当前位置: 仪器信息网 > 行业主题 > >

手动细胞计

仪器信息网手动细胞计专题为您提供2024年最新手动细胞计价格报价、厂家品牌的相关信息, 包括手动细胞计参数、型号等,不管是国产,还是进口品牌的手动细胞计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合手动细胞计相关的耗材配件、试剂标物,还有手动细胞计相关的最新资讯、资料,以及手动细胞计相关的解决方案。

手动细胞计相关的资讯

  • 原能细胞发布原能细胞全自动细胞复苏仪CR-100新品
    原能细胞全自动细胞复苏仪CR-100自动加水 精准控温操作简单 语音提醒系统预设+自定义复苏 一、产品简介CR-100是一款针对实验室和医院细胞复苏专门开发的,具有手动设置复苏水位和温度、细胞复苏信息追溯,语音和文字提醒等功能,能够精准控制复苏温度和水位。其选择运动结构采用曲柄连杆机构,稳定可靠。 二、产品特色l 自动加水 通过传感器检测,精准设置不同水位,自动加水,复苏时可以设置不能浸泡水位l 自定义操作 后台参数可设定(复苏温度、时间、转速、水位),复苏过程可暂停或终止l 系统预设操作 系统可预存常用细胞复苏种类,操作时直接选择一键复苏,节省时间l 数据传导绑定 可通过USB导出样本复苏信息,复苏参数与样本信息可进行有效绑定l 精准控温 PID算法控制的水温加热程序,水温精准可控l 语音提示 细胞复苏开始和结束具有语音提醒功能l 操作方便 触摸屏操作,菜单化页面,简单易上手l 排水功能 细胞复苏完成后,可视情况手动排水 三、产品参数设备尺寸(W*D*H)350*430*690 mm设备重量≤40kg水温调节范围25~70℃温度控制精度±1℃转速调节范围10~300RPM水位调节0~50mm额定功率1200W加热额定功率1000W1米外噪音<45dB创新点:原能细胞全自动细胞复苏仪CR-100 将实验室传统的水浴锅工作模式进行了自动化、程序化控制的改变,将手工作业设备提升为产业化、规模化专用细胞复苏仪器。 原能细胞全自动细胞复苏仪CR-100
  • 【全网征集】万元奖金!新品细胞计数仪中文slogan等你来定!
    为更好突出打造力显智能的新品细胞计数仪INCount充分彰显产品特点和品牌特色现面向社会广泛征集细胞计数仪INCount中文slogan!只要您对我们的细胞计数仪感兴趣!有创意!有想法!即可参与本次中文slogan征集我们会投票选出一等奖1名:奖金10000元入围奖3名:奖金1000元一语值“万”金!就差您的投稿!您的创意,我们买单!知己知彼百战不殆为了方便大家更好的了解产品创作出符合产品特点的slogan我们给您的创意加点劲儿!INCount C全自动细胞计数仪是集高清成像、精准计数、智能分析为一体的细胞计数系统,搭载深度学习智能识别算法,准确分割细胞聚团,实现精准计数及数据可视化:一键开启、快捷方便、8s计数,让细胞计数快人1秒,胜人一筹!快速了解INCount准(ACCURATE)1.高清成像600万彩色高帧率CMOS10倍标准物镜0.25 NA值2.智能识别算法确保计数结果准确稳定,准确分割细胞聚团,获得更准确的分析结果 识别重复精度CV快(EFFICIENT)1.指尖触控触屏操作,简单方便。2.预设多种实验类型实验流程采取一键“宏”模式,预设了台盼蓝、AO/Pl等实验类型,简化手动操作步骤,提高实验效率。3.实现8s样本台盼蓝计数,35s双荧光AOPI计数。智(SMART)1.智能识别结合先进软件和深度学习的智能识别算法,可自动对焦、自动曝光、告别复杂参教设置,最大程度减少用户间操作差异。2.数据可视化内置多种可视化数据分析图像模式3.高性能硬件和配置12核酷睿isCPU,运算快速,分析流畅,智能分析不卡顿。+(AND MORE)1.细胞转染效率分析、细胞周期分析在实现细胞计数的基础上,INcount还可以帮动用户进行组胞转染效率分析和细胞周期分析,精确定量、定性分析,无需第三方分析软件,大大提高实验者效率。2.支持定制支持用户定制,助力更多用户实验。本次slogan征集均在视频号进行投稿的小伙伴们搜索【力显智能】官方视频号即可在留言区参与评论!力显智能评选组将在本期投稿结束后,对在留言区收集到的投稿进行公众号投票初选,按照投票结果产生一名一等奖、三名入围奖,其中:一等奖1名:奖金10000元入围奖3名:奖金1000元(注:奖金包含著作权转让费)一语值“万”金!就差您的投稿!您的创意,我们买单!关于我们About us 宁波力显智能科技有限公司(INVIEW)是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖技术产业化,推出了超高分辨率显微成像系统iSTORM、细胞智能监控助手赛乐微等一系列产品,帮助人们以前所未有的视角观察微观世界,突破极限,见所未见。
  • 全球首台活体单细胞拉曼分选仪问世
    近日,中科院青岛生物能源与过程研究所功能基因组团队与北京惟馨雨生物科技公司联合承担的科技部创新方法工作专项&mdash &mdash &ldquo 拉曼光钳筛选新方法在活体单细胞高通量分离中的应用&rdquo 通过了评审验收,这标志着全球首台活体单细胞拉曼分选仪在中国研制成功。   该研究是在青岛能源所研究员徐健和兼职研究员、英国谢菲尔德大学黄巍主持下,通过所企联合攻关完成的。项目组此次研发的是目前已公开文献报道的首台基于细胞拉曼指纹图谱的细胞手动和自动分选仪器。该分选仪可实现单细胞拉曼图谱快速采集,并首次将单细胞的拉曼信号采集时间缩短到1~100毫秒 还可完成基于拉曼图谱的细胞种类及生长状态快速鉴别等多项任务。   该仪器的核心优势在于,对细胞生化信息及其变化敏感,无须预知生物标识物,无须标记细胞,可进行原位和非侵害性的活体检测等。此项技术将对单细胞生物技术和单细胞基因组的研究产生积极的贡献。   项目组利用该仪器,已经在光合产油微藻生理状态识别、多环芳烃降解微生物分离等研究中取得初步成果,并建立起应用示范技术参照方法和数据分析流程。   据了解,目前该仪器已服务于国内外多个科研团队,在海洋资源挖掘、生物燃料和生物材料、生物能源种质筛选、食品微生物检测、药物研究、肿瘤监测与分选、环境微生物监控、农业生态研究等领域发挥重要作用。 青岛能源所首台&ldquo 活体单细胞拉曼分选仪&rdquo 样机通过验收   背景新闻:   日前,受科技部条财司委托,中国21世纪议程管理中心在北京组织专家对中国科学院青岛生物能源与过程研究所功能基因组团队与北京惟馨雨生物科技公司联合承担的科技部创新方法工作专项&ldquo 拉曼光钳筛选新方法在活体单细胞高通量分离中的应用&rdquo 项目进行验收,标志着研究所基于自主技术开发的首台&ldquo 活体单细胞拉曼分选仪&rdquo 通过科技部验收。   验收专家听取了项目组的工作总结汇报、审查了验收材料,认为项目组基于自主开发的&ldquo 活体单细胞拉曼分选仪&rdquo 开展的各项工作完全符合任务书下达的全部考核指标,一致同意项目通过验收。   在项目实施过程中,项目组成功研制开发了&ldquo 活体单细胞拉曼分选仪&rdquo (&ldquo Raman-Activated Cell Sorter&rdquo ,简称RACS),并在中科院青岛能源所成功搭建了首台样机。该样机(编号RACS-1)由激光器、拉曼光谱仪、落射荧光显微镜、细胞分选系统以及自动控制系统组成,是目前已公开文献报道的首台基于细胞拉曼指纹图谱的细胞手动和自动分选仪器。目前,RACS-1已可实现的功能包括:单细胞拉曼图谱快速采集,并首次将单细胞的拉曼信号采集时间缩短到1-100ms 基于拉曼图谱的细胞种类及生长状态快速鉴别 拉曼-落射荧光不可培养功能微生物鉴定 拉曼光钳单细胞操纵 基于拉曼信号的单细胞计数 单细胞拉曼数据库系统 拉曼激活单细胞分选等。   与现有的基于细胞荧光信号的荧光流式细胞分选仪(&ldquo Fluorescence-Activated Cell Sorter&rdquo ,简称 FACS)原理和方法均不同,RACS是基于对单个细胞的拉曼化学指纹图谱(细胞生化信息)的获取并与参照细胞拉曼数据库比对,从而原位、不依赖于培养、高通量地分选具有特定(或指定)生化状态的单细胞。与FACS相比,RACS的核心优势在于:对细胞生化信息及其变化敏感、不需预知生物标识物、不需标记细胞、原位和非侵害性的活体检测等。因此,RACS可有效克服&ldquo 细胞功能异质性&rdquo 、&ldquo 尚不可培养微生物&rdquo 、&ldquo 探测未知的细胞表型&rdquo 等三个共性科学与技术瓶颈。   此外,项目组利用RACS-1在光合产油微藻生理状态识别、多环芳烃降解微生物分离等方面研究取得了初步示范成果,并建立起应用示范技术参照方法和数据分析流程,为未来对细胞表型鉴定及功能微生物筛选奠定了基础。
  • 福斯原奶体细胞细菌快速检测一体机荣获金鬲创新项目
    p   11月29日,国家技术标准创新基地(乳业)2019年年会暨第二届技术研讨会在京召开。国家市场监管总局、国家卫健委相关领导对《食品安全法实施条例》、《健康中国2030》等政策进行解读,与会专家就奶源管理与品质提升、食品安全技术标准、乳品制造与检验技术、食品营养健康等话题进行了充分交流与探讨。会议首次推出20个有行业推广价值的中国乳业技术标准创新项目“金鬲项目”。 /p p   鬲,是我国古代北方民族盛奶用的器具,以此命名乳业技术标准创新项目,寓意着中国乳业的发展和进步。 /p p   “标准传递信心、标准提高品质”,本次金鬲项目经三轮严格筛选最终遴选出20个优秀项目,旨在为筛选行业内最先进的技术,通过国家级创新基地平台展示,同时也为乳业行业新技术落地应用、科技成果向标准转化提供更大空间及发展机会。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/e5e02225-e2ae-40fd-bce4-a3219e7fe20c.jpg" title=" 微信图片_20191213134036.jpg" alt=" 微信图片_20191213134036.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 福斯原奶体细胞细菌快速检测一体机(BacSomatic& #8482 )荣获金鬲创新项目 /strong /p p   BacSomatic& #8482 福斯首款体细胞和细菌快速检测的一体机,9分钟内出结果(单独进行体细胞计数,仅需2.5分钟),为乳制品生产商在原奶交付环节及牧场原奶检测提供了全新的检测工具,取代人工手动化检测或需要试剂处理的半自动化检测。 /p p   BacSomatic& #8482 使用封闭的即用型试剂,有效避免操作人员直接接触化学试剂。自动化过程确保每次准确及相同的试剂用量,降低其他方法中可能出现的人为操作误差,同时也保证BacSomatic& #8482 提供一致准确、可靠的结果。 /p p br/ /p
  • 细胞的冻存与复苏
    一、程序冻存步骤△(需梯度降温)1、配置冻存液,冻存液推荐配比:55%(基础培养基)+40%(血清)+5%(DMSO)或90%胎牛血清+10%DMSO;推荐使用澳睿赛通用血清型程序冻存液,货号ORCPB0436;2、制备好的细胞悬液计数,计算总细胞量;3、细胞离心后尽量吸干净上清,离心转速1200rpm(250g)3min;4、加入配置好的冻存液重悬,调整细胞浓度为3×106~1×107cells/mL;5、分装入冻存管,一个冻存管分装1~1.5毫升;6、推荐使用程序降温盒,分装好的冻存管转入程序降温盒后直接放入-80℃冰箱过夜;7、如没有程序降温盒,则按下列顺序依次降温:室温→4℃20min→-20℃30min→-80℃过夜→液氮保存,注意转移过程中要保冷,避免产生温差或冻存管融化;8、从-80℃冰箱取出冻存管迅速转移到液氮长期保存。△注意事项:1、DMSO配制的时候会放热,一定要等冻存液冷却后使用,避免灼伤细胞;2、细胞离心后尽量吸干净上清液,减少培养基残留,避免稀释冻存液;3、不建议手动梯度降温,温度不稳定,容易降低存活率;4、注意程序降温盒内异丙醇的量必须高于最低刻度线;冻存5次后异丙醇需要更换一次,以免影响冻存效果;程序降温盒需恢复到室温以后才能继续使用,不能从冰箱拿出来直接使用;5、细胞悬液加入冻存液以后尽量短时间的在常温放置,DMSO常温下对细胞损伤大,分装完成后立即转入程序降温盒放到-80度冰箱,不需要放4度;6、-80度冻存过夜后可以转入液氮长期保存,转入液氮的过程需要对冻存盒进行保冷,不要长时间在常温暴露,避免冻存管融化;7、若没有液氮罐,存放在-80度的时候一定要放靠里面的位置,避免开关冰箱导致温度不稳定。8、细胞冻存后应取出一管复苏,检测细胞的存活率。理论上细胞可在液氮内长期保存,为稳妥起见可在细胞冻存半年后复苏培养,观察细胞生长情况,再继续冻存;二、非程序冻存步骤△(需使用无血清冻存液)1、冻存液丛冰箱提前拿出回温到室温,推荐澳睿赛无血清细胞冻存液,货号ORC90100;2、制备好的细胞悬液计数,计算总细胞量;3、细胞离心后尽量吸干净上清,离心转速1200rpm(250g)3min;4、加入无血清细胞冻存液(ORC90100)重悬,调整细胞浓度为3×106~1×107cells/mL;5、分装入冻存管,一个冻存管分装1~1.5毫升;6、分装好的冻存管直接转入-80度冰箱过夜,不需要程序降温盒;7、转入液氮途中需将冻存管做好保冷措施,避免直接暴露于常温,快速转入液氮罐进行长期保存;△注意事项:1、由于没有使用冻存盒,在转入液氮的过程中一定要对冻存管做好保冷措施,不能直接用手拿,可以用干冰或者少量液氮保护后转移,操作过程注意安全;2、转移过程要快,避免冻存管暴露于常温后融化;3、若没有液氮罐,存放在-80度冰箱的时候一定要放靠里面的位置,避免开关冰箱导致温度不稳定;三、细胞复苏步骤1、将水浴锅预热至37℃,准备好干净的一次性PE手套,一个无菌离心管内加入9ml无菌培养基;2、将细胞从液氮罐中取出放入PE手套中,迅速没入水浴锅,摇晃冻存管加速溶解,以1分钟内全部溶解为宜;3、在超净台中将复苏好的细胞液加入到装有新鲜培养基的离心管内,1200rpm/min离心3分钟,离心完毕去掉上清;4、用适量与细胞对映的完全培养基重悬细胞,接入到无菌容器中(培养瓶或培养皿),补充培养基到适宜,放入培养箱培养;△注意事项:1、水浴锅的位置如果与液氮罐不是一个房间,需要对冻存管进行保冷后转移到水浴锅旁,避免路途细胞表面融化;2、细胞溶解过程快速摇晃以加速溶解;3、已溶解的冻存细胞尽量短时间的在常温存放,尽快离心去除DMSO;4、贴壁细胞复苏24小时后观察,若密度达到80%,则正常传代;若密度不到80%则继续培养到48小时再换液;5、悬浮细胞复苏3天内不建议离心换液;6、对DMSO不敏感的细胞在复苏时也可不离心,减少操作步骤,也可降低污染的几率。将解冻的细胞悬液直接转移至T25细胞瓶内,补加新鲜培养基,放入温箱内培养。但培养12~24h后必须换新鲜的培养基,移除死细胞。
  • 【应用干货】利用 Tempest 移液工作站让单细胞接种变得自动化
    介绍细胞系生成通常被认为是一个漫长而乏味的过程,需要大量的劳动力和材料投资。在细胞系开发中,尤其是在单克隆抗体和蛋白质治疗剂的生产中,需要具有高活性的单克隆性和稳健的克隆生长。自动细胞分配和细胞计数技术可提高通量,同时减少分配、识别和验证每孔单个细胞是否存在所需的时间和劳动力。本研究比较了使用自动Formulatrix Tempest液体分配器和Brooks Celigo® 成像细胞仪与电动手动移液和手动分析将CHO细胞分配和分析到384孔板的情况。 方法和材料I. 细胞培养为了制备单细胞接种和克隆生长的细胞, CHO-K1YFP细胞在T-25c㎡的烧瓶中用含有10% FBS和1%G418的F-12K培养基进行贴壁培养。细胞在37℃和98%的相对湿度下,置于5%的二氧化碳中培养。为了进行活性研究,将悬浮的CHO(CHOs)细胞培养在125mL的锥形瓶(Corning #430421)中,其中含有30mL CD CHO培养基(Gibco #10743),还添加了20mM GlutaMax(Gibco #35050-061)和1%HT(Gibco #11067)。细胞在37°C和98%相对湿度的8%CO2中置于轨道振动台(130 rpm)上培养。II. 使用Tempest或手动移液器进行单细胞接种用胰蛋白酶-EDTA (0.25%/0.5 mM) 收集表达黄色荧光蛋白 (YFP) 的 CHO-K1 细胞并重新悬浮在培养基中。细胞通过 40 µm 细胞过滤网 (BD Falcon #352340) 传代两次以获得没有聚集体的细胞悬浮液,然后使用血细胞计数器计数并稀释至200个细胞/mL。使用来自Formulatrix的 Tempest或手持式Matrix电子多通道移液器(Thermo Fisher #2231,12通道384均衡器移液器,2-125 µl)接种培养基和细胞。Formulatrix Tempest是一种非接触式的散装试剂分配器,可通过96个单独控制的喷嘴同时分配多达12种独立成分的任何体积。Tempest正在申请专利的微流控阀组利用正排量技术分配离散的液体体积,能够准确无误地分配到96孔、384孔和1536孔板。此外,使用标准移液器吸头作为源储液器可将死体积减少到100微升,是珍贵样品分配的最佳选择。在细胞接种之前,将25µL/孔的培养基分装到384孔板(Corning #3542)。随后以5微升/孔的细胞悬液(每种分配方法n=3)接种。将板离心以收集每个孔底部的细胞,然后孵化直到成像。III. 使用Brooks Celígo S进行单细胞接种成像使用Celígo成像细胞仪对孔板进行处理,以检测每孔单细胞和克隆生长。Brooks Celígo成像细胞仪是一种高速、易用、多通道亮场和荧光成像细胞仪,用于高通量、全孔细胞图像采集和多孔板处理。Celígo提供明 场成像和三通道荧光成像功能,用于可视化和量化烧瓶和6孔至1536孔微孔板中的细胞反应。该系统提供1µm/像素的全分辨率。整个Celígo是为明场和荧光成像而开发的,它结合了专有的光学器件和软件,可以在整个孔板一直到孔板边缘以一致的对比度对细胞进行成像和识别,这样能够识别细胞的位置和面积,而不需要额外的潜在细胞毒性荧光探针。在第0天使用双通道采集应用程序对孔板进行成像,使用荧光图像进行细胞检测,并使用明场图像对单细胞存在进行视觉验证。经过四天的培养期后,在双通道采集应用中再次对平板成像。明场成像用于确认克隆生长。IV. 活性和接种效率取决于Celígo在培养箱中过夜恢复后,比较了两种分配方法之间的活性测量。对于过夜恢复后的活性测定,将CHO细胞制备成细胞悬液,并使用Tempest 或电动移液器以每孔 500 个细胞的浓度移液到 384 孔板(Corning 3542)中。将板温育过夜。将浓度为 5µg/mL (8uM) 的 Hoechst 33342(Life Technologies,#H3570)和 2µg/mL(3uM)的碘化丙啶(PI)(Life Technologies,#P3566)加入孔中并孵育 30 分钟。使用Celígo对板进行成像和分析其活性。数据和结果I. 单细胞接种为了比较手持式电动移液器和Formulatrix Tempest之间细胞的正确分 配,对检测到单个细胞的孔数进行了量化。用电动移液器手动接种36%(3%CV)的单细胞孔板,Tempest接种32%(2%CV)的单细胞孔板(图1)。两种接种方法在单细胞接种中表现相同,无统计学差异(PII. 克隆生长通过在第0天和第4天对单个细胞生长为一个菌落的孔进行视觉跟踪,可以很容易地用Celígo监测克隆生长的比较。图2显示了单个细胞生长成菌落的代表性图像。细胞和菌落都可以在Celígo的明场和荧光通道中看到。这允许对手持电动移液器和Formulatrix Tempest之间的克隆生长进行量化评估,其中91%(6%CV)和91%(4%CV)的单个细胞分别生长成一个菌落(图3)。这些结果表明,两种分配细胞的方法在克隆生长方面没有统计学差异(PIII. Celígo检测活性和接种效率对于两种接种方法,使用CHO-S细胞监测细胞活性。在一夜恢复期内,Tempest接种法的存活率测量值为97.4%(1.1%CV),电动移液器接种法的存活率测量值为98.9%(0.7%CV)(表1)。两种方法在接种后恢复得同样好。与平板上的细胞计数相比,Formulatrix Tempest的重复性更好,CV为10%,而电动手动移液器的CV为17%(表1)。IV. 手动与自动液体分配和孔板分析的对比与手动分配和孔板分析相比,自动化分配和孔板分析过程可大幅提高吞吐量。将细胞手动分配到384孔板大约需要3分钟,并且会受到更大的可变性和人为错误的影响。Tempest可以在大约40秒内将细胞有效地分配到384孔板上,节省了时间并提高了准确性。手动分析孔板以验证单个细胞的存在,这一劳动密集型过程每孔大约需要30秒,或384孔板需要192分钟,而Celigo S在大约7分钟内完成图像采集和分析过程。自动分配和分析384孔板大约需要8分钟,而手动分配和分析大约需要这些步骤可能既费时又费力,并且会大大增加实验费用。将 Formulatrix Tempest 液体分配器与 Brooks CeligoS 成像细胞仪相结合,创建了一个快速、高效和可靠的系统,用于分配和识别具有单细 95%以上的时间。
  • 手动压片机的日常使用保养注意事项
    手动压片机的日常使用保养注意事项 手动压片机是X荧光、红外光谱、钙铁、硅铝等分析仪的配套产品,主要用于压制粉末状的样品,使粉状物在样品模内受压后变成块状,以便于放进仪器分析。除此之外它也可用于仪器仪表五金等方面的零件弯曲、冲孔、铆接装配等各种经营工艺中。  吨位大、体积小适用于较大截面积的粉模压片,或需要较大压力的场合,配上不同形状的模具,可以压出不同形状不同尺寸的片子。如:圆形、方形、长形、环形、六角形、平板形,配上电加热模具温控器/推荐双通道加热,可以在加热过程中压片成型。 手动压片机及模具的使用保养: 1、新诺压片机全部为实验室压片机,与新诺模具配套使用,主要用户粉末成型,使用时将模具放置在压片机中心位置;顺时针拧紧压片机放油阀;旋紧丝杠将模具固定住;前后摇动手柄压杆达到所需压力。 2、使用中需要特别注意的是,模具使用不要超压,以免模具压崩,造成人员伤害;模具使用完要及时清理,长期不适用需涂防锈油干燥环境放置。压片机使用中行程不能打的太高,容易造成拉簧变形,油缸无法回程;压片机长期不用,好保压放置,可有效保证下次的正常使用。 3、压片机有漏油现象或有咔咔的声音,请暂停使用,检查原因,或联系新诺。油缸中油量不足会影响压片机的使用寿命。
  • Eppendorf 细胞培养耗材首次亮相2012细胞治疗技术研讨会
    全球领先的生物技术公司Eppendorf携全新细胞培养耗材参加6月1-2日在广州举办的2012细胞治疗技术研讨会。这是Eppendorf细胞培养耗材在中国的首次亮相,也是Eppendorf全新品牌形象的绝美呈现。 秉承60余年的耗材制造专业经验及品质至上的理念,Eppendorf新款耗材着重于人性化的设计细节,如细胞培养皿的易握式设计。而针对细胞培养实验中经常发生的交叉污染和边缘效应,使用Eppendorf细胞培养耗材能带来很大的改善,诸上优势引起与会者的共鸣和关注。而针对细胞治疗和医药工业的一次性生物反应器CelliGen BLU,为小批量定制的细胞生产提供了灵活的解决方案。 Eppendorf旗下高端Galaxy CO2培养箱、新款Easypet 3电动助吸器、紫外分光光度计BioSpectrometer、Mastercycler nexus PCR仪、Multiporator电转电融合仪、以及经典产品&mdash &mdash Research plus 手动移液器、Multipette系列分液器和Xplorer电动分液器、小型高速离心机也同期集体亮相。 2012细胞治疗技术研讨会是集细胞治疗技术、临床研究和法规的高水平细胞治疗技术交流平台。Eppendorf作为高品质细胞培养产品的供应商,将以此为起点,为细胞研究实验提供完整的产品线和强大的技术支持。 官方微博:http://weibo.com/eppendorfchina 中文官网:http://www.eppendorf.cn 关于艾本德(Eppendorf) 德国艾本德股份公司于1945年在德国汉堡成立,是一家领先的生命科学公司,专注于研发和销售实验室的液体处理、样品处理和细胞处理的仪器、耗材和服务。主要产品包括移液器、自动分液系统、分液器、离心机、混匀器和光度计、DNA扩增仪,以及超低温冰箱、发酵罐、生物反应器、CO2 培养箱、生物摇床和细胞显微操作系统。相关耗材产品如移液吸头、离心管、微量反应板和一次性生物反应器,配合Eppendorf仪器的使用,确保为客户提供高质量的整体解决方案。 关于艾本德中国(Eppendorf China Ltd.) 2003年Eppendorf正式进入中国,分别在北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量近200名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • Meet Rebel显微镜——细胞计数知多少
    我是一颗小小的细胞,从哪里来到哪里去,被安排的明明白白。图源:网络别看我小,我可厉害了,我可是生物体形态结构和生命活动的基本单位哈,可以形成组织,组织形成器官,器官组合形成个体。图源:网络我可以通过分裂,一分为二,二分四,以此类推,我逐渐变多,但是为了不让我太膨胀,科研小伙伴非要给我测下数,他们用了一个试剂名叫胰酶,将我们分散,然后又将我们稀释,我的兄弟姐妹都被冲到好远,我也找不到它们,大部分我们还是活的好好的,那些体弱多病的经过这么一折腾game over了 ,科研小伙伴为了区分死活,还给我们用台盼兰染色,这样我们就很容易被区分,还能算算存活率。图源:网络不过我们也都是见过大场面的,什么大风大浪我们都经历过(内心os),正在这沉思中,我就被装到了一个名叫细胞计数板的板板上,就听外面的科研小伙伴说,数上不数下,数左不数右,别打扰我,我都数错了,还得重新按计数器。作为细胞的我,看着他们摇摇头,现在都啥年代了,还得用手动算,我之前见过一台很高端的仪器,既能当显微镜观察我,又可以数数我有多少的复制品,把我拍的可美了。我给大家介绍一下,它就是Rebel正倒置一体显微镜,方便小巧,一机多能,小小的身体,大大的能量。作为显微镜,Rebel具有优秀的硬件素质:8MP高分辨率彩色相机高度还原色彩、Apple iPad Pro触控显示操作就像玩APP一样简单、内置10X目镜全视观察技术、远程滑鼠式控制器(电动调焦),想怎么拍就怎么拍,高能LED光源寿命长… … 优点太多啦,就不多说了,怕骄傲。Rebel还可以进行智能细胞计数,几秒内快速分析图像,告别以往费时费力的人工计数,轻轻一点,自动计算存活率,so easy。实现多张图片采集,多次计算,消除人为误差,精准度特别高。轻松实现自动捏合缩放,查看单个细胞进行质控和纠偏,还可以快速计算不同直径大小的细胞数。Rebel细胞计数不挑耗材,在培养皿、玻片、血球计数板上通通可以。今天就介绍到这吧,期待我们下次再见。
  • 即将发布!生物梅里埃新一代流式细胞平台
    “当企业的管线从研发阶段转移至生产环节以及后续扩大生产规模、去中心化生产时,流式细胞术在应用于质量控制时,样品处理、数据采集和分析都具有相当的挑战性。”细胞疗法是近年来一门新兴的医学学科,包括造血干细胞移植、免疫细胞疗法和再生医学等多种医学干预手段,其临床试验在癌症、病毒性疾病和退行性疾病领域不断取得突破性进展。在多种细胞疗法中,CAR-T无疑是发展最为迅速的干预技术之一。全球迄今已有7款疗法获批,奕凯达等两款产品也已在国内获批上市。CAR-T等细胞疗法由于其产品的特殊性,对GMP生产和工艺都有很高的要求,质量控制是其中非常重要的一环,影响产品的疗效以及安全性。流式细胞术作为细胞治疗的基石工具之一,在从研发到工艺开发的各环节,评估细胞表型、细胞状态、纯度、外源转入基因表达等多个参数,是应用灵活的强大工具。与此同时,由于流式细胞仪功能复杂、可变参数极多,从样品处理条件的选择,仪器设置和维护,到最终数据结果的分析处理都相当复杂,依赖于技术专家的经验和手动调整。Accellix自动细胞表型平台是针对细胞治疗行业在生产环节对于细胞质控的实际需求而设计的解决方案:全自动流式细胞仪:全自动紧凑型流式细胞仪,桌面式无风扇设计,简单易用,仅需1小时培训即可操作。基于微流体芯片的检测耗材:检测试剂盒包括一个微流体芯片和干制的室温保存试剂,实现全自动样品处理,减少手动操作步骤,提高重现性。用户友好的软件:全自动数据分析和自动细胞分类计算,程序运行结束后自动显示实验结果。作为应用于生产环节的质量控制方案,Accellix的表现如何呢?下面以T细胞亚群检测为例,对其检测的准确度和精确度进行了评估。准确度(Accuracy)以IMMUNO-TROL(Beckman Coulter)血液标准品为样品,在Accellix上实施了50次重复,并自动分析所得数据:确定CD45+CD3+的T细胞之后,进一步将其细分为CD4+和CD8+细胞群。软件自动分析获取的细胞频率数据与标准品制造商提供的范围进行比较,结果显示:Accellix检测结果与预期一致,50次重复实验的变异系数(CV)范围为1.27%-2.91%。图为 T细胞亚群检测准确度评估A. CD45+细胞圈门及CD45+CD3+细胞圈门; B. 标准品细胞亚群比例范围与检测结果及偏差比较精确度(Precision)为了评估Accellix平台的重复性,对T细胞亚群检测试剂盒的日间差异进行了检测和分析:在单台Accellix仪器上,连续5天且每天对IMMUNO-TROL标准品进行5次检测重复,并比较CD3+、CD4+及CD8+细胞在不同测试结果间的差异。对于每一类细胞亚群,在不同日期内检测数据都具有很高的一致性。(标准偏差小于1,且CV在1.33%至3.03%之间)。图为 T细胞亚群检测重复性评估。柱图显示CD3+、CD4+及CD8+细胞亚群的频率,误差线表示95%置信区间范围。均值、标准偏差及变异系数如表所示。为了确保满足细胞治疗产品在去中心化生产及技术转移情景下的应用,多台Accellix仪器的检测数据也进行了平行比较,以评估仪器间的检测精度:使用11台仪器分析了总计65个IMMUNO-TROL重复样品,并比较了其CD3+、CD4+以及CD8+细胞亚群的频率。不同仪器间的测量结果具有很高的一致性。(标准偏差小于2,且CV在2.04%至4.95%之间)图为 T细胞亚群检测重现性评估这些数据证明了Accellix细胞表型平台在T细胞检测的高准确度和精确度。多次重复检测间的变异系数均显著低于细胞治疗方法开发的公认阈值15%,使其非常适用于细胞治疗生产模式,并且便于其管线生命周期中的技术转移。此外,基于Accellix平台的细胞表型检测,从样本准备到数据分析完成仅需不到1小时、整个过程全自动完成。通过显著降低QC流程花费时间及操作门槛,Accellix给生产引入了流式细胞术的力量,为连续生产的流程优化提供了更多的空间。参考文献Levine, B. L., Miskin, J., Wonnacott, K., & Keir, C. (2017, March 17). Global Manufacturing of CAR T Cell Therapy. Molecular Therapy. Methods & Clinical Development, 4, 92-101.Campbell, J and Fraser,A. (2018, September 21). Flow cytometric assays for identity, safety and potency of cellular therapies. Clinical Cytometry, 94, 725-735.关于生物梅里埃工业微生物1897年,路易巴斯德的学生马赛梅里埃先生以其姓氏在法国里昂主公医院创建了梅里埃研究所。就此,梅里埃家族开启了在生物学和工业领域的一段跨世纪的非凡历程。自 1963 年以来,生物梅里埃一直是体外诊断和工业微生物质量控制领域的先驱,为确定疾病和污染来源提供全面的诊断和检测解决方案。生物梅里埃工业微生物业务拥有专门的研发资源,致力于为制药,健康护理和食品等行业提供微生物实验室所需的全面的微生物解决方案,致力于在质量控制的每一个过程提供快速、有效、可靠及创新的解决方案,帮助用户保障产品质量,改善微生物实验室工作流程,加速产品放行等。
  • 快讯:908 Devices 和 Terumo BCT合作,为细胞扩增系统添加在线分析功能
    908 Devices是用于化学和生化分析的专用手持式和台式设备的先驱,与医疗技术公司 Terumo Blood and Cell Technologies (Terumo BCT) 宣布合作,对 Terumo BCT 的 Quantum Flex 中的关键工艺参数进行在线监测细胞扩增系统。两家公司的自动化技术的结合将通过提供对细胞疗法研发和生产中最大组成部分之一的监测和控制,帮助推进挽救生命的细胞和基因疗法的开发。细胞和基因治疗研发人员越来越多地寻求自动化来提高制造效率、简化工作流程并降低成本。但如今的质量控制要求研发人员在洁净室里花费数小时执行手动操作,且操作过程中不出现错误或污染,而不是仅在出现问题时才做出响应。908 Devices 正在将其在线葡萄糖和乳酸分析仪 MAVEN(图1) 引入 Terumo BCT 的 Quantum Flex,为细胞和基因治疗开发客户提供在线监测和控制细胞培养物中关键工艺参数的能力,而无需进入洁净室并执行手动采样。这有助于降低污染风险,节省操作员时间并提高他们对过程的理解。MAVEN能在线监测生物反应器中葡萄糖和乳酸的浓度,采用透析膜和生物(酶)传感器的技术原理,其中选择性透析膜在确保罐内无菌环境与非严格无菌的运输缓冲液体系不交叉的情况下实现只透过葡萄糖和乳酸小分子,通过缓冲液的运输到达测量单元,达到不采样分析的效果。而另一个技术核心,测量单元,使用的生物(酶)传感器对分析物具有高度特异性,低浓度下依旧可以保持有效的测量精度。图1:Maven“我们很自豪能与领先的细胞治疗技术创新者合作,以满足生物制药工艺集成的next level,”908 Devices首席执行官兼联合创始人Kevin J. Knopp说,“我们致力于提供设备,使科学家能够获得降低成本和加速进展的见解。”Terumo Blood and Cell Technologies是一家致力于医疗技术产品服务的公司,专注于血液成分、治疗性单采与细胞治疗技术领域的全球综合方案提供商,拥有QUANTUM FLEX细胞扩增系统、FINIA 灌装和完成系统、TSCD -Q无菌接管机等细胞治疗自动化生产设备。Terumo BCT 的 Quantum Flex 细胞扩增系统(图2)是一种紧凑且自动化的系统,旨在满足细胞治疗开发人员从工艺开发到临床生产的整个商业化过程的需求。Quantum Flex 有助于降低污染风险,并实现可重复性和可扩展的工艺规模。它与一系列悬浮细胞、贴壁细胞、病毒载体和外泌体相容。图2:Quantum Flex 细胞扩增系统Terumo BCT 细胞治疗技术全球商业主管 Kathie Schneider 表示:“将我们的 Quantum Flex 平台与 908 Devices 的在线监测相结合,将帮助细胞基因治疗减少耗时的手动步骤,从而减少生产成本和风险。我们将继续与行业专家合作,进一步提高我们的整体解决方案,以解决行业挑战。”
  • 干货 ∣ 3D细胞球技术了解一下
    建立生理相关的体外模型对于进一步了解神经疾病的机制以及靶向药物开发至关重要。iPSC衍生的神经元显示出对化合物筛选和疾病建模的巨大希望,然而目前已经开发出使用三维(3D)培养物作为对神经元细胞的测定开发的有效方法。3D细胞培养被认为是更接近人类组织的重演方式,包括结构、细胞组织、细胞- 细胞和细胞- 基质相互作用等领域。 3D 细胞培养模式较传统的单层细胞培养模式能够更加真实地反应出细胞相互作用和化合物筛选过程中其生理变化的过程。采用手动操作进行相应检测分析会复杂而繁琐,而且随着样品量增加变得越来越困难。自动化系统能够以更加精准、更高通量的方式进行3D 细胞成像分析,ImageXpress® Micro Confocal共聚焦高内涵成像分析系统将会成为您的得力研究助手。 目前,比较常见的的两种3D细胞球培养模式包括3DProSeedTM水凝胶和微流控OrganoPlate® 平台培养系统。水凝胶通过掺入MMP切割位点来帮助细胞迁移,并包含RGD细胞粘连基序以支撑细胞的粘附作用。这种水凝胶预制板使用方法简便,同时能很好地兼容自动化设备(图1)。OrganoPlate® 是一个高通量平台,结合了最新的3D细胞培养技术、Phaseguides™ 和微流体技术,它包含96个适合长期培养活细胞的组织芯片,适用于筛选目的,并且与标准实验室设备或自动化系统兼容,如ImageXpress® Micro Confocal共聚焦高内涵成像分析系统(图2)。图1:图解3DProSeedTMsurface工作原理以及在模具中培养神经元细胞的过程图2:OrganoPlate中培养的神经元细胞。在充满基质胶的OrganoPlate培养槽内对接种的iCell神经元细胞进行透射光成像。细胞以每芯片30,000个细胞的密度培养72h,然后用20X平场荧光物镜进行透射光成像。 更多实验内容请扫描下面二维码获取。
  • CYTO2024笔记:光谱流式技术应用爆发式增长,新"玩家"入局——纽约阿尔伯特爱因斯坦医学院干细胞流式平台技术总监孙大千
    “光谱流式作为CYTO会议的重头戏已经有好几年了,也一直是我个人关注的重点。尤其是因为过去的一年中我的工作重点就是光谱分选仪的安装调试和运行推广。在这一次的会议上, 虽然高维流式的维度仅从上次CYTO的48色提高到了50色,但光谱流式技术在应用广度和理论深度等方面都在迅猛发展。”——笔者:孙大千 纽约阿尔伯特爱因斯坦医学院 干细胞流式平台 技术总监——01——光谱流式技术迅猛发展,自动化、AI、影像流式加持CYTO会议的全体和平行会议报告中,涉及光谱流式技术的非常之多。更让人感兴趣的是光谱流式开始与其它的前沿技术热点相结合,比如自动数据分析,AI技术与影像流式技术等。光谱流式的应用对象则从免疫细胞延伸到了肿瘤细胞,干细胞等等领域。研究的组织类型也从免疫系统扩展到了全身各种器官和组织。比如剑桥大学 Andrian Liston教授的前沿报告 ”FlowCodes, a flow cytometry based platform for massive in vivo screening”。作者使用48色高维流式染色方案,来分析46种不同组织的免疫特征,以此来研究Treg在组织间的迁移过程。研究产生了天量数据,用人力来分析近乎不可能。于是作者编写了开源软件FlowCode,对数据进行自动设门分析,取得了良好的效果。为了方便大家分享这个工具,作者还发布了软件的二维码,扫码就可以试用。这也是本次会议 的一股热潮,各种工具软件层出不穷,而且都是开源资料,非常有利于技术的推广。约克大学的David Kent教授则是利用前沿仪器把流式与影像技术结合起来,不仅检测标记物的表达,同时还可以观测到标记物在细胞内的分布。并且将二者结合起来对造血干细胞进行了分群,分选和一系列功能性研究。报告的题目是“Seeing is believing :Unlocking new research questions using image enabled cell sorting”,“Seeing is believing/眼见为实”十分形象的描绘了影像与流式技术结合的巨大优势。同时,在各个平行会议,尤其是两个单元的光谱流式平行会议中,我看到了众多30-50色的高维光谱流式染色方案,应用于识别免疫细胞以及免疫环境中的各种组织细胞。细胞的来源也不限于人和小鼠,还扩展到了非人灵长类动物,用于疫苗研发。课题的领域则涵盖了基础,转化与临床研究。由于光谱流式技术大大拓展了数据的维度,最近连续几次CYTO中的数据分析报告也主要围绕光谱与影像两个领域展开。算法分析高维数据, 细胞分群本就是难点,研究人员其实还需要再进一步探索, 漂亮的高维数据到底能告诉我们什么?今年除了新的降维算法继续涌现之外,数据分析工具又向前跨越了一步,开始在AI的辅助下直接解释流式数据的生物学意义了。也就是说,我们输入高维数据之后,不仅能看到令人眼花缭乱的彩色细胞群图谱,还能够直接推测每群细胞的表型,甚至探索表型变化与生物学和病理学特征的相关性。这样的分析是AI通过搜索浩如烟海的科研文献来实现的,极大节省了我们用于文献检索的时间。典型的例子是多色流式先驱Pratip 博士开发的TerraFlow系统。——02——爆发式应用增长激发仪器厂商热情,光谱流式赛道涌入新“玩家”如果说光谱流式技术在几年前,还是令人好奇的新鲜事物,现在它已经走进了大部分学校和研究机构。本次CYTO之前ISAC曾做过全球流式使用情况的问卷调查,用过光谱流式仪的用户已经达到了三分之二。应用的爆发式增长显然激发了仪器厂商的极大热情。感谢Cytek,总结了光谱流式仪的发展史。在本次CYTO会议上,许多头部企业都宣布推出或即将推出新款光谱流式仪。包括赛默飞,索尼,贝克曼,安捷伦等等。同时,国产流式仪器也在努力赶的过程中,在CYTO上我看到了层浪科技的展位,得知他们也有计划在明年推出自己的光谱流式仪,非常高兴。竞争的市场是用户的福音,我们可以一起期待百花齐放的春天了。——03——问题与挑战当然,随着光谱流式技术的维度迅速冲上50+这个台阶,同时使用范围加速扩展,高维+光谱也产生了许多特有的问题和挑战。从染色方案设计与验证,到实际操作时对照的制备与光谱解析的细节,再到数据的分析解读,光谱流式都与传统流式既有相似之处,也有着自己的特殊性。我非常重视的是BD公司Peter Mage博士在设计50色高维流式方案的时候发现的新概念:光谱解析造成的信号扩展误差,这是高维光谱流式独有的现象,对于我们设计高维染色方案有极大的影响。对于这个问题,我会单写一篇小文章来讨论。还有,由于高维流式使用的抗体太多,就容易使得两个荧光抗体分子在空间上过于接近,从而发生FRET现象。图中这个诡异的火箭峰,很容易被误认为双阳性群,其实是FRET造成的。在验证和优化高维染色方案的时候需要特别警惕这种现象。在这次会议上争论很多的,还有一个非常实际的操作问题,相信有光谱流式经验的伙伴们多半都遇到过。这个问题就是:怎样处理图中这样不理想的光谱解析结果?可以像传统流式一样,手动加上一层补偿吗?如果加补偿的话,应该遵循什么样的标准?倘若加的不对,会不会造成实验结果的误读呢?我和许多同行专家交流过,大家莫衷一是。——彩蛋环节——“We can’t. The authors are still fighting with each other now.”最有趣的是上次CYTO中联合众多资深流式专家,设计并主持流式纠错workshop的Anna Belkina博士,她对于鉴别错误的流式数据有着丰富的经验。我问她什么时候各位大咖能总结出一个SOP,教大家怎样正确的在光谱解析数据上手动附加补偿。她半开玩笑的眨眨眼说 “We can’t. The authors are still fighting with each other now.” 不过,大家还是有一些共识的:首先需要尽一切努力制备正确的单染对照,还要充分的分析自发荧光的影响,这样可以减少光谱解析错误的程度。另外,最好要准备细胞表型已知的阳性对照样品,用来验证染色方案和解析过程的准确性,比如健康人的外周血细胞。还要充分的阅读文献,对于样品中细胞分群应该有的样子有一定的了解,再去手动加补偿,这样才能最大限度的避免误读。如果对于分群的模式毫无概念,贸然去手动加补偿,那就是典型的盲人瞎马,有很大的可能会掉进坑里,得出错误的结论。【后记】总而言之,光谱流式作为一个强大的研工具,其技术已经发展到了相当的高度。现在的大趋势是向应用的广度和深度方向发展。可以说,光谱流式就像一柄刚刚锻炼成功的神兵利器,光芒耀眼夺目。但是这毕竟是一件新武器,它的创造者和使用者仍在摸索它正确的使用方法,同时在不断探索它能力的边界。如果使用得当,这件神兵能为你破除迷障,打开一片新天地。如果使用不当,造成的恶果也会超过它的前辈。就让我们一起努力,成为能够熟练驾驭这件神兵的剑侠吧,期待它帮助我们打开新世界的大门。【特别声明:原创文章内容已受保护,任何公众号或媒体网站如需转载请先联系授权。】中国流式小组官方微信公众号
  • 高功率显微镜助力机器学习快速揭示细胞内部结构
    借由高功率显微镜和机器学习,美国科学家研发出一种新算法,可在整个细胞的超高分辨率图像中自动识别大约30种不同类型的细胞器和其他结构。相关论文发表在最新一期的《自然》杂志上。  领导该COSEM(电子显微镜下细胞分割)项目团队的奥布蕾魏格尔说,这些图像中的细节几乎不可能在整个细胞中手动解析。仅一个细胞的数据就由数万张图像组成,通过这些图像追踪该细胞的所有细胞器,需要一个人花60多年时间。但是新算法可在数小时内绘制出整个细胞。  除了《自然》上两篇文章外,研究团队还发布了一个数据门户“开放细胞器”,任何人都可通过该门户访问他们创建的数据集和工具。这些资源对于研究细胞器如何保持细胞运行非常宝贵,过去科学家们并不清楚不同细胞器和结构怎样排列——它们如何相互接触及占据多少空间。现在,这些隐藏的关系首次变得可见。  在过去十年中,研究团队使用高功率电子显微镜从多种细胞中收集了大量数据,包括哺乳动物细胞。  最新的机器学习工具可在电子显微镜数据中精确定位突触,即神经元之间的连接。研究人员调整了算法来绘制或分割细胞中的细胞器,该分割算法为图像中的每个像素分配一个数字,这个数字反映了像素离最近的突触有多远,算法使用这些数字来识别和标记图像中的所有突触。COSEM算法的工作方式与之类似,但维度更多。研究人员根据每个像素与30种不同类型的细胞器和结构中的每一种的距离对每个像素进行分类。然后,算法整合所有这些数字来预测细胞器的位置。  研究人员表示,利用这些数字,该算法还能判断特定的数字组合是否合理。例如,一个像素不能既位于内质网内,同时又位于线粒体内。  为了回答诸如细胞中有多少线粒体或它们的表面积是多少等问题,研究团队构建的算法结合了有关细胞器特征的先验知识。经过两年的工作,COSEM研究团队最终找到了一套算法,可为迄今为止收集的数据生成良好的结果。  目前,研究团队正在将成像提升到更高的细节水平,并进一步优化工具和资源,创建一个更为广泛的细胞标注数据库和更多种细胞和组织的详细图像。这些成果将支持未来的新研究领域——4D细胞生理学,以了解细胞在构成有机体的不同组织中的相互作用。
  • 流式进展|清华大学王文会团队: 基于阻抗流式细胞术的单细胞样本“一步式”分选除盐质谱预处理系统
    原标题:清华大学王文会团队: 基于阻抗流式细胞术的单细胞样本“一步式”分选除盐质谱预处理系统——01——研究背景单细胞质谱检测技术为单细胞化学特性分析提供了一种强有力的免标记分析手段,并在癌症分析、药物刺激、免疫分析等临床应用中展现出潜在价值。然而单细胞质谱往往需要进行必要的预处理操作,如将目标细胞从混合细胞群体样本中分离出来以提高质谱检测的准确性;除盐操作去除细胞常见缓冲液中的非挥发性盐,降低基质效应提高质谱检测灵敏度。目前这些预处理往往是通过多种设备或手动操作完成,效率较低;开发有效的一步式预处理方法对于单细胞质谱分析意义重大,但目前这方面的研究较为缺乏。为此,清华大学的王文会教授团队提出一种基于阻抗流式细胞术IFC的“一步式”分选除盐质谱预处理系统,经过处理的细胞样本可直接兼容现有的免标记质谱流式、液滴微萃取等单细胞质谱分析手段。研究工作以“Microfluidic Impedance Cytometry Enabled One-Step Sample Preparation for Efficient Single Cell Mass Spectrometry”为题发表在期刊Small上,并被选为Frontispiece。本工作基于IFC原理设计微流控芯片结构,结合压电驱动实现一步式单细胞分选除盐操作,将目标细胞从细胞群中分离出来的同时实现其外基质的置换。经实验验证,系统的分选效率99%、除盐效率99%,并被证实了在癌细胞和血细胞的分离、癌变细胞与正常细胞的分离与质谱检测方面的功能。图1. 基于阻抗流式细胞术的“一步式”分选除盐质谱预处理系统示意图——02——研究内容本工作中搭建了具有四层结构的微流控芯片,如图1所示。利用IFC进行细胞的电学及尺寸特性表征实现不同细胞的识别,待其流经分选区域时由压电执行单元对目标细胞进行分选,通过合适的流速配比,执行单元将目标细胞推至作为下鞘液的质谱兼容的挥发性盐溶液中,同时实现样本的分选与除盐。芯片采用两套电极,其中第1套用于单细胞电学表征,第2套用于表征确认除盐效率。图2. 微流控芯片结构及其工作流程示意图以商用均一性较好的6 μm和10 μm直径的PS微球对系统的分选效率进行了表征。在约9000个样本的实验中,系统展现出了99.53%的分选成功率,同时样本中的10 μm微球纯度由2.48%提升至92.23%,实现了约37倍的富集效率,如图3所示。此外在模拟血液中CTCs分离的实验中,在HeLa癌细胞与人体外周血单核细胞PBMC的混合样本中分选出HeLa细胞,其纯度由15.78% 提升至87.34%,展示出巨大的临床应用潜能。图3. 微流控系统的分选性能评估从定量的角度,以270 mM NaCl溶液作为样本液、去离子水作为下鞘液为例验证了系统的除盐效率,单次分选操作引入的NaCl物质的量仅为0.77±0.16 pMol,即使在300 cells/s的分选通量下除盐效率也能够达到99.62%;同时在实际的细胞样本测试中可以看出,未经除盐的样本信号被完全淹没,而经过该系统除盐后的能够清晰分辨单细胞的典型代谢与脂质峰,证实了系统优秀的除盐性能。图4. 微流控系统的除盐性能评估该系统进一步用于正常乳腺上皮细胞MCF-10A和癌变的乳腺癌细胞MDA-MB-468的分选与检测。通过双频点的锁相检测,分别表征了两类细胞的电学特性,并据此进行了分选操作,结果表明MCF-10A细胞的纯度由 10.64% 提升至77.78%,展现出了约7.31 倍的富集效率。此外将收集到的细胞样本直接与免标记质谱流式装置级联实验,同时表征了两类细胞的代谢特征,结果表明,部分显著差异表达的代谢和脂质可能是致使细胞电学特性差异的原因,充分验证了系统在多模表征与临床分析中的应用价值。图5. 正常细胞与癌变细胞的电学与代谢特性表征分析——03——总结展望本工作提出的基于IFC的一步法单细胞样品质谱预处理方法极大地方便单细胞质谱分析,突破了复杂操作和不必要的损耗。作为一个独立的样品制备模块,本微流控系统能够兼容多种质谱分析方法,为高效的质谱样品制备提供新的范式,进而为单细胞的多模态(如电学特性、代谢特征)表征提供新的思路。论文信息Microfluidic Impedance Cytometry Enabled One-Step Sample Preparation for Efficient Single-Cell Mass Spectrometry ;Junwen Zhu, Siyuan Pan, Huichao Chai, Peng Zhao, Yongxiang Feng, Zhen Cheng, Sichun Zhang, Wenhui Wang* (王文会,清华大学);Small, 2024, https://doi.org/10.1002/smll.202310700作者简介本工作的完成单位为清华大学精密仪器系、精密测试技术与仪器全国重点实验室。精仪系王文会教授为通讯作者,精仪系博士研究生朱焌文为第一作者。清华大学张四纯教授、程振助理研究员、清华大学博士生潘思远、柴惠超、赵鹏、丰泳翔为论文工作做出了重要贡献。本研究得到了国家自然科学基金的资助。【相关阅读】有望提高2个数量级微流控介电泳分离通量!清华大学王文会Advanced Materials封面成果速递https://www.instrument.com.cn/news/20240604/722338.shtml 3i流式KOL|清华大学王文会教授团队在阻抗流式细胞术上取得系列进展https://www.instrument.com.cn/news/20231030/689623.shtml
  • 好物推荐!E-Vac实验室细胞培养液废液抽吸系统
    好物推荐!E-Vac实验室细胞培养液废液抽吸系统细胞废液抽吸系统是生物实验室必须使用到的基础设施之一。Cole-Parmer E-Vac实验室细胞培养液废液抽吸系统(货号:04397-10)可用于各种液体抽吸,如离心后上清液、培养基废液等。采用创新的一体式机身结构,将废液瓶和真空泵集中在同一个机体内。便于整机的提拿、移动,也更好的固定了废液瓶。配置了全系列吸液套件组,可以用于包括培养皿、培养瓶、96孔板等等各种不同容器的液体抽吸。安全的独立式废物系统E-Vac 抽吸系统:安全的独立式废物系统,提供传统内部真空处理的替代方案!这些紧凑型废物系统,理想用于关键液体或危险液体、病原体的处理或任何III类或IV类生物危害实验室。无油膜泵实现静谧运行,可耐受–250mm至650mm 汞柱的压力。达到目标真空度后,膜泵即自动关闭。在施加真空压力时,膜泵自动启动,使其保持恒定的真空压力;理想用于小型板和皿器的轻柔抽吸以及大型容器的快速抽空。易于清洁的不锈钢外壳具有抗紫外线 (UV) 功能,可在层流罩内使用。E-Vac瓶可在121°C下高温高压灭菌20分钟,以防发生实验室污染。基底装置被照亮,以便目视检查瓶中的废物液位。双疏水过滤器防止液体进入泵壳中和污染系统。E-Vac可配有4L聚丙烯瓶和3L玻璃瓶。聚丙烯瓶和玻璃瓶随附瓶盖,配有快速释放管接头,可实现安全、便捷的管道连接;同时液位检测传感器会在瓶满时自动关闭膜泵。聚丙烯瓶还配有带标准倒钩管配件的瓶盖。优势一览E-Vac独立式抽吸系统作为安全处理生物流体的新途径,具有显著的优势:紧凑型用户友好设计液位检测系统防止瓶体过度充注控制旋钮,实现–250mbar至–650mbar 的无限真空设置随附HandE-Vac手动操作器,配有单通道塑料适配器所有浸液部件,例如瓶、盖、管道、接头和手动操作器均可进行高温高压灭菌HandE-Vac手动操作器符合人体工程学的设计,可实现无疲劳抽吸压敏按钮控制着真空度的高低可提供各种吸头可与 E-Vac 系统或标准内部真空源搭配运行联系我们,获取Cole-Parmer E-Vac实验室细胞培养液废液抽吸系统(04397-10)更多产品和价格信息。
  • 美谷分子发布DispenCell 单细胞分离系统新品
    DispenCell专为快速、简单、温和地分离单细胞而开发,可应用于细胞株开发、CRISPR编辑的细胞筛选、稀有细胞分离、单克隆抗体筛选和单细胞基因组学等多种单细胞分离场景。基于阻抗技术的分离方式可以更加温和的处理细胞样品,小于0.1psi的分离压力让自动分离也能拥有高细胞活率。DispenSoft软件可提供即时可追溯的克隆性证明图谱,搭配CloneSelect Imager FL高通量单克隆验证系统,在第0天即可准确检测到单细胞并验证单克隆性。DispenCell主机紧凑小巧,可放置在生物安全柜等无菌环境中,软件操作界面简单直观,易于学习和使用。1. 温和高效DispenCell可实现对细胞样品更加轻柔的处理,小于0.1psi的分离压力与手动移液相当,但效率更高(~5min/96孔板)。分离过程无激光照射,保证细胞的完整性,因此,细胞活性和生长得以保持。2. 克隆性证明DispenSoft单细胞分析软件可提供即时和可追溯的克隆性证明图谱,允许用户在细胞分配后立即检查克隆性。3. 基于阻抗的分离吸头DispenCell 配有一个检测细胞通过的感应吸头,随着每个细胞的通过将触发一个独特的信号并被软件记录。无菌一次性分离吸头可确保清洁的单细胞分离,且无交叉污染,经认证不含动物源产品和细胞毒性材料。4. 小巧、简单、易用DispenCell体积小巧,可放置在生物安全柜等无菌环境中工作。仪器和软件操作简单,易于设置,无需清洁和校准,样品制备简单,易于学习和快速上手使用。简化工作流程的组合解决方案单细胞分离和单克隆验证在很多应用中都至关重要!例如细胞株开发过程,不仅需要分离和处理大量的单细胞,还需要验证单克隆性并形成证据来用于最终申报。CloneSelect Imager FL 和 DispenCell 的组合,能够提供高效的过程以及可信的证据,在第 0 天即可自信地验证单克隆性。CloneSelect Imager FL 单克隆验证系统全新的 CloneSelect Imager FL,在标准白光成像基础上,增加了高对比度多通道荧光技术,可在第 0 天准确的检测到单细胞并验证单克隆性。通过比较汇合度分析来识别和验证基因编辑。• 数字化记录单细胞证据,以便提交给监管机构• 在多个时间点对细胞进行非侵入式成像,以监测克隆形成• 使用高分辨率白光成像进行筛选• 通过动态分析提供实时结果• 可进行自动化整合
  • 生物制药中的细胞培养,取得突破的关键是?
    生物药凭借其药理活性高、特异性强、治疗效果好、毒副作用较小的特点,已在全球医药市场大放异彩。在中国,随着抗体药物的医保覆盖和不断获批,越来越多的生物药已经进入了大众的视线。预计 2021 年中国生物制剂市场规模将达到 92 亿人民币,迈入快速发展阶段。在上一期的推文中提到,新冠疫苗的制备中很多环节离不开细胞培养。细胞培养工艺是生物制药产业核心技术之一,其技术改变将为生物医药产业的长足发展带来了新动能。移液技巧对细胞实验的重要性?重复实验间的差异是如何避免?如何去处理细胞实验中的样品?细胞培养过程中,需要对细胞的生长环境和细胞的状态进行实时监控。样品的质量对后续的细胞分析应用至关重要。其中,培养基的作用尤为重要,为细胞生长提供充足的营养,并提供良好的生长和代谢环境。在实验室中,对各类培养基分装也是必不可少的,同时对培养基质量的要求也越来越高。人工手动进行培养灌装时容易出现人为错误,而且在不同操作者之间还可能产生较大的结果变异性。此外,该项工作还需要耗时以及专注,造成重复性劳损的风险很高。在样品制备环节,移液操作与细胞的状态息息相关,会直接影响细胞分析的结果。作为一家流体传输解决方案供应商,兰格完善的蠕动泵产品线,可简化实验室的日常工作,并缩短获得可靠数据的时间,助力实验室/药企全方位提升工艺效率,推进药物上市进程。客户案例国外一家专为生物技术实验室而开发的培养皿自动灌装机,可将培养基自动灌装到培养皿板/SBS板中。通过配置兰格蠕动泵实现培养基介质的高重复性输送,减少人为操作和等待时间。兰格OEM蠕动泵体积小巧,具有多种安装方式,可直接安装固定在系统中。而且,蠕动泵灌装精度高,校准后可达到±0.5%的精度,为小容量高精度的灌装需求提供了可靠方案。采用无菌密封管路设计,可实现系统的在线清洁和培养基的无菌转移,为整个细胞培养流程消除污染风险。同时,软管更换操作简单快捷,缩短停机时间,减少灌装机的消毒和维护成本。随着新技术的发展,工艺也在不断地发展和改进。如果您正在寻找优化移液工作流程的方法,我们可提供优质可靠的精密流体元件,既有泵也有管路套件及阀类产品,让其轻松组装到您的产品中。
  • ThawSTAR细胞复苏仪—无水自动化解冻细胞“黑科技”
    前言:深低温下细胞出于“休眠”状态得以长期保存,解冻后需要维持较好的活率才能达到应用效果 ,细胞解冻需要一个”舒适“的温度范围,如何实现过程控温?如何有效安全解冻细胞?如何维持工艺可重复?今天小编向各位介绍一款全系列产品,它就是美国百奥莱BioLife公司开发的ThawSTAR细胞程序复苏仪,一直被业内视为解锁细胞解冻工艺黑科技产品,ThawSTAR可以轻松实现细胞自动化解冻,标准工艺高度重复,解冻安全、操作方便、性能稳定!一、ThawSTARTM CFT系列细胞复苏仪(冻存管专用)2021年6月23日CFDA正式批准由复星凯特引进美国Kite的嵌合抗原受体CAR-T细胞治疗产品奕凯达® (阿基仑赛注射液)上市,该药品为中国首个获批上市的细胞治疗产品,行业士气颇受鼓舞,9月3日,国内第 2 款CAR-T! 药明巨诺 “瑞基仑赛注射液”获批上市 。一时间,朋友圈瞬间被刷爆,翘首期盼,艰辛付出,终于硕果累累!近二十年,随着世界生物技术快速发展,国内生物制药行业生机盎然,新的制药工艺不断引进与改进,免疫细胞靶向治疗已然成为实体肿瘤、癌症等决定患者生与死的最后救命稻草。对于采用“活体”细胞静脉注射的方式备受关注!白血病女孩Emily通过CAR-T疗法实现痊愈的故事,让患者再次看到希望。实际上,细胞解冻复苏需要一个“舒适温度”范围才能维持较好的解冻后活率,美国百奥莱BioLife 公司自2015年推出首款ThawSTARTM CFT系列细胞程序复苏仪以来,一直被视为业内黑科技产品,在无水干式的条件下自动化轻松解冻冻存管内细胞,而且维持与水浴一致的解冻活率,该款仪器设计小巧,操作简单,通过STARTM低温传感技术监控细胞样本解冻过程温度变化,可以在BSC生物安全柜内洁净度较高的环境中直接使用,相比传统水浴操作,ThawSTAR 解冻更安全、更稳定、更方便!ThawSTARTM 操作简单,流程如下:1. 连接电源启动仪器,预热至起始温度2. 垂直插入冻存管3. 仪器自动启动解冻程序4. 程序达到解冻终点后,冻存管弹出5. 取出样本后,轻轻晃动,冰晶消失。ThawSTARTM CFT系列细胞复苏仪订购信息,如下:二、ThawSTARTM CB系列细胞复苏仪(冻存袋专用)当前,已上市的几款CAR-T细胞药主要采用冻存袋灌装解冻,复杂且昂贵的生产工艺决定了其在终端市场的售价,此前,复星凯特阿基仑赛注射液被流出的药品销售订单来看,国内首款CAR-T疗法阿基仑赛注射液零售价为120万元/袋(约68ml),复星凯特相关负责人回复记者称,“公司CAR-T细胞治疗产品定价将根据价值、疗效、成本等各项综合考量制定,目前定价方案尚未最终确定,正在进行多方沟通中,希望可以惠及风多中国患者。” 但毫无疑问的是CAR-T细胞疗法确实很贵!(来源:资料图)(来源:资料图)CAR-T细胞疗法的全称是嵌合抗原受体T细胞免疫疗法,其中CAR指的是嵌合抗原受体,它的原理在于先激活免疫细胞,然后再去杀死癌细胞,即利用T细胞来杀死癌细胞。针对冻存袋细胞给患者静脉注射前最关键的一步解冻复苏工艺,美国百奥莱公司开发了ThawSTARTM CB细胞程序复苏仪!为实现冻存袋细胞标准化解冻方式提供了新途径!ThawSTARTM CB细胞程序复苏仪是一款针对细胞冻存袋细胞标准程序解冻的复苏仪,针对25~1000mL 容量6个标准规格冻存袋,提供了12个标准的解冻程序,通过STARTM低温穿透传感技术,直接检测细胞样品温度,实时传感系统自动判断解冻结束终点,给细胞解冻时控温提供了有效途径,人性化的操作界面一目了然,密码登录,解冻过程温度数据记录,方便追溯。对于不同细胞剂量美国百奥莱厂家还可以提供订制化解冻程序服务,仪器整体设计结构紧凑,桌面型触摸屏操作,操作简单、安全、稳定。 同样,ThawSTARTM CB优化了操作设计,流程如下:ThawSTARTM CB细胞复苏仪,程序可选、操作简单、解冻安全!ThawSTARTM CB系列细胞复苏仪订购信息,如下:三、ThawSTARTM AT系列细胞程序复苏仪(冻存瓶专用)传统的细胞药主要采用冻存袋存储细胞并在临床上注射使用,但是,受冻存袋包材本身柔软等材料本身特性限制,无法自动化批量分装,液体残留偏高。最近十年,由比利时Aseptic Technologies公司研发生产的AT-Closed Vials可谓是火遍了全球生物技术靶向治疗行业,解决了小剂量分装,深低温冻存、同时也实现了自动化放大分装工艺。尤其干细胞用户群体普遍采用6mL的AT-Closed Vial,那么针对6mL规格的AT-Closed Vial 如何实现有效干式精准解冻呢?美国百奥莱公司早在2018年便开发了ThawSTAR AT6细胞程序复苏仪,并被国外多家知名免疫细胞公司所采用,通过订制化标定解冻过程温度执行程序,可实现自动且精准的判断解冻结束终点,操作简单,工艺高度重复,避免了人为主观判断解冻终点造成的细胞药“失效”!ThawSTAR AT6 细胞复苏仪对于不同剂量下,液氮与干冰冻存过的样本解冻时间表现对比,如下:ThawSTARTMAT系列细胞复苏仪有多款型号,订购信息如下:如果您需要申请Demo机试用,请抓紧联系我们吧!中国区授权总经销:上海朗喜工业科技有限公司
  • 高内涵——自动化智能化的上皮细胞管腔结构分析方案
    上皮细胞是常见的细胞组织类型之一。最简单的上皮组织结构是一个由单层细胞构成的腔隙,类似管状内腔,细胞朝向管腔的一侧为顶层,远离管腔的一侧为基底层,上皮细胞的这一现象称为细胞极化。尽管多种调控上皮细胞极性的因素已经被发现,但它们在上皮细胞极性建立、极化膜生物合成和组织形成过程中是如何相互协调和整合的尚不清楚,可以明确的是这一机制在生物体发育和疾病过程中扮演了重要角色。MDCK细胞在生长的过程中会发生细胞极化的过程,单层细胞放射状围绕中心腔隙排列,形成特定三维结构,一些极化机制也首先在MDCK细胞模型中得到了印证,因此它是一个很好的研究上皮细胞极化和管腔结构形成的简化系统,目前已广泛应用于相关领域的研究。图1:MDCK细胞管腔结构形成示意图然而由于生长方式的特殊性,同一个视野中的不同管腔结构有可能位于不同的层面上,因此在以往的实验中想要对这样的样本进行高通量成像是一个很大的挑战,往往需要手动对每一个管腔结构进行单独拍摄,并在后期做图像分析,而使用高内涵成像分析技术则将这一繁复的操作过程变得自动化和智能化。Step1.智能预扫使用高内涵的智能预扫功能,可以先在低倍(5×)下对整孔进行全局扫描,拍摄的同时软件根据算法确定视野中每个空腔结构的定位和范围,剔除不含目的结构视野。图2:Optically section in Z → Max. project medial planesStep2.精细层扫然后再自动转换至高倍(20×或63×),分别对含有空腔结构的视野进行高分辨率的精细层扫,以确保位于不同层面的空腔结构都能够获取到图像。图3:Detect polarity orientation → Calculate lumen numberStep3.统计分析最后使用高内涵的分析功能模块对细胞的极性变化和形成的管腔数量直接进行统计分析。图4:Phenotype binning总结图5:细胞极化和管腔数量分析示意图。MDCK细胞团培养24-72h后进行染色,对不同Z轴层面(共8层,每层间隔2μm)成像后采用最大投影模式进行显示和分析,应用机器自学习模块对细胞极化进行自动检测,并在此基础上计算形成的内腔数量。由此可以看出高内涵可以很好的解决上皮细胞3D培养中不规则分散样本的定位成像问题,简化了成像流程,为样本中特殊结构的自动化成像和分析提供了高效的解决方案。点击链接了解更多高内涵仪器相关资料:https://y6n.cn/uSQLG参考文献1. Roman-Fernandez, et al. Complex polarity: building multicellular tissues through apical membrane traffic. Traffic 17, 1244–1261(2016).2. O' Brien, et al. Opinion: building epithelial architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3, 531–537 (2002).3. Rodriguez-Boulan, et al. Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 15, 225–242(2014).4. álvaro Román-Fernández, et al. The phospholipid PI(3,4)P2 is an apical identity determinant. Nat Commun. 9: 5041(2018).关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 大规模设备更新,不断升级的Vi-CELL细胞计数仪来助力
    早在2002年贝克曼库尔特生命科学便在全球推出了第一款Vi-CELL细胞计数仪,当时一次只能测试一个样品,但仪器是全自动的,相比同期大家经常使用的显微镜+血球计数板的计数方法,操作更加简便,并且避免了样品混匀和染色方面的人为操作误差,因此测试结果的重复性更好。 血球计数板手动数细胞单通道Vi-CELL细胞计数仪随着生物医药的蓬勃发展,越来越多的细胞培养用于研发和生产各类生物制品,包括:各类疫苗、重组蛋白药物、单克隆抗体、基因治疗和细胞治疗药物等。因此,各个生物医药企业和研究机构对高通量细胞计数仪的需求也在不断增加。所以,带有12位上样转盘的Vi-CELL XR全自动细胞计数仪也应运而生(如下图所示)Vi-CELL XR计数仪保留了自动检测功能,同时上样通量从1位扩大到了12位,针对实验室中多位老师需要同时检测细胞样品的情况,12位转盘可以实现无需在旁等待的不间断上样检测。相比插板/片式半自动细胞计数仪,节省了老师在旁等待的时间,大大提高工作效率。因此,Vi-CELL XR细胞计数仪推出后受到广大使用客户的好评。随后的十几年间,生物制药的研发和生产各项技术日趋完善和成熟,对细胞计数仪的要求也越来越高。譬如工艺开发和细胞株开发部门需要更高的上样通量,更快的检测速度和更少的检测样品体积,而质量控制和生产部门则更看重仪器的重复性、稳定性和法规的符合度。根据Vi-CELL XR客户反馈的这些新需求,2019年新一代Vi-CELL BLU全自动细胞计数仪诞生。这款新型的Vi-CELL细胞计数仪,相比老款Vi-CELL XR在客户所提的需求,以及其他多个方面都做了较大的升级。具体可参照以下Vi-CELL新老仪器各项性能对比表(一些相同功能未列其中)。若将新老仪器间的主要升级点做个小结,可以概括为下面这张在设计和测试性能方面的对比图。如您希望了解更多新品Vi-CELL BLU细胞计数仪信息,请联系我们。
  • 北京林业大学植物细胞壁拉曼光谱大数据分析取得新突破
    近期,北京林业大学材料学院许凤教授团队在植物细胞壁拉曼光谱大数据处理技术上取得新突破。该技术成果构建了基于主成分分析的植物细胞壁拉曼光谱聚类分析方法,相关研究成果“Method for Automatically Identifying Spectra of Different Wood Cell Wall Layers in Raman Imaging Data Set”发表在《Analytical Chemistry》上。该期刊为美国化学会旗下国际分析化学领域顶级期刊,最新影响因子5.636,五年影响因子5.966。  拉曼光谱成像技术具有信息丰富、制样简单、对样品无损伤等特点,近年来已成为研究植物细胞壁局部化学的重要工具。然而,拉曼光谱分类技术落后,严重制约了光谱数据的深入挖掘及科学运用。传统的分类技术通过导出实验数据进行手动分析,不但费时费力,人为因素干扰严重,更会造成数据浪费,甚至丢失重要信息。针对这一问题,许凤教授团队经过探索创新,基于细胞壁超微结构特点,率先采用数学统计学结合自主研发的计算机程序分析处理植物细胞壁拉曼光谱数据,建立了快速分辨细胞壁不同形态学区域拉曼光谱的新方法。该方法能够根据植物拉曼光谱的自身特点,对所获海量拉曼光谱数据进行自动、准确、快速分类,将为植物细胞壁化学组分拉曼光谱定量研究提供理论依据。论文投稿期间,审稿人一致评价该方法创新性突出,对生物质相关领域的研究具有重要意义。  发表在《Analytical Chemistry》上的论文第一作者为北京林业大学材料学院林产化学加工工程学科2014级博士研究生张逊,论文发表获得国家杰出青年科学基金的资助。目前,在许凤教授的指导下,张逊正开展基于该技术的相关研究,希望在植物细胞壁拉曼光谱的定量分析上能有新的突破。
  • 青岛能源所发明简易高效的单细胞分选与测序对接技术
    为了满足考察自然界中细胞“原位功能”这一共性科学需求,“现场”、“实时”的单细胞分选与测序已成为生命科学装备研制领域的一个重要发展趋势。尽管第三代测序技术已实现仪器微型化,但与测序对接的单细胞精准分选装备却仍然相当笨重和昂贵,难以支撑各种科学考察中针对微生物组功能的现场分析。最近,中国科学院青岛生物能源与过程研究所单细胞研究中心研究员马波带领的微流控系统团队,通过设计简易高效的单细胞分选与测序对接装置,实现了每个试管有且只有一个细胞(One-Cell-One-Tube),有望服务于“现场”、“实时”乃至“便携式”的单细胞分选与测序。  与人体和高等动植物细胞相比,微生物细胞通常更小(0.1-10 微米),更加难于精准操纵,因此分离获取目标单细胞、并且实现测序反应要求的“One-Cell-One-Tube”是一个关键难点。目前的自动单细胞分离方法大多依赖于昂贵且体积庞大的荧光流式细胞分选仪(FACS),而现有的手动单细胞分离和测序方案在依赖于操作人员熟练程度的同时,同样需要显微单细胞移液平台、激光光镊等同样难以随身携带的大中型仪器。此外,单细胞分选及核酸制备过程极易受到环境中飘浮微生物及其DNA的污染,而且这种污染通常难以在测序数据处理环节完全去除。因此,尽管目前MinION等第三代测序仪已经实现了便携化,微生物单细胞分选和测序仍然操作繁琐、污染干扰严重,难以满足要求。  针对上述挑战,青岛能源所单细胞中心张强和王婷婷等发明了一种名为“FOCOT”(Facile One-Cell-One-Tube的缩写)的方法,能够精确、高速、低成本地分离、获取与分装单个微生物细胞,从而与单细胞测序直接对接。该方法具体为:首先,通过微流控技术,将细胞分散包裹在数十微米直径的油包水微液滴中 其次,基于液滴显微光学成像识别技术,分选出单细胞包裹液滴 第三,将单细胞包裹液滴顺序分布于系列试管中,从而快速实现单个细胞的分离,以及每个试管有且只有一个细胞,以实现与单细胞全基因组扩增与测序的直接对接。  FOCOT平台主要有三个特色。第一,在简易方便方面,FOCOT平台除自行设计的芯片之外,仅需要电磁阀、平板电脑和普通光学显微镜,不需外接任何高成本商品化仪器平台,具有易获取、易替换、低成本等优势。同时,模块化、小型化、操作简便的设计使得该装置适合在自然环境实地采样条件下的携带、装配和使用,也几乎不需要额外的人员培训和技术维护,因此尤其适用于面向各种极端自然环境的科学考察,也有利于在普通实验室的推广应用。第二,在分选高效方面,FOCOT平台通过显微镜下对包裹有单个细胞的液滴的准确识别和分选,能有效避免假阳性 而且其20秒/个的分选速度,与显微单细胞移液、激光光镊等现有的商品化分选装备相比具有明显优势。同时,单细胞获取率高于90%,培养成功比例至少80%,证明该方法能有效避免芯片表面吸附所导致的输运过程中细胞流失,而且对细胞活性没有或较小损伤。第三,在污染控制方面,FOCOT平台涉及部件少,体积小型化,相对封闭,因此在实验过程中能够方便地实现超洁净环境空间控制、芯片消毒等操作,严格控制环境DNA的污染。对分离获取的单个酵母细胞进行全基因组扩增与测序后结果显示,99%的有效序列可以与参考基因组匹配,表明该方法能有效避免环境中微生物带来的DNA污染,平均基因组覆盖率达到43.3%,与在昂贵的超净空间设施中采用FACS等大型仪器系统分离获取单细胞所获得的测序结果相当。  目前,通过耦合FOCOT与中心前期开发的单细胞拉曼成像、拉曼流式细胞分选等技术,单细胞中心正在构建一个服务于岸基、船基乃至手基等不同需求的非标记式单细胞分析装备体系,以服务于能源、环境、健康、海洋、土壤等诸多微生物组应用领域。  相关研究论文发表在《科学报告》上。研究工作由单细胞中心马波和徐健共同主持完成,获得了国家基金委科学仪器基础研究专项、面上项目和中科院生物高通量分析技术服务网络(STS)等项目的支持。  论文信息:Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Sci Rep, 7:41192, DOI: 10.1038/srep41192。FOCOT方法示意图
  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
  • 聚焦单细胞分析自动化|贝克曼库尔特生命科学携手10x Genomics开启合作
    近日,贝克曼库尔特生命科学与10x Genomics公司宣布建立新的合作伙伴关系,以扩展单细胞监测工作流程的自动化解决方案。作为协议的一部分,10x Genomics将开发专用的Chromium Single Cell试剂盒,在贝克曼库尔特生命科学的Biomek i7自动化移液处理工作站上使用。该定制应用程序将实现高质量、大规模的10x Genomics单细胞文库自动化制备,产生可立即用于测序的文库。肿瘤学、免疫学和神经科学等领域正越来越依赖单细胞方法,这些方法可帮助研究人员揭示生物学的复杂性,并推动新的科学发现。随着更大规模的研究需要更广泛的解决方案,文库制备等手动过程的自动化可提高通量。此次合作关系的建立计划在Chromium单细胞系统运行结束后实现工作流程的自动化。合作前期的重点是高通量的文库制备,通过同时处理数十个单细胞样本为实验室提供更简化且更高效的解决方案。贝克曼库尔特生命科学生物技术流程解决方案副总裁兼总经理Elsa Burgess表示:“在贝克曼库尔特生命科学,我们每天都在努力打破手动工作流程的瓶颈,让实验室能够更快实现研究目标,并避开容易出错的步骤。我们很荣幸10x Genomics信任我们,让我们为其客户提供单细胞分析的自动化解决方案,特别是当越来越多的研究人员使用这种方法时。这只是开始,这项令人兴奋的合作最终将惠及多个科学领域的研究人员。”10x Genomics公司的联合创始人、总裁兼首席科学官Ben Hindson表示:“随着研究人员不断使用更多样本进行单细胞分析,他们在寻找新的自动化解决方案,以便高度自信地构建高质量的文库,且手动操作时间更少。我们有些客户已经成功试用了这种方法,我们很高兴能够与贝克曼库尔特生命科学正式合作,开发大规模的自动化产品,开创更大规模的单细胞研究。”作为此次合作的一部分,10x Genomics计划开发一套与自动化兼容的耗材,以便实现高通量的样本处理,并获得经过验证的结果。关于贝克曼库尔特生命科学生命科学、研究、精密制造。如果您一生的使命是在这些或相关领域中的任何一个,您需要了解贝克曼库尔特生命科学公司。它是丹纳赫公司(纽约证券交易所代码:DHR)全球科技家族的一部分。我们的使命是帮助那些寻求生命中重要科学和医疗健康问题答案的人。自 1935 年以来,贝克曼的名字一直是将复杂生物医学检测技术简化和自动化的代名词。几十年后,我们的全球组织也开始体现库尔特科学遗产。今天,贝克曼库尔特生命科学公司是一个值得信赖的全球资源,提供帮助优化研究和制造效率的工具。离心机、颗粒计数器/分析仪、自动化液体处理器、流式细胞仪、基因组试剂。所有这些产品——以及更多产品——通过提高敬业的科学家、质量控制专家和其他人的生产力,进而持续改善人们的生活质量。无论人们在哪里需要答案,从著名的大学和大型制药公司,到初创的小型生物技术公司、食品/饮料和电子制造公司,您都可以找到贝克曼库尔特生命科学。关于 10x Genomics10x Genomics公司致力于提供业界领先的技术,以帮助科学家揭示生物学和疾病的复杂性,提升了解和治疗疾病的方式。通过将创新的微流体技术,试剂和生物信息学相结合,使全球的研究人员能够以前所未有的分辨率和通量加速探索研究,改善人类健康。仅供研究使用 (RUO),不用于诊断过程。
  • 为细胞生产保驾护航 赛多利斯斯泰帝推出一次性生物反应器和工艺袋新品
    p style=" text-indent: 0em text-align: justify " strong ——新款摇摆式一次性生物反应器系统能够培养工作容积达5升的细胞产品;Flexsafe& reg RM TX生物工艺袋具有可靠的工艺性能,满足最佳细胞生长 /strong /p p style=" text-indent: 2em text-align: justify " 生物制药国际供应商赛多利斯斯泰帝 (Sartorius Stedim Biotech,SSB)& nbsp 于1月21日宣布推出BIOSTAT sup & reg /sup RM TX一次性生物反应器,这款新型波浪式混合系统专为封闭、自动扩增质量稳定的细胞产品而开发,比如体外细胞免疫疗法。该新型GMP平台融合了SSB所建立的一次性Flexsafe sup & reg /sup 工艺袋技术与其在生物制药自动化方面的专长。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/3b759400-714c-470f-8157-957e0278c4a6.jpg" title=" BIOSTAT & reg RM TX自动化双系统,用于培养质量稳定的细胞.jpg" alt=" BIOSTAT & reg RM TX自动化双系统,用于培养质量稳定的细胞.jpg" width=" 631" height=" 354" style=" width: 631px height: 354px " / /p p style=" text-align: center" span style=" color: rgb(0, 112, 192) font-size: 14px " BIOSTAT sup & reg /sup RM TX自动化双系统,用于培养质量稳定的细胞 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/70b19094-3949-4ac1-abe9-e9ea4006eabc.jpg" title=" Flexsafe& reg RM 2L TX工艺袋,配有一次性BioPAT& reg ViaMass、Sartopore& reg 通风口过滤器和获得专利的灌注过滤器.jpg" alt=" Flexsafe& reg RM 2L TX工艺袋,配有一次性BioPAT& reg ViaMass、Sartopore& reg 通风口过滤器和获得专利的灌注过滤器.jpg" width=" 521" height=" 347" style=" width: 521px height: 347px " / /p p style=" text-align: center" span style=" font-size: 14px color: rgb(0, 112, 192) " Flexsafe& reg & nbsp RM 2L TX工艺袋,配有一次性BioPAT& reg & nbsp ViaMass、Sartopore& reg 通风口过滤器和获得专利的灌注过滤器 /span /p p style=" text-align: justify "   SSB的新型生物反应器设计用于扩增包括患者特异性T细胞在内的细胞,是由一个自动控制装置和最多两个摇摆式平台组成的封闭系统,可用于温和搅拌一次性Flexsafe sup & reg /sup RM TX工艺袋(工作容积达5升)。该工艺袋是系统的核心,由SSB的Flexsafe sup & reg /sup 薄膜制作而成,该膜材已经在全球各大生物制药公司从临床开发到疫苗和生物制剂的GMP生产中得到了充分的确证。该膜成分开发的主要目的是最大限度的降低浸出物和可提取物,确保即使是敏感细胞类型(如转基因T细胞),批次间的培养表现也保持一致。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/b4a365a9-95ed-431d-a444-c4a32ca3a9c8.jpg" title=" Flexsafe& reg RM TX收获装置在尽可能确保细胞收率情况下进行细胞培养的非手动重力收获.jpg" alt=" Flexsafe& reg RM TX收获装置在尽可能确保细胞收率情况下进行细胞培养的非手动重力收获.jpg" width=" 549" height=" 366" style=" width: 549px height: 366px " / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 14px " Flexsafe& reg RM TX收获装置在尽可能确保细胞收率情况下进行细胞培养的非手动重力收获 /span /p p style=" text-align: justify "   专有的Flexsafe sup & reg /sup RM TX工艺袋在设计上采用一个特殊端口,用于非手动重力收获。配合创新的Flexsafe sup & reg /sup RM TX收获装置,可以降低手动操作带来的污染风险、保持细胞完整性和细胞活性。与其它使用泵进行细胞收集的细胞治疗扩增系统不同,这种独特的重力收获理念降低了脆弱细胞受到剪应力的风险,最大限度地回收细胞。 /p p style=" text-align: justify "   使用BIOSTAT sup & reg /sup RM TX生物反应器和Flexsafe sup & reg /sup RM TX袋进行细胞培养的一项好处是可以远程监测和培养控制。这些工艺袋包含一次性pH、DO和活性生物量传感器。这些传感器集成在BIOSTAT sup & reg /sup B控制装置中,系统的复杂软件可用于对气体、流速、培养量和基质添加进行全自动工艺控制。如果培养体积大于500毫升,还可以通过连接一次性BioPAT sup & reg /sup ViaMass传感器在线分析活性生物量。这些传感器使系统适合在流加培养或灌注培养模式下保持连续运行,节省手动取样的人力、时间和精力,同时也最大限度地降低了宝贵的患者细胞受污染的风险。 /p p style=" text-align: justify "   利用这款生物反应器系统,生产企业可为每个BIOSTAT sup & reg /sup B控制装置安装第二个摇摆式平台和Flexsafe sup & reg /sup RM TX工艺袋,扩大生产规模。系统还为常规监控和数据采集系统以及分布式控制系统(如BioPAT sup & reg /sup MFCS和DeltaV& #8482 )提供标准接口。 /p p style=" text-align: justify "   Sartorius Stedim Biotech全球再生医学和RM生物反应器产品经理Franziska Faulstich博士解释说:“将一次性技术与先进的自动化技术相结合以扩培细胞产品,确保控制工艺变异性,并实现了安全、稳健和经济实惠的细胞生产。”她补充说道:“我们与细胞免疫治疗领域的领军者开展广泛合作,确定了相应技术和最佳实践工作流程,并将其纳入到我们的新型BIOSTAT sup & reg /sup RM TX生物反应器中。” /p p style=" text-align: justify "    strong 关于赛多利斯斯泰帝 /strong /p p style=" text-align: justify "   赛多利斯斯泰帝 (Sartorius Stedim Biotech) 是国际领先的生物制药行业设备和服务的供应商,为全球生物制药的开发与生产提供安全、及时、经济的一体化解决方案。作为完整解决方案的供应商, 赛多利斯斯泰帝提供几乎涵盖生物制药工艺所有步骤的产品组合。公司致力于推广一次性使用技术和增值服务,满足生物制药行业快速发展的技术需求。公司总部位于法国欧巴涅,在巴黎的欧洲交易所上市 因其位于欧洲、北美和亚洲的生产与研发中心以及遍布全球的销售网络而享誉世界。 /p
  • 哈工深圳陈华英团队: 单细胞连续捕获, 弹性模量测量和可寻址分选打印
    研究背景细胞的机械特性对其生物学功能(如增殖、分化和凋亡)和形态状态(如迁移、附着和病理状态)至关重要。目前常用的细胞弹性模量测量技术包括原子力显微镜、微管吮吸、光镊和磁镊等。这些技术可以有效测量单个细胞的机械性质,但是通量低,限制了其实际应用。近年来,微流控芯片因其在小体积液体操控方面的独特优势,也被用于测量细胞弹性模量。现有的微流控芯片主要侧重于平台开发,虽然通量大幅提高,但很少将测量后的细胞进一步收集以实现后续分析。单细胞分析技术的发展要求能够准确地打印单个细胞。传统单细胞打印技术包括荧光激活细胞分选、有限稀释和手动细胞挑选,这些方法打印效率较低且难以实现自动化。近年来,各种微流控技术被开发用于高通量精确打印单个细胞,如喷墨打印、精确分配、双阀门筛选和移液管式单细胞分离等。这些技术可以根据目标细胞的荧光、形态等特征进行识别并打印,但是大多技术难以获得单细胞的机械信息。因此,本研究报道了一款基于 U 型阵列的微流控系统,集成了单细胞连续捕获,弹性测量和可寻址打印。该装置在研究细胞力学与其他生物学特性的关系方面具有强大的应用潜力。研究内容近日,哈尔滨工业大学(深圳)陈华英课题组在英国皇家化学会(RSC)期刊 Lab on a chip 上发表题为“Continuous trapping, elasticity measuring and deterministic printing of single cells using arrayed microfluidic traps” (《单细胞连续捕获、弹性模量测量和可寻址分选打印》)的研究论文,报道了一款创新的微流控芯片,实现了基于精确调节的压力对微球/细胞进行捕获和逐个打印,并将已知弹性模量的单细胞确定性地打印到孔板中(图 1)。该论文第一作者是哈工大(深圳)在读硕士研究生蔡逸珂和硕士毕业生余恩。陈华英副教授为通讯作者。微流控芯片(图 1A)由冲洗入口、样品入口、打印入口、压力维持口和两个平行的主通道组成,下游有打印出口。在所有入口通道中设计了宽度从 200μm 减小到 25μm 的微通道阵列,以过滤介质中较大的颗粒/细胞碎片。如图 1A 和 B 所示,在每个主通道的一侧有 16 个 U 型捕获陷阱,且吮吸通道的高度比分流通道的高度低 15 μm,以保证细胞停留在 U 型陷阱中并诱导其微小变形。▲图1 单细胞连续捕获、弹性测量和可寻址打印系统。(A)微流控芯片连接到压力泵,将单细胞精确分配到孔板中;(B)通过调节打印压力(Po)捕获(Pi-Po0)和释放(Pi-Po0)单个细胞的机制;(C)用于捕获和分离细胞的吮吸通道;(D)用于捕获和分离微球的分流通道。
  • 流式快讯|CURIOX在韩国KOSDAQ挂牌上市,专注细胞洗涤
    第六届细胞分析网络会议,全日程公布重磅来袭! 2023年8月10日,Curiox Biosystems正式在韩国KOSDAQ挂牌上市。Curiox全球CEO Namyong Kim博士敲响上市鼓声上市合影作为细胞洗涤领域领先的高科技公司,Curiox拥有包括层流洗涤™(Laminar Wash™)技术在内的众多专利技术。Curiox致力于通过先进的自动化细胞洗涤技术取代传统的手动离心细胞处理方法,推动细胞样本前处理方法革新。层流洗涤™技术已在全球众多科研院校、医药企业和CRO/CDMO公司中获得广泛认可。Curiox成功上市,标志着Curiox在生物技术创新发展道路上的一个胜利。Curiox表示还将在细胞洗涤领域持续深耕,不断为客户带来更好的细胞前处理解决方案。同时也会专注于于不断拓展技术应用场景,为更多领域的科学家提供创新的样本处理方法。 关于盛涵生物(点击进入盛涵生物在线展位)Curiox是一家从事生物分析仪器研发、生产与销售的创新型生物科技公司,致力于通过自动化实现精确的生物分析。Curiox成立于2008年,拥有Laminar Wash™和DropArray™两大核心专利技术。Laminar Wash™在细胞洗涤领域表现卓越,为全球研究机构提供自动化流式样本前处理解决方案。Curiox是NIST和美国FDA全球细胞分析联盟中唯一的自动化公司。2020年,Curiox进入中国,成立盛涵生物科技(上海)有限公司,为中国科学家带来生物分析的自动化解决方案。【精彩会议Webinar】第六届细胞分析网络会议,全日程公布重磅来袭!全日程公布:https://www.instrument.com.cn/webinar/meetings/icca2023.html围绕4大主题:【1】类器官与器官芯片【2】单细胞分析技术:微流控、质谱、测序、转录组【3】细胞治疗产品的CMC质量控制分析【4】细胞成像分析技术8月30日精彩等你:https://insevent.instrument.com.cn/t/uus(主办单位:仪器信息网,赞助联系13683372576)
  • 采用改进质谱流式|斯坦福大学表征人B细胞特征单细胞图谱
    前言B 细胞具有产生针对多种靶标的抗体的独特能力,可提供针对感染的保护,同时还有助于免疫失调环境中的发病机制。人类 B 细胞分为五个群体:过渡、幼稚、非转换记忆、转换记忆和浆细胞。识别和分类人类 B 细胞的功能亚群,阻碍了作者在自身免疫中选择性靶向致病性 B 细胞和在疫苗接种中诱导记忆反应的能力。为了表征外围成熟的人类 B 细胞,本文作者开发了一种高度复用的单细胞筛选方案,通过使用大规模细胞术来量化 351 个表面分子的共表达。基于作者的研究结果,作者提出了一种分类方案,将来自外周血、骨髓、淋巴结和扁桃体四个组织的的 B 细胞分为 12 个独特的亚组,并构建了具有表面表型、代谢、生物合成活性和对免疫激活的信号反应特征的广泛单细胞图谱。这个人类 B 细胞身份图谱将使研究能够在稳态、疫苗接种、感染、自身免疫和癌症的背景下进一步确定 B 细胞亚群的功能。本篇为斯坦福大学研究团队在 Immunity期刊(IF:43.474)发表的题为 “An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity”的研究成果,采用改进的质谱流式细胞仪、流式细胞术等研究方法,成功量化了百万级人类B 细胞上 351 种表面分子的共表达模式。通过鉴定了差异表达的分子,对比VDJ 序列、代谢谱、生物合成活性和信号反应。提出了新的 B 细胞分类方案:在四种淋巴组织中鉴定出 12 个独特的亚群,包括 CD45RB + CD27 -早期记忆群体、类别转换的 CD39 +扁桃体常驻群体和有效响应免疫激活的 CD19 hi CD11c +记忆群体。该分类框架和基础数据集为进一步研究人类 B 细胞身份和功能提供了资源。技术流程研究结果1.高度多重的单细胞表面筛选揭示了人类 B 细胞表面蛋白质组为了识别区分 B 细胞亚群的分子,作者开发了多重筛选的方法,并量化了健康人类 B 细胞上 351 种表面抗原上的共表达模式(图1A)。通过设计了 12 个质谱抗体组,每个组由 9 个用于子集的保守分子和 30 个对每个组独特的可变分子组成。门策略可以实现四个典型 B 细胞亚群:过渡、幼稚、非转换记忆和转换记忆(图1B)。在设置了一个严格的阈值(图 1 C)后,作者确定了 98 个在人类 B 细胞上表达的表面分子(图 1D)。作者的单细胞筛选策略实现了对人类 B 细胞表达的表面分子的可靠鉴定。图1 |高度多重的单细胞表面筛选揭示了人类 B 细胞表面蛋白质组a)实验概述 (n = 2 个捐助者)。b)典型种群的代表性门控。c)屏幕上分子阳性的代表性阈值。d)总 B 细胞(顶行)的百分比阳性和 B 细胞表达的分子子集(底行)的中值表达。2.差异表达分析揭示了幼稚 B 细胞的无反应特性通过规范门控策略识别组织B 细胞的成熟状态:从过渡到幼稚、非切换和切换记忆。为了探究在整个过程中发生的蛋白质组学变化,作者评估了所有分子的子集中每个成对组合之间的表达差异。作者绘制了 61 个差异表达分子(图2A )。正如预期的那样,未成熟的同种型 IgD 和 IgM 在过渡和幼稚亚型中富集,而经典记忆分子 CD27 在记忆细胞中富集。CD305在抗原缺乏经验的细胞中比记忆细胞富集, CD45RB (RB) 是 CD45 的同种型,优先在记忆细胞中表达。作者绘制了幼稚细胞与其他子集的比较(图2B),作者发现幼稚细胞表达的与运输相关的分子数量少于任何其他子集,这表明它们对刺激的反应较小。事实上,幼稚细胞对 16 种转运分子的中位表达值最低,在所有 46 种转运分子中平均表达最低(图 2C)。作者探索了这种趋势在 GO 术语中是否一致,并发现幼稚细胞在 30 个术语中的 19 个具有最低的平均表达值(图 2 D)。事实上,当对所有 98 个分子的中位表达值进行平均时,幼稚细胞的平均值最低,这表明它们比其他 B 细胞亚群处于更无反应的状态。这些发现证实了幼稚 B 细胞的无反应特性。图2 | 差异表达分析揭示幼稚 B 细胞a)子集的每个成对比较的中值表达差异。所有非白色瓷砖都是显著的(p 0.005)。b)比较的火山图,与 GO 术语“运输”相关联。框中列出的显著不同的分子按表达差异幅度的递减排序。c)转运分子 (颜色) 的中值表达。所有转运分子的中位表达平均值(黑色)。d)与 GO 术语相关的分子的中值表达平均值 (颜色)。所有分子的中值表达的平均值(黑色)。e)在幼稚细胞中表达更高的六种分子的表达 (p 3.CD45RB 标记人类记忆 B 细胞并识别早期记忆群体为了找到唯一识别不同 B 细胞的标记,作者以无偏方式分析了所有 B 细胞中分子的共表达模式。作者生成了统一UMAP图,通过使用所有 12 个试管的供体汇集数据来展示保守分子的表达(图 3A)。作者绘制了与保守分子相关的分子,并按功能和相关保守标记进行展示(图 3 B)。在 UMAP 坐标上叠加规范门控标签,尽管表型相似,但细胞被规范门控视为不同的子集(图 3C)。大多数 CD27 +细胞也是 RB +,而 RB + CD27-群体包含 25% 未封闭的细胞(图 3 D 和 3E)。鉴于 RB + CD27 -细胞和 CD27 +细胞在 UMAP 上的共定位,作者假设这些细胞代表在当前分类方案下未被识别的记忆细胞群。为了评估 RB 和 CD27的记忆细胞谱,作者前瞻性地从健康的人类 B 细胞(n = 2 个供体)中分离出 CD27 × RB双阳细胞,并通过下一代测序对 IgH 基因座进行测序(图 3 F)。作为抗原暴露的代表,作者测量了互补决定区 3 (CDR3) 之外的 IgH 基因座中核苷酸的供体汇集突变频率(图 3 G)。正如预期的那样,CD27 +细胞具有相对较高的突变负担,在接触抗原后通过体细胞超突变 (SHM) 获得。作者量化了四个种群在一系列多样性顺序中的多样性并发现 RB - CD27 -细胞的多样性最高,而 RB + CD27 +细胞的多样性最低(图 3 H)。作者进一步探索来自一个群体的细胞是否倾向于与来自任何其他群体的细胞克隆相关(图 3 I)。作者发现来自四个群体中的每一个的细胞都更有可能与来自同一群体的细胞共享克隆谱系,而不是来自不同群体的细胞(图 3J)。这表明 RB 和 CD27 的表达在克隆谱系中是高度协调的,正如对响应抗原结合而表达的两种分子所预期的那样。总之,这些发现提供了强有力的证据,表明 RB 的表达是外周血记忆 B 细胞的指示,并且与 CD27 的缺失相结合,可用于对早期记忆群体进行分类。图3 | CD45RB 标记人类记忆 B 细胞并识别早期记忆群体4. 将 B 细胞分为表型和同型不同的亚群系统筛选了数十种在 B 细胞中差异表达的分子,因此作者假设作者可以将 B 细胞分类为更细粒度的亚群。作者对新鲜、健康的人类外周血 B 细胞(n = 3 名供体)进行了染色,细胞降维成十个不同的群体,包括两个幼稚和六个记忆子集(图 4 B)。表面表达谱提示成熟顺序排列(图4B)。七种不同分子的特征表达以手动门控每个群体,因此也用于标记该方案中的群体:CD11c、CD73、CD95、CD27、CD38、RB 和 CD19(图 4 C D)。子集倾向于在图上形成独特的岛屿,为作者的分类方法提供正交验证 (图 4 D)。为了评估子集之间的表型相似性,作者计算了中值表达谱之间的成对欧几里得距离(图 4 E)。对于每个群体,作者量化了表型最相似的子集。RB + CD27 -记忆和 RB + CD27 + CD73 -彼此最相似,进一步验证了 RB + CD27 -细胞作为记忆子集的状态。在汇总数据(图 4 F)中,组织 B 细胞也会导致跨个体供体存在同种型。通过规范门控,30% 的 IgG +细胞和 20% 的 IgA +细胞由于缺乏 CD27,这表明 CD27 单独作为记忆分子的不足(图 4 G)。相比之下,作者的方法正确地将超过 99% 的 IgG +和 98% 的 IgA +细胞分类为记忆细胞。已知 Ig 同种型的使用会影响下游效应器功能和分化模式。因此,作者还在同种型的基础上组织了 B 细胞,并观察到BCR 复合物的两种成分的不同表达模式:表面 Ig 和 CD79b(图4H)。鉴于这些趋势,作者探索表型或同种型是否对预测表面 Ig 和 CD79b 的表达量贡献更大。作者创建了单细胞多元线性回归模型,其中细胞的表型标记和同型标记用于预测 CD79b 或表面 Ig 的表达(图4H)。尽管两者都提供了丰富的信息,但细胞的同种型对预测两种分子的表达的贡献超过了细胞的表型。总而言之,这些发现表明,作者的高维分类将外周血 B 细胞组织成十个表型不同的亚群,比典型的门控策略更准确地划分细胞。此外,这些表型分区显示出同型限制,这进一步有助于 B 细胞的身份。图4 | 将 B 细胞分为表型和同型不同的亚群5. B 细胞亚群功能的研究提示了不同的代谢、生物合成和免疫信号活性特征为了研究作者改进的 B 细胞分类方案的功能特性,作者探索表面蛋白是否表示其他潜在功能细胞过程的差异。作者对来自其他供体(n = 9 个供体)的健康人外周血单核细胞 (PBMC) 进行了染色,并使用质谱仪组来探索 B 细胞代谢谱、生物合成活性和免疫信号传导特征(图 5A)。作者量化了与四种代谢途径相关的八种酶的表达:糖酵解或发酵、ATP 感应、氧化磷酸化和脂肪酸氧化 (图5B )。幼稚细胞在所有亚群中的表达最低,而 RB + CD27 -记忆细胞具有介于幼稚和记忆亚群之间的中间代谢特征。这些通路使用的差异可能是由于不同的功能作用,因此不同的代谢需求。通过将 5-溴尿苷 (BRU) 和嘌呤霉素标记与质谱仪相结合,量化从头RNA 和蛋白质合成以及功能和表型特征。作者发现转录活动几乎不能解释在翻译活动中观察到的差异 (图 5 C),突出了这两个过程的差异调节。CD19 hi CD11c +记忆细胞具有最高的中位转录活性,其次是 CD73 +幼稚细胞,其具有最低的中位翻译活性(图 5D)。发现转录活性浆细胞中的翻译活性和 CD184 表达高于转录lo浆细胞(图 5E)。这种转录活跃的群体可能是长寿命的浆细胞,而转录不活跃的群体可能是短寿命的浆细胞。为了评估亚群之间免疫激活敏感性的差异,作者用不同剂量的 BCR 交联剂和 CD40 配体刺激 B 细胞 10 分钟,然后用包含抗B 细胞信号传导固有的磷酸化靶标(图 5A)。作者测量了脾酪氨酸激酶 (pSYK) 和下游磷脂酶 Cγ2 (pPLCγ2) 的磷酸化(图 5F)。作者在双轴等高线图上可视化了 BCR 复合信号级联中两个分子 SYK 和 PLCγ2 的磷酸化状态变化,并发现子集之间的分布变化存在鲜明对比(图 5 H)。为了量化信号响应,作者计算了推土机在基线细胞和受刺激细胞之间的距离,发现这两个记忆群体以及浆细胞比所有其他子集的响应性明显更高(图 5 I)。作者量化了表型和同种型使用的相对贡献,以预测代谢途径表达、生物合成活性和信号响应的表达(图 5J)。总的来说,这些发现表明作者的表型分类捕获了代谢途径使用、生物合成活性和对免疫激活的信号反应的功能差异。图5 | B 细胞亚群功能的研究揭示了不同的代谢、生物合成和免疫信号活性a)实验工作流程 (n = 9 捐助者)。6. 淋巴组织特异性 B 细胞群的表征为了将人类 B 细胞分析的范围扩大到外周血之外,作者分析了来自外周血的骨髓 (n = 3)、扁桃体 (n = 3)、淋巴结 (n = 1) 和其他外周血样本 (n = 4)一个新的健康捐赠者队列(n = 11),通过大规模细胞术(图 6A)。为了探索组织之间 B 细胞表达的整体差异,作者评估了所有分子的供体组织表达差异。作者确定了至少一对组织之间存在差异表达 (p 0.005) 的 21 个分子,并绘制了它们的分布,按功能组织(图 6 B)。淋巴结也明显偏向未成熟同种型(图 6 C)。然而,扁桃体没有富集任何抑制分子(图 6 B),主要由具有记忆表型的细胞组成(图 6 C 和4 G)。为了评估组织内 B 细胞表型的组成,作者绘制了子集比例图,并且根据同种型数据,作者发现淋巴结大量富含 CD73 +幼稚细胞(图 6 D)。为了评估组织的差异性,作者根据子集组成计算了每个组织之间的成对曼哈顿距离(图 6 E)。作者确定了外周血中不存在的两个亚群:生发中心 (GC) B 细胞,存在于扁桃体和淋巴结中,以及一个 CD39 +扁桃体群(图 6 D)。GC 细胞是 CD38 +和 CD32 - (图 6 F)。图6 | 淋巴组织特异性 B 细胞群的表征a)实验工作流程 (n = 11 捐助者)。b)分子的小提琴图在至少两种组织中显著差异表达 (p 0.005)。研究讨论为了探究原代细胞的深层表型多样性,作者开发了一种高度多重的单细胞表面筛选,并将其应用于识别可以分离人类B 细胞亚群的分子。这种方法使作者能够区分四种淋巴组织中的 12 个 B 细胞亚群并关联它们的功能特征。作者确定了六个记忆群体,证实了先前关于小鼠和人类抗原识别后表型多样化的报道。作者还确定了一个 CD19 hi CD11c +记忆群体,它与在自身免疫、感染和衰老背景下描述的几个群体具有一些共同特征。卡内尔等人,2017)。在这个群体中,作者通过 CD27 表达分离细胞,发现 T-bet 和 PD-1 在 CD27 - CD19 hi CD11c +记忆细胞中富集,类似于在 T 细胞中看到的效应记忆表型。在这里,作者通过对健康个体中多组学整合进行的深度表型分析揭示了新的、更细的B群体确定,全面映射了人体血液和淋巴组织中的 B 细胞身份。对几个细胞过程中表型与同种型使用的贡献的定量评估突出了对超越谱测序和同种型身份进行分析以了解人类 B 细胞免疫功能的必要性。研究结果作为未来研究在疫苗接种或疾病背景下研究体液免疫反应的资源,描述的群体和分子可能对于理解 B 细胞介导的发病机制或保护至关重要。
  • 科学家发展出基于深度学习的细胞器互作高通量分析系统
    8月5日,中国科学院院士、中科院生物物理研究所研究员徐涛课题组、研究员胡俊杰课题组,与中科院计算技术研究所肖立团队合作,在Journal of Cell Biology上发表了题为DeepContact: High throughput quantification of membrane contact site based on electron microscopy imaging的方法学(Tools)文章,针对二维电镜数据开发了一种基于深度学习的细胞器互作高通量统计分析方法——DeepContact。  近十几年来,细胞器互作位点(membrane contact site,MCS)得到生物学领域的关注。MCS是膜性细胞器之间形成的由蛋白复合体介导的动态物理相互作用,在信号转导、脂类运输、细胞器形态重构等方面起到关键作用。然而,因缺乏高效的MCS统计量化工具,细胞器互作领域的发展受到限制。MCS荧光显微成像因过表达荧光指示系统而引发不可避免的人为干扰因素。电子显微镜可获取高分辨率细胞器全景图像,适于挖掘纳米尺度多种细胞器相互作用的定量信息。基于深度学习的高分辨三维体电镜数据细胞器互作分析方法已然建立,但此类前沿方法对设备、机时、算力要求高,而生物样本多具有高异质性,三维体电镜难以满足统计相关性分析的样本量需求。基于手动分割的大样本量二维电镜数据分析可以得出生物学功能相关性结论,但方法在耗费巨大人力的同时无法排除人为主观判断的影响。  DeepContact通过语义分割算法预测二维电镜图片中的不规则ER网络的整体特征,运用实例分割算法预测形状规则细胞器形态特征,可分割量化细胞器形态参数,并通过提取细胞器边缘信息进一步量化特定细胞器间距上的MCS比率信息;可进行无标记辅助的准确、灵活、直观、全面的可视化和统计量化结果输出,并可通过主动学习方法将新细胞器形态高效的扩展到细胞器预测模型中。DeepContact可满足细胞器互作与生物医学功能相关性分析的需求;具备高通量样本分析能力以及组织内特异细胞类型分析能力,可扩展应用于细胞器互作网络的相关性研究与医学超微病理学研究。  研究工作得到国家自然科学基金、国家重点研发计划和中科院战略性先导科技专项的支持。电镜制样和数据收集工作得到生物物理所生物成像中心的帮助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制