当前位置: 仪器信息网 > 行业主题 > >

高频率电仪

仪器信息网高频率电仪专题为您提供2024年最新高频率电仪价格报价、厂家品牌的相关信息, 包括高频率电仪参数、型号等,不管是国产,还是进口品牌的高频率电仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高频率电仪相关的耗材配件、试剂标物,还有高频率电仪相关的最新资讯、资料,以及高频率电仪相关的解决方案。

高频率电仪相关的仪器

  • 高频率响应微型位移传感器YK174-0321TPDF下载★量程:4-Inch (102-mm)*大行程★大张力移动钢索★高频率响应★重量:85g★应用:碰撞、冲击试验和高加速度实验
    留言咨询
  • Tangor, Amplitude Systems, 飞秒激光器, 超快激光器, 飞秒振荡器, 超快振荡器, 超快飞秒激光器, 超快飞秒振荡器, 光纤激光器, 高功率, 高平均功率, 高能量, 高脉冲能量, 高频率, 高重复频率,Mango,光参量放大器,光学参量放大器,OPA, 工业设计, 紧凑型, 高可靠性, 高稳定性, 眼科, 微加工, 微细加工, 精细加工,光谱,太赫兹,THz,拉曼光谱,相干,拉曼散射Satsuma— 全能型多功能紧凑型飞秒激光器 Satsuma系列飞秒激光器,是市场上风冷型最紧凑的全能型激光器。Satsuma可以实现超高重复频率及高单脉冲能量 (高达150 μJ),是最具性价比的选择。作为全能型多功能飞秒激光器,Satsuma具有FemtoBurst&trade 超级脉冲串功能(可选择脉冲数量、频率,脉冲时间间隔可在25到100ns之间设定);可根据需要触发选择独立的脉冲;超级同步控制 (SuperSync Control) 可以在搭配高速扫描系统时实现更精确的同步。Satsuma飞秒激光器可选配绿光、紫外(UV)和深紫外(deep UV)输出。全球安装量超过1,500台,Satsuma激光产品系列是最畅销的。其易于集成、无与伦比的加工质量,收到了用户的高度赞赏。Satsuma是具有国际公认的可靠性和稳定性的Amplitude飞秒激光产品系列的一部分。其超短的脉冲宽度可以实现市场上最低的热效应和最好的烧蚀效率,达到无与伦比的加工质量。应 用工 业 微电子 微纳加工 平板显示屏修复医 疗 眼科 医疗器械制造科 研 多光子成像 光遗传学 超快光谱 主要特点 风冷功率高达20 W FemtoBurst&trade 超级脉冲串模式 可按需求进行脉冲触发 - FemtoTrig&trade 功能 超级同步控制(SuperSync Control) 可选绿光、UV和DUV输出 工业设计,满足7×24小时应用主要规格规格表可点击放大选 配 倍频SHG/THG/FHG 光参量放大Mango OPA 非线性脉宽压缩Non Linear Compression 透明材料切割模块GLASS 同步功能Synchrolock 聚擘国际贸易 (上海) 有限公司聚 嵘 科 技 股 份 有 限 公 司聚擘国际贸易 (上海) 有限公司/聚嵘科技股份有限公司,专业从事半导体封装及测试、LED封装测试、太阳能、SMT、飞秒/皮秒/纳秒激光等定制设备/子系统的开发、销售及售后服务。公司总部位于上海,在深圳、北京、西安设有办事处。 公司在台北市设有专业的飞秒精密微纳加工实验室 — FemtoFocus,合作伙伴有法国Amplitude公司 、 比利时NextScan Technology公司 、 法国ALPhANOV光学与激光技术中心、比利时LASEA公司、法国NOVAE公司、德国Pulsar Photonics公司。实验室拥有专业的前沿激光微纳加工应用开发及技术支持团队,提供超短脉冲 (小于500fs) 和极短脉冲 (小于100fs) 激光技术相关测试及高速加工 (多光点、转镜) 等高度可扩充的高弹性集成方案。聚擘国际贸易 (上海) 有限公司聚嵘科技股份有限公司| 电子 | 半导体 | 飞秒激光 | 微加工 | 科研 |
    留言咨询
  • 该产品适用于国防、航空、航天、通讯、电子、汽车、家电、等行业。该类型设备用于发现早期故障,模拟实际工况考核和结构强度试验,产品应用范围广泛、适用面宽、试验效果显著、可靠。正弦波、调频、扫频、可程式、倍频、对数、最大加速度调幅时间控制全功能电脑控制简易定加速度/定振幅。型号HK-5000HZ主要功能:(半全)正弦波、调频振动、扫频振动、可程式振动、倍频振动、对数振动、定振幅定振幅±25%内、三轴X.Y.Z可各别单独振动、三轴连续振动:六种模式、随机振动:亦可(振动方向模式)(频率模式川(波形模式)测试台尺寸500×500mm(宽*深)可订做台体面积外形尺寸500×500×550mm(深x宽X高)频率范围0.5-600HZ控制方式全功能电脑振动方向上下/左右/前后振动方式六度空间一体机随机正弦]、(同一台面三轴(同时个别连续)振动]振动波形半波或全波最大试验负载100KG台面结构频率共振最好增加1倍稳定性台面特殊铝合金台面上通孔(以实体为主)a:有28个(10m)b:绑带通孔一-*24个c:夹具(具通孔一-24个量测试螺丝孔-----*4个(5mm)防磁漏地带面積(30cm):让磁漏减50-70%振幅0-5.0mm(可调)0-50kg(振幅:0-7/最大加速度:0-22g)0-100kg(振幅:0-5.0mm/最大加速度:0-20g)0-150kg(振幅:0-4mm最大加速度:0-15g)
    留言咨询
  • 1.产品概述:Keysight 53200 系列包括 53210A、53220A 和 53230A 等型号,是新一代 350MHz 射频 / 通用频率计数器 / 计时器,可选 6GHz 或 15GHz 输入。该系列具备强大的分辨功能,在一秒选通的基础上,单次频率分辨率高达 12 位 / 秒,其中 53230A 型号的单次时间间隔测量的分辨率达到 20ps。所有型号都提供了内置分析和图形显示功能,且配备直观的用户界面和大型彩色图形显示屏。多种连通性任由选择,包括 LXI-C / 以太网、USB、GPIB,部分型号还可选配电池,从而提高便携性并保持时基准确度 。仪器现在内置 BenchVue 软件许可证(BV0011B),使连接和控制仪器以及自动执行测试序列变得更加简单。2.设备应用:汽车电子:用于汽车电子系统的研发和测试,如汽车电子控制单元(ECU)、传通信领域:在无线通信系统的研发、生产和维护中,用于测量射频信号的频率、周期、脉冲宽度等参数,以确保通信信号的准确性和稳定性。例如,对基站发射机和接收机的射频信号进行监测和分析,保证通信质量。雷达系统:可精确测量雷达发射信号的频率和脉冲参数,帮助优化雷达系统的性能。同时,在雷达信号处理和目标检测算法的研究中,提供准确的时间和频率数据支持。电子电路设计与测试:在电子电路的设计验证和性能测试中,可测量时钟信号的频率和周期,以及数字电路中脉冲信号的各种参数,帮助工程师分析电路的工作状态和性能指标。科研实验:为高校和科研机构的物理、电子等科研实验提供高精度的频率和时间测量工具,满足各种复杂实验对精确测量的需求,如原子钟的频率校准、量子物理实验中的时间测量等。 3.设备特点高分辨率与高精度:具有高频率分辨率和高精度的测量能力,能满足对频率和时间参数精确测量的要求。例如,53230A 型号的 12 位 / 秒分辨率和 20ps 时间间隔分辨率,可准确捕捉细微的频率和时间变化。内置分析和图形显示功能:提供直方图、趋势图等图形显示功能,以及数据记录和统计分析功能,帮助用户更直观地了解测量数据的分布和变化趋势,提升测量和分析速度 346。多种测量功能:支持频率、频率比、周期、时间间隔、上升 / 下降时间、脉冲宽度、占空比、相位、累加等多种参数的测量,满足不同应用场景下的测量需求 346。连续无间隙测量:能够进行连续 / 无间隙测量,并在信号边沿上具有时间戳,适用于基本调制域分析,可捕捉到信号的瞬态变化和调制信息 135。宽频率范围:频率范围可达 350MHz,通过选件还可扩展至 6GHz 或 15GHz,适用于不同频率范围的信号测量 346。良好的连通性:标配 LXI-C / 以太网、USB 等接口,部分型号可选 GPIB 接口,方便与其他设备进行连接和数据传输,易于集成到自动化测试系统中 134。用户友好界面:配备直观的用户界面和大型彩色图形显示屏,操作方便,显示清晰,便于用户设置参数和查看测量结果 345。 4.部分设备参数 型号53210A53220A53230A类型1 通道;可选射频通道2 通用通道;可选射频通道2 通用通道;可选射频通道测量功能频率、频率比、周期、输入电压最大值 / 最小值 / 峰峰值频率、频率比、周期、时间间隔、上升 / 下降时间、信号周期、脉冲宽度、占空比、相位、累加、时间戳 /mda频率、频率比、周期、时间间隔、上升 / 下降时间、信号周期、脉冲宽度、占空比、相位、累加、时间戳 /mda频率范围(可选)直流至 350MHz直流至 350MHz直流至 350MHz(6 或 15GHz)频率分辨率10 位 / 秒12 位 / 秒12 位 / 秒时间间隔分辨率无100ps20ps连通性USB、LAN 和 GPIBUSB、LAN 和 GPIBUSB、LAN 和 GPIB
    留言咨询
  • 三频超声波清洗机是一种利用超声波技术进行清洗的设备,它以其高效、环保、非接触式的清洗特点,在实验室中得到了广泛的应用。实验室超声波清洗机的工作原理主要是基于超声波在清洗液体介质中传递时特有的“空化效应”物理作用。超声波发生器产生高于20KHz的超声波频率的大功率电能,这些电能经过超声波换能器的逆压电效应转换为大功率超声能,并传导到清洗介质中。超声波在清洗液中每秒数万次地负压膨大和正压强烈压缩,出无数“空穴”,形成高频率的微观冲击波。这些冲击波能够渗透到物体表面的微小缝隙和凹槽中,将污垢和杂质从物体表面剥离出来。适用于实验室的超声波频率,有常规的中低频28KHZ、40KHZ;高频:60KHZ、80KHZ、120KHZ、200KHZ等。云奕实验室超声波清洗机系列(28、40、68、80、120、132、175、200KHz多频可选)三频超声波清洗机规格参数实验室超声波清洗机适用于多种物品的清洗,包括但不限于:实验室中的各类仪器,如显微镜镜头、光谱仪等。实验室中常用的玻璃试管、烧杯等器皿。医院手术室、内镜诊室等科室的手术器械、内窥镜等器械。牙科器具等需要高精度清洗的物品。实验室超声波清洗机,云奕YL系列包括有低频、高频、双频、三频、多频超声波清洗机设备选择,满足实验室多个应用。三频超声波清洗机通常具有三种超声清洗频率(如40KHz、80KHz、120KHz),可分别组合,实现一机单频、一机双频、一机三频的清洗方式,以满足不同清洗需求。特点与优势清洗效果好:超声波清洗机具有清洗洁净度高、清洗速度快等特点,特别是对盲孔和各种几何状物体,有别其他清洗手段所无法达到的洗净效果。多频清洗:三频超声波清洗机通常具有三种超声清洗频率(如40KHz、80KHz、120KHz),可分别组合,实现一机单频、一机双频、一机三频的清洗方式,以满足不同清洗需求。保护性强:为避免器械损伤,采用隐藏式加热方式,实现自动加热,并可对清洗温度进行调节。此外,超声功率可通过触摸屏进行实时调整,以适应不同清洗需求。应用广泛:三频超声波清洗机广泛应用于表面喷涂处理行业、机械行业、电子行业、半导体行业等多个领域,能够清洗各种材质和形状的物体。售后服务自下单日起,质保期一年,终身维护。
    留言咨询
  • 凯尔测控 高频疲劳试验机 M-50产品特点:◆ 以小型电磁式电机为作动核心的新一代疲劳试验系统;◆ 满足材料力学测试对于生物材料力学实验高精度、高频率、高稳定性、耐用性的严格要求;◆ 可选配扭转通道,实现多轴拉扭加载;◆ 可进行拉伸、压缩、弯曲、剪切、扭转(选配)、蠕变、松弛等测试;◆ 适用于测试金属材料、微电子材料、高分子材料和生物材料;◆ 多种夹具和附件可供选择。主要功能:&bull 拉伸、压缩、疲劳加载;&bull 纯扭、拉扭复合加载;&bull 可实现骨钉样品的旋入、旋出、拉拔力测试等适用材料:生物骨材料、生物软组织材料、高分子材料、金属薄片材料、陶瓷材料选配附件:水浴装置、非接触式视频引伸计、高温炉
    留言咨询
  • 电磁动态疲劳高频试验机 M-3000一、 微型电磁式动态力学试验系统1. 产品特点:新型小电磁力电机作动,输出平稳、响应快、无回隙、无滞回,拉压频率可达100Hz;电能直接转化成直线运动机械能而不需要任何中间机械传动装置;进口高精度载荷传感器、位移传感器;商业化的完全自主知识产权的控制器、驱动器、材料力学测试软件,可扩展性极强;选配扭转通道,实现多轴拉扭加载。2. 可实现功能:拉伸试验 、压缩试验、蠕变试验、松弛试验、疲劳试验。自定义试验:可自由搭配试验动作,满足特殊试验要求。配合附件,还可进行扭转试验、DMA试验、高低温湿度环境下试验、裂纹扩展试验等。3. 技术参数:二、 大型电磁式动态力学试验系统1.产品特点:新型电磁力电机作动,输出平稳、响应快、无回隙、无滞回,拉压频率可达100Hz;电能直接转化成直线运动机械能而不需要任何中间机械传动装置;进口高精度载荷传感器、位移传感器,自主研发电机质保10年;商业化的完全自主知识产权的控制器、驱动器,可扩展性极强;选配扭转通道,实现高频率、大载荷下多轴拉扭加载。2.可实现功能:拉伸试验 、压缩试验、蠕变试验、松弛试验、疲劳试验。自定义试验:可自由搭配试验动作,满足特殊试验要求。配合附件,还可进行扭转试验、DMA试验、高低温湿度环境下试验、裂纹扩展试验等。
    留言咨询
  • 法国麦特韦伯超高频动态热机械分析仪产品描述法国Metravib公司的VHF104是一个创新的超高频动态热机械分析仪。它的测试原理和测试方法完全不同于传统DMA系列产品的方式。运用声学的原理对材料施加一个正弦激励,材料末端用接收装置接收通过材料后的信号,他们之间的传递函数就直接计算出材料的粘弹性,这种直接测试的方法将测试频率范围覆盖到高达10KHz。区别于传统的测试方式,这种新型的测试方式,使得测试只耗时几分钟,而传统方法使用低频测试几个温度阶段,需要几个小时的测试并通过WLF法计算。因此超高频VHF104优化了实验室的生产率,可快速分析大量的配方材料,在满足工业的需求方面更胜一筹。1. 高频率覆盖范围:100Hz-10000Hz2. 完全颠覆性的测试原理和方法,对高频下材料的特性进行直接测试。3. 测试历时短,1次测试只需几分钟。测试效率高4. 高精度的加热器,高分辨率的传感器和接收器5. 高端的运算模型。 法国麦特韦伯超高频动态热机械分析仪主要应用1. 弹性体高频测试2. 多孔材料的声学属性研究 法国麦特韦伯超高频动态热机械分析仪技术参数特性名称参数机械特性力值范围(N)+/-150N位移范围(μm)+/-10000μm 应变范围(%)10-6~30%频率范围(Hz)100~10000Hz形变模式可做拉伸压缩、环形剪切模式 标准配重(g)5、10、20、40、80、200热特性温度范围 -50℃~110℃变温速率(℃/min)最小加热速率:0.1℃/min最大加热速率:10 ℃/min最小冷却速率:0.1℃/min最大冷却速率:10 ℃/min控温稳定性(+/-)0.1℃
    留言咨询
  • 试验机用于探测疲劳寿命高频疲劳试验机Vibrophores测试材料和部件的疲劳寿命和疲劳极限等,例如:按照DIN 50100(S-N曲线),在拉伸、压缩脉冲和交变载荷下的疲劳试验,典型应用:CT试样和SEB试样预制裂纹;部件的疲劳和寿命测试(如螺栓和弹簧);对产品或部件加载正弦波载荷进行质量控制和使用寿命测试。可选用5个Vibrophore高频疲劳试验机,针对各种试验载荷:- 5、10 kN-20、30 kN-50、100、150、200、250 kN-300、400 kN-500、550 kN-1000 kN。高频试验(最高频率300 Hz)使得缩短试验时间,提高测试效率;Vibrophore工作原理为正弦波共振,在低量输入条件下,共振循环的固有谐振频率产生高载荷和位移振幅(仅为伺服液压试验机的2%能耗)testXpert? II智能测试软件专门设计了针对高频疲劳试验测试软件,操作人员仅需简单培训即可操作;安装也是非常容易 - Vibrophore无需额外的元件,比如液压动力源或冷却装置,基本没有磨损,几乎不需要维护。
    留言咨询
  • 产品概述本系列产品是26G高频雷达物位计,输出4-20mA模拟信号,测量距离可达70米。天线被进一步优化处理、新型快速的微型处理器可以对信号进行更高速率的分析和处理,使仪表能够在反应釜、固体料仓等复杂的测量环境有效工作。产品原理雷达物位计天线发射较窄的微波脉冲,经天线向下传输,微波接触到被测介质表面后被反射回来再次被天线系统接收和处理,传输信号经电子信息处理单元自动转换成物位信号(因为微波传输速度极快,电磁信号到达目标并反射回接收器这一过程几乎是瞬间完成的)。26G高频雷达物位计特点天线尺寸小,便于安装;非接触性雷达,无磨损,不产生污染腐蚀、泡沫、水蒸气、粉尘、压力、温度等对雷达的影响非常微弱严重粉尘环境对雷达测量影响微弱波长更短,对倾斜的固体的表面有更好的反射能力波束小、能力集中,增强了回收能力并有利于减少干扰测量盲区更小,拥有良好的小型罐测量能力高信噪比,波动的工作环境也能取得良好的测量效果高频率,对固体和低介电常数介质拥有较佳的测量效果
    留言咨询
  • 筛分仪是现代化实验室中样品前处理的必备仪器设备,可 以全面替代传统人工使用分析筛筛分样品的工作方式,提高实验室效率。被广泛应用于土壤、环境、制药、冶金、粮 食、化工、材料等行业的实验室中,常用于粉末、小块物、松 散物料、悬浮物的粒径确定、分离和分级。 之恒仪器HS100高频振动筛分仪以高效率和广泛性作为 设计的核心理念: 可以适配直径从100mm、150mm到203mm等不同直径 的分析筛,实验室可以根据筛分样品的具体需求灵活选用 分析筛,更大直径提供更高效率,更小直径避免小样品量 的样品损失。 通过高频电磁振动实现实验样品不同粒度的快速分离。不 锈钢、尼龙两种不同材质的分析筛,可以适应多种不同样 品的特性。再配合9级的多粒度的筛网,以及干湿两用 HS100高频振动筛分仪通过电磁驱动振动平台 高频率振动,使样品在分析筛内部做三维立体抛 物运动,下落的样品均匀分布在筛网表面并通过 筛网的孔洞,实现不同粒度的样品分离。 一次过筛时可以安装多级不同粒度的分析筛,样 品初始状态投放于上层分析筛中,在筛分平台 的振动下,逐级下落到不同目数的分析筛中, 细的样品回落到底部的收集盘中。 的巧妙设计,使其可以轻松适配于不同使用场景的应用。在实现实验样品快速过筛的同时,进一步 提高了应用场景的广泛性,降低了实验室成本。
    留言咨询
  • 高频介电常数测试仪10K-70MHZ液体置换方法——当浸泡介质为一种液体,同时没有使用保护时,应平行板系统结构,以使得绝缘高电位板可以在两个平行低电位或接地板之间平行和等距离进行固定,其中接地板用试验池的相对内壁设计成容纳液体。该结构使得电极系统基本为自我屏蔽,但是通常要求双份试验样本。液体的精确温度测量必须作出规定(9,10)。试验池应为镀黄铜和金结构。高电位电极应可以移动来进行清洗。面必须接近为光学平面,同时尽可能平行。在≤1MHz频率下测量用合适液体池见试验方法D1531的图4所示。该试验池的尺寸变化是有必要的,以提供用于不同厚度或尺寸的薄板样本测试,但是这种变化应不能让充满标准液体的试验池电容降低到小于100pF.。在1~约50MHz频率下进行测量时,试验池尺寸必须大大地减小,同时导线必须尽可能短且直。当在50MHz频率下进行测量时,带液体的试验池电容应不超过30或40pF。受保护平行板电极优点是单个样本可以进行*准确地测量。另外液体电容率的先前知识不作要求,因此其可以直接测量得出(11)。如果试验池结构带一个测微计电极,厚度差异很大的样本可以进行*准确地测量,因为电极可以调节至某一只比样本厚度稍微大一点的间距。如果液体电容率接近样本电容率,样本厚度测定误差影响可以降至小。在测量极其薄的膜层时,使用一种接近匹配液体和一种微米试验池,则将允许获得很高的准确度。高频介电常数测试仪10K-70MHZ两终端和三终端测量——两终端和三终端测量选择通常是在精度和便利性之间作出一个选择。在电介质样本上使用一个保护电极时,则几乎可排除边缘和接地电容的影响,如6.2的解释。规定采用一个保护终端,则可排除电路元件引入的一些误差。在另一方面,补充的电流元件和护罩通常要求提供相当多的保护终端到测量设备上,这可能增加好几倍的调节次数来获得要求的后结果。电阻比值臂电容桥用保护电路很少被用于1MHz以上的频率。电导比值臂桥提供了一个保护终端,而不要求额外的电路或调节。平行T形网络和共振电路不提供保护电路。在偏转方法中,可以仅仅通过额外护罩来提供一个保护。一个两终端测微计电极系统的使用提供了许多三终端测量的优点,即几乎排除了边缘和接地电容的影响,但是可能增加观测或平衡调节的次数。其使用也可以排除在较高频率下连接导线的串联电感和电阻导致的误差,其可以在整个频率范围内使用,直至几百兆赫兹。当使用一个保护时,存在耗散因子测量值将小于真实值的可能性。这可能是由于在测量电路保护点和保护电极之间的任何点位置的保护电路的电阻导致的。这还可能来自高接触电阻,导线电阻,或者来自保护电极自身的高电阻。在场合,耗散因子将显示为负值。当没有保护的耗散因子高于由于表面泄漏导致的标准值时,该情况可能存在。电容耦合到测量电极以及电阻耦合连接到保护点的任何点可成为困难的来源。常见保护电阻产生一个与ChClRg成比例的等效负值耗散因子,其中Ch和Cl为电极保护电容,Rg为保护电阻(14)。8.4 液体置换方法——液体置换方法使用时可以采用三终端或自屏蔽两终端试验池。采用三终端试验池,可能直接测定所用液体的电容率。自屏蔽两终端试验池提供了三终端试验池的许多优点,即几乎排除了边缘和接地电容的影响,同时还可以与没有规定一个保护的测量电路一起使用。如果其配有一个完整的测微计电极,在较高频率下连接导线的串联电导电容的影响将可以排除。8.5 精度——8.1所列方法精密考虑了电容率测定精度为±1%,而耗散因子测定精度为±(5%+0.0005)。这些精度取决于至少三个因素:电容和耗散因子观测的精度,所用电极布置导致的这些参量的修正值的精度以及电极之间真空静电容计算的精度。在好的条件以及较低频率下,电容测量可具有±(0.1%+0.02pF)的精度,而耗散因子可具有±(2%+0.00005)的精度。在较高频率下,当电容达到±(0.5%+0.1pF),耗散因子达到±(2%+0.0002)时,这些极限值可能增大。配有一个保护电极的电介质样本测量只具有电容误差和电极之间真空静电容计算的误差。受保护电极和保护电极之间间隙太宽导致的误差将通常为几十个百分比,同时修正值可以计算为几个百分比。当平均厚度为2mm时,样本厚度测量误差可为几十个百分比,此时假设可以测量至±0.005mm。圆形样本直径可以测量至具有±0.1%的精度,但是输入作为平方值。将这些误差合并,电极之间真空静电容可以测量至具有±0.5%的精度。与电极之间静电容不同的是,采用测微计电极进行测量的带接触式电极的样本不需要进行修正,假如样本直径足够小于测微计电极直径的话。当两终端样本以任何其它方式进行测量时,边缘电容计算和接地电容测定将涉及相当大的误差,因为每一种误差都可能为2~40%的样本电容。采用目前的这些电容知识,在计算边缘电容时,可能的误差为10%,而在评估接地电容时,其可能的误差为25%。因此涉及的总误差范围可为几十分之一的1%到10%或者更大。然而,当没有电极接地时,接地电容误差降至小(6.1)。采用测微计电极,0.03阶的耗散因子可以测量精确到±0.0003的真实值,而0.0002阶的耗散因子可以测量精确到±0.00005的真实值。耗散因子范围通常为0.0001到0.1,但是其也可以超过0.1。在10~20MHz的频率下,可以推测0.0002阶的耗散因子。从2到5的电容率值可以测定精确到±2%。该精度受到电极之间真空静电容计算要求测量精度以及测微计电极系统误差的限制。高频介电常数测试仪10K-70MHZ测微计电极——样本面积等于或小于电极面积是可以接受的,但是样本的任何部分应不能延伸越过电极边缘。样本边缘应是光滑的,且垂直于薄板平面,同时也应具有清晰的边界,以使得薄板平面尺寸能够测量精确到0.025mm。厚度≤0.025直到≥6mm的厚度值都是可以接受的,这取决于平行板电极系统的大可用板间距。样本应是扁平的,同时厚度尽可能均匀,且无空隙,外来物质夹杂物,皱纹或任何其它缺陷。已经发现采用一个几个厚度或很多厚度的组合,能更方便和准确得测试极其薄样本。每个样本的平均厚度应尽可能测量精确到±0.0025mm之内。在一些场合,特别是对于薄膜等材料,但通常不包括多孔材料,将通过由已知或测量的材料密度,样本面的面积以及在分析天平上通过精确测量获得的样本(或者组合样本,当在多个厚度薄板上进行测试时)质量来计算得出平均厚度。 液体置换——当浸泡介质为一种液体时,如果标准液体电容率在样本电容率的大约1%之内(见试验方法D1531),样本大于电极是可以接受的。另外,对于7.3.3所示类型的试验池,将通常要求双份样本,尽管可以在这类试验池中每次测试单个样本。在任何场合,样本厚度应不小于大约80%的电极间距,当被测材料耗散因子小于大约0.001时,这变得特别重要。清洗——因为已经发现在某些材料场合,当不带电极进行测试时,样本表面上存在的导电污染物可对结果产生无规律的影响,因此需要采用一种合适的溶剂或其它方式(按照材料规范所述)来清洗试验样本,同时允许在试验之前*干燥样本(15)。当将在空气中在低频率(60~10000Hz)下进行测试时,清洗变得特别重要,但是如在无线电频率下进行测量时,清洗变得不那么重要。在采用一种液体介质进行试验的场合,样本清洗也将降低污染浸泡介质的趋势。被测材料适用的清洗方法参阅ASTM标准或其它规定本试验的文件。在清洗之后,只用镊子转移样本,然后储存在单独的信封套中,以防止在试验之前被进一步污染。高频介电常数测试仪10K-70MHZ测微计电极——样本面积等于或小于电极面积是可以接受的,但是样本的任何部分应不能延伸越过电极边缘。样本边缘应是光滑的,且垂直于薄板平面,同时也应具有清晰的边界,以使得薄板平面尺寸能够测量精确到0.025mm。厚度≤0.025直到≥6mm的厚度值都是可以接受的,这取决于平行板电极系统的大可用板间距。样本应是扁平的,同时厚度尽可能均匀,且无空隙,外来物质夹杂物,皱纹或任何其它缺陷。已经发现采用一个几个厚度或很多厚度的组合,能更方便和准确得测试极其薄样本。每个样本的平均厚度应尽可能测量精确到±0.0025mm之内。在一些场合,特别是对于薄膜等材料,但通常不包括多孔材料,将通过由已知或测量的材料密度,样本面的面积以及在分析天平上通过精确测量获得的样本(或者组合样本,当在多个厚度薄板上进行测试时)质量来计算得出平均厚度。10.1.3 液体置换——当浸泡介质为一种液体时,如果标准液体电容率在样本电容率的大约1%之内(见试验方法D1531),样本大于电极是可以接受的。另外,对于7.3.3所示类型的试验池,将通常要求双份样本,尽管可以在这类试验池中每次测试单个样本。在任何场合,样本厚度应不小于大约80%的电极间距,当被测材料耗散因子小于大约0.001时,这变得特别重要。10.1.4 清洗——因为已经发现在某些材料场合,当不带电极进行测试时,样本表面上存在的导电污染物可对结果产生无规律的影响,因此需要采用一种合适的溶剂或其它方式(按照材料规范所述)来清洗试验样本,同时允许在试验之前*干燥样本(15)。当将在空气中在低频率(60~10000Hz)下进行测试时,清洗变得特别重要,但是如在无线电频率下进行测量时,清洗变得不那么重要。在采用一种液体介质进行试验的场合,样本清洗也将降低污染浸泡介质的趋势。被测材料适用的清洗方法参阅ASTM标准或其它规定本试验的文件。在清洗之后,只用镊子转移样本,然后储存在单独的信封套中,以防止在试验之前被进一步污染。高频介电常数测试仪10K-70MHZl 信号源: DDS数字合成信号,频率范围10KHZ-70MHZ;l 信号源频率精度3×10-5 ±1个字,6位有效数;l Q值测量范围:1~1000;l Q值量程分档:30、100、300、1000、自动换档或手动换档;l 电感测量范围:1nH~8.4H 自身残余电感和测试引线电感的自动扣除功能;l 电容直接测量范围:1pF~2.5uF;l 主电容调节范围:30~540pF;l 准确度 150pF以下±1pF;150pF以上±1%; l 合格指示预置功能范围:5~1000;l 环境温度:0℃~+40℃;l 消耗功率:约25W;电源:220V±22V,50Hz±2.5Hz;2) 测试夹具:S916(数显)介电常数εr和介质损耗因数tanδ测试装置:l 数显式微杆;l 平板电容器;l 极片尺寸: 38mm/50mm(二选一);l 极片间距可调范围:≥15mm;l 夹具插头间距:25mm±0.01mm;l 夹具损耗正切值≤4×10-4 (1MHz);
    留言咨询
  • 26G高频雷达物(液)位计 1、产品概述 BFRD61X系列传感器是26G高频雷达式物位测量仪表,测量距离可达70米。天线被进一步优化处理,新型的快速的DSP微处理器可以进行更高速率的信号分析处理,使得仪表可以用于:反应釜或固体料仓非常复杂的测量条件。 2、原理 雷达物位天线发射较窄的微波脉冲,这个脉冲以光速在空间传播,遇到被测介质表面,其部分能量被反射回来,被同一天线接收。发射脉冲与接收脉冲的时间间隔与天线到被测介质表面的距离成正比,从而计算出天线到被测介质表面的距离。 注:使用雷达物位计时,务必保证高料位不能进入测量盲区(图中D所示区域)。 3、高频26GHz特点 -波束角小(至5度),能量集中,具有更强抗干扰能力,大大提高了测量精度和可靠性;-天线尺寸小,便于安装和加装防尘罩等天线防护装置;-测量盲区更小,对于小罐测量也会取得良好的效果;-波长更短,对小颗粒物质的料位测量更适合。-采用了先进的微处理器和独特的回波处理技术,雷达物位计可以应用于各种复杂工况。-采用脉冲工作方式,雷达物位计发射功率极低,可安装于各种金属、非金属容器内,对人体及环境均无伤害。-几乎不受腐蚀、泡沫影响不受大气中水蒸气、温度和压力变化影响-严重粉尘环境不会影响电磁波工作-高信噪比,即使在波动的情况下也能获得更优的性能-高频率,是测量固体和低介电常数介质的选择4、性能 特 征:多种天线,抗结露、结晶、挂料、粉尘,波束集中。应 用:应用于固体,存储容器、过程容器或强粉尘,易结晶、结露场合量 程:70m(功率放大达后,测距到100m)测量精度:±0.1% ±0.2% ±0.3% ±0.5%天线材料:(1)不锈钢316L喇叭/PTFE振子(2)不锈钢316L/PTFE振子天线结构:(1)尖锥形振子,防凝结物差(2)锥面振子,防凝结物过程温度:(-40~60)°C过程压力:(-0.1~1.6)MPa频率范围:26GHz信号输出:(4~20)mA/HART电 源:两线制/四线制5、选型参数
    留言咨询
  • Paragon XHD是全球新近发布的一款超高频率、临床前研究应用的小动物超声影像系统。该影像系统采用全球先进的CMUT(Capacitive Micromachined Ultrasonic Transducers-电容式微机电超声换能器)半导体技术,集成多达60多项全球专利技术在美国硅谷研发而成。系统独具的微米级成像分辨率,为临床医生和科研工作者诊断小动物的浅表组织提供了清晰的二维图像和丰富灵敏的彩色多普勒血流图像;满足了他们对小动物皮下血流和脏器肿瘤状态观察的需求。该系统方便实时的无创操作为实验的反复验证、长期观察提供了极大的便利性。适用于大鼠、小鼠、兔子和鱼等多种实验动物的需求,应用于肿瘤,心血管,发育,药物研发,泌尿学,生殖医学等领域。产品特点产品规格
    留言咨询
  • 电磁动态疲劳高频试验机 M-12000高温力学疲劳试验是指高温下零部件因抵抗外力作用而产生各种变形和应力的能力,如强度、弹性、塑性等。在高温下,由于液相的出现,液相的性质、数量及分布状态,对材料的力学性能影响极大。其测试项目包括高温蠕变、持久强度、应力松弛、高温短时拉伸试验。高温力学疲劳试验机,可根据客户需求进行附件的定制和选配,温度范围为室温-1400°C,采用特殊设计的加热方式,加热速率高,腔体温度均匀,有效降低热损,完全可以实现对材料高温环境中力学性能的测试。大型电磁式动态力学试验系统,是以大型电磁式电机为作动核心的新一代疲劳试验系统,具体特点如下:◆ 直接驱动式的电磁式电机运行稳定,重复性高,可以确保对于力和位移的精确控制;◆ 内置的电磁式动作器具有低摩擦,高重复性等特点,系统响应高,高速度。◆ 可进行拉伸、压缩、弯曲、剪切、蠕变、松弛等测试;◆ 满足现代材料力学测试对于高精度、高频率、高稳定性、耐用性的严格要求;主要技术参数:◆ 载荷量程:0.01N-12000N◆ 位移量程:30mm◆ 循环加载频率:0.001-100Hz◆ 动态峰值载荷:1000N-12000N◆ 静态载荷:700N-8500N1、高分子板材的裂纹扩展试验:采用高分子平板试样专用夹具,结合视频引伸计实现裂纹扩展速率和路径的监测与记录2、DMA功能:可实时计算和记录“时间-损耗因子(tanδ)”、“时间-储能模量(E’)”、“时间-损耗模量(E’’)等,配合橡胶压缩生热夹具使用可另外记录“时间-表面温度(TON)”,“时间-内部温度(THBU)数据3、高低温湿度环境试验:采用EBM-01型高低温湿度环境箱,能提供-190℃低温至350℃高温、20~98%R.H的湿度环境,实现材料在低温、高温、湿度等复杂环境下的力学性能测试4、高速非接触式视频引伸计采集应变:采用高速DIC系统,有NDDS-02(二维)和NDDS-04(三维)两种型号可选,使用预喷散斑的试样,实现高频(15Hz以内疲劳试验)试验条件下的应变非接触采集,可选配DIC云图功能5、低速非接触式视频引伸计采集应变:非接触式视频引伸系统(选配),有NDDS-01和NDDS-03两种型号可选配,由CCD、镜头、光源、支架、软件等部分构成,采用图像处理的方式,捕捉样品表面的标记,实时的自动计算标记之间的像素变化,从而起到应变测量的效果6、恒温水浴环境试验:采用耐腐蚀恒温水浴槽(选配),实现恒温水浴(可承受多种类型的腐蚀液)环境下的力学性能测试7、椎体切除模型拉压夹具:适用于脊柱植入物压缩疲劳试验8、胫骨托疲劳夹具:适用于胫骨托疲劳试验9、四点弯夹具:适用于骨板四点弯曲和髓内钉四点弯曲试验10、牙种植体疲劳夹具:适用于牙种植体疲劳试验11、骨水泥四点弯水浴工装:适用于骨水泥四点弯曲试验12、股骨疲劳夹具:适用于带柄股骨部件疲劳试验13、股骨髁疲劳夹具:适用于股骨髁疲劳试验14、椎间融合器专用夹具:适用于椎间融合器疲劳试验15、涂层剪切夹具:适用于涂层剪切疲劳试验16、楔形夹具17、压缩夹具18、三点弯夹具19、平面拉伸夹具20、螺栓夹具21、硫化橡胶测温夹具22、细丝夹具23、高温夹具
    留言咨询
  • 高频疲劳试验机 M-200一、 微型电磁式动态力学试验系统1. 产品特点:新型小电磁力电机作动,输出平稳、响应快、无回隙、无滞回;电能直接转化成直线运动机械能而不需要任何中间机械传动装置;进口高精度载荷传感器、位移传感器;商业化的完全自主知识产权的控制器、驱动器,可扩展性极强;选配扭转通道,实现多轴拉扭加载。2. 可实现功能:拉伸试验 、压缩试验、蠕变试验、松弛试验、疲劳试验。自定义试验:可自由搭配试验动作,满足特殊试验要求。配合附件,还可进行扭转试验、DMA试验、高低温湿度环境下试验、裂纹扩展试验等。3. 技术参数:设备名称电磁式动态力学试验系统/外科植入物电磁式动态拉扭试验系统设备型号M-100TM-100轴向动态载荷峰值100N最大静态载荷50N试验载荷测量范围0.5%~100%FS试验载荷示值相对误差≤0.5%FS试验载荷分辨率显示值的±0.5%或满量程的±0.05%(取优)加载频率0-100Hz轴向电机轴向行程40mm位移分辨率0.1μm扭转扭转加载形式上置式(拉/扭一体)/动态扭矩峰值4Nm/最大静态载荷3Nm/扭矩测量范围0.5%~100%FS/扭矩示值相对误差≤0.5%FS/扭矩分辨率显示值的±0.5%或满量程的±0.05%(取优)/扭转加载频率0~1Hz(静态或低频动态)/转角测量范围无角度限制/最大转速30r/min/转角分辨率0.018°/试验机级别0.5级上下夹头偏心率≤3%测试空间(上下夹头空间)0-170mm净重约45kg外形尺寸约450×300×1300(mm)电气要求AC220V 300W 选配附件骨钉夹具、钳式夹具、压缩夹具等钳式夹具、压缩夹具等适用场合外科植入物静态/动态测试(如骨钉自攻试验、骨钉旋入旋出试验、小载荷静态试验、动态疲劳等)水凝胶等生物材料、软材料的动静态试验&a二、 电磁式动态力学试验系统1.产品特点:新型电磁力电机作动,输出平稳、响应快、无回隙、无滞回;电能直接转化成直线运动机械能而不需要任何中间机械传动装置;进口高精度载荷传感器、位移传感器,自主研发电机质保10年;商业化的完全自主知识产权的控制器、驱动器,可扩展性极强;选配扭转通道,实现高频率、大载荷下多轴拉扭加载。2.可实现功能:拉伸试验 、压缩试验、蠕变试验、松弛试验、疲劳试验。自定义试验:可自由搭配试验动作,满足特殊试验要求。配合附件,还可进行扭转试验、DMA试验、高低温湿度环境下试验、裂纹扩展试验等。
    留言咨询
  • CS-3000G 管式高频红外碳硫分析仪高频发生部分采用专用高频电容器件、无感电阻,确保高频长期工作的可靠性。采用专门为高频红外碳硫仪定制的电子管,确保高频能量的稳定。独特的高频模块化设计,有效防止炉子对检测电路系统和操作人员的高频辐射,经过专用设备检测,仪器完全达到安全操作标准。管式电阻炉部分采用可靠耐用的加热元件和燃烧管,能满足所用样品燃烧温度需求。采用碳化硅加热元件,通过控制加热功率延长元件的寿命,自动控制炉体外壳温度,需要约 20 分钟即可达到操作温度。最大加热电流钳位的电路设计确保加热功率安全可控。红外系统功能模块化。系统整体恒温控制。具有保护气功能 : 确保光源和吸收池之间气氛稳定、入射光强稳定。吸收池的定制功能 : 可根据不同的样品含量范围配置不同长度的吸收池,标准配置两个碳通道和一 个硫通道吸收池。红外光源 : 采用美国专业厂家,量身定制,保证无杂散光进入后续检测通道,确保了检测的稳定性和检测精度。光源内部的聚光装置,保证出射光的平行性 光源内部充保护气,保护光源稳定,防氧化。切光器 : 采用瑞士电机,30000 小时以上连续工作无故障。红外检测器 : 德国专业红外检测器。气路系统气路电磁阀、压力控制仪表采用日本进口产品,保证长期高频率的使用。气路流量控制采用德国进口比例阀,有效保证流量的长期稳定。氧化铜炉催化分析气进入 C 检测池前,经过氧化铜炉催化,将分析气中 CO 转化为 CO2,保证样品燃烧过程中所产生的CO 和 CO2 完全能够被检测到。将分析后的 SO2 转化为 SO3 后吸收,保证无污染排放。粉尘过滤采用德国进口外置金属粉尘过滤装置。每次分析两次自动清扫燃烧室和粉尘过滤器,并且自动吸尘,防止粉尘对分析过程的吸附效应。自动称样功能万分之一电子天平准确地称量,自动实现坩埚质量去皮,自动输入样品质量(也可选择人工输入)。仪器自检功能入口总氧压力、炉后分析气压以及动力气压自动监测并报警高频炉开关炉自动监测并报警高频炉内清扫装置复位自动监测并报警软件提供分步自检功能(红外信号的监测和调整,气路各阀的动作检查)仪器可以通过软件实现分段检漏软件系统可根据样品特点选择、设置分析参数。实用的节气功能。丰富的数据统计功能。可对不同释放曲线进行对比分析。对不同种类样品可以分别建立相应的校准方法及参数,并存储到数据库,分析方法数量不受限制。自诊断功能 : 可分步对仪器的各个控制环节进行检查,并且可以检验仪器的密封性。用户管理功能,用户分级管理,针对不同级别的用户设置不同的权限。日志记录功能,记录主要的日常事务,便于错误跟踪和日常管理。中英文应用软件,可提供英文报告输出。
    留言咨询
  • N2O、NH3、CH4、O3作为非二氧化碳(CO2)的温室气体,大气中CH4 和N2O浓度远小于CO2,但增温潜势分别是CO2的25倍和310倍, N2O参与大气中光化学反应,破坏臭氧层。大气中温室气体体积分数的年变化量都非常小,CH4年变化量约为14×10-9,N2O年变化量约为0.8×10-9。因此,需要高灵敏度的气体检测方法来实现对大气中温室气体的监测。氨气(NH3)作为大气中唯一的碱性气体,极易和大气中的SO2和NOX反应形成二次无机气溶胶,是很多城市大气颗粒物,也就是雾霾的主要元凶之一.所以,同时监测大气中NH3、O3、CO2、CH4、N2O、H2O浓度和涡度通量是生态系统痕量气体通量变化、大气污染物运移研究中的重要工具。Aerodyne 痕量温室气体高频在线监测仪可实现连续、高频(10Hz)在线测量NH3、O3、CO2、CH4、N2O、H2O等六种痕量气体,无干扰与化学反应的发生。指纹跃迁频率光谱的稳定性与唯一性保证测量的精度与极高的分辨率(ppt),可实现稳定的闭路涡度痕量温室气体通量数据的精确测量。测量原理 痕量温室气体高频在线监测仪采用可调谐红外激光直接吸收光谱(TILDAS)技术,在中红外波长段探测分子最显著的指纹跃迁频率。采用像散型多光程吸收池技术(获得专利)——其光路可达76m甚至更长(210m),进一步提高了灵敏度。直接吸收光谱法,可以实现痕量气体浓度的快速测量(1s),而且不需要复杂的校准步骤。此外,采用TILDAS技术,可不受其他分子的干扰,能够得到非常精准的检测,检测限达ppb级别,测量频率可达10Hz。六种痕量气体同步测量激光器L1测量:NH3、O3、CO2激光器L2测量:CH4、N2O、H2O激光器L1光谱图:激光器L2光谱图一天时间跨度六种痕量气体同步测量数据曲线图二天时间跨度六种痕量气体同步测量数据曲线图10Hz高频测量该系统同步监测六种痕量温室气体所采用的激光谱线图,采用双激光配置,10Hz高频数据采集。左下角中间数据框第二行代表数据采集时间(0.1s)及采样频率10Hz,检测限达ppt级六种痕量气体实时检测浓度观测窗口独特的粘性气体活性钝化功能对于粘性气体NH3的测量,AERODYNE具有针对性的前端进气处理装置,其上采用两种方法降低NH3的管路吸附以及由于去除过滤器造成的检测腔容易进入灰尘颗粒的问题和提高NH3通量测量的采样时间,高频率通量测量的数据损失降低:一、防吸附物质的添加,占据管路等的表面位置,使NH3不能粘附在表面上。二、活性钝化系统,可以使粘性气体NH3、HONO通量测量的时间更快,高频率通量测量的损失量降到更低。如图示在系统加入上述措施后粘性气体HONO与非粘性气体NO2同时测量状态下,气体浓度的采集时间是同步的。主机技术参数测量精度:L1激光器(1046cm-1(1σ))1s/100s:NH3 : 50ppt/15ppt;O3 : 400ppt/100ppt;CO2 : 0.25ppm/0.06ppm L2激光器(1275cm-1(1σ))1s/100s:N2O : 80ppt/20ppt;CH4 : 400ppt/100ppt;H2O :10ppm/5ppm 测量量程:NH3 : 0-30ppm O3 : 0-30ppm CO2 : 0-30%N2O : 0-30ppm CH4: 0-200ppm H2O : 0-30%响应时间:10Hz(1-10Hz可调)操作温度:10-35℃ 空气湿度:5%~95%采样速率:0-20slpm数据输出:RS232、USB和以太网外形尺寸:560mm×770mm×640mm(W×D×H)重量:75Kg电源要求:250-500W、120/240VAC、50/60Hz(不包含吸气泵)产地:美国AERODYNE公司应用案例泥炭地表层大气中氨交换测量-基于QCL激光器的涡流协方差方法和推理建模Surface–atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modelingUndine Z?ll, Christian Brümmer, Frederik Schrader, Christof Ammann, Andreas Ibrom, Christophe R. Flechard, David D. Nelson, Mark Zahniser, and Werner L. KutschAtmos. Chem. Phys., 16, 11283–11299, 2016doi:10.5194/acp-16-11283-2016© Author(s) 2016. CC Attribution 3.0 License.对比实测和建模的日平均NH3通量(上面板所示)和累积NH3通量(下面板所示)基于测量过程中每半小时的数据。竖线表示阶段II、III、IV的开始。集约放牧区氧化亚氮排放:量化和缓解Paddock Scale Nitrous Oxide Emissions from Intensively Grazed Pasture: Quantification and MitigationPresented by:Anne Roswitha WeckingMaster of Science, Leibniz University Hanover ,2021.不同时空尺度下土壤FN2O的驱动和过程。颜色区域(蓝色到橙色)表示当前的了解水平。框图(编号1-4)显示了测量土壤N2O交换常用的不同技术。2号框图和3号框图(粗体)区分了本论文使用的两种测量方法(chambers/EC)。联系我们获取文献全文
    留言咨询
  • 赛恩思高频红外碳硫分析仪HCS-801采用高频加热,红外检测原理,高频红外碳硫分析仪HCS-801结合全新的燃烧和全量程范围检测技术,高频红外碳硫分析仪HCS-801可以同时快速分析黑色金属、有色金属、合金材料、铁合金、岩矿、矿石土壤、钛白粉、新能源材料及其他非金属材料等固体材料中的碳和硫。赛恩思HCS-801型高频红外碳硫仪技术指标测量范围 : (四个物理检测池可任意选配)低碳:0.00001 ~ 0.5% 高碳: 0.01% ~ 99.99%低硫:0.00001 ~ 0.5% 高硫:0.01% ~ 99.99%分析精度 :碳:0.001mg(1ppm) 或0.5%RSD(二者满足其一)硫:0.001mg(1ppm) 或0.5%RSD(二者满足其一)灵 敏 度:碳 0.00001% 硫 0.00001%参照标准:JJG395-2016《定碳定硫分析仪》、GBT20123-2006《钢铁总碳硫含量的测定高频感应炉燃烧后红外吸收法》、ISO15350-2000《钢和铁总碳及总硫量的测定感应炉中燃烧后的红外吸收法》校正方式:单点、多点、线性校正,可建立一次、二次、三次、四次、五次校正曲线分析时间: 分析30-35秒,清洗时间5秒(可调),每次完整的分析不超过45秒。高 频 炉: ≥3.5KW/20MHz(可调)除尘方式:智能高压反吹与定频刷尘相结合检 测 器: 固态红外检测器所需气体: 氧气,99.5%纯度,35psi(2.41bar)±10%电 源 : 220V/50Hz±5%数据接口:USB、RS232、网卡、数据库等自由选择重 量 : 90kg尺 寸 : 510mmX760mmX770mm(长 × 宽 × 高)赛恩思HCS-801型高频红外碳硫仪仪器特点1、大功率燃烧炉:国内更大功率燃烧炉,运用新一代模块高频组件,整体模块化,输出稳定,故障率低,燃烧难熔样品得心应手。2、高频辐射屏蔽专利技术:高频辐射对人体有很大的伤害,该专利技术的运用能够有效的保护人体,保护眼睛,更能降低高频磁场对红外电路板的干扰,测试数据更准确,特别对于超低碳硫的测量能有效地提高准确度。3、高频率采样:高采样频率,失真率低,是连续的测试信号转换为数字信号供计算机处理时,产生极低的失真,提高精度及重复性。双CPU设计,采用ADI公司内嵌MCU多通道24位专业AD,独立四通道高速采样。32位ARM控制器确保上下位机大量数据通讯的实时响应。4、进口光源、探测器:进口光源、热释电传感器的灵敏度比国内同类器件高3倍,输出信号温度变化率0.1%,稳定性好,性能优良,为超低碳、硫检测提供硬件支持。5、智能休眠自我保护专利技术:该技术为发明专利技术,在国内碳硫仪中首次使用,设备空闲一定时间后软件自动断开与设备的连接。在设备没有与上位机连接的情况下,设备开始空闲计时,达到设定值的时候设备开始进入休眠状态,关闭所有电磁阀和控制电路等重要器件。当软件重新连接设备或者设备上按动任意按键,则设备被唤醒,进入待机状态。该技术的运用能有效地节约能源,降低氧气在实验室的排放,把仪器对实验室环境的影响降到较低。而且降低了器件的损耗,延长了仪器寿命。6、国内首创除卤素装置,大大降低腐蚀性气体对仪器的损伤7、仪器自带净化功能:氧气净化,对氧气要求不高,工业级别就可以使用;载气净化,对燃烧后的气体干燥净化,减少水分的影响;尾气净化,对排出仪器的气体进行净化吸收,避免酸性气体排出危害实验室人员。8、全自动除尘:集刷尘、排尘、集尘于一体。9、贴片式电路设计:功耗低,可靠性强,精度高。10、线性化教学模型:国内独创,实现计算不分段,无拐点补偿,无量程切换,有近乎理想的线性范围(0.00001-99.99%)。11、自动报警:人员操作失误,条件设定错误,未称取样品等现象出现时,仪器自动报警,及时提醒。12、与大数据时代的完美结合:分析数据可以上传,故障可以通过网络远程诊断。13、高频炉功率软件可调:智能调节,功率曲线与分析方法自动保存,调取即可使用,不会因为样品种类的改变而不断通过硬件调节功率。14、炉头加热:自动控温,炉头温度不受任何人为因素的影响,确保硫的稳定性。15、单气源工作:动力气,分析气均为氧气,降低了分析成本。16、高效分析:单次分析一个样的总时间为40-60秒,每小时可以分析60-80个样品(包含清洗、加热、分析),大大提高分析速率,节约氧气消耗,节约成本。
    留言咨询
  • 1:读数仪 振弦式频率读数仪 频率读数仪 型号:HAD/609A读数仪概述:HAD/609型系列读数仪适应于各种振弦式传感器的数据采集,并支持多种温度传感器的测量 。它是款智能型的仪器,通过设置它能直接显示出所测到的物理量,连接通讯电缆它可把采集到的实时数据或历史数据上传到计算机,以便对数据步行处理,利用转换口可对接入32点、64点的MCU数据采集箱,它可行多传感器的无人自动化的数据采集。读数仪能特点:· MCU采用的AVR架构;具有抗干扰强、度、分辨率、低耗。· 操作简便、显示模式多样;频率、频模值、物理量模式显示。· 数据采集与保存方式;手动操作与自动运行、实时采集与定时采集方式。· 海量数据存储;1条,数据存储格式:温度 频率 测量时间。参数:型号项目HAD/609AHAD/609BHAD/609C测频范围500~6000 Hz小读数0.1 Hz测温范围─-25℃~+110℃测温度─± 0.3 ℃温度传感器类型─2K、 3K、 5K通讯接口──RS232、USB转232口测量方式手动 、自动自动测量间隔1秒~1月 (可调)数据存储6000条10000条作电源三节碱性5号电池 测读仪操作说明 1. 开机:按 键开机入待机状态, 显示 注:本仪器所有的能键 按次时打开启用,二次按时关闭撤消。 2.测量:连接传感器 按 键入测量状态, 显示 3.显示模式切换:按 键切换显示模式, &rarr 频率(H)&rarr 频模值(F)显示 4.测量数据的保存:连接传感器入测量状态,待测量数据稳定后按 键, 这时测量的数据与测量的时间已同步保存到历史数据库内,同时序号自动累加1。5.数据自动采集与保存: 连接传感器并入测量状态, 然后按 键, 这时仪器已入自动数据的采集和数据的保存状态。退出自动运行模式时 再按次 键即可。6.自动采集间隔设置: 在关机状态 按 键开机; 按 键 显示 按 键 显示 接着输入数据采集需间隔的时间,以秒为单位;然后按 键确认。 7.自动关机与低电压警示: 仪器在侍机状态和测量状态中如果5 分钟末操作仪器键盘或仪器末连接传感器仪器将自动关机。 8.仪器时间的设定: 9. 组号、序号的改变:读数仪它可保存的数据为 99组(1只传感器组) ,每组序号(即测量的次数)为100号(A型为50);为把测量到的数据保存到的位置,这时需改变组号或序号的大小。具体操作:按 键 显示 ;按 键组号增大;按 键组号减小。按 键序号增大;按 键序号减小。调整好后直接 按 键返回。10.查看历史数据: 按 键 显示 这时显示为 组号68、序号039的历史数据;接着按 键 显示 表示这条数据保存的时间;再按 键返回到查看状态。 按 键查看下条数据;按 键查看上条数据;按 键查看下组数据;按 键查看上组数据。 11.历史数据总清除:按 键开机入待机状态, 显示 ;连续按 键8次显示 接着按 键显示 ; 然后等待仪器自动返回到待机状态显示 此时仪器内保存的历史数据已总清除。注:历史数据经删除,不可恢复2:微电脑页岩膨胀测试仪型号:HY-NP-03适用范围:用于防塌泥浆及处理剂的研究,采用的计算机仿真及多程测控,能同时测定三个样品。能自由设定每个样品的时间间隔实时显示采样结果以及膨胀曲线,软件有校零能,对测试数据可行监控,保存,打印等。主要参数:测量范围: ± lOmm        分辨率:0.Olmm自动检测,动态显示,历史保存电脑是的,里面含有配套的软件。同时检测三种同样的样品。误差小于3%、岩芯直径是25.4mm、有配套的制样仪器、 温馨提示:以上产品资料与图片顺序相对应。
    留言咨询
  • 工作原理KMYRD904防腐型高频雷达液料位计80GHz主要由外壳、主板、显示、传感器、天线组成,是基于时间行程为原理的一款物位仪表。雷达天线发射较窄的微波脉冲,经天线以近光速向下传输,部分微波接触到被测介质表面后被反射回来再次被天线系统接收。由于微波发射与接收的时间间隔与天线和物位表面的距离成正比,故经电子线路分析处理从而得到物位信号。产品特点● 处理器运行速度快,可快速分析采集数据,对物料变化低延时● 测量范围可达70米,可适配各种测量环境● 天线尺寸小,便于安装和加装天线防护装置● 非接触测量,不易磨损和腐蚀,几乎不受大气中水蒸气、温度和压力变化影响● 穿透性强,严重粉尘环境和泡沫对物位计工作影响不大● 波长更短,对在倾斜的固体表面有更好的反射● 波束角最小5°,能量集中,增强了回波能力的同时又有利于避开干拢物● 测量盲区更小,对于小罐测量也会取得良好的效果● 高信噪比,即使在波动的情况下也能获得更优的性能● 高频率,是测量固体和低介电常数介质的*佳选择● 二线制仪表,功率低,接线方便典型应用KMYRD904防腐型高频雷达液料位计80GHz适用于对液体、浆料及颗粒料的物位进行非接触式连续测量,适用于温度、压力变化大;有惰性气体及挥发存在的场合。采用微波脉冲的测量方法,并可在工业频率波段范围内正常工作。波束能量较低,可安装于各种金属、非金属容器或管道内,对人体及环境均无伤害。
    留言咨询
  • 光学频率梳-飞秒光学频率梳-掺 Er 光纤光学频率梳飞秒光学频率梳,使光学频率测量领域发生了前所未有的改变。近年来,作为新一代飞秒光梳技术的掺 Er 光纤光学频率梳,成为飞秒光梳技术发展的主流方向,已逐步突破时间频率领域,成为许多高端研究领域的基础性科学仪器。我国诸多科学和应用研究对飞秒光学频率梳的需求严重依赖进口。 掺 Er光纤光学频率梳主要由光学系统和电学系统两大部分组成,其中光学系统由掺 Er光纤飞秒激光器、掺 Er 光纤飞秒放大器、光谱展宽、f-2f 干涉仪组成,电学系统由重复频率锁定系统和载波包络偏移频率锁定系统组成,从而实现掺 Er 光纤光学频率梳的精密锁定。中国计量科学研究院研制高稳定性掺 Er 光纤光学频率梳主要解决了红外波段倍频程光谱展宽技术、高信噪比 f0 信号获取技术、可见光波段获取技术、单点倍频技术、长时间连续锁定等关键性技术难点。掺 Er光纤光学频率梳具有 40dB 的高信噪比 f0 信号,并进一步实现了月以上的长时间连续锁定,同时完成可见光波段的扩谱,使掺 Er 光纤光学频率梳的光谱范围覆盖到多个典型稳频激光以及原子、离子光钟的钟激光波长,为我国国家波长基准建设以及光钟的研究提供了技术保障。 随着光纤光梳技术的发展和不断成熟,掺 Er 光纤光学频率梳的可靠性进一步增强,在时间频率计量、光学频率计量、超稳微波源、绝对长度计量、高精密光谱学、温室气体监测、健康诊断、环境监测等领域的作用和地位将进一步增强。 掺 Er 光纤光学频率梳参数:中心波长(nm):1530 光谱宽度(nm):>50脉冲宽度(fs):100 输出功率(mW):150 或扩展更高功率重复频率(MHz):200 重复频率调节范围(MHz):1(位移台)重复频率调节范围(kHz):1.5(压电陶瓷)内部波长扩展范围(nm):1100~2200 外部波长扩展范围(nm):500~1064 或其他波段梳齿线宽(Hz):3(锁定至 Hz 量级线宽光频)f0 信噪比(dB):40 连续锁定时间(天):30与外激光拍频信噪比(dB):35准确度:E-14 量级@120 s 或与参考源相同(以先达到的为准)稳定度:5E-13@1 s 或与参考源相同(以先达到的为准) 1)工作中的掺 Er 光纤光学频率梳2)掺 Er 光纤光学频率梳输出光谱3)掺 Er 光纤光学频率梳向可见光波段扩展4)掺 Er 光纤光学频率梳的载波包络偏移频率 f0信号5)掺 Er 光纤光学频率梳重复频率 fr和载波包络偏移频率 f0的连续锁定 光学频率梳-飞秒光学频率梳-掺 Er 光纤光学频率梳
    留言咨询
  • 工作原理 KMYRD902粉尘颗粒用高频雷达物位计80GHz主要由外壳、主板、显示、传感器、天线组成,是基于时间行程为原理的一款物位仪表。雷达天线发射较窄的微波脉冲,经天线以近光速向下传输,部分微波接触到被测介质表面后被反射回来再次被天线系统接收。由于微波发射与接收的时间间隔与天线和物位表面的距离成正比,故经电子线路分析处理从而得到物位信号。产品特点● 处理器运行速度快,可快速分析采集数据,对物料变化低延时● 测量范围可达70米,可适配各种测量环境● 天线尺寸小,便于安装和加装天线防护装置● 非接触测量,不易磨损和腐蚀,几乎不受大气中水蒸气、温度和压力变化影响● 穿透性强,严重粉尘环境和泡沫对物位计工作影响不大● 波长更短,对在倾斜的固体表面有更好的反射● 波束角最小5°,能量集中,增强了回波能力的同时又有利于避开干拢物● 测量盲区更小,对于小罐测量也会取得良好的效果● 高信噪比,即使在波动的情况下也能获得更优的性能● 高频率,是测量固体和低介电常数介质的*佳选择● 二线制仪表,功率低,接线方便技术参数被测介质各种液体、固体、粉料介质显示方式LCD背光显示介质温度范围-40℃~250℃环境温度-40℃~80℃测量范围0-70米介质粘度600cP(标准)压力范围-0.1~4Mpa壳体材质压铸铝合金防爆等级Exd ⅡC T6 Gb外壳防护等级IP65连接方式螺纹、法兰、万向法兰、平板法兰供电电压24VDC输出信号4-20mA,RS-485,MODBUS协议电气接口M20*1.5测量精度±3—±15mm显示分辨率1mm接液材质316、304、四氟典型应用雷达物位计适用于对液体、浆料及颗粒料的物位进行非接触式连续测量,适用于温度、压力变化大;有惰性气体及挥发存在的场合。采用微波脉冲的测量方法,并可在工业频率波段范围内正常工作。波束能量较低,可安装于各种金属、非金属容器或管道内,对人体及环境均无伤害。
    留言咨询
  • 高频阻抗分析仪介电常数测试仪HRJD-A主要技术特性:1.信号源: DDS数字合成信号 100KHZ-160MHZ2.信号源频率精度3×10-5 ±1个字,6位有效数3.Q值测量范围:1~10234.Q值量程分档:30、100、300、1000、自动换档或手动换档;5.电感测量范围:1nH~140mH 自身残余电感和测试引线电感的自动扣除功能6.电容直接测量范围:1pF~25nF 7.主电容调节范围: 17~240pF 8.准确度 150pF以下±1pF;150pF以上±1%9.信号源频率覆盖范围100kHz~160MHz10.合格指示预置功能范围:5~100011.环境温度:0℃~+40℃;12.消耗功率:约25W;电源:220V±22V,50Hz±2.5Hz。13. S916(数显)介电常数εr和介质损耗因数tanδ测试装置:高频阻抗分析仪介电常数测试仪HRJD-A数显式微杆,平板电容器:极片尺寸: 38mm极片间距可调范围:≥15mm夹具插头间距:25mm±0.01mm夹具损耗正切值≤4×10-4 (1MHz)测微杆分辨率:0.001mm测试极片:材料测量直径Φ38mm厚度可调 ≥ 15mm高频阻抗分析仪介电常数测试仪HRJD-A液体杯:测量极片直径 Φ38mm; 液体杯内径Φ48mm 、深7mmD374     固体电绝缘材料厚度的标准试验方法D618     试验用塑料调节规程D1082    云母耗散因子和电容率(介电常数)试验方法D1531    用液体位移法测定相对电容率(介电常数)与耗散因子的试验方法D1711    电绝缘相关术语D5032    用饱和甘油溶液方式维持恒定相对湿度的规程E104     用水溶液保持相对恒定湿度的标准实施规程E197     室温之上和之下试验用罩壳和服役元件规程高频阻抗分析仪介电常数测试仪HRJD-A交流损耗——对于这两种场合(作为电学绝缘材料和作为电容器电介质),交流损耗通常必须是比较小的,以减小材料的加热,同时将其对网络剩余部分的影响降至较小。在高频率应用场合,特别要求损耗指数具有一个低值,因为对于某一给定的损耗指数,电介质损耗直接随着频率而增大。在某些电介质结构中,例如试验用终止衬套和电缆所用的电介质,通常电导增加可获得损耗增大,这有时引入其来控制电压梯度。在比较具有近似相同电容率的材料时或者在材料电容率基本保持恒定的条件下使用任何材料时,这可能有助于考虑耗散因子,功率因子,相位角或损耗角。高频阻抗分析仪介电常数测试仪HRJD-A边缘现象和杂散电容——这些试验方法是以电极之间的样本电容测量,以及相同电极系统的真空电容(或空气电容,适用于多数实际用途)测量或计算为基础。对于无保护的两电极测量,要求采用两个测定值来计算电容率,而当存在不期望的边缘现象和杂散电容时(它们将包含在测量读数中),变得相当复杂。对于测量用所放置样本之间的两个无保护平行板电极场合,边缘现象和杂散电容见图5和图6所述。Ce=边缘现象或边缘电容,Cg=每个电极外表面的接地电容,CL=连接导线之间的电容,CLg=接地导线的电容,CLc=导线和电极之间的电容。只有要求的电容Cv是与外部环境无关,所有其它电容都在一定程度上取决于其它目标的接近度。有必要在两个可能的测量条件之间进行区分,以确定不期望电容的影响。当一个测量电极接地时,情况经常是这样的,所述的所有电容与要求的Cv并联,除了接地电极的接地电容及其导线之外。如果Cv放入一个试验箱之内,同时试验箱墙壁具有保护定位,连接到试验箱的导线也受到保护,则接地电容可以不再出现,此时在a-a'处的电容看起来只包括Cv和Ce。对于某一给定电极布置,当电介质为空气时,可以计算得出边缘电容Ce,同时该计算值具有适当的精度。当某一样本放置在电极之间时,边缘电容值可能发生变化,此时要求使用一个边缘电容修正值,该修正值可见表1给出的信息。在许多条件下,已经获得了经验性修正值,这些修正值见表1所示(表1适用于薄电极场合,例如箔片)。在日常工作中,当较佳精度不作要求时,很方便使用无屏蔽的两电极系统,同时进行适当的修正。因为面积(同时因此Cv)以直径平方级增大时,然而周长(同时因此Ce)随着直径线性增大时,由于忽略边缘修正导致的电容率百分比误差随着样本直径增大而减小。然而,为进行准确得测量,有必要使用受保护的电极。6.2 受保护电极——在受保护电极边缘的边缘现象和杂散电容实际上可通过增加一个按图7和图8所示的保护电极来消除。如果试验样本和保护电极越过受保护电极的延伸距离至少为2倍的样本厚度,同时保护间隙非常小,受保护区域的电场分布将与当真空为电介质时存在的分布相同,同时这两个静电容的比值为电容率。而且,激活电极之间的电场可以进行定义,真空电容也可以计算得出,其精度只受到尺寸已知的精度的限制。由于这个原因,受保护电极(三终端)方法将用于作为仲裁方法,除非另有协定。图8显示了一种完整受保护和屏蔽电极系统的图解。尽管保护通常被接地,所示布置允许接地或测量电极,或者没有电极能容纳被使用的特殊三终端测量系统。如果保护接地,或者连接到测量电路中的一个保护终端上,测量的电容为两个测量电极之间的静电容,无保护电极和导线的接地电容与要求的静电容进行并联连接。为消除该误差源,采用一个屏障连接到保护上来包围无保护电极,如图8所示。除了那些总是不方便或不实际的,且限制频率小于几兆赫兹的保护方法之外,已经设计出使用特殊电池和程序的技术,采用两终端测量,精度相当于受保护测量所获得的精度。此处所述方法包括屏蔽测微计电极(7.3.2)和液体置换方法(7.3.3)。6.3 样本几何形状——为测定某一材料的电容率和耗散因子,优选薄板样本。圆柱形样本也可以使用,但是通常具有较低的精度。电容率较大不确定度来源是样本尺寸测定,特别是样本厚度测定。因此,厚度应足够大以允许其测量值具有要求的精度。选择的厚度将取决于样本生产的方法和可能的点到点变化。对于1%精度,厚度为1.5mm(0.06in)通常是足够的,尽管对于较大的精度,要求使用一个较厚的样本。当使用箔片或刚性电极时,另一误差源是电极和样本之间的不可以避免的间隙。对于薄样本,电容率误差可大至25%。类似误差在耗散因子中也会产生,尽管当箔片电极涂覆了一种油脂时,两种误差不可能具有相同的大小。为在薄样本上获得较准确的测量值,使用液体置换方法(6.3.3)。该方法降低了或*消除了样本的电极需求。厚度必须进行测定,测量时,在电学测量所用的样本区域上进行系统性地分布测量,厚度测量值均匀性应在±1%的平均厚度之内。如果样本整个区域将被电极覆盖,同时如果已知材料密度,可通过称量法来测定平均厚度。样本直径选择应使得能提供一个具有要求精度的样本电容测量值。采用受到良好保护和遮蔽的装置,将没有困难测量电容为10pF,分辨率为1/1000的样本。如果将要测试一个低电容率的厚样本,则可能将需要直径大于等于100mm,以获得要求的电容精度。在测量较小值的耗散因子时,关键点是电极的串联电阻应不会有助于产生相当大的扩散因子,同时测量网络没有大电容的电阻应与样本进行并联连接。这些观点的靠前点是偏好厚样本;第二点建议大区域的薄样本。测微计电极方法(6.3.2)可用于消除串联电阻的影响。使用一个受保护样本固定架(图8)来将外部电容降至较低。
    留言咨询
  • 1.2.轴承状态检测仪 LQ方法测振仪 轴承故障检测仪 型号ZRX-18074 产品特点 轴承状态检测仪采用振动频滤波的方法来对滚动轴承的运行状态进行检测分析评价,无需输入任何参数,特殊的检测滚动轴承状态方法(LQ方法)能够判断滚动轴承运行状态,同时可以测量振动和温度,特别适合电机、泵和风机的现场检测,使用简便、实用。 LQ方法:检测滚动轴承状态的方法 滚动轴承检测理论和实际测量表明:滚动轴承的故障频率集中在频范围,LQ方法是测量600 Hz 至10kHz频带的振动并进行特殊处理,所有由机械故障如不平衡和不对中引起的振动都被带通滤波器所过滤。LQ方法也反映轴承润滑状态,润滑不良会导致LQ值增大。机器转速、功率和轴承尺寸对LQ值几乎没有影响。 设备点巡检 产品配合设备点巡检系统,可实现企业实行的设备点巡检,是企业点巡检制度的有效落地执行工具。可实现测量量、抄表量、观察量的数字化记录,免去了传统的手抄笔录,大幅提高了设备点巡检的效率及准确度。 振动检测 传感器是利用石英晶体和人工极化陶瓷(PZT)的压电效应设计而成。当石英晶体或人工极化陶瓷受到机械应力作用时,其表面就产生电荷。采用压电式加速度传感器,把振动信号转换成电信号,通过对输入信号的处理分析,显示出振动的加速度、速度、位移值。 L 法检测 进行高频振动检测,根据滚动轴承损坏引起的振动频率范围提取出 L 法特征值,量化被测设备的轴承状态指标。MHY-16454R定义轴承运行的两个状态,好和差。良好的轴承状态和润滑状态,LQ值1,继续运行。差的轴承状态和润滑状态,LQ值2,更换轴承。 温度检测 红外测温传感器,采用进口元器件,引进先进工艺,具有精度高,质量可靠等优势,满足工业级测量。 3听诊功能 多功能测振仪具备听音诊断的功能,电机类;转子定子摩擦、轴承缺油、轴承损耗等。 产品参数 供电电源:5V/2.5A 最大静态工作电流:≤190mA 最大短路电流:≤3A 发射功率:1W 4.2供电电池 本仪器用防爆锂电池,电池采用高容量锂电池芯,有过充,过放,短路保护等功能。为仪器提供一个稳定的电能。 电池电压:3.7V 容 量:3500mAh 1 传感器 1.传感器类型: 1)加速度传感器(标称灵敏度:100mV/g) 2)红外测温传感器 2.传感器接入方式: 1)加速度传感器:通过螺旋线接入 2)红外测温传感器:内置 2 L值法测量 支持 3 设备听诊 支持 4 振动采集 1.采集类型 加速度、速度、位移、温度同时采集 2.量程: 加速度:0.1-199.9 m/s2(单峰值) 速度:0.1-199.9mm/s(真有效值) 位移:1-1999um(峰-峰值) 3. 圆环法表面张力仪/自动界面张力仪 型号ZRX-13564大屏幕彩色触摸屏 仪器简介:张力(液-气相界面)及矿物油与水的界面张力(液-液相面)。该仪器采用了先进的微处理器技术,大屏幕彩色液晶显示,大容量FLASH存储技术,可随意存储1500条实验结果。该仪器具有完善的人性化操,自动界面张力仪采用圆环法(GB6541)在非平衡条件下,测量各种液体表面作提示以及美观大方的操作界面。该仪器是石油,化工,电力,高校,科研等行业进行表面张力测量的新一代得力产品。主要技术参数:显示方式:大屏幕彩色触摸屏测量方法: 圆环法测量范围: 2~200mN/m(毫牛/米)灵 敏 度: 0.1mN/m准 确 度: 0.1mN/m拉脱速度:0.2~1.0毫米/秒可设静置时间:0~250秒可设使用温度: 10~40℃使用湿度: ≤80%电 源: 交流220V±5%,50Hz 消耗功率: 35VA外型尺寸: 185×290×360(mm) 重 量: 15Kg 4.新品液晶显示智能磨音测量仪/磨音测量仪/智能磨音检测仪/电耳 -MCY-7 一、工作原理: 智能磨音测量仪通过安装在现场的结构的探头,接收磨机发出的噪声,经屏蔽电线传输到仪器。转换为数字百分比显示,输出与显示值成比例的4~20mA电流信号供后端DCS 系统采集使用。显示物料位值与磨内物料填充量成正比,反比于磨机发出的噪声,因此它能定量的测盘磨机负荷的大小。操作人员可以根据磨音的高低控制各种入磨原料的流量,从而实现对磨机负荷的控制,。其内部具有矫正信号源,以便维护人员检查维护,并具有饱磨空磨声光报警装置,可以提醒操作人员及时作出处理。 1、测量范围:000%~100%2、探头阻抗:600Q±15%3、频响:50~18,000HZ4、频率范围20~16000Hz5、灵敏度:-34~-49dB(0dB=1V/Pa,1KHz)6、信 噪比≥58dB7、模拟输出两路标准4~20mA8、数字输出 RS-4859、测量误差:±0.1%10、恒流精度: 负载变化时,输出电流变化优于0.5%11、防护等级:IP6512、工作温度:-20℃~60℃13、环境湿度:85%14、电源电压:输入:50Hz,~220V±15%15、机箱尺寸:高x宽x深73x150x160mm16、带负载能力:2K 5.露点仪 型号ZRX-15397ZRX-15397型露点仪所用湿度传感器基于电容性技术,具有反应快、抗腐蚀、性能稳定、温度系数小的特点,可为生产过程中对水份含量有严格控制要求的场合提供准确、经济而且通用的解决方案,能够满足各种工业流程的控制要求。该仪器适用于如下领域:(1).干燥剂制造商和用户;(2).电力系统SF6露点检测;(3).半导体制造、化学和化工处理;(4).干燥工业、食品工业、塑料基片干燥;(5).压缩气体装瓶和使用;(6).对微量水分监控有严格要求的其它工艺流程。 1、技术指标1.1测量范围:-30℃~+30℃(露点,℃) 0~100%RH1.2基本误差:(10~95%RH):±3℃1.3模拟输出:4~20mA(对应露点范围为-50℃~+30℃)1.4稳定性:0.5% RH/年1.5温度系数:(10~50℃): 0.1% RH/℃1.6 响应时间:(33→76%RH):5”1.7样气流量:1600±50ml/min1.8使用温度:-30℃~+60℃1.9外形尺寸、开孔尺寸外形尺寸:150×150×330mm(宽×高×深)开孔尺寸:138+1×138+1mm 6.新品狭缝式空气采样器/狭缝式采样器 型号ZRX-17467采用撞击法原理狭缝式工作方式 狭缝式空气采样器是采用撞击法原理狭缝式工作方式,针对空气微生物气溶胶捕获能力进行。 主要特点: 1.真空流量控制器。 2.撞击头中的狭缝采用优化设计 ,保证气流的层状流动。 3.可定时,培养皿可转动,捕获率高。 技术参数: 采样流速:28.3L/min 表面皿旋转速度:0-4rpm 定时范围:0-99min 重量:6.5kg 外形尺寸:240×238×294mm 振动频率仪是针对机器设备测量工作频率而研制的,即可测量一般机器设备振动频率、 技术指标 1、频率范围: 2.0Hz—10000Hz(-3dB) 频率范围由用户确定 2、测量范围: 0.5—100g (加速度) 3、误差: 0.1+0.1% Hz 4、工作电源: 5号AA1.5x5节电池 5、环境境条件:工作温度0℃--50℃ 6、外形尺寸: 180*100*40mm 7、重量: 430g7.新品土壤腐蚀野外组合测试仪/土壤腐蚀性测试仪/野外土壤腐蚀性 型号:DP-2 二、性能指标 土壤电化学测定: 1、土壤电阻率的测定: 精度达到 0.1Ω/m 2、土壤中金属腐蚀电位的测定: 精度达到 ±1mV 3、土壤电位梯度的测定: 精度达到 ±0.1mV/m 4、土壤氧化还原电位的测定: 精度达到 ±2mV 5、土壤pH的测定: 精度达到 0.02pH 土壤理化性质测定: 6、土壤含水量的测定: 精度达到 1% 7、土壤容重的测定: 精度达到 0.02g/m3 8、土壤总孔隙度的测定: 精度达到 2% 9、土壤含气率的测定: 精度达到 2% 10、土壤硫化物的检定: 精度达到 0.1ppm 土壤质地的现场鉴别; 8.手持式氨水数显浓度仪 氨水浓度仪 型号ZRX-30396 手持式氨水数显浓度仪是基于折光原理开发的一款便携式、高性价比的浓度测量仪器。该产品与传统的滴定法相比测量更快速、更准确、结果更清晰,成本更低,并且能自动进行温度补偿,可以非常方便地帮助各种类型终端用户检测出氨水浓度是否合格,以确保精确稳定地控制好氨水浓度,达到使用工艺要求,保证产品质量。 测量原理:从LED 发出的光线经过光导纤维从测试棱镜的一侧进入测试棱镜,并到达棱镜与氨水的接触面上,根据接触面处氨水折射率的不同,一部份光被全反射到棱镜的另一侧, 全反射光的位置会因为临界角改变而改变(临界角会因为液体折射率不同而不同),线性阵列 CCD 用于精确检测全反射回来的光的位置,而每一个位置对应着折射率。 参数 量程范围:0.0-30.0% 测量精度:±0.3% 分辨率:0.1% 测量温度范围:0-40℃(自带温度补偿) 测量时间:2 秒 样品量:>0.2 毫升 外形尺寸:120*58*26mm 仪器净重:125g(包含电池) 供电方式:可充电锂电池 9.注意广度测试仪 BD-Ⅱ-315 注意广度也叫注意范围,它是指人在同一时间内所能清楚地注意到的对象的数量。这是非常重要的一项心理量,在学习、工作中都发挥着重要的作用。本仪器采用速示的方法,测定对随时分布圆点的注意广度,即有50%的可能性估计对的那个数目就是注意广度。主要技术指标:1. 呈现圆点数目:5~16点,随机呈现;2. 呈现屏:16×16红色光点阵显示屏,大小120×120mm,显示屏可翻转折叠;3. 速示时间:0.01~9.99秒;4. 实验次数:12~996次(1~83组,每组5~16点各1次); 10暗适应能力仪 暗视力检测仪 夜视力检测仪 视觉适应时间仪 型号ZRX-17887 可以进行常视力测试、可以进行矫正视力测试 可进行主、客观方式的选择;快速暗适应时间的测定; 眩光照眼后暗适应恢复时间的测定 主要技术参数: 符合TB/T3091-2019、GB18463-2001、GBZ188-2014 显示屏:2.8寸TFT_LCD触摸屏、分辨率240*320 面板:智能触摸按键设计,IC卡身份识别 视力范围:0.1-1.5 视标方向:上/下/左/右(采用Landolt环型视标“C”型) 光刺激亮度:5700cd/m2 ± 380cd/m2 视标亮度:280cd/m2± 28cd/m2
    留言咨询
  • 让相参变得简单,100 kHz~22 GHz捷变频频率综合器闪亮登场AnaPico日前正式发布了全新的APMSYN22捷变频频率综合器,该频率综合器不同以往类似产品,它除了拥有小巧的机身结构外,它可以以0.01Hz的频率分辨率输出100kHz~22GHz功率高达+25dBm的宽带信号,同时拥有出色的相位噪声指标和快至5μs的捷变频时间。&bull 频率范围:100kHz至22GHz&bull 切换时间:5μs&bull 输出功率:-40dBm至+25dBm&bull 1GHz相噪:-132dBc/Hz@20kHz&bull 连续波、扫描、脉冲输出&bull 1GHz输入输出同步信号支持多台设备相参级联&bull 体积小巧:134x95x24mm / 450g为相参系统而生:APMSYN22非常适合多台设备级联组成相参系统,为此APMSYN22采用了类似AnaPico高端多通道相参信号源APMS系列的内部架构,采用高参考时钟进行多个模块间的同步输出非常稳定相参信号。更具创新的是,当多个APMSYN22进行相参系统集成时并不需要额外的高稳定参考输入,只需将其中一台设备作为主机,其余设备作为从设备,由主机输出1GHz的内部参考至下一台从设备的参考输入,再由这台从设备的参考输出端口以菊链的方式将主机的1GHz参考信号传递至下一个从设备,以此类推……理论上可以实现无数个相参通道的输出。示例:当4台设备级联组成一个四通道输出的相参源系统时,无需从外部额外引入共参考,APMSYN22标准提供了准确度高达±30ppb的1GHz高频高稳定度的参考时钟输出(1GHz高频参考同步信号对于长时间稳定输出相位相干信号至关重要!)。此时的同步时钟仅需在主设备上设置产生,从设备仅需设置为1GHz的外参考输入,所有的从设备1GHz外参考输入实际上都是由主设备输出的,并经由第一个从设备内部功分及放大传递至下一个从设备,如此循环可实现非常多通道输出的相参系统与其他厂商不同,AnaPico的信号源产品均采用了1GHz高频的参考同步信号,这样可以在相参系统中获得比传统100MHz作为参考输入同步信号更加优异的相对相位稳定性!APMSYN22采用推荐的方式实现多通道相参输出系统时,以每个通道同时输出5GHz连续波为例,可以确保在连续运行10小时后,通道与通道间的相对相位差漂移仅为±0.5°优异性能的广泛应用:APMSYN22的体积小巧,性能优异,成本合适,非常合作伙伴进行系统集成甚至整机厂商的OEM应用:&bull 系统时钟源&bull 用于雷达信号生成和测试的多通道相位相干配置&bull 波束赋形、MIMO接收机研发&bull 量子计算:作为 IQ 混频器和参数放大器泵浦的本振&bull 电子战&bull 微波光子及光谱学对于MIMO、相控阵雷达以及量子计算的多个模块的相参应用,我们还提供了NOXO选件,该选件可以移除所有从设备中的参考晶振以帮助客户节约成本!作为一个小巧的模块,它拥有台式信号源级别的性能:APMSYN22的相噪曲线APMSYN22的最大输出功率核心指标:参数最小值典型值最大值频率范围100 kHz22 GHz频率分辨率0.01 Hz相位分辨率 0.1°功率范围-40 dBm+25 dBm功率分辨率0.5 dB切换时间5 μs500 μsSSB相位噪声@1GHz-132 dBc/Hz@20 kHz谐波-15 dBc-50 dBc非谐波杂散-65 dBc-55 dBc脉冲调制关断比60 dB80 dB重频DC10 MHz脉冲宽度30 ns20 sAPMSYN22的尺寸结构
    留言咨询
  • 上海肯阔科技有限公司,是专业从事开发、设计、销售智能自动化传感器产品的企业,公司结合市场的需求,相继开发出音叉密度计系列、雷达液位变送器、射频电容液位开关、磁致伸缩液位变送器、射频电容液位变送器、微波料位开关、音叉密度计系列、音叉物位开关系列产品。产品适用于石油、化工、能源、冶金、环保、医药、食品、水文等行业自动化生产中的过程测量。公司拥有完善的售后服务体系,可快速解决用户在使用产品中遇到的问题。根据市场需求产品不断的创新、升级,并可根据客户要求定制产品,以满足用户理想的使用效果。研发、设计、生产均严格按照国际标准执行,每一个环节都有严格的操作规程,所有操作生产人员都经过定期专业技术培训和考核,保证了产品在使用中的测量和稳定应用。肯阔科技以“不断创新、诚信负责、质量至上”的核心价值,通过专业技术与坚持不懈的努力,满足客户需求,推动企业持续发展及团队的不断壮大。 80G高频微波脉冲式雷达物位计。输出4~20mA模拟信号并叠加HART通讯的二线制仪表,或RS-485,MODBUS四线制仪表,测量*大距离可达70米。雷达天线根据各种工况被进一步优化处理,采用新型快速的微处理器可以更高的信号分析处理并反应,使得仪表能够在腐蚀性介质、反应釜、粉尘大的料仓、非导电介质、高温等复杂的测量环境有效工作。 雷达物位计主要由外壳、主板、显示、传感器、天线组成,是基于时间行程为原理的一款物位仪表。雷达天线发射较窄的微波脉冲,经天线以近光速向下传输,部分微波接触到被测介质表面后被反射回来再次被天线系统接收。由于微波发射与接收的时间间隔与天线和物位表面的距离成正比,故经电子线路分析处理从而得到物位信号。 ● 处理器运行速度快,可快速分析采集数据,对物料变化低延时 ● 测量范围可达70米,可适配各种测量环境 ● 天线尺寸小,便于安装和加装天线防护装置 ● 非接触测量,不易磨损和腐蚀,几乎不受大气中水蒸气、温度和压力变化影响 ● 穿透性强,严重粉尘环境和泡沫对物位计工作影响不大 ● 波长更短,对在倾斜的固体表面有更好的反射 ● 波束角*小5°,能量集中,增强了回波能力的同时又有利于避开干拢物 ● 测量盲区更小,对于小罐测量也会取得良好的效果 ● 高信噪比,即使在波动的情况下也能获得更优的性能 ● 高频率,是测量固体和低介电常数介质的*佳选择 ●二线制仪表,功率低,接线方便
    留言咨询
  • GB/T1409测量电气绝缘材料在工频、音频、高频(包括米波波长在内)下电容率和介质损耗因数的推荐方法1、范围本标准规定了在15Hz?300MHz的频率范围内测量电容率、介质损耗因数的方法,并由此计算某些数值,如损耗指数。本标准中所叙述的某些方法,也能用于其他频率下测量。本标准适用于测量液体、易熔材料以及固体材料。测试结果与某些物理条件有关,例如频率、温度、湿度,在特殊情况下也与电场强度有关。有时在超过1000V的电压下试验,则会引起一些与电容率和介质损耗因数无关的效应,对此不予论述。2、规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的新版本。凡是不注日期的引用文件,其新版本适用于本标准。IEC60247:1978 液体绝缘材料相对电容率、介质损耗因数和直流电阻率的测量3、术语和定义下列术语和定义适用于本标准。3.1相对电容率relative permittivityε r电容器的电极之间及电极周围的空间全部充以绝缘材料时,其电容Cx与同样电极构形的真空电容Co之比; ……………………………(1)式中;εr——相对电容率 Cx——充有绝缘材料时电容器的电极电容;Co——真空中电容器的电极电容。在标准大气压下,不含二氧化碳的干燥空气的相对电容率ε r等于1.00053,因此,用这种电极构形在空气中的电容Cx来代替Co测量相对电容率εr时,也有足够的精确度。在一个测量系统中,绝缘材料的电容率是在该系统中绝缘材料的相对电容率εr与真空电气常数εr的乘积。在SI制中,电容率用法/米(F/m)表示。而且,在SI单位中,电气常数εr,为:……………………………(2)在本标准中,用皮法和厘米来计算电容,真空电气常数为:ε0=0.088 54 pF/cm3.2介质损耗角dielectric loss angleδ由绝缘材料作为介质的电容器上所施加的电压与由此而产生的电流之间的相位差的余角。3.3介质损耗因数1) dielectric dissipation factortanδ损耗角δ的正切。3.4[介质]损耗指数 [dielectric] loss indexε''r该材料的损耗因数tanδ与相对电容率εr的乘积。3.5复相对电容率 complex relative permittivityεr由相对电容率和损耗指数结合而得到的:式中:εr——复相对电容率;ε''r——损耗指数;ε'r、εr——相对电容率;tanδ——介质损耗因数。注:有损耗的电容器在任何给定的频率下能用电容Cs和电阻Rs的串联电路表示,或用电容CP和电阻RP(或电导CP)并联电路表示。并联等值电路 串联等值电路 式中:Cs——串联电容;Rs——串联电阻;1)有些国家用“损耗角正切”来表示“介质损耗因数”,因为损耗的测量结果是用损耗角的正切来报告的。CP——并联电容;RP——并联电阻。虽然以并联电路表示一个具有介质损耗的绝缘材料通常是合适的,但在单一频率下,有时也需要以电容Cs和电阻Rs的串联电路来表示。串联元件与并联元件之间,成立下列关系:式(9)、(10)、(11)中:Cs、Rs、CP、RP、tanδ同式(7)、(8)。无论串联表示法还是并联表示法,其介质损耗因数tanδ是相等的。假如测量电路依据串联元件来产生结果,且tanδ太大而在式(9)中不能被忽略,则在计算电容率前必须先计算并联电容。本标准中的计算和测量是根据电流(ω=πf)正弦波形作出的。4、电气绝缘材料的性能和用途4.1电介质的用途电介质一般被用在两个不同的方面:用作电气回路元件的支撑,并且使元件对地绝缘及元件之间相互绝缘;用作电容器介质。4.2影响介电性能的因素下面分别讨论频率、温度、湿度和电气强度对介电性能的影响。4.2.1频率因为只有少数材料如石英玻璃、聚苯乙烯或聚乙烯在很宽的频率范围内它们的εr和tanδ几乎是恒定的,且被用作工程电介质材料,然而一般的电介质材料必须在所使用的频率下测量其介质损耗因数和电容率。电容率和介质损耗因数的变化是由于介质极化和电导而产生,重要的变化是极性分子引起的偶极子极化和材料的不均匀性导致的界面极化所引起的。4.2.2温度损耗指数在一个频率下可以出现一个zui大值,这个频率值与电介质材料的温度有关。介质损耗因数和电容率的温度系数可以是正的或负的,这取决于在测量温度下的介质损耗指数zui大值位置。4.2.3湿度极化的程度随水分的吸收量或电介质材料表面水膜的形成而增加,其结果使电容率、介质损耗因数和直流电导率增大。因此试验前和试验时对环境湿度进行控制是*的。注:湿度的显著影响常常发生在1MHz以下及微波频率范围内。4.2.4电场强度存在界面极化时,自由离子的数目随电场强度增大而增加,其损耗指数zui大值的大小和位置也随此而变。在较高的频率下,只要电介质中不出现局部放电,电容率和介质损耗因数与电场强度无关。5、试样和电极5.1固体绝缘材料5.1.1试样的几何形状测定材料的电容率和介质损耗因数,采用板状试样,也可采用管状试样。在测定电容率需要较高精度时,zui大的误差来自试样尺寸的误差,尤其是试样厚度的误差,因此厚度应足够大,以满足测量所需要的精确度。厚度的选取决定于试样的制备方法和各点间厚度的变化。对1%的精确度来讲,1.5mm的厚度就足够了,但是对于更高精确度,是采用较厚的试样,例如6mm?12mm。测量厚度必须使测量点有规则地分布在整个试样表面上,且厚度均匀度在±1%内。如果材料的密度是已知的,则可用称量法测定厚度。选取试样的面积时应能提供满足精度要求的试样电容。测量10pF的电容时,使用有良好屏蔽保护的仪器。由于现有仪器的极限分辨能力约1pF,因此试样应薄些,直径为10cm或更大些。需要测低损耗因数值时,很重要的一点是导线串联电阻引人的损耗要尽可能地小,即被测电容和该电阻的乘积要尽可能小。同样,被测电容对总电容的比值要尽可能地大。*点表示导线电阻要尽可能低及试样电容要小,第二点表示接有试样桥臂的总电容要尽可能小,且试样电容要大。因此试样电容取值为20pF,在测量回路中,与试样并联的电容不应大于约5pF,5.1.2电极系统5.1.2.1加到试样上的电极电极可选用5.1.3中任意一种。如果不用保护环,而且试样上下的两个电极难以对齐时,其中一个电极应比另一个电极大些。已经加有电极的试样应放置在两个金属电极之间,这两个金属电极要比试样上的电极稍小些。对于平板形和圆柱形这两种不同电极结构的电容计算公式以及边缘电容近似计算的经验公式由表1给出。对于介质损耗因数的测量,这种类型的电极在高频下不能满足要求,除非试样的表面和金属板都非常平整。图1所示的电极系统也要求试样厚度均匀。.5.1.2.2试样上不加电极表面电导率很低的试样可以不加电极而将试样插入电极系统中测量,在这个电极系统中,试样的一侧或两侧有一个充满空气或液体的间隙。平板电极或圆柱形电极结构的电容计算公式由表3给出。下面两种型式的电极装置特别合适.5.1.2.2.1空气填充测微计电极当试样插入和不插人时,电容都能调节到同一个值,不需进行测量系统的电气校正就能测定电容率。电极系统中可包括保护电极。5.1.2.2.2流体排出法在电容率近似等于试样的电容率,而介质损耗因数可以忽略的一种液体内进行测量,这种测量与试样厚度测量的精度关系不大。当相继采用两种流体时,试样厚度和电极系统的尺寸可以从计算公式中消去。试样为与试验池电极直径相同的圆片,或对测微计电极来说,试样可以比电极小到足以使边缘效应忽略不计。在测微计电极中,为了忽略边缘效应,试样直径约比测微计电极直径小两倍的试样厚度。5.1.2.3边缘效应为了避免边缘效应引起电容率的测量误差,电极系统可加上保护电极。保护电极的宽度应至少为两倍的试样厚度,保护电极和主电极之间的间隙应比试样厚度小。假如不能用保护环,通常需对边缘电容进行修正,表1给出了近似计算公式。这些公式是经验公式,只适用于规定的几种特定的试样形状。此外,在一个合适的频率和温度下,边缘电容可采用有保护环和无保护环的(比较)测量来获得,用所得到的边缘电容修正其他频率和温度下的电容也可满足精度要求。5.1.3构成电极的材料5.1.3.1金属箔电极用极少量的硅脂或其他合适的低损耗粘合剂将金属箔贴在试样上。金属箔可以是纯锡或铅,也可以是这些金属的合金,其厚度zui大为100μm,也可使用厚度小于10μm的铝箔。但是,铝箔在较高温度下易形成一层电绝缘的氧化膜,这层氧化膜会影响测量结果,此时可使用金箔。5.1.3.2烧熔金属电极烧熔金属电极适用于玻璃、云母和陶瓷等材料,银是普遍使用的,但是在高温或高湿下,采用金。5.1.3.3喷镀金属电极锌或铜电极可以喷镀在试样上,它们能直接在粗糙的表面上成膜。这种电极还能喷在布上,因为它们不穿透非常小的孔眼。5.1.3.4阴极蒸发或高真空蒸发金属电极假如处理结果既不改变也不破坏绝缘材料的性能,而且材料承受高真空时也不过度逸出气体,则本方法是可以采用的。这一类电极的边缘应界限分明。5.1.3.5汞电极和其他液体金属电极把试样夹在两块互相配合好的凹模之间,凹模中充有液体金属,该液体金属必须是纯净的。汞电极不能用于高温,即使在室温下用时,也应采取措施,这是因为它的蒸气是有毒的。伍德合金和其他低熔点合金能代替汞。但是这些合金通常含有镉,镉象汞一样,也是毒性元素。这些合金只有在良好抽风的房间或在抽风柜中才能用于100℃以上,且操作人员应知道可能产生的健康危害。5.1.3.6导电漆无论是气干或低温烘干的高电导率的银漆都可用作电极材料。因为此种电极是多孔的,可透过湿气,能使试样的条件处理在涂上电极后进行,对研究湿度的影响时特别有用。此种电极的缺点是试样涂上银漆后不能马上进行试验,通常要求12h以上的气干或低温烘干时间,以便去除所有的微量溶剂,否则,溶剂可使电容率和介质损耗因数增加。同时应注意漆中的溶剂对试样应没有持久的影响。要使用刷漆法做到边缘界限分明的电极较困难,但使用压板或压敏材料遮框喷漆可克服此局限。但在极高的频率下,因银漆电极的电导率会非常低,此时则不能使用。5.1.3.7石墨一般不推荐使用石墨,但是有时候也可采用,特别是在较低的频率下。石墨的电阻会引起损耗的显著增大,若采用石墨悬浮液制成电极,则石墨还会穿透试样。5.1.4电极的选择5.1.4.1板状试样考虑下面两点很重要:a)不加电极,测量时快而方便,并可避免由于试样和电极间的不良接触而引起的误差。b)若试样上是加电极的,由测量试样厚度h时的相对误差△h/h所引起的相对电容率的相对误差△εr/εr可由下式得到:……………………………(12)式中:△εr——相对电容率的偏差;εr——相对电容率;h——试样厚度; Ah——试样厚度的偏差。若试样上加电极,且试样放在有固定距离Sh的两个电极之间,这时 ……………………………(13)式中:△εr、εr、h同式(12)。εr——试样浸入所用流体的相对电容率,对于在空气中的测量则εr等于1。对于相对电容率为10以上的无孔材料,可采用沉积金属电极。对于这些材料,电极应覆盖在试样的整个表面上,并且不用保护电极。对于相对电容率在3?10之间的材料,能给出zui高精度的电极是金属箔、汞或沉积金属,选择这些电极时要注意适合材料的性能。若厚度的测量能达到足够精度时,试样上不加电极的方法方便而更可取。假如有一种合适的流体,它的相对电容率已知或者能很准确地测出,则采用流体排出法是的。5.1.4.2管状试样对管状试样而言,合适的电极系统将取决于它的电容率、管壁厚度、直径和所要求的测量精度。一般情况下,电极系统应为一个内电极和一个稍为窄一些的外电极和外电极两端的保护电极组成,外电极和保护电极之间的间隙应比管壁厚度小。对小直径和中等直径的管状试样,外表面可加三条箔带或沉积金属带,中间一条用作为外电极(测量电极),两端各有一条用作保护电极。内电极可用汞,沉积金属膜或配合较好的金属芯轴。高电容率的管状试样,其内电极和外电极可以伸展到管状试样的全部长度上,可以不用保护电极。大直径的管状或圆筒形试样,其电极系统可以是圆形或矩形的搭接,并且只对管的部分圆周进行试验。这种试样可按板状试样对待,金属箔、沉积金属膜或配合较好的金属芯轴内电极与金属箔或沉积金属膜的外电极和保护电极一起使用。如采用金属箔做内电极,为了保证电极和试样之间的良好接触,需在管内采用一个弹性的可膨胀的夹具。对于非常准确的测量,在厚度的测量能达到足够的精度时,可采用试样上不加电极的系统。对于相对电容率εr不超过10的管状试样,较方便的电极是用金属箔、汞或沉积金属膜。相对电容率在10以上的管状试样,应采用沉积金属膜电极;瓷管上可采用烧熔金属电极。电极可像带材一样包覆在管状试样的全部圆周或部分圆周上。5.2液体绝缘材料5.2.1试验池的设计对于低介质损耗因数的待测液体,电极系统重要的特点是:容易清洗、再装配(必要时)和灌注液体时不移动电极的相对位置。此外还应注意:液体需要量少,电极材料不影响液体,液体也不影响电极材料,温度易于控制,端点和接线能适当地屏蔽;支撑电极的绝缘支架应不浸沉在液体中,还有,试验池不应含有太短的爬电距离和尖锐的边缘,否则能影响测量精度。满足上述要求的试验池见图2?图4。电极是不锈钢的,用硼硅酸盐玻璃或石英玻璃作绝缘,图2和图3所示的试验池也可用作电阻率的测定,1EC 60247:1978对此已详细叙述。由于有些液体如氯化物,其介质损耗因数与电极材料有明显的关系,不锈钢电极不总是合适的。有时,用铝和杜拉铝制成的电极能得到比较稳定的结果。5.2.2试验池的准备应用一种或几种合适的溶剂来清洗试验池,或用不含有不稳定化合物的溶剂多次清洗。可以通过化学试验方法检查其纯度,或通过一个已知的低电容率和介质损耗因数的液体试样测量的结果来确定。3试验池试验几种类型的绝缘液体时,若单独使用溶剂不能去除污物,可用一种柔和的擦净剂和水来清洁试验池的表面。若使用一系列溶剂清洗时则后要用zui大沸点低于100°C的分析级的石油醚来再次清洗,或者用任一种对一个已知低电容率和介质损耗因数的液体测量能给出正确值的溶剂来清洗,并且这种溶剂在化学性质上与被试液体应是相似的。推荐使用下述方法进行清洗。试验池应全部拆开,彻底地清洗各部件,用瑢剂回流的方法或放在未使用溶剂中搅动反复洗涤方法均可去除各部件上的溶剂并放在清洁的烘箱中,在110℃左右的温度下烘干30min。待试验池的各部件冷却到室温,再重新装配起来。池内应注人一些待试的液体,停几分钟后,倒出此液体再重新倒人待试液体,此时绝缘支架不应被液体弄湿。在上述各步骤中,各部件可用干净的钩针或钳子巧妙地处理,以使试验池有效的内表面不与手接触。注1:在同种质量油的常规试验中,上面所说的淸洗步骤可以代之为在每一次试验后用没有残留纸屑的干纸简单地擦擦试验池。注2:采用溶剂时,有些溶剂特别是苯、四氧化碳、甲苯、二甲苯是有毒的,所以要注意防火及毒性对人体的影响,此外,氧化物溶剂受光作用会分解。5.2.3试验池的校正当需要高精度测定液体电介质的相对电容率时,应首先用一种已知相对电容率的校正液体(如苯)来测定“电极常数'。“电极常数”C。的确定按式(14): ……………………………(14)式中:Cc——电极常数;Co——空气中电极装置的电容;Cn——充有校正液体时电极装置的电容;εn——校正液体的相对电容率。从C。和Cc的差值可求得校正电容Cg ……………………………(15)……………………………(16)并按照公式来计算液体未知相对电容率εx。式中:Cg——校正电容;Co——空气中电极装置的电容;Cc——电极常数|Cx——电极装置充有被试液体时的电容;εx——液体的相对电容率。假如Co、Cn和Cx值是在εn是已知的某一相同温度下测定的,则可求得zui高精度的εx值。采用上述方法测定液体电介质的相对电容率时,可保证其测得结果有足够的精度,因为它消除了由于寄生电容或电极间隙数值的不准确测量所引起的误差。6、测置方法的选择测量电容率和介质损耗因数的方法可分成两种:零点指示法和谐振法。6.1零点指示法适用于频率不超过50MHz时的测量。测量电容率和介质损耗因数可用替代法;也就是在接入试样和不接试样两种状态下,调节回路的一个臂使电桥平衡。通常回路采用西林电桥、变压器电桥(也就是互感耦合比例臂电桥)和并联T型网络。变压器电桥的优点:采用保护电极不需任何外加附件或过多操作,就可采用保护电极;它没有其他网络的缺点。6.2谐振法适用于10kHz?几百MHz的频率范围内的测量。该方法为替代法测量,常用的是变电抗法。但该方法不适合采用保护电极。注:典型的电桥和电路示例见附录。附录中所举的例子自然是不全面的,叙述电桥和测量方法报导见有关文献和该种仪器的原理说明书。7、试验步骤7.1试样的制备试样应从固体材料上截取,为了满足要求,应按相关的标准方法的要求来制备。应精确地测量厚度,使偏差在±(0.2%土0.005mm)以内,测量点应均匀地分布在试样表面。必要时,应测其有效面积。7.2条件处理条件处理应按相关规范规定进行。7.3测量电气测量按本标准或所使用的仪器(电桥)制造商推荐的标准及相应的方法进行。在1MHz或更高频率下,必须减小接线的电感对测量结果的影响。此时,可采用同轴接线系统(见图1所示),当用变电抗法测量时,应提供一个固定微调电容器。8、结果8.1相对电容率εr试样加有保护电极时其相对电容率εr可按公式(1)计算,没有保护电极时试样的被测电容C'x包括了一个微小的边缘电容Ce,其相对电容率为: ……………………………(17)式中:εr——相对电容率;C'x——没有保护电极时试样的电容;Ce——边缘电容 Co——法向极间电容;Co和Ce能从表1计算得来。必要时应对试样的对地电容、开关触头之间的电容及等值串联和并联电容之间的差值进行校正。测微计电极间或不接触电极间被测试样的相对电容率可按表2、表3中相应的公式计算得来。8.2介质损耗因数tanδ介质损耗因数tanδ按照所用的测量装置给定的公式,根据测出的数值来计算。8.3精度要求在第5章和附录A中所规定的精度是:电容率精度为±1%,介质损耗因数的精度为±(5%±0.0005)。这些精度至少取决于三个因素:即电容和介质损耗因数的实测精度;所用电极装置引起的这些量的校正精度;极间法向真空电容的计算精度(见表1)。在较低频率下,电容的测量精度能达±(0.1%土0.02pF),介质损耗因数的测量精度能达±(2%±0.00005)。在较高频率下,其误差增大,电容的测量精度为±(0.5%±0,1PF),介质损耗因数的测量精度为±(2%±0.0002)。对于带有保护电极的试样,其测量精度只考虑极间法向真空电容时有计算误差。但由被保护电极和保护电极之间的间隙太宽而引起的误差通常大到百分之零点几,而校正只能计算到其本身值的百分乏几。如果试样厚度的测量能精确到±0.005mm,则对平均厚度为1.6mm的试样,其厚度测量误差能达到百分之零点几。圆形试样的直径能测定到±0.1%的精度,但它是以平方的形式引人误差的,综合这些因素,极间法向真空电容的测量误差为±0.5%。对表面加有电极的试样的电容,若采用测微计电极测量时,只要试样直径比测微计电极足够小,则只需要进行极间法向电容的修正。采用其他的一些方法来测量两电极试样时,边缘电容和对地电容的计算将带来一些误差,因为它们的误差都可达到试样电容的2%?40%。根据目前有关这些电容资料,计算边缘电容的误差为10%,计算对地电容的误差为因此带来总的误差是百分之几十到百分之几。当电极不接地时,对地电容误差可大大减小。采用测微计电极时,数量级是0.03的介质损耗因数可测到真值的±0.0003,数量级0.0002的介质损耗因数可测到真值的±0.00005介质损耗因数的范围通常是0.0001?0.1,但也可扩展到0.1以上。频率在10MHz和20MHz之间时,有可能检测出0.00002的介质损耗因数。1?5的相对电容率可测到其真值的±2%,该精度不仅受到计算极间法向真空电容测量精度的限制,也受到测微计电极系统误差的限制。9、试验报告试验报告中应给出下列相关内容:绝缘材料的型号名称及种类、供货形式、取样方法、试样的形状及尺寸和取样日期(并注明试样厚度和试样在与电极接触的表面进行处理的情况);试样条件处理的方法和处理时间;电极装置类型,若有加在试样上的电极应注明其类型;测量仪器;试验时的温度和相对湿度以及试样的温度;施加的电压;施加的频率;相对电容率εr(平均值);介质损耗因数tanδ(平均值);试验日期;相对电容率和介质损耗因数值以及由它们计算得到的值如损耗指数和损耗角,必要时,应给出与温度和频率的关系。表1 真空电容的计算和边缘校正 试样的相对电容率:其中:C'x——电极之间被测的电容;In——自然对数;Ig——常用对数。表2 试样电容的计算——接触式测微计电极试样电容注符号定义’1.并联一个标准电容器来替代试样电容CP——试样的并联电容△C——取去试样后,为恢复平衡时的标准电容器的电容增量Cr——在距离为r时,测微计电极的标定电容Cs——取去试样后,恢复平衡,测微计电极间距为s时的标定电容Cor,Coh——测微计电极之间试样所占据的,间距分别为r或h的空气电容。可用表1中的公式1来计算r——试样与所加电极的厚度h——试样厚度相对电容率: CP=△C+Cor试样直径至少比测微计电极的直径小2r。在计算电容率时必须采用试样的真实厚度h和面积A。2.取去试样后减少测微计电极间的距离来替代试样电容CP=Cs-Cr+Cor试样直径至少比测微计电极的直径小2r。在计算电容率时必须采用试样的真实厚度h和面积A。3.并联一个标准电容器来替代试样电容当试样与电极的直径同样大小时,仅存在一个微小的误差(因电极边缘电场畸变引起0.2%?0.5%的误差),因而可以避免空气电容的两次计算。CP=△C+Coh试样直径等于测微计电极直径,施于试样上的电极的厚度为零。表3电容率和介质损耗因数的计算——不接触电极 1——测微计头;6——微调电容器;2——连接可调电极(B)的金属波纹管;7——接检测器;3——放试样的空间(试样电容器M1;8——接到电路上;4——固定电极(A);9——可调电极(B)。5——测微计头;图1 用于固体介质测量的测微计——电容器装置单位为毫米 1——内电极;1——把柄;2——外电极;5——棚硅酸盐或石英垫圈;3——保护环;6——硼硅酸盐或石英垫圈。图2 液体测量的三电极试验池示例 注满试验池所需的液体量大约15mL1——温度计插孔;2——绝缘子;3——过剩液体溢流的两个出口。图3 测量液体的两电极试验池示例 1——温度计插孔;2——1mm厚的金属板;3——石英玻璃;4——1mm或2mm的间隙;5——温度计插孔图4 液体测量的平板两电极试验池
    留言咨询
  • 1.闪光融合频率计/亮点闪烁仪/BD-II-118操作使用 一个频率较低的闪光刺激会产生忽明忽暗的感觉,称光的闪烁。随着光的频率不断增加,闪烁感觉就会逐渐消失,最后变成一个稳定的光,这称光的融合。感到光的融合时闪光的最低频率和感到光闪烁时闪光的最高频率的平均数叫做闪光融合临界频率。闪光融合频率计又称亮点闪烁仪,其可以测量闪光融合临界频率,确定辨别闪光能力的水平,即视觉时间的视敏度。还可以检验闪光的色调、强度、亮黑比以及背景光的强度发生变化时对闪光融合临界频率的影响。视敏度是眼睛的一种基本功能,可作为视觉疲劳及精神疲劳的一种指标。不同状态的人,闪光融合频率的差异较大。闪光融合频率越高,表示大脑意识水准也越高。人体疲劳时,闪光融合频率降低。因此,测定人的闪光融合频率是测量人体疲劳的一种常用方法。一般常用闪光融合频率的日间和周间变化率作为疲劳指标。闪光融合频率计是心理学实验及人员选材方面常备的仪器。仪器频率控制采用计算机技术,闪烁频率精度高,稳定性好,操作方便。采用一体设计,结构简单。 一、主要技术指标1、亮点闪烁频率:4.0---60.0Hz,0.1Hz分档可调,数码电位器调节。三位数字显示,误差小于0.1Hz;2、亮点颜色:红、黄、绿、蓝、白5种可选;亮点直径:φ2mm;3、亮点观察距离:约500mm;4、背景光:白色,强度分四档可调1、1/4、1/16与全黑;5、亮点波形:方形;6、亮点闪烁亮黑比:1:3、1:1、3:1三档;7、亮点光强度七档:1、1/2、1/4、1/8、1/16、1/32、1/64;8、外形尺寸:300×150×250mm;9、工作条件:电源:交流220V±10%,50Hz±1Hz;相对湿度:≤85%10、功耗:5W 二、仪器组成1、被试观察部分由一个观察筒,调节亮点闪烁频率的“频率调节”旋钮和一个“选色”旋钮组成;2、主试操作面板上方有亮点闪烁频率的三位数字显示,在面板下部从左边分别是闪光亮点“强度”、亮点“亮黑比”、“背景光”亮度三个旋钮。 三、使用方法1、接通电源,电源开关在仪器的左前侧。初始的亮点闪烁频率为10.0Hz。2、令被试双眼紧贴观测筒,观察位于视觉中央的亮点。3、先将背景光的强度、亮点的光强、亮黑比以及亮点的颜色都选择固定在所需位置上,然后再测定亮点闪烁的临界频率。4、在测定闪烁临界频率时,频率的快慢都由被试调节。转动仪器右侧亮点闪烁“频率调节”旋钮,相应频率将增加或减少。调节过程中亮点闪烁实时变化。频率调节范围4.0----60.0Hz。5、当被试开始观察时看不到亮点在闪烁,则通过降低闪烁频率,使刚刚见到闪烁时立即停止,记下这时显示的闪烁频率;如果开始时能见到亮点在闪烁,则将频率调快,刚刚看起来不闪烁(融合)时立即停止调节,记下其频率。在融合点附近可以反复测试,得出平均值。6、如检测亮点不同颜色的闪烁临界频率,则转动亮点“选色”旋钮,选定一种颜色。7、如检验亮点强度对闪烁临界频率的影响,则其它条件保持不变,在各种光强下测定闪烁临界频率。检验其它条件对闪烁临界频率的影响时亦仿此。 四、注意事项1、接通电源并打开电源开关后,若频率表不显示,则是电源没有接通,应首先检查电源插头、电源线、保险管和电源开关以及+5V稳压电源部分。2、仪器应放在干燥通风处。3、仪器长时间不用时,应每三个月连续加电4小时以上,当空气湿度较大时应每月连续加电4小时以上。2.数字信号场强仪 信号场强仪 场强仪 型号:HA/MS2008D 频率/频道指标频率范围: 46MHz~870MHz频道范围: 中国标准频道 1~56; 中国增补频道Z1~Z43频率精度: ±50ppm分 辨 率: 50KHz测量带宽: 280KHz±50KHz频率步距: 50KHz、100KHz、1MHz、10MHz、100MHz 电平测量测量范围: 30~120dBuV测量精度: ±1.5dB分辨率:  0.1dBuV检波方式: 峰值检波输入阻抗: 75Ω(不平衡TAC或F型接头) 3.土壤水分速测仪/土壤水分仪/土壤水分检测仪 型号:HAD-TDR100HAD-TDR 100是一款便携性非常好的土壤水分速测仪,可通过选配不同长度的测量探头来测量不同深度的土壤水分,探针有3.8cm、7.5cm、12cm和20cm四种可选。 技术规格:原理TDR(时域反射)范围0-饱和(体积含水量)精度±3.0% (当EC 2dS/cm和粘土含量30%)分辨率1.0%电池4节AAA碱性电池数据存储无数据存储功能通讯接口RS-232电池寿命大约可以使用12个月左右重量1.36 kg探头尺寸10.41cm×7.11cm×1.78cm读数表尺寸10.5cm×7cm×1.8cm探针尺寸直径0.5cm,间距3.3cm测量模式VWC和RWC 4.脆碎度测试仪/脆碎度检测仪 型号 HADCS-2B制药厂、药检部门 HADCS-2B脆碎度测试仪依据《中华人民共和国药典》2005年版的相关规定,用于检测非包衣片剂在生产、分装及储运过程中机械稳定性、抗磨性、耐碰撞性等物理特性。也可检测片剂包衣及胶囊的脆碎状况,广泛应用于制药厂、药检部门和医院生产单位。仪器同时符合行业标准《脆碎度检查仪》JB/T20105的各项规定。 主要技术指标:△圆筒数量: 2个△转速: 25转/分△旋转精度:±1转/分△计数方式:10圈~900圈任意设定△圆筒内径:286mm△圆筒深度:39mm△ 滑落高度:156mm△电源:220V50Hz△整机功率:40W△外形尺寸:长*宽*高 5.智能溶出测定仪/溶出测定仪 型号:HAD-8D 应用范围:用于检查药物片剂或胶囊剂等固体制剂在规定溶剂中溶出的速度和程度。 溶出测定仪主要技术指标: ▓搅拌浆摆动幅度: ≤0.5mm ▓转篮摆动幅度: ≤1.0mm▓转杆与溶出杯轴偏差:≤2mm▓调速范围: 20-200 rpm▓转速分辨率:1转/分▓水浴调温范围:室温-45▓温度分辨率:0.1▓控温精度:≤±0.3 ▓取样周期个数:可预置1-9个不同的取样周期。▓取样周期时间:每周期1-999min任选,倒计时。▓定时误差:±0.5min▓药典参数调用:2005年版《药典》溶出试验参数。▓电加热功率:1000W。? 6.温度黑匣子 温度记录仪 单路温度记录仪 HAD-L91-1 单路温度记录仪 内置USB通讯 ;内置温度传感器;独特的传感器仓设计; 测量更加精确;仪器小巧精致 ;适用于食品、药品、农业,科研,冷藏运输行业 测量参数:温度类 型:内置传 感 器:热敏电阻 NTC传感器测量范围:-40~70℃测量精度:±0.5℃有无显示:有分 辨 率:0.1℃记录容量:32000组(半小时记录一次可连续记录2年左右)记录间隔:2秒~24小时任意可调7.二氧化硫检测仪/在线式二氧化硫检测仪/固定式二氧化硫测定仪 HAD-SO2-3G电化学传感器 一、产品描述HAD-SO2-3G二氧化硫检测仪适用于各种工业环境和特殊环境中的二氧化硫浓度连续在线检测,仪器采用进口电化学传感器和微控制器技术,具有信号稳定,精度高、重复性好等优点,防爆接线方式适用于各种危险场所。仪器兼容各种控制报警器、PLC、DCS 等控制系统,可以实现远程监视,远程控制,远程报警,计算机数据存储、分析等功能。 二、产品特性:① 进口高性能电化学二氧化硫传感器,具有良好的抗干扰性能,使用寿命长达3年② 采用先进的微处理器技术,响应速度快,测量精度高,稳定性和重复性好③ 仪器具有:4-20mA/RS485信号输出,继电器输出,数据恢复,数据存储(选配)等功能④ 现场带背光大屏幕多参数LCD显示,直观显示气体浓度、类型、单位、工作状态等⑤ 独立气室,更换传感器无须现场标定,传感器关键参数自动识别⑥ 全量程范围温度数字自动跟踪补偿,保证测量准确性⑦ 全软件自动校准功能,本机共设标准三按键实现单人单点现场维护技术参数 三、技术参数:&bull 检测气体:二氧化硫(SO2)&bull 检测原理:电化学原理,检测方式为扩散或泵吸,长期连续工作&bull 安装方式:壁挂式、管道式(螺纹尺寸:M45X1.5mm)、流通式、泵吸式可选&bull 测量范围:0~1、10、20、100、200、500、1000、2000、5000、10000、50000ppm可选&bull 分 辨 率:0.01ppm(0~100ppm);0.1ppm(0~1000ppm);1ppm(1000ppm以上)&bull 精  度:≤±3%(实际浓度,更高精度视具体传感器而定)&bull 重 复 性:≤±1%&bull 零点漂移:≤±1%(F.S/年)&bull 响应时间:≤20秒(T90)&bull 恢复时间:≤20秒&bull 输出信号:用户可根据实际要求而定,最远可传输2000米(单芯1mm² 屏蔽电缆)    ① 两线制4-20mA电流信号输出(三线制可选)    ② RS-485数字信号输出,配合RS232转可在电脑上存储数据(选配)    ③ 2组继电器输出:无源触电容量220VAC 3A,24VDC 3A(选配)    ④ 报警信号输出:现场声光报警,报警声音: 90分贝(选配)&bull 连线方式:3/4″NPT内螺纹&bull 壳体材料:压铸铝,防爆防腐蚀 &bull 防护等级:IP65&bull 工作电源:24VDC(12-30VDC)&bull 工作温度:-20~50℃(特殊要求根据需要定制)&bull 工作湿度:≤95%RH,无冷凝(湿度90%RH,可配过滤器)&bull 工作压力:≤200Kpa&bull 尺  寸:170×140×80mm&bull 重  量:1.5Kg 8.笔式测振仪/测试笔 型号:HAD-S909Z-1D 概 述 HAD-S909Z-1D笔式测振仪是一种单参数振动检测工具,能测量由不平衡、不对中、松动和轴承齿轮故障等引起的机器振动。 HAD-S909Z-1D测量振动位移峰峰值,用于和ISO10816标准比较以便评估设备的整体振动状态. 1 产品特点测量振动位移峰峰值,用于和ISO标准比较,评估设备的整体振动状态测量数据自动保持无操作自动延时关机,低供耗单键控制,操作简单体积小,重量轻,一手可握配磁座和快门线,提高重复性和可靠性金属机壳,结实,抗干扰2 使用环境条件环境温度0℃~50℃相对湿度£ 85%无腐蚀性气体无强电磁场干扰和强振动、冲击源。 9.多参数水质检测仪/多参水质分析仪 型号:HAD900P-CN 产品特点 ■ 高性能多参数水质测量仪 ■ 测量范围: -2.000~20.000pH (±0.002pH) ■ mV: -1999.9~1999.9mV (±0.2mV) ■ 离子:0.01~19999ppm, mg/L, mol/L ■ 电导率:0.00~20.00mS (最大200mS, ±0.5% F.S) ■ TDS:0~10ppt (最大20ppt, ±1% F.S) ■ 盐度:0~10ppt (最大80ppt, ±1% F.S) ■ 电阻率:0~100MΩ (±1% F.S) ■ 溶解氧:0.00~20.00mg/L (±0.2mg/L) ■ %饱和度: 0~200% (±2%) ■ 温度范围:0~105 oC (±0.5 oC) 10立式压力蒸汽灭菌器/立式灭菌器 型号:BX3-YXQ-LS-70A 应用范围:灭菌器系列产品是利用压力饱和蒸汽对产品进行迅速而可靠的消毒灭菌设备,适用于医疗卫生事业、科研、农业等单位,对医疗器械、敷料、玻璃器皿、溶液培养基等进行消毒灭菌,是理想的设备。 产品特点:自控型技术:手轮式快开门安全连锁装置结构外壳、筒体、网篮均采用SUS304材料制成,耐酸,耐碱,耐腐蚀微电脑智能化自动控制压力安全联锁装置,超温自动保护装置自涨式密封圈,自动排放冷空气高低水位报警,断水自控超压自泄内循坏排汽式,带3升集气瓶融化温度60~98℃,融化时间范围0~999分钟保温温度40~60℃,保温时间范围0~999分钟灭菌终了可设自动排气、蜂鸣器提醒,自动停机三种模式控制:a.加热-灭菌-快排汽 b.加热-灭菌-慢排气c.加热-灭菌-不排汽选配:样品测试孔、打印机 技术参数:型号:BX3-YXQ-LS-70A容积:75L功率:3.5KW电源:220V±10% 50Hz±2%最高工作/设计温度:135℃/138℃最高工作/设计压力:0.22MPa/0.25MPa定时范围(分钟):0-120内腔尺寸(mm):Ф400×570提篮尺寸(mm):Ф360×280×2个外形尺寸(mm):600×500×1130 以上参数资料与图片相对应
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制