当前位置: 仪器信息网 > 行业主题 > >

配气装置

仪器信息网配气装置专题为您提供2024年最新配气装置价格报价、厂家品牌的相关信息, 包括配气装置参数、型号等,不管是国产,还是进口品牌的配气装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合配气装置相关的耗材配件、试剂标物,还有配气装置相关的最新资讯、资料,以及配气装置相关的解决方案。

配气装置相关的资讯

  • 大科学装置联合基金:培养合作精神比给钱更重要
    2009年,一项联合基金的诞生,让许多之前根本没有机会触碰那些动辄数亿元投资建设的大科学装置的科研人员,有了依靠其开展研究的机会。   “钱不能算多,国家自然科学基金委和中国科学院每年各为大科学装置科学研究联合基金投入2000万元。我们希望联合基金除了能给科研人员提供经费支持,还能让大科学装置真正成为开展多学科交叉研究的绝佳平台,并在此过程中,使我国科技工作者相对薄弱的合作研究精神得到培养,从而更加有效地整合全社会科技资源,发挥科学基金配置科研资源的战略引导作用。”近日,作为国家自然科学基金委分管大科学装置联合基金的副主任,沈文庆院士粗略地为记者勾勒了联合基金的资助情况。   他说,第一期大科学装置联合基金共三年(2009年度—2011年度)。联合基金依托北京正负电子对撞机及北京同步辐射、上海光源、兰州重离子加速器与冷却储存环、合肥同步辐射四个大科学装置,前两年共资助了131个项目。   效果已经显现:尽管这些装置的承建和运行方都是中科院所属的研究所,但获得资助的60个单位中,有37个是非中科院系统的,实现了大科学装置的共享 在获得资助的项目中,95%以上涉及材料科学、生命科学、地球科学、信息科学和化学领域的交叉问题,促进了交叉领域的研究 还有,60后、70后、80后的年轻科学家成了联合基金项目的研究主力,达到了培育年轻人的目的。   今年是第一期联合基金的最后一年。据悉,续签的协议内容正在商议中,“钱肯定会比第一期多。” 沈文庆说。   采访中,记者发现,沈文庆的关注点并没有局限在联合基金本身。   仪器不共享,不仅是钱的浪费   “我们在仪器共享和合作研究方面是有欠缺的。”沈文庆说,仪器不能共享的例子俯拾皆是,但大家对其危害的认识恐怕还不全面。“仪器没有共享,不仅是钱的浪费,实际上反映了我国科学家合作研究精神的薄弱。每个人都抱着自己的仪器搞研究,思维会被局限,难出创新成果。”   他指出,现在已经不是牛顿时代,个体的科学家不再可能靠一支笔、一张纸获得成功,必须与本学科、不同学科以及不同国家的科学家深入合作,取长补短。而合作研究正是现代科学创新非常重要的因素之一。沈文庆说,搞这个联合基金,就是希望能够藉此促进仪器的共享,促进科学家的合作。   “所依托的大科学装置其实倒不存在使用率低的问题。”沈文庆说,联合基金的优势是可以根据国家自然科学基金“依靠专家、发扬民主、择优支持、公正合理”的评审原则,在全国范围而不仅是中科院系统,选择更具创新性的项目进行支持。他介绍,联合基金是研究经费而非使用费,大科学装置的运行费用由国家财政负担,四个装置的依托单位既没有经济上的利益,也不能干预评审。“中科院能拿出钱来做这件事情,值得称道。”   仪器创新是自主创新的重要方面   工欲善其事,必先利其器。在沈文庆看来,新的科学问题,需要在相应的新设施上加以研究,没有自己创新出来的仪器设备,要获得世界一流的突破性、变革性的成果,是有难度的。他曾经参与过一项调研,结果显示,历年来的诺贝尔奖中有三分之一是仪器的创新或与此有关的研究。   他说,遗憾的是,我国对仪器创新的重要性认识不足,投入的力量也不够。我们大部分科学仪器是从国外买来的。国际上很大一批仪器公司靠我们养活着,而不少我国自己做仪器的厂家,前几年却都没法生存了。   究其原因,沈文庆认为,问题出在评价体系上——大家都重视发表文章的数量和质量,搞仪器创新,很难发表文章,即使发表了影响因子也不会很高,愿意做的人当然不会很多。   “自主创新,转型发展,不仅是对国家、对地方如此,对科学研究也一样。我国发表的科学论文数量已经是世界第二了,但真正要有质的变化,必须高度重视仪器创新,一流的科学家,一定要关注自己领域的仪器。”他呼吁。   他介绍,提升大科学装置研究能力的实验技术、方法及小型专用仪器发展研究和关键技术研究,是联合基金主要资助方向之一。不同学科的科学家在使用装置的过程中,会提出很多新的问题、要求,对改进现有装置的性能大有好处。   对人才培养和基础研究的战略意义还需提高认识   大科学装置联合基金的一项重要任务是人才培养。沈文庆告诉记者,联合基金作为国家自然科学基金的一部分,自设立以来,着重推动了研究方向的确定和吸引高水平研究人员参与申请及年轻研究人员的培养,公开、公平、公正的评审程序为更多的年轻人提供了机会, 80%以上的该联合基金项目负责人是三四十岁的年轻科学家。   与此相关的话题是,基础研究的战略意义还有待全社会进一步提高认识。沈文庆回忆说,10年前,他还在中国科学院上海分院当院长时,曾规定,留下来的博士生单位可以给20万的购房补助。“现在20万能买几个平方米?”目前,很多理工科的毕业生以及一些年轻的科研人员都跳到了效益较好的非科技行业求发展,影响了科技人才的成长。   “我们要自主创新,要转型发展,到底缺什么?”沈文庆自问自答:“缺很多东西,但很重要的是缺基础性的创新,缺原始创新。”他引用第二次全国R&D资源清查结果的统计数据, 2009年,我国基础研究的经费为270.3亿元,绝对值比2005年翻了一番,但其在R&D总经费所占比例却比“十五”末的5.4%下降了0.7个百分点。而目前,美、日等发达国家的这一比例都超过了15%,法、意等国家的比例更是达到了20%以上。“原始创新是一个国家竞争力的源泉。而原始创新源于基础研究,不能不重视啊。”他呼吁。   大科学装置当成为天然的促进学科交叉平台   沈文庆认为,现代科学新的增长点,很可能是出现在交叉学科。   他介绍,过去国家自然科学基金委的每个学部都有自己的主体领域,交叉学科研究到底应该找哪个学部支持,不好判断。而大科学装置是一个天然的促进学科交叉的平台。做大科学装置的人很多是粒子物理、核物理专家、加速器专家,而使用者却来自不同的学科,做实验时,可能有几十个甚至上百个研究小组在同时工作,涉及生命、地学、材料等等领域。在一起交流是必然的。“别人做的事情可能是你从来没有想到过的,对开拓你的研究思路,提高研究水平肯定会有促进。”他介绍,国家自然科学基金委还决定从今年起连续三年,额外拿出一定数量的经费,开展与使用大科学装置相关的培训,不同学科的科研人员又多了一个交流的渠道,眼界会进一步开阔。   “开始可能只是把人聚集到一起,把仪器装置融合在一起,到了一定的时候,他们内在科学的问题可能就会碰在一起。除了交叉,还会产生融合,产生一些现在还不知道是什么的创新性成果。”沈文庆说。
  • 中国人首次在太空种菜 栽培装置部分来自3D打印
    天宫二号11月13日电,大家好!今天(11月11日)是神舟十一号飞行乘组进入组合体第二十四天。我是新华社太空特约记者、航天员景海鹏。  听说有很多网友关心我们在天宫种植的生菜,今天我就具体和大家讲一讲。  【航天员中心环控生保研究室副研究员王隆基解说:选择栽培生菜有以下原因:一是生菜的生长周期是一个月,这一次在轨时间恰好是30天 二是生菜在地面上的种植技术比较成熟 三是生菜可食用,在后续的在轨实验中可以作为食材 四是生菜是老百姓比较常见的植物,有利于进行科普宣传。】  今天做的是一些常规照料工作,主要是检测栽培基质的含水率、养分含量,灯光照射以及用注射器往基质推入空气。我们有一个仪器检测含水率,如果显示指数低,就说明需要给生菜浇水了。注入空气是为了让生菜的根部呼吸到新鲜空气,有利于植物的成长。我们就像是太空的“农民”,每天至少都要花10分钟的时间来照料生菜。  另外,在太空种生菜使用的基质和地面的土壤是不一样的,我们用的是蛭石。  【王隆基解说:蛭石是一种矿物质,它的吸水性非常好,水分在其中传导非常均匀,即使是在地面有重力的情况下,向上吸附都非常流畅 另外它密度小质量轻,便于携带上天。】  植物栽培是在我们进入组合体的第二天开始的,首先我们需要安装栽培装置,就像是搭积木一样,把装置的各个部件组装成一个白色箱体。  【王隆基解说:白色装置的固件是3D打印的,都是尼龙性材料,比较轻便,白色和绿色形成了一个鲜明的对比,视觉效果也很好。它上面有两个器件,一个用来测量土壤中的水分和养分参数,另一个用来在植物生长后期在封闭情况下测量植物光合作用。】  接着我们就会浇水、播种。在上天之前,有一部分种子已经放入白色的单元格里面,这些种子是经过特殊处理的丸粒化种子。由于生菜的种子比芝麻粒还小,为了方便我们播种,专家们特意在外面做了一层包衣,使它和绿豆粒差不多大,方便直接手拿。包衣在吸饱水后会裂开,但在后面的成长过程中,我们发现,包衣对种子发芽的速度会有细微的影响。  在天上播种的方式和地面不同,地面一般是先播种后浇水,但由于我们带入太空的白色单元格是硬质材料,只有吸水软化后,种子才能放进去,所以我们是先浇水后播种。  播种完后,我们会在装置里铺上一层保鲜膜,就和种庄稼的地膜一样。它的作用是保护植物,防止水分流失。  在进入组合体的第五天早上,我们发现种子发芽了。当时我和陈冬兄弟都非常高兴,第一时间把这个好消息告诉了地面工作人员。我们拍了很多照片,还跟生菜芽合影留念了。  种子发芽后,我们就会拿掉地膜,把安装在白色装置顶端的灯打开,给生菜提供光照。灯光是由红、蓝、绿三种颜色组合而成的,主要偏红色。  【王隆基解说:生菜对红光吸收效率非常高,在红光照射下生长得很好 采用绿光是因为它照射到生菜叶上,视觉效果非常好 蓝光则是对植物形态舒展具有较强作用。】  生菜进入成长期后,在光照的作用下,就开始变绿了。  我们第一次给生菜间苗和补水是播种后第六天。间苗那天,我和陈冬兄弟发现生菜长得特别新鲜,看着比地面的要绿一些。  我们间苗用的是镊子,主要是把长得相对差一些的生菜连根拔出来,在每个单元格里保留两棵菜苗。因为菜苗都非常嫩,所以我们得非常小心,一不留神就会把保留的生菜苗损坏。  过了3天后,我们开始了第二次间苗和浇水,这时每个单元格就只有一棵菜苗了。浇水其实不是每天都需要做的,专家为我们设定了5次浇水,每次浇水使用的是注射器,将水注入生菜根部。  除了播种、间苗、浇水,我们还需要每天对生菜进行观察、拍照,检查基质的含水率、养分含量等。  到今天为止,在我们亲手照料下的生菜,已经长得很好了。我们看着它们一天天成长,很有满足感。  有网友提问,在太空,生菜生长的方向会发生变化吗?长得怎么样了?  在这里,我要告诉这位网友,我们种植的生菜和地面是一样的,也是向上生长的,而且长得好像比地面更高一些。  【王隆基解说:虽然太空是失重环境,但是因为植物有趋光性,所以它依然是朝上长 同时植物还具有趋水、趋肥性,它的根部就会朝着富有水分和养分的基质生长。】  下周二,是我们在轨种植蔬菜的最后一天,到时候我们会进行植物采样,把生菜的叶子和根茎剪掉,放到低温储蓄装置中,再把它们带回。  听说有网友很好奇,种出来的生菜能吃吗?  这次我们种的蔬菜是用来做实验的,暂时不食用。我相信经过研究,以后我们在太空种的各种蔬菜,肯定是可以吃的。我也期待着在太空吃上自己种出来的蔬菜。  【王隆基解说:这次是我国首次在太空人工栽培蔬菜,暂时不让航天员食用。我们要把植物采样带回来,进行生物安全性检测,比如检测植物表面的微生物是否超标。只有检测合格后,我们才会在下次实验中考虑让航天员食用栽培的蔬菜。在轨植物栽培技术,是未来长期太空载人活动、深空探测等必不可少的一项技术,将来我们还会做其他物种的大面积栽培实验,通过几轮实验,逐步掌握植物在太空生长的规律,便于以后在空间站种植种类更多、面积更大的植物。】
  • PRI-8800全自动变温土壤培养前处理装置
    table width=" 624" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 491" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" PRI-8800 /span /strong strong span style=" line-height:150% font-family:宋体" 全自动变温土壤培养前处理装置 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 491" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 北京普瑞亿科科技有限公司 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 寻梅梅 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 162" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" info@pri-eco.com /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 491" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp □已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 491" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □技术转让& nbsp & nbsp & nbsp □技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp □其他 /span /p /td /tr tr style=" height:304px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 624" height=" 304" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/3f4bde05-fbe0-4354-a7c6-b0ffc0343644.jpg" title=" 29.jpg" style=" width: 500px height: 269px " width=" 500" vspace=" 0" hspace=" 0" height=" 269" border=" 0" / /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 为模拟不同温度的土壤变化实景环境,北京普瑞亿科科技有限公司和中国科学院地理科学与资源研究所合作,开发PRI-8800全自动变温土壤培养前处理装置,可对接土壤呼吸研究的不同分析仪,提供了一套整体测量方案。PRI-8800全自动变温土壤培养前处理装置克服了温控可调节以及连续测试的局限性,既能克服微生物适应性和不同温度下的底物消耗不同的缺点,也能实现高频连续测量的需求。除此之外,该系统还可应用于生物需氧和厌氧过程研究、高温塑料降解等研究,如制药过程中的微生物活性测量、BOD和毒性测量、昆虫呼吸、生物机能、含发酵过程的食品生产监控等等。 /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 主要技术指标: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/c26f52f7-4c44-4987-b97d-f3d222242bab.jpg" style=" " title=" 009.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/04358c94-dbbc-4c46-ac3d-4a198a0f9ccf.jpg" style=" " title=" 010.jpg" / /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 1 /span span style=" line-height:150% font-family:宋体" 、可灵活对接不同分析仪(同位素分析仪、气体浓度分析仪等) /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 2 /span span style=" line-height:150% font-family:宋体" 、标配16位样品盘,也可选配4位或9位样品盘或定制任意位数样品盘 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 3 /span span style=" line-height:150% font-family:宋体" 、自动化程度高,无人值守,24小时不间断工作 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 4 /span span style=" line-height:150% font-family:宋体" 、可方便拆卸土壤瓶固定装置,实现在线置换土壤瓶 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 5 /span span style=" line-height:150% font-family:宋体" 、全自动控温系统(-20~80 ℃),控温精度优于0.1 ℃ /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 6 /span span style=" line-height:150% font-family:宋体" 、土壤温度传感器探针可频繁自动插入土壤瓶中,准确测量土壤温度 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 7 /span span style=" line-height:150% font-family:宋体" 、高效的气体循环气路——双回路气路设计,可根据需要对CO2浓度进行预处理,调控系统内的起始CO2浓度(避免过高CO2浓度的抑制效应) /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 8 /span span style=" line-height:150% font-family:宋体" 、高效的气路设计,缩短响应时间 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 9 /span span style=" line-height:150% font-family:宋体" 、可灵活设定的标定系统,保障测量数据的准确性 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 10 /span span style=" line-height:150% font-family:宋体" 、友好的软件界面,可根据具体实验需要设定参数及数据存储等功能 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 624" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" PRI-8800 /span span style=" line-height:150% font-family:宋体" 全自动变温土壤培养前处理装置克服了温控可调节以及连续测试的局限性,既能克服微生物适应性和不同温度下的底物消耗不同的缺点,也能实现高频连续测量的需求。除此之外,该系统还可应用于生物需氧和厌氧过程研究、高温塑料降解等研究,如制药过程中的微生物活性测量、BOD和毒性测量、昆虫呼吸、生物机能、含发酵过程的食品生产监控等等。 /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 624" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 全自动变温土壤培养前处理装置核心技术为公司与中国科学院地理科学与资源研究所合作研发,《根系观察装置》获得实用新型发明专利,专利号【201610947236.5】 控制软件《土壤呼吸全自动变温模拟与测定系统V1.0》获得计算机软件著作权证书,证书号【2017SR743524】。 /span /p /td /tr /tbody /table p br/ /p
  • Bio-Logic 圆二色光谱仪和快速动力学停流装置培训班圆满成功
    华洋科仪于6月18日在中科院大连化学物理研所举办的Bio-Logic 圆二色光谱仪和快速动力学停流装置培训班圆满成功。中科院大连化学物理研究所,南昌大学,吉林大学,广西大学,汕头大学,西北农林科技大学,沈阳药科大学,中山大学,大连大学,山西师范大学等单位均派出了相关人员参加此次培训课程。 培训过程中,大家积极回应培训内容,热烈讨论使用中遇到的问题,经培训后,大家对圆二色光谱仪和快速动力学停流装置有了更深层次的了解,包括仪器的使用、调试、维护与常见故障的排除,实验条件优化,仪器最新应用,仪器发展动态等。提高了大家的实际操作水平,解决实际工作中的各种疑难问题能力。 为了满足更多客户对圆二色光谱仪和快速动力学停流装置进一步提高的要求,华洋科仪将总结此次培训班举办的经验,定期举办培训班,也欢迎更多的分析工作者能来参加并提出宝贵意见。 华洋科仪 2012-06-25
  • 大科学装置科研联合基金Ⅱ期启动 经费6000万元/年
    7月12日,国家自然科学基金委和中国科学院在京签署协议,双方共同设立的大科学装置科学研究联合基金(简称大装置联合基金)Ⅱ期协议正式生效,协议执行期从2012年至2014年。国家自然科学基金委副主任沈文庆、中科院副院长詹文龙出席会议,并在协议书上签字。   这是双方就大装置联合基金第二次签署协议。2009年2月,双方就共同设立大装置联合基金首次签署协议,设立联合基金。首期联合基金总量为1.2亿元,中科院和基金委各出资2000万元/年,执行期至2011年。联合基金依托于中科院承建并运行北京正负电子对撞机及北京同步辐射装置、兰州重离子加速器及冷却储存环装置、上海光源装置和合肥同步辐射装置等4个大装置。   在大装置联合基金Ⅱ期,这一基金总量将增至6000万元/年。并增加稳态强磁场装置,扩大所依托的大装置范围。根据协议,联合基金将选择物质科学前沿、信息、生命科学、环境和资源等领域的科学问题以及课题研究牵引的诊断技术等一系列课题进行资助和研究。   据了解,作为我国承担大科学装置建设、运行和管理的骨干力量,中科院长期以来都在积极探索和实践大科学装置开放共享的运行模式和管理机制。中科院基础局局长刘鸣华表示,大科学装置的一个显著特点就是开放共享。它们的建成与高水平运行是一个国家科技水平发展的标志,也是国家科技的核心竞争力之一。   国家自然科学基金委有关领导指出,联合基金的设立旨在以基金项目的形式,引导全国科研人员将自己的研究工作与我国大科学装置密切结合,充分发挥大科学装置支撑科研能力。这一方面是为了提升科学家的研究水平和创新能力,培养一批依托大科学装置开展工作的研究队伍 另一方面不断更新和补充大科学装置实验终端的实验能力,持续增强其多学科研究支撑能力。   国家自然科学基金委数理学部常务副主任汲培文在签字仪式上介绍了大装置联合基金I期的执行情况与科研成果。他透露,在I期,联合基金面向全国受理项目申请。在2009年至2010年两年中,联合基金共资助重点项目15项,面上项目116项。   从资助情况来看,两年中,所依托大科学装置运行单位内的科研团队在重点、面上项目上的项目数和经费数所占的比重仅略高于1/4。这一结果说明:大科学装置运行单位之外的用户是科研主体。   据介绍,大装置联合基金这一新模式激发了研究新思路,促进了不同学科科研人员的思想碰撞,产生了一系列重大成果。据了解,中国科大、中科院近代物理所、中科院大连化物所、中山大学等单位的研究人员在项目的资助下,均取得了原创性的科研成果。
  • 大科学装置陆续投用 “国之重器”高速前行
    p   散裂中子源、强磁场装置、同步辐射光源、大型天文望远镜……近年来,一项项神秘的大科学装置陆续建成并投入使用,它们或隐世于高山峡谷,或藏身在喧嚣城市的地下,虽然不被世人所熟悉,却自带耀眼的光环。它们作为重大科技基础设施,伴随着一项项大科学计划,缔造着中国乃至世界科学的未来。 /p p   这些大科学装置何以成为“国之重器”?它们究竟发挥着怎样的作用?又将承载什么样的使命? /p p    strong 大科学装置发展进入快车道 /strong /p p   在国家蛋白质科学研究(上海)设施运行之前,中国科学家想要完成蛋白质结构的解析,只能去日本、美国。而现在,一批又一批跨国企业和国外优秀科学家纷纷来到中国,使用国家蛋白质科学研究(上海)设施的设备和服务开展前沿课题研究,一系列诞生于此的重要成果发表在Nature、PNAS等高水平国际学术刊物上。 /p p   国家蛋白质科学研究(上海)设施何以有如此吸引力?这项大科学装置集中了我国自主研发的规模化蛋白质制备系统,实现了蛋白质制备全流程的高度集成和流水线作业,而且在样品处理通量上超过半自动化系统10倍、超过传统的人工系统100倍,居于国际领先水平。因此,它很快就成为国际上有重要影响的大型综合研究创新基地,也是我国科学家探索生命奥秘的利器。 /p p   作为当今全球生命科学领域首个综合性的大科学装置,国家蛋白质科学研究(上海)设施能够满足80%以上研究用户的需要。在开放试运行的第二年底,就已经执行用户课题800多个,服务150多家单位,各系统累计运行95000多小时。 /p p   从无到有、从小到大、从学习跟踪到自主创新,这些年,我国一大批大科学装置横空出世,惊艳世界。中国“天眼”FAST,500米口径球面射电望远镜,将覆盖30个足球场大小的信号,聚集在药片大小的空间里,实现了新的突破 中国西南野生生物种质资源库,主要收集和保存云南及周边地区和青藏高原的种质资源,与世界其他著名的种子库相比,是唯一建立在“生物多样性热点地区”的种质资源库 上海同步辐射光源,是世界上性能最好的第三代中能同步辐射光源之一…… /p p   这些各领风骚的大科学装置不但覆盖面越来越广,包括时间标准发布、遥感、粒子物理与核物理、天文、同步辐射、地质、海洋、能源和国家安全等众多领域,而且近年来装置设施的数量、建造规模也逐步扩大。中科院高能物理研究所北京正负电子对撞机国家实验室主任陈和生表示,我国的大科学装置发展已经进入快车道,取得了很多重大科学成果,有些已经处于国际领先地位。 /p p   这批“国之重器”为研究物质结构提供了最先进的技术手段,支撑着国内外科学家开展物质基本结构、宇宙起源与演化、生命起源等重大科学问题的探索,在世界科学研究的舞台上熠熠生辉。 /p p    strong “神兵利器”带来累累硕果 /strong /p p   对于大科学装置,建好仅仅是开始,用好才是关键。大科学装置陆续投入使用,满足了国内日益增长的科研需求。 /p p   自上世纪90年代以来,中科院高能物理研究所借助北京正负电子对撞机,获得了多项重大成果,居于国际领先水平,成为世界领先的高能物理研究中心之一。同时还“一机两用”,成为我国众多学科的同步辐射大型公共实验平台。 /p p   上海光源一期虽然只有7条光束线站,但是自2009年建成后需求极大,去年已有近400家单位、1万多人成为用户,线站供不应求,取得了众多有价值、有影响力的科研成果。从地域分布上看,上海光源的用户几乎覆盖我国所有省区市,还有10多个国家和地区的科研人员以合作形式来到这里,开展研究工作。 /p p   有这些“神兵利器”加持,我国的科研水平迅速提升,取得的成果日益丰富。 /p p   世界最大单口径、最灵敏的500米口径球面射电望远镜(FAST)落成启用,大幅提升我国深空测控能力。上海超强超短激光实验装置达到国际最高激光脉冲峰值功率,合肥稳态强磁场装置实现了40万高斯稳态强磁场,全超导托卡马克装置(EAST)创造聚变等离子体稳态高约束模大于60秒的世界纪录,大亚湾中微子实验发现了新的中微子振荡并精确测量其振荡几率。 /p p   除了大科学装置结出的累累硕果外,反观大科学装置的存在本身,已经远远超出一件新“神器”的意义。因为它们本身就集成了许多科学前沿领域的重大原创突破,凝聚了各个方面的创新驱动力,培育了一批科研后备力量。它们更多在发挥着“科技航母”的关键作用,直接促进了大批原始创新成果、核心关键技术的产生。 /p p   当承建单位研发出符合FAST要求的新钢索时,申请了12项专利 上海光源不仅推动生命科学、材料科学、环境科学等多学科领域科技创新,还对现代高性能加速器、高精密机械加工、X射线光学等先进技术和相关产业升级起到了重要作用 不少过去参与北京正负电子对撞机建造的厂家现在已经成长为领军企业,他们都谈到,当年对撞机的建造对于企业自身生产工艺带来很大提升。 /p p   每建设一项大科学装置,对我国工业基础就是一次严峻的考验。在高标准的技术要求筛选下,大科学工程建设培养和汇聚了一批国内最牛的施工单位和高技术企业,它们边“追赶”边“补课”,创造了一个又一个“中国制造”的奇迹。 /p p    strong 面向未来抢占科技制高点 /strong /p p   从2011年9月到2015年6月,经过3年多巡天,LAMOST共观测了2669个天区,对外释放了约570万条光谱数据,成功获取高质量恒星光谱462万个,比世界上所有已知光谱巡天项目获取的数据总数还要多,让我国占据了学术的高地。 /p p   当LAMOST在探望苍穹之时,一艘名叫“科学”号的海洋科学综合考察船桅杆高立,威武浩荡地驶向大海。目前,借助“科学”号,科学家已经成功开展了西太平洋冲绳海槽热液、南海冷泉、主流系、马努斯海盆和雅浦海山等航次综合调查,获得了大量珍贵的海洋资料。 /p p   不同领域的先进科技装备使我国走向自主创新高地,抢占科学前沿阵地。这些集“颜值”与“实力”于一体的大科学装置,代表着各种大型复杂科学的研究系统,为科学家探索未知世界、发现自然规律及实现技术变革提供极限研究手段,也是经济社会发展不可或缺的技术基础设施。它们推动了我国粒子物理、核物理、生命科学等领域的科研水平进入国际先进行列。通过发挥大科学装置的最大能量,让我国在国际合作与竞争中更具话语权,更好地参与国际前沿科技的竞争。 /p p   如何帮助人们远离越来越频繁发生的灾难?在煤炭、石油等资源枯竭后,人类将依靠什么能源继续生存下去?怎样保持这颗美丽星球的生物多样性?这一系列未知的难题,大科学装置正在一一破解。 /p p   EAST,是我国自行设计建设的世界首个“全超导托卡马克”核聚变实验装置,被誉为“人造太阳”。据中科院合肥分院等离子物理研究所助理研究员鄢容介绍,依靠环形磁场作为“容器”,聚变原料实现可控的核聚变反应,获得大量能量,进而得到清洁能源。“核聚变的原料从海水中提取,非常安全,一升海水可以提取33克原料,相当于300升石油释放的能量。海水里的核聚变原料非常丰富,可以供人类使用上亿年。”鄢容说。 /p p   不仅未来可期,当前人类已经在大科学装置的建设中受益。如今,一种新的治疗癌症的方法诞生,它利用高速的重离子束对病变组织进行治疗。重离子治疗癌症是当代世界上公认的先进有效的放疗方法,与传统的放射治疗相比,重离子束对健康组织辐射损伤轻、疗程短、治愈率高。而重离子治疗技术的开展,正是依托于一个属于“大科学装置”的机器——重离子加速器。 /p p   这批重大科技基础设施,不光是高高在上的科研利器,它还解决了一批关乎国计民生和国家安全的重大科技问题,在载人航天、资源勘探、防灾减灾等方面也发挥着不可替代的作用。可以说,大科学装置正在加速改变我们的现在和未来。 /p p br/ /p
  • 国之重器奠定创新未来 我国大科学装置成就综述
    p span style=" font-family: 楷体,楷体_GB2312,SimKai "   “我国科技发展的方向就是创新、创新、再创新。要高度重视原始性专业基础理论突破,加强科学基础设施建设,保证基础性、系统性、前沿性技术研究和技术研发持续推进,强化自主创新成果的源头供给。要积极主动整合和利用好全球创新资源,从我国现实需求、发展需求出发,有选择、有重点地参加国际大科学装置和科研基地及其中心建设和利用。” /span /p p span style=" font-family: 楷体,楷体_GB2312,SimKai "   ——摘自习近平总书记在中国科学院第十七次院士大会、中国工程院第十二次院士大会上的讲话 /span /p p   重大突破,科研仪器先行——从亿万光年之外的宇宙星辰,到组成世界的基本粒子,科学发现与技术创新越来越离不开功能强大的科研仪器,特别是大科学装置,这已经成为科技界的共识。 /p p   曾几何时,因为缺少相关的大科学装置,中国的科学家只能借助外国装置进行研究。党的十八大以来,500米口径球面射电望远镜(FAST)、中国散裂中子源等大科学装置先后建成,地球系统数值模拟、高海拔宇宙线观测站等或进入预研阶段,或已开工建设。这些大科学装置建设的持续推进,有力地支撑了中国基础研究和高新技术的发展,助力中国科学家、中国科学技术走向巅峰。 /p p    strong 催生一批世界一流成果 /strong /p p   2017年8月10日,科学期刊《自然》在线发表了两篇“墨子号”量子科学实验卫星的成果。原本预计两年实现的科学目标,以中国科学技术大学副校长潘建伟为核心的研究团队,在几个月内就实现了。对此,中国科学院院长白春礼评价道:“墨子号”开启了全球化量子通信、空间量子物理学和量子引力实验校验的大门,抢占了量子科技创新的制高点,在国际上达到全面领先的优势地位。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/a571b94e-5a6e-4375-a289-ac29bcded509.jpg" title=" 78a2038246aa405f93b2f69a05329e5a_副本.jpg" / /p p   2016年9月25日,有着“超级天眼”之称的500米口径球面射电望远镜(FAST)在贵州平塘的喀斯特洼坑中落成启用。 /p p   科学技术的进步依赖于基础理论的发展,基础理论的发现和验证有赖于科学仪器。党的十八大以来,中国在大科学装置建设上持续发力,一份份科研捷报鼓舞人心。 /p p   在贵州,世界上最大口径的射电望远镜仰望苍穹,谛听来自宇宙最深处的声音 在合肥,被称为“人造太阳”的超导托卡马克核聚变实验装置,将我国磁约束核聚变研究带入世界前沿 在上海,生物学家、遗传学家、材料学家等科研工作者正使用上海光源,探索物质世界的奥秘 在北京,中国第一座高能加速器——北京正负电子对撞机经过几轮改造和技术升级后,产出重要科研成果。 /p p   仰望太空,首颗暗物质探测卫星期待收获,首颗碳卫星刚刚完成在轨测试,转入业务化运行和科学应用阶段 凝眸远洋,“科学号”综合科学考察船深入人类从未探索过的西太平洋卡罗琳海山,“探索一号”探秘万米海底深渊 俯瞰深地,位于四川锦屏的世界上最深、宇宙线通量最小的暗物质实验室,正试图捕捉暗物质存在的最直接证据。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/c1777b31-ca1b-45fe-8e8a-2fd067eda169.jpg" title=" 1113ef999caa491c83def307668d1426_副本.jpg" / /p p   这些大科学装置是公共实验平台,为多学科领域的基础研究、应用基础研究和应用研究服务提供强大技术支持 这些大科学工程是专用研究装置,是特定学科领域实现重大科学技术目标的研究利器 这些大科学工程是公益基础设施,为国家经济建设、国家安全和社会发展提供基础数据。 /p p   strong  得益于国家科技实力的提升 /strong /p p   在被问到中国为什么要建“探索一号”科考船时,中国科学院深海科学与工程研究所首席科学家彭晓彤这样回答:我国海洋科技起步较晚,长期依赖国外进口海洋装备。但是国外设备固有的技术封锁和高昂的维护成本,决定了我们不可能单靠引进就能走到国际深海领域的前沿。中国要想成为海洋强国,必须改变这种情况,坚持自主研发是走到国际深海前沿领域的必由之路。 /p p   建造中国自己的大科学装置是中国科技发展的客观需求——中国的科学研究已经到达从量变到质变的关口,正在实现从跟踪到并行再到领跑的转变,中国科学家要做出从0到1的原创性成果,走上国际科学前沿,必须发展自己的大科学装置。 /p p   而能够建设中国自己的大科学装置,得益于中国工业、制造业等的飞速发展。大科学装置由多学科支撑,是众多高新技术的集成,集中体现了一个国家的技术制造能力。大科学工程不是通用科研仪器设备,大多需要特殊的材料和工艺。而这些材料和工艺,往往都在封锁、禁运之列,只能靠我们自己研发,如果中国工业和制造业不具备相当的水平和能力,再好的科学设想也无法实现。 /p p   每当提到500米口径球面射电望远镜(FAST)时,副总工程师、中国科学院国家天文台研究员李菂总会说:“如果没有中国工程技术的发展,FAST不可能完成。”他介绍,FAST将使中国拥有探测宇宙的最好仪器,而掌握相关专利技术的发达国家对中国实施封锁。 /p p   大科学装置建设中取得的新技术成果也被广泛应用在其他重大工程中,反哺国民经济发展。中国科学院高能物理研究所所长王贻芳院士介绍,中国互联网的诞生是北京正负电子对撞机的“副产品”,而它的建造和之后的每一次升级改造,都促进了相关企业的技术提升。而为FAST研发的抗疲劳索网技术及索网工程管理,应用在了港珠澳大桥的建设中。 /p p   strong  吸引和培养人才的法宝 /strong /p p   2017年8月,从哈佛大学归来的八位博士后登上了各大媒体的头条。王文超、张欣、王俊峰、刘青松、刘静、张钠、林文楚、任涛,被称为“八剑客”的他们告别波士顿、扎根安徽合肥“科学岛”。让他们选择回国的原因,除了拳拳爱国之心,也因为这里有一个能让他们施展才华的舞台:中国科学院合肥物质科学研究院强磁场中心。这里的“稳态强磁场实验装置”综合性能达到了国际领先水平,是世界一流的科研设备。 /p p   栽下梧桐树,才能引来金凤凰。从某种程度上说,科学家们能否取得原创性重大科研成果,取决于是否拥有最先进的科学仪器设备和装置。而大科学装置能为科技工作者提供最好的科研平台,是凝聚人才、吸引人才的最大法宝。 /p p   大科学装置也是人才培养的实战场。这一点,在高能物理领域表现得尤为明显。中国高能物理界的许多实验物理学家和理论物理学家,都与北京正负电子对撞机有千丝万缕的联系。“30多年前,我们差不多是从零开始做北京正负电子对撞机的,如今已是三代人。在这个过程中,我们培养了很多人才。”王贻芳说,大科学装置所需要的仪器全部都要自行设计研制,这不仅可以培训科研人员和企业开展世界领先的仪器、设备、技术的研发,还可以培养大量顶尖的青年科研人才和高质量的、国际水平的设备研制人才。 /p p   不只“科学岛”上的“八剑客”,今天,越来越多的年轻面孔出现在大科学装置的建设、维护和使用团队中,中青年骨干力量逐渐挑起科技创新的大梁,“90后”“00后”正在磨砺中成长。一代一代,薪火相传,中国科技创新的脚步永不停歇! /p
  • 8700万 吉大“新一代大型超高压产生装置”专项启动
    3月11日,国家重大科研仪器设备研制专项“新一代大型超高压产生装置”项目启动会在吉林大学举行。项目管理工作组组长、国家自然科学基金委员会数学物理科学部常务副主任汲培文研究员及专家组成员数学物理科学部主任解思深院士、副主任董国轩、物理一处处长张守著、倪培根研究员、计划局项目处处长谢焕瑛、北京物理所靳常青研究员、四川大学贺端威教授、中国工程物理研究院张传飞研究员一行9人,吉林大学常务副校长赵继,项目负责人、中科院院士邹广田,科学技术处、资产管理与后勤处、基建处、财务处等校内相关部门负责人以及超硬材料国家重点实验室和设计施工单位相关人员参加了启动会。会议由张守著研究员主持。   赵继代表吉林大学对基金委专家的到来表示热烈欢迎。他表示,这一项目对吉林大学的建设和发展具有重要意义,学校将在各个方面提供大力支持和保障,在制度和措施等层面把责任落实好,同时整合有效资源,通过多学科交叉和协同创新,争取向基金委交一份满意答卷。   邹广田院士就“新一代大型超高压产生装置”项目内容和项目管理进行了介绍 设计施工单位颜永年教授作了题为“‘高压物理6万吨超高压液压机’设计方案可行性”的报告。   项目管理工作组专家对该项目在实施过程中可能出现的科学和工程问题进行了积极讨论,并表达了对吉林大学完成项目任务的信心。   “新一代大型超高压产生装置”项目是目前吉林大学获得的第一个近九千万元(8700万)的国家自然科学基金委员会项目,同时也是学校最具影响力的超大项目之一。该项目的实施不仅对我国物理、化学、材料、地学等基础科学的研究具有重大促进作用,还将面向经济社会发展和国家重大战略需求发挥重要作用。
  • 上海崛起世界最密大科学装置群
    p   浦东张江的“超级光源”将闪出更耀眼的光芒:今年夏天,能拍摄“分子电影”的软X射线自由电子激光装置,将有望得到第一束自由电子激光 超强超短激光装置,将于年内完成挑战瞬时输出功率10拍瓦的“世界纪录” 上海光源二期线站也在紧锣密鼓地建设中…… br/ /p p   算上已经建成的国家蛋白质科学中心、已经开工的活细胞结构和功能成像平台等,上海张江已成为世界上大科学装置密度最高的地区。依托先进的大科学基础设施群,这里已集聚起全球高端创新资源,向着跻身世界一流实验室行列的目标不断接近。 /p p    strong 大科学装置群营造大科学生态 /strong /p p   去年2月,上海张江综合性国家科学中心获批建设。一年来,超强超短激光实验装置、软X射线自由电子激光用户装置、活细胞结构与功能成像平台等顶级大科学装置,实现了当年立项、当年开工的目标,展现出令人赞叹的“上海速度”。 /p p   “这些项目建成后,张江地区将成为全球规模最大、种类最全、综合能力最强的光子大科学设施集聚地之一。”上海市科委主任寿子琪说,目前张江还在积极争取硬X射线自由电子激光装置、高效低碳气轮机实验装置、国家生物医药大数据等项目落地。 /p p   前沿探索的科研利器汇聚,一个世界级基础研究平台呼之欲出。眼下,超强超短激光装置正在冲击10拍瓦的“世界纪录”,它的未来目标是100拍瓦。 /p p   它的“前身”———中科院上海光学精密机械研究所的嘉定园区内,1拍瓦的超强超短激光装置已开始科学实验探索。去年,我国科学家已利用该装置产生了反物质,成果列入2016年中国十大科技进展新闻。 /p p   超强超短激光装置项目负责人、上海光机所研究员冷雨欣说,比建造一个“世界第一”的装置更重要的,是让更多优秀科学家利用装置,做最前沿的基础原创性研究。 /p p   已建成运行8年的上海光源,截至去年底,共接待用户3.2万多人次,发表论文3200多篇。比这更重要的是,它更加强烈地激发出了中国科学家探索前沿的热情和勇气。曾参与光源建设,目前正负责二期线站工程的中科院上海应用物理研究所研究员邰仁忠说,8年来,光源机时一直供不应求,中国科学家已从被动使用光源,到根据自己学科的发展需求,对光源线站建设提出明确需求。围绕上海光源,一个冲击前沿的创新生态氛围正在形成。 /p p    strong 大科学装置群呼唤大科学计划 /strong /p p   事实上,张江综合性国家科学中心的建设,已经引起国际科技界的广泛关注。中科院上海应用物理研究所党委书记赵明华告诉记者,已进入可行性研究阶段的硬X射线自由电子激光,建成后将成为世界上最先进的同类装置。闻讯后,“一些身在海外的华人科学家主动联系我们,表示想到张江工作,他们有的已在美国工作20多年,这个装置很可能把他们吸引回国”。 /p p   作为当今全球生命科学领域首家综合性大科学装置,上海蛋白质设施已经吸引了国内外近200家单位、1.3万多人次科学家,开展2000多项重大前沿创新课题研究。中心主任雷鸣认为,评判一个大科学装置的功用,应该看它关注了多少根本而重大的科学问题,“张江大科学装置群的崛起,正呼唤与之相匹配的大科学计划。” /p p   放眼全球,大科学装置的崛起无不推动和孕育着超越前人的创新。例如美国布鲁克海文国家实验室聚集了同步辐射光源、成像设施、相对论重离子对撞机、自由电子激光等一大批重要的科研装置,1947年至今,该实验室催生了至少7个诺贝尔科学奖。而作为世界高能物理研究的高地,欧洲核子中心也成就了多个国际大科学计划,比如大型强子对撞机,以及由华裔物理学家丁肇中领导的阿尔法磁谱仪项目等。 /p p   在建设具有全球影响力的科技创新中心的历史机遇下,作为赶超者的张江大科学装置群,正等待着创新灵魂的注入。据市科委总工程师傅国庆介绍,正在谋划的张江综合性实验室的主要构架是“1+N”。“1”指一个大科学设施群,“N”指若干研究方向,包括光子科学与技术、生命科学、能源科技、类脑智能、纳米科技等。这意味着,张江国家科学中心已在各学科领域前沿筑好“巢穴”,引“凤”前来。 /p p br/ /p
  • 吉林大学国家重大科研仪器研制项目“新一代大型超高压产生装置”通过验收
    4月28至29日,国家重大科研仪器研制项目“新一代大型超高压产生装置”验收会在吉林大学举行。国家自然科学基金委员会副主任谢心澄、浙江大学张泽、南方科技大学校长薛其坤、北京高压科学研究中心毛河光、燕山大学田永君、复旦大学龚新高、北京理工大学方岱宁等有关领导和相关领域专家,吉林大学校长张希,邹广田等参加了项目验收会和现场考察。会议由国家自然科学基金委员会数理学部常务副主任董国轩主持。  在评审验收工作中,专家组一致认为,“新一代大型超高压产生装置”项目取得了大直径液压系统长行程自找平技术、分瓣式高压腔体与预应力钢带缠绕技术、压力梯度材料设计与三级密封组装技术三项创新性技术突破,为推动我国高压科学技术研究发展提供了大吨位单轴加载试验平台,总体完成了计划设计指标,正式通过国家项目验收。  会上,张希代表吉林大学向国家自然科学基金委领导和专家们的指导表示感谢,向邹广田院士及项目组八年多的辛苦付出表示敬意。他表示,高压物理、高压化学和高压材料研究是吉林大学的优势学科方向,“新一代大型超高压产生装置”的建成,是开始的结束,而不是结束的开始。他希望相关科研团队和师生充分发挥装置效用,不断产生重要的新发现、新发明、新创造。希望国家基金委对项目接续支持,使装置得到充分利用,成为国内外学术交流合作的重要平台,为培养更多高层次人才、推动科技进步作出贡献。  谢心澄在讲话中向邹广田带领的科研团队自装置项目立项以来,积极面向国家重大需求、坚持开展科研攻关表示感谢,同时,向吉林大学对装置研发工作的大力支持表示感谢,并希望吉林大学将该装置广泛应用于国家相关领域建设和转化应用,不断产生新的重要成果。  验收会上,项目组技术负责人作项目工作情况报告。与会专家组分别听取了监理组、技术测试、技术档案和财务工作验收介绍,并前往大压机实验楼现场考察仪器设备有关情况。  据了解,“新一代大型超高压产生装置”是吉林大学截至目前获批经费最多的国家自然基金项目。作为目前国际上最高吨位的单缸液压机,该项目成功研制的大腔体液压机将高压腔体体积的现有水平提高了2个数量级,可以开展以前所不能进行的高温高压研究工作,极大推进高压研究成果的转化应用。该装置的研发不仅实现了我国大腔体超高压装置从无到有“零”的突破,而且在物理、化学、材料、地学和能源等基础学科的高压科学研究中都将起到不可替代的重要作用,将在提升我国静高压研究水平和国际地位,解决国家行业重大需要等方面积极贡献吉大力量。  国家自然科学基金委、教育部有关负责同志,来自国内20所高校和科研单位的验收专家,吉林大学常务副校长郑伟涛,科研院、财务处、审计处、资产管理处、实验室管理处、基础设施建设办公室、物理学院、超硬材料国家重点实验室等相关部门和学院负责同志及技术人员参加了评审验收会。
  • 北京怀柔科学城首个大装置开工 综合极端条件实验装置启动建设
    p   由中国科学院物理研究所等建设的国家重大科技基础设施项目——综合极端条件实验装置9月28日在北京怀柔正式启动建设,这也是怀柔科学城第一个开工的国家重大科技基础设施。该工程拟通过5年左右时间,建成国际上首个集极低温、超高压、强磁场和超快光场等极端条件为一体的用户装置,极大提升我国在物质科学及相关领域的基础研究与应用基础研究综合实力。 /p p   综合极端条件实验装置工程由国家发改委审批,中科院、教育部共同申请,得到了北京市和怀柔区的鼎力支持。装置由极端实验条件产生系统、极端条件下的样品表征和测量系统,以及能满足上述各系统研制、升级、维护与运行的支撑系统等部分组成。建成后,该装置将成为开展物质科学及相关领域研究的重要实验基地,成为具有国际领先水平和重要国际影响力的科学与技术研究中心。 /p p   在项目启动会上,中科院副院长王恩哥表示,综合极端条件实验装置是中科院站在国家科技创新总体布局的高度,面向全球科技创新发展态势作出的一项重大部署,是落实习近平总书记关于在北京“建设具有全球影响力的科技创新中心”要求的具体举措之一。 /p p   王恩哥对项目建设法人单位中科院物理所提出了几点要求。他说,物理所要以对人民负责、对历史负责、对党和国家负责的态度,强化建设标准和要求,按照既定建设周期,保质保量完成建设任务 抢抓机遇,认真做好前沿科学领域布局规划 大胆探索大科学装置管理体制机制改革,运行好综合实验设备,多出成果,早出成果,出大成果,勇攀科学高峰 发现、吸引、凝聚顶尖科学家,形成国际科技创新人才高地。 /p p   王恩哥强调,综合极端条件实验装置在国际上是首创,是一项“功在当代,利在千秋”的国家科技基础设施建设工程。他希望该装置能够建设成为世界领先的用户装置,与相关交叉平台一起构成具有全球影响力的凝聚态物质科学研究中心。努力探索世界科学前沿,实现技术引领性突破,在怀柔科学城建设中作出重要贡献。 /p p   “极端条件实验手段的整体水平直接影响着我国在若干核心领域的竞争力。”中科院物理所所长方忠认为,项目建设将大幅提升我国综合极端条件科学与技术研究及尖端实验设备的研制、运行能力,提升我国在相关基础研究、高技术研究领域的综合水平,使我国在该领域的综合实力步入世界一流水平,促进我国从科技大国走向科技强国。 /p p   利用装置,科研人员可以开展非常规超导、拓扑物态、新型量子材料与器件等研究工作,并可在物理、材料、化学和生物医学等领域开展超快科学研究,探索极端时空尺度上的物质结构信息和动力学信息。项目首席科学家、国家“千人计划”入选者、中科院物理所研究员丁洪举例说,倘若科学家能利用装置做出室温超导体,电影《阿凡达》中壮观的“哈利路亚悬浮山”就有望成为现实。 /p p   此外,装置还具有广泛的实际应用价值。依靠该装置,人们可以开展各种特殊功能材料和技术的研发,还能够促进凝聚态物理、材料科学、化学、地质、能源科学及信息科学等不同学科之间的相互渗透、交叉融合。 /p p   项目首席科学家、中科院物理所研究员吕力透露,装置建成后将向国内外用户全面开放,遵循“开放、共享、流动、合作”的运行管理机制,严格保证全面对外开放机时。 /p p   据了解,综合极端条件实验装置是指综合集成低温、高压、强磁场、超快光场等一系列配套的集群设备所构成的大型科学实验设施。近年来,利用极端实验条件取得创新突破已成为科学研究发展的一种重要范式,不少工作获得了诺贝尔奖,大量成果得到了重要应用。世界上许多发达国家或地区,如美国、欧洲、日本等都在该领域展开了激烈竞争,许多著名研究机构都拥有先进的极端条件实验设施。 /p p /p
  • ACCSI2023大型科学仪器装置发展论坛通知
    怀柔科学城,全称是北京怀柔综合性国家科学中心,其战略定位是建成与国家战略需要相匹配的世界级原始创新承载区,打造战略性前瞻性基础研究新高地、生态宜居创新示范区。截止目前,怀柔科学城已围绕物质、空间、生命、地球系统和信息与智能五大科学方向,布局了40余个大科学装置、科教设施和交叉研究平台,成为全球大科学装置最密集的区域之一。涉及的仪器装备超过10000台套,为发展高端仪器装备和传感器产业提供了广阔应用场景、创新迭代平台和人才技术支撑。在此背景下,借助2023第十六届中国科学仪器发展年会(ACCSI 2023)契机,在北京市怀柔区人民政府、北京怀柔科学城管委会的指导下,仪器信息网携手北京怀柔科学城建设发展有限公司、北京怀柔仪器和传感器有限公司组织大型科学仪器装置发展论坛,将着重研讨科学设施平台的模块化服务能力、对产业的支撑能力、平台服务能力与产业需求之间的响应关系,以及科学设施建设、升级过程中科学仪器的需求、技术瓶颈的攻关和关键设备的研制等内容。一、时间地点2023年5月19日(星期五)13:30-17:00北京雁栖湖国际会展中心 大宴会厅B二、组织机构指导单位:北京市怀柔区人民政府、北京怀柔科学城管委会主办单位:仪器信息网(instrument.com.cn)承办单位:北京怀柔科学城建设发展有限公司、北京怀柔仪器和传感器有限公司三、会议日程13:30-13:40 (一)领导致辞丁明达 北京怀柔科学城党工委委员,怀柔科学城管委会副主任,怀柔区人民政府副区长(兼)13:40-14:00 (二)推介解读北京怀柔综合性国家科学中心科学设施平台建设进展及开放运行机制探索——杨昊天 北京市怀柔区政协副主席,怀柔科学城管委会设施平台处处长14:00-16:00 (三)主旨演讲14:00-14:301.综合极端条件实验装置建设与科研仪器研制进展——程金光 中国科学院物理研究所副所长,研究员14:30-15:002.公里级大气环境预报溯源系统及碳反演应用——王自发 中国科学院大气物理研究所研究员,地球系统数值模拟装置区域高精度环境模拟系统组负责人15:00-15:303.高能同步辐射光源的应用和发展——董宇辉 中国科学院高能物理研究所副所长,研究员,高能同步辐射光源工程常务副总指挥15:30-16:004.空天极限力学大型科研设施发展与需求——黄河激 中国科学院力学研究所副所长,研究员16:00-17:00 (四)自由交流四、联系方式联系人:高老师手机:15574817041邮箱:gaolj@instrument.com.cn欢迎仪器企业、创新主体、科技服务机构以及科研院所等人员莅临本论坛,现场可报名大科学装置参观活动,近距离感受高能同步辐射光源、多模态跨尺度生物医学成像设施、综合极端条件实验装置等的魅力。 附:ACCSI 2023介绍 为促进中国科学仪器行业健康快速发展,搭建科学仪器行业“政、产、学、研、用、资、媒”等各方有效交流平台,助推北京市“两区”建设,服务首都科技创新,“2023第十六届中国科学仪器发展年会(ACCSI2023)”将于2023年5月17-19日在北京雁栖湖国际会展中心召开。ACCSI2023以“创新发展 产业互联”为主题,由仪器信息网(instrument.com.cn)主办,中国仪器仪表学会分析仪器分会、南京市产品质量监督检验院、我要测网(woyaoce.cn)、北京怀柔仪器和传感器有限公司等单位协办,中国仪器仪表行业协会、中国仪器仪表学会等单位支持。官网链接:https://accsi.instrument.com.cn/ 联系方式:报告及参会报名:010-51654077-8229 13671073756 杜女士赞助及媒体合作:010-51654077-8015 13552834693魏先生微信添加accsi1或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。
  • 仪器企业如何参与大科学装置建设?
    工欲善其事,必先利其器。被称为“大科学装置”的国家重大科技基础设施,是推动科技创新、建设科技强国的利器。近年来,国家高度重视大科学装置建设,将其视为提升我国基础研究和应用研究水平、促进相关领域国际科技合作的重要支撑。我国大科学装置建设进入了前所未有的快速发展期,目前已布局建设57个,根据“十四五”规划,拟新建20个左右。仪器企业如何参与大科学装置建设?之所以被称为“大科学装置”,是因为它规模大,不仅涉及到的科学家和工程师队伍大,投资大,建设周期长,而且需要用到大量的高端科学仪器及系统。例如,北京高能同步辐射光源总投资47.6亿元,占地面积976亩,建筑面积12.5万平方米,需要仪器设备5万台/套。大科学装置的设计安装、调试运行、改造升级过程,其实是对高端科学仪器不断需要的过程。因此,大科学装置的顺利运转离不开众多仪器企业的“保驾护航”。作为大科学装置背后的企业,创谱仪器先后参与了合肥先进光源、全超导托卡马克、上海硬X射线自由电子激光等国家重大工程中若干高端专用仪器的设计、开发工作,实现了光谱领域的多项第一;沈阳科仪参与了北京高能同步辐射光源、上海同步辐射装置、大连相干光源等国家重大科学基础设施的建设,成为国内大科学装置真空技术及真空科研仪器设备领域领先的产品与服务提供商;纳克微束作为多模态跨尺度生物医学成像设施——高通量电子显微断层成像系统项目UT3D的唯一提供商,为成像设施的建设发挥了积极作用。此外,被称为“国之重器”的大科学装置,既是科学创新的源头,也是高新技术产业的摇篮,在建设与运行过程中,会催化衍生出大量的科技成果。如多模态跨尺度生物医学成像设施,建设内容包括多模态医学成像装置、多模态活体细胞成像装置、多模态高分辨分子成像装置、全尺度图像数据整合系统及模式动物中心与样品制备中心等相关辅助平台,在正电子发射、磁共振、超声、光学、X射线、电镜等方面研制出一系列技术和相关设备,这些高端成果的转化也需要仪器企业的积极参与。ACCSI2023大型科学仪器装置发展论坛邀您参加!作为国家批复的北京怀柔综合性国家科学中心的核心承载区,怀柔科学城正成为北京地区大科学装置最为密集的区域,截止目前,已围绕物质、空间、生命、地球系统和信息与智能五大科学方向,布局了高能同步辐射光源、综合极端条件实验装置、多模态跨尺度生物医学成像设施、地球系统数值模拟装置、空间环境地基综合监测网(子午工程二期)等40余个大科学装置、科教设施和交叉研究平台。2023年5月19日下午,借助2023第十六届中国科学仪器发展年会(ACCSI 2023)契机,在北京市怀柔区人民政府、北京怀柔科学城管委会的指导下,仪器信息网携手北京怀柔科学城建设发展有限公司、北京怀柔仪器和传感器有限公司组织大型科学仪器装置发展论坛,将着重研讨以下内容:——科学设施平台的模块化服务能力、对产业的支撑能力,以及平台服务能力与产业需求之间的响应关系;——科学设施建设、升级过程中科学仪器的需求、技术瓶颈的攻关以及关键设备的研制;——重大科研成果的产出以及高价值知识产权的创造、运用与保护;——科学设施平台的开放共享、交流合作以及创新生态环境的营造。欢迎仪器企业、创新主体、科技服务机构以及科研院所等人员莅临,论坛现场报名大科学装置参观学习活动,近距离感受“国之重器”的魅力。一、时间地点2023年5月19日(星期五)13:30-17:00北京雁栖湖国际会展中心 大宴会厅B二、组织机构指导单位:北京市怀柔区人民政府、北京怀柔科学城管委会主办单位:仪器信息网(instrument.com.cn)承办单位:北京怀柔科学城建设发展有限公司、北京怀柔仪器和传感器有限公司三、会议日程(以会议召开当天为准)大型科学仪器装置发展论坛13:30-13:40 (一)领导致辞丁明达 北京怀柔科学城党工委委员,怀柔科学城管委会副主任,怀柔区人民政府副区长(兼)13:40-14:00 (二)推介解读北京怀柔综合性国家科学中心科学设施平台建设进展及开放运行机制探索——杨昊天 北京怀柔区政协副主席,怀柔科学城管委会设施平台处处长14:00-16:00 (三)主旨演讲14:00-14:301.综合极端条件实验装置建设与科研仪器研制进展——程金光 中国科学院物理研究所副所长,研究员14:30-15:002.公里级大气环境预报溯源系统及碳反演应用——王自发 中国科学院大气物理研究所研究员,地球系统数值模拟装置区域高精度环境模拟系统组负责人15:00-15:303.高能同步辐射光源的应用和发展——董宇辉 中国科学院高能物理研究所副所长,研究员,高能同步辐射光源工程常务副总指挥15:30-16:004.空天极限力学大型科研设施发展与需求——黄河激 中国科学院力学研究所副所长,研究员16:00-17:00(四)自由交流四、联系方式联系人:高老师手机:15574817041邮箱:gaolj@instrument.com.cn 关于ACCSI 2023为促进中国科学仪器行业健康快速发展,搭建科学仪器行业“政、产、学、研、用、资、媒”等各方有效交流平台,助推北京市“两区”建设,服务首都科技创新,“2023第十六届中国科学仪器发展年会(ACCSI2023)”将于2023年5月17-19日在北京雁栖湖国际会展中心召开。ACCSI2023以“创新发展 产业互联”为主题,由仪器信息网(instrument.com.cn)主办,中国仪器仪表学会分析仪器分会、南京市产品质量监督检验院、我要测网(woyaoce.cn)、北京怀柔仪器和传感器有限公司等单位协办,中国仪器仪表行业协会、中国仪器仪表学会等单位支持。官网链接:https://accsi.instrument.com.cn联系方式:报告及参会报名:010-51654077-8229 13671073756 杜女士赞助及媒体合作:010-51654077-8015 13552834693魏先生微信添加accsi1或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。
  • “高端装置扭矩速度测量”重大仪器项目启动
    2月28日,国家重大科学仪器设备开发专项&mdash &mdash &ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目启动会,在中国计量科学研究院(以下简称&ldquo 中国计量院&rdquo )召开。会议由国家质检总局科技司主持,科技部条财司副司长吴学梯、国家质检总局科技司副司长王越薇、中国计量院副院长宋淑英等领导及项目监理组、总体组、技术专家委员会、用户委员会和管理办公室等近百人参加了本次启动会。   图1:科技部条财司副司长吴学梯在启动会上讲话   启动会上,科技部条财司副司长吴学梯介绍了国家重大科学仪器设备开发专项的设立背景和目标定位,要求&ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目组瞄准产品开发目标,积极推进产业化 更加关注产品的知识产权 按照项目管理办法,落实好法人负责制的各项要求 严格进行项目经费管理,并希望相关项目参与单位加强协作,潜心开发,实现科学仪器设备自主创新。同时他对该项目利用信息化系统的创新管理方式表示肯定,并希望其能够得到进一步推广运用。   图2:项目总体组组长、中国计量院副院长宋淑英讲话   项目总体组组长、中国计量院副院长宋淑英对与会领导、专家对中国计量院科技事业发展的关心支持和帮助表示感谢。她指出,&ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目是近年来中国计量院在重大仪器方面获得的第3个国家支持项目。作为项目牵头单位,中国计量院将继续做好支持和服务工作,与各项目参与单位团结协作,确保项目顺利实施,为我国摆脱高端测量仪器完全依赖进口的局面作出应有贡献。   图3:项目负责人、中国计量院力学与声学研究所所长张跃汇报项目总体情况   项目负责人、中国计量院力学与声学研究所所长张跃研究员就项目背景、总体目标、任务分解、预期成果及进度和经费安排等相关情况进行了汇报。项目办公室汇报了项目实施管理办法 各任务负责人分别汇报了任务的研究内容、考核指标、实施方案、进度及经费安排等。   与会专家在认真听取汇报的基础上,展开热烈讨论,对项目进行点评,并提出实施意见建议。   高端动力装备在装备制造业中占有举足轻重的地位,是各种重大成套技术装备的核心组成部分,例如,风力发电机组、大型舰船推进系统、高速列车动力系统及转向架、航空发动机、高档数控机床等。高端动力装备对国民经济的发展起着突出的作用,同时也代表了我国先进制造业,特别是装备制造业的能力和水平。   而目前,我国大量的扭矩和速度参数测量系统,包括功率、最大扭矩、最高车速、加速度等,尤其是高端测量仪器依赖进口,并无法在国内溯源,严重制约了我国自主动力扭矩和速度测量仪器的可靠计量、研发与应用,从而制约了我国高技术含量、高国际竞争力的核心工业产品的自主研制和生产,开展具有自主知识产权的高端动力装置扭矩和速度测量仪器设备的研制需求迫切。   该项目总体目标为:开展高端动力装置机械功率关键参数扭矩和速度精密测量技术的研究,攻克扭矩标准装置中高精密空气轴承支撑部件的核心技术及双天线雷达测速收发模块的关键技术。研究建立具有自主知识产权的高端动力装置的扭矩测量仪器(20kNm扭矩标准机)、高端动力装置速度测量仪器(双天线雷达测速仪器)和加速度计动态特性校准装置,填补国内空白,达到高端动力装置扭矩测量和速度测量的国际先进水平。   据介绍,项目研制成果将有望为我国高端动力装备扭矩与速度等功率测量建立可靠的计量溯源体系,并将在仪器开发、产业化示范、节能减排等方面起到重要的推动作用。   图4:启动会现场   该项目的组织实施单位为国家质检总局,由中国计量科学研究院牵头,并负责其中4个任务,任务承担单位还包括清华大学、中国船舶重工集团第七〇四研究所、浙江省计量科学研究院、北京化工大学、辽宁省计量科学研究院、湖南省计量科学研究院、苏州苏试试验仪器股份有限公司与长沙普德利生科技有限公司等8家单位。项目起止时间为2012年10月至于2016年9月。主要包括12个任务:20kNm高准确度扭矩标准装置的研发、高准确度大质量参数测量装置的研制、高精度宽量程多普勒雷达测速技术的研究及其测量装置的研制、加速度计动态特性计量技术的研究与校准装置的建立、空气轴承支撑技术的研发、无扰动质量参数自动测量技术的研发、加速度计动态模型及参数辨识的研究、测速测距雷达测速仪在交通领域的应用研究、空气轴承支撑技术在高准确度扭矩标准机及船舶装配质量控制中的应用、安全气囊加速度计校准装置在汽车行业的应用以及双天线雷达测速仪在高铁行业的应用研究等。
  • 合肥科学岛团队帮助泰国 建成运行托卡马克装置
    7月25日,由中国科学院合肥物质科学研究院等离子体物理研究所与泰国核技术研究所合作建设的泰国托卡马克1号装置(Thailand Tokamak 1,TT-1)在泰国正式交付并投入物理实验运行。这是泰国乃至东盟国家首个托卡马克装置。  TT-1装置是基于等离子体物理研究所第二代托卡马克HT-6M全面升级改造后的常规磁体托卡马克装置。2017年8月,等离子体物理研究所与泰国核技术研究所签署合作协议,决定向其赠送HT-6M装置,并在装置改造、工程技术研发、物理实验运行、聚变人才培养等方面向泰国核技术研究所提供全方位的帮助。  2022年7月HT-6M在等离子体物理研究所完成装置主机和子系统全面升级改造及系统集成调试,之后,通过竣工验收并改名为TT-1装置,2022年12月运往泰国核技术研究所。2023年5月TT-1装置在泰国核技术研究所完成安装并开启实验调试。  中国科学院合肥物质科学研究院等离子体物理研究所与泰国核技术研究所积极响应共建“一带一路”倡议,合作建成了泰国乃至东盟国家首个托卡马克装置的同时,还帮助泰国培养了一支聚变研究青年人才团队。  此次TT-1装置的建成并正式投入实验运行,在泰国各界引起热烈反响,是近年来中泰聚变合作的丰硕成果,也是中泰科技创新合作的亮点之一。  接下来,等离子体物理研究所和泰国核技术研究所将持续开展务实合作,吸引更多东盟地区的青年人员投身聚变科学研究,把TT-1装置打造成中泰科技合作的标杆,并将共同建设中国-东盟聚变研究中心。
  • 共享大科学装置,构建开放创新生态
    今年的政府工作报告提出,要扩大国际科技交流合作,营造具有全球竞争力的开放创新生态。我国如何以大科学装置为平台,全力构建开放创新生态,实现高水平科技自立自强?如何进一步让大科学计划和工程真正为全世界人民谋福祉,推动全球可持续发展?全国两会期间,科技日报记者采访了部分全国政协委员。他们认为,对我国来说,建设大科学装置是科学发展的必然趋势,共享这些科学设施也是社会发展的必然选择。当前背景下,解决创新问题离不开国际合作和开放共享,深化国际科技交流合作是破解人类重大挑战的必由之路。聚焦前沿 打造国之重器2020年,习近平总书记在科学家座谈会上提出“四个面向”。“大科学装置是前沿性、战略性基础研究活动的承载平台。建设和发展大科学工程或装置,对实现‘四个面向’具有重大意义。”中国科学院近代物理研究所副所长杨建成委员在接受记者采访时说。我国现有的大科学装置,如500米口径球面射电望远镜、北京正负电子对撞机、全超导托卡马克核聚变实验装置等,都是剑指颠覆性创新的国之重器。“中国科学院近代物理研究所目前运行的兰州重离子加速器就是我国典型的大科学装置之一,它能将不同种类的重离子加速至接近光速,不仅可以敲开原子核开展前沿科学探索,取得新核素合成等大批核物理前沿科学成果,还能为深空探测、绿色能源、粮食育种等领域的国家重大任务提供关键支持。”杨建成介绍说,相关成果已在生命健康、环境保护等多个领域得到广泛应用。“比如,基于兰州重离子加速器研发的我国首台国产医用重离子加速器治疗装置,目前已实现临床应用,成功治疗了1000多例肿瘤患者。”杨建成认为,大科学工程中产生的颠覆性和前沿性技术,往往能够催生新产业、新模式和新动能。主动作为 推动深度融合平方公里阵列射电望远镜(SKA)是中国目前参与的重要国际大科学工程之一。作为首倡国之一,中国始终是SKA项目的坚定支持者和主要参与方,参与见证了其发展的几乎所有重要事件,是这一宏伟工程不可或缺的核心力量。中国科学院上海天文台台长沈志强委员在接受采访时认为,当前国际环境错综复杂,中国进一步主动拓展在大型国际合作项目中作用的同时,更应积极寻求“以我为主”的合作新途径,积极谋划国际大科学工程。沈志强认为,加强开放交流与合作,积极参与国际大科学计划和工程,可以通过项目合作、数据共享、联合攻关等方式,学习借鉴国际上在工程建设、技术攻关、人才培养、运行管理等方面的成功模式和先进经验,确保每一项大科学设施都能发挥最大潜能。这有助于全面提升我国“大设备”产出“大成果”效能,推动我国科技实力和国际影响力的双重飞跃。集聚发展 形成“虹吸效应”“大科学工程应与综合性国家科学中心、国家实验室产生协同作用,形成集聚效应,也将有利于联合攻关和前沿交叉学科发展。”杨建成强调。大科学工程的独特优势,不仅在于“机器”,更在于“人才”。作为科技创新基础平台,其在培养和凝聚人才、促进国际科技合作方面能发挥独特作用。沈志强认为,我国在新建和现有大科学计划和工程建设发展中,需培养、汇聚跨学科的顶尖人才,既包括一流的科研工作者,也涵盖工程建设和管理运行领域的专家。杨建成认为,国际上具有领先地位或独特特点的大科学装置,能够形成“虹吸效应”,吸引全球相关领域的尖端科学家参与国际合作,从而提高科研影响力和创新能力。
  • AGV呼出气体酒精含量探测器检定装置研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 19%" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " AGV呼出气体酒精含量探测器检定装置 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 联系人 /p /td td width=" 35%" p style=" line-height: 1.75em " 潘义 /p /td td width=" 16%" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 28%" p style=" line-height: 1.75em " 9026427@qq.com /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " 四川中测标物科技有限公司 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 □通过小试 □通过中试 ■可以量产 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " □技术转让 □技术入股 □合作开发& nbsp ■其他 /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/fa275657-9b17-435f-aca9-b321d2e44db0.jpg" title=" 5-AGV呼出气体酒精含量探测器检定装置.png" width=" 350" height=" 233" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 233px " / /p p style=" line-height: 1.75em " & nbsp & nbsp 特点: 本检定装置以国际标准《ISO 6145-8 气体分析-动态体积法制备校准混合气体 第9部分:饱和法》为理论基础,研制出连续动态产生饱和酒精气体的技术工艺,结合本单位的气体稀释配气相关技术专利,可制备浓度范围为(40~500)& amp #956 mol· mol-1的酒精气体,完全满足《JJG 657-2006 呼出气体酒精含量探测器检定规程》对检定装置的要求,更率先与国际权威标准接轨,依据国际法制计量技术委员会颁布的《OIML R126 Evidential Breath alcohol analyzers》最新版的要求,实现了出口酒精气体温度、湿度的准确控制。检定装置具有清晰友好的人机对话界面,简单易用。 br/ & nbsp & nbsp & nbsp 指标:浓度范围:(40-500)× 10 br/ & nbsp & nbsp & nbsp 扩展不确定度:Urel = 2%, k = 2 br/ & nbsp & nbsp & nbsp 浓度调节时间: & lt 15s br/ & nbsp & nbsp & nbsp 重复性:0.2% br/ & nbsp & nbsp & nbsp 酒精气体温度: 34℃± 0.5℃,相对湿度大于90% /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 呼出气体酒精含量检测仪标准装置是应用于保障呼出气体酒精浓度计量准确性与溯源可靠性的专业设备。近年来随着汽车保有量的迅速增长,饮酒驾驶也逐渐成为当前重要的道路交通危害来源。我国交通执法部门大量采用呼出气体酒精含量检测仪作为判断是否酒驾的执法工具,酒检仪的计量性能是否准确关系到执法的公正性和权威性。研发呼出气体酒精含量检测仪标准装置对保障社会公共及人民生命财产安全具有重要作用,也是经济可持续发展的重要保障。呼出气体酒精含量检测仪标准装置建立以后,可以作为社会公用计量标准开展各类呼出气体酒精含量检测仪的检定校准工作,为社会提供呼出气体酒精浓度检测的溯源服务;也可以作为气体酒精传感器及检测设备的计量性能测试平台,联合各生产企业及科研、计量测试单位开展研发试验,提高气体酒精传感器及检测设备的技术水平。 /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 实用新型专利1项 br/ & nbsp & nbsp & nbsp 专利名称:一种呼出气体酒精含量探测器检定装置 br/ & nbsp & nbsp & nbsp 专利号:ZL201320830646.3 /p /td /tr /tbody /table p br/ /p
  • 两会代表:设立自主科学仪器装置研发类专项,鼓励使用国产科学仪器装置
    科学仪器装置是探索自然现象的研究工具,是科学研究的基础平台,也往往是科技创新成果的体现形式,长远来看对国民经济发展具有有力的作用。江苏省政协委员、中国科学院南京天文光学技术研究所所长宫雪非在接受记者采访时表示,这次他带来了和科学仪器装置有关的提案。宫雪非在前期调研时发现,当前江苏省科技厅发布的系列科技计划项目中尚无自主科学仪器装置研发类专项的设立,从事科学仪器研发相关类型的项目获批比例始终较低,围绕仪器研发的关键技术研究项目布局也显得不足。据此,宫雪非提出,首先应组织相关研讨,分析江苏在仪器设备国产化方面的优势,给予定向支持。此外,他建议省科技厅增设自主科学仪器装置研发类科技项目,每年安排2亿至3亿元经费进行专项支持,如额度100万至500万元的关键技术研究、500万至2000万元的仪器设备研发。鼓励科研机构、高校同企业开展联合攻关,实现高水平科技仪器装置自主可控的国产化,解决仪器制造领域的“卡脖子”问题。宫雪非建议政府在引导科研机构和工业企业率先使用国产科学仪器装置方面给予政策引导,如在项目考核中设置一定的国产化率的指标,为国产仪器设备的研发营造良好的市场环境。同时加强对国产仪器设备市场使用情况的跟踪调研,推动国产仪器设备的市场占有率稳定上升。“在时代大变局、大国博弈的情况下,事实上我们依赖传统的增长方式是不可行的,必须要通过科技创新引领新质生产力,才能够带动经济建设更好发展。”宫雪非说道。
  • 空气采样装置8.8折
    我公司是生产粉尘、气体系列采样器及配套设备的专业厂家,我公司独家生产的:ETKC空气采样装置,是我在&ldquo 全国车间空气监测科研协作组&rdquo 有关专家的指导下研制设计的,它适用于工矿企业,科研教学,劳动安全,环境监测和卫生防疫等部门,对工作场所进行浓度测定。该仪器体积小,重量轻,结构紧凑,操作简易,维护方便,坚固耐用,经广大客户的使用,获得一致好评。可以同时采集空气中的有毒有害气体,和微生物的采样。 ETKC空气采样装置、有二部分组成: (1)ETT-2000双路大气采样器 是一种对有害气体进行平行样采集的常规仪器。 仪器采用最新微电脑芯片控制技术、记时精度高,方便快捷。 一、主要技术指标及工作条件 1、流量范围:0.1-1.5L/min、双路大气采样     2、采样负压:&ge 25000Pa 3、流量误差:&le +5% 定时误差:&le +1%  4、工作电源:10VDC  工作温度:温度-10℃到45℃ 5、相对湿度<85%  仪器重量:2Kg  6、带可充电电池。 (2)ETW-6空气微生物采样器 是六级撞击式空气微生物采样器是《国际标准的空气微生物采样器》依据微粒撞击原理,即经典的Stokes方程式而设计制造的。本机可将空气中的微生物直接收集到半固态的营养琼脂表面上,经过培养计数、计算、进而测定出每立方米空气中所含的微生物菌落数。本仪器具有采集效率高,采样时间短,检测范围全的优点。广泛应用于医疗卫生、食品、制药、洁净室、车间、医院、室内环境等空气微生物的采样研究。 测量范围 捕获率:&ge 98% 捕获粒子范围 第一级:>7.0&mu m 孔径 1.18mm 第二级:4.7&mu m &ndash 7.0&mu m 孔径0.91mm 第三级:3.3&mu m&ndash 4.7&mu m 孔径0.71mm 第四级:2.1&mu m&ndash 3.3&mu m 孔径0.53mm 第五级:1.1&mu m - 2.1&mu m 孔径0.34mm 第六级:0.65&mu m&ndash 1.1&mu m 孔径0.25mm 采样流量 28.3L/min可调节精度&le 5% 噪声 &le 60 db 电子定时器 范围1-99分钟精度<1% 工作电源 220V/AC功率 &le 45W 保修期 1年
  • 大连化物所两项仪器装置研制项目通过验收
    1月15日,分别由中科院大连化学物理研究所1101组承担的“光学周期级飞秒时间分辨荧光亏蚀光谱装置”与11T2组承担的“气相纳米团簇负离子光电子速度成像仪”两项院科研装备研制项目通过了中国科学院计划财务局组织专家组的验收。   中国科技大学的胡水明教授等5位专家,以及中国科技大学刘世林教授等5位专家分别组成了两个项目的专家组对项目进行验收。验收会前,由清华大学莫宇翔教授等3位专家和大连理工大学于清旭教授等3位专家分别组成的测试组对项目进行了现场测试,专家组各自听取了项目负责人韩克利研究员和唐紫超研究员的研制报告、财务报告和应用报告、测试专家组的测试报告,查看了有关资料和档案,并进行了现场考查。   验收组专家一致认为,光学周期级飞秒时间分辨荧光亏蚀光谱装置将超短激光脉冲技术与荧光亏蚀技术相结合成功研制了一套光学周期级飞秒时间分辨荧光亏蚀光谱装置。经测试组现场检测各项技术指标达到了设计要求。利用该套装置,观测到了LDS867染料分子电子激发态上的飞秒级量子拍频。该实验结果充分体现了此套装置在时间分辨上的优势。气相纳米团簇负离子光电子速度成像仪项目组圆满完成了仪器研制任务,主体设备和相关部件全部就位,仪器运行正常。仪器的各项指标均达到或超过任务书的设计要求。应用该仪器开展了贵金属氢化物、镧系金属氧化物等团簇的光电子能谱及成像研究,对国家自然科学基金以及科技部973等项目的开展起了重要作用。   验收专家组认为两个项目组均完成了合同书规定的各项任务要求,一致同意通过验收。
  • 代表委员热议大科学装置建设
    作者:倪思洁 来源:中国科学报“我国大科学装置的发展到了转折点——数量已经不少,但面临着质量提高的问题。”全国两会期间,全国人大代表、中国科学院院士王贻芳告诉《中国科学报》。近年来,党中央、国务院高度重视大科学装置建设,将其视为提升我国基础研究和应用研究水平、促进相关领域国际科技合作的重要支撑。我国大科学装置建设进入了前所未有的快速发展期,目前已布局建设57个,根据“十四五”规划,拟新建20个左右。如何充分发挥大科学装置对建制化基础研究的推动作用,成为来自大科学装置领域代表委员们热议的话题。组织用户:围绕大科学装置,设立半永久性研究单元王贻芳的另一个身份是大亚湾中微子实验和江门中微子实验首席科学家。“大科学装置天然具备建制化科学研究的特点。”王贻芳说,大亚湾中微子实验和江门中微子实验,从装置设计、建设、运行到数据处理、科学研究,都采用有组织的模式,不仅有国际合作组、执行委员会、咨询委员会等各种管理委员会,还有不同的系统和子系统,这种金字塔型管理体系由专人负责。在这些大科学装置中,具体的研究课题一般由科学家提出。“有些课题提的人多,有些课题提的人少,所以我们从管理上会保持一些平衡,确保所有课题都有人做,同时保证不是所有人都集中在一个课题上。”王贻芳说。这样的做法,为其他大科学装置提供了借鉴。王贻芳告诉《中国科学报》,在国内,很多大科学装置的机时需要由科研人员或团队申请使用,用户来自不同的大学、研究所。建设运行单位在收到科研人员的机时申请后,会组织专家评审,评审通过者可以获得装置机时。为了更好地组织科研用户,他建议,根据大科学装置的特点,建设若干个非法人、半永久性研究单元,再由这些研究单元组织国内相关专家,在一些重要方向上形成相对固定的大团队,长期攻关,开展重大研究。“比如说,围绕同步辐射光源,可以在纳米、材料、生物、环境等方面组织研究单元,聚焦重大问题并解决问题。”王贻芳说。搭好平台:聚焦主责主业,强化观测手段和实验方法“建制化基础科学研究就是有组织的基础科学研究,而‘有组织’就是要‘定好目标、分好工’。”全国政协委员、中国散裂中子源探测器与电子学团队负责人孙志嘉说。孙志嘉所在的中国散裂中子源是我国“十一五”期间重点建设的大科学装置之一,位于广东省东莞市,于2019年2月2日完成首轮开放运行任务。2022年12月26日,中国散裂中子源二期工程可行性研究报告获得国家发展改革委批复。在大科学装置推动建制化基础科学研究方面,孙志嘉考虑的是如何发挥自身特长,以强有力的观测手段和实验方法支撑科学研究。“推动建制化基础科学研究,需要大科学装置坚持不懈地探索,采用新技术、新方法,提升观测精度;需要大科学装置的人才队伍、研发平台和专业设备保持稳定和持续迭代。”孙志嘉说。他认为,在建制化基础科学研究中,需要做好主责主业,发挥各自长处,形成合力。“这就好比一个木桶由十块木板组成,每人手里有一块木板,建制化基础科学研究就是要把大家手里的木板拼到一起。每个人把自己这一块木板做得尽可能长,而且拼成木桶时木板之间不漏水。”对于如何让中国散裂中子源更好发挥对基础研究的支撑作用,孙志嘉建议,进一步扩充粤港澳大湾区的大科学装置阵容,加快推进“粤港澳大湾区光源”的落地建设,将散裂中子源与同步辐射光源组合,相互支撑和配合,充分发挥大科学装置的集群效应,打造多学科前沿交叉应用平台,支撑高新技术企业的技术迭代,推动粤港澳大湾区高端制造业发展。人才接力:大力培养青年人才,科学评价战略科学家对于全国政协委员、阿里原初引力波探测实验项目首席科学家张新民来说,大科学装置能否带动建制化基础科学研究,关键要看人才是否可持续。过去7年间,张新民作为首席科学家和国际合作组发言人,一直带领团队在我国西藏阿里地区海拔5250米处,建设我国第一台原初引力波探测大型装置。“依托大科学装置开展基础研究有一个显著特点,就是周期长、耗资大、社会关注度高。装置的建设运行会持续很长一段时间,需要很多单位的科学家相互协调。”张新民认为,这一特点决定了“人”对于装置的重要性。去年全国两会上,张新民曾呼吁,加大力度培养从事大科学装置研究的青年人才,在人才评选过程中不以论文数量为主要标准,并对从事大科学装置研究的青年人才给予一定的倾斜。今年,他依然在关注大科学装置中的人才可持续问题。“一个大成果的出现,可能需要一代代人接力。年轻人一看前人花了几十年,一辈子都没得到认可,就觉得‘不要去做那些事情了’,最后就会形成一种恶性循环,没人接棒了。”张新民说。与此同时,张新民认为,大科学装置要想带动建制化基础科学研究,应依靠一批战略科学家。“战略科学家应具有深厚的科学素养,格局宏大、视野前瞻,及时关注面临的重大科学问题,关注学科发展态势,探究交叉学科融合趋势,但现实中对‘战略科学家’的判断却与人才‘帽子’的多少直接相关。”他建议,打破对战略科学家的传统定义,不以“帽子”论英雄,让大科学装置中的战略科学家在推动建制化基础科学研究方面发挥更大作用。
  • 工业型防爆除湿器,电力换流站蓄电池室防爆除湿装置
    工业型防爆除湿器,电力换流站蓄电池室防爆除湿装置【新闻导读】高压换流站是整个电力供电系统中将交流电变换为直流电或者将直流电变换为交流电的转换,并达到电力系统对于安全稳定及电能质量的要求而建立的的一个站点,也是电能传输、转换过程中必不可少的一个环节,其运行是否正常直接影响电网的安全、稳定、灵活和经济运行!雨季来临之际,高压换流站的防潮除湿是一项不容忽视的重要工作内容 其中,蓄电池室或锂电池室则是整个高压换流站防潮除湿工作的关键场所!  目前,大部分高压换流站蓄电池室或锂电池室都配置有玻璃窗、轴流风机和百叶窗等,通过通风散热的方式来降低其室内的温度,但对蓄电池室或锂电池室的防潮防湿效果造成了很大的影响!在南方地区垢梅雨季节即使蓄电池室或锂电池室的门窗都关闭好了,但潮湿的空气是无孔不入的,百叶窗的存在则会使室外大量的潮湿空气源源不断的侵入蓄电池室或锂电池室,势必会造成许多不利的影响和危害!  据相关测试表明,在梅雨季节里南方地区很多高压换流站的蓄电池室或锂电池室内环境湿度高达80%RH甚至90%RH以上 在高温高湿的环境是很容易形成凝露现象的,常常引起蓄电池或锂电池柜内电气设备的漏电或放电,严重的甚至还有可能造成火灾与爆炸。另外,蓄电池室或锂电池室内电气设备长时间受到潮湿空气的侵害,极易造成各种金属材料严重锈蚀,最为直接的危害是造成开关柜拒动,以及及影响刀闸的正常操作。  那么,如何做好高压换流站蓄电池室或锂电池室的防潮防湿措施呢?根据每个高压换流站蓄电池室或锂电池室空间的大小,以及湿度的高低等各方面的实际情况安装与之相匹配的正岛BCFZD-8240C换流站蓄电池室除湿器及BCFZD系列工业型防爆除湿器,随时对室内空气进行快速有效除湿,即可避免出现湿度过高或空气过于潮湿的情况,那么以上所述的种种问题也就不会发生,从而确保了高压换流站蓄电池室或锂电池室设备的正常运行和安全   正岛BCFZD-8240C换流站蓄电池室除湿器及BCFZD系列工业型防爆除湿器是通过特殊防爆技术加工处理,可广泛应用于国防、科研、石油、化工、医药、加工制造、生物等存在ⅡA、ⅡB级,T1~T4组可燃性气体、蒸汽与空气混合形成的易引发爆炸的危险场所,本系列产品执行标准如下:  ◎GB3836.1-2010爆炸性环境第1部分:设备通用要求   ◎GB3836.2-2010爆炸性环境第2部分:由隔爆外壳“d”保护的设备   ◎GB3836.4-2010爆炸性环境第4部分:由本质安全型“i”保护的设备   ◎GB3836.9-2006爆炸性气体环境用电气设备第9部分:浇封型“m”   ◎GB3836.15-2000爆炸性气体环境用电气设备第15部分:危险场所电气安装(煤矿除外)。  欢迎您查询工业型防爆除湿器,电力换流站蓄电池室防爆除湿装置的详细信息!防爆除湿器的种类有很多,不同品牌的防爆除湿器价格及应用范围也会有细微的差别,而正 岛 电 器将会为您提供优质的产品和全面的售后服务。 正岛BCF-8240C及BCF系列防爆工业除湿器技术参数与选型参考:产品型号除湿量(l/d)适用面积(㎡)功率(w)电源(v/Hz)尺寸(mm)净重(kg)BCFZD-890C90100-1501700220/50480*430*97050BCFZD-8138C138150-2002000220/50480*430*110058BCFZD-8168C168180-2402800380/50605*410*1650126BCFZD-8240C240240-3604900380/50770*470*1650160BCFZD-8360C360360-4807000380/501240*460*1700200BCFZD-8480C480480-6009900380/501240*460*1750230  正岛BCFZD-8240C换流站蓄电池室除湿器及BCFZD系列工业型防爆除湿器的防爆处理,主要有哪些地方呢?总结起来有三条:  1、防爆除湿器工艺制作,除湿器的主要系统是制冷循环系统。各制冷系统的转换管路须采用紫铜焊接。如其中有外购部件,也必须符合相应的防爆等级要求,才能用于部件组装   2、防爆除湿器主要的外部空气循环系统,主要包括风机,而风机中的电机,也必须符合相应的防爆等级要求。风扇电机须符合GB3836.2-8.3和GB3836.9-90有关要求。  3、防爆除湿器的各种连接线及电源线,必须符合阻燃标准 防爆接线盒内的电路接头及本安电路的接头必须焊接并使用安全接线帽。  4、防爆除湿器的金属外壳及机架,必须做安全接地保护措施。电缆或数据线如有屏蔽层,必须单独接地。  综上所述:南方地区梅雨季节来临之际,及早做好高压换流站蓄电池室或锂电池室的防潮除湿工作是刻不容缓的 最为简捷有效的方法无疑就是配置相应的正岛BCFZD-8240C换流站蓄电池室除湿器及BCFZD系列工业型防爆除湿器来进行除湿,只要将其室内的湿度控制在45-65%RH左右,即可达到最为佳的防潮除湿效果,只在设备运转正常,高压换流站蓄电池室或锂电池室就不用再担心潮湿问题!  如果在高压换流站的蓄电池室或锂电池室内安装一套集中控制系统,根据室内湿度大小自动开启或关闭窗户与正岛BCFZD-8240C换流站蓄电池室除湿器及BCFZD系列工业型防爆除湿器,那么这样对于蓄电池室或锂电池室的防潮除湿和通风散热的效果就更好了。以上关于工业型防爆除湿器,电力换流站蓄电池室防爆除湿装置的全部新闻资讯报道是正 岛 电 器提供的,仅供大家参考!
  • 我国大科学装置发展的现状、问题及建议
    大科学装置(large scale scientific facility)是人类发现自然规律、探索未知世界、实现技术变革的大型设施,是取得重大科学突破的保障之一。在中国,大科学装置也常被称为“国家重大科技基础设施”。大科学装置具有推进多学科综合交叉发展、突破高新技术瓶颈的强大支撑能力,是国之重器、科技利器。大科学装置具有明确的科学目标,建设时间长、体量大、投资大,产出是科学知识和技术成果,而不是直接的经济效益。按照不同的应用目的,大科学装置可以被分为专用研究装置、公共实验平台和公益基础设施3种类型。大科学装置已经成为衡量一个国家科技实力和综合国力的重要标志,是维护国家安全、促进经济社会可持续发展必不可少的重要基础设施。中国大科学装置发展基本情况中国大科学装置经历了从无到有、从小到大、从学习模仿到自主创新的过程(图1),在提高国家自主创新能力方面占据重要地位。20世纪80年代,中国以北京正负电子对撞机(BEPC)为标志开始了大科学装置建设的新阶段。之后以中国科学院为主导,陆续建设了一批大科学装置,对促进科技事业和其他各项事业发展起到了积极作用。目前,中国在建和运行的重大科技基础设施项目总量已达57个,数量位居全球前列。中国大科学装置在不同时期呈现出了不同的发展特点。图1 中国大科学装置发展历程1)萌芽期(1949年至改革开放前)。1949年之后,国家主要围绕“两弹一星”的研制工作,布局建设了一些如材料试验堆、点火中子源等研究设施。这些设施虽然不能完全称之为大科学装置,却是大科学装置的萌芽。2)起步期(20世纪80年代初至2000年)。这一阶段布局了10余个大科学装置,主要集中在高能物理学、光学、遥感科学等领域,且主要用于公益科技和专用研究。区域分布上主要以北京地区为主,依托单位基本为中国科学院各个院所。总体来说,此时期大科学装置布局不均衡,发展内容不够全面。3)发展期(2001—2010年)。这一阶段大科学装置呈现出均衡发展趋势,区域分布由北京为主扩展到了中国东部。其中“十一五”期间设施数量呈跨越式增长,共部署了散裂中子源、强磁场等12项大科学装置,覆盖了环境科学、地球科学、粒子物理与核物理、天文学、生命科学等领域,总投资超过60亿元。4)追赶期(2011至现在)。这一阶段中国对大科学装置进行了前瞻部署和系统布局,投入力度持续加大。中国的大科学装置建设无论从数量,还是从投入金额来看,都呈现逐年增加的趋势。在国家发展和改革委员会的规划组织和投资支持下,“十二五”期间,中国启动建设了地球系统数值模拟装置(Earth System Numerical Simulation Facility)、高海拔宇宙线观测站(LHAASO)、高效低碳燃气轮机试验装置等16项重大科技基础设施,总投资超过了100亿元“。十三五”期间,在基础科学、能源、地球系统与环境、空间和天文以及部分多学科交叉领域,按照“成熟一项、启动一项”的原则,启动建设了高能同步辐射光源、硬X射线自由电子激光装置等9项设施。“十四五”期间,中国拟新建20个左右国家重大科技基础设施,在数量和质量上有新的跃升。党的十八大以来中国大科学装置建设发展特点党的十八大以来,中国大力实施创新驱动发展战略,在大科学装置建设上多点发力。围绕战略导向、前瞻引领、应用支撑、民生改善等方面建设一批大科学装置。北京怀柔高能同步辐射光源(High Energy Photon Source,HEPS)已完成全部土建结构施工;合肥聚变堆主机关键系统综合研究设施(CRAFT)园区已经启用;稳态强磁场、500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)、散裂中子源等一批“国之重器”陆续建成使用;“慧眼”“悟空”“墨子”等科学实验卫星成功发射,“奋斗者”号全海深载人潜水器成功挑战马里亚纳海沟等。总之,近10年来,中国大科学装置建设持续推进,正在加速实现从跟跑、并跑向领跑的转变,为原始创新和关键技术攻关提供更强力的支撑。01 统筹规划、政策支持力度不断加大党的十八大以来,为促进大科学装置健康发展,党中央、国务院及省市等机构不断出台相关政策,从国家层面、省市层面进行战略部署。《国家创新驱动发展战略纲要》《国家重大科技基础设施建设中长期规划(2012—2030年)》《国家重大科技基础设施“十三五”规划》《国家重大科技基础设施管理办法》等政策文件均强调要以大科学装置为核心,打造高端引领的创新增长极,并对中国大科学装置的布局、投资、建设和管理进行了阐述,有效地推动了大科学装置建设与发展。“十四五”时期,《“十四五”国家科技创新规划》明确了“十四五”大科学装置建设重点。北京、上海、安徽作为综合性国家科学中心所在地,围绕科技前沿和国家重大战略需求,在各自的“十四五”规划中明确提出要加强大科学设施布局,跨区域整合创新资源,形成大科学装置集群。《粤港澳大湾区发展规划纲要》提出,大湾区深入实施创新驱动发展战略,深化粤港澳创新合作,加快推进大湾区重大科技基础设施建设。在这些规划、政策的推动下,中国大科学装置规模不断增长,综合效应日益显现。02 世界级大科学装置集群初步成型大科学装置集群在技术突破、科学研究和支撑经济社会发展等方面具有一定优势。北京、上海、合肥、粤港澳等地依托建设综合性国家科学中心,初步形成集群化态势、具有一定国际影响力的大科学装置集群。北京怀柔综合性国家科学中心距核心城区相对较远,重点聚焦基础研究;上海张江综合性国家科学中心紧邻上海市中心,重点推动小而精的应用转化;合肥综合性国家科学中心集中布局一批大科学装置集群和交叉前沿研究平台,侧重于科学发现;粤港澳大湾区综合科学中心依靠深圳、广州、东莞、香港等多点城市构建大科学装置集群。1)怀柔是北京地区大科学装置最为密集的区域。北京怀柔综合性国家科学中心自获批建设以来,在空间科学、物质科学、能源科学等领域布局建设了5个大科学装置(表1),同时集聚了一批前沿交叉研究平台、科教基础设施、重大产业技术开发平台,初步形成了促进重大原始创新成果产出的战略高地。落户于这里的5个大科学装置中,有的抢先“开跑”,也有的正在加速建设。地球系统数值模拟装置、综合极端条件实验装置已投入运行;多模态跨尺度生物医学成像设施工程已于2022年11月竣工;子午工程二期在2023年建设“收官”;高能同步辐射光源预计2025年完成装置建设。这些大科学装置将为北京国际科技创新中心建设提供重要支撑。表1 北京怀柔综合性国家科学中心大装置基本情况2)上海张江基本建成光子大科学装置集群。上海以张江实验室为依托,以重大任务实施、重大平台建设为牵引,先后建设了上海光源一期、国家蛋白质科学研究(上海)设施、硬X射线自由电子激光装置、软X射线自由电子激光装置等一批大科学设施,覆盖了生命科学、光子科学、能源科学、海洋科学等领域。据《2021上海科技进步报告》显示,截至2021年底,上海在建、在用的大科学设施已达到14个,其中已运行的有8个、在建的有6个(表2)。经过多年建设发展,上海张江初步形成了全球光科技领域规模大、种类全、功能强的光子大科学装置集群,为建设张江综合性国家科学中心,实现上海建设具有全球影响力的科技创新中心目标奠定了坚实基础。表2 上海运行、在建设施基本情况3)安徽合肥着力打造世界一流的大科学装置集中区。为更好推进合肥综合性国家科学中心建设,合肥在滨湖科学城布局建设了大科学装置集中区,布局建设8个大科学装置。截至2022年,安徽合肥已建成同步辐射装置、全超导托卡马克、稳态强磁场装置3个大科学装置。2017年9月,稳态强磁场实验装置通过国家验收,标志着中国成为继美国、法国、荷兰、日本之后第5个拥有稳态强磁场的国家。2022年3月,合肥第4个大科学装置——聚变堆主机关键系统综合研究设施(CRAFT)园区正式交付启用(表3)。大科学装置是合肥综合性国家科学中心的重要基石,以大科学装置为基础,提高原始创新能力,支撑综合性国家科学中心高质量发展,打造有国际影响力的创新之都指日可待。表3 合肥运行、在建设施基本情况4)粤港澳大湾区依靠产业发展构建大科学装置集群。加快布局建设大科学装置,是建设粤港澳大湾区综合性国家科学中心科技和产业创新高地的必然选择。粤港澳大湾区综合性国家科学中心的核心大科学装置——中国散裂中子源于2018年8月通过验收工作。作为继英国、美国、日本散裂中子源之后的世界第4台脉冲式散裂中子源,它的建成改变了以往中国科学家只能到国外散裂中子源上申请实验机时的历史。目前,深圳正在规划建设大科学装置集群,加快布局“高精尖”实验室。光明科学城规划建设提速,材料基因组、合成生物研究、脑解析与脑模拟等方面的大科学装置加快建设(表4)。这些重要的大科学装置,未来将为粤港澳大湾区产业升级提供重要保障。表4 大湾区部分设施基本情况03 自主创新设计能力不断增强“十二五”以来,中国大科学装置设计建造由以前的跟跑为主,逐步转到跟跑、并跑的局面,许多装置自主创新设计能力不断增强。从20世纪80年代末,依托于北京正负电子对撞机的第一代同步辐射光源,到安徽合肥光源(第二代)、上海同步辐射光源(第三代),再到北京怀柔高能同步辐射光源(第四代),大装置分辨率、亮度等性能不断提高。同时,怀柔同步辐射光源采用了研究团队自主研制的新型X射线像素阵列探测器样机,实现了加速器、光束线等多个关键技术的创新。北京怀柔的地球系统数值模拟装置是中国研制成功的首个具有自主知识产权的地球系统模拟大科学装置。被誉为“中国天眼”的FAST是世界上最大和最灵敏的单口径射电望远镜,且具有中国自主知识产权。被誉为“人造太阳”的合肥全超导托卡马克核聚变实验装置是中国自行设计研制的世界上第一个全超导非圆截面托卡马克核聚变实验装置。04 集聚人才的“磁石效应”日益凸显人是科技创新中最关键的因素。大科学装置在培养和凝聚人才、促进国际科技合作方面能够发挥独特作用。例如,中国科学院合肥物质科学研究院强磁场中心为王俊峰、张欣、王文超等“哈佛八剑客”提供了施展才华的舞台;上海光源不仅吸引集聚了世界顶尖科学家,也培育了大量经验丰富的大科学装置建设和运营工作人员,支撑着中国光子科学的创新发展。大科学装置在建设和运行过程中,集聚和培养了一大批懂科学、懂工程、懂技术、懂管理的领军人才,建成后还依托设施吸引大批高水平国内外人才开展科学研究和科技合作。以中国散裂中子源为例,中国科学院高能物理研究所在东莞集聚和培养了一支有400多人的高水平工程和科研团队及大批青年学生,包括有着丰富设施建设与开放运行经验的战略科学家,以及在专业领域颇有建树的学科领军人才和蓬勃奋进的青年科学家。05 开放共享程度有所增加大科学装置作为推动科技创新的重要平台,具有开放性、国际化特点,其不仅能够向世界展示中国科技水平与经济实力,同时也能够促进全球科学家与中国的合作交流。中国大科学装置正向世界敞开怀抱。2021年3月,“中国天眼”正式向全球开放,征集观测申请,共收到15个国家31份申请,14个国家的27份申请获得批准,并于2021年8月启动科学观测。这为世界注入了中国力量和中国贡献,充分彰显了中国科学家与国际科学界携手合作的理念。北京怀柔综合性国家科学中心的综合极端条件实验装置首批5个实验站进入开放运行阶段,2022年1月起正式面向中外用户开放预约使用,截至2022年2月已收到来自国内外团队的50余份申请。江门中微子实验获得国际实物贡献约3000万欧元,共有境外16个国家和地区约300多位科学家参加。自2007年超导托卡马克核聚变实验装置正式投入运行以来,中国科学院等离子体物理研究所已与30多个国家的近100多个研究机构建立了广泛而深入的合作伙伴关系,近年来多次帮助国际合作伙伴建造聚变研究部件。这些都充分表达了中国国际科技合作开放包容的积极态度。高水平的科研成果不断涌现01 突破一批关键核心技术党的十八大以来,中国在大科学装置建设上持续发力,也催生出一批世界级成果,覆盖能源、物理、材料、生命科学等多个前沿交叉和高科技研发领域,提升了基础前沿研究水平和自主创新能力。“中国天眼”实现了跟踪、漂移扫描、运动中扫描等多种观测模式,于2018年4月首次发现距地球约4000光年的毫秒脉冲星。2017年,全超导托卡马克核聚变实验装置首次实现了稳定的101.2s稳态长脉冲高约束等离子体运行,创造了新的世界纪录。2022年5月,中国“墨子号”实现1200km地表量子态传输新纪录,抢占了量子科技创新的制高点。大亚湾反应堆中微子实验发现了一种新的中微子振荡,并精确测量到其振荡几率,该结果对中微子物理的未来发展方向起着决定性作用。02 产生一批高水平项目和研究成果截至2021年底,上海光源一期累计提供实验机时388649h,用户累计发表SCI论文近8000篇。国家蛋白质科学研究(上海)设施全年为用户提供科研机时8.27万h,用户发表SCI论文445篇。截至2021年9月,合肥稳态强磁场实验装置共运行了45万多h,依托装置开展了近2700项课题研究、发表学术论文1700余篇,其中一区期刊论文404篇、Nature Index期刊文章接近400篇,推动了中国稳态强磁场下前沿科学研究。散裂中子源的高度开放共享也吸引了大批国内外的用户,包括科学家和工程技术人员开展科学研究和技术攻关,用户单位及完成课题数逐年增加,自建成投入使用以来,全球注册用户超过3400人,完成课题600多项,有力推动了中国中子散射应用和关键技术的重大发展。03 催生一批新成果和新应用大科学装置产生了一大批重大原创成果,催生了一批战略性产业技术。通过建设若干重大科技成果概念验证中心和中试平台,推动大科学装置衍生技术就地交易、就地转化、就地应用,促进“国之重器”走进日常生活。“中国天眼”在建造过程中突破了很多技术瓶颈,如抗疲劳索网技术在港珠澳大桥工程建设中得到了应用。依托合肥稳态强磁场装置取得了超预期的转化成果,包括催生出多个国家I类创新靶向药物,授权发明专利30余项,孵化出高科技企业4家。国家蛋白质科学研究(上海)设施解析了新冠肺炎病毒结构,有效助力疫情防控和疫苗研发。上海光源助力破解新冠肺炎病毒关键蛋白结构,为抗病毒药物研制提供了必要的基础数据。总之,中国大科学装置正以越来越多世界级创新成果,显示着“国之重器”的巨大能量。中国大科学装置建设发展过程中存在的问题及建议01 现存问题近年来,中国大科学装置在推进科技强国建设、打造战略科技力量中发挥了重要作用,取得了一系列原始创新成果,但因中国大科学装置建设起步较晚,与美国、德国等世界先进国家相比,在建设、管理等方面仍有一定差距,主要存在以下问题。1)后续经费投入仍需充分考虑。大科学装置建成后,还有后续巨大的运营成本,在运行过程中每年仍需要大量的投入,如运行费用、科研费用和改进发展费用等。例如,兰州重离子加速器国家累计投资逾10亿元,每年还需1.1亿元用于运行和维护更新。散裂中子源每年投入进行设备维护,保障运行和开放的经费达到设备建设经费的10%~20%。发达国家经验显示,对于大科学装置后续的科研投入尤其是人员经费,大多要占建设经费的10%~50%。总体来看,中国基础研究投入只占研发经费的5%,而大科学装置建设经费仅占基础研究经费投入的约5%,对比美国这2个数据分别是15%和10%。可见中国大科学装置建设经费投入与发达国家还有一定差距。2)关键部件的自主创新需进一步加强。中国目前在役大科学装置技术水平总体上以跟踪为主,支撑大科学装置建设的很多相关设备从国外采购,关键设备与工艺技术对国外产品依赖严重,存在卡脖子风险。以北京怀柔综合性国家科学中心多模态跨尺度生物医学成像设施为例,设施有价值12亿的仪器装备,其中30%由改造升级而来,30%由中国自主研发制造,其余40%来自国外购买。3)开放合作共享还不足。中国大科学装置建设主要是采取自行建设,建成后依托设施参与国际合作的模式。从国际合作来看,中国在运行的大科学装置中,由国内外共同参与重大科技项目建设的大科学装置占比不足10%,以自身大科学装置为基础参与国际科技项目合作的大科学装置占比约30%。而且在国际形势较为复杂的背景下,大科学装置国际合作和人才引进存在一定困难。02 建议统筹推进大科学装置布局建设,充分发挥大科学装置促进科技创新的重要作用是建设科技强国的必然要求。利用大装置解决国家战略需求中的前瞻性、基础性和战略性问题,突破“卡脖子”技术,是实现高水平科技自立自强,把创新发展主动权牢牢掌握在自己手中的重要举措。面对以上问题,结合中国大科学装置建设、发展的实际情况,提出以下几方面建议。1)拓展大科学装置经费投入来源。据统计,过去10年,大科学装置投资建设基本稳定在每5年160亿元左右,平均每年约32亿元,而且这些费用往往不包括研究经费、人员费、配套经费等。应遵循全生命周期管理理念,在大科学装置申报论证阶段就充分考虑到大科学装置维护、更新和提升所需的资金。明晰国家和地方权责,协调地方政府和社会力量共同参与大科学装置的建设。在中国科学院与国家自然科学基金委员会联合设立“大科学装置科学研究联合基金”支持基础研究的基础上,由企业和政府共同出资设立设施后期保障基金,参与企业在使用设备时可优先考虑或降低收费标准等。2)建立技术联盟,解决大科学装置关键技术卡脖子风险。以大装置常用的仪器仪表为例,目前中国高端仪器仪表产品等的关键核心零部件基本依赖进口,仪器仪表整机厂家存在着核心技术“空心化”问题。高端科研仪器设备市场基本由美国、欧洲、日本的企业控制。美国《化学与工程新闻》杂志公布的2018年度全球仪器公司TOP20排位榜中,有8家是美国公司,7家来自欧洲,5家为日本公司。为降低大科学装置核心零部件对国外产品的依赖度,鼓励具有专项技术的高科技企业、科研院所与高校形成大科学装置技术研发联盟,对相关技术联合攻关,突破大科学装置相关工艺与装备技术难点,实现器件自主研发和国产化。3)利用大科学装置开展更多国际合作。在大科学装置建设运行中,面向国外开放,引入国际合作者,依托这些设施开展联合研究、人员交流、人才培养等,提升中国国际科技合作水平。充分考虑国际科技安全,加强以中国为主的大科学装置的国际合作。同时积极参与国际大科学装置项目,积累建设管理、运行和维护经验等。结论大科学装置的出现是科学发展的必然趋势,大科学装置本身也是科技自立自强必备的科技基础设施。面向未来,需前瞻性谋划和系统性布局一些重大的大科学装置,不断夯实国家科技创新的平台基础。依托大科学装置,推动中国在基础研究和原创性、引领性科技攻关方面取得更多、更大的突破,助力实现科技强国的伟大梦想。
  • 大科学装置铸就“中国枢纽”
    实验装置是科学家的“枪”,随着知识探索的不断深入,科学家对实验装置的需求也向着大型、复杂、综合的方向迅速发展。   现在,世界上许多国家级实验室里,人们都可以见到不同肤色、不同语言的学者在一起工作 而在一些大科学计划、大科学装置的建立中,对资金、技术和人力的需求往往超过了一个国家的能力。国际合作由此日渐成为各国科研机构的不二选择。   实验室里的国旗墙   在中科院高能物理所北京谱仪III(BESIII)狭长的地下实验室尽头,有一面特殊的墙,墙上挂满了五颜六色的各国国旗。   “墙上的国旗代表着现在参与北京谱仪III的合作单位。”高能物理所常务副所长、BESIII国际合作组发言人王贻芳告诉《科学时报》记者,“现在搞高能物理研究的人,都知道北京谱仪。”   截至今年6月,BESIII合作组国内外成员单位已扩大到49个,其中外国单位20家,中国香港2家,合作组专家达300多人。   用王贻芳的话说,在北京谱仪之前,中国对高能物理的贡献度“几乎为零”。直到1988年,BESIII的前身——北京正负电子对撞机(BEPC)和北京谱仪建成并投入运行后,这样的局面才得以扭转。   基于北京谱仪,高能物理所也取得了一批重要成果,发表科学论文达150多篇,跻身于世界八大高能物理研究中心之一。   “中国现在已经是世界高能物理界的一支举足轻重、不可或缺的力量。”提起这几十年的变化,王贻芳感到自己和合作组同事的努力全都值了。   中国的,世界的   坐落在上海张江高科技园区的上海光源,是我国迄今为止最大的大科学工程,同时也是目前世界上性能最好的第三代中能同步辐射光源之一。   2004年开工不久,上海光源工程经理部就发现了人力资源的严重短缺。根据当时的测算,上海光源工程建设期间需要约380人的骨干队伍,但开工时却只有130人左右。因此,工程经理部开始注意从国外引进或短期聘请工程建设特别需要的专家,不久就收到了明显效果,工程在编人员很快超过了200 人。   为了保证上海光源建成时仍居国际先进水平,工程经理部积极开展国际合作工作,与国外各主要同步辐射实验室建立了良好的合作关系,进行人员和技术的交流,及时了解国际同步辐射装置的发展趋势、新技术的发展方向,在工程建造过程中得到了国际上的帮助与支持。   上海光源开工一年内,就已有外宾来访47人次,涉及11个国家 出访40人次,涉及8个国家。   安装在中科院近代物理研究所兰州重离子加速器上的ECR离子源,也离不开以“ECR离子源之父”、法国格勒诺布尔技术研究所物理学家Richard Geller为代表的国际同行们的鼎力帮助。   Richard Geller曾几次到近代物理所介绍有关技术。经过与外国专家的交流,近代物理所离子源组在过去十几年间,先后自主研制了4台具有国际先进或领先水平的高电荷态ECR离子源。   2008年,该所副研究员孙良亭获得了首届Richard Geller奖。近代物理所离子源组也在两年内获得了国际离子源领域两项最重要的国际奖项,被认为是目前国际上最活跃和最具创新能力的离子源小组之一。   像Geller这样“无私奉献”的老外,在中科院各大科学装置的建设和运行中还有很多。科学家们明白,大科学装置是技术复杂的综合性工程,它涉及到许多不同的学科领域和高新技术,只有大家通力配合,才能解决关键的技术问题,为人类共同的科学事业争取时间和节省经费。   始于装置 瞄准未来   不管是中科院大科学装置里的“老大哥”北京谱仪,还是近年来赫赫有名的上海光源和合肥强磁场,这些大科学装置都不约而同地冠上了中国的地名。它们在各学科领域发挥重要作用的同时,也让长期以来发达国家在高技术领域对我国的“冷战”思维迅速转变。   这些大科学装置的落户,让中国终于有条件作为东道国,组织多国科学家参与的大规模科学实验,推进以我国为主的国际科技合作。   托卡马克(Tokamak)是一种利用磁约束来实现受控核聚变的环性容器。通电时,托卡马克内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。因此,托卡马克被公认为是探索、解决未来稳态聚变反应堆工程及物理问题的最有效的途径。   在国外同行研究的基础之上,1994年,中科院等离子体物理研究所通过国际合作,研制出HT-7超导托卡马克,使我国成为继俄、日、法之后第四个拥有该类装置的国家,中国聚变事业从此走上了国际舞台。   2007年,该所独立设计制造的世界上首个全超导托卡马克装置“东方超环”(EAST)通过验收,进入实验阶段后,“东方超环”面向全世界聚变领域的专家开放。2010年,近百人次的国内外同行参加了实验,并取得了许多重要的成果。   作为“十一五”国家重大科技基础设施,稳态强磁场实验装置尚未全部完工,主持建设的中科院合肥物质科学研究院就迎来了一波又一波的国外考察团队,一些世界知名的学者也陆续被聘为中科院强磁场科学中心的研究员。   而上海光源的用户则几乎“挤破头”。从2009年5月6日试运行以来,上海光源在短短半年多时间里,中外用户的数量就上升到了4位数。   承担上海光源建设的中科院上海应用物理所也因此受益。通过上海光源项目,应用物理所与英国、日本、法国、德国等国家的同步辐射光源及其研究机构建立了全面的合作与交流关系,并与美国五大实验室保持着密切的人员交流与技术合作。   2007年,大亚湾反应堆中微子实验在我国启动,它不仅成为具有重要国际影响力的大型基础科学研究项目,也是中美两国历史上最大的合作项目之一。   这样的例子不胜枚举。截至2010年底,中科院已与全球50多个国家和地区签署院级合作协议200多个,所级合作协议1000多个,每年在研国际合作项目800余项。   2009年、2010年两年间,有近500名国外高水平专家来华参与大科学装置的建设和研究。而2010年6月30日中科院与国家外国专家局签署的《引进国外智力为大科学装置服务合作框架协议书》,则标志着我国大科学装置引智工作进入了新的层面。   相识系于缘,相交系于诚。透过这些扎根中国的大科学装置,国际合作的含义早已超越了“凑份子”的阶段。中外科研人员互访、合作开展科研项目、联合培养研究生等越来越丰富的手段,让中国在科技全球化的浪潮中,逐渐成长为一个融合与开放的枢纽。
  • 两会热议:大科学装置如何推动建制化基础科学研究
    “我国大科学装置的发展到了转折点——数量已经不少,但面临着质量提高的问题。”全国两会期间,全国人大代表、中国科学院院士王贻芳告诉《中国科学报》。近年来,党中央、国务院高度重视大科学装置建设,将其视为提升我国基础研究和应用研究水平、促进相关领域国际科技合作的重要支撑。我国大科学装置建设进入了前所未有的快速发展期,目前已布局建设57个,根据“十四五”规划,拟新建20个左右。如何充分发挥大科学装置对建制化基础研究的推动作用,成为来自大科学装置领域代表委员们热议的话题。组织用户:围绕大科学装置,设立半永久性研究单元王贻芳的另一个身份是大亚湾中微子实验和江门中微子实验首席科学家。“大科学装置天然具备建制化科学研究的特点。”王贻芳说,大亚湾中微子实验和江门中微子实验,从装置设计、建设、运行到数据处理、科学研究,都采用有组织的模式,不仅有国际合作组、执行委员会、咨询委员会等各种管理委员会,还有不同的系统和子系统,这种金字塔型管理体系由专人负责。在这些大科学装置中,具体的研究课题一般由科学家提出。“有些课题提的人多,有些课题提的人少,所以我们从管理上会保持一些平衡,确保所有课题都有人做,同时保证不是所有人都集中在一个课题上。”王贻芳说。这样的做法,为其他大科学装置提供了借鉴。王贻芳告诉《中国科学报》,在国内,很多大科学装置的机时需要由科研人员或团队申请使用,用户来自不同的大学、研究所。建设运行单位在收到科研人员的机时申请后,会组织专家评审,评审通过者可以获得装置机时。为了更好地组织科研用户,他建议,根据大科学装置的特点,建设若干个非法人、半永久性研究单元,再由这些研究单元组织国内相关专家,在一些重要方向上形成相对固定的大团队,长期攻关,开展重大研究。“比如说,围绕同步辐射光源,可以在纳米、材料、生物、环境等方面组织研究单元,聚焦重大问题并解决问题。”王贻芳说。搭好平台:聚焦主责主业,强化观测手段和实验方法“建制化基础科学研究就是有组织的基础科学研究,而‘有组织’就是要‘定好目标、分好工’。”全国政协委员、中国散裂中子源探测器与电子学团队负责人孙志嘉说。孙志嘉所在的中国散裂中子源是我国“十一五”期间重点建设的大科学装置之一,位于广东省东莞市,于2019年2月2日完成首轮开放运行任务。2022年12月26日,中国散裂中子源二期工程可行性研究报告获得国家发展改革委批复。在大科学装置推动建制化基础科学研究方面,孙志嘉考虑的是如何发挥自身特长,以强有力的观测手段和实验方法支撑科学研究。“推动建制化基础科学研究,需要大科学装置坚持不懈地探索,采用新技术、新方法,提升观测精度;需要大科学装置的人才队伍、研发平台和专业设备保持稳定和持续迭代。”孙志嘉说。他认为,在建制化基础科学研究中,需要做好主责主业,发挥各自长处,形成合力。“这就好比一个木桶由十块木板组成,每人手里有一块木板,建制化基础科学研究就是要把大家手里的木板拼到一起。每个人把自己这一块木板做得尽可能长,而且拼成木桶时木板之间不漏水。”对于如何让中国散裂中子源更好发挥对基础研究的支撑作用,孙志嘉建议,进一步扩充粤港澳大湾区的大科学装置阵容,加快推进“粤港澳大湾区光源”的落地建设,将散裂中子源与同步辐射光源组合,相互支撑和配合,充分发挥大科学装置的集群效应,打造多学科前沿交叉应用平台,支撑高新技术企业的技术迭代,推动粤港澳大湾区高端制造业发展。人才接力:大力培养青年人才,科学评价战略科学家对于全国政协委员、阿里原初引力波探测实验项目首席科学家张新民来说,大科学装置能否带动建制化基础科学研究,关键要看人才是否可持续。过去7年间,张新民作为首席科学家和国际合作组发言人,一直带领团队在我国西藏阿里地区海拔5250米处,建设我国第一台原初引力波探测大型装置。“依托大科学装置开展基础研究有一个显著特点,就是周期长、耗资大、社会关注度高。装置的建设运行会持续很长一段时间,需要很多单位的科学家相互协调。”张新民认为,这一特点决定了“人”对于装置的重要性。去年全国两会上,张新民曾呼吁,加大力度培养从事大科学装置研究的青年人才,在人才评选过程中不以论文数量为主要标准,并对从事大科学装置研究的青年人才给予一定的倾斜。今年,他依然在关注大科学装置中的人才可持续问题。“一个大成果的出现,可能需要一代代人接力。年轻人一看前人花了几十年,一辈子都没得到认可,就觉得‘不要去做那些事情了’,最后就会形成一种恶性循环,没人接棒了。”张新民说。与此同时,张新民认为,大科学装置要想带动建制化基础科学研究,应依靠一批战略科学家。“战略科学家应具有深厚的科学素养,格局宏大、视野前瞻,及时关注面临的重大科学问题,关注学科发展态势,探究交叉学科融合趋势,但现实中对‘战略科学家’的判断却与人才‘帽子’的多少直接相关。”他建议,打破对战略科学家的传统定义,不以“帽子”论英雄,让大科学装置中的战略科学家在推动建制化基础科学研究方面发挥更大作用。
  • ACCSI2023大型科学仪器装置发展论坛邀您参观“国之重器”!
    雁栖湖畔,北京怀柔综合性国家科学中心(怀柔科学城)正成为全国重大科技设施平台高度集聚的区域之一!2017年5月,国家发改委、科技部正式批复北京怀柔综合性国家科学中心建设方案,明确以怀柔科学城为核心承载区进行建设,建成与国家战略需要相匹配的世界级原始创新承载区,成为战略性、前瞻性基础研究新高地、综合性国家科学中心集中承载地、生态宜居创新示范区。截止目前,怀柔科学城已围绕物质、空间、生命、地球系统和信息与智能五大科学方向,布局了40余个大科学装置、科教设施和交叉研究平台,涉及的仪器装备超过10000台/套。五个大科学装置介绍高能同步辐射光源高能同步辐射光源(HEPS),主要由加速器、电子储存环、光束线和实验站组成。工程目标为:电子储存环中,电子束的能量为6千兆(60亿)电子伏特,发射度小于0.06纳米弧度,亮度在世界上最高,高性能光束线站容量不少于90个,首期建设14条光束线和相应的实验站。该装置是用来观察微观世界在分子和原子尺度上的结构、功能,以及动态变化过程的大科学装置。打个比方,就是用来探测微观世界的“巨型X光机”,或者是“超级显微镜”。该装置的建筑外形像一个放大镜,寓意为“探测微观世界的利器”。建成以后将成为世界上亮度最高的第四代同步辐射光源,是我国的第5个同步辐射光源,也是我国能量最高的同步辐射光源,为基础科学和应用科学研究领域提供先进的实验平台,满足非平衡态、非线性、局域个体、复杂体系等前沿问题的研究需求。项目法人单位为中科院高能物理研究所,占地面积976亩,建筑面积12.5万平方米,总投资47.6亿元,2019年6月开工建设,建设周期6.5年,预计2025年建成投入使用。综合极端条件实验装置综合极端条件实验装置,是国际上第一个把极低温、超高压、强磁场、超快光场等极端条件结合在一起的用户装置。科研人员利用该装置进行科学研究活动,有可能在发现新型高温超导体、突破非常规超导机理、突破量子计算核心技术、实现物性超快调控和晶格振动实时成像等研究领域,取得国际一流的研究成果,提高我国在物质科学及相关领域的基础研究与应用基础研究的综合实力。项目法人单位为中科院物理研究所,占地面积130亩,建筑面积4.8万平方米,总投资13.8亿元,2017年9月开工建设,建设周期6年,2023年建成投入使用。多模态跨尺度生物医学成像设施多模态跨尺度生物医学成像设施,融合光、声、电、磁、核素、电子等成像模态,提供从埃米到米,跨越10个空间尺度;从微秒到一年,跨越10个时间尺度,打通尺度壁垒、整合多模态信息,全景式揭示基因表达、分子构象、细胞信号、组织代谢及功能网络的时空动态和内在联系,精准描绘生命活动基本原理和疾病发病机制的全景图,全面开拓成像组学新学科,为生物医学研究提供革命性的新工具、新技术、新方法,为阐明大脑认知的基本原理,了解疾病发病的机制,为生命科学基础研究、现代农业、生物技术、公共生物安全、人口与健康等生命健康各领域提供科学支撑。项目法人单位为北京大学,占地面积100亩,建筑面积7.2万平方米,总投资17.2亿元,2020年3月开工建设,建设周期4.5年,预计2024年建成投入使用。地球系统数值模拟装置地球系统数值模拟装置,建成我国首个具有自主知识产权,以地球系统各圈层数值模拟软件为核心,软、硬件指标相适应,规模及综合技术水平位于世界前列的专用地球系统数值模拟装置。装置中文名为“寰”,英文名为“EarthLab”。“寰”将研究地球系统的大气圈、水圈、冰冻圈、岩石圈、生物圈的物理、化学、生物过程及其相互作用,探究上述相互作用对地球系统整体和我国区域环境的影响 融合模拟与观测数据提高预测的准确性,提高气候变化大气污染、暴雨等预测水平;为国内外地球系统领域科研人员提供综合的实验研究平台,促使地学领域实现跨越式发展,为我国防灾减灾、应对气候变化、大气环境治理等重大问题提供科学支撑。项目法人单位为中科院大气物理研究所,占地面积40亩,建筑面积2.4万平方米,总投资12.6亿元,2018年9月开工建设,建设周期4年,2022年正式投入使用。空间环境地基综合监测网(子午工程二期)空间环境地基综合监测网(子午工程二期),利用沿东经100度、120度、北纬40度、30度附近的31个综合性观测台站,形成覆盖中国的“两纵两横”地基监测网,综合采用无线电、地磁、光学和探空火箭等多种探测手段,对我国区域的电离层、中高层大气、地磁形成网络化的监测能力(“三网”);在极区高纬、北方中纬、海南低纬、青藏高原4个重点区域建设国际先进的大型监测设备,开展对空间环境的精细“显微”探测(“四聚焦”);建设一系列先进的太阳-行星际监测设备,形成对日地空间全链条的监测能力(“一链”)。项目法人单位为中科院国家空间科学中心,占地面积10亩,建筑面积1.2万平方米,总投资2.1亿元,2019年7月开工建设,建设周期4年,2023年建成投入使用。ACCSI2023大型科学仪器装置发展论坛2023年5月19日下午,借助2023第十六届中国科学仪器发展年会(ACCSI 2023)契机,在北京市怀柔区人民政府、北京怀柔科学城管委会的指导下,仪器信息网携手北京怀柔科学城建设发展有限公司、北京怀柔仪器和传感器有限公司组织大型科学仪器装置发展论坛,将着重研讨以下内容:——科学设施平台的模块化服务能力、对产业的支撑能力,以及平台服务能力与产业需求之间的响应关系;——科学设施建设、升级过程中科学仪器的需求、技术瓶颈的攻关以及关键设备的研制;——重大科研成果的产出以及高价值知识产权的创造、运用与保护;——科学设施平台的开放共享、交流合作以及创新生态环境的营造。欢迎仪器企业、创新主体、科技服务机构以及科研院所等人员莅临,论坛现场报名大科学装置参观学习活动,近距离感受高能同步辐射光源、综合极端条件实验装置、多模态跨尺度生物医学成像设施等“国之重器”的魅力。一、时间地点2023年5月19日(星期五)13:30-17:00北京雁栖湖国际会展中心 大宴会厅B二、组织机构指导单位:北京市怀柔区人民政府、北京怀柔科学城管委会主办单位:仪器信息网(instrument.com.cn)承办单位:北京怀柔科学城建设发展有限公司、北京怀柔仪器和传感器有限公司三、会议日程(以会议召开当天为准)大型科学仪器装置发展论坛13:30-13:40 (一)领导致辞丁明达 北京怀柔科学城党工委委员,怀柔科学城管委会副主任,怀柔区人民政府副区长(兼)13:40-14:00 (二)推介解读北京怀柔综合性国家科学中心科学设施平台建设进展及开放运行机制探索——杨昊天 北京怀柔区政协副主席,怀柔科学城管委会设施平台处处长14:00-16:00 (三)主旨演讲14:00-14:301.综合极端条件实验装置建设与科研仪器研制进展——程金光 中国科学院物理研究所副所长,研究员14:30-15:002.公里级大气环境预报溯源系统及碳反演应用——王自发 中国科学院大气物理研究所研究员,地球系统数值模拟装置区域高精度环境模拟系统组负责人15:00-15:303.高能同步辐射光源的应用和发展——董宇辉 中国科学院高能物理研究所副所长,研究员,高能同步辐射光源工程常务副总指挥15:30-16:004.空天极限力学大型科研设施发展与需求——黄河激 中国科学院力学研究所副所长,研究员16:00-17:00(四)自由交流四、联系方式联系人:高老师手机:15574817041邮箱:gaolj@instrument.com.cn 关于ACCSI 2023为促进中国科学仪器行业健康快速发展,搭建科学仪器行业“政、产、学、研、用、资、媒”等各方有效交流平台,助推北京市“两区”建设,服务首都科技创新,“2023第十六届中国科学仪器发展年会(ACCSI2023)”将于2023年5月17-19日在北京雁栖湖国际会展中心召开。ACCSI2023以“创新发展 产业互联”为主题,由仪器信息网(instrument.com.cn)主办,中国仪器仪表学会分析仪器分会、南京市产品质量监督检验院、我要测网(woyaoce.cn)、北京怀柔仪器和传感器有限公司等单位协办,中国仪器仪表行业协会、中国仪器仪表学会等单位支持。官网链接:https://accsi.instrument.com.cn/ 联系方式:报告及参会报名:010-51654077-8229 13671073756 杜女士赞助及媒体合作:010-51654077-8015 13552834693魏先生微信添加accsi1或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。
  • 国内首个“强光磁试验装置”启动建设
    作者:王敏 来源:中国科学报记者从安徽大学获悉,“强光磁试验装置”项目日前正式启动建设,将建成为国内首个集成自由电子激光与强磁场、低温的科学装置。国内首个“强光磁试验装置”“强光磁集成实验设施”是由安徽大学、中科院合肥物质科学研究院、中国科学技术大学联合向国家发改委申报的国家十四五重大科技基础设施项目。“强光磁试验装置”作为先期启动项目,以安徽大学材料科学与工程学科为核心,组建了由校长匡光力领衔的24位高层次人才的研究团队和设施建设项目组,完成了项目建设方案和空间布局方案。专家组认为,“强光磁试验装置”的建设在国内首次将自由电子激光与强磁场、低温进行集成,为研究材料的微观物性、超快动力学过程等提供了新的关键研究手段。“强光磁试验装置”由红外自由电子激光系统和五个实验站组成,其中集成了强激光、强磁场、低温等多种调控物质特性的技术。不仅能够支持材料科学前沿研究,也能支持化学、生命科学等其它学科的研究,还具有直接支持集成电路产业、新材料产业技术研发的潜力。据悉,“强光磁试验装置”将以四年顺利完成为目标。同时,科学安排进度,能够先行完成的模块,抓紧时间建设完工,尽快投入使用,保证建成一个使用一个,争取早出效益。目前,安徽大学已经开始进行场地改造、自由电子激光装置工程设计、各实验工作站工程设计。描绘物质“全形态图谱”“强光磁试验装置”的主要特色是,红外自由电子激光和强磁场、极低温等条件联合作用,全方位表征材料的微观物性和超快动力学过程。举个最通俗的例子,水是每个人每天都要遇到的一种物质,在高温环境中能看到水变成蒸汽,此时水就以气态形式存在;常温下,水以液态形式存在;零度以下,水会以冰即固态形式存在。人们可以随着环境温度的变化,看到水会呈现不同形态。实际上,如果改变气压条件,水会呈现更加复杂的形态。同理在强磁场条件,也会观察到水的另外形态。这些丰富多彩的形态,真正完整构成了水的“全形态图谱”。观测到的形态越全面,对于水的本质特点就掌握的越透彻,也能更好地利用水。从另一个思路看,可以设置不同的条件,来呈现人们希望得到的水的特定形态,这在科学上就称为“调控”。实际科学研究对象丰富且复杂,强磁场和低温集成的环境,是极为有力的调控手段,因而受到了高度重视。自由电子激光相当于焦距连续可调的聚光灯和摄像机的组合,根据需要,选择恰当的焦距组合,就能观察到人们所想看到的非常隐蔽微小的细节或者抓住转瞬即逝的点滴。比如一个水珠从天而降、落到桌面、撞击桌面,人们可以仔细地以百万分之一秒每帧的方式来观测,从极为平常的水滴下落过程中,进一步发现水的特殊形态和动力学规律。 现在,“强光磁试验装置”既提供了环境,又提供了观察工具,并且把它们高度集成在一起,能够发现很多未知。
  • GB/T 14678标准起草当时国内外的实验室仪器条件如何?现在的仪器是如何替代标准原有的装置,优势
    GB/T14678-1993《空气质量 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法 》标准解读标准起草当时国内外的实验室仪器条件GBT14678是一个93年开始执行的标准,当时仪器条件比较落后,市面上还没有商品化的低温气体浓缩仪,采用相对简陋的装置进行低温富集,装置基本处于DIY状态(弹出标准中的实验装置图片)。该装置工作主要分为低温富集和高温脱附进样两个步骤,其中依靠液氧低温和填料捕集双重作用达到富集效果.脱附时将浓缩进样针扎入气相进样口,启动浓缩管升温,外接的惰性气体将浓缩管中的待测组分带入色谱进行定性定量分析。现在的仪器是如何替代标准原有的装置,优势在哪经过多年的发展,现已有商品化的大气浓缩仪替代原来的浓缩装置。大气预浓缩仪将抽气泵、流量计、浓缩管、液氮控制阀、高低温控温装置及进样模块集成于一套系统内,产品性能及操作便利性有了极大的提升,主要表现在:(1)浓缩管在富集与脱附过程中无需移动,高低温控制无缝切换,有利于样品的富集与脱附(弹出预浓缩的冷阱系统图片,可以问研发小朱要);(2)采用了多级冷阱串联,不仅有效排除H2O、CO、CO2等组分的干扰且待测组分可在无填料的捕集阱中被富集并快速脱附,得到更优异的峰形。(3)采用了电子流量控制,有效提高样品加入体积精度;(4)实现了内标气体的自动加入,提高实验的准确性;(5)实现了与色谱的联动触发及反控,保证实验的一致性;(6)联用自动进样器,可实现无人值守自动运行(弹出预浓缩自动进样器图片)。泰通产品秀全自动热解析仪24位全自动热解析仪50位全自动热解析仪自动二次热解析仪全自动热解吸仪是一款自带电子冷阱的,气路采用电动六通阀、八通阀和电磁阀相结合,可以编程自动完成吸附管的一次解吸冷阱富集、二次解吸、进样和反吹四个过程,冷阱温度、一次解吸温度、二次解吸温度和管路加热温度可以独立设置,并且在进样时输出同步信号,可以同时启动色谱和工作站。全自动热解析仪充分体现了先进的前处理技术和强大的实力,作为先进的热解析仪配备有:二级解析功能,除湿功能自动检漏,电子压力控制等功能,瞬间解析的技术,半导体冷凝至-40℃ ,所有的技术有效保护GC ,极大的提高解析效率。采用先进惰性加热传输管线设计,不占用色谱进样口。用户在需要时自行改变进样方式。24/48/50/100位样品位,转盘式自动进样设计,让您轻松应对挥发性有机物(VOCs )的检测。全自动吹扫捕集仪AutoTP-93全自动吹扫捕集仪是一款带电子冷阱的93位40mlVOA样品瓶全自动吹扫捕集仪。采用高精度注射泵精确取样,用氦气/氮气作为吹扫气,将吹扫管通入样品溶液鼓泡;在持续的气流吹扫下,样品中的挥发性组分随吹扫气逸出,并通过一个装有吸附剂的捕集装置进行浓缩;在一定的吹扫时间之后,关闭吹扫气,切换六通阀将捕集管接入GC的载气气路,同时快速加热捕集管使捕集的样品组分解吸后随载气进入GC进行分析。通过与GC或GC/MS的联用,可以广泛应用于环境分析,如饮用水或废水中的有机污染物分析,也可用于食品中挥发物(如气味成分)的分析等。全自动活化仪ATHH-12全自动活化仪是热解析(热脱附)仪的配套设备,用于吸附管在高温条件下通惰性气体吹扫,保护吸附管填料同时将吸附在填料上的挥发性有机物释放,得到本底干净的采样管,再去控制现场采样,保证实验数据的准确性。原理:在高温及一定的惰性气流下将吸附管内残留物吹扫出去,使吸附管获得重生,吸附管可以重复使用,节约成本。全自动顶空进样器全自动顶空进样器是气相色谱法中一种方便快捷的样品前处理方法,其原理是将待测样品置入一密闭的容器中,通过加热升温使挥发性组分从样品基体中挥发出来,在气液(或气固)两相中达到平衡,直接抽取顶部气体进行色谱分析,从而检验样品中挥发性组分的成分和含量。使用顶空进样方法可以免除冗长繁琐的样品前处理过程,避免有机溶剂对分析造成的干扰、减少对色谱柱及进样口的污染。全自动气体进样器GS系列气体自动进样器是用于气体样品直接进样的装置。通过配备多个样品选择阀、自动取样系统、多路进样阀及定量环以实现样品的取样和进样功能。搭配气相色谱或其他检测设备广泛应用于气态样品的直接进样分析。大气预浓缩系统大气预浓缩系统可对苏玛罐、采样袋、采样瓶等多种采样装置中空气样品进样并低温浓缩聚集,能有效对空气样品中极性(醛、醇、酯、酮、醚)和非极性、活性硫、氮化合物等有机化合物浓缩分析,并有效去除气体样品中的H2O、02、CO2、N2等气体。自动制标仪将活化好的采样管插入制备孔,使用微量进样针精确注入一定体积的标准溶液。一键启动制备程序自动通入恒定流速的惰性气体,模拟大气采样过程,标准溶液中的待测组份吸附在采样管的填料中, 而标准溶液中的溶剂被放空,完成制备过程。ZB-1自动制标仪的流量和制备时间可以设置,制备结束后会自动关闭载气。采样管
  • 精确操控离子反应质谱科学装置研发启动
    国家重大科学仪器设备开发专项 “精确操控离子反应质谱科学装置的研制及应用研究”启动   由国家质检总局组织实施的国家重大科学仪器设备开发专项——“精确操控离子反应质谱科学装置的研制及应用研究”的启动会,在项目牵头单位中国计量科学研究院召开。会议由国家质检总局科技司主持,科技部科研条件与财务司吴学梯副司长,国家质检总局科技司侯玲林副司长,国家自然科学基金委分析化学学科项目主任庄乾坤教授,中国分析测试学会张渝英秘书长,中国计量科学研究院副院长段宇宁、宋淑英等项目承担单位的领导,以及中科院大连化学物理研究所张玉奎院士、杨学明院士等相关专家出席。    会议宣布成立项目监理组、项目总体组、技术专家委员会、用户委员会和项目管理办公室。科技部条财司吴学梯副司长作了重要讲话。他指出,科学仪器设备是光学、机械、电子、计算机、物理、化学、生物等学科领域各种高新技术的集成和结晶,在涉及重大科技前沿、国防等敏感领域的研究中,研发若干具有国际领先水平的重大科学仪器设备,将有效支撑我国开展世界一流科学研究、带动我国高新技术产业的发展。他强调,科学仪器设备的自主研发水平往往成为衡量一个国家创新能力的重要标志之一。“十二五”期间,我国把引领和支撑科技发展的科学仪器设备自主创新摆在优先发展位置,这对于增强我国科技实力、引领国民经济又好又快发展具有非常深远的意义。   科技部条财司吴学梯副司长作重要讲话   项目负责人方向研究员汇报了项目整体情况,各任务负责人汇报了任务实施方案。与会专家认真听取、各抒己见,充分表达了对项目的支持,并提出了具体的要求和建议,希望项目组不仅要克服技术难题,也要努力将各任务之间的组织协调工作做好,以确保项目的顺利实施。项目总体组组长、中国计量科学研究院段宇宁副院长表示,中国计量院将全力以赴支持项目的实施。   该项目自2011年10月开始实施,将于2016年10月结束。任务承担单位包括:中国计量科学研究院、北京理工大学、清华大学、北京蛋白质组研究中心、中国科学院大连化学物理研究所、北京生命科学研究院。   该项目着重针对生物、材料和先进能源技术等重要领域的蛋白精确分析等前沿技术、分子反应动力学等基础问题,通过研发新技术、新方法,实现离子精确操控及质谱分析,为上述领域的研发提供高性能、高效率、具有创新操作模式的强大工具。   本项目将研制3套以精确操控离子反应系统为核心的科研装置,包括:离子反应超高分辨质谱装置、碰撞反应飞行时间离子谱装置和离子反应理论研究与实验装置。并在此新装置上分别开展离子束反应与控制、蛋白磷酸化筛选与鉴定、碰撞反应飞行时间离子谱、蛋白分析中的ETD反应及离子碎裂新方法、高纯有机试剂中痕量杂质精确分析等应用研究。   据项目负责人方向研究员介绍,通过该项目的实施,在仪器研制方面,将掌握精确离子操控核心技术和一系列关键技术,形成一整套具有自主知识产权的机械、电子、光学、软件等关键部件和高性能的整机 在应用研究方面,有望突破生物、材料和先进能源技术等重点领域尚未解决的难题,建立我国尖端科学实验装置研发基地,形成高端科学装备研制技术团队和前沿技术科学家紧密合作的研发联盟,为我国高端质谱仪器创新发展进一步奠定重要基础。   国家重大科学仪器设备专项项目是为了贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,由财政部、科技部共同设立的旨在支持重大科学仪器设备开发,以提高我国科学仪器设备的自主创新能力和自我装备水平,支撑科技创新,服务经济建设而设立的专项支持资金。今年为首批资助,采取限项推荐方式。今年全国53个项目获得资助,中国计量科学研究院“宽量限超高精密电流测量仪”和“精确操控离子反应质谱科学装置的研制及应用研究”2个项目获得资助。
  • 我国首个超导托卡马克实验装置正式退役
    中国科学院等离子体物理研究所5月7日宣布,该所通过国际合作研制成功的中国首个超导托卡马克实验装置“合肥超环”(HT-7)正式退役。   据悉,自1990年初苏联库尔恰托夫原子能研究所赠送T-7托卡马克装置给中国后,时任等离子体所所长霍裕平院士集中全所人力、财力投入装置建设,对T-7及其低温系统进行了根本性的改造。1994年,更名为“HT-7”的大科学装置正式建成,首次工程成功调试并获得等离子体。其成功研制,使中国成为继俄、法、日之后第四个拥有超导托卡马克装置的国家。   建成后的HT-7是一个可产生长脉冲高温等离子体的中型聚变研究装置。其主要目标是获得并研究长脉冲准稳态高温等离子体,检验和发展与其相关的工程技术,为未来稳态先进托卡马克聚变堆提供工程技术和物理基础。   HT-7运行后,队伍中的主要骨干也成为建设世界首个全超导托卡马克核聚变实验装置(EAST)的各方面负责人,直接参与国际热核聚变实验堆(ITER)计划,为等离子体所及中国聚变研究事业的持续发展奠定了坚实的人才基础。2012年10月12日,HT-7进行了最后一次放电实验,在“职业生涯”上画了一个完美句号。   在服役的近20年中,HT-7在推动聚变研究、人才培养等方面取得了诸多成就,已成为中国聚变事业的重要里程碑。日前,在历经退役必要性论证、退役实施方案论证、环评验收与设备监测等工作后,HT-7正式被中国科学院和环保部批准退役,成为我国首个获批退役的大科学工程装置。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制