和P1.1,P1.2和P1.3,P1.4和P1.5分别与三路温湿度传感器SHT11连接,其中P1.0、P1.2、P1.4分别作为各路通讯的DATA(数据)线,P1.1、P1.3、P1.5分别作为各路通讯的CLK(同步时钟)线,DATA线需外加10KΩ的上拉电阻将信号提高至高电平(详情请参考SHT11数据手册)。实际使用时,传感器与控制器之间(即图中虚线部分)以屏蔽线连接,经验证,CPU与传感器之间的最大通讯距离为10米。如果使用74HC245或其他芯片提高I/O口的驱动能力,可增加通讯距离,但会降低系统的抗干扰性能,因此不予采纳。  系统采用LED数码管显示温度、湿度值,界面简洁明了。三路传感器测得的温度、湿度值以循环方式依次显示,显示部分共有7位数码管,其中4位用于显示温度值(显示范围:-40.0~100.0),并在编程状态下显示菜单及参数,2位用于显示湿度值(显示范围:0~99),1位用于显示当前显示或操作对应的传感器的编号(1~3)。数码管显示采用动态扫描方式,其驱动电路由集成电路74HC595及74HC164构成。74HC595是一款带有输出门锁功能的8位串行输入、并行输出(或串行输出)的移位寄存器,用于数码管的段驱动;74HC164的串行输入、并行输出功能用于扫描显示每一位数码管,如图3所示。  系统采用继电器或可控硅作为控制输出,电源部分采用开关电源方案,通讯部分采用RS485接口,具体电路设计请参考相关书籍,此处不予赘述。2  软件设计方法  系统软件设计包括以下四个部分:主程序、测量控制模块、显示模块及通讯模块。  主程序完成上电或复位初始化,复位看门狗,查询按键信息等功能,程序设计流程如图4所示。  程序初始化包括配置CPU的SFR,设置I/O口初始状态,从EEPROM读取工作参数,设置看门狗定时器的复位时间等。需要注意的是,一般只在主程序中喂狗,看门狗的复位时间时要设置的比测量程序中可能出现的最长等待时间还要长。以下给出主程序的部分C语言源代码。  void Main ()  {  WDT_CONTR = 0x00;//关闭看门狗  InitialEeprom();//读EEPROM  InitialIO();//初始化I/O状态  InitialSFR();//设置SFR

  • 热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    [color=#990000]摘要:针对温度跟踪控制中存在热电堆信号小致使控制器温度跟踪控制精度差,以及热电阻形式的温度跟踪控制中需要额外配置惠斯特电桥进行转换的问题,本文提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此仅通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[/color][align=center][img=高精度温度跟踪控制,600,330]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051642301750_9704_3221506_3.jpg!w690x380.jpg[/img][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size] 在一些工业领域和热分析仪器领域内,常会用到温度自动跟踪功能,以达到以下目的: (1)保证温度均匀性:如一些高精度加热炉和半导体圆晶快速热处理炉等,为实现一定空间或面积内的温度均匀,一般会采取分区加热方式,即辅助加热区的温度会自动跟踪主加热区。 (2)绝热防护:在许多热分析仪器中,如绝热量热仪、热导率测试仪和量热计等,测试模型要求绝热边界条件。这些热分析仪器往往会采取等温绝热方式手段,由此来实现比采用隔热材料的被动绝热方式更高的测量精度。 自动温度跟踪功能的使用往往意味着要实现快速和准确的温度控制,其特征是具有多个温度传感器和加热器,其中温差探测器多为电压信号输出的热电偶和电阻输出的热电阻形式。对于采用这两种温差探测器的温度跟踪控制,在具体实施过程中还存在以下两方面的问题: (1)在以热电堆为温差传感器的跟踪温度控制过程中,往往会用多只热电偶构成热电堆来放大,N对热电偶组成的热电堆会将温差信号放大N倍,但即使放大了温差信号,总的温差信号对应的输出电压也是非常小。如对于K型热电偶,1℃温差对应40uV的电压信号,若使用10对K型热电偶组成温差热电堆,则1℃温差时热电堆只有400uV的电压信号输出。对于如此小的电压值作为PID控制器的输入信号,若要实现小于0.1℃的温度跟踪控制,一般精度的PID控制器很难实现高精度,因此必须采用更高精度的PID控制器。 (2)在以热电阻测温形式的跟踪温度控制过程中,情况将更为复杂,一般是采用复杂的惠斯登电桥(wheatstonebridge)将两只热电阻温度传感器的电阻差转换为电压信号,再采用PID控制器进行跟踪控制。但这样一方面是增加额外的电桥仪表,另一方面同样要面临普通PID控制器精度不高的问题。 为此,针对上述温度跟踪控制中存在的上述问题,本文将提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[b][size=18px][color=#990000]2. 解决方案[/color][/size][/b] 为了实现热电堆和热电阻两种测温形式的温度跟踪控制,解决方案需要解决两个问题: (1)高精度的PID控制器,可检测由多只热电偶组成的温差热电堆输出小信号。 (2)不使用电桥仪器,直接采用PID控制器连接两只热电阻温度传感器进行跟踪控制。 为解决温度跟踪控制中的上述两个问题,解决方案将采用VPC-2021系列多功能超高精度的PID控制器。此控制器的外观和背面接线图如图1所示。[align=center][img=,600,177]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051656426331_2008_3221506_3.jpg!w690x204.jpg[/img][/align][align=center][b][color=#990000]图1 VPC 2021系列多功能超高精度PID控制器[/color][/b][/align] 针对温度跟踪控制,VPC 2021系列多功能超高精度PID程序控制器的主要特点如下: (1)24位AD,16位DA,双精度浮点运算,最小输出百分比为0.01%。 (2)可连接模拟电压小信号,可连接各种热电偶,可连接各种铂电阻和热敏电阻温度传感器,共有多达47种输入信号形式。 (3)具备远程设定点功能,即将外部传感器信号直接作为设定点来进行自动控制。 对于由热电偶组成的热电堆温差探测器形式的温度跟踪控制,具体接线形式如图2所示。[align=center][color=#990000][b][img=温差热电堆控制器接线图,500,194]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051643371408_3010_3221506_3.jpg!w690x268.jpg[/img][/b][/color][/align][align=center][b][color=#990000]图2 温差热电堆控制器接线图[/color][/b][/align] 图2是典型的温差热电堆控制器接线形式,其中用了两只或多只热电偶构成的热电堆检测物体AB之间的温差,温差信号(电压)直接连接到PID控制器的主输入端,PID控制器调节物体B的加热功率,使温差信号始终保持最小(近似零),从而实现物体B的温度始终跟踪物体A。 对于由热电阻温度传感器形式构成的温度跟踪控制,具体接线形式如图3所示。这里用了控制器的远程设定点功能,这时需要物体AB上分别安装两只热电阻温度计,其中物体B上的热电阻(两线制或三线制)连接到PID控制器的主输入端作为控制传感器,物体A上的热电阻(与物体B热电阻制式保持相同)连接到PID控制器的辅助输入端作为远程设定点传感器,由此实现物体B的温度调节始终跟踪物体A的温度变化。[align=center][img=热电阻温度传感器控制器接线图,500,195]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051644317319_3570_3221506_3.jpg!w690x270.jpg[/img][/align][align=center][b][color=#990000]图3 热电阻温度传感器控制器接线图[/color][/b][/align][b][color=#990000][size=18px]3. 总结[/size][/color][/b] 高精度的温度跟踪控制一直以来都是一个技术难点,如对于热电偶组成的温差热电堆温度跟踪控制,若采用普通精度的PID控制器还有实现高精度的温度跟踪控制,通常需要增加外围辅助技术手段,一是通过增加热电偶对数来增大温差电压信号,但这种方式工程实现难度较大且带来导线漏热问题,二是采用较高品质的直流信号放大器对温差电压信号进行放大,这同时增加了控制设备的复杂程度和造价。 对于采用热电阻温度传感器进行温度跟踪控制,以往的实现方法是采用复杂的惠斯登电桥(wheatstone bridge)将两只热电阻温度传感器的电阻差转换为电压信号,这同样增加了控制设备的复杂程度和造价。 由此可见,采用VPC 2021系列多功能超高精度PID调节器,可直接与相应的温度传感器进行连接,简化了温度跟踪控制的实现难度和装置的体积,更主要的是超高精度的数据采集和控制可大幅提高温度跟踪的控制精度。[align=center]~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • 24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    [size=16px][color=#ff0000]摘要:针对目前张力控制器中普遍存在测量控制精度较差和无法实现串级控制这类高级复杂控制的问题,本文介绍了具有超高精度和多功能的新一代张力控制器。这种新一代张力控制器具有24位AD模数转换、16位DA数模转换、双精度浮点运算和0.01%的最小输出百分比,同时还就有远程设定点和变送输出功能,可方便的实现两个参量的串级控制,并可进行手动和自动控制的开关切换,极大提高了张力控制的精密度,更是适合一些特殊应用中的微张力控制,甚至可以进行张力设定程序曲线的精确控制。[/color][/size][align=center][size=16px][img=微张力控制,650,272]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110946105710_7747_3221506_3.jpg!w690x289.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 问题的提出[/b][/color][/size][size=16px] 张力控制是一种对在两个加工设备之间作连续运动或静止的被加工材料所受的张力进行自动控制的技术。在各种连续生产线上,各种带材、线材、型材及其再制品,在轧制、拉拔、压花、涂层、印染、清洗以及卷绕等工序中常需要进行张力控制。[/size][size=16px] 张力控制中所用到的张力控制器是一种由单片机或者一些嵌入式器件及外围电路开发而成的系统,主要由A/D和D/A转换器以及高性能单片机等组成。在张力控制过程中,首先直接设定要求控制的张力值,让张力传感器采集的信号(一般为毫伏级别)作为张力反馈值,比较两者的偏差后,经内部智能PID运算处理后,调节执行机构,自动控制材料的放卷、中间引导及收卷的张力,达到系统响应最快的目的。目前的张力控制器普遍还存在以下几方面的问题:[/size][size=16px] (1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。[/size][size=16px] (2)控制输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制无能为力。[/size][size=16px] (3)浮点运算精度较低:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较低,输出百分比的最小调节量只有0.1%,无法进行超高精度的张力控制。[/size][size=16px] (4)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限,且不能方便的进行测量范围调整。[/size][size=16px] (5)功能简单:绝大多数张力控制器只能进行单变量的控制,如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制参数,缺乏两个参数同时控制的功能,无法采用更高级的控制形式——串级控制来更好实现准确的张力调节。[/size][size=16px] (6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适的PID参数则显着尤为重要,而目前大多张力控制器缺乏这种PID参数自整定功能。[/size][size=16px] 针对目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制,本文将详细介绍超高精度工业用PID调节器及其在超高精度张力控制过程中的应用,特别还介绍了串级控制功能的具体应用。[/size][size=18px][color=#ff0000][b]2. 超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列PID调节器是一种标准形式的工业用控制器,有单通道和双通道两个系列,具有96×96mm、96×48mm 和48×96mm三种尺寸规格,如图1所示。[/size][align=center][size=16px][color=#ff0000][b][img=01.超高精度PID控制器系列,650,223]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110948313448_487_3221506_3.jpg!w690x237.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图1 VPC2021系列超高精度PID控制器[/b][/color][/size][/align][size=16px] VPC2021系列PID控制器的最大优点是具有超高精度检测和控制能力,具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。主要技术指标如下:[/size][size=16px] (1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。[/size][size=16px] (2)独立的单回路和双回路控制,每个通道控制输出刷新率50ms,独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。[/size][size=16px] (3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置即可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。[/size][size=16px] (4)单、双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。[/size][size=16px] (5)具有远程设定点、变送和正反向控制功能,使得串级控制和分程控制成为可能。[/size][size=16px] (6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能 。每个通道采用独立的PID参数 , 且可独立的进行PID参数自整定。[/size][size=16px] (7)支持数字和模拟远程 操 作 功 能,支持标准MODBUS RTU通讯协议。[/size][size=16px] (8)带传感器馈电供电功能(24V,50mA)。[/size][size=16px] (9)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。[/size][size=16px] (10)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。[/size][size=16px] (11)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[/size][size=18px][color=#ff0000][b]3. 串级控制在张力控制中的应用[/b][/color][/size][size=16px] 在典型的张力控制中多采用PID控制方式,由人工设定所需运行张力。设定值与张力传感器测量值进行比较计算后,PID控制器调节执行机构实现张力的稳定输出。典型张力控制器结构如图2所示。[/size][align=center][size=16px][color=#ff0000][b][img=02.典型单参数张力PID控制结构示意图,450,119]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110949423425_329_3221506_3.jpg!w690x183.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图2 典型单参数张力控制结构示意图[/b][/color][/size][/align][size=16px] 图2所示的采用单参数进行张力控制的方法在很多实际应用中并不能满足需要,往往需要引入第二个参数进行控制,由此需要PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#ff0000][b][img=03.双参数串级控制PID张力控制结构示意图,600,165]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950250802_7112_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图3 双参数串级控制PID张力控制结构示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括传感器1、执行机构和次PID控制器,其中将进入外围执行机构膜的参量作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了传感器2、次控制回路、外围执行机构和主PID控制器,其中将外围执行机构的产出参数作为主回路的控制参数。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#ff0000][b][img=04.串级控制系统PID调节器接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950400632_8989_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收传感器2测量信号,然后根据所设置的固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的传感器信号,进行PID自动控制,控制信号经主输出端口连接执行机构,对外部执行机构进行自动调节。[/size][size=16px] 需要注意的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=16px] 另外,从图4可以看出,由于VPC2021-1单通道PID控制器具有远程设定点功能,由此就可以很容易实现外部手动张力调节,而只需增加一个旋转电位器即可。手动调节接线如图5所示。[/size][align=center][size=16px][color=#ff0000][b][img=05.串级控制系统PID调节器手动和自动切换接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950566532_2083_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图5 串级控制系统PID调节器手动和自动切换接线示意图[/b][/color][/size][/align][size=16px] 如图5所示,通过主PID控制器上连接的纽子开关,可以实现手动和自动功能切换。当切换到手动控制时,则可以通过接在主PID控制器次输入端子上的电压信号发生器,就可以实现手动调节控制。[/size][size=18px][color=#ff0000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过采用新一代的超高精度多功能PID控制器,可以实现各种应用场景下的张力控制。与传统的张力控制器相比,新一代的张力控制器主要具有以下优势:[/size][size=16px] (1)超高精度:24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。[/size][size=16px] (2)多功能:最多2通道的张力控制,可实现串级控制,可进行手动和自动功能切换。[/size][size=16px][/size][size=16px][/size][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~[/color][/align]

  • 真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    [color=#990000]摘要:真空浓缩过程中,浓缩温度和压强是核心控制参数。本文针对目前浓缩仪器和设备中压强控制存在精度差、波动性大等问题,提出了详细解决方案,并提出采用新型双通道超高精度多功能PID控制器和高速电动阀门来实现浓缩过程中温度和压强的同时准确测量和控制。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]1、问题提出[/color][/size] 真空浓缩的工作原理是将样品在冷冻干燥、离心浓缩和旋转蒸发等状态下,同时采用真空和加热技术使样品中的溶剂快速蒸发、样品体系得到快速浓缩或干燥。由于不同样品对温度有不同的敏感性,同时压强与温度之间存在强相关性,所以在真空浓缩过程中,如何准确控制浓缩温度和压强,就成了使用者最关心的问题。在目前各种常用的真空浓缩设备中,普遍还存在以下几方面问题: (1)压强测量和控制精度普遍不高,特别是低压情况下更是如此,这主要是所采用的传感器和控制器精度不够。压强控制精度不高同时会对温度带来严重影响。 (2)浓缩仪器和设备普遍采用的是下游压强控制方式,即在容器和真空泵之间安装调节阀来实时调控容器的排气速率。这种下游方式适用于较高压强的准确控制,但对10mbar以下的低压则很难实现控制的稳定准确。 (3)目前绝大多数电动调节阀采用的是电动执行机构,从闭合到全开的时间基本都在10秒以上,这种严重滞后的阀门调节速度也很难保证控制精度和稳定性。 (4)由于浓缩过程中有水汽两相介质排出,很多时候介质还带有腐蚀性,这就对下游调节阀耐腐蚀性提出了很高的要求。[size=18px][color=#990000]2、解决方案[/color][/size][color=#990000]2.1 采用高精度压强传感器[/color] 对于真空浓缩过程,压强传感器是保证整个浓缩过程可控性的核心,强烈建议采用高精度压强传感器以保证真空度的测量和控制准确性。一般真空浓缩过程基本都采用机械式真空泵,低压压强(绝压)不会超过0.01mbar,高压压强接近一个大气压,因此高精度压强传感器建议采用电容薄膜规,如图1所示,其绝对测量精度可以达到±0.2%。 如果浓缩仪器和设备使用的压强范围比较宽,建议采用两只不同量程的传感器进行覆盖,如10Torr和1000Torr。[align=center][color=#990000][img=真空浓缩,600,450]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041456355439_1975_3384_3.png!w600x450.jpg[/img][/color][/align][align=center][color=#990000]图1 电容薄膜式真空压力计[/color][/align] 如果采用其他类型的真空度传感器,也需要达到一定的精度要求。[color=#990000]2.2 采用高精度双通道PID控制器[/color] 在真空压力测量和控制中,为了充分利用上述电容薄膜压力计的测量精度,控制器的数据采集和控制至少需要16位的模数和数模转化器。目前已经推出了测控精度为24位的通用性PID控制器,如图2所示。[align=center][color=#990000][img=真空浓缩,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457090941_3284_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图2 国产VPC-2021系列温度/压力控制器[/color][/align] 对于真空浓缩的过程控制,此系列PID控制器具有以下特点: (1)高精度:24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。2通道可实现温度和压强的同时测量及控制。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:可自行建立和存储最多20种浓缩程序,进行浓缩时只需选择调用即可开始(程序控制模式)。[color=#990000]2.3 增加上游进气控制和双向控制模式[/color] 目前普遍采用的下游控制模式比较适合压强接近大气压的浓缩过程,但对10mbar以下的低压浓缩过程,就需要引入上游进气控制模式,即在浓缩容器上增加进气通道,通过电子针阀控制进气通道的进气流量来实现压强的准确控制。 如图3所示,目前已有各种流量的国产电子针阀可供选择,结合下游的真空泵抽气,通过上游模式可实现高真空(低压)的精确控制。[align=center][color=#990000][img=真空浓缩,599,513]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457210338_3059_3384_3.png!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align] 为同时满足低压和高压全量程准确控制,可以采用如图4所示的双传感器和双向控制模式。 在图4所示的控制模式中,就需要用到上述VPC-2021系列双通道控制器的正反向控制和双传感器自动切换功能,即在不同气压控制过程中,控制器自动切换相应量程的真空计,并选择相应的电子针阀和高速电动球阀进行控制。[align=center][img=真空浓缩,690,548]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457335020_3012_3384_3.png!w690x548.jpg[/img][/align][align=center][color=#990000]图4 双向控制和双传感器自动切换模式示意图[/color][/align][color=#990000][/color][color=#990000]2.4 采用高速电动球阀[/color] 所谓高速阀门一般是指阀门从全闭到全开的动作时间小于1s,这对于气体流量和压力控制非常重要。特别是对于真空浓缩过程,气压控制的快速响应可保证浓缩的准确性、安全性和提高蒸发速率。 目前已经开发出国产高速电动球阀,如图5所示。NCBV系列微型化的高速电动球阀和蝶阀,是目前常用慢速电动阀门的升级产品,与VPC2021系列温度/压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][img=真空浓缩,377,500]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457527127_514_3384_3.png!w377x500.jpg[/img][/align][align=center][color=#990000]图5 国产NCBV系列高速电动球阀[/color][/align][color=#990000][/color][color=#990000]2.5 采用真空控压型调节器[/color] 在目前的真空浓缩仪器和设备中,浓缩是在密闭容器中发生,通过加热和真空手段将蒸发气体冷凝和排出,真空泵是对一个密闭容器进行抽气,并通过抽气流量调节来实现密闭容器内的气压恒定在设定值,这是一个典型的流量控制型恒压模式。这种控流型调压方式相当于一个开环控制方式,容器内部自生气体,且自生气体并没有很明显的规律(如线性变化),这非常不利于容器内部压强的准确控制。对于这种控流型调压方式,如图2所示,会在浓缩容器的前端增加一个进气通道,并对进气流量进行调节以使容器内部真空度控制在稳定的设定值。 对于有些真空浓缩仪器和设备,并不允许增加额外的进气通道,这里就可以用到如图6所示的控压型调节器。[align=center][img=真空浓缩,690,372]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041458102995_3900_3384_3.png!w690x372.jpg[/img][/align][align=center][color=#990000]图6 控压型调节器在浓缩过程真空度控制中的应用[/color][/align] 控压型真空压力调节器实际上一个内置真空压力传感器、微控制器、空腔和两个电动阀门的集成式装置。在真空压力控制过程中,内置传感器测量空腔内压力,如果压力小于设定值,则进气口处阀门打开直到等于设定值,如果压力大于设定值则抽气口处阀门打开直到等于设定值,从而始终保证空腔内压力始终保持在设定值上,而调节器空腔与浓缩容器连通,即调节器空腔压力始终等于浓缩容器压力。 由此可见,控压型调节器是一个自带进气阀的独立真空压力调节装置。如图6所示,控压型调压器也可以外接传感器,设定值可以手动设置,也可以通过PID控制器设置。[align=center]=======================================================================[/align]

  • 控制器作用

    液相控制器的作用是什么就是连接机器和显示器吗,如果关掉控制器的话机器还能进行检测吗?只看到岛津的机器有单独的控制器,那安捷伦和WATERS是安在内部了还是不是所有的机器都需要控制器啊

  • 微流控控制器说明

    [b][url=http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html]微流控控制器[/url][/b]是[b]控制微流体器件[/b]如微型泵,微型阀的功能强大的[b]流控控制器[/b],[b]微流控控制器[/b]简化了实验室科研的复杂设计。微流控控制器OEM版本操作简单,更加有效,更适合微流体和微流控产业化使用,可以广泛用于医疗设备,生物处理系统,实验室仪器,化学仪器和科学设备和许多其它使用流体控制装置(泵,阀等)的领域,方便用户集成和制造工具。[img=微流控控制器]http://www.f-lab.cn/Upload/flowtest_.jpg[/img][b][/b]微流控控制器:[url]http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html[/url][b]微流控控制器[/b]FlowTest™ OEM版本结合:[list][*]现代化和高品质的控制板,不仅是设计和流体控制子系统开发的关键工具,也是在工业化和制造阶段新直接整合成新的先进仪器的关键工具。[/list][list][*]开发和集成成套套件是一个灵活的,有效的和用户友好的软件套件,用于快速开发,高效编程和易于集成。这些软件大大简化了新先进仪器的流体功能。也降低了集成的成本和时间,同时在工业化工作期间促进在仪器内的操作控制器。[/list]

  • 电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    [color=#990000]摘要:目前真空冷冻干燥过程中已普遍使用了电容压力计,使得与电容压力计相配套的压力控制器和电动进气调节阀这两个影响压力控制精度和重复性的主要环节显着尤为突出。为解决控制精度问题,本文介绍了国产最新型的2通道24位高精度PID压力控制器和步进电机驱动电动针阀的功能、技术指标及其应用。经试验验证,上游控制模式中使用电动针阀和高精度控制器可将压力精确控制在±1%以内,并且此控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控,以进行初次冻干终点的自动判断。[/color][size=18px][color=#990000]一、问题的提出[/color][/size] 压力控制是真空冻干过程中的一个重要工艺过程,其控制精度严重影响产品质量,对于一些敏感产品的冷冻干燥尤为重要。因此,为使冷冻干燥过程可靠且可重复地进行,必须在干燥室内准确、重复地测量和控制压力,这是考察冷冻干燥硬件设备能力的重要指标之一。同时因为一次干燥时的压力或真空度,直接影响产品升华界面温度,因此准确平稳的控制压力,对于一次干燥过程至关重要。但在实际真空冷冻干燥过程中,在准确压力控制方面目前国内还存在以下问题: (1)压力控制器不匹配问题:尽管冷冻干燥工艺和设备都配备了精度较高的电容压力计,其精度可达到满量程的0.2%~0.5%,但目前国内大多配套采用PLC进行电容压力计直流电压信号的测量和控制,PLC的A/D和D/A转换精度明显不够,严重影响压力测量和控制精度。A/D和D/A转换精度至少要达到16位才能满足冷冻干燥过程的需要。 (2)进气控制阀不匹配问题:对于冷冻干燥中的真空压力控制,其压力恒定基本都在几帕量级,因此一般都采用上游进气控制模式,即在真空泵抽速一定的情况下,通过电动调节阀增加进气流量以降低压力,减少进气流量以增加压力。但目前国内普遍还在使用磁滞很大的电磁阀来进行调节,严重影响压力控制精度和重复性,而目前国际上很多已经开始使用步进电机驱动的低磁滞电动调节阀。 为解决上述冷冻干燥过程中压力控制存在的问题,本文将介绍国产最新型的2通道24位高精度PID压力控制器、电动针阀的功能、技术指标及其应用。经试验考核和具体应用的验证,上游控制模式中使用电动针阀和高精度PID压力控制器可将压力精确控制在±1%以内,并且2通道PID控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控和记录。[size=18px][color=#990000]二、国产2通道24位高精度PID压力控制器[/color][/size] 为充分利用电容压力计的测量精度,控制器的数据采集和控制至少需要16位以上的模数和数模转化器。目前我们已经开发出VPC-2021系列高精度24位通用性PID控制器,如图1所示。此系列PID控制器功能强大远超国外产品,但价格只有国外产品的八分之一。[align=center][img=冷冻干燥压力控制,550,286]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211608584555_3735_3384_3.png!w650x338.jpg[/img][/align][align=center][color=#990000]图1 国产VPC-2021系列温度/压力控制器[/color][/align] 压力控制器其主要性能指标如下: (1)精度:24位A/D,16位D/A。 (2)多通道:独立1通道或2通道。2通道可实现双传感器同时测量及控制。 (3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。 (4)多功能:正向、反向、正反双向控制。 (5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。 (6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。 在冷冻干燥的初级冻干终点判断中,VPC-2021系列中的2通道控制器可同时接入电容压力计和皮拉尼压力计,其中电容压力计用作真空压力控制,皮拉尼计用来监视冻干过程中水汽的变化,当两个真空计的差值消失时则认为初级冻干过程结束。整个过程的典型变化曲线如图2所示。[align=center][color=#990000][img=冷冻干燥压力控制,586,392]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609304857_1459_3384_3.png!w586x392.jpg[/img][/color][/align][align=center][color=#990000]图2. 初级干燥过程中的典型电容压力计和皮拉尼压力计的测量曲线[/color][/align][size=18px][color=#990000]三、国产步进电机驱动电子针阀[/color][/size] 为实现进气阀的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,其磁滞远小于电磁阀,如图3所示,价格只有国外产品的三分之一,详细技术指标如图4所示。[align=center][img=冷冻干燥压力控制,400,342]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609435684_1917_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][color=#990000][img=冷冻干燥压力控制,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610002292_1250_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术指标[/color][/align][size=18px][color=#990000]四、国产PID控制器和电子针阀考核试验[/color][/size] 考核试验采用了1Torr量程的电容压力计,电子针阀作为进气阀以上游模式进行控制试验。首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行 PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和 107Pa 共 8 个设定点进行了控制,整个控制过程中真空度的变化如图 5所示。 [align=center][color=#990000][img=冷冻干燥压力控制,690,418]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610175473_9598_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图5 多点压力控制考核试验曲线[/color][/align] 将图5曲线的控制效果以波动率来表达,则得到如图6所示的不同真空压力下的波动率。从图6可以看出,整个压力范围内只有在12Pa控制时波动率大于1%,显然将68Pa下自整定得到的PID参数应用于12Pa压力控制并不太合适,还需要进行单独的PID 参数自整定。[align=center][color=#990000][img=冷冻干燥压力控制,690,388]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610294377_3818_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图6. 多点压力恒定控制波动率[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 阀件、控制器半导体元器件控温中的作用有哪些?

    半导体元器件控温设备中,每个配件都有着不同的作用,由于作用不同,无锡冠亚的半导体元器件控温的阀件和控制器的作用也是不同的。  半导体元器件控温的水泵,是用于加速水流动的工具,以达到加强水在换热器中换热的效果。半导体元器件控温的水流开关用作管道内流体流量的控制或断流保护,当流体流量到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的压力控制器用作压力控制和压力保护之用,机组有低压和高压控制器,用来控制系统的压力的工作范围,当系统压力到调定值时,开关自动切断(或接通)电路。  半导体元器件控温的压差控制器用作压力差的控制,当压力差到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的温度控制器用作机组的控制或保护,当温度到达调定值时,开关自动切断(或接通)电路。在我们的产品上,温度的控制常用到,用水箱温度来控制机组的开停机情况。还有些象防冻都需要用到温度控制器。  半导体元器件控温视液镜用于指示制冷装置中液体管路的制冷剂的状况、制冷剂中的含水量、回油管路中来自油分离器的润滑油的流动状况,有的视液镜带有一指示器,它通过改变其颜色来指出制冷剂中的含水量。(绿色表示干燥,黄色表示潮湿)。因温度变化而引起水的体积变化,膨胀水箱用来贮存这部分膨胀水,对系统起稳压定压的作用,能给系统补偿部分水。  半导体元器件控温是一项比较新的设备,性能上面要求高一点才能使得半导体元器件控温的运行更加稳定。

  • 超高精度PID控制器的特殊功能(1)——远程设定点功能及其应用

    超高精度PID控制器的特殊功能(1)——远程设定点功能及其应用

    [color=#990000]摘要:远程设定点功能是超高精度PID控制器的重要拓展功能之一,其在实际自动控制中有着广泛的应用。本文详细介绍了远程设定点的功能和操作设置过程,同时还介绍了远程设定点功能在跟踪控制、串级控制和比值控制中的具体应用。[/color][align=center]~~~~~~~~~~~~~[/align][align=center][color=#cc0000][/color][/align][b][size=18px][color=#990000]一、远程设定点的基本概念[/color][/size][/b] PID控制器中的设定点(set point,简称SP)或设定值(set value,简称SV),是指控制对象最终想要达到的状态或目标。PID控制器作用就是不断检测被控对象与设定点之间的偏差,并通过PID算法设法使此偏差快速趋于最小并达到稳定。需要注意的是,这里所说的设定点只是一种泛指,实际上包括了不随时间变化的固定设定点和随时间变化的设定曲线。 PID控制器中的设定点一般分为以下两种: (1)内部设定点。通常也称之为内部给定值或本地给定值,是指PID控制器内部给出的设定点,如通过控制器面板操作或通过通讯方式由上位机软件操作给出的设定点或设定曲线。 (2)外部设定点。通常也称之为远程设定值或遥控设定值,是指独立于PID控制器的外部装置按照输入信号的函数所给出的设定点,如外部传感器、外部电压电流信号源等。远程设定点与PID控制器其他功能的关系如图1所示。[align=center][b][color=#990000][img=01.远程设定点与PID控制器的结构关系图,600,302]https://ng1.17img.cn/bbsfiles/images/2022/12/202212061510414734_8875_3221506_3.jpg!w690x348.jpg[/img][/color][/b][/align][align=center][b][color=#990000]图1 远程设定点功能与PID控制器其他功能的关系图[/color][/b][/align] 在工业生产和一些实际应用中,设定点并不能事先人为的给出,设定点有时需要根据实际过程采取远程控制形式,而这些远程设定点一般会随时间和环境不断发生变化。例如在多回路的复杂控制过程中,回路中被控参数的选取会直接影响控制效果和效率,因此远程设定点主要功能对设定点进行优化和对控制系统进行局部调整和优化。[b][size=18px][color=#990000]二、远程设定点的操作设置[/color][/size][/b] 本文以VPC 2021系列多功能超高精度PID控制器为例,详细说明远程设定点的操作设置值。 带有远程设定值的控制器一般都有两个输入通道,第一主输入通道作为过程传感器输入,第二辅助输入通道用来作为远程设定点输入。与主输入信号一样,辅助输入的远程设定点同样可接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何信号源只要能转换为上述47种类型型号,都可以直接接入第二辅助输入通道作为远程设定点源。 VPC 2021系列超高精度PID调节器是一台具有两路输入(主输入和辅助输入)和两路输出(主控输出1和2)的多功能控制器,具有远程设定点功能,在具体使用远程设定值功能时的具体接线如图2所示。需要注意的是,远程设定点功能只能在单点设定控制模式下有效,即在程序控制模式下无法使用远程设定值功能。 图中在主输入通道上连接的压力传感器为过程传感器,在主控输出1通道连接的是作为执行机构的高压比例阀,由此压力传感器、高压比例阀和PID调节器组成标准的闭环控制回路,在一般情况下可以通过内部设定点进行压力控制。[align=center][b][color=#990000][img=02.远程设定点功能使用接线图,690,267]https://ng1.17img.cn/bbsfiles/images/2022/12/202212061511218073_2657_3221506_3.jpg!w690x267.jpg[/img][/color][/b][/align][align=center][b][color=#990000]图2 使用远程设定点功能时的接线图[/color][/b][/align] 如果要使用远程设定点功能,如图1所示,需要在辅助输入通道接入远程设定点源,这里是电压信号发生器。在使用远程设定值功能前,需要对PID控制器的辅助输入通道相关参数进行设置,以满足以下几方面要求: (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。 (2)辅助通道的显示上下限也要与主输入通道完全一致。 (3)显示辅助通道接入的远程设定点信号大小的小数点位数要与主输入通道保持一致。 完成辅助输入通道参数的设置后,开始使用远程设定点功能时,还需要激活远程设定值功能。远程设定值功能的激活有以下两种方式: (1)仅使用远程设定点,不使用本地设定点:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。 (2)可进行远程和本地设定点之间切换:在PID控制器中,设置辅助输入通道2的功能为“禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图1中所示的纽子开关实现远程设定点和本地设定点之间的切换,开关闭合是为远程设定点功能,开关断开时为本地设定点功能。 需要注意的是,无论采用哪种远程设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[b][size=18px][color=#990000]三、远程设定点功能的典型应用[/color][/size][/b] 远程设定点功能的用途十分广泛,在许多控制领域都可以得到应用,典型应用是手动设定点输入的自动跟踪控制,多个被控对象之间的主从自动跟踪控制、串级控制和比值控制中的自动从属调节等。[b][color=#990000]3.1 各种自动跟踪控制[/color][/b] 自动跟踪控制会出现在许多实际应用中,一般是在两个以上被控对象中,要求一个被控对象始终跟随另一个被动对象的变化。一般自动跟踪控制应用中,要求两个或两个以上的被控对象随时间始终同步变化并尽可能的完全相同,最典型的应用场景是多温区的温度跟踪控制,其目的是实现各个温区的温度始终相同,从而起到温度均匀或使被跟踪对象处于绝热状态。 如图3所示,我们以两个被控对象之间的温度跟踪为例,其中物体A是主温度变化对象,物体B为防护温度变化对象,要求物体B的温度始终跟踪物体A并保持相同,从而使物体A始终处于等温绝热状态,这种等温绝热形式常用于绝热量热计。[align=center][b][color=#990000][img=03.自动跟踪控制示意图,690,195]https://ng1.17img.cn/bbsfiles/images/2022/12/202212061511438279_8853_3221506_3.jpg!w690x195.jpg[/img][/color][/b][/align][align=center][b][color=#990000]图3 温度自动跟踪中的传感器形式:(a)温差热电堆,(b)热电阻远程设定点[/color][/b][/align] 图3给出了温度跟踪中的两种温度传感器连接方式,图3(a)是典型的温差热电堆形式,其中用了两只或多只热电偶构成的热电堆检测物体AB之间的温差,温差信号(电压)直接连接到PID控制器的主输入端,PID控制器调节物体B的加热功率,使温差信号始终保持最小(近似零),从而实现物体B的温度始终跟踪物体A。 在有些应用场合无法使用热电偶而只能使用热电阻,那么温度跟踪一般会采用图3(b)所示的远程设定点功能。这时需要物体AB上分别安装两只热电阻温度计,其中物体B上的热电阻(两线制或三线制)连接到PID控制器的主输入端作为控制传感器,物体A上的热电阻(与物体B热电阻制式保持相同)连接到PID控制器的辅助输入端作为远程设定点传感器,由此实现物体B的温度调节始终跟踪物体A的温度变化。 采用热电阻温度传感器进行温度跟踪控制一直是个技术难点,以往的实现方法是采用复杂的惠斯登电桥(wheatstone bridge)将图3(b)中的两只热电阻温度传感器的电阻差转换为电压信号,这样就等同于图3(a)所示的功能。由此可见,采用远程设定点功能简化了热电阻温度跟踪的实现难度和装置的体积及造价。[b][color=#990000]3.2 串级控制(级联控制)[/color][/b] 远程设定点功能最主要的应用是在串级控制系统中。一般串级控制系统由两个或两个以上的控制器串联连接组成,一个控制器的输出作为另一个控制器的设定值。串级控制系统的特点是将两个PID调节器相串联,主调节器的输出作为副调节器的设定,当被控对象的滞后较大,干扰比较剧烈、频繁时,可考虑采用串级控制系统。特别是需要进行超高精度控制,以及跨参数和跨量程控制时,串级控制系统则能重复发挥其优势。 图4所示是一个典型的串级控制在管壳式热交换器温度控制中的应用,其中离开热交换器的液体的温度是最终需要的控制变量,即通过操控蒸汽调节阀,使液体温度恒定在某一个设定值上。进入换热器的蒸汽流量直接影响温度,但只要控制好温度,我们并不关心流量有多少。所需的蒸汽量将取决于工作流体的流速和进口温度与出口温度设定点之间的差异。[align=center][b][color=#990000][img=04.热交换器温度的串级系统结构示意图,690,369]https://ng1.17img.cn/bbsfiles/images/2022/12/202212061512007021_6743_3221506_3.jpg!w690x369.jpg[/img][/color][/b][/align][align=center][b][color=#990000]图4 热交换器温度控制中的串级控制系统[/color][/b][/align] 我们可以用一个PID控制器来控制温度,温度作为输入,输出连接到调节阀。虽然这种安排可以控制温度。但是,在实际控制中存在一些问题: (1)蒸汽集管压力可能发生变化,导致流入换热器的蒸汽流量突然减少。温度控制器将把温度带回它的设定值,但是,由于温度控制器需要缓慢的调谐,校正将花费比预期更长的时间。 (2)温度循环,可能包含多个滞后和死区,是一个更难调优的循环。阀门中的非线性将进一步使调谐复杂化。 如图4所示,使用串级控制方式将纠正这两个问题。在此串级控制系统中,采用了两路控制(或两个PID控制器),其中一个作为主控制器(温度控制器)采集最终需要控制的离开换热器的流体温度,同时根据本地设定点(温度值)进行控制,控制器的输出信号作为作为从控制器(流量控制器)的远程设定点,流量控制器采集流量传感器信号,并根据远程设定点控制调节阀的开度大小。 由此可见,采用串级控制方法,如果管路内压力发生变化而导致流量发生改变,流量测量将检测到这种变化,并立即可以得到反馈和纠正,从而平稳快速的实现温度的最终控制。 这里需要注意的是,主控制器的输出量为电压(或电流值),是作为从控制器的远程设定值,那么此远程设定值的变化范围应与流量传感器的信号类型(电压或电流)和量程保持一致。[b][color=#990000]3.3 比值控制[/color][/b] 远程设定值功能经常在比值控制中得到应用。比值控制,也称之为比率控制,是使得两种或两种以上被控变量的比值保持恒定的一种控制方法。 如图5所示是一个典型的流体混合比值控制应用,通过比值控制方式控制一种流体(受控流体)与另一种流体(自由流体)按照设定的流量比值进行混合。实际上,这也是一种跟踪控制形式,即受控流体的流量按照设定比值自动跟踪自由流体的流量变化。[align=center][b][color=#990000][img=05.两种流体混合时的比值控制系统结构示意图,600,439]https://ng1.17img.cn/bbsfiles/images/2022/12/202212061512224917_4914_3221506_3.jpg!w690x506.jpg[/img][/color][/b][/align][align=center][b][color=#990000]图5 流体混合中的比值控制系统[/color][/b][/align] 在图5中,用流量传感器1测量自由流体的流量,此流量信号乘以比值发生器的设定比值输出远程设定点信号。PID控制器控制分别接收远程设定点信号作为设定值和接收流量传感器2作为测量信号,由此来控制被控流体。 在具体应用过程中,比值发生器可采用以下两种方式实现: (1)从图5可以看出,比值发生器类似于图4所示串级控制系统中的主控制器,控制电动针阀的PID控制器相当于串级控制系统中的从控制器。因此,采用两路PID控制就可实现比值控制。 (2)更简单的方式是直接采用图2所示的PID控制器的远程设定点功能,将流量传感器1和传感器2分别连接到主输入和辅助输入通道,其中辅助输入通道作为远程设定点。而远程设定点的比值大小则可以通过修改辅助通道的显示上下限来进行改变,但需要注意的是辅助输入通道的信号类型和显示小数点位数要与主输入通道保持一致。[b][size=18px][color=#990000]四、总结[/color][/size][/b] 远程设定点功能是超高精度PID控制器的重要拓展功能之一,在实际自动控制中有着广泛的应用,但详细介绍远程设定点功能的具体操作设置和实际应用的资料内容很少。本文重点侧重介绍远程设定点的功能和操作设置过程,以期便于具体操作使用人员的快速设置和投入控制运行。 远程设定点功能在各种复杂PID控制中的应用十分广泛,本文只是列举了远程设定点功能在自动跟踪、串级控制和比率控制中的典型应用,而在实际控制中还可以有更多种的应用演变。[align=center]~~~~~~~~~~~~~[/align]

  • 升级试验机的拉伸装置中的控制器

    改造升级方案加热炉的改造将原有的一个固定对开式电阻加热炉,改造升级为两个移动对开式电阻加热炉。具体改造方法是在试验机上增加旋转臂炉架,如所示。旋转臂炉架分前臂和后臂两部分,分别与试验机底座上的立柱和加热炉连接。通过调节旋转臂炉架的位置不仅能相对试验机调整加热炉的高度,而且能方便地将高温炉炉膛和试验机的夹头中心轴线调整到适当的位置。  可旋转的对开式电阻加热炉示意图两个可移动对开式电阻加热炉的主要参数如下:外形尺寸320mm440mm,炉膛尺寸80mm320mm,均热带150mm,加热炉上、中和下三段发热体(镍铬电热合金丝)的直径均为1.0mm,绕制成螺旋体。加热炉上、中和下三段发热体的最大功率分别为1000,2000和1000W,试样上绑扎热电偶(K型热电偶)与加热炉上、中和下三段发热体和各段温度控制器对应。高温拉伸夹具的改造改造前拉杆和试验机保持相对的固定关系,在进行完一次高温拉伸试验后要等待高温拉杆冷却到室温状态(或接近室温)后,才能进行下一次高温拉伸试验的控温过程。为提高工作效率,对试验机的高温拉伸夹具也进行了改造。重新设计了高温拉伸夹具,在夹具的上部分增加隔热板,在隔热板上增加可以调节高度的悬挂固定杆,从而有效地解决了高温拉杆和试验拉棒在高温环境中产生的热膨胀变形问题。悬挂固定杆(根据不同试样的长度调节以保证试样位于加热炉的中央)可以保证高温夹具位置在高温炉中保持相对固定,解决了不同试样造成的在加热炉内的相对位置不同的问题,提高了控温过程中的精度。另外,加入悬挂固定杆后,相当于增加了一个把手,实现了在高温试验过程结束后将已拉断试样快速拿出,将另一支含有高温试样的拉杆装入加热炉内,从而有效地提高了加热炉的利用效率。  同时把以上设计为两个可以移动的加热炉,在试验机后侧两端分别增加一个支柱,可以再次提高一倍的工作效率。最后,将高温夹具设计为上下两部分可以与拉伸试验机分离的结构部件,待保温结束后再与拉伸试验机连接进行高温拉伸试验,其他时间可以利用该试验机进行常温拉伸等试验,从而可以实现试验机的最大利用率。温度控制器的升级该试验机高温装置原温度控制仪表功能很简单,主要存在如下缺点:由于其控制方式为加热、保持和停止三位式控制,存在着温度控制波动大、温度控制精度差和加热功率不可调节等缺点,因而能源浪费大,加热效率低;该温度控制仪表老化严重,存在着温度控制失灵等故障,仪表控制精度难以满足相关高温拉伸试验标准的精度要求,而且此仪表要求日常频繁维护。因此,对试验机高温拉伸装置中的温度控制器进行了升级,优化了控制器的控制参数。通过调研,笔者决定采用国产宇电A1-808P仪表替代原控制仪表,主要增加了程序控制和手动调节等方便试验控制的功能。A1-808P仪表属于智能型控制仪表,在整个温度控制中可以人工干涉控制参数,以保证试验的精度要求。在应用人工智能调节算法功能后,能自动学习系统特性。当自整定完成后,虽然初次控制时效果不太理想,但第二次使用时便能获得非常精确的控制。

  • 自动上料控制器 自动打磨控制器

    自动上料控制器 自动打磨控制器

    自动上料控制器 / 自动打磨控制器产品外形小巧,功能简单实用,参数设置少,无需繁琐操作。该表由杭州双星普天 开发设计,功能支持 定制!一、基本工作原理:监控主电机的电流,当主电机负载电流过大时,控制器输出断开信号,停止副电机工作,随着主电机处理物料的减少,主电机电流降低,控制器开启副电机工作,以此循环。二、基本参数1、供电:220V AC / 24V DC 可选2、输出:单继电器输出,触点容量 250V 3A3、采样方式:采用电流互感器 隔离采样4、量程: 10A / 50A /100A5、安装方式:面板安装 / 导轨安装 可选三、操作方式常规设置内容:报警下限电流值报警下限输出延时报警上限电流值报警上限输出延时设置方法:1、对于已知动作电流的用户,可以进入设置模式后修改设置内容2、该电流表支持快速设置模式,无需进入设置状态,通过简单的按键即可完成动作电流的设置。对于不知道电流大小 或者 需要频繁快速修改设定值的用户特别方便。四、互感器(销售时含)与该表配合使用的互感器有多种,出厂时根据用户测量电流范围选配,无需用户关注。用户只需关注 被检测线的直径,线鼻子是否顺利穿线等问题。与该表配合的常规互感器 穿心孔直径有 26mm / 11mm / 6mm 供选择。如有特别要求,比如钳形口互感器等,采购时需咨询。五、质保自采购之日起,在正常使用情况下,一年内出现质量问题,免费更换。无限期保修http://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507480_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507481_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpg

  • 具有分程控制功能的超高精度PID控制器及其应用

    具有分程控制功能的超高精度PID控制器及其应用

    [size=16px][color=#339999]摘要:分程控制作为一种典型的复杂控制方法之一,常用于聚合反应工艺、冷热循环浴、TEC半导体温度控制、动态平衡法的真空和压力控制等领域。为快速和便捷的使用分程控制,避免采用PLC时存在的控制精度差和使用门槛高等问题,本文介绍了具有分程控制功能的超高精度VPC-2021系列PID控制器,以及使用分程控制时的参数设置、接线和具体应用。[/color][/size][align=center][size=16px][img=超高精度PID控制器的特殊功能(4)——分程控制功能及其应用,650,440]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191326452103_3866_3221506_3.jpg!w690x468.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 分程控制简介[/color][/size][/b][size=16px] 分程控制是采用一个输出变量来控制几个不同操作变量之间协调运行的一种复杂控制方式,如单个控制器用于控制两个执行机构(例如两个阀门、加热和制冷器等),控制这两个操作变量将一个受控变量保持在设定点上。分程控制主要包括以下三种不同方式:[/size][size=16px] (1)分程控制(Split Range Control)[/size][size=16px] (2)顺序控制(Sequence Control)[/size][size=16px] (3)正反向动作控制(Opposite Acting Control)[/size][size=16px] 一个典型的分程控制且应用广泛的是密闭容器的真空压力控制,控制回路上有两个控制阀,一个阀负责进气加压,另一个阀负责排气。图1(a)曲线图显示了阀门开度与真空压力的关系。[/size][align=center][size=16px][color=#339999][b][img=01.分程控制的三种形式,690,249]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329331841_5111_3221506_3.jpg!w690x249.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 分程控制三种形式的操作示意图[/b][/color][/size][/align][size=16px] 如果需要对阀门进行顺序控制,其工作方式如图1(b)所示。在这种顺序阀操作中,当PID控制器输出为0~50%时,阀门A将从0~100%打开。当PID控制器输出达到50%时,阀门A将100%打开,然后阀门B将在PID输出达到50%后开始打开。因此,对于PID控制器输出50%至100%,阀门B将从0%至100%打开。[/size][size=16px] 在正反向动作控制中,对于0~100%的PID控制器输出,阀A将从0~100%开始打开,同时对于相同的PID控制器输出,阀B将从100%到0%关闭。[/size][size=16px] 在上述分程控制的具体实施过程中,普遍需要采用具有PID控制功能的相应装置。目前这种控制装置大多采用PLC形式才能实现,存在使用门槛高和控制精度差等问题。为此本文将介绍一种具有分程控制功能的超高精度PID控制器,以及分程控制时的参数设置、接线和具体应用。[/size][size=18px][color=#339999][b]2. 具有分程控制功能的超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列超高精度PID控制器的内核是一款双通道控制器,其中VPC2021-1系列是具有分程控制功能的PID控制器,而VPC2021-2系列则是独立双通道PID控制器。本文将重点介绍具有分程控制功能的VPC2021-1系列PID控制器,此控制器如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.VPC2021-1控制器及其电气接线图,690,199]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329550947_4629_3221506_3.jpg!w690x199.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 VPC2021-1控制器及其电气接线图[/b][/color][/size][/align][size=16px] VPC-2021系列PID控制器的主要技术特征如下:[/size][size=16px] (1)尽管VPC-2021系列PID控制器的内核是双通道控制器,具有两路传感器输入和两路控制信号输出,但为了实现分程控制功能,控制器仅配置了一套PID控制模块,所以在实际应用中还是一款单通道PID控制器。[/size][size=16px] (2)具有两路控制信号输出(主控输出1和主控输出2),两路输出可以分别控制相应的阀门、加热和制冷器,适合真空压力和温度的分程控制功能实现。[/size][size=16px] (3)具有一路变送输出通道,可变送输出测量值PV、设定值SV、输出值OP和偏差值DV四个控制参数中的任选一种,这也有助于分程控制功能的实现和拓展。[/size][size=16px] (4)具有两路传感器信号输入通道,可连接相同测量参数(如真空压力或温度)但量程不同的传感器,可实现两个传感器之间的自动切换,由此可进行宽量程范围内的PID控制。[/size][size=16px] (5)所具有的两路输入通道,还可实现本地设定和远程设定功能之间的切换,通过远程设定功能,可任意改变设定值(如周期性波形形式的设定曲线),实现周期性复杂波形的控制。[/size][size=16px] (6)具有程序控制功能,支持20条编程曲线,每条50段,支持段内循环和曲线循环。[/size][size=16px] (7)具有超高的测量和控制精度,24位AD、16位DA、双精度浮点运行和0.01%最小输出百分比。控制器是面板安装式的标准工业调节器,最大开孔尺寸为92mm×92mm。[/size][size=18px][color=#339999][b]3. 分程控制功能的具体应用[/b][/color][/size][size=16px] 针对图1所示的三种分程控制形式,采用VPC2021-1控制器的具体实施方法如下。[/size][size=16px][color=#339999][b] (1)分程控制应用[/b][/color][/size][size=16px] 对于典型的分程控制,PID控制器的具体接线如图3(a)所示,将两个被控对象,如常闭型阀门或加热制冷器,直接连接到主控输出1和主控输出2接线端。测量传感器连接到主输入1接线端。[/size][align=center][size=16px][color=#339999][b][img=03.分程控制接线示意图,690,222]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191330182623_478_3221506_3.jpg!w690x222.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 两种分程控制形式的PID控制器接线示意图[/b][/color][/size][/align][size=16px][color=#339999][b] (2)顺序控制应用[/b][/color][/size][size=16px] 对于顺序控制,PID控制器的具体接线如图3(b)所示,将一个被控对象,如常闭型阀门,直接连接到主控输出1接线端,将第二个被动对象,如常闭型阀门,连接到变送输出接线端。测量传感器连接到主输入1接线端。[/size][size=16px][color=#339999][b] (3)正反向控制应用[/b][/color][/size][size=16px] 对于正反向控制,PID控制器的具体接线与图3(a)所示相同,区别只是所连接阀门一个是常闭型,另一个是常开型。[/size][size=16px] 在使用PID控制器进行分程控制之前,还需进行以下几项控制器参数的设置:[/size][size=16px] (1)设置仪表功能的控制方式为“双输出”。[/size][size=16px] (2)在分程控制中,根据实际被控对象设置“死区”范围。[/size][size=16px] (3)如需采用变送功能,还需进行相应的变送参数设置。[/size][size=16px] (4)如需采用双传感器切换功能,还需进行相应的切换参数设置。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文详细介绍了具有分程控制功能的VPC2021-1系列超高精度PID控制器,采用此控制器可直接用于相应分程控制的实施,且具有很高的控制精度。[/size][size=16px] 分程控制在实践中应用广泛,然而,由于忽视了与之相关的独特挑战,分程控制经常会被误用或滥用。在许多应用中,如上述的顺序控制和正反向动作控制中,采用如VPC2021-2这种独立双通道PID控制器,无论在配置、调试和故障排除上都要简单得多。[/size][align=center][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align]

  • 高精度级联控制器在印刷和喷绘设备油墨流量和压力控制中的应用

    高精度级联控制器在印刷和喷绘设备油墨流量和压力控制中的应用

    [size=16px][color=#339999][b]摘要:针对现有技术在印刷或喷绘设备中油墨流量控制不准确,使得油墨粘稠度产生异常造成批量性质量方面的问题,本文提出了相应的串级控制解决方案,即通过双回路形式同时控制油墨的流量和压力。本解决方案不仅可以保证油墨最终流量的控制精度和避免出现质量问题,同时还采用了专门的PID串级控制器,代替传统的PLC控制器且无需再进行编程工作。[/b][/color][/size][align=center][size=16px] [img=高精度级联控制器在印刷和喷绘设备油墨流量控制中的应用,550,300]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161500376435_5330_3221506_3.jpg!w690x377.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 油墨是用于印刷的重要材料,它通过印刷或喷绘将图案、文字呈现在承印物上。油墨中的主要成分和辅助成分主要由连结料(树脂)、颜料、填料、助剂和溶剂等组成,它们均匀地混合并经反复轧制而成一种黏性胶状流体。油墨具有一定的粘稠度,当油墨在管道内输送时,如果流量发生改变或发生其他意外情况,就会导致油墨的粘稠度发生改变,很容易造成批量性的不良品发生。由此可见,油墨流量的精密和稳定控制是印刷和喷绘设备中的核心技术之一。[/size][size=16px] 针对油墨流量精密控制需求,特别是根据客户的要求以及现有技术的不足,希望可以进行技术升级以预防因油路,气路,或者油墨粘度异常造成批量性的问题。为此,为了具体解决油墨流量控制不准确使得油墨粘稠度产生异常造成批量性质量问题,本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案基于流量和压力串级控制原理,即对油墨流量和油墨压力同时进行调整,由此实现高精度的油墨流量控制。解决方案的结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.油墨流量和压力精密控制系统结构示意图,690,312]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161502292249_6607_3221506_3.jpg!w690x312.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 油墨流量串级控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,解决方案的油墨流量控制系统由压力控制和流量控制两个闭环控制回路构成,这两个控制回路详述如下:[/size][size=16px] (1)压力控制回路:压力控制回路由电气比例阀独立构成,其内部包括压力传感器、调节阀和控制器。压力控制回路的作用是对高压气源压力进行自动减压,并快速恒定控制在压力设定值上。压力控制回路作为串级控制(或双闭环控制)的辅助控制回路(内部闭环回路),主要用来控制加载在油墨桶上的压力,以便快速调节和控制油墨桶的油墨输出流量。[/size][size=16px] (2)流量控制回路:流量控制回路由流量计、串级控制器和压力控制回路构成。在控制过程中,串级控制器检测流量计输出信号并与设定值比较,然后驱动压力控制回路使油墨输出流量稳定在设定流量值上。流量控制回路作为串级控制(或双闭环控制)的主控制回路(外部闭环回路),主要用来检测油墨桶的输出流量并给压力控制回路输出控制设定值。[/size][size=16px] 通过上述两个控制回路的串联最终构成串级控制(级联控制或双闭环)回路,即流量控制回路的输出作为压力控制回路的输入,压力控制回路作为最终流量控制回路的执行机构。[/size][size=16px] 另外需要说明的是,图1只是给出了双闭环控制回路的结构示意图,在具体实施过程中还需根据流量控制精度、耐压范围和油墨喷嘴孔径等工艺参数进行相应的配套器件选择,在此方案中使用了超高精度的PID串级控制器,具有24位AD、16位DA和0.01%最小输出百分比,这样基本就可以满足绝大多数油墨流量控制精度的要求。[/size][size=16px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 本文所述的串级控制系统,通过PID串级控制器、电气比例阀、压力传感器和高精密流量计等元件,通过流量控制和压力控制的双闭环控制形式,实现了设定流量和实际流量自动精密控制。由此可预防因油路、气路或者油墨粘度异常造成批量性的不良发生。[/size][size=16px] 本解决方案的特色之一是采用专门的PID串级控制器来代替一般控制中所用的PLC控制装置,通过串级控制器的配套软件可方便进行流量控制,无需再对PLC控制装置进行编程的繁复操作。[/size][align=center][b][color=#339999][/color][/b][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    [align=center][color=#990000][b]超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代[/b][/color][/align][align=center][color=#990000]Unwind Tension Controller for Dancer Input with Tension Indication—— Domestic Substitution of Montalvo Tension Controller[/color][/align][align=center][img=超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代,690,542]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092010572560_1350_3221506_3.jpg!w690x542.jpg[/img][/align][color=#990000]摘要:针对目前市场上张力控制器普遍存在的测控精度较差、功能单一、适用传感器类型少和PID参数无法自整定等问题,本文分析了国外浮辊和张力双通道控制器的技术特点。对标国外高端张力控制器产品,本文重点介绍了国产替代产品的性能,国产张力控制器同样具有浮辊和张力双回路控制功能,但由于每个通道都采用了24位AD、16位DA和双精度浮点运算,可以实现超高精度的张力控制,而所具有的PID自整定功能则使得操作更为快捷方便。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]张力控制器主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制仪表,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。典型的张力控制器主要由AD,DA转换器和高性能微处理器等组成,张力控制器与张力传感器和电气比例阀组成典型的张力控制系统。在具体张力控制过程中,张力控制器是根据张力传感器和A/D模式转换器测量到的张力与设定的目标张力相比较后,经微处理器PID运算自动调整D/A输出从而改变电气比例阀的输出压力来实现卷料的张力调节,可广泛用于各种需对张力进行精密测控的场合,具有使用灵活和广泛的适用性。目前市场上有各种张力控制器,但在高精度张力控制过程中,普遍存在以下不足:(1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。(2)输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制显然无法实现。(3)浮点运算精度较差:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较差,从而使得输出百分比的最小调节量也只能为0.1%,根本无法进行电气比例阀输出压力的精细调节,进而无法实现超高精度的张力控制。(4)单通道控制:绝大多数张力控制器尽管可以实现如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制模式。而个别国外的张力控制器产品,如Montalvo的Z4UI双回路控制器则能实现放卷扭矩和浮辊位置的同时控制。(5)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限。(6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适PID则显着尤为重要,但目前很多张力控制器并没有这项PID参数自整定功能。针对上述目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制以及相关控制器的国产替代,本文将对国外高端张力控制器技术特点进行分析,并对标国外产品介绍研发的新型浮辊和张力双回路超高精度控制器产品。[b][size=18px][color=#990000]二、Montalvo公司 Z4UI 双回路张力控制器技术特点分析[/color][/size][size=18px][color=#990000][/color][/size][/b]蒙特福Montalvo公司是国外著名的张力控制相关产品生产厂商,其最具特点的控制器产品是Z4UI浮辊和张力双回路控制器,我们将对标此张力控制器进行分析。蒙特福Z4UI浮辊和张力双回路控制系统结构如图1所示,控制器内置了张力指示器,能够同时检测浮辊电位计信号和张力检测器的张力信号,从而提供高精度的张力控制。它集合了浮辊吸收缓冲张力波动的功能和张力检测器精确、稳定的检测优势,通过渐进式“Progressive“ PID 控制电路调节放卷制动器的转矩输出,保持浮辊臂的位置不变来实现张力控制。模拟式张力表显示卷材的张力大小,操作员可直接监视张力稳定性,并根据张力表显示的实际卷材张力,来调节浮辊臂上的载荷从而保持理想张力。[align=center][color=#990000][img=01.Z4UI浮辊和张力双回路控制.jpg,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092013010509_6406_3221506_3.jpg!w690x275.jpg[/img][/color][/align][align=center][color=#990000]图1 Z4UI双回路控制器在浮辊和张力控制系统中应用的结构示意图[/color][/align]由此可以看出,蒙特福Z4UI控制器是个典型的双回路闭环控制器。其中,一个回路是通过检测浮辊位置信号(DPS-1位置传感器或浮辊电位器)来控制第一个电气比例阀(I/P转换器)压力输出,由此来调整气缸位置将气压转换成扭矩输出达到张力调节。另一个回路通过检测卷径信号(接近开关或超声波探头)来控制第二个电气比例阀(I/P转换器)压力输出,由此来调整放卷位置达到张力调节。由此可见,蒙特福Z4UI双回路控制器是通过同时对两个变量的检测和控制来实现高精度的放卷调节。蒙特福Z4UI控制器的另外一个特点是采用RS-232与上位机(PLC或PC)进行通讯,采用控制软件进行所有操作,减少了人工界面操作的复杂程度。[b][size=18px][color=#990000]三、国产双回路超高精度张力控制器[/color][/size][/b]从上述蒙特福Z4UI双回路张力控制器技术特点可以看出,双回路张力控制器的核心技术内容就是一个非常典型的双通道PID控制器,张力的控制则是采用外置传感器实现电气比例阀的串级形式的PID控制,因此,双回路张力控制器的技术特征就是双通道的电气比例阀串级PID控制。基于此分析,结合我们在真空压力方面进行电气比例阀超高精度串级PID控制的成功经验,我们可以将通用型的VPC-2021系列PID调节器(单通道和双通道)应用于张力控制中,由此可完全实现蒙特福Z4UI双回路张力控制器的替代。VPC-2021-2系列双通道PID调节器是标准形式的工业用控制器,具有96×96mm、96×48mm和48×96mm三种规格,但其最大优点是具有超高精度检测和控制能力,其中具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,具备0.01%的最小输出百分比。用于张力控制的双通道超高精度PID控制器如图2所示,电气接线如图3所示,主要技术指标如下:[align=center][color=#990000][img=VPC 2021-2超高精度PID控制器,600,266]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101508335313_3719_3221506_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#990000]图2 VPC 2021-2系列双通道张力控制器[/color][/align](1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。(2)独立双回路控制,每路控制输出刷新率50ms,双通道独立的输入和输出,双回路报警功能可以多功能应用,每通道都具备独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。(3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置极可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。(4)双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。(5)支持数字和模拟远程操作功能,支持标准MODBUS RTU 通讯协议。(6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能。每个通道采用独立的PID参数,且可独立的进行PID参数自整定。(7)带传感器馈电供电功能(24V,50mA)。(8)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。(9)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。(10)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101726466183_8818_3221506_3.png!w690x276.jpg[/img][/align][align=center][color=#990000]图3 VPC 2021-2系列双通道控制器电气连接图[/color][/align]从上述国产控制器技术指标可以看出,国产VPC 2021-2系列双通道控制器的性能和功能要远优于蒙特福Z4UI控制器,并具有强大的拓展能力,完全可以实现对蒙特福Z4UI控制器的替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align][align=center][/align]

  • 双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    [size=14px][color=#ff0000]摘要:本文针对真空型热离子能量转换器(发电装置)中真空压力和温度的关联性复杂控制,提出一个简便的控制方式和控制系统的解决方案,控制系统仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个可调参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个电源的功率即可实现真空室气压和阴极温度的同时控制,由此可大幅减小设备造价且无需使用任何软件。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000][b]一、问题的提出[/b][/color][/size][size=14px] 热离子能量转换器(TEC)是一种将热能直接转化为电能的静态装置,是一种基于热离子发射的转换方法。TEC可分为真空、带有正离子的铯离子和由辅助放电产生的惰性气体(如氩气)等形式。[/size][size=14px] 真空型TEC的简化示意图如图1所示,电极被放置在高真空环境中。阴极与热源热连接,阳极与热沉连接。电极颜色反映了它们温度之间的关系。[/size][align=center][size=14px][color=#ff0000][img=01.真空热离子能量转换器结构示意图,500,373]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931128921_2824_3221506_3.jpg!w690x515.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图1 真空热离子能量转换器结构示意图[/color][/align][size=14px] 一般情况下,最常见的商用温度控制器都能控制TEC阴极的温度,但如果使用了钡钨分压器阴极,因其氧化性问题则对加热过程有特殊的要求并不可忽视。在使用前,阴极必须烘烤并激活。为了保护阴极免受来自周围结构或焙烤过程中产品的氧化和污染,在真空室中必须保持必要的超高真空水平。此外,为了防止阴极可能被水分永久性污染而造成发射能力降低和钨阴极表面损伤,阴极必须允许浸泡在200~400℃足够长的时间,以允许完全的水蒸气出气。[/size][size=14px] 为了防止上述情况出现,最佳控制指标就是真空压力,即真空室中的压力必须始终小于1.33E-04Pa。因此,在TEC运行过程中,当给阴极加热器通电时,由于出气,温度会升高,真空室压力会增加。如果压力超过1.33E-04Pa,则需要关闭加热器电源,直到压力降到这个水平以下。真空室排气和焙烧后的活化是通过将钨基体中的氧化钡转化为阴极表面的游离钡来实现的。活化速率是真空室清洁度、阴极污染、时间和温度的函数。一般来说,阴极在工作温度或略高于工作温度时被激活。阴极温度不应超过1473K。[/size][size=14px][/size][size=14px] 由此可见,在TEC运行过程中,一个重要前提条件是供电加热和温度控制应确保整个过程的真空压力水平不应超过设定的超高真空度,即在运行过程中,除了温度控制之外,还需控制真空室内的真空度始终不超过额定值,但只有加热功率一个可调装置。[/size][size=14px] 从上述真空型TEC的运行要求可以看出,阴极的加热过程是通过调节一个可控变量(加热功率)来实现两个参数(气压和温度)的同时控制。[/size][size=14px] 为了实现这个特殊的控制过程,文献1采用一种复杂的控制机构,此控制机构基于类似的串级控制方法,使用了一个典型的PID控制器结合一个PXI单元,并编制了专用程序进行整体控制,其控制框图如图2所示。[/size][align=center][size=14px][color=#ff0000][img=02.文献1中使用的控制框图,600,356]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931510435_9811_3221506_3.jpg!w690x410.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图2 文献1中使用的控制框图[/color][/align][size=14px] 从图2所示的控制框图可以看出,整个控制装置结构较复杂,还需编制控制软件,整体造价也高。为了实现更简便的控制,本文提出一个更简便的控制方式和控制系统的解决方案,控制系统中仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个调节参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个调节小功率电源来实现真空室气压和阴极温度的控制。[/size][size=18px][color=#ff0000][b]二、解决方案[/b][/color][/size][size=14px] 由于在真空型TEC运行过程中只能调节阴极加热温度而同时不能使真空室内的气压超过设定值,这使得整个工作过程只有阴极加热功率一个可调节变量。为了实现阴极温度和腔室真空度的同时控制,解决方案采用了两个串联电源的新型结构,如图3所示。[/size][align=center][size=14px][color=#ff0000][img=03.新型真空压力和温度同时控制系统结构示意图,600,276]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932179007_2110_3221506_3.jpg!w690x318.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图3 新型真空压力和温度同时控制系统结构示意图[/color][/align][size=14px] 如图3所示,解决方案中采用了一个高精度的两通道PID控制器,此控制器具有两个独立的PID控制通道。第一通道与真空计和电源1组成第一闭环控制回路,第二通道与安装在阴极上的热电偶温度传感器(TC)和电源2组成第二闭环控制回路。这里的第一控制回路提供阴极的基础温度,其主要用于较低温度段的烘烤,并同时起到控制腔室真空度的作用。第二控制回路是在阴极温度达到一定温度后(如600℃)才开始起作用,其主要作用是将阴极温度最终恒定控制在设定的高温温度上。整个过程的真空压力和温度的控制效果基本与文献1所述的图4和图5所示相同。[/size][align=center][color=#ff0000][size=14px][img=04.全温域的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932441901_8566_3221506_3.jpg!w690x449.jpg[/img][/size][/color][/align][color=#ff0000][/color][align=center]图4 全温域的真空压力和阴极温度的变化[/align][align=center][size=14px][/size][/align][align=center][size=14px][img=05.加热初期的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230933014212_1816_3221506_3.jpg!w690x449.jpg[/img][/size][/align][size=14px][/size][align=center][color=#ff0000]图5 加热初期的真空压力和阴极温度的变化[/color][/align][size=14px] 在实际运行过程中的控制步骤如下:[/size][size=14px] (1)首先抽取腔室真空,使其达到2E-06Pa的超高真空水平。然后运行第一控制回路,真空计采集腔室压力,然后自动调节电源1的加热功率使得阴极温度从室温逐渐升高,其中的压力控制设定值为5E-06Pa。在此控制期间腔室压力始终不会超过设定值,但温度则会逐渐快速升高,且电源1始终有一定的输出功率。[/size][size=14px] (2)当第一控制回路控制中阴极温度达到初级设定温度(如600℃)后,第二控制回路自动开始运行,这使得电源2开始输出加热功率,此时电源1和电源2同时输出,使得阴极温度进一步升高,最终恒定在第二控制回路的温度设定值上。[/size][size=14px] (3)在第二回路工作期间,阴极温度进一步上升,势必会造成腔室气压升高而超出设定值5E-06Pa水平,此时第一回路会自动减小电源1的输出功率,使得阴极温度变化速度放缓。在第二回路运行过程中,第二回路相当于一个正向调节作用,第一回路实际上则是一个反向调节作用,这样既能保证腔室气压不会超出设定值,又能保证阴极温度逐步升高而达到设定的高温温度。[/size][size=14px] 总之,通过上述解决方案及其自动控制,可很便捷的实现热离子能量转换器中真空压力和温度的同时控制,压力水平和阴极恒定温度可根据阴极材料要求任意设定。而且整个控制装置得到了大幅度的简化,且无需进行采用任何软件。[/size][size=18px][b][color=#ff0000][/color][color=#ff0000]三、参考文献[/color][/b][/size][size=14px][1] Kania B, Ku? D, Warda P, et al. Intelligent Temperature and Vacuum Pressure Control System for a Thermionic Energy Converter[M]//Advanced, Contemporary Control. Springer, Cham, 2020: 253-263.[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size]

  • 工业用PID控制器相对于可编程逻辑控制器PLC的五大优点

    工业用PID控制器相对于可编程逻辑控制器PLC的五大优点

    [size=16px][color=#339999][b]摘要:针对控制领域内广泛使用的PID控制器和可编程逻辑控制器PLC,本文分析了具体应用中PID控制器的几大优点。PID调节器的优点主要体现在测控精度高、更强的控制功能、使用门槛低和操作简单、具有明了的可视化界面和节省成本。[/b][/color][/size][align=center][size=16px][img=相对于可编程逻辑控制器PLC,PID控制器具有哪些优势,600,320]https://ng1.17img.cn/bbsfiles/images/2023/05/202305161607321889_5876_3221506_3.jpg!w690x368.jpg[/img][/size][/align][size=16px][/size][b][size=18px][color=#339999]1. 基本概念[/color][/size][/b][size=16px] PID控制器(Proportion Integration Differentiation.比例-积分-微分控制器),由比例单元P、积分单元 I 和微分单元D组成。通过Kp,Ki和Kd三个参数的设定。PID控制器主要适用于基本线性和动态特性不随时间变化的系统。PID控制器是一个在工业控制应用中常见的反馈回路部件,PID控制器通常是指闭环控制的一种形式,这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。[/size][size=16px][/size] 可编程逻辑控制器(Programmable Logic Controller,PLC)是一种具有微处理器的用于自动化控制的数字运算控制器,可以将控制指令随时载入内存进行储存与执行。可编程逻辑控制器已经相当或接近于一台紧凑型电脑的主机,其在扩展性和可靠性方面的优势使其被广泛应用于目前的各类工业控制领域。[size=16px][/size] 在大多数工业控制应用中,PLC像PID控制器一样使用,PID模块的排列可以在PACs或PLC中完成,从而为精确的PLC控制提供更好的选择。与单独的控制器相比,这些控制器既智能又强大,每个PLC基本都包括软件编程中的PID模块。[size=16px][/size] 然而,尽管PID控制器和PLC有众多类似之处,它们在设置、编程和应用方面仍有显著不同,而综合这些不同来看,PID控制器有以下几方面自己独特的优势。[size=18px][color=#339999][b]2. 测控精度高[/b][/color][/size][size=16px] [/size][size=16px]PID控制器是闭合反馈回路的一部分,该回路主动追踪过程值与设定值的偏差,并根据需要调节输出水平。许多控制器都有 PID 算法,并带自动调节功能,可以实现快速设置,并保持最小的过程值与设定值偏差。目前一些工业用PID控制器已经发展到具有极高精度的水平,如24位AD、16位DA和0.01%最小输出百分比,由此可以实现温度、真空、压力、流量、张力等物理量的超高精度测量和控制。而对于PLC则很难具备如此高精度的能力,就算个别PLC能达到如此高的精度,那价格也会远高于PID调节器。[/size][size=18px][color=#339999][b]3. 控制功能更优[/b][/color][/size][size=16px] [/size][size=16px]PID控制器是一种专门设计用于处理特定的工业过程的调节器,因此包含了与这些过程直接相关的特点、输出和控制功能,例如针对各种不同的传感器需要提供完备的数据采集能力,针对需要阀门电机驱动控制(VMD)的应用提供专门的算法。而PLC需要具备适合广泛制造和自动化功能的特点,因此针对很多具体工业控制的特点是有限的。PLC可以执行基本的控制任务,但不如专门的PID控制器优势明显。此外,由于需要处理模拟信号,控制系统对微处理器的要求非常严苛,PID控制器是专为处理这些需求而设计的,而PLC必须在系统经过测试后才能判定能否满足这些过程要求。如未能符合要求,PLC将无法快速响应过程中的各种变化,并导致超前或滞后,从而影响产品质量。[/size][size=18px][color=#339999][b]4. 使用门槛低和操作简单[/b][/color][/size][size=16px] [/size][size=16px]PLC设计用于多任务控制环境,需要专业编程技巧以及大量时间,由专业人士来打造符合特定应用需要的解决方案。而PID控制器则可以相对快速地安装、设置和优化,并且所需经验极少。特别是一些PID控制器还自带计算机软件,采用图形化界面的计算机软件可以快速实现PID控制器的设置、运行和过程变量的采集和显示,更是大幅度降低了使用门槛。 [/size][size=16px][/size] 大多数PID控制器可以面板安装,也就是可以安装在过程机械的前面板上,并且带可视屏幕,相关人员只需基本的工程知识即可在数分钟内完成设置。PLC则较为复杂,通常安装在面板后面的机架上,不带显示屏,且需要单独的HMI(同样需要设置),因此PLC操作使用的便捷性上劣势明显。[size=18px][color=#339999][b]5. 明了的可视化界面[/b][/color][/size][size=16px] [/size][size=16px]面板安装的PID控制器有多种规格以及复杂程度,因此操作员可轻松查看过程信息以及需要注意的警告或警报信息。PLC通常没有直接的界面,需要一个单独的人机界面(HMI),且人机界面需要单独设置。HIM可以显示必要的过程信息,但它通常还会显示与PLC所管理的其他任务相关的各种数据。这意味着面板安装式PID控制器优势非常明显,有专门的界面方便查看所有相关的信息,可以快速进行调节。许多PID控制器还额外提供数据记录功能,可以用于查看先前所做的更改以及标记潜在问题。[/size][size=18px][color=#339999][b]6. 节省成本[/b][/color][/size][size=16px] [/size][size=16px]当然这是相对来说的,PLC设计用于控制多任务,适用于多回路控制的应用。对于某些单回路,或者少数回路控制的应用,PLC许多特点是应用所不需要的,所以成本显得高昂,这是不如选用专门针对某个工艺参数调控设计的PID控制器。[/size][size=16px][/size] 总之,对于具有相同功能和控制精度的PID控制器和PLC,总体而言PID控制器更节省成本。[size=16px][/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align]

  • 温度控制器

    您好!我一朋友现在用的岛津的液相,想外配一个温度控制器,将其温度控制在10°左右,想请教一下您,一般有哪些型号,这个通用吗?

  • 超高精度PID控制器的特殊功能(2)——远程控制软件及其安装使用

    超高精度PID控制器的特殊功能(2)——远程控制软件及其安装使用

    [b][color=#000099]摘要:远程控制软件是高级PID调节器随机配备的一种计算机软件,可在计算机上远程进行调节器的所有操作,并还具有过程曲线显示和存储功能。本文主要针对VPC 2021系列超高精度PID控制器,介绍了随机配备的控制软件的安装和一些最基本的重要操作和参数设置。[/color][/b][align=center][img=PID控制器远程控制软件及其安装使用,550,349]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202138407464_1087_3221506_3.jpg!w690x439.jpg[/img][/align][size=18px][color=#000099][b]1. PID控制器远程控制软件简介[/b][/color][/size] PID控制器在众多控制领域有着十分广泛的应用,但绝大多数控制器并未随机配备相应的远程控制软件,有些控制器也仅配置的简单的显示软件,这使得控制器的操作,特别是在调试阶段,还基本都是使用人员通过按键方式进行手动操作。目前只有比较高端的PID调节器会配备随机控制软件,这些控制软件的使用会带来以下优势: (1)一般PID控制器整体都十分小巧,如最大的标准面板尺寸为96mm×96mm,且大多采用面板式安装形式以便于人工操作和过程数据显示。由于要在如此小的面板上集成更多的数据、功能甚至曲线或图形,绝大多数PID控制器只给人工操作配置了3~4个操作按键,由此造成操作过程十分不友好。如对于功能强大的PID控制器,其按键操作过程往往是复杂的菜单式树状结构,由此造成在使用过程中,特别是在调试和更改控制参数时,操作人员需要仔细阅读使用说明,并对照说明书进行繁复的按键操作,还需经过多次重复操作才能熟练。如果隔段时间不用,还需重新上述学习步骤才能进行正常操作。采用远程控制软件则完全解决了操作不友好问题,即在与PID控制器建立了通讯的计算机上运行相应的配套软件,就可在计算机上完成所有PID控制器的操作。另外,图形化的控制软件具有更友好的人机界面。 (2)PID控制器随机配套软件由于具有图形化人机界面,可使得操作人员更直观的熟悉和了解控制器的各种功能,可快速完成PID控制器的各种设置并投入使用,这在调试使用阶段十分有效。特别是对于还需要上位机与PID控制器进行通讯并与其他仪表一并集成后进行总体控制编程的开发人员而言,通过配套软件进行先期PID控制器调试运行后,可快速熟悉PID控制器的相应功能及其底层规则,并找到合理的运行参数,更有利于后续集成控制程序的编写顺利,可节省大量繁复的控制器按键操作和程序调试时间。 (3)PID控制器随机配套软件除了具备所有设置功能之外,更是具有强大的监视、操作和图形显示功能,可完全采用软件来运行PID调节器,并可直观的显示设定值、测量值和功率输出百分比随时间的变化曲线,而这些曲线都被自动存储并可调用查看。曲线显示坐标可以根据需要进行改变,由此可观察各种曲线局部或整体的变化细节。 为了展示PID控制器随机软件的强大功能,本文主要针对VPC 2021系列超高精度PID控制器,介绍了随机配备的控制软件的安装和一些基本操作,本文同时也可做为软件使用说明书。[align=left][b][size=18px][color=#000099]2. 安装条件[/color][/size][/b][/align] 操作系统要求:WINDOWS 7或WINDOWS 10。 软件运行环境:需要安装MICROSOFT OFFICE(ACCESS)软件和VB6MINI软件,其中随机软件中带有可直接安装和运行的VB6MINI软件。 其他要求:计算机中不能用WPS,暂停360杀毒、360安全卫士等其他安全软件。[b][size=18px][color=#000099]3. 软件安装和计算机通讯接口设置[/color][/size][color=#000099]3.1 软件安装[/color][/b] 在VPC 2021系列真空压力和温度控制器系列中,配备了两个计算机软件,一个用于单通道程序控制器VPC 2021-1,对应的压缩文件名为“VPC 2021-1控制器软件.rar”;另一个用于双通道单点控制器VPC 2021-2,对应的压缩文件名为“VPC 2021-2控制器软件.rar”。 在VPC 2021系列真空压力和温度控制器系列中,配备了两套计算机软件,一套用于单通道程序控制器VPC 2021-1,对应的压缩文件名为“VPC 2021-1控制器软件.rar”;另一套用于双通道单点控制器VPC 2021-2,对应的压缩文件名为“VPC 2021-2控制器软件.rar”。 在上述相应压缩文件解压后,将解压后的JETR文件夹及其内容拷贝到C盘根目录下即可,在C:\JETR文件夹内的文件清单如图1所示。控制器软件分别为 vpc 2021-1 controller.exe 和 vpc 2021-2 controller.exe 可执行文件。[align=center][b][color=#000099][img=01.控制器软件文件夹内容,600,229]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202144285143_5595_3221506_3.jpg!w642x246.jpg[/img]图1 控制器软件文件夹内容[/color][/b][/align][b][color=#000099]3.2 串口通讯线连接和串口通讯参数设置[/color][/b] 在软件使用之前,需要先在计算机上插入USB转485串口通讯线,并将此通讯线另外一端的的两根引线分别接入控制器的11和12号通讯接线端子,其中12接T/R+,11接T/R-。 当计算机上插入串口通讯线后,在计算机“设备管理器”界面上能看到相应的串口通讯功能和端口编号显示,如图2所示。鼠标双击图1中所示的USB串口端口,进入此串口的参数设置界面,如图3所示。[align=center][b][color=#000099][img=02.485串口通讯,500,342]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202145480183_3300_3221506_3.jpg!w584x400.jpg[/img]图2 USB串口通讯端口[/color][/b][/align][align=center][b][color=#000099][img=03.串口通讯参数设置,462,376]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202146196471_3404_3221506_3.jpg!w462x376.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图3 串口通讯参数设置[/color][/b][/align] 在控制器软件中,默认的串口通讯参数是端口1,其他默认参数如图2中所示,参数设置的原则是要使计算机和软件的通讯参数设置为完全相同,如果要修改计算机的串口通讯参数,如提高波特率以加快传输速度,控制器软件也要进行相应修改。[b][size=18px][color=#000099]4. 软件的主界面[/color][/size][/b] 在控制器软件运行后,出现的软件主界面如图4所示。软件主界面有几个功能区域组成,下面将分别对常用的几个功能区域进行介绍。[align=center][b][color=#000099][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202156131241_560_3221506_3.jpg!w690x425.jpg[/img]图4 VPC 2021-1单通道程序控制器的软件主界面[/color][/b][/align][b][size=18px][color=#000099]5. 通讯端口参数设置[/color][/size][/b] 软件主界面中,进行通讯参数设置的“(一)通讯端口参数设置区域”如图5所示。[align=center][img=05.通讯端口参数设置区域,690,37]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202147187832_3612_3221506_3.jpg!w690x37.jpg[/img][/align][align=center][b][color=#000099]图5 通讯端口参数设置区域图[/color][/b][/align] 在软件运行后,首先要在进行通讯端口参数设置,以在控制软件和控制器之间建立通讯以传输数据。首先要根据计算机插入RS485通讯线后形成的通讯端口编号,进行图5中通讯端口选择,可通过键盘数字输入或下拉菜单中的数字选择来设定相应的端口编号。 VPC 2021系列控制器的默认模块地址都为“1”,除非用软件进行多个不同地址的并联控制器的控制操作,则需要同时修改控制器和软件的模块地址。 VPC 2021系列控制器和软件中的“波特率”默认值为9600,若需要选择其他通讯速度,则需要更改控制器、计算机通讯接口和软件的波特率,使它们三者始终保持一致。 VPC 2021系列控制器和软件中的“校验方式”默认值为“偶校验”,同样,若需要选择其他校验方式,则需要更改控制器、计算机通讯接口和软件的校验方式,使三者始终保持一致。 当上述通讯端口参数设置完成后,可分别点击区域右边的“打开”或“关闭”名录按钮,从而在计算机软件和控制器之间建立通讯和断开通讯。[b][size=18px][color=#000099]6. 控制器的软件控制操作[/color][/size][/b] VPC 2021系列控制器的一些常用调试和操作,都可以在软件的第二个功能区域“(二)控制操作区域”内进行,第二功能区域如图6所示。[align=center][b][color=#000099][img=06.控制操作区域,690,44]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202147376474_9076_3221506_3.jpg!w690x44.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图6 软件的控制操作区域[/color][/b][/align] 在完成图5所示的通讯参数设置,并点击“打开”命令按钮激活通讯后,有以下两个特征: (1)COM 灯会由黄色背景变为绿色或红色背景,接收数据时背景为绿色并显示RXD字符,发送数据时背景为为红色并显示TXD字符。 (2)控制器内的当前参数(如PV、SV、OP值,手动/自动状态等)都会自动在图6中的相应数字框内显示。如果数字框内的显示数字与控制器面板上的显示数字不同,则表示出现了错误。 通过图6所示的控制操作区域内的数字框和命令按钮,可进行以下内容的操作: (1)用鼠标点击“手动/自动”命令框,可使得控制器在手动和自动之间进行切换,并在“手动/自动”命令框左边的兰色数字框内显示相应状态“手动”或“自动”的字符。当设置为“手动”状态时,PID控制器上的状态指示灯变为红色背景并显示M字符,表示控制器的当前状态为手动状态。当设置为“自动”状态时,PID控制器上的状态指示灯变为黄色背景并显示A字符,表示控制器的当前状态为自动状态。 (2)在设置为“手动”状态时,点击“SV1值”右边的白色输入框,在此输入框内输入设定值“10”数字,并点击随后出现的“修改SV1”命令框进行确认,此时“SV当前值”右边的数字框显示10,同时在控制器面板上会观察到SV值为10的显示。同样,在“手动”状态时,点击“OP值”的右边白色输入框,在此输入框内输入“5.01”设定值,并点击随后出现的“手动OP”命令框进行确认,此时“OP当前值”右边的数字框显示5,同时在控制器面板上也会观察到OP值为5.01%的显示。在手动状态下进行SV和OP值的设定,可以检查软件和控制器连接后是否工作正常。检查完毕后,可以将SV和OP值全部设为“0”。 (3)当需要进行“单点”控制时,首先需要输入设定值SV,然后启动自动状态,使控制器进行自动设定点控制。自动控制要达到准确控制需要合适的PID参数,这时需要在自动控制运行过程中用鼠标点击“主自整定”命令按钮,使控制器进行自整定,“主自整定”命令按钮左边的显示框内会显示自整定状体,此时控制器面板上的“AT”指示灯会发生红黄交替闪烁。当“AT”指示灯停止闪烁后,表示自整定已经完成,自整定得到的PID参数会输出显示到“(七)控制参数状态显示区域”。 (4)同样,用鼠标点击“单点/程序”命令框,可使得控制器在单点和程序控制之间进行切换,并在“单点/程序”命令框左边的兰色数字框内显示相应状态“单点”或“程序”的字符。 (5)同样,用鼠标点击“待机”命令框,可使得控制器切换到待机状态,同时控制器面板表上的状态指示灯会红黄交替闪烁并显示“STB”字符。 (6)同样,用鼠标点击“SV1/2”命令框,可使得控制器在SV1和SV2模式之间切换,并在“SV1/2”命令框左边的显示框内显示所切换的模式。这里SV1值代表控制器内置设定值,SV2值代表远程控制设定定。 注意:为保证以上操作和显示的正确性,还需进行后续控制器的输入/输出参数设置,否则显示数字位数和SV1/2等功能无法正常使用。具体设置参见下章内容。[b][size=18px][color=#000099]7. 控制器的参数设置[/color][/size][/b] VPC 2021系列控制器的所有参数设置和编制控制程序,都可以在软件的第四个功能区域“(四)各种参数设置区域”内进行,第四功能区域如图7所示。这里针对“CONFIG”中必须设置的几个重要参数“主输入设置、仪表参数设置和主输出设置”进行介绍。[align=center][img=07.控制器参数设置区域,689,41]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148015054_637_3221506_3.jpg!w689x41.jpg[/img][/align][align=center][b][color=#000099]图7 软件的参数设置区域[/color][/b][/align][b][color=#000099]7.1 主输入设置[/color][/b] 点击“CONFIG“命令框,首先进入如图8所示的仪表参数设定的“2.主输入设置”界面。[align=center][img=08.控制器仪表主输入设置界面,690,267]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148240223_2270_3221506_3.jpg!w690x267.jpg[/img][/align][align=center][b][color=#000099]图8 软件CONFIG界面的主输入设置[/color][/b][/align] 在图8所示的主输入设置中,依次进行如下设置: (1)输入类型设定:VPC 2021系列PID控制器是一款万能输入型仪表,可输入多达47种传感器信号。具体设置时,需根据所用传感器的输出信号类型和量程进行选择,如真空度传感器,一般选择“28:0V10(0-+10V)”设定,压力传感器一般选择“19:4MA20(4-20MA)”。输入量程的设定非常重要,这会关系到后续的测量值PV和设定值SV显示的小数点位数的选择。 (2)显示上限:显示上限的作用是规定出与传感器最大量程对应的控制器测量最大量程,如对应0-10V的传感器输入量程,显示上限可以选择10。在VPC 2021系列控制器中,显示上限的范围都是-10000至30000,这也就是说可以将传感器最大量程10V,最大放大到三千倍的数值30000。在实际应用中,一般是以十进制放大倍数进行设置,如对应于10V,选择上限为10000,放大一千倍。由此可结合后续的三位小数点位数设置,测量值PV和设定值PV就可以完整的显示0-10.000范围的数值,并都保持小数点后三位小数,从而可以高精度的测量和观察到测量值和设定值。 (3)显示下限:同样,显示下限的作用是规定出与传感器最小量程对应的控制器测量最小量程。对于一般各种物理量传感器最小0V的输出电压,显示下限选择“0”即可。而对于有些具有方向特征的传感器输入信号,如温差热电堆±10mV范围的电压信号,则需选择相应的非零的显示下限。非零显示下限的放大功能,与上述显示上限完全相同,但最好是选择相同的放大倍数。如对上述温差热电堆±10mV范围的电压信号,正负信号要保持相同的放大倍数,那么可选择显示上限为10000,显示下限为-10000。 (4)小数点:小数点位数总共有五种设置,从整数到小数点后面四位。小数点位数的功能正好与上述显示上限功能相反,起到一个测量值除以10的缩小功能。假如一个传感器输入的电压信号为5V,如果控制器显示上限设定为10,小数点设定为“0:XXXXX”的整数,那么控制器面板上的PV显示格式就是整数5;如果显示上限设定为100,小数点设定还是整数,则控制器面板上的PV显示格式就是整数50,但代表还是5V的真实电压信号。为了准确直观的显示5V信号输入,此时则需将小数点位数设定为“1:XXXX.X”,那么PV显示格式就是带一位小数的5.0V。以此类推,若显示上限设定为10000,则小数点位数设定应为“3:XX.XXX”,则PV显示格式就是带三位小数的5.000V。 (5)对于后续的“输入异常处理、输入异常预置值、修正偏移量、冷端补偿类型、输入多点曲线修正”等高级参数的设置,可参看控制器使用说明书内的详细介绍。在一般应用中较少会用到这些高级设置,它们的设置一般选择“0”或禁止。[b][color=#000099]7.2 辅输入设置[/color][/b] VPC 2021系列控制器有个强大的功能,就是具备双通道的功能,由此可衍生出众多应用,可通过对辅助通道进行设置来激活第二通道的功能。具体设置是选择“CONFIG“界面中进入如图9所示的仪表参数设定的“3.付输入设置”界面。[align=center][b][color=#000099][img=09.控制器仪表辅输入设置界面,690,102]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148582742_2164_3221506_3.jpg!w690x102.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图9 软件CONFIG界面中的辅输入参数设置[/color][/b][/align] 辅输入参数设置基本与主输入参数设置相同,主要不同的是有一项“辅助通道功能”设置。辅助通道共有六种选择以实现不同的高级功能,需要根据具体使用情况进行选择。在大多数情况下会选择“禁止”,不使用辅助通道,但如果选择其他设置,所选择的功能需要查看使用说明书中的详细介绍。[b][color=#000099]7.3 仪器参数设置[/color][/b] 选择“CONFIG“界面中进入如图10所示的仪表参数设定的“1.Instrument”界面。[align=center][b][color=#000099][img=10.控制器仪表参数设置界面,690,316]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149212211_8085_3221506_3.jpg!w690x316.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图10 软件CONFIG界面中的仪表参数设置[/color][/b][/align] 在图10所示的仪表参数设置中,本文主要介绍红色方框标识的几个常用的重要参数设置。 (1)控制方式:VPC 2021系列控制器共有五种控制方式,而最常用的是“单输出”。其他如“双输出”等控制方式则是用于冷热控制等其他形式的控制。 (2)设定值上限SVHI:设定值上限的设定范围是-10000~30000,在具体设定时一般要选择与前述“显示上限”完全一致的数值。只在某些特殊情况才会选择不同的数值。 (3)设定值下限SVL0:设定值下限的设定范围同样也是-10000~30000,同样,在具体设定时一般要选择与前述“显示下限”完全一致的数值。只在某些特殊情况才会选择不同的数值。 (4)显示工程单位:VPC 2021系列控制器共有26种工程单位符号可选,但不可能覆盖所有需要用的工程单位,可根据需要进行定制。[b][color=#000099]7.4 主输出设置[/color][/b] 选择“CONFIG“界面中进入如图11所示的仪表参数设定的“9.主输出1设定”界面。[align=center][b][color=#000099][img=11.控制器仪表主输出设定界面,690,186]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149393277_7139_3221506_3.jpg!w690x186.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图11 软件CONFIG界面中的主控输出1的参数设置[/color][/b][/align] 主控输出1的参数设置是VPC 2021系列控制器重要的一个参数设置内容,详细设定如下: (1)输出方式设定:首先要根据外部执行机构可接受的控制信号进行输出方式的选择,如果外部执行机构是接收模拟信号(如4-20mA或0-10V)进行调节,则选择“0:线性电流输出”选项。在选配VPC 2021系列控制器时,都会明确规定输出方式作为技术指标,也就确定了相应的输出方式,因此这里的输出方式设定只需与控制器技术指标一致即可。 (2)输出作用方向:VPC 2021系列控制器具有“反作用”和“正作用”两种输出作用方向,因此需要根据实际控制需要进行选择。一般选择“反作用”用于进气或加热控制,“正作用”一般用于排气或制冷控制。 (3)输出信号类型:VPC 2021系列控制器具有六种输出信号类型,主要有模拟电流和模拟电压两类形式。同样,在选配VPC 2021系列控制器时,都会明确规定输出信号类型作为技术指标,这也就确定了相应的输出信号类型,因此这里的输出信号类型设定只需与控制器技术指标一致即可。 (4)输出上限:VPC 2021系列控制器规定的输出百分比范围是0.00~100.0%,特别需要注意的是最小输出百分比是小数点后面两位,即0.01%,由此可以提供更高精度的控制。在具体设定过程中,可根据需要选择输出上限,因为在很多具体控制过程中并不需要满功率输出,特别是在一些较低量程范围内的控制时,可选择较小的输出上限可达到很高的控制精度,选择较大的输出上限值反而会使控制精度受到影响。 (5)输出下限:在绝大多数情况下,输出下限会选择“0”。有些特殊控制,则会根据实际控制对象选择不同数值的输出下限,但前提是输出下限一定要小于输出上限。[b][size=18px][color=#000099]8. 控制器PID参数设置[/color][/size][/b] 在使用VPC 2021系列控制器时,一般通过在自动控制状态下运行“自整定”功能可获得满意的PID参数。但有时需要在自整定基础上对PID参数进行人工修改,此时就需要进行PID参数的设置。在控制器软件主界面上点击位于下方的“PID”功能按钮,进入如图12所示的PID参数设置界面。[align=center][b][color=#000099][img=12.PID参数设置界面,511,509]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149545389_762_3221506_3.jpg!w511x509.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图12 PID参数设置[/color][/b][/align] 在PID参数设置界面上,有三组相应参数设置,一组是常用的PID1设置,这组PID1用于单输出方式下的反作用模式,第二组PID2设置则用于双输出方式下的正反向模式,第三组参数设置用于更精细的PID控制,具体内容参见说明书。 (1)输出比例带:P参数。 (2)输出积分时间:I参数。 (3)输出微分时间:D参数。 有关PID参数的调整,请详见使用说明书或其他PID参数调整相关资料。[b][size=16px][color=#000099]9. 图形显示和操作[/color][/size][/b] 控制器软件具有强大的图形显示功能,可在对各种测量值、设定值和输出值进行测量和监视的同时,并进行显示。图13为软件的图形显示界面。[align=center][b][color=#000099][img=13.图形显示操作区域,690,422]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202150197729_5514_3221506_3.jpg!w690x422.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图13 软件图形显示界面[/color][/b][/align] 需要说明的是,为了控制器测控曲线的正常显示,必须要事先安装好OFFICE套装中的数据库软件ACCESS,否则软件界面只能有三分之一区域能够显示变化曲线。 图形显示界面会自动显示测量值PV、设定值SV和输出百分比值OP随时间的变化曲线,并具有两套纵坐标轴。一个纵坐标轴是用于测量值PV和设定值SV的显示,此纵坐标可进行调整以优化显示效果;另一个纵坐标轴是用于输出百分比值OP的显示,其纵坐标最小值为固定值-10,最大值为固定值110%,并不可调整,以显示OP值在0~100%范围内的随时间变化曲线。 如图13所示,在图形显示界面的右上角,还设置了快捷功能区,可通过快捷功能键或鼠标点击进行图形的其他操作。 注:在软件激活通讯后,软件就开始在后台进行运行,并采集控制器仪表的相应数据。这些数据都随时存储在数据库软件的文件中。调用这些历史数据的方法,请咨询技术支持人员。[b][size=18px][color=#000099]10. 总结[/color][/size][/b] 采用远程控制软件彻底解决了体积小巧的工业用PID控制器面板操作不友好问题,即在与PID控制器建立了通讯的计算机上运行相应的配套软件,就可在计算机上完成所有PID控制器的操作,图形化的控制软件具有更友好的人机界面。 通过配套软件可快速熟悉PID控制器的相应功能及其底层规则,并找到合理的运行参数,非常后续集成控制程序的编写顺利,可节省大量繁复的控制器按键操作和程序调试时间,加快设备集成和开发速度。 PID控制器随机配套软件强大的监视、操作和图形显示功能,可完全采用软件来运行PID调节器,并可直观的显示设定值、测量值和功率输出百分比随时间的变化曲线,而这些曲线都被自动存储并可调用查看。由此,通过软件和计算机,与PID控制器可组成一个完备的控制系统。[align=center][/align][align=center]~~~~~~~~~~~~~~[/align]

  • 水塔自动供水控制器原理是什么

    水塔自动供水控制器原理是什么

    [font=宋体][color=#1E1F24]水塔自动供水控制器是一种用于控制供水系统,保持水塔水位在一定范围内的装置。其基本原理是利用水位传感器来检测水塔中的水位高度,并将检测结果与设定值进行比较,从而控制水泵的运行状态,以达到自动供水的目的。[/color][/font][font=宋体][color=#1E1F24]当水位低于设定值时,控制器会启动水泵,将水从水源输送到水塔中,直到水位达到设定值。当水位高于设定值时,控制器会关闭水泵,停止供水。同时,控制器还会控制电磁阀的开启和关闭,以控制水塔的出水量,从而保持水塔水位的稳定。[/color][/font][align=center][img=自动补水器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/09/202309181648219012_8230_4008598_3.jpg!w673x582.jpg[/img][/align][font=宋体][color=#1E1F24]此外,[url=https://www.eptsz.com]水塔自动供水控制器[/url]还可以通过设置不同的参数来实现不同的控制功能,例如定时开关机、水位报警等功能。这些功能可以根据实际需求进行设置和调整,以达到更好的使用效果。[/color][/font]

  • 控制器数据存储

    水质监测用那种在线的[url=https://www.hach.com.cn/product/orbisphere410]智能数字控制器[/url]连接电极,监测数据是能存储到控制器然后通过u盘给导出来吧?这种控制器,可以操作存储数据的存储次数和间隔嘛?比如我想一个小时存储几次之类的。

  • 什么是光电液位控制器

    什么是光电液位控制器

    [font=宋体][back=white]光电液位控制器是一种利用光电传感技术来实现液位控制的设备。它通过光电传感器对液体的光反射或透射进行检测,从而实现对液位的监测和控制。[/back][/font][back=white] [/back][font=宋体][back=white]光电液位控制器的工作原理是利用光电传感器发射出的光束与液体的接触面发生反射或透射,通过接收器接收到的光信号来判断液位的高低。当液位达到设定的阈值时,光电液位控制器会触发相应的控制动作,如开关电路、报警或自动控制等。[/back][/font][align=center] [img=光电液位传感器,601,371]https://ng1.17img.cn/bbsfiles/images/2023/09/202309071404373511_9614_4008598_3.jpg!w601x371.jpg[/img][/align][font=宋体][back=white]相比传统的浮球液位开关,光电液位控制器具有许多优势。首先,光电液位控制器的体积小巧,安装方便,适用于各种容器和管道的液位控制。其次,光电液位控制器不需要直接接触液体,因此不受液体的颜色、腐蚀性和杂质的影响,具有更高的可靠性和稳定性。此外,光电液位控制器还可以实现非接触式的液位检测,避免了浮球易卡死和水垢加重等问题,提高了液位检测的精度和准确性。[/back][/font][back=white] [/back][font=宋体][back=white][url=https://www.eptsz.com]光电液位控制器[/url]通过光电传感技术实现了对液位的准确监测和控制,具有体积小、可靠性高和安装方便等优势。在液位控制领域,光电液位控制器是一种更好的选择。[/back][/font]

  • 防水型压力控制器

    防水型压力控制器:怎么防水呢?采用什么材质?(YWK-50/C)型防水型压力控制器是怎么输出的。具体资料有没有啊

  • 控制器自动加药和进水

    能控制水泵自动上水和停止还有加药机启停的[url=https://www.hach.com.cn/product-list/kongzhichuangan]智能控制器[/url],大概要多少钱;就是灌溉用水的水池,现在想实现根据水位高低启动进水;然后放了个水质测定仪和加药装置,想控制自动加药,两个可以用一个控制器实现吗?

  • 鱼缸水位开关自动控制器

    鱼缸水位开关自动控制器

    [align=left][font=宋体][color=#333333][back=white]随着科技的发展,人们的生活越来越智能化。对于养鱼爱好者来说,一个自动控制的鱼缸水位开关控制器能够极大地提高养鱼的便利性和舒适度。[/back][/color][/font][/align][align=left][font=宋体][color=#333333][back=white]这款鱼缸水位[url=https://www.eptsz.com]开关自动控制器[/url]采用先进的微处理器技术,能够实时监测鱼缸的水位。当水位过低或过高时,控制器会立即启动相应的工作模式。当水位过低时,控制器会自动打开水泵,将水注入鱼缸,确保鱼儿有足够的水生活环境。[/back][/color][/font][/align][align=center][img=水位自动控制器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/12/202312141603520014_401_4008598_3.jpg!w673x582.jpg[/img][/align][align=left][font=宋体][color=#333333][back=white]鱼缸补水器分为控制器和磁性吸盘两部分,确定鱼缸需要保持的水位线,将吸盘与控制器对准后分别放在鱼缸壁的内侧与外侧。电源的一头插入控制器,将另一头插入插座内,即可完成补水器供电。水泵插头插入控制器,水泵接上水管放入备用水箱中,既可实现补水功能。[/back][/color][/font][/align][align=left][font=宋体][color=#333333][back=white]这款鱼缸水位开关自动控制器是养鱼爱好者的理想选择。它不仅能够提供舒适的鱼儿生活环境,还能大大降低养鱼的难度和劳动强度。在未来,随着技术的不断进步,相信这款控制器将会更加智能、更加人性化,为养鱼爱好者带来更多的便利和乐趣。[/back][/color][/font][/align]

  • 电气比例阀采用外置传感器和PID控制器实现化学机械抛光超高精度压力控制的解决方案

    电气比例阀采用外置传感器和PID控制器实现化学机械抛光超高精度压力控制的解决方案

    [color=#990000]摘要:为大幅度提高现有CMP工艺设备中压力控制的稳定性,在现有电气比例阀这种单回路PID压力调节技术的基础上,本文提出了升级改造方案,即采用串级控制法(双回路PID控制,也称级联控制),通过在现有电气比例阀回路中增加更高精度的压力传感器和PID控制器,可以将研磨抛光压力的稳定性提高一个数量级,从1~2%的稳定性提升到0.1~0.2%。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]在半导体制造过程中,化学机械抛光(CMP)是在半导体晶片上产生光滑、平坦表面的关键工艺。CMP工艺中的压力控制是决定最终产品质量的关键因素。如果压力过高,会损坏半导体材料;如果压力太低,会导致表面不平整。CMP系统中需要配置专用的压力调节装置,以确保压力保持在安全范围内。通过将压力保持在安全范围内,压力调节装置有助于确保半导体晶片在CMP过程中不被损坏。目前的CMP系统中普遍采用电气比例阀作为压力调节器,其典型结构如图1所示。在CMP中采用比例阀来控制抛光过程中施加在晶圆上的压力。由于比例阀是电子控制和压力值的模拟信号输出,因此可以通过控制系统(如PLC)对其进行动态编程和压力监控,这意味可以根据被抛光的特定晶片准确改变施加的压力。此外,由于电气比例阀作为压力调节器是一个闭环控制,即使在下游压力发生变化期间,施加在抛光垫上的压力也会保持不变,由此实现压力的自动调节。[align=center][img=常规研磨机电气比例阀压力控制系统结构,600,280]https://ng1.17img.cn/bbsfiles/images/2022/09/202209150917534790_1434_3221506_3.png!w690x322.jpg[/img][/align][align=center]图1 常规CMP系统中电气比例阀压力控制装置结构示意图[/align]在一些CMP工艺的实际应用中,要求抛光压力具有很高的稳定性,图1所示的常规压力调节装置则无法满足使用要求,这主要体现在以下几方面的不足:(1)电气比例阀的整体控制精度明显不足,其整体精度(包含线性度、迟滞和重复性)往往在1~2%范围内。这种精度水平主要受集成在比例阀内的压力传感器、高速电磁阀和PID控制器性能和体积等因素制约,而且进一步提高的空间非常有限。(2)电气比例阀安装位置与气缸有一定的距离,由此造成比例阀所检测到的压力值并不是气缸的真实压力,而且比例阀处压力与气缸压力之间有一定的时间滞后。为解决上述存在的问题,进一步提高现有CMP工艺设备中压力控制的稳定性,在现有电气比例阀这种单回路PID压力调节技术的基础上,本文将提出升级改造方案,即采用串级控制法(双回路PID控制,也称级联控制),通过在电气比例阀回路中增加更高精度的压力传感器和PID控制器,可以将研磨抛光压力的稳定性提高一个数量级,从1~2%的稳定性提升到0.1~0.2%。[size=18px][color=#990000][b]二、CMP设备压力控制的串级PID控制方案[/b][/color][/size]在传统的CMP设备压力调节过程中,采用电气比例阀进行压力调节的稳定性完全受集成在比例阀内的压力传感器、高速电磁阀和PID控制器性能和体积等因素制约。为了提高压力控制的稳定性,并充分发挥电气比例阀的自身优势,我们采用了一种串级控制技术,即在作为第一回路的电气比例阀中增加第二控制回路,其中第二控制回路由更高精度的压力传感器和PID控制器构成。串级PID控制方案的整体结构如图2所示。[align=center][img=03.超高精密研磨机电气比例阀压力串级控制系统结构,600,333]https://ng1.17img.cn/bbsfiles/images/2022/09/202209150918245058_1534_3221506_3.png!w690x384.jpg[/img][/align][align=center]图2 串级控制法CMP系统压力控制装置结构示意图[/align]在图2所示的串级控制法压力调节装置中,安装了一个外置压力传感器用于直接监测气缸内的气压,压力传感器检测到的气缸压力信号传输给外置的PID控制器,外置PID控制器根据设定值或设定程序将控制信号传送给电气比例阀,比例阀根据此控制信号再经其内部PID控制器来调节高速电磁阀的动作,使得电气比例阀输出到气缸的气体气压与设定值始终保持一致。从上述串级控制过程可以看出,串级控制是一个双控制回路,是两个独立的PID控制回路,电气比例阀起到的是一个执行器的作用。串级控制法(也称级联控制法)是一种有效提升控制精度的传统方法,但在具体实施过程中,需要满足的条件是:[color=#990000]第二回路的传感器和PID控制器(这里是外置压力传感器和PID控制器)精度一般要比第一回路的传感器(这里是电气比例阀内置的压力传感器和PID控制器)要高。[/color]为了实现更高稳定性的CMP系统压力控制,我们推荐的实施方案是采用0.05%精度的外置压力传感器和超高精度PID控制器(技术指标为24位ADC、16位DAC和双浮点运算的0.01%最小输出百分比)。此实施方案我们已经进行过大量考核试验,压力稳定性可以轻松达到0.1%。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制