当前位置: 仪器信息网 > 行业主题 > >

高速三维仪

仪器信息网高速三维仪专题为您提供2024年最新高速三维仪价格报价、厂家品牌的相关信息, 包括高速三维仪参数、型号等,不管是国产,还是进口品牌的高速三维仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高速三维仪相关的耗材配件、试剂标物,还有高速三维仪相关的最新资讯、资料,以及高速三维仪相关的解决方案。

高速三维仪相关的资讯

  • 清华大学330万元采购单光子自适应高速三维显微成像系统,仅限国产
    8月24日,清华大学公开招标购买1套单光子自适应高速三维显微成像系统,预算330万元,仅限国产。  项目编号:清设招第2021172号  项目名称:单光子自适应高速三维显微成像系统  预算金额:330.0000000 万元(人民币)  采购需求:包号名称数量是否允许进口产品投标采购预算(人民币)01单光子自适应高速三维显微成像系统1套否330万元  设备用途介绍:实验需要对在体活细胞进行清晰地大范围亚细胞结构动力学过程观测,比如细胞器间的相互作用、胚胎发育过程、神经响应等等,必须能够高速获取大范围的三维荧光信号。  单光子自适应高速三维显微成像系统的成像方式极大的提高了成像速度及有效的解决了系统及样品的像差问题,同时大大降低了激光对样品的损伤,能够实现更长时间的活体观察,其图片能观察细微的差别,分辨亚细胞水平动力学及结构,成像质量非常高。  简要技术指标 :  1)基本配置:系统由以下主要模块组成  倒置荧光显微镜   多波段激光器   数据采集系统   图像处理系统。  2)技术要求:  系统分辨率:XY小于250nm,Z小于400nm   图像采集系统:支持活体哺乳动物三维图像采集   图像处理系统:专业处理器i9 10920,内存不小于128GB,固态硬盘不小于10T,显卡Nvidia RTX2080TI。  合同履行期限:交货时间:合同签订后5个月内  本项目( 不接受 )联合体投标。 开标时间:2021年09月14日 09点00分(北京时间)
  • 高速三维动态成像 苏州医工所在结构光照明超分辨显微成像仪器研制方面取得进展
    对于生物医学研究,著名物理学家理查德费曼有句名言:“...很多基础生物学的问题是很容易被回答的;你只是需要看到它们就够了”。这句话一定程度上说明了直接观察的光学显微镜对于细胞生物学、发育生物学、免疫学、病理药理学等生物医学研究的重要性。但是受衍射极限的限制,传统光学显微镜的分辨率理论上只能达到光波长的一半。近20年来,超分辨荧光显微成像技术的出现有效打破了光学衍射极限的束缚。基于单分子定位技术的超分辨显微镜(SMLM)和受激发射损耗显微镜(STED)以及结构光照明超分辨显微镜(SIM)等技术在众多课题组的努力下都得到了长足发展,尤其是结构光照明显微镜由于成像速度快、光毒性小、无需特殊荧光标记等优势,已成为生命科学领域尤其是活细胞成像中最受欢迎的技术手段。近期,苏州医工所李辉课题组围绕着结构光照明超分辨显微成像方法、高保真SIM重构算法、以及国产化的SIM显微镜研制等方面取得了一系列重要进展。   三维成像方法因可以获取到更多的生物样品信息而备受关注。但是现有的三维成像不可避免的带来离焦模糊和时间分辨率差的问题,很难用于对样品的快速三维动态成像。为了实现对厚样品的快速三维成像,李辉课题组发展了基于数字微镜阵列器件(DMD)和液体变焦透镜(ETL)的结构光照明层切显微技术,并开发了基于两张原始图像的层切成像算法。该方法将传统的三维层切成像的速度提高了数倍以上,课题组利用该技术对斑马鱼和大脑血管的心血管系统进行了高速动态成像,清晰地显示了心脏跳动期的收缩-舒张过程以及腹部血管的蠕动特性。相关成果以“Four-dimensional visualization of zebrafish cardiovascular and vessel dynamics by a structured illumination microscope with electrically tunable lens”为题发表在Biomedical Optical Express(2020)上,其中博士生陈冲为论文第一作者。   图1 基于两张正反图像的结构光照明层切算法(左);斑马鱼心脏跳动过程的快速三维成像(右)。   结构光照明超分辨成像技术在多种纳米尺度的亚细胞结构研究中已经得到广泛的应用。但是对于具有大动态范围的样本,例如聚集的细胞囊泡,样品中荧光较强的聚集性区域和亮度较弱的稀疏区域不能同时呈现。现有的SIM方法针对这种样品无法重建出高质量的图像。对此,李辉课题组提出了一种采用多重曝光采集的高动态SIM成像方法HDR-SIM,采集三组不同强度照明的SIM图像然后融合出一帧超分辨图像。用HDR-SIM,强度相差400多倍单个和聚集的荧光小球样本在同一张SIM超分辨图中可以同时观察到,并且对分辨率不会产生影响。在使用本方法观测不同尺度的细胞囊泡结构,单个小囊泡和大的囊泡聚集都可以同时获得清晰的分辨。相关成果以“High Dynamic Range Structured Illumination Microscope Based on Multiple Exposures”为题发表在Frontiers in Physics (2021)上,其中梁永为论文第一作者。   图2 高动态SIM成像原理(左);“聚集-单个”的荧光小球高动态SIM成像(右)。   在结构光照明成像过程中,超分辨图像重建算法尤为关键。SIM重建算法的一些固有缺陷造成超分辨图像中经常出现重构伪影,使得SIM图像的保真度经常受到质疑,并且图像重建时需要完成一系列复杂的参数设定,限制着普通用户对SIM技术应用。李辉课题组开发了一种基于点频谱优化的高保真SIM重建算法。该算法有效克服了常规SIM算法极易产生重构伪影且光学层切能力差的问题,对不同质量原始数据的处理均能获得具有极少伪影和良好光学层切的高质量超分辨图像,有效提高了SIM成像的保真度。同时,该算法对OTF失配和用户自定义参数不敏感,使用生成的理论OTF和较少的参数即可重构高质量SIM图像,降低了SIM成像对实验实施和后处理重构的高要求,提升了算法对普通用户的友好度。相较于几种传统的SIM算法, HiFi-SIM算法对多种不同图像质量、不同样品复杂度、不同图像来源(商用设备/自主搭建SIM系统)的原始数据进行重建, HiFi-SIM均展现出了最少的重建伪影和最优的图像质量。相关成果以“High-fidelity structured illumination microscopy by point-spread-function engineering”为题发表在国际光学类顶级期刊Light: Science & Applications (2021) 上,其中文刚为论文第一作者。   图3 高保真结构光照明超分辨成像重建算法HiFi-SIM(左);细胞结构HiFi-SIM与其他算法重建结果比较(右)。   李辉课题组自2014年以来一直专注SIM成像的技术创新、仪器研发和应用推广,开发了多种形式的结构光照明显微镜系统。最近,基于课题组最新的研究成果,研发了一套可集成于显微镜下层光路的结构光照明插件,具有结构紧凑、方便易用等特点。插件可配置国产倒置荧光显微镜,实现了SIM超分辨成像系统的国产化替代。首台机器已经于近期交付某大学用户进行试用。 图4 插件式结构光照明超分辨成像系统   以上工作得到了国家重点研发计划项目和国家自然科学基金委项目的支持。
  • 布鲁克发布Bruker全自动高速X射线三维显微成像系统(Micro-CT新品
    仅需按下启动按钮即可启动 μCT 快速桌面解决方案!超高速度、优质图像SKYSCAN 1275 专为快速扫描多种样品而设计。该系统采用一个功能强大的广角X 射线源(100 kV)和高效的大型平板探测器,可以轻松实现大尺寸样品扫描。由于X射线源到探测器的距离较短以及快速的探测器读出能力,SKYSCAN 1275 可以显著提高工作效率——从几小时缩短至几分钟,并保证不降低图像质量。SKYSCAN 1275 如此迅速,甚至可以实现四维动态成像。Push-Button-CT™ 让操作变得极为简单您只需选择手动或自动插入一个样品,就可以自动获得完整的三维容积,无需其他操作。Push-Button-CT 包含了所有工作流程:自动样品尺寸检测、样品扫描、三维重建以及三维可视化。选配自动进样器,SKYSCAN 1275可以全天候工作。灵活易用、功能全面除了 Push-Button-CT 模式,SKYSCAN 1275 还可以提供有经验用户所期待的 μCT 系统功能。所有测量都支持手动设置,从而确保为难度较大的样本设置最佳参数。即使在分辨率低于 5 μm 的情况下,典型扫描时间也在15 分钟以内。无隐性成本:一款免维护的桌面 μCT 封闭式 X 射线管支持全天候工作,不存在因更换破损的灯丝而停机的情况,为您节约大量时间和成本。特点:X射线源:涵盖各领域应用,从有机物到金属样品标称分辨率(最大放大倍数下的像素尺寸):检测样品极小的细节X射线探测器:3 MP (1,944 x 1,536)有效像素的CMOS平板探测器,高读取速度,高信噪比样品尺寸:适用于小-中等尺寸样品辐射安全:满足国际安全要求供电要求:标准插座,即插即用创新点:SKYSCAN 1275 专为快速扫描多种样品而设计。该系统采用一个功能强大的广角X 射线源(100 kV)和高效的大型平板探测器,可以轻松实现大尺寸样品扫描。由于X射线源到探测器的距离较短以及快速的探测器读出能力,SKYSCAN 1275 可以显著提高工作效率——从几小时缩短至几分钟,并保证不降低图像质量。SKYSCAN 1275 如此迅速,甚至可以实现四维动态成像。 Push-Button-CT™ 让操作变得极为简单 您只需选择手动或自动插入一个样品,就可以自动获得完整的三维容积,无需其他操作。Push-Button-CT 包含了所有工作流程:自动样品尺寸检测、样品扫描、三维重建以及三维可视化。选配自动进样器,SKYSCAN 1275可以全天候工作。 灵活易用、功能全面 除了 Push-Button-CT 模式,SKYSCAN 1275 还可以提供有经验用户所期待的 μ CT 系统功能。所有测量都支持手动设置,从而确保为难度较大的样本设置佳参数。即使在分辨率低于 5 μ m 的情况下,典型扫描时间也在15 分钟以内。 无隐性成本:一款免维护的桌面 μ CT 封闭式 X 射线管支持全天候工作,不存在因更换破损的灯丝而停机的情况,为您节约大量时间和成本。 Bruker全自动高速X射线三维显微成像系统(Micro-CT
  • 先临三维发布FreeScan Combo计量级手持三维扫描仪
    2023年3月29日,先临三维举办新品全球发布会,正式发布FreeScan Combo计量级双光源手持三维扫描仪。这一产品的发布,将进一步推进先临三维在工业测量领域的高精度三维视觉技术普及之路。创新、传承,FreeScan Combo在延续天远FreeScan系列三维扫描仪优势的基础上,再次进行创新,通过双光源的组合,进一步扩大了单款三维扫描仪的适用领域,给予用户更好的三维扫描体验。创新——一机多能,适用于更多扫描场景“蓝色激光+VCSEL”两种光源焕新组合,打造四种扫描模式,适用更多扫描场景。高速扫描模式:26线交叉蓝色激光,配合优化软件算法,快速获取样件完整数据;深孔扫描模式:1条单线蓝色激光,深孔扫描应对自如;精细扫描模式:7线平行蓝色激光,准确还原细微特征;无光扫描模式:采用VCSEL光源,扫描过程无可见光,人眼安全舒适,同时,在几何特征丰富的情况下,无需贴点即可高效获取工件三维数据。基于上述优势,FreeScan Combo计量级双光源手持三维扫描仪的适用范围更加广泛,用户可以通过实际扫描场景灵活选择扫描模式,高效获取完整三维数据。FreeScan Combo是FreeScan系列中身形最小的三维扫描仪,特别是在面对一些狭小空间时,灵活轻便,能够良好工作。同时,FreeScan Combo的镜头夹角进行了优化,在面对一些窄缝和深孔时,可以更加高效地获取完整数据。传承——延续优势,打造舒畅扫描体验FreeScan Combo作为天远FreeScan系列新成员,完美传承FreeScan系列“精益求精”、扫描高效、流畅等基因。精确入微,计量之选FreeScan Combo延续了FreeScan系列三维扫描仪的高精度优势,具有高精准度和高精密度(多次测量结果一致性高),精度高达0.02mm,精细模式下高达0.01mm。高速扫描,一气呵成FreeScan Combo高速扫描模式下26线蓝色激光同时工作,配合优化软件算法,扫描过程快速流畅。材质适应广泛,软件支持完整FreeScan Combo无惧黑色、高反光表面材质,减少喷粉预处理环节,缩短作业流程。此外,控制软件支持在线更新,扫描数据也可以一键导入主流三维检测和设计软件,贯通后续环节,大幅提升工作效率。“先临天远在工业计量领域已经沉淀了20年。我们始终怀揣求精务实之心,历经20年的深耕细琢,不断突破高精度三维扫描仪的应用边界。先临天远打造的是“全而精”的产品线,可以根据用户的不同应用需求提供最合适的设备。同时,考虑到有些用户具有多种扫描应用需求,我们也是在不断强化单款设备的功能,希望让这部分用户能够用一台设备就满足其不同的扫描需求,去年发布的FreeScan UE Pro多功能激光手持三维扫描仪,一扫俱全,小大由之,就是为用户提供了一种可适用于不同尺寸扫描场景的应用方案。那么FreeScan Combo的设计也是延续这一思路,通过双光源的组合,我们相信FreeScan Combo一定会为用户带来更精彩的扫描体验。”——先临三维3D数字化事业部产品经理创新、传承,先临三维也将持续“做专技术,做精产品,做好服务”,保持对“精度”的执着追求,以科技创新为驱动引擎,致力于使测量更精准、评估更科学、应用更智能、操作更便捷,为用户提供更加便捷易用的高精度三维视觉产品,为制造企业等提供强大的高精度三维视觉技术支撑,助力更多行业完成数“智”化升级。
  • Nature技术解析 | 3D高速纳米直写机在实现三维光学傅里叶曲面结构中的突破
    研究背景光栅和全息图是通过微纳结构表面的衍射来对光信号进行调制的。尽管这种作用方式历史悠久,但人们一直在相关领域不断的探索,以发展功能更为强大的应用。进一步的发展可以基于傅立叶光学来设计、构筑傅里叶面的微纳结构,以生成所需的衍射输出信号。在这种策略中,需要能够地调制波前,理想的样品表面轮廓应该包含正弦波的总和,每个正弦波具有明确的幅度,频率和相位。但是由于技术的局限,通常只能制备有几个深度别轮廓,无法获得复杂的连续“波浪”表面,从而限制了使用简单的数学设计而实现复杂的衍射光学效果。 研究亮点针对以上问题,苏黎世联邦理工的Nolan Lassaline博士等人,提出了一种简单而有效的方法来解决设计和制备间的差距,制备了任意数量的正弦波组成的光学表面。Nolan Lassaline等人使用扫描热探针t-SPL技术与模板法相结合的策略,制备了周期性和非周期性的光学表面结构。多元线性光栅允许利用傅里叶光谱工程调控光信号。同时,Nolan Lassaline等人克服了先前光子学实验的限制,制备了可以在同一入射角同时耦合红色,绿色和蓝色光的超薄光栅。更广泛地,Nolan Lassaline等人还分析设计并且复制了复杂的二维莫尔条纹,准晶体和全息图结构,展示了多种以前无法制备的衍射表面。Nolan Lassaline等人制备任意3D表面的方法,将为光学设备(生物传感器,激光器,超表面和调制器)以及光子学的新兴区域(拓扑结构,转换光学器件和半导体谷电子学)带来新的机遇。图1 一维调制傅里叶曲面实际效果图图2 二维调制傅里叶曲面实际效果图图3 周期性及准周期性傅里叶表面图案 图4 傅里叶表面的应用 高精度三维刻写技术之于本工作的重要意义苏黎世联邦理工的Nolan Lassaline博士使用NanoFrazor的高精度3D功能制备了一些特的3D表面傅里叶光栅,对光波进行调控,有选择地透射或者反射选定波长的光信号,使得光栅只和选定波长的光信号相互作用。这样就可以通过简单的数学模型计算和相关波长相互作用的傅里叶光栅来调控实现的光波输出。以前还没有可以完全控制每个傅里叶光波成分和光栅相互作用的好方法。一些实验尝试使用超表面,或者波浪形表面光栅,但是由于微纳制备技术的限制,(只能使用灰度光刻实现2阶或者多阶深度的表面光栅,或者使用激光干涉光刻制备类似傅里叶波形表面)不能实现对相互作用波长的完全选择。设计或者制备不的表面会和多个波长相互作用降低有用信号的成分并增加系统的复杂性。有鉴于高精度3D纳米直写之于本工作的重要意义,NanoFrazor的高销售工程师Wu博士特别与作者Nolan Lassaline博士进行了制备工艺方面的探讨和交流,其中Nolan Lassaline博士对于NanoFrazor 3D纳米结构高速直写机的评价如下:“In the field of diffractive optics, it has been known for a long time that wavy surface patterns would be ideal for manipulating light. However, due to the limitations of traditional fabrication techniques, it has not been possible to fabricate surfaces with arbitrary wavy profiles. This has ultimately limited the capabilities of diffractive optics, stimulating decades of research aimed at solving this problem. To overcome this limitation, we took advantage of the unique 3D patterning capabilities offered by the NanoFrazor. Amazingly, this allowed us to fabricate wavy metallic diffractive surfaces with an error of only 1.8 nm. We used this remarkable precision to fabricate a variety of previously impossible diffractive surfaces that show promise for both fundamental optics research and practical applications in photonics. We envision that this approach, made possible only by the NanoFrazor, will lead to advanced optical devices of the future. Beyond diffractive optics, these novel 3D surfaces open up many exciting possibilities for science and engineering across a number of different fields.”( 大意:在衍射光学领域,很久以来人们就知道用波浪状的表面操纵调控光信号是理想的。然而,由于传统纳米制备技术的局限,不能制备出由任意正弦波形组合轮廓的表面。这终限制了衍射光学器件的功能,也激发了数十年来旨在解决这一问题的科研。我们利用NanoFrazor提供的特3D图案化功能终于突破了这一限制。更为惊讶的是,我们能够制备任意波浪形的金属衍射表面,波形误差与设计波形仅为1.8 nm。我们利用NanoFrazor非凡的高精度制备出了各种以前无法实现的衍射表面,有望更深入地探讨基础光学研究和光子学实际应用的许多课题。我们可以预想,NanoFrazor的有加工方法将改革未来先进光学器件的制备。除了衍射光学领域之外,这些新颖制备的3D波浪状表面还将开启科学和工程学许多不同研究领域的令人兴奋的新课题。)图5 傅里叶表面的设计与制备 关于本文当中傅里叶表面的设计及制备流程:A傅里叶表面的设计:先将所要制备的表面轮廓的数学表达公式(这里是在一维的正弦曲线)转换为灰度位图。图中每个像素为10 nm×10 nm,其深度别介于0和255(8位)之间。位图在白色边框内的水平方向上为正弦函数,而垂直方向不变。位图中,白色边框中的像素设置为小深度别。B银基傅里叶表面的制备工艺流程:(1)利用热扫描探针在聚合物抗刻蚀剂层中刻写设计好的纳米结构;(2)利用热蒸发工艺在刻写后的聚合物表面沉积银,厚度大于500nm;(3)利用紫外光固化环氧树脂将显微镜载玻片固定于银层背面;(4)将玻片/环氧树脂/银堆叠结构剥离下来,从而完成制备C通过模板制备得到的银基傅里叶表面。文章作者Nolan Lassaline关于本工作的讲解视频请移步至Quantum Design中国子公司官网(https://qd-china.com/zh/news/detail/2009281332211)观看。关于本工作的更多详细信息,可参考如下信息:(1)原文链接:https://www.nature.com/articles/s41586-020-2390-x?utm_source=other&utm_medium=other&utm_content=null&utm_campaign=JRCN_2_DD01_CN_NatureRJ_article_paid_XMOL(2)Nolan Lassaline博士的视频介绍资料:https://www.youtube.com/watch?v=moGtRjjhbPk
  • 先临三维新品发布 | 开拓高精度三维扫描之疆域,赋以用户实际之所需
    3月31日,先临三维2022春季新品发布会成功举办,本次发布会以“扫描扩界,精彩可见”为主题,发布两款产品:→ 面向工业级用户的天远品牌FreeScan UE Pro多功能激光手持三维扫描仪→ 面向专业级用户的全新系列Transcan C可变分辨率彩色3D扫描仪高精度三维扫描体验再升级!先临三维持续以精益求精的态度和不断迭代升级的活力,和用户一起在3D数字化时代浪潮中携手并行,一往向前。 “精”——计量水平,精益求精工业级设备,为您提供可靠的工业测量结果 工业级产品新成员—— 天远FreeScan UE Pro多功能激光手持三维扫描仪 FreeScan UE Pro作为天远FreeScan UE系列的新成员,在保持FreeScan UE高精度、稳定的重复性精度以及轻量化设计的同时, → 其独特优势在于:三种扫描模式1.高速扫描,26条交叉激光线,210万点/秒的扫描速度,快速获取样件的整体数据;2.精细扫描,5条平行激光线,加上高分辨率相机,完整抓取工件细小特征;3.深孔扫描,1条单线激光线,获取深孔数据,获取深度达深孔直径的3倍左右。 内置双目摄影测量系统无需布置编码点,快速锁定大场景目标框架空间位置,实现大体积物体三维扫描全局精度控制。- 高速扫描 -- 扫描细节数据 -- 深孔扫描 -- 路亚艇(长6.38米,宽2.46米)三维扫描数据 -由此,FreeScan UE Pro实现了一扫俱全,小大由之,小到空气开关外壳装配孔,大到飞机,均可帮助客户快速获取准确、完整的高精度三维数据,为用户提供可适用于不同尺寸扫描场景的应用方案。 “在工业级三维扫描应用中,我们拥有天远FreeScan系列、OKIO系列等高精度三维扫描仪以及DigiMetric® 摄影测量系统,能够为客户提供针对不同应用需求的三维扫描技术支持。同时,我们发现,在一些应用场景中,客户需要将这些功能融合于一台设备,来高效地完成作业,基于此,我们研发了FreeScan UE Pro,支持多功能使用 。同时在设计中,我们采用的是双目摄影测量的方式,无需编码点,减少了客户的准备时间,帮助客户提高工作效率,享受良好的应用体验。”——FreeScan UE Pro研发经理 李经理 “彩”——彩色纹理,须眉毕现专业级设备,为您准确还原彩色三维数据 专业级产品新成员—— Transcan C可变分辨率彩色3D扫描仪 Transcan C是由先临三维基于高精度3D数字化技术研发的一款主打“可变分辨率”的彩色3D扫描仪。高品质彩色三维数据,可用于产品设计、虚拟展示、数据存档等多个应用领域。 → 其独特优势在于:1200万像素彩色专业相机,高度还原物体色彩纹理信息可调节扫描范围,灵活切换扫描范围,匹配不同物体扫描需求可变混合分辨率,高中低三种模式自由选择,重现物体精致细节“2021年是‘元宇宙’元年,这也预示着下一阶段互联网将走向3D图形化,但想要拥有极高的沉浸式体验,就需要构建一个无限逼近现实世界的虚拟场景。专业级的三维扫描作为这一应用的底层技术,也需要不断升级,以获取更好的实物彩色三维数据。基于此,先临三维研发Transcan C,拥有1200万像素彩色专业相机,能够帮助用户获取更好的色彩纹理信息。在研发过程中,研发人员为了提升设备的易用性,设计了多范围自由切换和可变混合分辨率,帮助客户能够更加灵活、高效地应用。”——Transcan C产品经理 何经理 先临三维专注3D数字化技术10余年,致力于高精度3D数字化技术的普及化应用。不管是工业级还是专业级设备,先临三维不断丰富自身产品线的同时,始终将“为用户创造价值“放在首位。这两款产品,是先临三维基于客户实际使用需求设计研发,满足了不同领域用户对于三维扫描仪功能特征以及应用场景的多样化需求。FreeScan UE Pro 预约通道Transcan C 预约通道扫描扩界,精彩可见。先临三维也将持续升级设备,完善产品线,以稳定高性能的设备+全球本地化服务+细分领域的深入推广,让更多的客户能够更好地使用高精度3D数字化技术!
  • 7693万 川大智胜光三维测量仪器专项获批
    川大智胜2013年11月15日公告,公司近日收到国家科学技术部批复的国家重大仪器设备开发专项项目任务书。公司申请的&ldquo 高速高精度结构光三维测量仪器开发与应用&rdquo 已批准立项。此次获批项目总预算7,692.94万元,其中国家专项拨款3,540.00万元,公司自筹资金4,152.94万元。项目建设期5年。项目总体目标:研发具有自主知识产权、功能健全、质量稳定可靠高速高精度结构光三维测量成套仪器等。   公司是我国空管自动化行业唯一的上市公司,占据了国内航管雷达模拟机和程序管制模拟机市场95%以上的份额。近几年我国机场的新开工建设和改扩建建设都进入高速发展期,对空管自动化市场带来了发展空间,&ldquo 十二五&rdquo 期间,低空领域的开放和通用航空的发展将是大势所趋,公司业务或迎来集中爆发期。公司在图像图形及模式识别方面具有很深厚的技术积累,可以逐步将空管领域形成的技术、理念和方案,应用到地面交通管理系统中去,随着我国陆路交通的发展,公司的智能交通业务也处于快速发展期。此次获批的&ldquo 高速高精度结构光三维测量仪器开发与应用&rdquo 项目无论是应用于空管,还是地面交通管理,都有相对广阔的市场前景,随着项目未来推进,不仅有助于公司深化产业链,打造新的竞争优势,同时也将对公司业绩提供持续的增长空间。
  • 三维扫描仪新品全球发布——思看科技NimbleTrack灵动式三维测量系统
    新品全球首发!思看科技NimbleTrack灵动式三维扫描系统!2024年4月9日,思看科技(SCANTECH) 正式发布NimbleTrack灵动式三维扫描系统。NimbleTrack集全无线、不贴点、双边缘计算、一体成型架构于一身,精准驾驭中小型场景动态三维测量,领跑工业计量“无线”新时代!灵动式三维扫描系统NimbleTrack,轻巧身型,自在随行,集全无线、多功能等超凡性能于一身,精准驾驭中小型测量场景,成就绝妙之作。其扫描仪和跟踪器深度集成高性能芯片与嵌入式电池模组,实现了全域无线测量和高速稳定的数据传输,开启工业计量智能无线新时代。整套系统巧妙融合了思看科技的自研生态圈,多种功能形态随心变幻,万般场景灵活应对,以极致技术成就极致性能。轻装上阵 即开即扫NimbleTrack超轻型机身,以极致细节重构性能想象,解锁性能美学的超然进化实力。跟踪器仅重2.2kg,身长57cm,恣意穿梭于各类场景,轻装上阵;扫描仪仅重1.3kg,单手掌控游刃有余,轻松完成长时间测量任务。标配一体式便携安全防护箱,兼顾轻型化与紧凑型,容纳万象,灵动出鞘,带上它,即开即扫,尽显轻盈畅快之感。一体成型 稳如堡垒扫描仪采用全新的碳纤维框架一体成型技术,兼备轻量化和高强度性能,在加工工艺上颠覆了传统组装式框架的装配技术,实现了超高结构稳定度和超强温度稳定性,使得一次校准即可长时间内保持良好的精度范围,让每一次扫描都尽在掌控。双内置电池 真正全无线全栈无线三维扫描系统,无线数据传输、零线缆供电,可满足无电、用电不便等应用场景,开启工业计量无线新时代。扫描仪隐藏式电池仓设计,优雅无束缚;跟踪器双循环电池仓设计,供电不间断,无线转站更顺畅。双边缘计算 性能狂飙扫描仪和跟踪器均搭载新一代高性能边缘计算模组,运算效率跃升至全新高度,解锁120 FPS高帧率流畅测量体验,每一帧都行云流水,驾驭自如。扫描时无需外接电源、贴点,与市面上现有的手持式三维扫描仪相比,整体扫描流程大幅简化,复杂场景更显从容,是当之无愧的效率担当。计量基因 精益求精 依托思看科技计量级产品成熟强大的系统架构和自研算法,最高精度可达0.025mm,在标准跟踪范围内,体积精度可达0.064 mm,精准有实力,还原肉眼可见的细微处。万般场景 挥洒自如NimbleTrack三维扫描系统小巧灵动,轻盈穿梭。面对狭小空间或视角遮挡处,扫描仪可无线单独使用,实现最高0.020 mm的高精度扫描。面对大范围测量场景,跟踪器即刻化身远距离红外标记点扫描利器,精准把控全局精度。智能边界检测模块可选配智能边界探测模块,利用高性能灰阶边缘算法,自动采集孔、槽、切边等特征的三维数据,快速获取高精度的尺寸和位置度信息。i-Probe500 跟踪式测量光笔面对隐藏点或基准孔等难以触达之处,可选配便携式测量光笔i-Probe,设备支持有线或无线传输,为精密测量提供全方位的数字化解决方案。多台跟踪器级联支持多台跟踪器级联工作,大幅扩展扫描范围,有效应对大型工件扫描场景。搭载自动化设备 搭载全新定制化三维扫描仪,为自动化解决方案量身定制装夹方式,使其更加适配各类型机器人;360度均匀分布的标记点岛结构,实现全方位精准跟踪,打造高效的自动化批量检测系统。拓展应用生态NimbleTrack是工业级三维扫描领域真正实现全无线测量的产品,凭借智能无线、不贴点、高精度、高便携性等优势,适用于各类应用场景,尤其是尺寸在40mm-2000mm之间的中小型工件,如汽车四门两盖、内饰座椅、压铸件以及新能源电池盒等。在航空飞行器检修和文物数字化等不适宜贴点的情况下,NimbleTrack表现出色。此外,它也非常适合于车间现场,特别是那些无法方便连接电源或电缆的环境,比如野外测量石油管道的腐蚀情况以及高空作业等。关于思看科技 思看科技是面向全球的三维视觉数字化综合解决方案提供商,主营业务为三维视觉数字化产品及系统的研发、生产和销售。公司深耕三维视觉数字化软硬件专业领域多年,产品主要覆盖工业级高精度和专业级高性价比两大差异化赛道,主要产品涵盖便携式3D视觉数字化产品、跟踪式3D视觉数字化产品、工业级自动化3D视觉检测系统和专业级彩色3D视觉数字化产品等。公司产品广泛应用于航空航天、汽车制造、工程机械、交通运输、3C电子、绿色能源等工业应用领域,以及教学科研、3D打印、艺术文博、医疗健康、公安司法、虚拟世界等万物数字化应用领域,致力于提供高精度、高便携和智能化的三维视觉数字化系统解决方案,打造三维视觉数字化民族品牌。
  • 探索三维扫描世界的无“线”自由,先临三维FreeScan UE Pro2全新上市
    矢志于精益求精与持续创新,先临三维于5月7日强势推出工业计量全新力作——FreeScan UE Pro2无线高速激光手持三维扫描仪。此番创新融合了嵌入式边缘计算模块,实现无线传输功能,引领三维扫描领域迈向一个无“线”自由的新境界。新升级:无线自由,便携高速拓展扫描边界在复杂的工业环境挑战下,尤其是在处理大型工件的精密测量,以及应对密集生产空间限制时,FreeScan UE Pro2凭借无线传输技术的革新应用脱颖而出。这款新品借助内置的嵌入式边缘计算模块与灵活的移动电源支持,可以更加游刃有余地获取高精度三维数据。作为一款无线激光手持三维扫描仪,FreeScan UE Pro2以无线传输的便携设计,为用户带来了前所未有的操作自由。不论是攀爬至高难度的作业位置,还是穿梭于狭窄空间,用户均能够顺利完成高质量的扫描任务。FreeScan UE Pro2重新定义了扫描设备的便携性与灵活性,助力用户轻松探索以往难接近的扫描区域,为工业测量开启了全新的视野。值得一提的是,FreeScan UE Pro2携手新升级的FreeScan扫描软件,共同打造了高效便捷的扫描体验。在实际操作中,该软件实现了“所见即所得”的直观效果,扫描数据以实时网格的形式在软件中呈现,节省了点云封装时间,实现STL数据的快速导出,从而显著提升扫描工作的整体效率。延经典:精度领航,一机多能助力工业测量FreeScan UE Pro2搭载了共计58束激光线,集成新一代双目摄影测量技术,通过精心构建的四种测量模式,专为应对多样化的工业测量挑战而生。其中,高速扫描模式利用50线交叉蓝色激光,迅速获取物体全局形态,提高扫描效率;精细扫描模式依托7条平行蓝色激光的精准作业,捕捉工件的每个微小特征;深孔扫描模式采用单一蓝色激光线束,完成精确的内腔测量;在摄影测量模式中,通过快速准确锁定扫描对象的框架位置,确保大体积物体的全局精度控制。承袭FreeScan系列“精益求精”的产品基因,FreeScan UE Pro2坚持先临天远在高精准度和高精密度上的严格要求,凭借0.02mm的计量级精度,满足工业领域对精密测量的需求。END从FreeScan Combo以小巧身形拓宽单个三维扫描仪的应用边界,到FreeScan Trio通过原创智能自定位技术实现不贴点激光扫描的突破,先临天远在技术创新道路上的持续深耕。此次,FreeScan UE Pro2的面世,不仅充分展示了先临天远的锐意创新,更是对工业4.0时代客户需求的深刻理解与回应。全新升级,用无“线”自由之名,邀请全球用户共同探索三维世界的新维度,体验出色的灵活性与作业效率;延续经典,携精准、高效、全面的三维数据获取能力,先临天远将继续为工业4.0时代下的精密制造、尺寸质量控制、产品设计等关键环节,构建稳固的测量基石,助力企业精准迈入智能制造的新纪元。
  • 6785万元 中航三维测量仪重大仪器专项获批
    日前,国家科学技术部发布了《科技部关于2013年度国家重大科学仪器设备开发专项项目立项的通知》,由中航工业科技与信息化部组织中航高科技发展有限公司(以下简称:中航高科)牵头承担的&ldquo 全视角高精度三维测量仪的开发和应用&rdquo 项目获得批复,这是中航工业首次获批国家级科学仪器开发和推广应用类项目。项目成功获批是中航工业基础技术板块践行&ldquo 科技立业&rdquo 与&ldquo 创新兴业&rdquo 发展方略、构建国际化开放协同科技创新体系的里程碑式进展。   该项目计划研究周期3年,总经费6785万元。中航高科作为项目牵头单位,以中航工业北控所为第一技术支撑单位,联合德国弗劳恩霍夫应用研究促进协会及哈尔滨工业大学、天津大学、北京交通大学、香港科技大学等高校,依托中航工业强度所、北京空间机电研究所、中国电科38所等应用单位,搭建产学研用一体的协同创新平台,开展仪器研制、工程化、产业化等工作。   据了解,国家重大科学仪器设备开发专项旨在提高我国科学仪器设备的自主研发和制造能力,支撑科技创新,服务经济建设和社会发展。&ldquo 全视角高精度三维测量仪的开发和应用&rdquo 项目针对航空航天、大型雷达等重要应用需求,旨在攻克超高速、高分辨率线阵列视觉传感器和核心测量算法,研发具有实时、非接触、多点同步等功能的大尺寸精密测量仪器,建立视觉三维测量仪器的研发基地、生产基地和系统集成验证中心,打破国外技术垄断和仪器封锁,服务于我国大型工业装备的研发和制造。   该项目前期经过了由国家科学技术部、中国航空工业集团公司以及第三方技术咨询、非技术内容评审、综合评议、预算评估和综合决策等多方面论证。中航工业科技与信息化部和中航高科高度重视,充分利用集团内外部资源,精心策划并组织专家审查把关,推动落实项目的立项论证工作。
  • 第一代三维牵引力显微镜开发完成
    近期,中国科学院生物物理研究所研究员李栋课题组、牛津大学教授Marco Fritzsche课题组和伦敦大学学院博士后Emad Moeendarbary课题组合作,在Nature Communications上,同期发表题为Astigmatic traction force microscopy (aTFM)和Two-dimensional TIRF-SIM-traction force microscopy (2D TIRF-SIM-TFM)的研究论文。研究人员提出了两种新型生物力显微成像方法:像散牵引力结构光照明超分辨显微镜(aTFM-SIM)和二维全反射结构光超分辨牵引力显微镜(2D TIRF-SIM-TFM),可对细胞生命活动过程中与周围环境的相互作用力进行二维或三维、高速、长时程、超分辨率观测,并利用这两种技术研究了大鼠嗜碱细胞白血病(RBL)细胞免疫激活和哺乳动物细胞迁移等过程中的作用力,以及其与细胞内微丝骨架动态形变的关联。生物力学(mechanobiology)是研究生命活动中相关力学特性的学科。细胞的生物力学特性与生命活动的一些功能相关,如肿瘤免疫过程、器官的衰老、皮肤和伤口愈合、血管形成、淋巴功能、骨骼、神经元和眼睛活动等生命过程。这些微观力学过程通常发生在亚微米、皮牛和亚秒尺度。牵引力显微镜(traction force microscopy)是最广泛应用于生物力学研究的技术之一,其利用弹性物质表面的荧光微球探针观测细胞和弹性物质互作过程中的微观作用力。然而,传统的牵引力显微镜受限于获取微球位移的精度和速度,只能以稀疏的荧光微球作为探针进行慢速的微米尺度二维观测,应用范围受限。针对传统牵引力显微镜只能二维观测的缺点,基于李栋课题组开发的三维结构光超分辨显微镜(3D-SIM)对荧光微球探针和生物样品进行超分辨观测,高精度确定荧光微球的三维位置,李栋和Marco Fritzsche团队合作,已开发完成第一代三维牵引力显微镜(3D-SIM-TFM,Nano Letters,2019, 19(7): 4427-4434)。由于3D-SIM-TFM通过多层扫描得到微球的三维位置坐标,三维生物力测量的速度依仍受限。针对该问题,研究团队提出基于柱透镜像散的力追踪显微成像方法aTFM-SIM(图1)。aTFM-SIM无需机械扫描仅单次曝光即可高精度追踪荧光微球探针的三维位置,从而计算出细胞表面三维作用力分布。aTFM-SIM的时间分辨率和轴向力追踪精度比3D-SIM-TFM分别提高5倍和10倍。研究团队进一步利用aTFM-SIM以高时、空和力精度观测了RBL细胞的免疫反应过程(图2),以及宫颈癌细胞(HeLa)的贴壁伸展过程。aTFM-SIM可有效研究微米尺度、秒量级和几十皮牛大小微观力学互作过程,但是生命活动过程中也存在大量更快速和更微小的微观力学作用,并且使用二维成像也能观测部分生命活动过程。为了进一步提升观测的时空精度,研究人员使用全反射结构光超分辨显微镜(TIRF-SIM)和牵引力显微镜相结合的方式,开发出2D-TIRF-SIM-TFM显微成像方法;利用粒子图像测速(PIV)算法取代传统的单颗粒追踪算法分析荧光微球探针的位移,可分析更密集的荧光微球探针,微球密度提升15~20倍,最终可有效探测几十纳米尺度、亚秒量级和皮牛大小的微观力学互作。和传统牵引力显微镜相比,2D-TIRF-SIM-TFM的空间和时间分辨率分别提升2倍和10倍以上。研究人员观测发现,2D-TIRF-SIM-TFM可有效解析原代鲑鱼角质细胞迁徙过程中的类旋涡状动态互作,而传统牵引力显微镜却不能(图3)。论文1(aTFM-SIM)的共同通讯作者为Emad Moeendarbary、李栋和Marco Fritzsche,生物物理所副研究员李迪、牛津大学博士后Huw Colin-York和博士生Liliana Barbieri、伦敦大学学院博士后Yousef Javanmardi为论文的共同第一作者,生物物理所博士后郭玉婷为论文第二作者。论文2(2D-TIRF-SIM-TFM)的共同通讯作者为李栋和Marco Fritzsche,牛津大学博士生Liliana Barbieri、博士后Huw Colin-York和博士后Kseniya Korobchevskaya为论文的共同第一作者,李迪为论文第二作者。研究工作得到国家自然科学基金委、科学技术部、中科院、中国博士后科学基金的资助。  论文链接:1、2图1.aTFM-SIM生物力测量方法示意图图2.aTFM-SIM活细胞成像观测RBL细胞免疫反应过程中的生物力,及其与微丝动态形变的关联图3.原代鲑鱼角质细胞迁徙过程中的微小位移的观测结果,2D-TIRF-SIM能清晰观测到旋涡状的作用力产生过程
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 中国学者开发小型化在体实时三维显微成像设备
    “为了更关键的可行性验证,我们需要直接在人体上采集活体成像数据。不过毕竟仪器还处于实验室里的工程样机阶段,搬去临床科室的条件尚不成熟。这时候伊丽莎白希尔曼 (Elizabeth M. C. Hillman)教授当仁不让地站出来,成为了 Medi-SCAPE 系统的第一位志愿者。”中国科学技术大学特任研究员梁文轩回忆道,“这样的成像实验我们至少做了三次,每次都持续三四个小时,全都是希尔曼 教授自己做受试。因为她坚持表示,在充分验证安全性之前,必须由她自己承担风险。”梁文轩博士(图片来源于网络)2022 年春季,他选择回国加入中国科学技术大学。在此之前,其在美国哥伦比亚大学祖克曼研究所从事博士后研究。针对临床对在体实时三维病理学显微成像的需求,他研制了小型化的扫掠共焦对准的平面激发(swept confocally-aligned planar excitation,SCAPE)原型系统,并通过实验探索了其在实时在体病理学成像领域的应用潜力。2022 年 3 月 28 日,相关论文以《高速光片显微镜用于原位获取活体组织的体积组织学图像》(High-speed light-sheet microscopy for the in-situ acquisition of volumetric histological images of living tissue )为题发表在 Nature Biomedical Engineering 上 [1]。图丨相关论文(来源:Nature Biomedical Engineering)实时在体三维病理学成像的需求组织病理学在医院各科室的疾病诊疗中应用广泛,是包括各种癌症在内的绝大多数临床疾病的诊断金标准。常规的组织病理学检查首先需要活检取材,即通过开放式活检、内窥镜活检、穿刺活检等方式,在(疑似)病变区域切取小块组织样本,然后将该组织样本送检病理科,之后经过固定、脱水、浸蜡、包埋等一系列处理步骤制成病理切片,并将其放在光学显微镜下,观察组织的微观结构与细胞形态,从而分析和获取相关的病理学诊断信息。不过,需要说明的是,这套传统的标准流程也存在一定的局限。首先是得到病理准确结果的等待时间长,至少要十几个小时。后来临床中发展出了术中冰冻病理切片,简化了组织处理的步骤,但依然需要大概 20 分钟,所以无论是常规的组织病理还是术中冰冻病理,都不适合需要实时诊疗反馈的场景。其次,活检取材加病理学切片观察本质上是离体的观测手段,难免会切除正常组织,影响患者体验和术后恢复。此外,离体的活检组织会失去其在体时的代谢和功能动态,而这些信息却对判断活体组织的状态和病变程度来说颇具价值。因此,需要探寻一种更为理想的解决方案。比如,研发一种在体、原位的光学显微成像方法,在不切除组织的情况下,能够直接可视化活体组织的三维微观结构乃至其功能动态,给医生提供实时或者至少是即时的组织病理学级别的图像信息。这样既可以在肿瘤切除手术中为医生提供实时的诊断反馈,推动提升手术的精准度和疗愈率,也可以在诸如早癌筛查、治疗随访等临床场景中,辅助医生更准确、更快速地评估待探查组织的健康或病变状况,及时采取相应的诊疗措施,在保证检测准确率和灵敏度的前提下,尽量减少对正常组织的损伤,最终改善诊疗效率和患者体验。据介绍,临床上现有的各种手术显微镜和内窥镜,大多是基于宽场照明的反射光显微镜,只能拍摄组织表面的形态,无法可视化皮下(或黏膜下)的组织形态。因此,要想在不切片的前提下直接获取厚生物样本(即使仅有几十微米厚)的三维层析图像,也即实现对原位在体组织的三维显微成像,需要开发具有光学层析能力的三维光学显微成像方法。过去几十年来,具备光学层析能力的活体显微成像技术取得了诸多进展,诞生了多种不同的成像机制。其中,与病理学显微成像密切相关的主要有两大类。第一类是基于“点扫描光学层析”的显微成像,典型代表包括共聚焦(反射或荧光)显微镜、双光子荧光显微镜等。但其成像速度不足,易受活体组织运动的影响,难以实施大范围或者三维扫描成像。第二类是光片荧光显微镜,也被称为层状光选择照明显微镜。但由于其狭窄的样本空间,这种显微镜不适用于临床场景的活体组织成像。所以,理想的适合于实时在体病理学成像的显微成像技术应该具备以下几个方面的特征。第一,能够实现“无需切片、胜似切片”的三维成像效果的光学层析能力。第二,微米级别的空间分辨率。第三,可以兼容不同的组织形状和前视式成像架构的开放的样本空间。第四,拥有尽可能高的三维体积成像速度,以有效对抗活体组织运动的干扰,使得快速、大范围、三维全景成像成为可能,为临床诊疗提供更丰富、更全面的图像引导。探索 SCAPE 显微术于实时在体病理学成像领域的应用据介绍,基于前述的临床需求和现有成像技术的局限,在导师的指导下,他所在的团队启动了将 SCAPE 显微成像技术应用于实时在体病理学成像的探索,并将此研究项目称之为 Medi-SCAPE。作为扫描斜光片三维显微成像方法的代表,SCAPE 显微术由希尔曼 课题组于 2015 年率先提出。简单来说,其基本的工作原理是,使用单个主物镜既产生(相对于主光轴)倾斜的激发光片,又收集光片所激发的荧光,即同一个物镜以“双肩挑”的方式既用作激发物镜也用作探测物镜,从而将传统光片显微镜的正交双物镜架构简化为 SCAPE 的单物镜前视式架构。在继承正交光片显微成像的光学层析能力的基础之上,SCAPE 显微镜的第一个优势是提供了开放的样本空间。无论是线虫、斑马鱼、果蝇等模式动物,还是人体的器官和组织,只要能放置于主物镜前面,就可以实施三维成像,视野范围大约为 0.8 毫米见方 0.3 毫米深。其单物镜前视式架构与宽场手术显微镜和内窥镜一致,天然适合临床中的实时在体成像需求。不仅如此,SCAPE 显微镜还巧妙引入了远程光片扫描与去扫描机制,整机除了扫描振镜以外,没有其他的机械运动部件,可以在主物镜与样本保持相对静止的前提下完成高速三维成像,极大程度地提升了二维帧率和三维体积率的上限。在实际中,受限于科研级互补金属氧化物半导体相机的帧率,现行 SCAPE 显微镜的体积率大约在 10 体积/秒左右,相较点扫描模式而言,已经有数量级的提升,这是 SCAPE 显微镜的另一个重要优势。尤为关键的是,SCAPE 的三维体积率优势,使得在体大范围三维全景成像成为可能。医生不再需要采集规则排布的三维体数据阵列,而是可以自由地操控 SCAPE 显微探头,在待探查组织的表面随意游走。即使存在活体组织与探头之间的无规则轴向相对运动,SCAPE 的高速三维体积率仍能保证相邻的两组体数据块之间有足够的三维空间重叠,从而支持后期通过三维配准和融合算法“去抖动”,实现“漫游式”扫描三维全景成像。“这对于肿瘤边界判别、早癌筛查等临床应用尤为关键,也是我们希望将 SCAPE 显微镜推向临床应用的重要动力和信心来源。”他表示。据其介绍,SCAPE 显微成像技术问世以后,首先在生命科学领域的研究中显示了强大的潜力,在基础科学和技术创新两方面,都取得了一系列重要进展。在以往的成像实验中,样本通常是表达了荧光蛋白或钙离子指示剂的转基因培养细胞或者模式动物,其拥有相对较强的荧光信号。但在临床活体成像应用中,显然不能在人体细胞中表达荧光蛋白,而临床上获批允许用于人体的荧光染料的种类和特异性也有限。因此,该团队更希望能够借助机体的自发荧光来实施无标记成像。不过,需要说明的是,自发荧光是相对较弱的。那么,SCAPE 显微镜能否利用无标记组织的自发荧光信号,获得与标准病理学图像一致的微观组织结构,以及其成像结果能否有效反映健康组织和病变组织,在微观形态学或功能学方面的区别呢?图丨用 Medi-SCAPE 对多种新鲜小鼠组织进行无标记成像(来源:Nature Biomedical Engineering)围绕这一问题,该团队首先在小鼠上试验了肝、脾、肺、肾、胰腺等新鲜离体的器官或组织,验证了 SCAPE 显微镜能够在不破坏目标组织的前提下,有效地可视化其三维微观结构,并得到了与组织病理学切片图像高度匹配的三维图像。并且,他们也在活体小鼠肾脏上诱导了缺血和再灌注的过程,并成功追踪了肾皮质中近端和远端肾小管的荧光信号在此过程中的动态变化,验证了 SCAPE 显微镜在快速三维结构成像的同时,也能够捕捉活体组织的功能动态。图丨小鼠大脑和肾脏的体内功能成像(来源:Nature Biomedical Engineering)进一步地,他们测试了被手术切除的慢性肾脏病患者的新鲜肾脏,从 SCAPE 图像中清晰地观察到了小血管粥状硬化等血管形态方面的诊断特征,分辨毛细血管簇、鲍曼囊腔等肾小球内部结构,并能够区分出正常和出现硬化症的肾小球等。研制小型化 SCAPE 显微镜样机,实现同等效能的高速三维体积成像上述在体或新鲜离体小鼠组织的成像实验,都是在台式 SCAPE 显微镜上进行的。由于该设备的占地面积约 1 平方米,体积庞大,结构复杂,所以并不适用于术中肿瘤边界判定或皮肤病变治疗随访等临床场景。梁文轩 表示:“要在这些场景下充分发挥 SCAPE 显微技术的潜能,就需要一台小型化、轻便化的 SCAPE 显微成像探头。能否小型化或微型化,以及能小型化到什么程度,这是 Medi-SCAPE 项目需要回答的第二个关键问题,也是我当时主力承担的课题任务。”他和导师经过仔细分析,决定在第一代样机设计中不追求极致微型化,而是尽量采用市面上可以买到的元件,以完成初步的可行性验证为重点。基于此,梁文轩 通过深入思考,提出了模组化的创新架构。首先将光片生成透镜与荧光探测物镜整合为远端收发模组,简化掉了台式 SCAPE 设计的二向色镜和分叉光路;然后优化折叠了从第二物镜到主物镜的近端级联 4f 光路,使得前端模组更加紧凑。由此配合选用尺寸小得多的光学元件,他成功研制了一台小型化 SCAPE 显微镜样机,使整机面积缩小至台式 SCAPE 的 20%,并取得了同等水平的荧光收集效率和三维分辨率(约 0.81.12.1 微米),能够以约 10 体积/秒的体积率扫描成像约 400×700×160 微米长宽深的三维视场,且同样能够利用内源性自体荧光进行高速三维体成像。小鼠新鲜无标记组织的成像实验表明,该样机能够清晰解析肝、肾、肠粘膜等多种器官的细胞级精细结构。“虽然该样机的前端探头部分与科学级互补金属氧化物半导体相机装配在一起,并没有完全做到轻便灵活的手持式探头形态,但其全面采用了尺寸更小的光学元件,依然为 SCAPE 显微镜的小型化提供了有力的可行性验证。”他补充说。图丨 Medi-SCAPE 系统设计(来源:Nature Biomedical Engineering)此外,在台式和小型化 Medi-SCAPE 平台上,该团队还利用健康志愿者的舌头,模拟了大范围漫游采集模式。实验中由志愿者随意地“舔过”主物镜来模拟漫游模式,然后从所得的高速“体数据流”中可以准确估计和恢复相邻体数据块之间的三维错位,进而通过配准与融合算法生成涵盖若干毫米范围的三维全景图像。拼接后的全景图像呈现不规则的边界,这说明在应用 SCAPE 进行全景三维成像时,并不需要仔细地控制漫游轨迹,这也是 SCAPE 显微术独特的优势所在。“等到将来研制出更加便携的手持式 Medi-SCAPE 探头时,医生可以灵活地操控该探头在各种组织表面自由地游走以及调整探头的倾角,无需担心这些操作对三维全景拼接的影响,大大提升探头的临床实用性。”他说。图丨人体口腔的活体成像(来源:Nature Biomedical Engineering)致力于为基础科学和临床应用提供切实有益的解决方案据梁文轩介绍,他本科和硕士就读于清华大学生物医学工程系,以医学影像为主要研究领域。在硕士阶段,其研发了基于数字信号处理器芯片(Digital Signal Processor,DSP)的高性能三维锥束 CT 重建算法,通过深入底层汇编语言的流水线并行算法,大幅刷新了 DSP 平台上的算法性能记录。硕士毕业后,他来到美国约翰斯霍普金斯大学生物医学工程系攻读博士学位,将研究目光转向生物医学光学与光子学领域。在博士阶段,他主导研发了两代基于光纤扫描的微型双光子显微内窥镜,在直径仅 2.2 毫米、重量不足 1 克的超微型内窥探头中集成了双光子激发、焦点扫描和荧光收集等全部功能。博士毕业后,其在约翰斯霍普金斯大学从事了半年多的博士后研究,后入职哥伦比亚大学祖克曼研究所,跟随 SCAPE 显微技术的发明人开展博士后研究。除了如前所述的小型化Medi-SCAPE 样机研发,他还提出了基于纤维光锥的跨介质中间图像耦合机制,解决了制约介尺度 SCAPE 显微镜的信号效率瓶颈,并据此研发了具备 440.4 毫米长宽深超大视场的 meso-SCAPE 系统。目前,他在中科大担任特任研究员,在合肥本部物理学院和苏州高等研究院生物医学工程学院同时开展教学与科研工作。关于该项研究,他表示会有两个方面的后续计划。一方面是进一步推进 Medi-SCAPE 的微型化,朝着 10 毫米直径的细长硬管形手持式 Medi-SCAPE 探头,以及直径 3 毫米以下的柔性光纤微型 SCAPE 探头等目标前进。另一方面是与临床专家紧密合作,深入理解不同科室的特点和对在体病理学成像技术的需求,从而定制化开发台式、手持式或内窥式架构的 Medi-SCAPE 成像设备,并联合开展成像实验和临床测试等。此外,他所带领的课题组,未来仍会围绕活体三维显微成像开展方法学创新与应用研究,探寻成像原理、采集策略、架构设计等方面的方法学创新,为基础生命科学研究和临床诊疗应用创制切实有益的前沿技术和解决方案。“欢迎具有交叉学科背景或是希望获得交叉学科训练、有志于推动自主知识产权国产高端科研和医疗仪器研发的同学加入课题组,也诚挚希望能与怀有同样愿景的学术界和产业界同仁取得联系,深入磋商,共同努力。”梁文轩 最后说。参考资料:1. Patel, K.B., Liang, W., Casper, M.J.et al. High-speed light-sheet microscopy for the in-situ acquisition of volumetric histological images of living tissue. Nature Biomedical Engineering 6, 569–583 (2022). https://doi.org/10.1038/s41551-022-00849-72.Voleti, V., Patel, K.B., Li, W. et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nature Methods 16, 1054–1062 (2019). https://doi.org/10.1038/s41592-019-0579-4本文作者:路雨晴
  • 楚光三维完成近千万天使轮融资
    9月19日消息,光学微纳3D传感器制造企业「楚光三维」完成近千万元人民币天使轮融资,该轮融资由峰瑞资本独家领投。据了解,该轮融资将被用于下一代精密光学三维成像技术平台的研发投入、早期团队建设以及新产品开发。公司以光谱共焦成像技术切入,致力于打造下一代精密光学三维成像技术平台,立志成为全球领先的微纳米级光学三维感知和量测检测仪器提供商。对于本轮融资,峰瑞资本(FreeS Fund)早期项目负责人李罡表示,随着由下而上的先进制造工艺能力及其应用推动的相关行业不断快速的发展,高精度成像,特别是微纳三维成像的需求也将快速增加。“楚光团队凭借多年的行业经验和科研积累,依托光谱共聚焦,编码成像等技术成果基础,能够快速地为微纳三维结构的高速高精度测量提供解决方案。相信在相关产业升级和先进制造的浪潮下,楚光能成为领先的精密量测平台企业。”湖北楚光三维传感技术有限公司成立于2022年11月,总部设立于湖北武汉光谷,是一家依托华中科技大学仪器科学与技术系,在光学微纳三维感知和量测领域有二十余年科研及项目开发经验,拥有多项核心专利的光学微纳3D传感器技术研发企业。楚光三维两款核心产品的光谱共焦技术原理楚光三维第一款产品“线光谱共焦3D传感器”工程样机已准备完成,是国内首批进入量产的线光谱共焦类产品,第二款产品 “面共焦3D显微传感器”原型机已打磨完成,是全球首款“面阵光+共焦成像”技术商业化产品,可实现微纳三维高效高分辨率量测检测。线光谱共焦3D传感器原理是,利用色散光学,经过高精度双轴共焦与成像系统,将样品高度信息编码到波长,相机捕获波长编码和强度信息,形成样品的高度轮廓线。沿水平方向扫描样品,对扫描区域逐行生成高度轮廓线并分析和处理,即可生成样品亚微米级精度的3D形貌、3D多层形貌。楚光三维另一款产品“面共焦3D显微传感器”,可实现“快照式”微纳3D显微成像。其原理是,基于高精度同轴共焦成像方法和主动显微照明技术,将宽频率范围的结构光投射到被测样品表面,进而通过显微镜抓取表面结构光成像并层析分析,重建表面形貌,即可获得被测表面结构微纳3D形貌、3D多层形貌。团队构成上,楚光三维具备华中科技大学仪器科学与技术系的专家科研团队,以及10余年三维成像市场化从业经历的的工程化运营团队。其中,楚光三维首席科学家刘晓军教授,长期从事微纳米3D测量技术攻关,完成多项国家级重点项目,在光学微纳3D感知与量测领域具有大量技术积累。楚光三维创始人兼CEO李敏是一名连续创业者,先后在半导体、3D视觉初创公司担任联合创始人 和业务负责人。商业化上,楚光三维的第一款产品“线光谱共焦3D传感器”去年已经完成了工程样机,并完成了多次工程机的迭代,计划今年完成量产。此外,尽管产品还在测试中,该样机已经有意向订单。
  • 高性价比!先临三维推出万元内专业级3D扫描仪Einstar
    随着元宇宙、数字孪生、数字藏品等行业的快速发展,世界的呈现方式逐渐从二元结构向三元结构进阶,更高维度的信息逐渐成为刚需,需要海量的三维数据作为基本信息载体。而三维扫描,作为三维数据获取的重要手段,也需要更加普及化的设备,来下沉服务更多的用户。2022年9月20日,三维视觉科技企业先临三维举行全球新品发布会,推出一款在专业级三维扫描仪普及之路上具有里程碑意义的产品——Einstar手持3D扫描仪。数字万物,由此开启!Einstar是先临三维基于多年的三维视觉技术积累,结合市场需求,自主研发的一款超高性价比的普及化专业级手持3D扫描仪。Einstar具有快速流畅的3D扫描体验,优良的数据品质,简便快捷的使用模式,超强的场景适应性。其核心在于让用户以更低的购买成本、学习成本、使用时间成本等,获取高质量的3D数据,进一步推动专业级三维扫描仪的普及,真正实现数字万物。应用范围广泛,助力多种3D应用场景多样应用,领域宽广:支持多种数据格式输出,智能兼容各类3D设计软件和3D打印设备,提升3D建模品质和效率,为3D设计、虚拟展示、数字化存档、可视化交互等应用提供3D数字化解决方案。具有优良的数据获取能力超小点距,细节丰富:能够高清细腻地还原实物立体形态和几何特征,3D点云数据最小点距可达0.1mm。真彩扫描,栩栩如生:搭载专业彩色纹理相机,真实还原物体色彩信息。超强适应,不限场景:配备3组高品质VCSEL红外投射器和3个相机,捕捉图像清晰稳定;场景兼容性强,即使在户外,也能稳定工作;材质兼容性强,即使黑色和反光物体,也能轻松驾驭。操作简便,易于新手使用智能色谱,数据高质:设计了模型质量色谱,用户能够通过颜色区分扫描数据的完整度,直观简便,可以更好地指导扫描工作,新手也可获取高质量数据。广角视野,丝滑体验:扫描流畅,速度可达14帧/秒;工作距离及扫描幅面自适应性强;数据智能跟踪,高速拼接。由此大大降低扫描难度,新手也能快速上手使用。轻巧便携,简单易用:硬件的操作简单便捷,软件的功能强大丰富,且采用引导式操作,如同普通的家用电器,简单查看说明书即可使用。人眼友好,无光扫描:采用红外不可见光,投射时人眼安全、舒适。先临三维3D数字化事业部执行总经理杨扬表示:“先临三维一直致力于推动高精度三维视觉技术的普及应用,针对不同的专业/工业应用场景,研发了具有不同特点的设备。Einstar手持3D扫描仪是先临三维全新推出的普及化专业级产品,我们基于自主研发的核心技术,将具有优良性能的专业级三维扫描仪做到了万元内,这是专业三维扫描领域的一次重大突破。我们希望将来我们的三维扫描仪可以像笔记本电脑一样普及,让人们能够随时随地用它服务于大家的工作和生活。”作为专业级三维扫描仪,先临三维Einstar定价在7999元,可谓专业级性能,入门级价格,性价比拉满。据悉,未来先临三维将继续把“为用户创造价值”放在首位,持续精益求精,以稳定高性能的设备+全球本地化服务+细分领域的深入推广,让用户能够更好地使用高精度三维视觉技术,唱响数字化时代的最强音!
  • 显微仪器新突破!可对活体动物细胞进行高精度三维观测
    显微仪器是科学研究中常用的一种仪器,专门用于观察微观事物,但是科学研究经常是既要观测微观,又要了解全貌。清华大学团队日前发布的新型智能光场显微仪器就突破了传统显微仪器的能力“瓶颈”,做到了既能观测微观,又能观测全貌,同时还可以在动物活体时实现对其细胞的高精度三维观测,这是我国在高端仪器领域研发和产业化方面又一个突破。在清华大学成像与智能技术实验室,同学们正在使用由中国工程院院士、清华大学信息科学技术学院院长戴琼海团队开发的新型智能光场显微仪器,对小鼠的大脑神经元活动进行观测研究。屏幕上可以看到小鼠脑部影像,实时展示小鼠脑神经对图像、音乐等刺激做出的不同响应过程。据介绍,新型智能光场显微仪器借鉴了果蝇的复眼结构,通过几百万个微小镜头捕捉细胞所发出的微弱荧光,同时研发团队独创了数字自适应光学架构,首次在显微仪器上实现了既“看得宽”又“分得清”的效果,不仅能清楚显示细胞及细胞器层面的微观场景,传统显微仪器无法做到的整体观测、三维观测、长时程高速观测也能够一一实现,将可应用于生命科学和医学等多领域研究。解放军总医院耳鼻咽喉头颈外科学术主任 戴朴:它给我们带来的革命性变化,首先是宽视场,一个非常大的空间范围,甚至它有一定的深度,形成了一个立体3D的观察。耳蜗接收到信号以后,它在大脑有一个非常复杂的传递过程,要涉及各级的神经元,通过长时程和宽视场的仪器观测,就有可能能够揭示出听觉活动的规律。
  • 抓住“设备升级”新机遇,沃亿生物跨尺度三维成像解决方案助力先进科研技术设备更新
    政策 更新置换先进科研技术设备日前,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》(以下简称《行动方案》)。《行动方案》提出到2027年,工业、农业、建筑、交通、教育、文旅、医疗等领域设备投资规模较2023年增长25%以上;明确实施设备更新行动中需提升教育文旅医疗设备水平,推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平。 据教育部高教司内部人士透露,未来有可能准备照国家要求储备一些政府投资项目且对相关设备提出要求,以高水平、大件仪器设备优先,务必优先国产设备。 解决方案 沃亿生物跨尺度三维成像沃亿生物fMOST相关设备是基于骆清铭院士MOST团队发明的荧光显微光学切片断层成像技术研发而成,该设备将超薄切片与显微成像相结合,使用时间延时积分(TDI)成像方法,实现对厘米级尺寸大样品组织的稳定高分辨率三维成像,是一种有别于传统成像技术的全脑光学成像设备,它打破传统显微成像技术在组织中的成像深度限制,全组织任意位置的轴向分辨率达1微米,能全自动化地高分辨率获取全脑神经结构、全器官/组织血管网络等三维数据集,极大提高相关研究的工作效率,能够应用于神经科学研究、心脑血管病研究、药物评价研究学科/领域,在大组织三维成像方面具有先进性。 该设备在脑疾病、脑网络发育、神经计算药物研究和病理研究等领域具有重要用途,不仅能获取小鼠全脑范围内的神经元、毛细血管、树突、轴突定性和定量信息,还适用于小鼠全脑连接图谱的获取、神经环路的全脑精准定位研究以及神经元的长程投射追踪。具体应用包括果蝇、斑马鱼、小鼠、大鼠、灵长类等模式动物在正常、疾病及发育过程中神经和血管网络的变化,以及各种组织、器官的在正常情况下以及疾病模型下的三维精细成像及重构。 2013年,通过教育部直属高校科研成果公开 挂牌交易转让的方式,沃亿生物购买了MOST系列技术的zhuan利。至此,沃亿生物组织力量开始消化技术,不断打磨细节、积累经验、调整方案,历经十余年的精细打磨,实现从原理机到高端科研仪器的转变。先后推出了适用于Golgi、Nissl、HE等传统组织染色方法的BioMapping1000以及适用于荧光全脑成像的BioMapping5000、BioMapping9000与BioMapping9500系列产品。该系列仪器稳定性高、鲁棒性强,具有长时间不间断的三维数据采集能力,特别适用于自动获取全脑内神经环路投射路径及其细胞构筑信息。 科研设备换新,fMOST相关设备作为国产的高端科研仪器无疑是最佳之选! BioMapping 5000 荧光显微光学切片断层成像系统 01 产品简介BioMapping5000采用时间延迟积分(TDI)成像方式,通过对样本的多次曝光和信号累积,在保证高速成像的同时可实现高信噪比的成像,并结合创新性的化学成像样品处理方法可获得高轴向分辨率,实现对全脑树突棘分布的精细成像。 02 技术参数 成像模式 高速线性扫描荧光成像适用标记技术 Dylight594,mCherry,PI,GFP, YFP体素分辨率 0.35μm*0.35μm*1μm连续切削厚度 1-4μm最大样本体积 5㎝*5㎝*2.5㎝ 03 应用实例 △10100个海马神经元单细胞分辨率全脑投射图谱 BioMapping9000 荧光显微光学切片断层成像系统 01 产品简介BioMapping9000是基于fMOST技术的荧光三维成像仪器,基于斜光片成像与振动切片结合实现单细胞分辨率的全脑三维快速荧光成像仪器,与前述其他产品相比,具有成像速度更快的优势,能快速获取与分析全脑荧光数据,适合对批量样本进行高效筛选。 02 技术参数 成像模式 斜光片照明荧光成像适用标记技术 Dylight594,mCherry,PI,GFP, YFP体素分辨率 1.3μm*1.3μm*0.92μm连续切削厚度 20-200μm最大样本体积 5㎝*5㎝*2.5㎝ 03 应用实例 △小鼠c-fos全脑表达三维展示及定量胞体统计 BioMapping9500 荧光显微光学切片断层成像系统01 产品简介Biomapping 9500 是基于fMOST技术的多功能荧光三维成像仪器。具备高精度或高通量两种成像模式。搭载切片回收系统,便于后续实验。一站式高效成像平台,适用于多种应用场景。 02 技术参数 成像模式 线性扫描荧光成像适用标记技术 Dylight594,mCherry,PI,GFP, YFP体素分辨率 0.35μm*0.35μm*1μm连续切削厚度 1-200μm最大样本体积 5㎝*5㎝*3㎝ 03 应用实例 △基于琼脂糖包埋的振动切片与切片的全自动回收△272张切片 50μm厚度 11小时 △272张切片 50μm厚度 DAPI染色 7天
  • 我科研人员提出新型三维锂负极框架构型
    6月3日,科技日报记者从中国科学院近代物理研究所获悉,该所材料研究中心科研人员与北京航空航天大学合作者利用核径迹技术提出了一种新型三维锂负极框架构型。相关研究成果近日发表在《先进能源材料》上。“探究高性能电池负极材料的理想框架构型是当前国际上的一个前沿科学问题。锂金属负极被认为是下一代锂电池的理想负极材料,然而循环过程中产生枝晶等问题阻碍了其商业化应用。”该所纳米材料室主任、研究员段敬来告诉记者,因此寻找兼具高能量密度、高功率密度和高循环稳定性的锂负极框架构型,对于研发高性能锂离子电池具有重要意义。  科研人员基于兰州重离子研究装置,利用核径迹技术构建了一种新型三维多孔复合框架结构。该结构由三维纳米铜骨架和均匀分布的亲锂位点构成。当将其与锂金属复合作为锂离子电池负极时,该复合框架结构表现出超过2000小时的长循环寿命和高速率能力。即使在高面积容量和高电流密度下,复合负极在运行600小时后仍表现出稳定的循环性能。  与同种材料的其他框架结构相比,该三维多孔复合框架结构显著提升了锂离子电池的电化学性能。进一步的研究表明,该复合框架结构的良好力学强度、高孔隙率和低孔隙迂曲度是电池性能提升的主要因素。  段敬来介绍,该工作将核径迹技术引入电极材料领域,提出了一种新型金属锂负极框架构型,对于探寻高性能负极材料具有重要意义,有利于研究理想负极框架结构的具体形态,引发研究者对锂负极框架构型的更多讨论与思考,将有助于锂金属负极关键问题的解决和储能领域的发展。
  • 三维博艺:质谱产业浪潮提速迈进,核心部件迎更大机遇
    科学仪器是人们获取物质成分、结构和状态等信息,认识和探索规律的不可缺少的有力工具,在国民经济、科学研究和军事国防中起到了至关重要的作用,属于国家战略性产业。科学仪器的进步又高度依赖核心零部件的发展,可以说“没有好的关键零部件,就没有好的仪器产品”。据调研,中国质谱市场规模已超140亿人民币。近几年来,在国家政策支持下,中国质谱产业化多点开花,四极杆、离子阱、串联四极杆、飞行时间以及电源、分子泵、气体发生器等部件附件不断有新的技术涌现。在此基础上,仪器信息网特别策划了“质谱核心部件大揭秘”主题直播,以期洞察质谱产业链上游的技术及市场现状,以信息化助力产业发展。相关主题文章和视频正陆续更新,敬请关注。直播第四站来到了北京三维博艺机械制造有限公司,其是一家集精密机械零部件加工为一体的厂商,近几年开始重点关注质谱产业上游核心部件的发展。那么当前这家公司的主营质谱核心部件都有哪些?作为上游,其如何在这次质谱热潮中把握商机?带着这些问题仪器信息网来到了三维博艺的展位。请点击下方观看视频:仪器信息网:本次展会三维博艺带来了什么新产品,有什么亮点?三维博艺:我们是一家做精密加工的企业,在2011年就开始重点关注科学仪器比如质谱仪的发展,质谱研发相关的核心零部件对精密加工的技术要求都比较高,随着近几年国际形势的快速演变,针对以前一直被”卡脖子“的质谱产业发展,我们开始聚焦质谱产业上游的核心部件,随着这几年的努力,我们已经把液质以及气质仪器中的四极杆质量分析器成功研发出来。仪器信息网”当前,质谱等科学仪器零部件的战略性地位逐渐显现,质谱也成为最火的科学仪器投资概念,市场更是涌现出众多的创业公司。作为上游,公司将如何在这次质谱热潮中把握商机?三维博艺:首先质谱这一类科学仪器的高速发展对于核心零部件的依赖是非常高的,而且原本大部分都依赖于进口,然后现在可能国内很多行业内的朋友,大家希望能有国产的部件产品开发出来。三维博弈作为一家具备30年那种精密加工技术沉淀的企业,后期可能会结合行业认人士、专家,更好的开发出质谱以及电镜等科学仪器领域的一些核心部件。仪器信息网:国内做质谱核心零部件的难点、痛点有哪些?三维博艺:“卡脖子”的最大难点并不在于原材料,而是在精加工工艺、精密装配工艺,以及后期的相关检测工艺的技术薄弱。但这些方面已经随着行业的发展逐步得到解决。未来我们也会不断深耕该领域,进行深度的研究和开发,满足更多客户的需求。仪器信息网:您认为四极杆产品的技术发展趋势是什么?基于此,未来贵司的该类产品会做怎么样的深度开发?三维博艺:就目前的四极杆,大部分是圆柱形的,未来可能向双曲面这方面去靠拢。然后在材料方面,目前大部分四极杆的材质是不锈钢或者木,未来我也会向陶瓷以及陶瓷金属化镀金等材质发展。随着对新材料的摸索研究,可能就惠对于我们的加工要求、装配要求,包括后期表面处理要求都提出了更高一些挑战。仪器信息网:从贵司的角度出发,作为中国质谱产业链的重要一环,未来将如何展开战略合作或提升自身研发、制造实力?三维博艺:我们未来也将和全国的科研机构展开深入的合作,比如计量院、天津医工所等等。随着行业发展的不断完善,我们也会针对一些高端质谱产品对核心零部件进行深度的开发。因此,不论是材料选型还是技术储备,我们都希望和质谱行业共同成长,共谋发展。
  • 三维体扫描大型成像显示器亮相世博
    世博会徽标、招手的海宝、迎客的茶壶……在一个高2.8米、直径1.3米宛若水帘洞的圆柱体空间内,一件件上海世博会标志物栩栩如生地展现在人们眼前。没有观看角度的限制、无须佩戴特制眼镜,人们惊喜地体验到360度全景观看这些三维立体影像的璀璨感受。日前,由华东师大信息科学技术学院教授刘锦高课题组研发的“三维体扫描大型成像显示器”正式亮相,即将在世博会重大活动中使用。这一精准同步的光、机、电一体化高科技产品将引领人们感受真正的三维立体效果。   首创“旋转真三维”显示系统   真正的三维立体效果,是将物体的长度、宽度、深度(厚度)直观地进行再现。由于条件限制,多数三维立体效果在深度的展示上都有所欠缺,即使是观看3D电影,有时还是会受到观察角度的限制,无法完全享受身临其境之感。然而,华东师大研发的这套全新的三维体扫描电子系统的核心部件由数十枚32位CPU组成,它们的运算能力远胜一般的多核计算机。它将立体对象提取出不同的切面、切片进行显示,利用扫描在三维空间的体像素构成了立体图像,展示了一个最接近真实物体的立体画面。这套拥有水平与垂直视角的全角光场立体显示器,满足了水平视差与垂直视差的观看要求,再现人们观察世界的真实感受,并获得高亮璀璨的显示效果,从而带给人们质感的3D影像。   刘锦高课题组此次研制大型体扫描显示器仅用了短短几个月的时间,克服了一系列困难。目前,课题组已成功研制了一套大型显示系统及一套备份系统。显示器的首度公开亮相,标志着一种全新的大型立体显示方式的诞生。它突破了以往裸视三维立体显示技术(例如LCD、PDP技术等)需要借助二维平面来展现三维影像的瓶颈,通过对物体进行旋转扫描,将图像置于一个真实的立体空间,实现了真正意义上的三维立体显示。该研发工作得到了上海市科委的大力支持。   刘锦高表示,此套系统是我国自主研发的产品,属世界首例,拥有完全的自主知识产权。   探索计算机图形学新领域   “目前的计算机图形学主要基于平面光栅扫描理论。而这套新系统的研发为计算机图形学向三维体扫描方向的发展奠定了基础。”刘锦高告诉记者,三维体扫描大型成像显示器的研制成功,突破了传统计算机图形学理论,为图形扫描理论和技术的发展开辟了新的研究方向,并提供了有力的实例论证。   他表示,目前,体扫描计算机图形学还处于探索阶段,仍有许多问题需要进一步细化研究。“这对于我们科技工作者来说,意味着新的一轮挑战。”   力拓技术应用的崭新境界   这套显示系统在军事训练、医疗诊断、数据可视化、工程产品设计、景观建筑、视频游戏、虚拟现实、多媒体教学等方面具有广阔的应用前景。   “就以医疗诊断来说,我们通过CT、核磁共振获取的人体或器官扫描影像本来可以提供三维数据,但由于三维成像显示技术尚未成熟,目前只能以胶片或其他介质的二维形式来显示,需要有经验的医学专家才能判读,增加了诊断的难度。若将这些数据通过三维体扫描显示器来再现,就会有超乎想象的突破。再如,关于航天飞机的设计,我们可以在任何部件的设计改进之后马上显示其整体效果。”刘锦高如数家珍般给出不少例子。
  • 行业应用 | 先临三维携手安正科技,打造公共安全新视角!
    随着社会的高速发展,城市规模不断扩大,城市管理工作难度陡然增大。借助高科技手段助力公共安全已是大势所趋。基于此,安正科技臻3D团队携手先临三维,利用高精度三维扫描技术赋能公共安全客户,为打击犯罪赋力。“臻3D”公共安全解决方案先临三维与安正科技结缘于2019年,在调研了先临三维的技术实力和产品优势之后,安正科技决定与先临三维强强联手,整合双方优势,创新推出 “臻3D”公共安全解决方案,助力公共安全客户全方位、高效采集犯罪现场、开放性伤口、痕迹物证等信息。01公安刑侦犯罪现场具有复杂性、客观性、隐蔽性和易破坏性等特点,第一时间固定有效证据对于后续的案件勘破至关重要。传统勘验人员通过手工绘图、现场拍照、勘验笔录等形式进行固证,比较依赖勘验人员的经验,且容易出现数据误差以及信息遗漏等问题。(现场勘查拍照)(现场勘查测量)(绘制平面图)利用EinScan Pro 2X手持3D扫描仪,可通过非接触方式快速高效采集犯罪现场物证,在不破坏现场物证的情况下1:1复刻现场物证数据,方便刑侦机关后续进行案情研判。(足迹鉴定)02法医鉴定法医临床鉴定是指对活体对象进行人身检查,确定损伤性质与程度,以此划分伤残等级以进行责任的判定。传统的鉴定过程中,法医一般会使用软尺、人体测高仪、角度计、测距计等工具测量伤者患处,接触时测量易引起患者不适造成二次伤害。且因受伤位置形状一般不规则,极易出现重复鉴定,屡鉴不定的情况。(传统接触式测量方式)(比例尺测量)(法医临床学检查记录)使用EinScan Pro 2X手持3D扫描仪对体表受伤部位进行扫描。该设备采用白光光源(对人体无害),手持精细扫描模式下,精度最高可达0.05mm,加上强大的扫描拼接功能配合纹理映射算法,能够快速获取损伤部位高质量彩色三维数据信息。(扫描实景示意)随后,将三维扫描的数据导入臻3D人体损伤鉴定专家辅助系统,即可准确得到体表损伤面积,从而快速得出准确的伤情鉴定报告。(耳廓损伤鉴定)三维扫描技术使用非接触式的测量方式,能够提升人体体表受伤面积的测量精度,简化测量过程并降低损伤鉴定的不适感。(方案架构)03案件审查目前公检法办案时依旧大量采用音像、现场勘查笔录、手绘图等手段进行记录,所得的照片和视频数量巨大,且碎片化,检察官在办案时需要花费大量时间来审查这些资料,不够高效。且传统勘验手段易受到勘察人员主观性和经验影响,可能会出现信息遗漏和主观侧重,在案件审查阶段检察院和法院需要频繁进行确认沟通以保证证据的客观性和合法性。(国内警方移交平面卷宗资料)使用先临三维EinScan Pro 2X手持3D扫描仪 ,可对现场数据进行快速获取记录。不仅能将真实案发现场的全部证据完整保存下来,而且现场勘查所用的时间也将缩短一半。同时,现场物证转化为三维数据后再也无需担心证据丢失或毁损,可随时查看、浏览、提取、测量现场相关信息,实现在线协同办案,极大地提高审查效率,保证证据的客观性和合法性。END随着科技的发展,公检法各级机关高度重视改革创新,积极推进一体化办案体系落地,实现“案件源头数字化采集→数字化审查→司法呈堂”全闭环工作,以数字化的形式,真实再现案发现场实景,直观掌握物证精准的尺寸信息及位置标注,让证据自己说话、让事实胜于雄辩、让案件一目了然。未来,先临三维也将继续携手安正科技,不断优化产品及服务,切实的为公共安全领域的用户提供便利,真正做到以科技赋智、以数据赋能、为打击犯罪赋力!
  • 思看科技2024年新品技术交流峰会发布全新三维扫描仪!
    2024年4月9日-10日,以“耀临新境且随光行”为主题的思看科技2024年新品技术交流峰会于杭州未来科技城海创园圆满举行。此次大会邀请来自全球众多行业大咖、专家、合作伙伴齐聚一堂,会上隆重发布智能无线NimbleTrack灵动式三维扫描系统和AM-CELL C系列自动化光学3D检测系统,并预告了全新软件平台DefinSight,聚焦面向未来的三维数字化创新科技,与全球合作伙伴共谋数字化技术未来新发展。01新品发布智能无线NimbleTrack灵动式三维扫描系统思看科技CEO王江峰作开场致辞并为大家揭晓第一款重磅新品。首先,他对所有出席的嘉宾、用户和合作伙伴表示热烈的欢迎和由衷的感谢。随后王江峰先生分享了思看9年来的发展历程和全球化之路。思看从成立之初的小团队,发展到目前近400位成员的国际化公司,先后推出第一代红色激光三维扫描仪和第二代蓝色激光三维扫描仪。第一代扫描仪选用低分辨率、帧率的通用标准工业相机,产品功能单一,仅能部分满足工业计量需求;第二代扫描仪则选用较高分辨率、帧率的通用标准工业相机,集成包括摄影测量、孔测及接触式光笔等功能,能基本满足大部分工业计量需求。思看科技从无到有,跨越三维扫描仪从“可用”到“够用”的阶段,形成手持式激光三维扫描仪,跟踪式三维扫描仪,手持彩色扫描仪和自动化三维测量系统四大产品版块。”随后,王江峰先生为大家带来了第一款重磅新品: NimbleTrack,该产品率先开启了思看科技第三代“智能无线”扫描仪的新时代,建立了三维扫描仪从“够用”到“好用”的全新里程碑。NimbleTrack突破性地采用了双边缘计算,实现了全域无线测量和高速稳定的数据传输,集智能无线、无需贴点、便携易用和高精度于一身,可满足当前市场上绝大部分使用需求。最后,王江峰先生再次表达了对于用户和行业伙伴的感谢,并期待携手行业伙伴走入“智能无线扫描”的时代,实现思看科技“3D数字化国际领军品牌”的美好愿景。“全场景”软件平台—DefinSight思看科技产品经理何骁翔带来“全场景”软件平台—DefinSight,向大家精彩预告了这款真正集大成的软件平台功能亮点。这款软件平台DefinSight不仅具有创新的设计理念和用户友好的界面,在架构层更是带来了全面的革新,支持思看所有在售的工业级硬件,扫描效果和处理速度上也有了大幅度提升,软件平台的发布充满了创新和惊喜,引得现场掌声频频。AM-CELL C系列自动化检测系统最后登场的是AM-CELL C系列自动化光学3D检测系统,思看科技自动化事业部经理张喆为大家进行了细致的讲解。AM-CELL C系列的发布是对自动化三维检测系统的全新超越,它代表了我们对3D自动化未来的想象和追求。AM-CELL C系列融入核心单元设计概念,深度集成机器人、变位机和跟踪站单元,具备易部署、易操控、高拓展性、全方位安全等特性,为中小型零部件检测打造自动化交钥匙解决方案。02大咖云集 繁荣共生嘉宾演讲多位国内外特邀嘉宾和优秀合作伙伴围绕“自动化工业解决方案及关键技术”进行了主题演讲,演讲过程精彩纷呈,金句频出,干货满满的内容让现场观众收获颇多。美国3D infotech销售经理Mr.Tom Hess桐创(武汉)智能装备有限公司总经理吴广先生星禧威视智能科技研究院(重庆)有限公司总经理刘彦劼先生来自全球的优秀代理商和嘉宾大咖分享了他们的实践经验以及前瞻性的技术趋势,与会者们积极参与讨论,共同探讨如何应用三维数字化技术解决实际问题,促进了行业内知识共享和合作。合作伙伴分享大会次日还邀请了海内外优秀合作伙伴代表进行了精彩的专题演讲与交流讨论,为大家提供了宝贵的市场实战经验与心得,引起现场同行伙伴们强烈共鸣,场内不时响起热烈的掌声。英国T3DMC董事总经理Mr.Adam Stanley美国Digitize Designs销售总监Mr.Kyle Burdine日本Apple Tree扫描仪事业部总经理王伟豪先生精彩纷呈的演讲为现场观众带来了丰硕的成果和宝贵的收获,与会者们通过交流与洽谈,建立了紧密的合作关系,为共同推动行业发展开辟了更多合作机会。03 新品与技术交流体验为了让参会人员深度体验最新产品与技术,现场还设立了专门的产品交流体验展览区,展出了新品NimbleTrack、AM-CELL C系列自动化3D检测系统及最新行业应用解决方案,让与会者亲身感受到了三维数字化技术的创新力量。NimbleTrack轻巧身形,自在穿梭,尤其适用于各类中小型工件及不便于贴点或无供电的应用场景,如汽车四门两盖、内饰座椅、压铸件、新能源电池盒、文物数字化等领域,以及高空、户外等不便携带电源的复杂作业环境。AM-CELL C系列可灵活驾驭各类复杂车间环境下的冲压件、注塑件、机加钣金件、压铸件等中小型零部件的自动化检测。此外,大会还设置产品与技术团队专场培训,聚焦产品功能讲解和技术交流,和行业伙伴们面对面探讨产品与技术的应用实践,赋能千行百业在3D数字化浪潮下探寻新的发展契机,解锁更广域的应用生态。夜幕降临,答谢晚宴在一片热烈的气氛中欢乐开启,典雅的民乐团演奏贯穿晚宴现场,丰盛的菜肴以及现场抽奖活动,拉近了思看与同行伙伴们的距离,进一步增进了大家相互之间的情谊。思看科技取得的每一项成就都是全球合作伙伴携手合作、共同努力的结果,在此我们向所有出席思看科技新品技术交流峰会的人员表示诚挚的感谢!在这次盛会上,您们的支持和参与为我们注入了新的活力和动力,让我们不断突破创新、超越自我,在未来的合作中,我们期待与您们一同开拓更广阔的应用领域,共同谱写更加辉煌的数字化未来。
  • 先临三维发布先临三维全自动桌面检测三维扫描仪AutoScan Inspec新品
    AutoScan Inspec全自动桌面三维检测系统将快速准确的三维扫描测量和功能齐全的三维全尺寸检测进行创新性结合,专注于小尺寸精密工件扫描,一体式外观设计,直观的用户界面,引导式操作方式,融合AI智能补扫算法;全自动高效扫描、工业级高精度、出色的数据细节、全尺寸检测流程,保证三维测量和质量控制快速完成,可广泛应用于塑料零部件、叶轮叶片、小尺寸铸件等逆向设计、批量化检测及质量控制等工业场景。● 计量级高精度高性能硬件搭配强劲的3D视觉算法,精度≤10μm,满足工业检测、质量控制等应用要求。● 全自动高效扫描一体式机身搭载三轴设计,自动亮度调节功能,一键快速获取扫描数据。支持多件扫描,数据自动分别存储,快速高效。●出色的数据细节得益于500万像素工业相机,高分辨率展示数据细节。●智能软件支持AI智能补扫算法,智能规划补扫路径,同时兼具路径存储功能,针对重复样品可以导入路径智能扫描。可轻松导出数据至CAD/CAM软件,对接Geomagic Control X、PolyWorks|Inspector、Geomagic Design X 等检测和逆向软件。●应用非接触测量质量检测逆向工程产品设计创新点:1.AutoScan Inspec全自动桌面三维检测系统将快速精准的三维扫描测量和功能齐全的三维全尺寸检测进行创新性结合; 2.计量级高精度:高性能硬件搭配强劲的3D视觉算法,精度≤ 10μ m,满足工业检测、质量控制等应用要求; 3.500万像素工业相机,高分辨率展示数据细节。 先临三维全自动桌面检测三维扫描仪AutoScan Inspec
  • 科学家提出一种单质新原理开关器件 为研发海量三维存储芯片提供新方案
    中国科学院上海微系统与信息技术研究所宋志棠、朱敏研究团队在集成电路存储器研究领域获重大进展,成功研制出一种单质新原理开关器件,为海量三维存储芯片的研发提供了新方案。12月10日,这项成果发表于《科学》。  集成电路是我国的战略性、基础性和先导性产业,其中存储芯片是集成电路的三大芯片之一,直接关系国家的信息安全。然而,现有主流存储器——内存和闪存,不能兼具高速与高密度特性,难以满足指数型增长的数据存储需要,急需发展下一代海量高速存储技术。三维相变存储器是目前成熟的新型存储技术,其核心是两端开关单元和存储单元,然而,商用的开关单元组分复杂,通常含有毒性元素,严重制约了三维相变存储器在纳米尺度的微缩以及存储密度的进一步提升。  针对以上问题,宋志棠、朱敏与合作者提出了一种单质新原理开关器件,该器件通过单质Te与电极产生的高肖特基势垒降低了器件在关态的漏电流(亚微安量级);利用单质Te晶态(半导体)到液态(类金属)纳秒级高速转变,产生类金属导通的大开态电流(亚毫安量级),驱动相变存储单元。单质Te开关器件基于晶态—液态新型开关机理,与传统晶体管等完全不同,是集成电路全新开关器件。单质Te具有原子级组分均一性,能与TiN形成完美界面,使二端器件具有一致性与稳定性,并可极度微缩,为海量三维存储芯片的研发提供了新方案。  据悉,该单质新原理器件为我国首次发明,打破了外国公司的专利壁垒,为我国自主高密度三维存储器的研发奠定了坚实的基础。  意大利国家研究委员会微电子和微系统所教授Raffaella Calarco同期在《科学》上发表评论文章,认为该研究“取得的成果是前所未有的,为实现晶态单质开关器件提供了稳健的方法,此单质开关为3D Xpoint架构提供了新视角”。  相关论文信息:https://doi.org/10.1126/science.abi6332
  • 华东师大实现超灵敏、高分辨、大视场的中红外单光子三维成像
    华东师大精密光谱科学与技术国家重点实验室曾和平教授与黄坤研究员团队在中红外三维成像领域取得进展,发展了宽视场、超灵敏、高分辨的中红外上转换三维成像技术,获得了单光子成像灵敏度与飞秒光学门控精度,可为芯片无损检测、远程红外遥感和生物医学诊断等重要应用提供有力支撑,相关成果以“Mid-infrared single-photon 3D imaging”为题于2023年6月9日在线发表于Light: Science & Applications。华东师大为论文的第一完成单位,博士研究生方迦南为论文第一作者,曾和平教授和黄坤研究员为共同通讯作者。激光三维成像技术具有成像分辨率高、测量距离远、探测信息丰富等优点而被广泛应用于自动驾驶、卫星遥感、工业生产检测等众多领域。特别是,中红外波段位于分子指纹光谱区,涵盖多种官能团吸收峰,能够对三维目标进行化学特异性识别,在无损伤物质材料鉴定、无标记生物组织成像,以及非入侵医学病理诊断等领域备受关注。此外,该波段包含多个大气透射窗口,且相较于近红外光有更好穿透烟尘、雾霾的能力,在形貌测绘与遥感识别等方面具有独特优势。长期以来,如何实现趋近单光子水平的探测灵敏度都是中红外三维成像领域的国际研究热点,对于促进其在低光通量、光子稀疏的微光探测场景下的应用具有积极意义。然而,单光子水平的激光三维成像长期以来仅局限在可见光/近红外波段,主要制约因素在于中红外波段缺乏高探测灵敏度与高时间分辨率的光子探测与成像器件。近年来,随着红外器件工艺精进与新材料涌现,中红外探测器性能得到了长足发展,但依然面临着增强灵敏度、提升响应带宽、扩大像素规模、提高工作温度等亟待解决的难题。中红外三维测量可以采用光学相干层析、光热成像、光声成像等技术方案来实现,但往往需要逐点扫描,无法单次获取高性噪比的大面阵成像。因此,实现大视场、高分辨的中红外单光子三维成像仍颇具挑战。图3:中红外单光子三维成像装置图为此,华东师大研究团队发展了基于高精度非线性光学取样的中红外上转换测控技术,实现了超灵敏、高分辨、大视场的中红外三维成像,展示了单光子探测灵敏度、飞秒门控时间精度以及百万像素宽画幅。具体而言,研究人员采用非线性光学和频过程将信号波长高效转换至可见光波段,利用高性能硅基相机即可实现红外成像,从而规避了现有红外焦平面阵列灵敏度不足的技术瓶颈。同时,该上转换成像系统采用同步脉冲泵浦方案,可将背景噪声限制在极窄时间窗口内,结合精密频谱滤波可以有效提升探测信噪比,进而实现单光子水平的成像灵敏度。此外,研究人员沿用课题组此前发展的非线性广角成像技术[Nature Commun. 13, 1077 (2022)],通过单次曝光即可获得大视场成像,免除了逐点机械扫描过程,大幅提升了成像速度。图4:中红外三维立体成像,被测信号强度约为1光子/像素/秒进一步,研究人员采用超快光学符合门控技术,精确测量中红外信号的相对飞行时间,从而得到被测物体表面的形貌信息。该时间飞行成像系统的时间分辨能力取决于光学脉冲宽度,可以达到飞秒水平的时间标记精度,通过高速延时扫描与宽场全幅采集,对被测场景进行快速时域切片,进而反演出目标界面的反射率、透射率以及材料的吸收率、折射率、色散量等丰富信息。图4展示了多角度中红外照明下三维数据信息融合重构出的被测目标立体形貌,其中被测信号强度约为1光子/像素/秒。图5:时空关联去噪算法,信号和噪声水平分别约为0.05和1000光子/像素/秒 在稀疏光子场景中,有效信号往往被淹没在严重的背景噪声中,仅从强度信息通常难以识别被测目标。为此,如何有效地区分信号和噪声光成为单光子成像的关键难点。为模拟极低照度、高噪声场景,该研究团队将红外信号衰减至0.05光子/像素/秒,对应的信噪比低至1:20000。如图5a-c所示,传统强度峰值识别算法并不能有效甄别信号。在主动成像中,成像系统接收的信号光子在时-空域上具有一定的连续性,而背景噪声光子则会随机分布在整个时间轴与空间像素点上。 基于该特性,研究人员发展了精确、高效和鲁棒的点云去噪算法,通过关联增强空间相邻像素与相邻时间帧的强度,有效提取与甄别信号光子,进而实现高背景噪声下的中红外单光子三维成像(图5d-i)。 所发展的中红外三维成像技术具备高灵敏与高分辨的独特优势,结合该波段优越的抗散射干扰能力,对于复杂环境下的红外场景恢复具有重要意义,可以发展出中红外散射成像与中红外非视域成像。此外,通过调谐中红外信号波长,可以实现四维高光谱成像,可为材料检测、无损探伤、生物成像等创新应用提供有力支撑。 近年来,曾和平教授与黄坤研究员课题组在红外单光子测控方面开展了系列创新研究,先后发展了中红外非线性广角成像 [Nature Commun. 13, 1077 (2022)],中红外单光子单像素成像[Nature Commun. 14, 1073 (2023)],以及高帧频中红外单光子光谱 [Laser Photonics Rev. 2300149 (2023)]等。相关工作得到了科技部、基金委、上海市、重庆市与华东师大的资助。
  • 先临三维发布先临三维 双蓝光手持扫描仪 EinScan HX新品
    先临三维基于多年三维测量经验,结合市场需求,创新性地将蓝色LED光源与蓝色激光光源集于一款设备,两种光源,兼容多种表面材质和物体尺寸;一机多用,兼顾效率与数据质量,满足用户的多重需求,既有 LED结构光的快速高效,又兼顾激光的精度和细节,赋予EinScan HX更多应用可能。● 双蓝光搭配双蓝光,让EinScan HX结合了LED结构光与激光的优势,提高了对扫描材质和环境光适应性,赋予产品广泛的应用。● 高品质数据激光模式下,精度0.04mm,最小点距0.05mm,高分辨率展示物体精致细节,满足大部分工业应用场景的需求。● 快速高效快速模式下,采用蓝光 LED结构光扫描,无需粘贴标志点即可快速获取三维数据,扫描速度1,200,000点/秒;激光扫描模式配备双7线+1线蓝色激光,为逆向设计、CAD/CAM以及3D打印快速提供高品质3D数据。● 材质适应广泛独特的反光材质及黑色表面算法,软件一键设置,轻松获取黑色和反光材质物体高品质3D数据。● 便携易用没有冗余的软件设置,清晰的工作指导流程,灵活便携,可在各种扫描场景中灵活应用。人体工学设计,净重仅710g,轻松握持。创新点:1.双蓝光 搭配双蓝光,让EinScan HX结合了LED结构光与激光的优势,提高了对扫描材质和环境光适应性,赋予产品广泛的应用。 2.快速高效 快速模式下,采用蓝光 LED结构光扫描,无需粘贴标志点即可快速获取三维数据,扫描速度1,200,000点/秒;激光扫描模式配备双7线+1线蓝色激光,为逆向设计、CAD/CAM以及3D打印快速提供高品质3D数据。 3.材质适应广泛 独特的反光材质及黑色表面算法,软件一键设置,轻松获取黑色和反光材质物体高品质3D数据。 先临三维 双蓝光手持扫描仪 EinScan HX
  • 组织透明化三维成像技术线下培训班暨研讨会
    借助组织透明化技术和光片荧光显微技术的发展,研究者对生物组织内部的结构及生理、病理特征的观察和分析从2D提升到了3D。透明化三维成像技术利用深部组织可视化和大数据,引领科学领域的进步。我们针对科学研究中组织三维成像的重点和难点为目标,发展和完善“组织透明化方法”、“光片显微镜成像”、“数据采集分析处理”,并大力推广组织透明化三维成像方法、技术和应用。技术培训班不仅将介绍不同组织透明化方法相关的技术和应用,讲解成像工具的基础知识,而且会进行组织透明化染色、光片显微镜及数据采集,拼接和处理的实操演示。我们将邀请到国内此领域的知名专家学者做特邀报告,借此为致力于组织三维成像研究者提供一个共享科研成果和前沿技术,了解学术发展趋势,拓宽研究思路的机会。本次线下培训班由锘海生物科学仪器(上海)股份有限公司主办,我们专注于高速高分辨率的3D荧光显微成像系统的研发、生产和服务,广泛应用于脑科学、肿瘤学、药物研发、干细胞研究、组织胚胎学等各个研究领域,同时建立起高性能大数据存储系统,目前与国内外数十家高水平实验室开展合作研究,并获得了高质量的成像数据。讲座于2020年8月27日—8月29日在锘海生物科学仪器(上海)股份有限公司的总部上海漕河泾开发区举办,8月我们在锘海期待与您相聚。详情可咨询13818273779(手机与微信同号)
  • 高精度三维扫描打造工业机器人“智慧之眼”,开辟锻造模具修复新路径!
    工业机器人在制造生产中发挥着越来越重要的作用,与此同时,高精度三维视觉等技术的发展,也推动着工业机器人的多元化应用。本期,我们将介绍高精度三维扫描这项三维视觉技术,如何打造工业机器人的“智慧之眼”,实现以机器代替人工进行锻造模具修复的案例。本期案例的用户,以锻造工艺进行产品加工,在生产过程中,模具较易磨损。之前,用户单位是找第三方专业公司进行模具修复,主要通过人工一层一层堆焊+机加工的方式进行修复。如此一来,效率较低,加上模具来回运输时间等,使得模具修复耗时较久而影响企业的生产效率。考虑到降本增效,用户单位考虑用自己的堆焊机器人和加工中心进行模具修复,并找到了先临天远,一起将这个创新方案落地。以机器代替人工修复锻造模具的技术突破口工业机器人具有高速和高效率的特点,由于机器人不受时间和疲劳的限制,它可以连续进行堆焊作业,可以大幅提高效率。但是,使用工业机器人进行堆焊,其难点在于,如何让机器人“看清”模具,“掌握”作业位置以及具体作业数值。高精度三维扫描技术则解决了这一问题,能够将物理世界的模具特征转化成机器人可识别可操作的数字化信息,为工业机器人打造一双“智慧之眼”,助力机器人顺利完成堆焊作业。高精度三维扫描+工业机器人修复锻造模具流程1.工作人员使用碳刨将模具疲劳层清理干净。2.通过FreeScan Combo三维扫描需修复的模具,获取完整三维数据。一方面与原始的模具CAD设计数模进行对比测量所需堆焊作业的具体数值,另一方面,为模具的物理信息变成数字化信息提供数据基础。- 三维扫描 -3.将三维扫描数据和作业数值导入软件,进行工业机器人堆焊作业编程。4.通过工业机器人进行堆焊,实现模具的初步修复。- 工业机器人堆焊工作示意图 -- 工业机器人堆焊后效果 -5. 通过加工中心进行模具型腔的加工,进行模具的完整修复。作为工业机器人的“智慧之眼”,FreeScan Combo具有以下优势:“看得准”:高精度,精度0.02mm,且重复性精度稳定,能够为后面的堆焊修复提供准确的数据支撑;*FreeScan系列产品 ISO 17025 认证:基于JJF1951-2021和 VDI/VDE 2634 第 3 部分标准。基于可追踪球体直径测量数据对探测误差性能进行评估,在工作范围内基于可追踪长度标准件从多视角方向进行测量,来评估球体间距误差。可通过集成或内置摄影测量获取体积精度进一步优化的数据。“看得快”:扫描速度最高可达225万点/秒,配合软件算法,扫描快速流畅;同时,FreeScan Combo还具有便携易用以及材质适应性广泛等优势,能够轻松进行整个修复过程中的3D测量工作。通过高精度三维扫描技术,用户单位实现了模具物理特征向数字化信息的转变,使得堆焊机器人得到良好应用,从原来的人工堆焊转化成工业机器人作业,从而提升效率,节降成本。高精度三维扫描技术,作为一种三维视觉,能够扩展工业机器人等的应用空间,除了这个锻造模具修复创新方案,接下来,我们也将分享更多创新应用案例,为工业制造企业提供降本增效的新思路!
  • 思看科技发布全新TrackScan-P系列跟踪式三维扫描系统
    近日,思看科技(SCANTECH)发布全新TrackScan-P系列跟踪式三维扫描系统。该三维扫描系统由三维扫描仪和E-Track光学跟踪器组成,采用智能光学跟踪测量技术,配备超高分辨率智能相机,无需贴点即可完成超高精度动态三维测量,可在航空航天、汽车制造、轨道交通、模具制造等行业满足质量控制、产品开发、逆向工程、自动化测量等多样需求。TrackScan-P 系列三维扫描系统可搭配补光模块,光照更均匀,支持钣金件的圆、槽及机加孔精准测量;搭配便携式CMM测量光笔T-Probe工作,能精准获取工件的边界、圆、槽等特征;与机器人协同工作,实现智能在线自动化批量三维检测。无需贴点 智能跟踪基于智能光学跟踪测量技术,TrackScan-P 系列跟踪式三维扫描系统无需贴点、即刻扫描,大幅提升工作效率、降低人力物力成本。极速高效 无惧细节基于不同的扫描场景需求,TrackScan-P系列可自由切换多种工作模式。高速扫描模式,扫描速率最高可达2,600,000次测量/秒;7束平行蓝色激光精细扫描,极致细节,精度可达0.025mm,满足各类工业测量需求;单束蓝色激光扫描,迅速获取深孔及死角位置三维数据。边界检测 精准测量新一代孔测技术,自动提取孔特征,无需导入CAD即可快速测孔,大大提升了孔测适应性及便捷性。灰度值边界测量功能,搭配可拆卸式补光模块,光照更均匀,支持钣金件圆孔、圆槽、方槽及机加孔精准测量,保证对应孔的位置度和孔径的重复性精度。环境感知 超强适应采用航空航天级碳纤维材质,稳定可靠,不易受环境、震动、温度等外界因素影响;具有超强环境适应性,轻松获取光亮、黑色材质物体三维数据。多样适配 无限测量多种方案,TrackScan-P系列三维扫描系统,可与SCANTECH生态系统内不同设备互联协同,应对不同类型测量需求:支持多模式工作,多台跟踪头级联工作扩展扫描范围,有效应对大型工件扫描场景。搭配便携式CMM测量光笔T-Probe,支持多测针适配,单点重复性0.030 mm,获取基准孔、隐藏点等关键部位的精准数据。搭配无线传输模块AirGO Pro工作,在移动端同步投屏展示数据结果,获得更为灵活便携的三维扫描体验.与机器人协同工作,搭建自动化三维测量系统AutoScan-T,实现高效、批量化测量。E-Track配合工具模拟器及路径规划软件,构成M-Track机器人路径智能规划引导系统,赋予机器人“双眼”和“大脑”。
  • 2020 TCT 亚洲展,先临三维的新品+精品,你pick哪一个?
    2020 TCT Asia亚洲3D打印、增材制造展览会TCT ASIA(亚洲3D打印、增材制造展览会),承载了英国TCT品牌历史,致力于打造行业领先的增材制造、3D打印产品与技术的专业展览会。它于2015年进入中国市场,现在已成为亚洲市场主要的3D技术展会之一。2020年7月8-10日,作为TCT的“老朋友”,先临三维将携多款精品及新品亮相E6馆E11展位。从3D数字化产品到增材制造设备,先临三维不断专注于技术研发与创新,与产业伙伴建立战略合作,共同推进“3D数字化-智能设计-增材制造”系统解决方案在高端制造、齿科医疗、消费&教育等应用的真正落地,经过多年技术沉淀和数据积累的新品,将为企业和用户的应用解决方案带来新一轮的提升。◆先临三维全明星阵容◆新品7月8日-7月10日亮相EP-M450国内首发易加三维2016年,由北京易加三维科技有限公司为承担单位的“大尺寸粉末床选区激光熔化增材制造工艺与装备研发”项目,获得了国家重点研发计划“增材制造与激光制造专项”(2016YFB1100700)的经费支持。2019年10月,易加三维研究开发的多激光多振镜选区金属增材设备平台EP-M650完成首台交付,应用于航空航天、能源和轨道交通领域的高性能金属部件的直接制造,代表着“大尺寸粉末床选区激光熔化增材制造工艺与装备研发”这个国家项目历经三年之后取得了阶段性重要成果。2020年TCT,EP-M450做为重点研发计划的另一枚硕果,即将在展会现场正式发布。EP-M450采用金属粉末床熔化原理,选用500W IPG进口激光器,有单激光和双激光两种配置可选,可打印钛合金、铝合金、镍基高温合金、模具钢、不锈钢、钴铬钼等材料,适于航空航天、能源、轨道交通、模具等领域大尺寸、高精度、高性能零部件的直接制造。Autoscan Inspec国内首发先临三维AutoScan Inspec堪称精工之作,作为桌面三维检测系统,采用工业级蓝光3D扫描技术,配备双500万像素工业相机,拥有计量级的高精度和出色数据细节表现,其快速精准的三维扫描测量和全尺寸检测功能,可以满足用户对小尺寸精密工件的测量需求。用户一键即可获取高品质数据,可广泛应用于塑料零部件、叶轮叶片、小尺寸铸件等非接触测量、逆向设计、批量化检测及质量控制等工业场景。EinScan-HX国内首发先临三维EinScan HX,一款熠熠生辉的创新产品,预测将是此次展会中要火的那一个!EinScan HX配置了独门秘笈:蓝色X型激光和蓝色散斑双光源。扫描黑色、反光物体难?EinScan-HX告诉你那都不是事儿。它采用Hybrid混合光源扫描技术,具有计量级精度,尤其适于汽车、大型铸件、深色红木家具、模具的3D数字化测量。介绍的太少了?它的优点现在还不能说~~想了解更多独到之处吗?欢迎来先临三维展位现场体验!EinScan-H国内首发先临三维EinScan-H,配置了红外和白色散斑双光源,可敏锐捕捉中大尺寸物体的高品质彩色数据,并着重解决了黑色材质和毛发的数据获取难题。EinScan-H适用于人体、大型艺术品、家具等中大型物品的扫描,欢迎来到彩色世界。EinScan Pro 2X系列2020升级版先临三维如果要说受欢迎程度,EinScan Pro系列当之无愧是shining shining的闪亮之星。此次TCT展会将迎来全面升级的EinScan Pro 2X Plus 2020版本。新版本延续了高质量的扫描数据、高效的扫描体验、多功能的扫描模式等传统优点,同时大幅升级了手持精细扫描模式,为用户带来了更加细腻的数据细节。不止于此,新版本同时拓宽了扫描材质适应性,为用户带来更加简单、高效的高品质3D数据获取。精品7月8日-7月10日必看RobotScan E0505机器人智能三维检测系统天远三维RobotScan E0505天远创新机器人智能三维检测系统,成功将“一键式扫描”、“全尺寸检测”、“避免人为误差”、“人机协作”等优势完美融合。配合高清成像(扫描精度高达0.015mm)以及极速扫描(单幅扫描时间≤1.5秒)的产品性能优势,确保将高质量的数据完美呈现给每一位用户。FreeScan X7 Plus无线激光手持三维扫描仪天远三维FreeScan X7 Plus是一款真正便携的无线激光手持三维扫描仪。产品采用先进的无线技术,成功摆脱线缆的束缚。配备智能化AirMaster无线计算平台,成功实现对图像数据的全硬件计算,优化后的产品性能,带来出色的自由扫描体验。FreeScan Trak无线跟踪式激光扫描系统天远三维FreeScan Trak无线跟踪式激光扫描系统基于动态光学跟踪原理,系统可对扫描头进行跟踪定位并实时精确测量目标的三维形状,实现了无需贴点的高精度三维扫描,让操作人员节省了大量时间。它适用于各类静态和动态应用场景,主要包括航空航天、汽车、造船、能源等行业的大场景三维检测需求。期待与您相聚。我们将按照当地防疫部门要求,严格落实防疫措施,让您观展更安心!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制