当前位置: 仪器信息网 > 行业主题 > >

偏心式镜

仪器信息网偏心式镜专题为您提供2024年最新偏心式镜价格报价、厂家品牌的相关信息, 包括偏心式镜参数、型号等,不管是国产,还是进口品牌的偏心式镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合偏心式镜相关的耗材配件、试剂标物,还有偏心式镜相关的最新资讯、资料,以及偏心式镜相关的解决方案。

偏心式镜相关的论坛

  • 光学镜头偏心误差的自动化测量技术研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[size=16px]张强[/size][/b][font=&]【题名】:[b][b]光学镜头偏心误差的自动化测量技术研究[/b][/b][/font][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [b]光学镜头偏心误差的自动化测量技术研究[/b][/color][/b]

  • 话说水泥净浆搅拌机是如何工作,有必要了解的!

    需要声明一点就是:关于“水泥净浆搅拌机是如何工作”这个问题,包括两个方面——第一,水泥净浆搅拌机的工作原理  水泥净浆搅拌机的工作原理——双速电动机通过联轴器将动力传给传动箱内的蜗杆再经蜗轮及一对齿轮和传给主轴并减速。主轴带动偏心座同步旋转,使固定在偏心座上的搅拌叶进行公转。同时搅拌叶通过搅拌叶轴上端的行星齿轮围绕固定的内齿轮完成自转运动。双速电机经时间程控器控制自动完成一次慢—停—快转的规定工作程序。搅拌锅与滑板用偏心槽旋转锁紧。第二,水泥净浆搅拌机的操作规程:  1)在搅拌前,搅拌锅和搅拌叶先用湿布擦净。  2)将称好的试样倒入搅拌锅内。  3)将搅拌锅放在搅拌机锅座上,升至搅拌位置。  4)开动机器,同时徐徐加入水拌和,慢速搅拌120s,停拌15s。接着快速搅拌120s后停机,断开电源。5)待操作结束后,应及时清洗搅拌叶和搅拌锅。  不论是工作原理还是操作规程都是水泥净浆搅拌机最基本的知识,是需要每个使用者详细掌握的,相关的信息:雕刻机报价,真空滚揉机,袋式过滤器,卷扬式启闭机,嵌入式工控机,不锈钢截止阀,浆糊贴标机,电子叉车秤,真回转空干燥机,隔膜式气压罐,

  • 求解读USP37-1251关于偏载的问题

    由于偏心载重引起的测量值的偏差,换句话说,载重盘中心荷载不均匀。偏心率一般表达为对一个给定的载重,非中心放置时读数与中心放置时的读数的偏差最大级别。测量四角称量值(四边形称量盘)或其它形状称量盘类似的位置。测试用载重一般为天平最大载重量的30%,或更高(参见供应商手册中建议的可用最高限值)如果适用,则≤0.05%偏差,其它情况,以相应的要求允差除以2国标是要求偏载误差按照砝码标示值的最大允许误差来的,这个是理解的,如果是100g的砝码做校验,则偏心误差小于等于1.5mg(e=1mg)但这个USP的≤0.05%偏差,是什么意思,其它情况,以相应的要求允差除以2,又是什么意思?NMT 0.05%deviation where 41 is applicable. For other uses,respective tolerance requirement divided by 2.原版其他项目的要求也都是如此,如线性,重复性等,这句话到底是何意?关于41说明的是称量误差不大于称量值的0.1%,除以2就是0.05%,但是如果是100g的0.05%,50mg也太大了点,

  • 【转帖】生物显微镜常见故障的排除

    1.镜筒的自行下滑:这是生物显微镜经常发生的故障之一。对于轴套式结构的显微镜解决的办法可分两步进行。  第一步:用双手分别握住两个粗调手轮,相对用力旋紧。看能否解决问题,若还不能解决问题,则要用专用的双柱板手把一个粗调手轮旋下,加一片摩擦片,手轮拧紧后,如果转动很费劲,则加的摩擦片太厚了,可调换一片薄的。以手轮转动不费力,镜筒上下移动轻松,而又不自行下滑为准。摩擦片可用废照相底片和小于1毫米厚的软塑料片用打孔器冲制。  第二步:检查粗调手轮轴上的齿轮与镜筒身上的齿条啮合状态。镜筒的上下移动是由齿轮带动齿条来完成的。齿轮与齿条的最佳啮合状态在理论上讲是齿条的分度线与齿轮的分度圆相切。在这种状态下,齿轮转动轻松,并且对齿条的磨损最小。现在有一种错误的做法,就是在齿条后加垫片,使齿条紧紧地压住齿轮来阻止镜筒的下滑。这时齿条的分度线与齿轮的分度圆相交,齿轮和齿条的齿尖都紧紧地顶住对方的齿根。当齿轮转动时,相互间会产生严重的磨削。由于齿条是铜质材料的,齿轮是钢质材料的。所以相互间的磨削,会把齿条上的牙齿磨损坏,齿轮和齿条上会产生许多铜屑。最后齿条会严重磨损而无法使用。因此千万不能用垫高齿条来阻止镜筒下滑。解决镜筒自行下滑的问题,只能用加大粗调手轮和偏心轴套间的摩擦力来实现。但有一种情况例外,那就是齿条的分度线与齿轮的分度圆相离。这时转动粗调手轮时,同样会产生空转打滑的现象,影响镜筒的上下移动。如果这通过调整粗调手轮的偏心轴套,无法调整齿轮与齿条的啮合距离。则只能在齿条后加垫适当的薄片来解决。加垫片调整好齿轮与齿条啮合距离的标准是:转动粗调手轮不费劲,但也不空转。  调整好距离后,在齿轮与齿条间加一些中性润滑脂。让镜筒上下移动几下即可以了。最后还须把偏心轴套上的两只压紧螺丝旋紧。不然的话,转动粗调手轮时,偏心轴套可能会跟着转动,而把齿条卡死,使镜简无法上下移动。这时如果转动粗调手轮力量过大的话,可能会损坏齿条和偏心轴套。在旋紧压紧螺丝后,如果发现偏心轴套还是跟着转的话。这是由于压紧螺丝的螺丝孔螺纹没有改好所造成的。因为厂家改螺纹是用机器改丝的,往往会有一到二牙螺纹没改到位。这时即使压紧螺丝也旋不到位,偏心轴套也就压不紧了。发现这种故障,只要用M3的丝攻把螺丝孔的螺纹攻穿就能解决问题。我用此方法彻底解决了我校30台生物显微镜偏心轴套跟转的问题。  把以上这些步骤都一一做好后,镜筒自行下滑问题基本上是彻底解决了。

  • 【求助】求助铜加工的文献几篇

    求助铜加工的文献几篇:1.用晶粒细化减少韧铜热轧时的微观开裂,《铜加工》2003年1期2.大导程角内螺纹管对R410A制冷剂的传热特性,《铜加工》2003年1期3.国产周期式冷轧管机的新发展,《铜加工》2001年1期4.也谈DAE管组合加工工艺,《铜加工》2001年1期5.空调用铜管在加工过程中壁厚偏心变化研究,《铜加工》2001年1期

  • 【求助】我公司欲采购精密光学镜片检测仪器,现寻有实力单位协助,点击查看详情

    我公司全称“武汉高德红外股份有限公司”,位于“武汉• 中国光谷”,为专业从事规模化红外热成像技术及产品研发、生产、销售的高新技术企业。公司产品广泛应用于电力、消防、公安、冶金、化工及军工等领域。产品畅销全国各地,多达一百五十多个代理商的国际营销网络覆盖全球八十多个国家和地区,与众多海外客户建立了广泛合作关系。高德( Guide )已成为世界知名品牌。 我司现欲购一批高精度红外光学检测设备,用于检测红外长波(8~12um)与中波(3~5um)镜片,镜片口径范围≤∅ 200mm,弧高≤30mm。设备主要用于完成镜片曲率、非球面系数、粗糙度、局部光圈、镜片偏心倾斜、透过率的检测及系统装调等。本公司此次采购设备包括但不限于以下设备:球径仪、轮廓仪、干涉仪、中心偏测量仪、红外系统透过率测试仪、红外平行光管、显微镜。要求对镀膜镜片检测时,尽量做到无损检测。 各单位,如能提供以上检测设备(不限于以上仪器),请于2008年12月20日之前将电子文档发至以下邮箱,文档内容请包括:针对哪项检测能提供那款设备,或推荐哪款设备,按仪器类型列出word技术指标文档,请务必详细列出。欢迎各有实力单位大力推荐优秀设备。公司名称:武汉高德红外股份有限公司公司地址:武汉市洪山区书城路26号联系人:陈岩电话:027-87284561邮编:430070邮箱:unfaireal@163.com

  • 生物显微镜的使用和日常维护

    1.镜筒的自行下滑:这是生物显微镜经常发生的故障之一。对于轴套式结构的显微镜解决的办法可分两步进行。 第一步:用双手分别握住两个粗调手轮,相对用力旋紧。看能否解决问题,若还不能解决问题,则要用专用的双柱板手把一个粗调手轮旋下,加一片摩擦片,手轮拧紧后,如果转动很费劲,则加的摩擦片太厚了,可调换一片薄的。以手轮转动不费力,镜筒上下移动轻松,而又不自行下滑为准。摩擦片可用废照相底片和小于1毫米厚的软塑料片用打孔器冲制。 第二步:检查粗调手轮轴上的齿轮与镜筒身上的齿条啮合状态。生物显微镜镜筒的上下移动是由齿轮带动齿条来完成的。齿轮与齿条的最佳啮合状态在理论上讲是齿条的分度线与齿轮的分度圆相切。在这种状态下,齿轮转动轻松,并且对齿条的磨损最些现在有一种错误的做法,就是在齿条后加垫片,使齿条紧紧地压住齿轮来阻止镜筒的下滑。这时齿条的分度线与齿轮的分度圆相交,齿轮和齿条的齿尖都紧紧地顶住对方的齿根。当齿轮转动时,相互间会产生严重的磨削。由于齿条是铜质材料的,齿轮是钢质材料的。所以相互间的磨削,会把齿条上的牙齿磨损坏,齿轮和齿条上会产生许多铜屑。最后齿条会严重磨损而无法使用。因此千万不能用垫高齿条来阻止镜筒下滑。解决镜筒自行下滑的问题,只能用加大粗调手轮和偏心轴套间的摩擦力来实现。但有一种情况例外,那就是齿条的分度线与齿轮的分度圆相离。这时转动粗调手轮时,同样会产生空转打滑的现象,影响镜筒的上下移动。如果这通过调整粗调手轮的偏心轴套,无法调整齿轮与齿条的啮合距离。则只能在齿条后加垫适当的薄片来解决。加垫片调整好齿轮与齿条啮合距离的标准是:转动粗调手轮不费劲,但也不空转。 调整好距离后,在齿轮与齿条间加一些中性润滑脂。让镜筒上下移动几下即可以了。最后还须把偏心轴套上的两只压紧螺丝旋紧。不然的话,转动粗调手轮时,偏心轴套可能会跟着转动,而把齿条卡死,使镜简无法上下移动。这时如果转动粗调手轮力量过大的话,可能会损坏齿条和偏心轴套。在旋紧压紧螺丝后,如果发现偏心轴套还是跟着转的话。这是由于压紧螺丝的螺丝孔螺纹没有改好所造成的。因为厂家改螺纹是用机器改丝的,往往会有一到二牙螺纹没改到位。这时即使压紧螺丝也旋不到位,偏心轴套也就压不紧了。发现这种故障,只要用M3的丝攻把螺丝孔的螺纹攻穿就能解决问题。我用此方法彻底解决了我校30台生物显微镜偏心轴套跟转的问题。 把以上这些步骤都一一做好后,镜筒自行下滑问题基本上是彻底解决了。2.遮光器定位失灵:这可能是遮光器固定螺丝太松,定位弹珠逃出定位孔造成。只要把弹珠放回定位孔内,旋紧固定螺丝就行了。如果旋紧后,遮光器转动困难,则需在遮光板与载物台间加一个垫圈。垫圈的厚薄以螺丝旋紧后,遮光器转动轻松,定位弹珠不外逃,遮光器定位正确为佳。3、物镜转换器转动困难或定位失灵:转换器转动困难可能是固定螺丝太紧。使转动困难,并会损坏零件。太松,里面的轴承弹珠就会脱离轨道,挤在一起,同样使转动困难;另外弹珠很可能跑到外面来,弹珠的直径仅有一毫米,很容易遗失。固定螺丝的松紧程度以转换器在转动时轻松自如,垂直方向没有松动的间隙为准。调整好固定螺丝后,应随即把锁定螺丝锁紧。不然的话,转换器转动后,又会发生问题。 转换器定位失灵有时可能是定位簧片断裂或弹性变形而造成。一般只要更换簧片就行了。 二、 维护和保养(1)机械系统的维护保养:使用后,用干净细布擦净,定期在滑动部位涂些中性润滑脂。如有严重污染,可先用汽油洗净后再擦干。但切忌用酒精或乙醚清洗,因为这些试剂会腐蚀机械和油漆,造成损坏。(2)整体保养:生物显微镜要放置在干燥阴凉、无尘、无腐蚀的地方。使用后,要立即擦拭干净,用防尘透气罩罩好或放在箱子内。(3)光学系统的维护保养:使用后,用干净柔软的绸布轻轻擦拭目镜和物镜的镜片。有擦不掉的污迹时,可用长纤维脱脂棉或干净的细棉布蘸少些二甲笨或镜头清洗液(3份酒精∶1份乙醚)擦拭。然后用干净细软的绸布擦干或用吹风球吹干即可。要注意的是清洗液千万不能渗入到物镜镜片内部,否则会损坏物镜镜片。聚光镜(XSP-13A、16A型才有)和反光镜用后只要擦干净就可以了。 综上所述,对于生物显微镜的维护保养,只要做到防尘、防潮、防热、防腐蚀。用后及时清洗擦拭干净,并定期在有关部位加注中性润滑油脂即可。对于一些结构复杂,装配精密的零部件,如果没有—定的专业知识,一定的技能和专用工具,就不能擅自拆装,以免损坏零部件。 生物显微镜是生物教学实验中常用的一种精密光学仪器,由机械系统和光学系统两部分组成。 机械系统包括:镜筒传动部分、物镜转动部分、载物台、压片夹和遮光器的转换部分、镜架和底座的转动部分等。

  • 流量计操作不善和布置不妥等不良安装常见有哪些?

    1、标准孔板的锐角未装在迎流面。2、仪表与管道间密封衬垫内径dg小于管道内径dp和仪表内径dm而产生束流。dg应略大于dm,如dg3、密封垫片偏心(未对准中心)。密封衬垫安装偏心,遮住了部分流通面积,使速度分布严重畸变不对称。由于不对称流动发生在流量传感器进口,即上游直管段长度为零,会对差压式、涡轮式、涡街式、超声式,靶式、电磁式等仪表带来测量误差。例如dn50mm电磁流量计衬垫偏心10mm,测量误差高达4%~10%。4、[b]流量计[/b]处于错误的流动方向。5、将对于振动干扰敏感的仪表安装在有振动的管道上。6、缺少必要的防护性配件。这些缺陷,是众所周知或仪表制造厂提出应该避免的。然而因操作人员未经严格培训,缺乏知识而未得到重视,这类失误屡见不鲜。

  • 【资料】生物显微镜常见故障的排除

    (1)镜筒的自行下滑:这是生物显微镜经常发生的故障之一。对于轴套式结构的显微镜解决的办法可分两步进行。 第一步:用双手分别握住两个粗调手轮,相对用力旋紧。看能否解决问题,若还不能解决问题,则要用专用的双柱板手把一个粗调手轮旋下,加一片摩擦片,手轮拧紧后,如果转动很费劲,则加的摩擦片太厚了,可调换一片薄的。以手轮转动不费力,镜筒上下移动轻松,而又不自行下滑为准。摩擦片可用废照相底片和小于1毫米厚的软塑料片用打孔器冲制。 第二步:检查粗调手轮轴上的齿轮与镜筒身上的齿条啮合状态。镜筒的上下移动是由齿轮带动齿条来完成的。齿轮与齿条的最佳啮合状态在理论上讲是齿条的分度线与齿轮的分度圆相切。在这种状态下,齿轮转动轻松,并且对齿条的磨损最些现在有一种错误的做法,就是在齿条后加垫片,使齿条紧紧地压住齿轮来阻止镜筒的下滑。这时齿条的分度线与齿轮的分度圆相交,齿轮和齿条的齿尖都紧紧地顶住对方的齿根。当齿轮转动时,相互间会产生严重的磨削。由于齿条是铜质材料的,齿轮是钢质材料的。所以相互间的磨削,会把齿条上的牙齿磨损坏,齿轮和齿条上会产生许多铜屑。最后齿条会严重磨损而无法使用。因此千万不能用垫高齿条来阻止镜筒下滑。解决镜筒自行下滑的问题,只能用加大粗调手轮和偏心轴套间的摩擦力来实现。但有一种情况例外,那就是齿条的分度线与齿轮的分度圆相离。这时转动粗调手轮时,同样会产生空转打滑的现象,影响镜筒的上下移动。如果这通过调整粗调手轮的偏心轴套,无法调整齿轮与齿条的啮合距离。则只能在齿条后加垫适当的薄片来解决。加垫片调整好齿轮与齿条啮合距离的标准是:转动粗调手轮不费劲,但也不空转。 调整好距离后,在齿轮与齿条间加一些中性润滑脂。让镜筒上下移动几下即可以了。最后还须把偏心轴套上的两只压紧螺丝旋紧。不然的话,转动粗调手轮时,偏心轴套可能会跟着转动,而把齿条卡死,使镜简无法上下移动。这时如果转动粗调手轮力量过大的话,可能会损坏齿条和偏心轴套。在旋紧压紧螺丝后,如果发现偏心轴套还是跟着转的话。这是由于压紧螺丝的螺丝孔螺纹没有改好所造成的。因为厂家改螺纹是用机器改丝的,往往会有一到二牙螺纹没改到位。这时即使压紧螺丝也旋不到位,偏心轴套也就压不紧了。发现这种故障,只要用M3的丝攻把螺丝孔的螺纹攻穿就能解决问题。我用此方法彻底解决了我校30台生物显微镜偏心轴套跟转的问题。 把以上这些步骤都一一做好后,镜筒自行下滑问题基本上是彻底解决了。 (2)、物镜转换器转动困难或定位失灵:转换器转动困难可能是固定螺丝太紧。使转动困难,并会损坏零件。太松,里面的轴承弹珠就会脱离轨道,挤在一起,同样使转动困难;另外弹珠很可能跑到外面来,弹珠的直径仅有一毫米,很容易遗失。固定螺丝的松紧程度以转换器在转动时轻松自如,垂直方向没有松动的间隙为准。调整好固定螺丝后,应随即把锁定螺丝锁紧。不然的话,转换器转动后,又会发生问题。转换器定位失灵有时可能是定位簧片断裂或弹性变形而造成。一般只要更换簧片就行了。 3、遮光器定位失灵:这可能是遮光器固定螺丝太松,定位弹珠逃出定位孔造成。只要把弹珠放回定位孔内,旋紧固定螺丝就行了。如果旋紧后,遮光器转动困难,则需在遮光板与载物台间加一个垫圈。垫圈的厚薄以螺丝旋紧后,遮光器转动轻松,定位弹珠不外逃,遮光器定位正确为佳。 4、镜架镜臀倾斜时固定不住:这是镜架和底座的连接螺丝松动所致。可用专用的双头板手或用尖咀钳卡住双眼螺母的两个孔眼用力旋紧即可。如旋紧后不解决问题,则需在螺母里加垫适当的垫片来解决。 5、目镜、物镜的镜片被污染或霉变:大部分显微镜使用一段时间后都会产生镜片的外面被沾污或发生霉变。尤其是高倍物镜40X,在做观察植物细胞的质壁分离与复原实验时,极容易被糖液污染。如镜头被污染不及时清洗干净就会发生霉变。处理的办法是先用干净柔软的绸布蘸温水清洗掉糖液等污染物,后用干绸布擦干,再用长纤维脱脂棉蘸些镜头清洗液清洗,最后用吹风球吹干。要注意的是清洗液千万不能渗入到物镜镜片内部。因为为了达到所需要的放大倍数,高倍物镜的镜片,需要紧紧地胶接在一起。胶是透明的,且非常暴一旦这层胶被酒精、乙醚等溶剂溶解后,光线通过这两片镜片时,光路就会发生变化。观察效果会受到很大影响。所以在清洗时不要让酒精、乙醚等溶剂渗入到物镜镜片的内部。若是目镜、物镜镜头内部的镜片被污染或霉变,就必须拆开清洗。目镜可直接拧开拆下后进行清洗。但物镜的结构较复杂,镜片的叠放,各镜片间的距离都有非常严格的要求,精度也很高。生产厂家在装配时是经过精确校正而定位的。所以拆开清洗干净后,必须严格按原样装配好。 生物显微镜的镜片都是用精密加工过的光学玻璃片制成的,为了增加透光率,都需在光学玻璃片的两面涂上一层很薄的透光膜。这样透光率就可以达到97%—98%。这一层透光膜表面很平整光滑,且很暴一旦透光膜表面被擦伤留有痕迹,它的透光率就会受到很大影响。观察时会变得模糊不清。所以在擦拭镜片时,一定要用干净柔软的绸布或干净毛笔轻轻擦拭,若用擦镜纸擦拭则更要轻轻擦拭,以免损伤透光膜。

  • 生物显微镜会经常出现的问题【2】

    1.镜筒的自行下滑:这是生物显微镜经常发生的故障之一。对于轴套式结构的显微镜解决的办法可分两步进行。第一步:用双手分别握住两个粗调手轮,相对用力旋紧。看能否解决问题,若还不能解决问题,则要用专用的双柱板手把一个粗调手轮旋下,加一片摩擦片,手轮拧紧后,如果转动很费劲,则加的摩擦片太厚了,可调换一片薄的。以手轮转动不费力,镜筒上下移动轻松,而又不自行下滑为准。摩擦片可用废照相底片和小于1毫米厚的软塑料片用打孔器冲制。 第二步:检查粗调手轮轴上的齿轮与镜筒身上的齿条啮合状态。镜筒的上下移动是由齿轮带动齿条来完成的。齿轮与齿条的最佳啮合状态在理论上讲是齿条的分度线与齿轮的分度圆相切。在这种状态下,齿轮转动轻松,并且对齿条的磨损最小?现在有一种错误的做法,就是在齿条后加垫片,使齿条紧紧地压住齿轮来阻止镜筒的下滑。这时齿条的分度线与齿轮的分度圆相交,齿轮和齿条的齿尖都紧紧地顶住对方的齿根。当齿轮转动时,相互间会产生严重的磨削。由于齿条是铜质材料的,齿轮是钢质材料的。所以相互间的磨削,会把齿条上的牙齿磨损坏,齿轮和齿条上会产生许多铜屑。最后齿条会严重磨损而无法使用。因此千万不能用垫高齿条来阻止镜筒下滑。解决镜筒自行下滑的问题,只能用加大粗调手轮和偏心轴套间的摩擦力来实现。但有一种情况例外,那就是齿条的分度线与齿轮的分度圆相离。这时转动粗调手轮时,同样会产生空转打滑的现象,影响镜筒的上下移动。如果这通过调整粗调手轮的偏心轴套,无法调整齿轮与齿条的啮合距离。则只能在齿条后加垫适当的薄片来解决。加垫片调整好齿轮与齿条啮合距离的标准是:转动粗调手轮不费劲,但也不空转。 调整好距离后,在齿轮与齿条间加一些中性润滑脂。让镜筒上下移动几下即可以了。最后还须把偏心轴套上的两只压紧螺丝旋紧。不然的话,转动粗调手轮时,偏心轴套可能会跟着转动,而把齿条卡死,使镜简无法上下移动。这时如果转动粗调手轮力量过大的话,可能会损坏齿条和偏心轴套。在旋紧压紧螺丝后,如果发现偏心轴套还是跟着转的话。这是由于压紧螺丝的螺丝孔螺纹没有改好所造成的。因为厂家改螺纹是用机器改丝的,往往会有一到二牙螺纹没改到位。这时即使压紧螺丝也旋不到位,偏心轴套也就压不紧了。发现这种故障,只要用M3的丝攻把螺丝孔的螺纹攻穿就能解决问题。 把以上这些步骤都一一做好后,镜筒自行下滑问题基本上是彻底解决了。 2、物镜转换器转动困难或定位失灵:转换器转动困难可能是固定螺丝太紧。使转动困难,并会损坏零件。太松,里面的轴承弹珠就会脱离轨道,挤在一起,同样使转动困难;另外弹珠很可能跑到外面来,弹珠的直径仅有一毫米,很容易遗失。固定螺丝的松紧程度以转换器在转动时轻松自如,垂直方向没有松动的间隙为准。调整好固定螺丝后,应随即把锁定螺丝锁紧。不然的话,转换器转动后,又会发生问题。 转换器定位失灵有时可能是定位簧片断裂或弹性变形而造成。一般只要更换簧片就行了。3.遮光器定位失灵:这可能是遮光器固定螺丝太松,定位弹珠逃出定位孔造成。只要把弹珠放回定位孔内,旋紧固定螺丝就行了。如果旋紧后,遮光器转动困难,则需在遮光板与载物台间加一个垫圈。垫圈的厚薄以螺丝旋紧后,遮光器转动轻松,定位弹珠不外逃,遮光器定位正确为佳。 4.镜架、镜臀倾斜时固定不住:这是镜架和底座的连接螺丝松动所致。可用专用的双头板手或用尖咀钳卡住双眼螺母的两个孔眼用力旋紧即可。如旋紧后不解决问题,则需在螺母里加垫适当的垫片来解决。5.目镜、物镜的镜片被污染或霉变:大部分显微镜使用一段时间后都会产生镜片的外面被沾污或发生霉变。尤其是高倍物镜40X ,在做《观察植物细胞的质壁分离与复原》实验时,极容易被糖液污染。如镜头被污染不及时清洗干净就会发生霉变。处理的办法是先用干净柔软的绸布蘸温水清洗掉糖液等污染物,后用干绸布擦干,再用长纤维脱脂棉蘸些镜头清洗液清洗,最后用吹风球吹干。要注意的是清洗液千万不能渗入到物镜镜片内部。因为为了达到所需要的放大倍数,高倍物镜的镜片,需要紧紧地胶接在一起。胶是透明的,且非常暴?一旦这层胶被酒精、乙醚等溶剂溶解后,光线通过这两片镜片时,光路就会发生变化。观察效果会受到很大影响。所以在清洗时不要让酒精、乙醚等溶剂渗入到物镜镜片的内部。? 若是目镜、物镜镜头内部的镜片被污染或霉变,就必须拆开清洗。目镜可直接拧开拆下后进行清洗。但物镜的结构较复杂,镜片的叠放,各镜片间的距离都有非常严格的要求,精度也很高。生产厂家在装配时是经过精确校正而定位的。所以拆开清洗干净后,必须严格按原样装配好。 生物显微镜的镜片都是用精密加工过的光学玻璃片制成的,为了增加透光率,都需在光学玻璃片的两面涂上一层很薄的透光膜。这样透光率就可以达到97%— 98%。这一层透光膜表面很平整光滑,且很暴?一旦透光膜表面被擦伤留有痕迹,它的透光率就会受到很大影响。观察时会变得模糊不清。所以在擦拭镜片时,一定要用干净柔软的绸布或干净毛笔轻轻擦拭,若用擦镜纸擦拭则更要轻轻擦拭,以免损伤透光膜。

  • 常见流量计的操作不善和布置不妥的不良安装

    [font=微软雅黑][size=10.5pt]1、标准孔板的锐角未装在迎流面。[/size][/font][font=微软雅黑][size=10.5pt]2、仪表与管道间密封衬垫内径dg小于管道内径dp和仪表内径dm而产生束流。dg应略大于dm,如dg[/size][/font][font=微软雅黑][size=10.5pt]3、密封垫片偏心(未对准中心)。密封衬垫安装偏心,遮住了部分流通面积,使速度分布严重畸变不对称。由于不对称流动发生在流量传感器进口,即上游直管段长度为零,会对差压式、涡轮式、涡街式、超声式,靶式、电磁式等仪表带来测量误差。例如dn50mm电磁流量计衬垫偏心10mm,测量误差高达4%~10%。[/size][/font][font=微软雅黑][size=10.5pt]4、[/size][/font][b][font=微软雅黑][size=10.5pt]流量计[/size][/font][/b][font=微软雅黑][size=10.5pt]处于错误的流动方向。[/size][/font][font=微软雅黑][size=10.5pt]5、将对于振动干扰敏感的仪表安装在有振动的管道上。[/size][/font][font=微软雅黑][size=10.5pt]6、缺少必要的防护性配件。[/size][/font][font=微软雅黑][size=10.5pt]这些缺陷,是众所周知或仪表制造厂提出应该避免的。然而因操作人员未经严格培训,缺乏知识而未得到重视,这类失误屡见不鲜。[/size][/font][font=微软雅黑][size=10.5pt]密封垫片内径过小或安装偏心虽然对容积式、浮子式、科里奥利质量式等仪表的流量值没有影响或影响极小,但会增加额外的压力损失。[/size][/font]

  • 解析金相显微镜的十大用途

    1、绘图——可以在计算机显示器上很方便地观察金相图像,并对金相图谱进行分析,评级等。结合光学影像量测系统,对工件进行高精确度的光学量测,并可以以EXCEL、WORD、TXT格式输出做数据分析,并可以用DFX格式输出在CAD中进行工程图的设计。金相显微镜 2、测量——可测量平面上的任何几何图形之尺寸(角度、长度、直径、半径、点到线的距离、圆的偏心、两圆间距等) 3、标注——可在实时影像中的实际工件上标注各种几何尺寸。 4、拍照——可拍下实物照片,包括所标注的尺寸。 5、图形输出到AutoCAD——可将按实时影像中的实际工件的外形所描绘输出到AutoCAD中成为标准工程图。 6、JPEG图片输入:可输入预先快照下的JPEG图片与实时影像中的工件进行比对。 7、输出到AutoCAD自动摆正:可将按实时影像中的工件实际外形所描绘的图形按实际需要来自行设定基准并在传输过程中摆正图形. 8、AutoCAD中的标准工程制图输入:可把AutoCAD中的标准工程制图直接输入实时影像中与实际工件重叠而进行比对,从而找出工件和工程制图的区别。 9、鸟瞰图:可观察工件的全图形并具有类似AutoCAD的缩放功能。 10、在鸟瞰视图中标注:可以在鸟瞰全图中进行标注尺寸。http://www.china-ope.com

  • 液晶显示控制电路芯片VKL060点阵式液晶显示驱动,段码屏芯片厂家

    液晶显示控制电路芯片VKL060点阵式液晶显示驱动,段码屏芯片厂家

    型号:VKL06 / 品牌:永嘉微电/VINKA封装:SSOP24 / 年份:新年份原厂工程服务,技术支持 (C36-10)[img=,690,215]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021459316022_7714_6207987_3.png!w690x215.jpg[/img][font=&][color=#333333]简述:VKL060 SSOP24是一个点阵式存储映射的LCD驱动器,可支持最大60点(15SEGx4COM)的 LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,可配置4种功耗模式,也可通 过关显示和关振荡器进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。 [/color][/font][img=,690,512]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021459572442_4888_6207987_3.png!w690x512.jpg[/img][img=,690,566]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021459570432_4139_6207987_3.png!w690x566.jpg[/img][img=,690,601]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021500390578_6880_6207987_3.png!w690x601.jpg[/img]RAM映射LCD控制器和驱动器系列:VK1024B 2.4V~5.2V 6seg*4com 6*3 6*2 偏置电压1/2 1/3 S0P16 省电模式VK1056B 2.4V~5.2V 14seg*4com 14*3 14*2 偏置电压1/2 1/3 SOP24 省电模式VK1056C 2.4V~5.2V 14seg*4com 14*3 14*2 偏置电压1/2 1/3 SSOP24 省电模式VK1072B 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SOP28 省电模式VK1072C 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SOP28 省电模式VK1072D 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SSOP28 省电模式VK1088B 2.4V~5.2V 22seg*4com 22*3 22*2 偏置电压1/2 1/3 QFN32(4*4mmPP=0.4mm)超小体积VK1128C 2.4V~5.2V 32seg*4com 32*3 32*2 偏置电压1/2 1/3 QFN48 (5*5mmPP=0.35mm)超小体积VK0192M 2.4V~5.2V 24seg*8com 偏置电压1/4 LQFP44 省电模式VK0256 2.4V~5.2V 32seg*8com 偏置电压1/4 QFP64 省电模式VK0256B 2.4V~5.2V 32seg*8com 偏置电压1/4 LQFP64 省电模式VK0256C 2.4V~5.2V 32seg*8com 偏置电压1/4 LQFP52 省电模式VK0384 2.4V~5.2V 48seg*8com 偏置电压1/4 LQFP64 省电模式VK1621 2.4V~5.2V 32seg*4com 32*3 32*2 偏置电压1/2 1/3 LQFP44(QFP44正方形)/LQFP48/SSOP48/SDIP28;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 省电模式VK1622 2.4V~5.2V 32seg*8com 偏置电压1/4LQFP44/LQFP48/LQFP52/LQFP64/QFP64;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 省电模式VK1623 2.4V~5.2V 48seg*8com 偏置电压1/4 LQFP100/QFP100;DICE/DIE 裸片(绑定COB);COG(绑定玻璃) 省电模式VK1625 2.4V~5.2V 64seg*8com 偏置电压1/4 LQFP100/QFP100;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 省电模式VK1626 2.4V~5.2V 48seg*16com偏置电压1/5 LQFP100/QFP100;DICE/DIE裸片(绑定COB) 省电模式————————————————————————————————————高抗干扰LCD液晶控制器及驱动系列:VK1C21A 2.4~5.2V 32seg*4com 偏置电压1/2 1/3 3线/4线通讯接口 SSOP48;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK1C21B 2.4~5.2V 32seg*4com 偏置电压1/2 1/3 3线/4线通讯接口 LQFP48;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK1C21C 2.4~5.2V 32seg*4com 偏置电压1/2 1/3 3线通讯接口 LQFP44;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK1C21D 2.4~5.2V 18seg*4com 偏置电压1/2 1/3 3线通讯接口 SOP28 高抗干扰/抗噪/低功耗VK1C21DA 2.4~5.2V 18seg*4com 偏置电压1/2 1/3 3线通讯接口 SSOP28 高抗干扰/抗噪/低功耗VK1C21E 2.4~5.2V 14seg*4com 偏置电压1/2 1/3 3线通讯接口 SOP24 高抗干扰/抗噪/低功耗VK1C21EA 2.4~5.2V 14seg*4com 偏置电压1/2 1/3 3线通讯接口 SSOP24 高抗干扰/抗噪/低功耗VK2C21A 2.4~5.5V 20seg*4com 16*8 偏置电压1/3 1/4 I2C通讯接口 SOP28;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C21AA 2.4~5.5V 20seg*4com 16*8 偏置电压1/3 1/4 I2C通讯接口 SSOP28;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C21B 2.4~5.5V 16seg*4com 12*8 偏置电压1/3 1/4 I2C通讯接口 SOP24;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C21BA 2.4~5.5V 16seg*4com 12*8 偏置电压1/3 1/4 I2C通讯接口 SSOP24;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C21C 2.4~5.5V 12seg*4com 8*8 偏置电压1/3 1/4 I2C通讯接口 SOP20;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C21D 2.4~5.5V 8seg*4com 4*8 偏置电压1/3 1/4 I2C通讯接口 NSOP16;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C22A 2.4~5.5V 44seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP52;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C22B 2.4~5.5V 40seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP48;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C23A 2.4~5.5V 56seg*4com 52*8 偏置电压1/3 1/4 I2C通讯接口 LQFP64;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C23B 2.4~5.5V 36seg*8com 偏置电压1/3 1/4 I2C通讯接口 LQFP48;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C24A 2.4~5.5V 72seg*4com 68*8 60*16 偏置电压1/3 1/4 1/5 I2C通讯接口 LQFP80;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗VK2C24B 2.4~5.5V 56seg*4com 52*8 44*16 偏置电压1/3 1/4 1/5 I2C通讯接口LQFP64;DICE/DIE裸片(绑定COB);COG(绑定玻璃) 高抗干扰/抗噪/低功耗————————————————————————————————————超低功耗LCD液晶控制器及驱动系列:VKL060 2.5~5.5V 15seg*4com 偏置电压1/2 1/3 I2C通讯接口 SSOP24 超低功耗/抗干扰VKL075 2.5~5.5V 19seg*4com 偏置电压1/2 1/3 I2C通讯接口 SSOP28 超低功耗/抗干扰VKL128 2.5~5.5V 32seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP44 超低功耗/抗干扰VKL144A 2.5~5.5V 36seg*4com 偏置电压1/2 1/3 I2C通讯接口 TSSOP48超低功耗/抗干扰VKL144B 2.5~5.5V 36seg*4com 偏置电压1/2 1/3 I2C通讯接口 QFN48(6*6超小体积) 超低功耗/抗干扰————————————————————————————————————静态显示LCD液晶控制器及驱动系列:VKS118 2.4~5.2V 118seg*1com 偏置电压 -- 4线通讯接口 LQFP128 可视角大,对比度好,不闪烁VKS232 2.4~5.2V 116seg*2com 偏置电压1/1 1/2 4线通讯接口 LQFP128 可视角大,对比度好,不闪烁————————————————————————————————————(永嘉微电/VINKA原厂-FAE技术支持,主营LCD驱动IC; LED驱动IC; 触摸IC; LDO稳压IC; 水位检测IC)LCD驱动、液晶显示IC、LCD显示、液晶显示、显示LCD、段码液晶屏驱动、LCD液晶显示、段码屏LCD驱动、LCD显示驱动芯片、LCD显示驱动IC、液晶驱动原厂、LCD屏驱动、液晶屏驱动、驱动LCD、驱动液晶、LCD驱动控制器、液晶显示驱动原厂、段码LCD驱动、液晶段码屏驱动、液晶显示驱动芯片、点阵式液晶显示驱动、点阵式液晶显示IC、液晶驱动IC、液晶驱动芯片、LCD芯片、液晶芯片、液晶驱动控制器、液晶IC、段码驱动显示IC、笔段式液晶驱动、LCD液晶显示驱动、液晶LCD显示驱动、段码屏驱动厂家、段码驱动IC、段码驱动芯片、段码屏显IC、LCD显示IC、笔段式LCD驱动、LCD显示芯片、段码屏显示IC、段码屏显示芯片、LCD段码液晶驱动、段码LCD液晶驱动、段码驱动原厂、液晶显示芯片、段式液晶驱动、段码显示IC、LCD液晶屏驱动、笔段LCD驱动、LCD段码屏驱动、液晶屏驱动IC、液晶屏驱动芯片、液晶段码LCD驱动、液晶LCD段码驱动、LCD驱动器、液晶驱动电路、LCD驱动IC、断码LCD驱动、段码屏驱动原厂、LCD驱动厂家、LCD屏驱动IC、点阵式LCD驱动、LCD屏驱动芯片、点阵段码屏驱动、点阵液晶屏驱动、段码液晶驱动芯片、段码屏驱动、LCD驱动原厂、LCD驱动芯片、LCD段码驱动、LCD液晶驱动、液晶驱动IC原厂、液晶显示驱动IC、点阵LCD驱动、段式LCD驱动、LCD显示驱动、液晶显示驱动、段码液晶驱动

  • 生物恒温培养摇床用途及10大特点

    生物恒温培养摇床简介生物恒温培养摇床也称为振荡器,是一种常用的实验室设备,属于生化仪器,广泛用于对温度和振荡频率有较高要求的细菌培养、发酵、杂交、生物化学反应以及酶和组织研究等。实验室常用的液体摇匀,微生物、细菌和细胞培养。生物恒温培养摇床10大性能特点1.生物恒温培养摇床集恒温培养箱和摇床于一体、一机两用、投资少,占地小。2.国内独创轨道偏心轮驱动机构,可实现振幅多级可调。3.三维偏心轮驱动机构,运转更加平稳自如。4.人机友好的图案操作界面,大屏幕背光液晶显示屏幕。5.具有运行参数记忆功能,可避免繁琐操作。6.生物恒温摇床运行参数加密锁定,避免人为误操作。7.微处理芯片PI型温度控制,温度线性好,波动小,液晶显示屏显示设定温度和实际温度。8.微处理芯片频率控制,液晶显示屏显示设定频率和实际频率。9.设有定时功能,1分钟到99.9小时之间设定任意培养时间,液晶显示屏显示剩余时间,到时能自动停机发出声响警报。10交流感应电机驱动,宽调速、恒转矩、恒转数、无碳刷、长寿命、免保养。

  • 【求助】 (已应助)求助“铜加工”文献

    求助“铜加工”文献1.有色金属挤压加工技术的现状及其发展趋势,《铜加工》2006年01期2.TP2管产生气泡原因浅析,《铜加工》2006年02期3.工字形铝合金偏心压杆平面内稳定承载力研究 ,西安交通大学学报 , Journal of Xi'an Jiaotong University, 编辑部邮箱 2004年 11期 4.管材偏心原因浅析及调偏对策,材料科学 铝加工 2001年24卷1期 5.И.Л.别尔林反向挤压管材挤压力公式修正,材料科学 有色金属加工 2005年34卷6期 6.铝合金管材冷空拔成形模拟研究,材料科学 锻压装备与制造技术 2005年40卷1期 7.铝管材挤压过程中的偏心问题,材料科学 有色金属加工 2003年32卷4期

  • 求助中文文献5篇

    【序号】:1【作者】:叶露,王肇勋 【题名】:光学系统测试与设备【期刊、年、卷、期、起止页码】: 中国光学与应用光学文摘 2001年04期 【全文链接】:[url]http://gb.oversea.cnki.net/kcms/detail/detail.aspx?recid=&FileName=ZGGA200104073&DbName=CJFD2001&DbCode=CJFD[/url]【序号】:2【作者】:赵岳; 【题名】:基于非接触式测量设备提高测量效率的方法【期刊、年、卷、期、起止页码】:仪器仪表标准化与计量 2017年05期 【全文链接】:[url]http://gb.oversea.cnki.net/KCMS/detail/detail.aspx?filename=YQBJ201705026&dbcode=CJFD&dbname=CJFDTEMP[/url]【序号】:3【作者】:罗茂; 步扬; 徐静浩; 王向朝; 【题名】:基于多光谱技术的光学元件表面疵病检测【期刊、年、卷、期、起止页码】: 中国激光 2017年01期 【全文链接】:[url]http://gb.oversea.cnki.net/KCMS/detail/detail.aspx?filename=JJZZ20161019001&dbcode=CJFD&dbname=CAPJ2015[/url]【篇 号】:4【作 者】:王肇勋;【题 名】:整组物镜各面偏心差的测量【期刊名全称】:光学工程 1980年01期 【全文链接】: [url]http://gb.oversea.cnki.net/KCMS/detail/detail.aspx?filename=GDGC198001000&dbcode=CJFD&dbname=CJFD1980[/url]【序号】:5【作者】:王肇勋; 魏全忠; 【题名】:整组物镜各面偏心差的测量(续)【期刊、年、卷、期、起止页码】:光学工程 1984年05期 【全文链接】:[url]http://gb.oversea.cnki.net/KCMS/detail/detail.aspx?filename=GDGC198405004&dbcode=CJFD&dbname=CJFD1984[/url]

  • 芯片上的实验室------微流控芯片

    芯片上的实验室------微流控芯片

    微流控分析芯片最初在美国被称为“芯片实验室”(lab-on-a-chip),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。有着体积轻巧、使用样品及试剂量少,且反应速度快、可大量平行处理及可即用即弃等优点的微流控芯片,在生物、化学、医学等领域有着的巨大潜力,近年来已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 芯片集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以 大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。  廉价,安全,因此,微流控分析系统在微型化。集成化合便携化方面的优势为其在生物医学研究、药物合成筛选、环境监测与保护、卫生检疫、司法鉴定、生物试剂的检测等众多领域的应用提供了极为广阔的前景。 我国在微流控分析方面的研究虽然起步较国外晚了四到五年,但在多个相关的学科领域都具有足够的积累与优势,我国具有世界上最大的微流控芯片市场,用中国的芯片产品占领这一市场是我国科学家责无旁贷的使命。现如今在网站中搜寻“微流控芯片”,便可以找到研发生产微流控芯片的企业和相关资料,

  • 【分享】双侧电子引伸计的测量原理

    双侧电子引伸计的测量原理 下图是双侧电子引伸计结构简图。从图中可看出,双侧电子引伸计感受试样变形的刀刃是与试样对称两侧的a点及d点接触,即是在测量试样标距L内部的ad两点联线的伸长,当试样标距L发生纯粹拉伸伸长ΔL 时(假设无偏心拉伸影响),ad的伸长与ΔL有恒定的函数关系(这个关系可在引伸计与材料试验机作联机“校准”时自动建立)。在实际的拉伸试验中,通常与纯粹拉伸变形同时发生的偏心拉伸产生的纯弯曲变形在ad线段中的ao部分产生伸长(或缩短)变形,而od部分产生缩短(或伸长)变形,由于对称性,这两部分变形的数值相等和符号相反,它们的代数和为零,即是纯弯曲变形不会使ad线段的长度发生变化,这就是双侧电子引伸计能避免偏心拉伸中的弯曲影响而测到纯粹拉伸变形的原理。

  • 阿贝折射仪常见故障分析

    1.临界分界线不清楚  可能原因:①目镜、有关光学零件有灰、油渍;②样品不充满棱镜表面;③上下棱镜之间间隙太大;④消色散棱位置不对角;⑤折射棱镜表面毛或腐蚀严重。排除方法:①将有关光学零件擦清;②再加一些样品,使样品充满棱镜表面;③调节进光棱镜上的四只螺钉和转轴的偏心,重新旋转图七中色散调节手轮,以调整棱镜至合适的位置;④送专业修理人员或生产厂家调换棱镜。2.读数刻线看不清  可能原因:目镜,有关光学零年有灰、油渍。  排除方法:将有光光学零件擦清。3.分界线与十字交叉线有视差  可能原因:望远物镜位置走动。排除方法:重新校正望远物镜。4.读数刻线与十字交叉线有视差  可能原因:读数物镜位置走动。排除方法:重新校正读数物镜。

  • 四电极电磁流量计磁场分布特性数值模拟

    油田提高原油采收率采用注聚合物驱油技术是非常重要手段之一,注聚合物驱油原理是提高注入粘弹性聚合物溶液流体粘度,增大聚合物流体平面及纵向波及面积,减少注入流体在高渗透率地层中的窜流,提高岩芯微观驱油效率,最终达到减少残余油饱和度与提高原油采收率目的。为使聚合物溶液进入预先设定油层并能得到一个较为均匀的聚合物驱前缘,需要准确确定从注聚井中进入各油层聚合物的注入量,所以,注聚井中流量测量是注聚三次采油技术中一项重要测试内容。由于电磁流量计无转动部件,实际测试时不破坏聚合物分子结构,对测试环境无放射性污染且不受聚合物溶液粘度和密度影响,所以,大庆油田在注聚井中推广使用了外流式四电极电磁流量计测井方法。自早期电磁流量计基本理论建立以来,虽然电磁流量计在理论及技术上有了很大发展,但是,由于影响电磁流量计测量精度因素很多,从流场及磁场分布角度综合分析电磁流量计响应特性仍然是值得研究领域,尤其是近年来随着计算流体力学及电磁场有限元分析技术迅速发展,为解决复杂流动及磁场分布条件下的电磁流量计响应预测问题提供了良好机遇。由于仪器倾斜与偏心、流体电磁特性变化等因素都会给电磁流量计响应带来影响,这些测井环境因素对电磁流量计响应影响需要从数值模拟角度给予理论分析,从而为注聚井中电磁流量计流量测井提供理论分析基础。本文重点分析了四电极电磁流量计磁场分布特性,考察了四电极电磁流量计权重函数分布,并分析了仪器偏心及流体磁导率变化因素对磁场分布特性影响,为正确理解四电极电磁流量计测量特性提供了理论分析方法。1、注聚井中四电极电磁流量计  图1为外流式四电极电磁流量计测井仪器示意图。仪器由上下扶正器、传感器、电路筒及电池仓等部分组成,其中传感器是流量计的核心部分,上下扶正器用于在测量时使流量计居于套管中央位置。四电极电http://www.kfll.cn/up_files/image/Article/2011/10/17/34018811.gif磁流量计采用四个均匀相隔分布排列的励磁线圈及四个测量电极,相对于单对电极的电磁流量计而言,这种励磁结构的磁场分布相对比较均匀,有利于减小由于磁场分布不均匀所带来的测量误差。传感器部分主要由磁路系统、测量导管、电极、外壳、干扰调整装置及若干引线组成。仪器采用外流式结构。仪器结构尺寸为:仪器外径为35mm,其中测量电极段外径为33.8mm,传感器长度为44.5mm。仪器总长度为1200mm。http://www.kfll.cn/up_files/image/Article/2011/10/17/34018812.png图1 外流式四电极电磁流量计测井仪器图  2 四电极电磁流量计测量区域内磁场分布  为获得测量区域内磁场分布,采用ANSYS商用有限元分析软件对电磁流量计磁场分布特性进行仿真。由麦克斯韦方程导出的3分量矢量泊松方程如下:  http://www.kfll.cn/up_files/image/Article/2011/10/17/34018813.png  对于本文所使用的二维平面场(X-Y平面),矢量磁势http://www.kfll.cn/up_files/image/Article/2011/10/17/34018814.png和电流密度http://www.kfll.cn/up_files/image/Article/2011/10/17/34018815.png相互平行且只有z方向分量,即:Ax=http://www.kfll.cn/up_files/image/Article/2011/10/17/34018816.png则由(3)式可得:  http://www.kfll.cn/up_files/image/Article/2011/10/17/34018817.png  (4)  所用模型中介质为线性介质,磁导率μ为一常数,故上式可简化为:  http://www.kfll.cn/up_files/image/Article/2011/10/17/34018818.png  (5)  在使用ANSYS有限元计算时,自由度为磁势,施加载荷时只要在各线圈上施加电流密度值即可。模型有两种边界条件:(1)Dirichlet条件(AZ约束):磁通量平行于模型边界;(2)Neumann条件(自然边界条件):磁通量垂直于模型边界。第二种条件为默认的边界条件。对于电磁流量计在管道中的模型,只需满足自然边界条件。故施加了电流密度后,即可进行计算。在施加电流密度时,可用下式计算:  http://www.kfll.cn/up_files/image/Article/2011/10/17/34018819.png (6)式中:http://www.kfll.cn/up_files/image/Article/2011/10/17/340188110.png为电流密度;n为线圈的匝数;http://www.kfll.cn/up_files/image/Article/2011/10/17/340188111.png为通入线圈的电流;a为线圈的横截面积。  在ANSYS环境下用有限元法求解的关键是对模型进行网格划分。图2(a)为用于磁场计算建立的分区介质模型,图2(b)为磁场计算网格剖分模型,可以看出:在靠近线圈和电极的部分网格剖分较密,而在其它部分则较稀疏,划分后网格划分单元数为3577。在进行有限元分析时,需要给每种材料施加磁导率属性,图2(a)中将六种不同属性材料用不同颜色显示出。http://www.kfll.cn/up_files/image/Article/2011/10/17/340188112.png图2 仪器在油管中磁场分析模型及网格剖分图  模型中有六种不同的材料:填料、线圈、电极、1Cr18Ni9Ti、聚四氯乙烯衬里、流体(可假定为水)。将六种不同属性的材料用不同颜色显示设置好各种材料的磁导率,施加电流密度后,即可计算磁场分布。由于仪器结构尺寸非常对称,仪器位于管道中心,通电后四个线圈相当于交替放置的N极与S极,故产生的磁场也是对称分布的。流体从仪器与油管环形空间流过,切割磁力线产生感生电势,通过四个对称分布的电极即可进行测量。  磁场仿真计算结果如图3所示,从图中可以看出:http://www.kfll.cn/up_files/image/Article/2011/10/17/340188113.png图3 仪器与油管环形测量区域磁场分布图  在仪器与油管环形空间内磁场几乎是均匀分布的,尤其是在靠近仪器探头表面区域磁力线分布更加密集均匀,所以,该部分应有较高测量灵敏度。整体上说四电极电磁流量计具有较均匀的磁场分布特点,这有利于四电极电磁流量计聚合物流量测量。  3 仪器偏心对磁场分布影响  在仪器使用过程中,由于各种环境因素的影响,有时仪器并不一定处于管道中心位置,而会偏离中心一定的距离,此时激励线圈产生的磁场在管道内分布情况也发生变化。图4为仪器在管道中向右偏心1mm、2mm、3mm、4mm时磁通线分布,可以看出:当仪器偏离中心位置时,仪器与油管环形空间内磁通线呈非对称分布;随着仪器向右继续偏移,右边磁通线分布明显密集,而左边则分布明显稀疏。http://www.kfll.cn/up_files/image/Article/2011/10/17/340188114.png图4 仪器偏心时磁通线分布图  因此,井下四电极电磁流量计用于测量时,仪器应尽量在井内保持居中位置,只要仪器发生偏心,在管道中激励磁场分布就会发生变化,随之电磁流量计权重函数分布也就会发生变化,进而流体切割磁力线时产生的感应电势发生变化,最终导致仪器测量结果因偏心产生较大误差。  4 流体磁导率对磁场分布影响  磁性是一切物质都具有的属性,物质的磁性与原子、

  • 半导体芯片失效分析实验室汇总

    半导体芯片失效分析实验室汇总随着半导体技术的发展,芯片已经成为现代电子产品中不可缺少的部分。然而,芯片在长时间运行后可能会出现失效或故障,这将导致电子产品无法正常使用。为了解决这个问题,半导体芯片失效分析实验室应运而生。半导体芯片失效分析实验室是一种专门用于分析芯片故障原因和找出解决方案的实验室。它主要由多种设备和技术组成,包括光学显微镜、扫描电子显微镜、离子注入系统、穿透电子显微镜、电子束刻蚀机等。半导体芯片失效分析实验室可以用于以下方面的分析:1.失效分析如果芯片出现了故障,失效分析可以用来找出导致问题的原因。分析的过程通常包括对芯片进行非常规测试,如X射线衍射、扫描探针显微镜和热分析等,以找出故障根源,如堆积缺陷、擦除缺陷、漏电等。2.质量控制半导体芯片失效分析实验室也可以用于质量控制,以确保每个芯片都符合准确的规格和标准。质量控制分析通常包括对芯片进行成品检验,如外观检查、电性能测量和可靠性测试等。半导体芯片失效分析实验室汇总1.北京软件产品质量检测检验中心芯片失效分析实验室(简称:北软检测)成立于2002 年7月。北软芯片失效分析实验室可以进行全流程的失效分析,可靠性测试,安全验证等。主要包括点针工作站(Probe Station)、反应离子刻蚀(RIE)、微漏电侦测系统(EMMI)、X-Ray检测(2D X-ray,3D X-ray)、超声波扫描显微就(SAT)、缺陷切割观察系统(FIB系统)、体式显微镜、金相显微镜、研磨台(定点研磨,非定点研磨,封装研磨)、激光黑胶层取出系统(自动decap,laser decap)、自动曲线追踪仪(IV)、切割制样模块、扫描电镜(SEM)、能谱成分分析(EDX)、交变温湿度试验箱、高温储存试验、低温存储试验、温湿度存储试验等。通讯地址:北京市海淀区东北旺西路8号中关村软件园3A楼联系人:赵工?2.南京微电子技术研究所半导体芯片失效分析实验室南京微电子技术研究所半导体芯片失效分析实验室是国内最早成立的芯片失效分析实验室之一。实验室配备有先进的设备和技术,可对芯片的物理结构、器件参数、芯片性能、线路连接等方面进行全面的分析和测试。3.上海半导体研究所失效分析实验室上海半导体研究所失效分析实验室成立于2005年,是一家具备IC生产能力的高新技术企业。实验室在芯片失效分析领域积累了丰富的经验和成果,并不断引入先进的设备和技术,为客户提供高水平的技术支持和服务。4.北京中科微电子有限公司失效分析实验室北京中科微电子有限公司是一家专业从事半导体封装测试与分析的公司。实验室配备有一批优秀的专业技术人员和一流的设备,能够为客户提供全面、高效的失效分析服务。5.惠州半导体失效分析中心惠州半导体失效分析中心是惠州市政府支持的创新创业平台,依托留学海归、国内外知名院校科研机构等优势资源,致力于半导体失效分析领域的研发和服务。6.中国电子科技集团公司第十四研究所该实验室成立于20世纪80年代,针对集成电路芯片的失效问题,建立了先进的实验室设备和完整的芯片失效分析技术流程。这些技术流程包括非常规样品处理、样品制备、分析测试和故障分析定位等。该实验室能够对各种类型的芯片进行失效分析,如DRAM、NOR FLASH、SRAM、Flip Chip等。7.中国电子科技集团公司第五十五研究所该实验室成立于20世纪90年代,主要研究领域是空间电子电路可靠性和失效分析。在芯片失效分析方面,该实验室研究了很多芯片失效的根本原因和解决办法。例如,该实验室率先提出了在高温下检测集成电路失效的方法,推出了系列失效分析和故障定位技术。8.中国航天科工集团有限公司第六十所该实验室成立于20世纪90年代初期,由中国第一位半导体芯片设计师胡启恒教授领导,主要研究集成电路的失效分析和检测。该实验室在失效分析方面的主要技术包括侵入式和非侵入式技术、信号分析、快速失效分析以及优化分析等。此外,该实验室还开创了集成电路失效分析的新技术领域。9.南京微米尺度材料分析与应用国家级实验室该实验室拥有完整的半导体芯片失效分析实验平台及技术团队,能够进行芯片性能评估、芯片分析、缺陷定位和失效机理研究等多方面的工作,可为企业提供完整的半导体芯片失效分析服务。10.北京微电子所半导体芯片失效分析实验室该实验室依托于北京微电子所,能够利用所拥有的半导体芯片分析技术和完善的实验平台,提供专业的半导体芯片失效分析服务,包括芯片失效原因分析、失效机理研究、失效模拟与验证等多方面的服务。11.武汉微纳电子制造国家工程研究中心半导体芯片失效分析实验室武汉微纳电子制造国家工程研究中心依托于华中科技大学,其半导体芯片失效分析实验室拥有全套高端的半导体芯片失效分析仪器,为企业提供完整的半导体芯片失效分析服务,涉及芯片失效原因分析、失效机理研究、失效模拟与验证等多方面的服务。12.上海微电子设备有限公司半导体芯片失效分析实验室该实验室作为上海微电子设备有限公司的技术支持,结合上海微电子设备有限公司的芯片检测与分析设备,可为企业提供完整的半导体芯片失效分析服务,包括芯片失效原因分析、失效机理研究、失效模拟与验证等多方面的服务。以上仅是部分中国半导体芯片失效分析实验室,随着技术的不断更新和进步,相信未来将会涌现更多实验室,并且实验室之间也将进行更多的协作与交流,加速半导体芯片失效分析技术的发展和普及。国内较为知名的半导体芯片失效分析实验室还有中芯国际、台积电、联芯科技等。这些实验室拥有一流的实验设备和技术人才,可以开展多种类型的半导体芯片失效分析工作,并为客户提供专业的技术支持和服务。此外,在国际上也有多家著名的半导体芯片失效分析实验室,如SiliconExpert、IEEE Components Partitioning and Analysis Center等。这些实验室不仅具备高水平的技术装备和技术人才,还通过与多家知名公司合作,积累了丰富的经验和数据资源。同时,这些实验室还开展了大量的研究工作,不断推动半导体芯片失效分析领域的发展。总之,半导体芯片失效分析实验室在提高半导体芯片可靠性方面起着至关重要的作用。希望通过本文的介绍,可以帮助大家了解半导体芯片失效分析实验室的相关情况,为半导体芯片失效分析工作提供参考和支持。[img]https://ng1.17img.cn/bbsfiles/images/2023/05/202305240713065889_2888_3233403_3.png[/img]

  • 【讨论】太阳系是稳定的吗?

    【讨论】太阳系是稳定的吗?

    当牛顿遇上“混沌”,行星的轨道会失控吗?http://ng1.17img.cn/bbsfiles/images/2011/05/201105050924_292447_2185349_3.jpg这个世界正面临着让人畏缩的问题——气候变化、经济衰退,还有电视真人秀节目——我们所说的“世界”通常指的是生活在地球这颗行星表面的生命,而非地球本身。我们想当然地认为行星的轨道具有高度的稳定性。没有人担心水星会在内太阳系中失控。也没有人认真地思考过火星会和地球相撞。毕竟,行星已经稳定地绕太阳转动了45.4亿年。如果有哪里不对劲的话,你会认为它早就该发生了。然而,对太阳系稳定性的严格证明一直是天文学中悬而未决和最让人伤脑筋的问题之一。新发现的数百颗太阳系外行星又激发起了人们对这个问题新的兴趣。许多太阳系外行星有着长椭圆轨道(大偏心率),暗示它们是以前行星“骚乱”时期的幸存者。在一些拥有两颗或者更多行星的行星系统中,我们可以看到大尺度的轨道不稳定性确实发生在它们之间的清晰证据。例如,在包含有三颗行星的仙女υ中,最外面的两颗行星具有大偏心率轨道,它们的形状和指向可以认为是在这个系统尚年轻时有第四颗行星被抛射出去而造成的。即使在25亿年(仙女υ的年龄)后,这一抛射的迹象依然清晰可见;每8千年这个系统就会再现那场灾难刚发生后不久的大偏心率构形。

  • 工业仪表LCD驱动液晶芯片VK0256/B/C段码屏芯片厂家高稳定LCD驱动

    工业仪表LCD驱动液晶芯片VK0256/B/C段码屏芯片厂家高稳定LCD驱动

    型号:VK0256,品牌:永嘉微电/VINKA,封装形式:多种封装,年份:新年份概述:VK0256是一个点阵式存储映射的LCD驱动器,可支持最大256点(32EGx8COM)的LCD 屏。单片机可通过3/4线串行接口配置显示参数和发送显示数据,也可通过指令进入省电模式。(C36-39)特点:? 工作电压 2.4-5.2V? 内置32 kHz RC振荡器(上电默认)? 可外接32kHz时钟源(OSCI)? 许/生13/6/3//28/14/4//1/2//? 偏置电压(BIAS)固定为1/4? COM周期(DUTY)固定为1/8? 内置显示RAM为32x8位? /q//28/8//515///75///26//? 蜂鸣器频率可配置为2kHz、4kHz? 省电模式(通过关显示和关振荡器进入)? 时基和看门狗共用1个时钟源,可配置8种频率? 时基或看门狗溢出信号输出脚为/IRQ脚 (开漏)? 3/4线串行接口? 软件配置LCD显示参数? 写命令和读写数据2种命令格式? 读写显示数据地址自动加1? VLCD脚提供LCD驱动电压(<VDD)? 封装 QFP64(20.0mm x 14.0mm PP=1.0mm).[img=,650,512]https://ng1.17img.cn/bbsfiles/images/2023/11/202311061048364838_2198_6207987_3.png!w650x512.jpg[/img]型号:VK0256B,微电/VINKA,封装形式:多种封装,年份:新年份概述: VK0256B是一个点阵式存储映射的LCD驱动器,可支持最大256点(32EGx8COM) 的LCD屏。单片机可通过3/4线串行接口配置显示参数和发送显示数据,也可通过指令进入 省电模式。特点 :? 工作电压 2.4-5.2V? 内置32 kHz RC振荡器(上电默认)? 可外接32kHz时钟源(OSCI)? 偏置电压(BIAS)固定为1/4? 许/生13/6/3//28/14/4//1/2//? COM周期(DUTY)固定为1/8? 内置显示RAM为32x8位? //q/28/8//515///75///26//? 蜂鸣器频率可配置为2kHz、4kHz? 省电模式(通过关显示和关振荡器进入)? 时基和看门狗共用1个时钟源,可配置8种频率? 时基或看门狗溢出信号输出脚为/IRQ脚 (开漏)? 3/4线串行接口? 软件配置LCD显示参数? 写命令和读写数据2种命令格式? 读写显示数据地址自动加1? VLCD脚提供LCD驱动电压(<VDD)? 封装 LQFP64(7.0mm x 7.0mm PP=0.4m[img=,650,392]https://ng1.17img.cn/bbsfiles/images/2023/11/202311061049177624_6967_6207987_3.png!w650x392.jpg[/img]型号:VK0256C,微电/VINKA,封装形式:多种封装,年份:新年份概述:VK0256C是一个点阵式存储映射的LCD驱动器,可支持最大256点(32EGx8COM)的LCD 屏。单片机可通过3/4线串行接口配置显示参数和发送显示数据,也可通过指令进入省电模式。特点? 工作电压 2.4-5.2V? 内置32 kHz RC振荡器(上电默认)? 可外接32kHz时钟源(OSCI)? 偏置电压(BIAS)固定为1/4? COM周期(DUTY)固定为1/8? 许/生13/6/3//28/14/4//1/2//? 内置显示RAM为32x8位? /q//28/8//515///75///26//? 蜂鸣器频率可配置为2kHz、4kHz? 省电模式(通过关显示和关振荡器进入)? 时基和看门狗共用1个时钟源,可配置8种频率? 时基或看门狗溢出信号输出脚为/IRQ脚 (开漏)? 3/4线串行接口? 软件配置LCD显示参数? 写命令和读写数据2种命令格式? 读写显示数据地址自动加1? VLCD脚提供LCD驱动电压(<VDD)? 封装 LQFP52(14.0mm x 14.0mm PP=1.0mm)[img=,650,355]https://ng1.17img.cn/bbsfiles/images/2023/11/202311061049383968_7098_6207987_3.png!w650x355.jpg[/img](永嘉微电/VINKA原厂-FAE技术支持,主营LCD驱动IC; LED驱动IC; 触摸IC; LDO稳压IC; 水位检测IC)LCD驱动、液晶显示IC、LCD显示、液晶显示、显示LCD、段码液晶屏驱动、LCD液晶显示、段码屏LCD驱动、LCD显示驱动芯片、LCD显示驱动IC、液晶驱动原厂、LCD屏驱动、液晶屏驱动、驱动LCD、驱动液晶、LCD驱动控制器、液晶显示驱动原厂、段码LCD驱动、液晶段码屏驱动、液晶显示驱动芯片、点阵式液晶显示驱动、点阵式液晶显示IC、液晶驱动IC、液晶驱动芯片、LCD芯片、液晶芯片、液晶驱动控制器、液晶IC、段码驱动显示IC、笔段式液晶驱动、LCD液晶显示驱动、液晶LCD显示驱动、段码屏驱动厂家、段码驱动IC、段码驱动芯片、段码屏显IC、LCD显示IC、笔段式LCD驱动、LCD显示芯片、段码屏显示IC、段码屏显示芯片、LCD段码液晶驱动、段码LCD液晶驱动、段码驱动原厂、液晶显示芯片、段式液晶驱动、段码显示IC、LCD液晶屏驱动、笔段LCD驱动、LCD段码屏驱动、液晶屏驱动IC、液晶屏驱动芯片、液晶段码LCD驱动、液晶LCD段码驱动、LCD驱动器、液晶驱动电路、LCD驱动IC、断码LCD驱动、段码屏驱动原厂、LCD驱动厂家、LCD屏驱动IC、点阵式LCD驱动、LCD屏驱动芯片、点阵段码屏驱动、点阵液晶屏驱动、段码液晶驱动芯片、段码屏驱动、LCD驱动原厂、LCD驱动芯片、LCD段码驱动、LCD液晶驱动、液晶驱动IC原厂、液晶显示驱动IC、点阵LCD驱动、段式LCD驱动、LCD显示驱动、液晶显示驱动、段码液晶驱动

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制