当前位置: 仪器信息网 > 行业主题 > >

手提导率仪

仪器信息网手提导率仪专题为您提供2024年最新手提导率仪价格报价、厂家品牌的相关信息, 包括手提导率仪参数、型号等,不管是国产,还是进口品牌的手提导率仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合手提导率仪相关的耗材配件、试剂标物,还有手提导率仪相关的最新资讯、资料,以及手提导率仪相关的解决方案。

手提导率仪相关的资讯

  • 国内首个地沟油手提检测仪研制成功
    不同的油显示的拉曼光谱不同   ■运用了拉曼光谱原理、纳米技术   ■大小相当于15寸笔记本电脑包,重10公斤   ■可随时随地进行检测,十分钟内可知检测结果   检测地沟油的实验室不仅可以“提”着走,而且还攻克了以往食用油质量检测时间长的难题,十分钟内即可知道检测结果。7月13日,欧普图斯(苏州)光学纳米科技有限责任公司宣布,该公司已完成国内首个“地沟油检测手提实验室”的实验室研发工作,并将在近期内实现产业化生产。这标志着国内首个地沟油检测手提实验室在苏研制成功。   地沟油对人体的危害广为人知,但记者了解到,对地沟油快速检测存在一定技术难题,比如,检测均需借助实验室进行,而且一般需要2到3天才能知道检测结果,这已成为有关部门监管地沟油流入餐桌的一大难题。该公司成功研制“地沟油检测手提实验室”,在全国率先攻克了食用油快捷检测的技术难题。 地沟油检测手提实验室   记者在该公司看到,手提实验室大小相当于15寸笔记本电脑包,重约10公斤。打开手提实验室,里面有一台电脑和一个与之相连的激光拉曼光谱仪,据该公司总经理刘春伟介绍,该手提实验室可随时随地进行地沟油检测,内置电源可连续工作5小时。操作非常简单,只需将激光探头照一下装在透明容器中的油品,手提实验室的电脑就会显示检测结果:绿灯亮,表示油品安全;红灯亮,表示油品中含有地沟油成分。“精炼或者掺兑的地沟油,从外观上可以以假乱真,但手提实验室照样可以让它现出原形。”据刘春伟介绍,地沟油通常指泔水油、劣质猪油、煎炸老油等,经过高温精炼、脱色、去味等“深度”处理后,地沟油和普通食用油在外观上几乎没有区别,但由于制作原料和高温处理的原因,地沟油一般存在“含有动物脂肪”或“氧化物质超标”两大特征,而这恰恰为手提实验室“揪”出真凶提供了确凿依据。   据介绍,手提实验室主要运用了激光拉曼光谱原理和纳米技术,当激光照射被检油品时,形成的拉曼光谱能及时传回电脑,由于不同分子结构的拉曼光谱和人的指纹一样具有唯一性,所以电脑经过拉曼光谱比对,可清晰地显现所测油品是否含有地沟油。纳米技术在手提实验室中主要起到了信号放大器的作用,它可以帮助激光捕捉到微痕量化学物极其微弱的信号并将其放大,从而提高检测的灵敏度。   背景资料:拉曼光谱   每一种物质经光照射散射后,会形成不同的拉曼光谱,这个光谱像人的指纹一样具有唯一性。因此,人们可以根据拉曼光谱对比判定不同的物质。最早发现拉曼光谱的是印度科学家C.V.拉曼,并因此获得1930年的诺贝尔物理学奖。目前,拉曼光谱原理已广泛应用于化学、物理学、生物学和医学等领域。
  • 普洛药业—岛津联合实验室启程,携手提升药品研发生产水平
    普洛药业股份有限公司与岛津企业管理(中国)有限公司本着战略需要、优势互补的原则,经友好协商,决定共同组建“普洛药业股份有限公司—岛津企业管理(中国)有限公司合作实验室”,旨在以合作实验室为平台,发挥双方优势力量,在制药行业领域共同开展科研与学术合作,开发前沿技术以及市场热点方面的应用方案,携手提升药品研发生产水平。该合作实验室经过一年时间的积极筹备,于6月5日在普洛药业公司总部研究院隆重签约挂牌,双方的合作事业正式扬帆起航。普洛药业公司采购总监李淑清主持仪式并介绍其公司出席仪式的嘉宾岛津公司分析仪器事业部浙江区经理曾新华介绍其公司出席仪式的嘉宾普洛药业公司行政总监聂文彬介绍其公司概况 聂文彬行政总监全面介绍了普洛药业公司自1989年创立以来至今三十年的发展历史,以及公司的组织架构、产业布局与战略、研发创新体系、生产运营与企业文化等诸多内容。普洛药业公司是一家集研发、生产、经营医药中间体、原料药、生物制品等系列产品为一体的医药化工企业,是国家重点高新技术企业,目前在全国多地都建有生产基地和研发中心,已经跻身全国医药工业50强。公司总部研发中心早在06年就被评为“国家级企业技术中心”,先后自主开发了多个国家级、省级重点高新技术产品,拥有非常强的技术研发能力。岛津公司分析测试仪器市场部华东区经理吴国华介绍其公司概况 吴国华经理介绍了岛津公司自1875年创业以来至今144年的悠久历史,以及以领先时代的科学技术,不断钻研与创新,为广大制药领域用户开发生产出的大量优质产品与完善的售后服务体系,并着重介绍了岛津公司与医药领域领先的大学、研究机构的广泛且深入的合作。普洛药业公司优胜美特研究院院长詹威强发表祝辞祝贺合作实验室的成立 詹威强院长在祝辞中谈到,随着中国医药改革的不断深化以及为满足广大人民群众对高质量药品的需求,无论是医药监管部门还是各医药企业都对药品研发生产过程中的质量提出了更高的要求。普洛药业长期致力于为客户提供优质的产品和服务,为改善人民的健康生活而不断努力着。高质量的医药研发与生产离不开高水平的研发生产设备。日本岛津公司以光技术、Ⅹ射线技术、图像处理技术这三大核心为基础,为全世界的医药企业提供“利器”。他强调普洛药业-岛津联合实验室的正式成立必将极大提升普洛药业医药产品相关的质量与研究能力,我们的研发团队一定会充分利用联合实验室这个平台,不断提升研发水平。岛津公司分析测试仪器市场部医药行业部部长吕冬发表祝辞祝贺合作实验室的成立 吕冬部长在祝辞中谈到,普洛药业公司的原料药业务、合同研发生产服务及制剂业务在国内制药工业界占用举足轻重的地位。岛津公司不仅提供品质优良的软硬件产品,同时还提供各个应用领域的全面应对方案,比如从基因毒性杂质分析鉴定、“注射剂一致性评价”、药物包材相容性检测技术等近期用户最为关心的热点问题入手,结合岛津先进分析技术提供了针对性的解决方案。我们希望通过双方在产品性能研发,应用技术探讨,售后支持体系建设等多方面开展合作,真正达到双方的互赢互惠。 岛津公司分析仪器事业部华东大区经理张淳与普洛药业公司采购总监李淑清在合作实验室协议书上签字岛津公司中国开发中心中心长井上武明与普洛药业公司质量监管部总监兼巨泰药业董事长马巧芳共同为合作实验室揭牌签约揭牌仪式结束后,双方随即展开了热烈的学术交流 岛津公司中国开发中心副中心长兼产品企划部部长国广冲之介绍了刚刚在中国市场发布的岛津首套融合“AI”与“IoT”尖端技术的旗舰级液相色谱新品Nexera LC-40出席合作实验室签约揭牌仪式的嘉宾合影留念
  • 863项目成果“高精度手提式X荧光仪”通过验收
    图一 高精度手提式X荧光仪图二 高精度伽玛能谱仪  2016年5月25日,863计划资源环境技术领域办公室在北京组织召开了“十二五”863计划资源环境技术领域“放射性矿产探测与开发技术”项目的技术验收会议。  “放射性矿产探测与开发技术”主题项目立足于解决隐伏砂岩铀矿勘查、采冶过程中的关键技术问题,提升我国铀矿勘查技术与装备的研发水平,为保障我国中长期核能产业发展和国防建设对铀资源的需求提供技术支撑。项目针对隐伏砂岩铀矿勘查采冶过程中的关键技术问题,完成了隐伏放射性矿产识别技术、地浸采铀模拟与控制技术、脉冲中子测井与铀定量解释技术研究及高精度能谱探测仪器研发工作。通过项目攻关,研发了砂岩型铀矿成矿环境、砂体识别与定位技术、铀矿化信息探测技术及GIS综合预测评价系统 查明了砂岩铀矿多种矿物的溶蚀规律,创建了砂岩型铀矿酸法和中性浸出体系和络合物形成的理论模型 研制了高精度手提式X射线荧光仪、微束微区野外X荧光矿物探针、高精度伽马能谱仪、高灵敏度野外测氡仪、脉冲中子铀矿测井仪等设备样机,并开发了配套软件。项目取得的技术成果在我国新疆伊犁、内蒙古二连和鄂尔多斯等北方大型砂岩型盆地的铀矿勘查、地浸采铀生产中得到了较大规模的应用,具有良好的社会和经济效益。  会上,验收专家组听取了该项目首席专家关于项目执行情况的汇报,审阅了相关验收材料,并进行了质询。经讨论,验收专家组同意该项目通过技术验收。
  • 10秒钟不到,“手提实验室”就能让地沟油现出原形
    “手提实验室”就像一台电脑   近期,在公安部的统一指挥下,浙江、山东、河南等地公安机关首次全环节破获了一起特大利用地沟油制售食用油案件。北京市食品安全监控中心对浙江公安机关送检的油样出具了检测结论,指出格林公司用地沟油生产的食用油含有多环芳烃等多种有毒有害物质。对于这一检测结论,苏州欧普图斯光纳科技公司功不可没。该公司研发的拉曼光谱仪,可让地沟油不足10秒现原形。其实,早在公安部通报特大利用地沟油制售食用油案件前,苏州查处的地沟油制售食用油案件中,拉曼光谱仪已一显身手。   □快报记者 陈泓江 文/摄   [原理]   用激光捕捉分子结构   昨天下午,在欧普图斯光纳科技公司实验室,该公司总经理刘春伟打开一个“手提实验室”,将一小瓶地沟油样品放入一激光照射器盖了起来,然后点击一旁连接的电脑页面显示的“单次采集”键,很快就检测出该油样是“阳性”,并发出报警声。刘春伟又对一合格的食用油油样进行检测,当即显示“阴性”。刘春伟说,此次公安部侦破地沟油大案的检测结果,就是该公司和北京市食品安全监控中心合作进行的。“7月上旬,我带团队前往北京市食品安全监控中心对公安部提供的75个油样进行检测,结果40个呈阳性,被交给实验室进一步检测。我们仪器检测结果准确率达98%以上。”   记者看到,“手提实验室”大小相当于15英寸笔记本电脑包,重约10公斤。打开“手提实验室”,里面有一台电脑和一个与之相连的激光拉曼光谱仪。这一仪器究竟有何奥秘?为何能让地沟油快速现形?刘春伟告诉记者,“手提实验室”主要运用了激光拉曼光谱原理和纳米技术,当光照射被检油品时,形成的拉曼光谱能及时传回电脑,由于不同分子结构的拉曼光谱和人的指纹一样具有唯一性,所以电脑经过拉曼光谱比对,不足10秒就可清晰地显现所测油样是否含有地沟油。纳米技术在“手提实验室”中主要起到了信号放大器的作用,它可以帮助激光捕捉到微量物质极其微弱的信号并将其放大,从而提高检测的灵敏度。   刘春伟介绍,经激光照射后,如植物油样出现动物成分,那一定是有问题的。   [现状]   食用油国标已经滞后   刘春伟说,检测食用油传统的方式是依据多环芳烃(PAHs)、胆固醇、电导率等指标,但有的地沟油是检测不出致癌物质的,而且加工出来后竟然也能达到现有的食用油国标,给查处带来很大难度。   今年7月初,苏州某地一油脂厂被调查发现是用地沟油加工食用油出售,欧普图斯光纳科技公司应邀对油样进行了检测,结果16个呈阳性。“尽管是地沟油加工,也被仪器检测有地沟油成分,却符合现行的国家食用油标准。”刘春伟说,地沟油加工成食用油后,虽然是一桶出来的,加上花生油油精就变成了“花生油”,加上大豆油油精就成了“大豆油”,于是出现真正的地沟油被摆上餐桌,却也难看出好坏来。   刘春伟说,苏州这一黑心油脂厂老板去年在南方生产地沟油就被查处过。“因其加工的地沟油符合现行食用油标准,苏州有关部门此次只好按照假冒商标不法行为处理。”   [呼吁]   完善国标和追溯体系   刘春伟说,利用拉曼光谱原理,欧普图斯研发的快速检测还在检测“三聚氰胺”“苏丹红”等食品添加剂方面有明显优势。比如“三聚氰胺”的快速检测,2008年10月,在科技部、质检总局、农业部、卫生部组织的“生鲜奶中三聚氰胺统一测试”中,采用欧普图斯技术检测结果准确率达100%,含样品前处理总共用时不到5分钟,其真正的检测时间只需几秒钟。2010年12月,欧普图斯拉曼光谱技术检测被列入国家批准的检测奶制品三聚氰胺的技术方法。   “近年来,国内之所以出现‘苏丹红’‘三聚氰胺’等食品安全事件,重要原因就是这些危害健康的食品添加剂很难被快速检测出来。”刘春伟说,事实上,国内近几年出现的食品安全事件,都离不开食品安全标准滞后这个原因。比如当年的苏丹红和三聚氰胺奶粉事件,就是因为这些危险的添加剂不在检测范围之内,无法检测,就意味着监管基本上是空白的。而此次地沟油案件,我国尚未建立一套完整的鉴定地沟油检测技术规范,存在标准缺失、监管不力等问题。   “业内承认我们检测技术,却没有国标可参照。”刘春伟透露,为建立战略合作联盟推进国家地沟油检测国家标准的制定,该公司早已和全国油料及油脂技术工作组等单位展开合作。刘春伟呼吁,国家应尽快制定出台检测地沟油标准,建立可追溯餐厨垃圾等地沟油去向的管理体系。   刘春伟说,将地沟油回收、加工成饲料、肥料等再生资源的企业,花费成本太高 而将地沟油加工成劣质食用油的,支起一口大锅就能干,违法成本太低,还难以被监管。为此,他建议给地沟油加工再利用提高准入门槛,并对相关企业给予政策扶持。
  • 美发布手提式婴儿摇篮安全新规
    日前,美国材料试验协会(ASTM)发布了一项安全规范,即ASTM F 2050-12《手提式婴儿摇篮的消费者安全规范》,旨在监督和解决有关手提式婴儿摇篮的安全问题。其中手提式的婴儿摇篮(Hand-Held Infant Carriers)定义为:可自由站立的,具有硬边的产品,供看护者通过手提或手柄携带婴儿,并可完全支撑该婴儿的身体。   在该标准的修订中,除其他项目外,还涉及到由美国消费品安全委员会CPSC提出的有关手提式婴儿摇篮的安全问题,其中某些是根据已发生的伤害事件提出的。新修订标准中关键的新要求包括对“手提式摇篮”的新定义和两种测试方法的增加,一种为要求手提式婴儿摇篮的手柄必须可自动锁定或移动到制造商所指定的手提的位置,另一种为通过施加动态冲击力,评估手柄锁定机构的强度。   在此,检验检疫部门提醒企业:一方面,密切关注各国关于儿童用品标准规范的制定及更新状况,加强对新标准的研究和理解,提高主动规避风险的能力 另一方面,评估新的ASTM F2050标准对企业手提式婴儿摇篮生产的影响,依据标准要求提升技术水平,使产品符合新标准的要求,加强与权威实验室的合作,做好产品出口前的抽样检测工作。
  • 手提式气体分析仪的使用需要注意什么?
    气体分析仪是一种用于测量和分析气体成分的仪器。它可以用于检测各种气体,如空气中的污染物、工业废气、燃烧气体等。那么手提式气体分析仪在使用时需要注意什么呢?下面是逸云天小编的分享。  使用手提式气体分析仪时,有以下几点需要注意:  1.阅读说明书:在使用前,仔细阅读分析仪的使用手册,了解其功能、操作方法和安全注意事项。  2.校准和标定:按照厂家的建议,定期对分析仪进行校准和标定,以确保测量结果的准确性。  3.传感器选择:根据需要检测的气体种类,选择合适的传感器,确保分析仪能够准确测量目标气体。  4.检测环境:在使用分析仪时,注意检测环境的温度、湿度和气压等因素,这些因素可能会影响测量结果。  5.操作方法:按照正确的操作步骤进行操作,避免误操作导致仪器损坏或测量误差。  6.气体采样:确保气体采样的方法正确,避免采样过程中引入干扰物质或造成样品失真。  7.安全防护:在使用过程中,要注意安全防护,避免接触有毒、有害气体,必要时佩戴适当的防护装备。  8.数据解读:了解如何正确解读分析仪显示的测量数据,以及如何判断数据的可靠性。  9.维护保养:定期对分析仪进行清洁、检查和维护,确保其性能良好。  10.储存和运输:在储存和运输分析仪时,要注意避免碰撞、振动和潮湿等不利条件。  遵循这些注意事项可以帮助你正确使用手提式气体分析仪,并获得准确可靠的测量结果。
  • 关注新型受体激动剂,吃肉更放心
    导 语社会各界对“瘦肉精”食品安全问题的关注,促使了β2-受体激动剂的检测技术得到了飞速发展,从而有效遏止了β2-受体激动剂在动物养殖中的非法使用。而α2-受体激动剂作为一种新型的具有促进生长及提高瘦肉率作用的药物也在逐步引起关注,且在饲料行业中已有非法添加使用的趋势。早在2010年,农业部1519号公告已明确把可乐定、赛庚啶等列入了农业部《禁止在饲料和动物饮水中使用的物质》清单。 什么是α2-受体激动剂 α2-受体受体激动剂对α2受体具有特异亲和性,主要用于治疗人类的高血压症。有研究表明,在饲料中添加0.5 mg/kg可乐定,能显著提高猪的瘦肉率,改善猪胴体组成,其它α2-受体激动剂也具有类似的作用。《GB 31650-2019 食品中兽药最大残留限量》规定,仅赛拉嗪可用于非产奶期的牛、马等动物,其他α2-受体激动剂均禁止用于畜禽养殖,且不得检出。《GB 31660.6-2019 动物性食品中5种α2-受体激动剂残留量的测定 液相色谱-串联质谱法》食品安全国家标准,提供了替扎尼定、赛拉嗪、溴莫尼定、安普乐定和可乐定在猪、鸡肌肉及内脏中残留检测方法,该标准已于2020年4月1日正式实施。 岛津解决方案 实验部分 检测仪器本实验使用超高效液相色谱仪LC-40与三重四极杆质谱仪LCMS-8050联用系统。 前处理方法参照《GB 31660.6-2019 动物性食品中5种α2-受体激动剂残留量的测定 液相色谱-串联质谱法》标准,猪肉样品经用碳酸钠缓冲溶液、乙酸乙酯提取,SHIMSEN Styra MCX (岛津实验器材有限公司,P/N:380-00853-01)固相萃取柱净化,液相色谱-串联质谱测定,外标法定量。 主要方法参数色谱柱:Shim-pack Velox C18(100 mm×2.1 mm I.D.., 1.8 μm, Shimadzu SGLC, P/N: 227-32010-04)流动相:A相-0.2%甲酸水溶液,B相-乙腈洗脱方式:梯度洗脱离子化模式:ESI(+) 分析结果 标准品色谱图5种α2-受体激动剂的标准品色谱图如下图所示。0.5 μg/L 标准样品色谱图(1替扎尼定,2赛拉嗪,3溴莫尼定,4安普乐定,5可乐定) 回收率考察在空白猪肉中添加标准溶液,加标浓度为2 μg/kg,平行测定3次,替扎尼定、赛拉嗪、溴莫尼定、安普乐定和可乐定回收率均在69.6%~91.8%之间,回收率完全满足标准要求。 实际样品分析某市售猪肉样品中分析结果如下图所示,未检出α2-受体激动剂残留。猪肉样品色谱图 小结使用岛津超高效液相色谱-三重四极杆质谱仪LCMS-8050联用系统,参考GB 31660.6-2019食品安全国家标准,建立了猪肉中替扎尼定等5种α2-受体激动剂测定方法,该方法灵敏度高,分析时间短,结果准确,可用于猪肉中α2-受体激动剂的快速检测。 岛津超快速三重四极杆液质联用仪
  • 手提袋疲劳强度试验机的测试原理与应用
    手提袋疲劳强度试验机的测试原理与应用在当今快节奏的消费社会中,手提袋作为日常购物、物流运输及品牌宣传的重要载体,其耐用性与安全性直接关系到消费者的使用体验与品牌形象。特别是塑料手提袋、背心袋等广泛应用的提袋类型,其承受重量与抗疲劳性能更是成为了衡量产品质量的关键指标。为此,手提袋疲劳强度试验机应运而生,以其独特的测试原理与广泛的应用领域,成为了质检单位及手提袋生产厂家不可或缺的质量检测工具。重要性解析手提袋在使用过程中需承受不同重量物品的提携,若疲劳强度不足,易在多次使用后发生断裂,不仅影响使用便捷性,更可能因突然断裂导致物品散落,造成安全隐患。手提袋疲劳强度试验机通过模拟真实使用场景,提前发现潜在问题,确保产品在市场流通中的安全性。对于生产厂家而言,利用手提袋疲劳强度试验机进行严格的疲劳测试,能够精准评估产品的耐用性,从而指导生产工艺的改进与优化。测试原理与应用三泉中石的手提袋疲劳强度试验机SPL-30,核心在于其独特的测试原理:通过模拟手提袋在实际使用过程中的上下振动疲劳状态,对提袋的承重能力及耐久性进行全面评估。具体操作为,将相当于手提袋标称内装物质量两倍的颗粒混合物(如沙子、小石子等)装入袋中至四分之三容量,随后将手提袋悬挂于试验机上。根据预设的提袋次数或时间,试验机自动进行上下振动,模拟提携过程中的动态负荷变化。试验结束后,通过仔细观察提袋的提手、缝合处等关键部位是否出现破损、撕裂等现象,来判断手提袋的疲劳强度是否符合要求。广泛应用质检单位:作为质量监督的权威机构,质检单位利用手提袋疲劳强度试验机对市场上流通的手提袋产品进行抽检,确保产品符合安全标准,维护消费者权益。手提袋生产厂家:在产品研发、生产及质量控制等各个环节,手提袋生产厂家均需依赖该试验机进行性能测试,以优化产品设计,提升生产效率,确保出厂产品的品质稳定可靠。科研机构与高校:此外,手提袋疲劳强度试验机SPL-30还广泛应用于包装材料、材料力学等科研领域,为科研人员提供精准的实验数据支持,推动相关领域的科技进步与发展。综上所述,手提袋疲劳强度试验机SPL-30以其重要的测试意义与广泛的应用前景,成为了现代质检体系与工业生产中不可或缺的一部分。作为专业从事药品包装玻璃安瓿检测仪器的行业领先者-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 手提核酸站、光子计数CT......进博会精准医疗领域超“火爆”
    纵观前四届进博会的招展情况,医疗器械及医药保健展区一直是“最火爆”的展区之一。第五届进博会,该展区“火爆”依旧:全球十五大药品巨头将首次齐聚,全球十大医疗器械企业也将集体亮相。一批展区内的全球顶尖展品也早已按捺不住,提前露出。  大批展品聚焦抗疫  连续三届进博会,一大批展品均聚焦抗疫等时下社会关注度最高的领域。  丹纳赫将在中国首次展示的赛沛便携式快速核酸筛查站,大小相当于一只黑色大号手提箱,可以带上交通工具,快速转移到各种突发疫情现场,立即用于核酸检测。这款便携式快速核酸筛查站可以随时随地实现核酸检测流程的自动化,还可以搭载多种检测项目,包括碳青霉烯耐药基因、结核分枝杆菌、HIV、艰难梭菌、金黄色葡萄球菌、乙肝病毒、丙肝病毒等。  来自荷兰的莱慎欧洲有限公司从事微生物病毒病菌防治产品的研发、生产、销售,今年进博会上将展示一批消毒设备。其中一款气溶胶雾化消毒机器人,使用20升的大蒜E素消毒液,最高可有效覆盖2.5万平方米的区域。  罕见疾病找到克星  罕见病是众多患病率极低的疾病的统称,又称“孤儿病”。展区内,世界500强药企将在罕见病、肿瘤、遗传性疾病等领域的药品创新上一较高下。  武田制药此次集中展示消化、肿瘤、罕见病等核心领域的8款全球首创、同类最优的创新产品和突破性疗法。其中,就有目前全球唯一获批的治疗成人器官移植或造血细胞移植后难治性巨细胞病毒感染或疾病的药物——马立巴韦。  百时美施贵宝带来了12款全球创新产品。其中,抗LAG-3免疫复方制剂Opdualag(黑色素瘤)是首次在中国亮相。  赛诺菲将重点展示5款首秀产品,其中有不少“全球唯一”。Nexviazyme是新一代针对庞贝病的酶替代疗法,已在美国、日本和欧洲等地获批。  医疗器械追求精准高效  展区内,医疗器械领域的竞争也相当激烈,轻便、精准、高效等是外资巨头们共同追求的目标。  波士顿科学的VersaCross射频穿刺交换导丝系统今年刚获得盖伦奖提名,就被火速安排送入“四叶草”。VersaCross是目前左心房治疗中唯一无需交换导丝和鞘管的房间隔穿刺设备,不依赖“针尖”和术者的力度,在复杂环境中也能灵活优化穿刺位置并轻松、精准地完成穿刺。  瓦里安将展出全球唯一的可调冷冻消融针CryoCare V-Probe,这根“冰针”采用首创的氩氦适形冷冻消融技术,仅需30秒便能降温至-140℃至-170℃,迅速冻死肿瘤细胞,同时避免损伤邻近的正常组织。  今年进博会上,西门子医疗将主展台面积扩大了近一半,全球首款光子计数CT“NAEOTOM Alpha”将借助进博会平台进行亚洲首展,图像分辨率较以往提高了1到2个数量级,达到了110微米,可对微小肺癌在萌发初期的临床变化做出鉴别。将来,光子计数CT检查甚至能成为评估放置冠状动脉血管支架的前提。
  • 欧普图斯光纳科技“高敏度手提实验室”为保障百姓菜篮子安全构筑防线
    (原发布日期:2012/02/24) 为切实规范流通环节食品经营行为,保障百姓菜篮子安全,苏州工业园区工商局构筑防线,提升食品安全监管成效。 苏州工业园区工商局立足职能,提升检测能力,加强技防管控。 全市首次引进欧普图斯光纳科技&ldquo 高敏度手提实验室&rdquo ,增加了对三聚氰胺、罗丹明、地沟油及柠檬黄等色素类品种的检测,使可检测的食品和农产品种类由原来的14大类24个品种增加到20大类51个品种,检测品种单位时间的通量也有了大幅提高,如对瘦肉精的检测由原先的1小时缩短至15分钟; 检测三聚氰胺的整个过程不超过20分钟, 而电脑读取光谱并分析只需30秒左右。 原文链接:http://suzhou.bendibao.com/news/201224/29436.shtm 网页原文: 园区:三道防线确保&ldquo 菜篮子&rdquo 安全 http://suzhou.bendibao.com/news/ 本地宝资讯 2012年2月4日 来源:   □宋 莹 为切实规范流通环节食品经营行为,保障园区百姓菜篮子安全,园区工商局立足职能,筑牢三道防线,努力提升食品安全监管成效,营造和谐稳定的消费环境。 第一道防线: 引导主体自律 倡导诚信经营 市场管理者是市场管理的第一责任人。为提高市场主体的守信意识和自律意识,从源头确保园区的农副产品消费安全,园区工商局一是要求市场主办者从主体资格、商品溯源、经营秩序、消防安全、消费维权等方面切实加强日常管理,并编制下发《有形市场巡查管理手册》 明确市场方管理职责,同时解决&ldquo 查什么、怎么查、如何实现监管留痕&rdquo 等问题;二是将园区23家农贸市场全部接入园区市场食品安全网络监控中心实施信息化实时监控,足不出户即可实现对市场的经营秩序和卫生状况的有效监督;三是推行商品交易市场信用分类监管,将园区30家市场、3518家经营户基本信息录入市场信用分类监管软件,每年根据市场的硬件设施和管理水平等指标对所有市场进行A、B、C、D信用分类评级,依次实施不同的监管方式和监管频率, 并将苏州肉食品批发市场等8家市场确定为重点监管主体实施重点监管; 四是深化场内经营户信用分类监管,指导市场主办者对场内经营户实施信用管理,目前已有26家与农副产品相关的市场完成经营户信用等级评定。既提升了市场的诚信度和信誉度,又为构建有形市场的食品安全长效监管机制奠定了基础。 第二道防线: 提升检测能力 加强技防管控 工欲善其事,必先利其器。2009年,园区整合工商局、地方局、社会事业局三部门职能成立了农副产品联合检测中心,并将工作室设在园区工商局,主要开展农副产品和食品的快速检测工作。2011年,该中心进行了软硬件升级,增加了检测人员,添置了检测车辆,规范了检测流程,并在全市首次引进欧普图斯光纳科技&ldquo 高敏度手提实验室&rdquo ,增加了对三聚氰胺、罗丹明、地沟油及柠檬黄等色素类品种的检测,使可检测的食品和农产品种类由原来的14大类24个品种增加到20大类51个品种,检测品种单位时间的通量也有了大幅提高,如对瘦肉精的检测由原先的1小时缩短至15分钟; 检测三聚氰胺的整个过程不超过20分钟,而电脑读取光谱并分析只需30秒左右。2011年,中心共检测农产品1307批次,对260批次不合格问题农产品进行了销毁,编报《简报》12期。目前,中心检测人员每天对全区26个市场和6家大中型超市进行流动抽检,每月检测200个批次产品。
  • Cell Reports | 阐释肾上腺素受体的多样性和配体的选择性——α 2型受体晶体结构解析
    人肾上腺素受体是G蛋白偶联受体,是重要的药物靶标。目前已知肾上腺素受体有三类(α1, α2和β)九种亚型(α1A, α1B, α1D, α2A, α2B, α2C, β1, β2和β3)。2007年,β2肾上腺素受体的非激活这是第一个人源G蛋白偶联受体的晶体结构,是G蛋白偶联受体结构解析的重大突破。2011年,β2肾上腺素受体和G蛋白的复合物结构获得解析,该工作获得了2012年诺贝尔化学奖。这些结构的解析极大地推动了人们对G蛋白偶联受体(特别是β肾上腺素受体)机理的理解。然而,三类肾上腺素受体偶联的G蛋白不同:α1, α2和β类分别偶联Gq、Gi和Gs。通过序列比对,也可以发现三类受体的配体结合口袋也有明显区别。对肾上腺素受体下游信号选择的多样性以及配体的亚型选择性的理解,一直受制于缺乏α类受体的三维精细结构。2019年12月3日,上海科技大学赵素文和钟桂生课题组在Cell Reports上共同发表两篇论文,报道了两个α类受体的三个晶体结构,阐释了肾上腺素受体多样性和配体特异性的机理。在“Structural Basis of the Diversity of Adrenergic Receptors”一文中,作者通过解析α2A受体与部分激动剂和抑制剂的复合物结构,辅助细胞信号实验和计算生物学,分析阐明了在肾上腺素受体家族中序列多样性是如何导致功能多样性的。α2A受体的两个结构整体非常相似,而配体结合口袋的多个残基(包括在肾上腺素受体中不保守的F4127.39)则发生了剧烈的构象变化。通过观察结构和突变实验,研究人员解释了影响配体选择性的重要氨基酸F4127.39的功能:F4127.39是配体结构口袋的“盖子”,它与口袋中的另外三个芳香氨基酸一起形成了一个芳香笼来结合配体中的正电基团,使配体结合时空间和能量效应俱佳。突变F4127.39会使α2A受体的完全激动剂和部分激动剂均丧失效力。α2A受体具有双重药理学效应:激动剂浓度较低时,α2A受体主要和Gi偶联;激动剂浓度较高时,与GS的偶联占据更主导的地位。相应地,在临床中,α2A受体部分激动剂的效果比完全激动剂要好,如用于降压的可乐定(Clonidine)和用于ICU镇静(在我国也广泛用于手术麻醉)的右美托咪定(Dexmedetomidine)都是α2A受体的部分激动剂。为了更好地理解α2A受体的部分激活性(partialagonism),研究人员对多个已知的α2A受体完全激动剂和部分激动剂进行了分子对接,他们发现可以用配体与Y3946.55形成氢键与否,来区分α2A受体的部分激动剂和完全激动剂。作者还发现了三个氨基酸(Y3946.55,I13934.51和K14434.56,第一个位于配体结合口袋,后两个位于G蛋白结合口袋)对α2A受体的G蛋白选择性具有重要作用。精心设计的三个突变体Y3946.55N,I13934.51A和K14434.56A,在细胞信号实验中对部分激动剂的刺激均表现出Gi通路的偏好性,而Gs通路的活性遭到削弱甚至完全被抑制。图1:α2A受体中对配体结合(紫色)和G蛋白通路偏好性(红色)起关键作用的残基而在“Molecular mechanism for ligand recognition and subtype selectivity of α2C adrenergic receptor”文章中,作者展示了α2C受体的三维结构,并通过分子对接、功能实验等手段揭示了α2亚型受体的结构特异性,为相关药物研发提供了分子基础。通过将α2C受体与α2A受体的结构进行对比和巧妙的嵌合体设计,作者发现α2C与α2A的结构主要差异存在于胞外域。在α2C受体口袋边沿,D206ECL2-R409ECL3-Y4056.58形成氢键-盐桥互作网络,特异地影响了α2C受体选择性拮抗剂JP1302和OPC-28326的作用。而在α2A受体口袋上方,由Y98ECL1、R187ECL2、E189ECL2和R4057.32形成的互作网络直接遮盖了部分入口,使得JP1302和OPC-28326这些较大的分子可能被阻挡在外。细胞信号实验结果也显示,破坏Y98ECL1-R187ECL2-E189ECL2-R4057.32互作网络并添加D206ECL2-R409ECL3-Y4056.58相互作用得到的α2A嵌合体对JP1302和OPC-28326有着很好响应。图2:α2CAR-RS79948复合物的结构和决定α2肾上腺素受体亚型选择性的胞外域这两篇文章很好地阐述了肾上腺素受体的多样性和α2受体的配体选择性,为基于精细三维结构的下一代α2受体药物开发奠定了基础。在这两篇论文中,均使用珀金埃尔默的EnVision微孔板检测仪对GPCR的cAMP实验进行定量测定。同时,在α2受体的配体结合实验中,珀金埃尔默提供了从放射性受体拮抗剂、耗材(UniFilter GF/B)到放射性微孔板检测仪MicroBeta的整体解决方案。珀金埃尔默为中国科学家药物研发加油助力。扫描下方二维码,或点击文末“阅读原文”,即可查看论文原文。
  • 北京四部门联手提5类纺织服装产品质量
    2013年对5类纺织服装产品进行质量监督抽查,253批次产品中发现有9批次产品质量不合格 对437个样品的服装纺织产品进行对比实验,不符合标准数量的样品达到210个。记者从12月19日北京市质量技术监督局、北京市工商行政管理局、北京市经济和信息化委员会、北京市商务委员会联合召开北京市服装纺织产品质量提升工作会上获悉,今年首都服装纺织产品整体质量不错,但部分产品的性能有待提高。为此,四部门决定联手提升首都的服装纺织产品质量。   据介绍,2013年,北京市质监局委托北京市纺织纤维检验所对儿童服装、纺织服装、床上用品、学生装和羽绒服装5类产品253批次产品进行了监督抽查,重点检测了保障人体健康的甲醛、色牢度、pH值等安全性指标,同时对抽查产品的纤维含量、含绒量、耗氧量等性能指标进行了监测,其中pH值不合格2批次、色牢度不合格6批次、童装绳索和拉带安全要求不合格1批次,未发现可分解芳香胺染料指标不合格的情况。监测中发现的问题有:纤维成分含量不合格42批次、含绒量不合格10批次。北京市纤检所受理企业委托检验的服装纺织样品中发现存在不合格项目的样品共计1655批次,约占总报验量的8.7%,其中,国标《国家纺织产品基本安全技术规范》(GB 18401)安全项目不合格占60%。   同时,2013年,北京市消协对北京市场和网购交易平台销售的服装纺织产品开展了商品比较试验,共涉及品牌235个、检测项目115项,发现的主要问题包括:产品色牢度不达标,纤维含量标注与实测不符,产品功能性宣传言过其实、涉嫌虚假宣传,填充物以次充好,缺斤短两,产品标识、使用说明不符合国家标准要求,执行标准有误,明示标准与实物不符,服装纺织产品在生产过程中使用整理剂给消费者的穿用安全带来风险等。   统计显示,北京市消协服装纺织产品比较试验中,休闲服装的样品数量为41个,不达标的数量为25个 儿童服装的样品数量是82个,不符合标准的数量是31个 蚕丝被的数量为40个,不达标的为19个 床上用品的数量是41个,不符合标准的是26 功能服装的数量是40个,不达标的为22个,总体合格率为52%。   北京市质监局相关负责人表示,今年的质量监督抽查及监测结果表明,北京市生产领域服装纺织产品安全性较好,但部分产品的性能有待提高,安全项目仍然是今后一段时间内纺织服装产品质量控制的重中之重。   据悉,针对北京市的服装纺织产品质量现状,北京市质监局等四部门联合制定了《北京市服装纺织产品质量提升工作方案》,并成立了北京市服装纺织产品质量提升工作办公室,决定在2015年底以前,按照开展基础信息调查,厘清解决重点质量问题、提高企业质量管理水平、规范产品质量检验检测机构建设和检测行为等不同阶段重点任务要求,采取对加强对重点地区、重点产品、重点项目监督、监管,开展质量安全风险预警,质量课堂,品牌体检,标准帮扶等专项工作,以及发布质量报告与质量安全风险白皮书、召开全市服装纺织产品质量分析会等多项措施,逐步实现服装纺织产品质量提升目标。
  • 仪器表征,非富勒烯受体引领有机光伏新纪元!
    【科学背景】有机光伏(OPV)是利用有机半导体材料将太阳能转化为电能,具有柔性、轻量化、低成本等优点,适用于建筑一体化、物联网设备和可穿戴电子产品等领域。然而,长期以来,OPV的效率受到传统富勒烯受体的固有限制,导致其功率转换效率难以突破。传统富勒烯受体的限制包括其在可见光和近红外区域的吸收能力较弱,以及激子结合能较大等问题,这限制了器件的光电转换效率。为了克服这些限制,科学家们开始寻找替代性的受体材料,并最终将目光投向了非富勒烯受体。非富勒烯受体材料具有较强的可见光和近红外吸收能力,以及更小的激子结合能,这为提高光伏效率提供了潜在的可能性。然而,尽管非富勒烯受体材料具有潜力,但其在光物理和器件物理方面的机制和性能仍然不明确。为此,北京大学占肖卫教授,吴宏滨教授,新西兰MacDiarmid先进材料与纳米技术研究所Justin M. Hodgkiss教授团队携手在Nature Reviews Physics上发表了一篇综述文章。本研究由一群科学家针对非富勒烯受体材料展开了深入研究,旨在揭示其在OPV中的光物理和器件物理特性,并探讨如何利用这些特性来提高光伏效率。研究重点包括激子的产生、扩散、传输和分离过程,以及电荷的产生和复合机制。通过系统的理论分析和实验验证,研究人员成功地揭示了非富勒烯受体材料的优异性质,并提出了一系列解决方案来克服传统富勒烯受体的局限性。具体而言,他们发现非富勒烯受体具有较大的激子扩散系数和更低的能级混乱,从而提高了光电转换效率并降低了电压损失。【科学图文】图1. 给体和受体的分子结构。图2. 非富勒烯受体的激子产生和扩散性质。图3. 基于非富勒烯受体器件中的激子分离。图4. 三态电子振动模型,非辐射电压损失和受体的光致发光量子产额。图5: 非富勒烯受体的特征。【科学结论】非富勒烯受体在有机光伏领域展现了引人注目的特性,其强大的吸收能力和高光致发光量子产率为光电转换提供了新的途径。通过长程的 Fö rster 谐振能量转移和空穴转移主导的激子分离过程,非富勒烯受体在提高光电转换效率的同时,降低了电压损失。与富勒烯受体相比,非富勒烯受体在激子产生、激子扩散、激子分离和电荷复合等方面呈现出独特的优势。其未来发展方向包括开发新材料以提高光吸收和辐射效率,并探索三元和串联策略以进一步提高光伏效率。这些发现不仅在理论上推动了光伏技术的进步,也为实际应用和商业化奠定了基础,为光伏领域的未来发展指明了方向。文献详情:Wang, J., Xie, Y., Chen, K. et al. Physical insights into non-fullerene organic photovoltaics. Nat Rev Phys (2024). https://doi.org/10.1038/s42254-024-00719-y ,https://www.nature.com/articles/s42254-024-00719-y
  • 清道夫受体可防止内毒素血症的出现
    清道夫受体是在研究巨噬细胞转变成泡沫细胞的机制时才发现,其功能还不完全清楚。乙酰化LDL以及其他修饰的LDI可以通过清道夫受体被巨噬细胞摄取,导致巨噬细胞内脂类大量堆积。尽管注射125Ⅰ-乙酰化LDL等可以迅速在巨噬细胞内出现,但没有证据表明体内也存在这些修饰的LDL。细胞外液也没有能使LDL乙酰化的乙酰CoA。血小板以及巨噬细胞在氧化花生四烯酸时释出丙二醛,丙二醛LDL可以与清道夫受体结合。虽然体外修饰所需丙二醛浓度较高,体内可能无足够的丙二醛,但在血管壁局部,尤其有血小板形成血栓时,有可能生成足够的丙二醛以修饰LDL。 近年来,大量实验证明LDL可以被巨噬细胞、血管内皮细胞和平滑肌细胞氧化形成氧化LDL。氧化LDL可以通过清道夫受体被巨噬细胞摄取,形成泡沫细胞。氧化LDL还能够吸引血液单核细胞黏附于血管壁,对内皮细胞产生毒性效应,促使粥样斑块的形成。这些研究无疑阐明了巨噬细胞清道夫受体在粥样斑块形成机制中的重要作用。 另一方面,巨噬细胞通过清道夫受体可清除细胞外液中的修饰LDL,尤其是氧化LDL,是机体的防御功能之一。电镜观察到由血液单核细胞进入血管壁后衍生的巨噬细胞可以重新回到血管内,以清除过量的脂蛋白的过程,这也是清道夫受体的生理功能。当进入血管壁的脂蛋白过多,超过了巨噬细胞的处理能力,或氧化LDL抑制了巨噬细胞再回到血流时,就会形成泡沫细胞。 细菌内毒素为一种脂多糖,也是清道夫受体的配体。肝脏的清道夫受体可以摄取、清除内毒素,防止发生内毒素血症。粉尘工作者吸入的青石棉(crocidolite)也是清道夫受体的配体,可由清道夫受体结合清除,这也是机体的防御措施之一。 目前认为,清道夫受体结合LPS是参与宿主对LPS的清除作用,无激活效应。但具体的过程仍有待进一步阐明。
  • 白细胞介素- 1受体分泌及调节介绍
    白细胞介素- 1(interlenkin 1,1L-1)的间接作用,可使内毒素引起机体发热。本篇文章介绍IL-1的受体分泌及调节介绍。IL-1的受体有两种:IL-1RⅠ和IL-1R Ⅱ。三种IL-1都能与受体结合,IL-1Ra与受体结合后不引发信号转导效应,但可抑制IL-1α和IL-1β同受体结合。上述两种受体常常表达在同一细胞中,但不同的细胞仅优势表达某一种受体。IL-1RⅠ是相对分子质量为80000的糖蛋白,人的基因位于2号染色体长臂上。主要表达在内皮细胞、平滑肌细胞、T细胞,肝细胞、成纤维细胞、角质细胞和表皮树突状细胞等。IL-1RⅠ高度糖基化,阻止糖基化会降低其生物学活性。IL-1R Ⅰ的胞质内肽链较长,并参与信号转导,与Toll受体的胞质区显著同源,故称为Toll/白细胞介素同源区域(Toll /in-terleukin-1 homologous region,TIR),缺乏酪氨酸激酶的活性。人IL-1R Ⅰ mRNA约5kb,编码569个氨基酸残基,细胞外320个氨基酸残基构成3个免疫球蛋白样功能域,跨膜区有19个氨基酸残基,其余230个氨基酸残基在胞质内。IL-1受体辅助蛋白(interleukin-1 receptor accessory protein,IL-1RAcP)其胞外和胞质结构域与IL-1RⅠ具有同源性,IL-1与IL-1RⅠ结合亲和力较低,可使构象发生改变,并被IL-1RAcP识别,参与受体复合物的形成,能够增强其亲和力,使之发挥生物学效应。IL-1RⅡ主要表达在B细胞、单核细胞和中性粒细胞中。IL-1R Ⅱ的 mRNA约1803bp,编码386个氨基酸残基,是相对分子质量为68000的糖蛋白。该蛋白质含有5个糖基化位点,经过N-糖苷酶处理使糖链分解后,相对分子质量为55000。IL-1RⅡ细胞外的332个氨基酸残基构成3个免疫球蛋白样功能域,其胞内只有很短的29个氨基酸残基,没有信号转导功能。用抗IL-1RⅡ抗体不能阻止IL-1的信号转导,用抗IL-1RⅡ抗体能够有效地阻止IL-1的信号转导。IL-1RⅡ是一个诱骗分子,可为IL-1的自身负反馈。将IL-1RⅡ的细胞外部分与IL-1RⅠ的胞质内部分嵌合构建的嵌合受体能够与IL-1结合并能转导信、号效应。可溶性IL-1受体:健康人和某些病理组织液中可检查到IL-1R Ⅰ和 IL-1RⅡ的胞外结构部分为可溶的IL-1受体,但其具体的生物学作用不是很清楚。IL-1的信号转导途径用图9-1表示。
  • 【Nature】赛多生物分析三剑客助力甲病毒受体快速发现
    甲病毒(Alphavirus)是包膜RNA病毒,可引发皮疹、关节痛、急性发热疾病,甚至致命的脑炎。该病毒属包括东方马脑炎病毒(EEEV)、塞姆利基森林病毒(SFV)、辛德毕斯(SINV)病毒和基孔肯亚病毒(CHIKV)等。病毒包膜蛋白以正二十面体对称排列,E2和E1糖蛋白形成异质二聚体,聚成80个三聚体,介导病毒和细胞膜的受体结合与融合。甲病毒结构示意图研究分享近期发表在Nature期刊的一项研究中[1],哈佛医学院的科学家们发现极低密度脂蛋白受体(VLDLR)是典型的甲病毒SFV的受体,而EEEV和SINV病毒的E2/E1糖蛋白也与VLDLR的配体结合域(LBD)相互作用介导病毒进入细胞,受体是与VLDLR密切相关的载脂蛋白E受体2(ApoER2)。赛多利斯生物分析三剑客——Octet® 分子互作分析系统,Incucyte® 实时活细胞分析系统以及iQue® 高通量流式细胞仪在这篇文章中大放异彩。1. 细胞水平筛选甲病毒受体利用CRISPR和模拟甲病毒的假病毒系统在细胞水平进行甲病毒受体筛选。将甲病毒复制子系统转化为基于DNA的报告病毒颗粒(SFV RVP)系统(或称之为假病毒),GFP为报告基因。当细胞被假病毒感染后,报告基因被整合到细胞基因组中,表达GFP产生绿色荧光。构建针对人类基因组中膜相关蛋白的向导RNA(sgRNAs)文库。使用该文库对感染SFV RVPs的HEK293T细胞进行CRISPR/Cas9筛选。发现使VLDLR(极低密度脂蛋白受体)基因沉默可以抑制SFV RVP的干扰,说明VLDLR是SFV的受体。这篇文章有大量数据检测SFV RVP对细胞的相对感染率,iQue® 高通量流式细胞仪当仁不让地成了这个测试的主力。左、中、右分别为活细胞群,单细胞群和GFP阳性细胞群。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%左:VLDLR敲除后,SFV的感染能力大大降低右:加入VLDLR的抗体,可以阻断SFV对细胞的感染iQue® 高通量流式细胞仪的优势在于:- 高通量速度快:5分钟即可完成一块96孔板检测;- 操作简便:“混匀-测定”,免洗流程,确保抗体靶点空间构象免遭破坏;- 节约样品:最少仅需几微升样品,节约靶标抗原和珍贵细胞。iQue® 高通量流式细胞仪2. 分子水平研究甲型病毒E2/E1蛋白与受体的结合为了搞清楚甲病毒E2/E1蛋白是否直接与VLDLR和ApoER2的LBD(ligand binding domain)结构域结合,作者生成并纯化了甲病毒的病毒样颗粒(VLP)。使用基于生物层干涉(BLI)的Octet® 分子互作分析系统进行分析,发现VLDLRLBD-Fc可以直接结合SFV、SINV和EEEV VLP。而RAP(一种VLDLR阻断剂)可以阻断甲病毒和VLDLR的结合。进一步从分子水平验证了VLDLR的LBD结构域是甲病毒的结合位点。Octet® Red 96e测试:用AHC(anti-human Fc)传感器固化受体,然后加入100 μg/mL阻断蛋白RAP或者Tf,然后与甲病毒VLP (20 nM) 结合5分钟Octet® 分子互作分析系统的优势在于:- 非标记Direct binding是趋势,结果更准确;- 快速测定亲和力,更加定量化地表征分子互作;- 无洗涤步骤,可测弱亲和力(解离快);- 写入了美国药典,文章多,认可度广;- 万金油技术,可以用于检测DNA,小分子,蛋白质等各种生物分子,比如这篇文章检测的就是病毒颗粒样品;- 操作简便,耗材及维护成本低。3. 细胞成像研究病毒对细胞的感染皮质神经元是甲病毒感染的细胞种类之一,并引起脑炎。用Incucyte® 实时活细胞分析仪检测了甲病毒对神经元的感染率。加入VLDLR的LBD结构域或者RAP,可以阻断甲病毒的感染。用Incucyte® S3检测iPSC分化的神经元对SFV RVP的感染。GCU阈值5,用Top-hat算法进行背景扣除。经过22小时培养后,计算GFP荧光面积。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%Incucyte® 实时活细胞分析系统优势在于:1) 贴壁生长的神经细胞相对其他细胞比较脆弱,Incucyte® S3放入培养箱中,不需要移动培养板,对拍照的人为干扰最小。而流式等技术需要对细胞消化处理,可能会大大影响其活性和检测的准确性;2) 配备无毒害免干扰的活细胞分析试剂,智能的神经细胞分析软件,以及趋化、迁移、3D肿瘤球和类器官模块;3) 通量高,一次可同时进行多达6块多孔板的实验,灵活选择不同的物镜和荧光通道。天下武功,唯快不破。赛多利斯生物分析三剑客——Octet® ,iQue® 和Incucyte® 相比同类检测工具都具备更高的通量及功能,可以帮助药物研发和科研工作者快速拿到准确的数据,在内卷的环境中迅速占领一席之地!-参考文献-1. Clark, L.E., Clark, S.A., Lin, C. et al. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 2021. DOI:10.1038/s41586-021-04326-0
  • PNAS:清华大学王新泉等人解析IL-33与受体作用的结构机制
    PNAS:清华大学王新泉等人解析IL-33与受体作用的结构机制 2013-08-27 来源:生物360 作者:koo 196 0 .collect_btn a{float:right margin:0 background:#A90C11 height:25px line-height:25px padding:0 10px color:#FFF} .collect_btn a:hover{ background:#292627 height:25px line-height:25px padding:0 10px color:#FFF} 收藏(1) 添加到书签 -- IL-33是IL-1家族的一个重要成员,在宿主防御及疾病的先天和适应性免疫反应中发挥着多效活性。IL-33通过它的配体结合主要受体 ST2 和IL-1受体辅助蛋白(IL-1RAcP)来发送信号,这两种受体均为IL-1受体家族成员。 为了阐明IL-33与它的受体之间的相互作用,来自清华大学生命科学学院等机构的研究人员确定了分辨率为 3.27 的 IL-33 与 ST2 胞外域构成复合物的晶体结构。采用结构诱变和结合分析,得到的结构分析结果确定了 ST2 特异性识别IL-33的分子机制。研究人员将之与IL-1家族中的其他配体-受体复合物进行结构比较,证实表面电荷互补至关重要地决定了IL-1主要受体的配体结合特异性。 结合晶体学和小角度X射线散射研究揭示, ST2 在 D3 结构域和 D1D 2模块之间具有柔性铰链,而 IL-1RacP 在溶液中以一种游离状态显示刚性构象。 ST2 的分子灵活性提供了关于IL-1主要受体与配体结合时结构域层次构象变化的结构认识。IL-1RacP 的刚性则解释了它为何不能直接配体的原因。小角度X射线散射分析溶液中IL-33&ndash ST2 &ndash IL-1RacP复合物的结构,结果与 IL-1&beta &ndash IL-1RII&ndash IL-1RacP 和 IL-1&beta &ndash IL-1RI&ndash IL-1RacP 的晶体结构相似。 这些研究结果阐明了IL-33结构与功能的关系,支持并扩展了IL-1家族中配体-受体组装和激活的普遍模型。 清华大学生命科学学院的王新泉(Xinquan Wang)教授和台湾国立成功大学的王淑莺(Shuying Wang)助理教授是这篇论文的共同通讯作者。王新泉教授的主要研究方向为结构生物学。利用X-射线晶体学为主要研究手段,结合冷冻电子显微镜学和其他生物化学技术,研究生物大分子的结构与功能关系。研究目标目前集中在细胞因子特异结合并激活其受体分子,以及病原体逃避宿主免疫攻击的结构机理。
  • ACQUITY UPLC XevoTQ-S同时测定猪尿液中21种β-受体激动剂
    今年3月,瘦肉精事件引发全国拉网式排查,瘦肉精事件闹得沸沸扬扬,10年间瘦肉精屡禁不绝,添加瘦肉精喂出来的猪不仅颜色光亮,而且可以增加猪的瘦肉率,现在人们都关注身材,不吃肥腻的肉,这也导致饮食习惯吃瘦肉,而添加瘦肉精的猪肉正好符合当今人们的饮食习惯,瘦肉精事件一出大家都在徘徊这肉还吃不吃? 简介瘦肉精:一类动物用药的统称,任何能够促进瘦肉生长、抑制动物脂肪生长的物质都可以叫做“瘦肉精”。 目前,能够实现这种功能的物质是一类叫做β-兴奋剂的药物。与传统瘦肉精盐酸克伦特罗同属“肾上腺受体激动剂”的莱克多巴胺等同类药物同样也能提高猪的瘦肉率。盐酸克伦特罗的检测方法主要有酶联免疫吸附法(ELISA)、胶体金免疫层析法、高效液相色谱法、气质联用法及液质联用法。国家标准GB/T 5009.192-2003 动物性食品中克伦特罗残留量的测定中规定方法为气相色谱-质谱法(GC-MS)、高效液相色谱法、酶联免疫法,其方法检出限均为0.5ug/kg。SN/T 1924—2007 进出口动物源食品中克伦特罗、莱克多巴胺、沙丁胺醇、特布他林残留量的检测方法采用LC/MS/MS法,该方法具有高灵敏度等优点被普遍使用。本文使用UPLC/XEVO TQ-S对猪尿液中的β-受体激动剂进行分析。实验方法UPLC条件LC系统: ACQUITY UPLC® 运行时间: 10min色谱柱: ACQUITY® BEH C18 1.7μm,2.1mm x 100mm流动相A: 0.1%甲酸水流动相B: 乙腈流速: 0.40mL/minMS条件MS系统: Xevo TQ-S离子模式: ESI+毛细管电压: 3.5kv源温度: 150℃雾化气温度: 500℃雾化气流速: 900L/hr锥孔气流速: 20 L/hrMRM条件:Quanpedia数据库Quanpedia是沃特世特有的一种可扩展和可搜索的数据库,为您提供LC/MS/MS定量方法信息,目前数据库已有超过1200种化合物,包括色谱方法、质谱方法、定量方法等,您可自由选择其中的任意化合物或化合物种类自动形成您所需的方法,无需再重新进行方法开发过程。下图为数据库得到的方法信息:自动生成MRM方法: 样品制备样品制备参照GB/T 22286-2008《动源性食品中多种β-受体激动剂残留量的测定》进行。■ 量取2.0mL猪尿液样品,加入8mL 0.2M的PH为5.2的乙酸钠缓冲液,充分混匀■ 加入50μLβ-Glucuronidase/aryl sulfatase混匀,于37℃水浴水解过夜■ 水解液振荡15min,在5000r/min条件下离心分离10min后,取4mL上清液中添加100uL 10ng/mL的内标溶液混匀,加入5mL 0.1M高氯酸混合均匀,并调节溶液PH值到1±0.3。以5000r/mim条件下离心分离10min后,移取上清液并用10M的氢氧化钠溶液调节PH值到11。■ 加入10mL饱和氯化钠溶液和10mL异丙醇-乙酸乙酯(6:4)混合溶液,离心分离后取有机相,在40℃水浴下用氮气将其吹干■ 提取残渣中加入5mL 0.2M乙酸钠缓冲液(PH5.2),超声混匀溶解残渣■ 样品净化(如下图所示),使用Oasis MCX(3cc/60mg)小柱■ 净化后的洗脱液用氮气吹干,用流动相溶解定容至1.0mL,过0.22μm滤膜,待进样分析 下图为数据库得到的方法信息: 固相提取净化过程Oasis MCX(3cc/60mg):实验结果与讨论本方法才用一次进样同时监测猪尿液样品中的21种β-受体激动剂进行检测,在灵敏度、分离度方面获得满意的结果。与常规的串联四极杆质谱仪不同的是,Xevo TQ-S为您提供最好的定量数据的同时,还为您提供高质量的光MS/MS信息。对猪尿液中含0.5ug/L的受体激动剂样品,启用PICs(子离子确认扫描)功能,可在不影响MRM定量的同时得到各化合物子离子扫描图,与标样子离子图进行匹配,对样品中阳性结果定性起到帮助判断的作用。 结论本方法采用多离子反应监测(MRM)方式对21种β-受体激动剂进行检测,具有快速、准确、灵敏度高、分析周期短、适用范围广等优点。适用各类动物组织或动源性食品等的测定。IntelliStart技术可以使得开发分析方法过程变成流线型工作流程。这意味着需要更少的时间来开发方法,大大提高工作效率。强大的Quanpedia数据库包含上千种化合物的方法,自动生成方法文件让你轻松简单快速应对各种突发事件。PICs(子离子确认扫描)功能为您提供最好的定量数据的同时,还为您提供高质量的光谱MS/MS信息,对样品中阳性结果定性起到帮助判断的作用。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人:张林海沃特世公司市场部86(21) 61562642lin_hai__zhang@waters.com 周瑞琳 (Grace Chow)泰信策略(PMC)020-83569288grace.chow@pmc.com.cn
  • 睿科推出针对β2-受体激动剂检测的整体解决方案
    &beta 2-受体激动剂是指含氮激素中的苯乙胺类药物(phenethylamines,PEAs)苯乙胺类药物具有苯乙醇胺结构母核,苯环上连接有碱性的&beta -羟胺侧链。盐酸克伦特罗为国家按兴奋剂管制的&beta 2-受体激动剂,目前,&beta 2-受体激动剂已有20多种,我国禁止所有&beta 2-受体激动剂用于养殖业。近年来,非法使用盐酸克伦特罗(非法用于养殖时俗称&ldquo 瘦肉精&rdquo )饲养生猪事件屡禁不绝,严重危害食品安全和人民群众身体健康。一些不法养殖户转向购买人用盐酸克伦特罗或其他&beta 2-受体激动剂直接饲喂生猪。本文在已有的方法基础上改进了仪器方法,睿科仪器新推出的全自动固相萃取系统,与串联四极杆液质联用系统可以同时测定九种&beta 2-受体激动剂。实验证明该方法快速、简单,灵敏度高,完全达到了国内,欧盟和日本的要求。 试剂 标准品化合物的结构见图1。乙腈购买于Fisher公司,甲酸购买于Merck公司,甲酸铵购买于Acros Organics公司,水为Milli Q。 图1. 被测&beta 2-受体激动剂的结构 试样制备与保存 牛、猪肌肉组织:若为冷冻样品,将其放置室温下化冻。从原始样品中取出部分有代表性样品约100g,经组织搅拌机将样品均匀搅碎,用四分法缩分出适量试样,均分成两份,装入无菌采样袋中,加封后作出标记,一份作为试样,一份作为留样(-18℃保存),试样再利用匀质机10000r/min转速下将样品制备均匀。 样品前处理 样品制备 提取 1)称取制备好的样品2.00(± 0.02)g,置于50mL离心管中,加入8mL乙酸钠缓冲液,再加入50&mu L&beta -葡萄糖醛甙酶/芳基硫酸酯酶,匀质机匀质30s(10000 r/min),37℃水浴酶解12h。 2)取出后放置室温,加入100&mu L &beta -激动剂内标工作溶液(8.7),100&mu L &beta -激动剂加标溶液,加盖后涡旋振荡, 离心10min(5000 r/min),取4mL上清液加入0.1mol/L高氯酸溶液5mL,混合均匀,用高氯酸调节pH值至1± 0.3。离心10min(5000 r/min),将全部上清液转移至另一50mL离心管中,用10mol/L氢氧化钠调节pH值至11。 3)加入10mL氯化钠饱和溶液和10mL异丙醇-乙酸乙酯(6+4)混合溶液,加盖至于水平振动器振荡10min。在5000 r/min下离心10min。 转移全部的有机相,在40℃水浴下氮气将其吹干。 4)加入5mL pH=5.2的乙酸钠缓冲溶液,涡旋振荡10s后,进行SPE净化 净化 1)将固相萃取小柱置于固相萃取装置Fotector上,次用5mL 甲醇、3mL水活化小柱; 2)将上述待净化的溶液加入萃取小柱,弃取流出液,然后依次用3mL去离子水,3mL 2%甲酸水溶液(v/v),3mL甲醇淋洗小柱,弃取流出液,并采用负压抽干小柱; 3)10mL 5%氨水氨化的甲醇溶液洗脱目标物,此时收集洗脱液; 系统自动浓缩定容; 4)往管中加入1mL含0.1%甲酸的5%甲醇溶液复溶样品,涡旋震荡后,滤液待测。 分析条件 样品采用串联四极杆液质联用仪进行分析。 液相条件 采用液相色谱仪,配置有脱气机,二元泵,自动进样器。色谱柱: SB-C18, 2.1× 100, 1.8&mu m。流动相组成:A为10mM Ammonium Formate +0.1% Formic Acid水溶液(用乙酸调节pH值4.5),B为乙腈溶剂。流速0.3mL/min,柱温40℃。梯度洗脱。 质谱条件 串联四极杆质谱仪。在(+)ESI模式下,采集数据,设定质谱参数如下:Capillary 4000V,Drying Gas 11L/min,Neb Press 35 psi,Gas Temp 350℃,碰撞气为高纯氮气,Q1和Q3的分辨率均为单位质量分辨。MRM模式下的参数如下: 保留时间 化合物 母离子 子离子 驻留时间 (ms) 碰撞电压 (V) 碰撞能量 Energy (V) 4.95 特布它林 226 15210 100 15 170 10 100 30 4.98 齐帕特罗 262 244 10 100 10 185 10 100 25 4.98 沙丁胺醇 240 222 10 100 5 148 10 100 15 5.04 塞曼特罗 220 202 10 80 5 160 10 80 15 5.80 莱克多巴胺 302 284 10 100 10 164 10 100 15 6.15 妥布特罗 228 119 10 100 30 172 10 10010 6.18 克伦特罗 (瘦肉精) 277 203 10 100 10 259 10 100 5 6.37 溴布特罗 367 349 10 100 10 293 10 100 15 6.49 克仑潘特 291 203 10 100 15 273 10 100 5 6.52 马布特罗 311 237 10 100 15 293 10 100 10 6.83 马喷特罗 325 237 10 100 15217 10 100 25 表2. MRM模式下的质谱参数 结果与讨论 实际样品添加了2ppb的激动剂,经萃取、净化等步骤,其回收率在80-100%之间。其检测灵敏度, 如瘦肉的灵敏度可达10ppt。 图2. 0.5ppb的&beta 2-受体激动剂测得的谱图 更多信息请联系: 厦门总部: 地址:厦门火炬高新区创业园伟业楼北楼N206室 邮编:361004 联系人:游经理 电话:0592-5800190 传真:0592-5800191 服务热线:400-885-1816 E-mail: info@reeko.cc 北京分公司: 地址:北京市朝阳区东三环南路58号富顿中心C座518 邮编:100022 联系人:张经理 电话:010-58674766 传真:010-58674656 E-mail:liangku_zhang@reeko.cc 上海办事处: 地址:上海市长宁区法华镇路751弄34号404 邮编:201103 联系人:陈经理 电话/传真:021-52300176 E-mail:yufei_chen@reeko.cc 关于睿科 睿科仪器(厦门)有限公司是一家专业从事实验室分析仪器研发和生产的高科技企业,是集实验室样品前处理设备研发生产、前处理方法开发、实验室仪器销售为一体的专业厂家。 睿科仪器有限公司拥有专业的销售人员,配备具有研发经验的安装维修工程师和多年应用经验的应用工程师,为实验室分析工作者提供先进、优质的产品和高质量的技术服务。
  • 高分辨氢氘交换质谱技术解析天然免疫受体构象变化与信号传导机制
    高分辨氢氘交换质谱技术解析天然免疫受体构象变化与信号传导机制 MDA5是细胞内的异体RNA监测蛋白,属于RIG-I样受体家族(RLRs)的重要成员。MDA5参与多种RNA病毒引起的免疫反应,是天然免疫的一道重要屏障。RLRs家族共有RIG-I、MDA5及LGP2三个成员,其中RIG-I和MDA5的N端均拥有串联CARDs结构域,可通过CARD-CARD同型相互作用招募MAVS,最终促进I型干扰素(IFN)通路的激活。在RLRs抗病毒信号的激活过程中,K63连接的多聚泛素链(K63-polyUb)起着关键作用[1]。前期研究发现,短链K63-polyUb可以通过共价锚定和非共价锚定两种方式有效地促使RIG-ICARDs的寡聚[2, 3]。形成的异源四聚体复合物(K63-polyUb-RIG-ICARDs)可激活MAVSCARD寡聚,形成MAVS纤维的核心[2, 3]。然而,K63-polyUb是如何调控MDA5 CARDs组装以及招募、激活MAVS CARD的分子机制,仍是待解决的科学问题。 Immunity近期中国科学院上海药物研究所郑杰团队在Immunity杂志上以Research Article形式在线发表了题为“Ordered assembly of the cytosolic RNA-sensing MDA5-MAVS signaling complex via binding to unanchored K63-linked poly-ubiquitin chains”的研究成果,本研究通过生物大分子氢氘交换质谱技术(HDX-MS)以及冷冻电镜技术(Cryo-EM)揭示了长链,非锚定K63-polyUb促进MDA5-MAVS组装程序与信号传递的分子机制。MDA5-MAVS首先研究人员建立了K63-,K48-连接泛素链的生化合成平台,并制备了不同长度的K63-polyUbn(2≤n≤14)(图1)。通过基于Orbitrap Fusion平台的氢氘交换质谱技术(Hydrogen/Deuterium Exchange Mass Spectrometry,HDX-MS),研究人员发现MDA5CARDs和RIG-ICARDs的氢氘交换保护程度依赖于不同长度的K63-polyUbn(MDA5: n≥8 RIG-I: n≥3)而不依赖于K48-polyUbn(n≥10);并且保护强度随着K63-polyUb的长度增加而特异性加强。 图1:HDX-MS分析K63-polyUb(2≤n≤14)对RLR CARDs寡聚的影响(点击查看大图) 为了研究K63-polyUbn介导的MDA5CARDs寡聚体的组装机制,研究人员利用冷冻电镜首次解析得到了分辨率为3.3Å的MDA5CARDs与K63-polyUb13复合体的结构。这也是MDA5CARDs第一个近原子分辨率的冷冻电镜结构。 那么MDA5CARDs-K63-polyUbn异源四聚体又是如何招募其下游信号蛋白MAVS?研究人员进一步通过Cryo-EM解析得到了分辨率为3.2Å的由长链K63-polyUb11拴系的“自下而上”的左手螺旋MDA5CARDs-MAVSCARD复合体结构。 同时研究人员通过生物大分子氢氘交换质谱技术,首次证明了人类MDA5全长蛋白的CARDs在初始状态下处于张开的构象并可与长链K63-polyUb10结合。然而在早期研究中,氢氘交换质谱已经证明了RIG-ICARDs在初始状态下呈闭合的构象[4, 5]。这也直接证明了RIG-I和MDA5的CARDs在溶液状态下构象上的巨大差异。其次,研究人员进一步发现K63-polyUb10拴系的MDA5CARDs复合物在溶液中的稳定性受MDA5的RNA依赖的ATP酶活性别构调节。图2:HDX-MS分析全长MDA5在其识别配体或底物作用下(dsRNA/ATP/K63-polyUb)的动态的构象变化与信号传导机制(点击查看大图)综上所述该研究通过生物大分子氢氘交换质谱和冷冻电镜技术发现长链,非锚定K63-polyUb类似于一个“分子桥梁”,促进了MDA5CARDs四聚体的组装,使之形成一个激动状态的构象来招募下游MAVSCARD,以进一步促进MAVSCARD的寡聚和激活(图2)。激活状态下的MDA5可以结合并水解ATP,远程提升CARDs-K63-polyUb10的稳定性以持续激活MAVS。该研究弥补了MDA5通路激活与信号传导研究的空白,进一步揭示了长链,非锚定K63-polyUb在细胞内作为内源性激动剂的免疫学功能,为理解泛素分子多样性在抗RNA病毒天然免疫信号传导与调控中的作用提供了新的线索。* 上海药物所博士后宋斌和美国NIH Research Associate陈运为论文第一作者,上海药物所郑杰研究员为论文的通讯作者。该工作得到了新加坡南洋理工大学罗大海教授、吴彬教授,美国Scripps研究所Patrick Griffin教授,上海药物所罗成研究员和张乃霞研究员的大力支持,得到了国家自然科学基金、上海市浦江人才计划等项目的支持。 专家访谈郑杰(中国科学院上海药物研究所 研究员)Q根据您的经验对氢氘交换质谱技术的理解?以及这篇文章的主要的难点在哪里?答:我觉得HDX-MS是基于生物化学这个学科,围绕表征酶活反应机理的一个很实用的技术,HDX-MS第一个应用是来自美国工业界,可以很好地应用于药物发现。这个新工作的一个难点就是采用生化合成了不同长度的K63多聚泛素链,并对RLR CARDs进行了后续功能筛选和表征。如果无法系统合成K63-polyubn(n>8),我们也无法解决这个科学问题。Q基于高分辨质谱技术的HDX-MS技术作为捕捉蛋白质溶液构象变化的重要研究工具,相对于冷冻电镜技术提供哪些不可或缺的生物学信息?答:HDX-MS和cryoEM提供的信息非常互补,首先,两者联用可以提供高分辨的结构和溶液中动态构象变化的信息。其次,在我们这个研究中,我们使用了HDX-MS去表征MDA5全长蛋白的一系列的构象变化,这对cryoEM研究是很有难度的,因为全长MDA5 的CARDs和Helicase之间的linker长度达到了120个氨基酸且在溶液中是非常活跃的,我们这次利用了HDX分析了MDA5与RNA,ATP互作如何远程调控CARDs与K63-polyub的构象变化。表征好这一系列的构象变化就是表征MDA5在溶液状态下是如果进行信号传导的机制。QHDX-MS技术目前有哪些应用方向,未来应用前景如何?答:HDX-MS捕捉的是溶液状态下蛋白质稳态的信息,研究蛋白质动力学,这对药物发现(drug discovery)研究非常关键,可以大大加速药物的发现与研发。HDX-MS可以直接提供药物与小分子互作,以及生物大分子抗体药物识别抗原等研究提供接近生理意义的重要信息。我博士后是在美国Scripps研究所Patrick Griffin教授进行的训练,当时实验室的同事很多都去了美国大药企利用HDX-MS参与药物发现。其中Mike还在礼来公司搭建了一套高通量全自动的HDX设备,专门为礼来的小分子药物发现筛选而设定。回国后我们也正朝着这个方向努力,实现HDX-MS软件和硬件的进一步自动化,希望未来在国内可以实现HDX-MS高通量。另一个努力的方向是早日实现单氨基酸残基分辨率的HDX-MS技术的升级,这可以 帮助精准表征药物作用关键氨基酸残基。为了实现这个目标,HDX-MS的自动化进样平台机械臂模块需要一定的改造,比如更严格的控温,更高频率的连续进样来优化质谱的采集效率。最终我希望可以利用高通量HDX-MS平台去建一个蛋白库,提供氢键,自由能,单氨基酸残基HDX等可以量化的参数,更精准的帮助科研工作者了解蛋白质的折叠,去折叠等稳态的信息。 关于作者中国科学院上海药物研究所郑杰实验室长期结合生物大分子氢氘交换质谱技术交叉解决由蛋白质(酶)的动力学异常变化所导致的重大疾病的发生机制,聚焦RNA天然免疫模式识别受体的内源,外源性配体识别与信号传导机制,以及自身免疫疾病发生机制。围绕氢氘交换及其应用,以第一作者或通讯作者在Immunity 2021,Anal Chem 2019,Nat Commun 2018,structure 2018, Nat Commun 2017,Nucleic Acids Res 2015等期刊上。感谢郑杰老师对本文的指导与支持参考文献:1. Hu, H. and S.C. Sun, Ubiquitin signaling in immune responses. Cell Res, 2016. 26(4): p. 457-83.2. Zeng, W., et al., Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell, 2010. 141(2): p. 315-30.3. Peisley, A., et al., Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature, 2014. 509(7498): p. 110-4.4. Zheng, J., et al., High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Res, 2015. 43(2): p. 1216-30.5. Zheng, J., et al., HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nat Commun, 2018. 9(1): p. 5366.扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 突破!清华团队利用XRD准确定位新冠病毒和受体相互作用位点
    p style=" text-indent: 2em " /p p style=" text-indent: 2em " /p p style=" text-indent: 2em " 2月18日,清华大学生命学院王新泉课题组和医学院张林琦课题组紧密合作,利用X射线衍射技术,解析了新型冠状病毒(2019-nCoV)表面刺突糖蛋白受体结合区(receptor-binding domain, RBD)与人受体ACE2蛋白复合物的晶体结构,准确定位出新冠病毒RBD和受体ACE2的相互作用位点,阐明了新冠病毒刺突糖蛋白介导细胞侵染的结构基础及分子机制,从而为治疗性抗体药物开发以及疫苗的设计奠定了坚实的基础。这一重要研究成果已于北京时间2月21日凌晨在论文预印本网站BioRxiv发表。( span style=" color: rgb(127, 127, 127) " 文章链接为:https://www.biorxiv.org/content/10.1101/2020.02.19.956235v1 /span ) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 246px " src=" https://img1.17img.cn/17img/images/202002/uepic/e485b342-371b-4a7d-8c64-7f10005a9d23.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 246" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 0em " 2019-nCoV RBD-ACE2复合物晶体结构 /span /p p style=" text-indent: 2em " 王新泉与张林琦实验室在新发与再发病毒感染的分子机制、中和抗体筛选和鉴定、疫苗开发等领域开展合作近10年,积累了丰富的研究经验。前期针对中东呼吸综合征冠状病毒(MERS-CoV),他们合作取得了一系列国际前沿性的研究成果。这些研究经验和积累,为他们针对新冠病毒快速开展研究,并取得重要突破提供了坚实有力的支持。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/202002/uepic/97198d06-a0d7-468d-a647-66a3fe04fea0.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 清华大学生命学院王新泉教授 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 301px " src=" https://img1.17img.cn/17img/images/202002/uepic/77c75a30-c2b6-4288-90ab-9b519c3d7775.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 301" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 0em " 清华大学医学院张林琦教授 /span /p p style=" text-indent: 2em " 新冠肺炎疫情发生以来,王新泉和张林琦课题组随即瞄准新冠病毒上RBD如何特异性结合ACE2这一关键科学问题,利用昆虫细胞体系表达和纯化了新冠病毒 RBD和人ACE2胞外结构域,成功生长出新冠病毒 RBD-ACE2复合物的晶体(晶体生长条件:100 mM MES, pH 6.5, 10% PEG5000mme, 12% 1-propanol),利用上海光源BL17U线站收集了分辨率为2.45埃的衍射数据,并成功解析其三维空间结构。 /p p style=" text-indent: 2em " 该成果使科研人员能够在原子水平观察与理解新冠病毒与受体的特异性相互作用,并发现新冠病毒在关键的受体结合氨基酸位点与SARS病毒大同小异。基于深入的对比分析,科研人员也发现了一些可能造成新冠病毒与SARS病毒传播差异的氨基酸位点,以及导致针对SARS病毒的抗体不能够有效抑制新冠病毒感染的氨基酸位点,后续科学验证工作正在进行中。 /p p style=" text-indent: 2em " 张林琦教授表示:“从病毒进入细胞,再到复制,最后产生它的子孙万代的整个病毒的生命周期来看,病毒如何进入细胞这一步非常关键。”病毒表面蛋白是病毒进入细胞的关键“钥匙”,可以打开细胞受体蛋白的“锁”,从而进入细胞并启动其复制过程。机体的保护性抗体反应,正是通过识别和阻断这个“钥匙”与“锁”的结合而达到阻断病毒进入细胞的作用。 /p p style=" text-indent: 2em " 现在疫苗研发的关键靶点就是针对“新冠”病毒的这把“钥匙”展开的。“因此,在原子分辨率水平极其清晰的看新冠病毒与受体复合物作用界面的信息,对于了解新冠病毒进入细胞或者感染细胞的机制,具有重要的指导意义”。 /p p style=" text-indent: 2em " 两个团队下一步的工作重点是基于结构设计筛选能够阻止二者结合的抗体或者小分子药物,这是一个相对漫长的过程,因为迄今为止能够有效抑制新冠病毒的特异性抗体和药物都还在筛选和验证过程中,这需要更多科学家不断的努力。 /p p style=" text-indent: 2em " 相信通过两个课题组的通力合作,与全社会科研和医务工作者的共同努力,拨开疫情迷雾,守望春天暖阳的日子不会太遥远。 /p p style=" text-indent: 2em " 自2015年起,北京市教委对清华大学结构生物学高精尖创新中心持续提供大力支持;自2019年起,北京市科委更成立生物结构前沿研究中心,加大力度支持清华大学结构生物学以及与生物结构相关的生命科学的研究。北京市的大力支持让科研人员无后顾之忧工作在科研第一线,为王新泉教授和张林琦教授团队在短时间取得突破性成果,提供了有力的支持。该工作也得到了国家蛋白质科学研究(北京)设施清华基地、清华-北大生命科学联合中心的大力支持。 /p p style=" text-indent: 2em " 据悉,西湖大学周强教授团队成功解析出细胞表面受体ACE2全长蛋白与新冠病毒RBD的复合物的电镜结构,中国科学院微生物研究所齐建勋研究团队也解析了新冠病毒RBD与ACE2复合物的晶体结构。这些信息与清华大学团队的结构互为支持、互为补充。值得一提的是,三个独立团队都选择在第一时间将其复合物的原子坐标向全社会公布,以提高其可能的利用率。 /p
  • 突破!西湖大学冷冻电镜成功解析新冠病毒细胞受体空间结构
    p style=" text-indent: 2em text-align: left " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 2月19日凌晨,西湖大学浙江省结构生物学研究重点实验室(施一公任主任)研究团队的鄢仁鸿(一作)、周强(通讯作者)等在预印版平台bioRxiv上线最新研究成果:利用冷冻电镜技术,成功解析新冠病毒受体血管紧张素转换酶2(ACE2)的全长结构。 span style=" text-indent: 2em color: rgb(0, 112, 192) " 成果对抗疫特效药研发具有重大指导意义,这也是全球首次成功解析ACE2的全长结构。 /span /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 600px height: 342px " src=" https://img1.17img.cn/17img/images/202002/uepic/4b257d5c-8236-478c-93f3-907498318ef9.jpg" title=" 00.png" alt=" 00.png" width=" 600" height=" 342" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(127, 127, 127) " (注:预印本网站bioRxiv的所有论文未经同行评议) /span /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(127, 127, 127) " 几天前,2月15日 /span span style=" text-indent: 2em color: rgb(0, 0, 0) " , /span a href=" https://www.instrument.com.cn/news/20200217/522050.shtml" target=" _blank" style=" color: rgb(84, 141, 212) text-decoration: underline " span style=" color: rgb(84, 141, 212) " 美国卫生总署(NIH)与美国得克萨斯大学奥斯汀分校Jason S. McLellan研究组合作在预印本平台bioRxiv上发表论文,报道了新冠病毒(2019-nCoV)S蛋白的首个冷冻电镜结构。 /span /a /p p style=" text-indent: 2em " 血管紧张素转换酶2(ACE2)是SARS冠状病毒(SARS-CoV)的表面受体,与刺突糖蛋白(S蛋白)直接相互作用。 ACE2也被认为是新冠状病毒(2019-nCoV)的受体,表现为严重的呼吸综合征。 B0AT1(SLC6A19)是中性氨基酸转运蛋白,其在肠道细胞中的表面表达需要ACE2。 发表成果中,西湖大学研究团队成功解析了与B0AT1结合的全长人ACE2的2.9埃分辨率冷冻电镜结构。 该复合物组装成ACE2-B0AT1异二聚体的二聚体,由于ACE2的肽酶结构域(PDs)转移,显示出开放和封闭的构象。 ACE2上新解析的类集合域(CLD)介导了同源二聚化。 结构建模表明ACE2-B0AT1复合物可以同时结合两个S蛋白,为冠状病毒识别和感染的分子基础提供了重要线索。 /p p style=" text-indent: 2em " strong ACE2 /strong 主要生理作用是促进血管紧张素的成熟,在肺、心脏、肾脏和肠道广泛存在。但当病毒入侵时,ACE2就被病毒“绑架”了。ACE2是SARS冠状病毒和人类冠状病毒NL63的受体,可以说是多数冠状病毒侵入人体的关键。 /p p style=" text-indent: 2em " strong 西湖大学研究团队称 /strong :“在SARS病毒和‘新冠病毒’侵入人体的过程中,ACE2就像是‘门把手’,病毒抓住它,从而打开了进入细胞的大门。” /p p style=" text-indent: 2em " ACE2全长结构的解析,对于后续疫苗和抗病毒药物的研发,无疑提供了重要的结构生物学数据支撑。 /p p style=" text-indent: 2em " 根据西湖大学公布的资料,ACE2的全貌如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/noimg/8d748624-c69c-46dc-8357-e206d6d1b33a.gif" title=" bf26资料图.gif" alt=" bf26资料图.gif" / /p p style=" text-indent: 2em " 上面的蓝色和灰白色部分,是ACE2的两个结构PD(肽酶结构域)和CLD(样域),但ACE2很难在体外稳定获得,常常是与肠道内的一个氨基酸转运蛋白B0AT1打包一同出现。 /p p style=" text-indent: 2em " strong 西湖大学研究团队给出假设 /strong :这个复合物极有可能稳定住ACE2,并通过共表达的方法,能够获得优质稳定的复合物,就构成了上面这种X形状。 /p p style=" text-indent: 2em " 在确定了ACE2的这种特殊存在形态后,就在冷冻电镜下解析了它的三维结构: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 538px " src=" https://img1.17img.cn/17img/images/202002/uepic/892b1c38-aa26-4f48-a8a5-9009ef1ddfad.jpg" title=" 1.png" alt=" 1.png" width=" 450" height=" 538" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 分辨率为2.9埃的ACE2三维结构图 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 315px " src=" https://img1.17img.cn/17img/images/202002/uepic/6193d14b-1fc4-455a-8b2e-28927a0b1189.jpg" title=" 2.png" alt=" 2.png" width=" 450" height=" 315" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 2em " 整 /span span style=" color: rgb(0, 176, 240) text-indent: 2em " 个ACE2的结构图 /span /p p style=" text-indent: 2em " 研究团队称,这一研究揭示了二聚体组装中全长ACE2的高分辨率结构。 建模分析表明,冠状病毒的两个S蛋白三聚体同时与ACE2二聚体结合。本研究的结构为阐明2019-nCoV感染的机制提供了一个重要的框架,并可能促进潜在疗法的发展。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202002/uepic/5098d370-0dd0-44d9-a878-7b7120e1e300.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 第一作者鄢仁鸿(左)与通讯作者周强(右) /span /p p style=" text-indent: 2em " 这项研究中,西湖大学的冷冻电镜和超级计算机中心分别提供了冷冻电镜和计算支持。并获得国家自然科学基金(项目31971123,81920108015, span style=" text-indent: 2em " 31930059)和浙江省重点研发计划(2020C04001)的资助。 /span /p p style=" text-indent: 2em margin-top: 10px " span style=" color: rgb(0, 112, 192) font-size: 18px " strong ▊关于浙江省结构生物学研究重点实验室 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 333px " src=" https://img1.17img.cn/17img/images/202002/uepic/c1dc0fa7-335f-48e8-9d1a-4addcb741fec.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 333" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 浙江省结构生物学研究重点实验室是西湖大学第一批获准成立的浙江省重点实验室之一。 /p p style=" text-indent: 2em " strong 研究内容和方向 /strong :旨在建设一个能够引领世界结构生物学研究方法和技术发展的重点实验室。实验室将围绕重要的生物学问题和技术需求,以冷冻电子显微学为核心(包括单颗粒冷冻电子显微镜三维重构、冷冻电子显微镜断层成像、冷冻电子显微镜交叉学科发展三个研究方向),以X-射线晶体学、化学生物学、蛋白质设计、分子动力模拟等相关学科为助力,充分发挥各前沿学科的优势,探索出一套高效的多学科人才合作研究新机制,开发出若干具有我国自主知识产权的革新技术与软件算法,取得一系列具有里程碑意义的结构生物学原创成果,促进浙江省乃至我国在相关领域内基础研究力量和创新能力的提升,以及相关研究成果的转化。 /p p style=" text-indent: 2em " strong 人员构成 /strong :国际著名结构生物学家、中国科学院院士、西湖大学校长施一公教授任实验室主任。中科院上海生科院植物生理生态研究所研究员张鹏教授任学术委员会主任。全球范围内遴选的多名优秀青年科学家担任重点实验室骨干。 /p p style=" text-indent: 2em " strong 发展方向 /strong :实验室将整合多学科优势,积极推进基础科研应用和后期成果转化,在未来5-10年开发一系列具有深远影响的结构生物学新成果新技术,促进浙江省生物技术、生物制药等相关产业的发展。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 论文链接 /span : a href=" https://www.biorxiv.org/content/10.1101/2020.02.17.951848v1" target=" _blank" style=" color: rgb(127, 127, 127) text-decoration: underline " span style=" color: rgb(127, 127, 127) " https://www.biorxiv.org/content/10.1101/2020.02.17.951848v1 /span /a /p
  • 沃特世发布解决方案:使用Waters Xevo TQS和ACQUITY UPLC快速分析猪尿液中的21种β -受体激动剂
    瘦肉精:一类动物用药的统称,任何能够促进瘦肉生长、抑制动物脂肪生长的物质都可以叫做“瘦肉精”。 目前,能够实现这种功能的物质是一类叫做β-受体激动剂的药物,将其混入猪饲料进行饲养,能促进猪的生长速度、提高瘦肉率,同时使肉色鲜红,卖相更好。与传统瘦肉精盐酸克伦特罗同属“肾上腺受体激动剂”的莱克多巴胺等同类药物同样也能提高猪的瘦肉率。 盐酸克伦特罗的检测方法主要有酶联免疫吸附法(ELISA)、胶体金免疫层析法、高效液相色谱法、气质联用法及液质联用法。国家标准GB/T5009.192-2003 动物性食品中克伦特罗残留量的测定中规定方法为气相色谱-质谱法(GC-MS)、高效液相色谱法、酶联免疫法,其方法检出限均为0.5μg/kg。SN/T 1924—2007 进出口动物源食品中克伦特罗、莱克多巴胺、沙丁胺醇、特布他林残留量的检测方法采用LC-MS-MS法,该方法因具有高灵敏度等优点被普遍使用。本文使用UPLC/Xevo TQ-S对猪尿液中的21种β-受体激动剂进行了分析。 QUANPEDIA是沃特世特有的一种可扩展和可搜索的数据库,提供LC-MS-MS定量方法信息,目前数据库已有超过1200种化合物,包括色谱方法、质谱方法、定量方法等,可以自由选择其中的任意化合物或化合物种类自动形成所需的方法,不需要再进行手动方法开发过程。 下图为数据库得到的方法信息: 自动生成MRM方法: 样品制备: 样品制备参照GB/T 22286-2008《动源性食品中多种β-受体激动剂残留量的测定》进行。 1.量取2.0 mL猪尿液样品,加入8 mL 0.2M的pH 5.2的乙酸钠缓冲液,充分混匀。2.加入50 Lβ-Glucuronidase/aryl sulfatase混匀,于37 °C水浴水解过夜。3.水解液振荡15min,在5000r/min条件下离心分离10min后,取4mL上清液中添加100 μL 10 ng/mL的内标溶液混匀, 加入5 mL 0.1M高氯酸混合均匀,并调节溶液pH值到1±0.3。以5000 r/mim条件下离心分离10 min后,移取上清液并用10M的氢氧化钠溶液调节pH值到11。4.加入10 mL饱和氯化钠溶液和10 mL异丙醇-乙酸乙酯(6:4)混合溶液,离心分离后取有机相,在40℃水浴下用氮气将其吹干。5.提取残渣中加入5mL 0.2M乙酸钠缓冲液(pH 5.2),超声混匀溶解残渣。6.样品净化(如下图所示),使用Oasis MCX(3cc/60mg)小柱。7.净化后的洗脱液用氮气吹干,用流动相溶解定容至1.0mL,过0.22μm滤膜,待进样分析。 ?固相提取净化过程Oasis MCX(3 cc/60mg): 结果与讨论: 本方法采用一次进样同时监测猪尿液样品中的21种β-受体激动剂进行检测,在灵敏度、分离度等方面均获得满意的结果。 图1. 21种β-受体激动剂总离子流图。 图2. 猪尿液基质中0.01ng/mL克伦特罗连续7针进样重复性(峰面积RSD=0.42%)。 与常规串联四极杆质谱仪不同的是,Xevo TQ-S在提供最好的定量数据的同时,还可以提供高质量的光谱MS/MS信息。对猪尿液中含0.5ng/mL的受体激动剂样品,启用PICs(子离子确认扫描)功能,可在不影响MRM定量的同时得到各化合物子离子扫描图,与标样子离子图进行匹配,对样品中阳性结果定性起到帮助判断的作用。 图3. 猪尿液基质中0.5 ng/mL沙丁胺醇子离子扫描图。 图4. 猪尿液基质中0.5 ng/mL克伦特罗子离子扫描图。 图5. 猪尿液基质中0.5 ng/mL莱克多巴胺子离子扫描图。 结论: 本方法采用多离子反应监测(MRM)方式对21种β-受体激动剂进行检测,具有快速、准确、灵敏度高、分析周期短、适用范围广等优点,适用于各类动物组织或动物源性食品等的测定。 IntelliStart技术可以使得开发分析方法过程变成流线型工作流程。这意味着需要更少的时间来开发方法,大大提高工作效率。强大的QUANPEDIA数据库包含上千种化合物的方法,自动生成方法文件让您轻松简单快速应对各种突发事件。PICs(子离子确认扫描)功能提供最好的定量数据的同时,还可以提供高质量的光谱MS/MS信息,对样品中阳性结果定性起到帮助判断的作用。
  • LC-MS/MS法测定火腿肠中的3种β-受体激动剂
    LC-MS/MS法测定火腿肠中的3种&beta -受体激动剂(沙丁胺醇、克伦特罗、莱克多巴胺) 仪器:液相色谱-串联质谱仪(配电喷雾离子源); 色谱条件: 色谱柱:Agela Venusil MP C18 (2.1mm× 100mm, 5&mu m); 柱温:35℃;流速:0.3mL;进样量:10&mu L; 流动相:A相:甲醇;B相:0.1%甲酸水溶液; 洗脱程序: 时间(min) A(%) B(%) 0 5 95 5 80 20 5.5 5 95 7 5 95 质谱条件: 离子源:电喷雾离子源 扫描方式:正离子模式 检测方式:多反应监测(MRM) 电离电压:3.0kv 离子源:110° C 雾化温度:350° C 锥孔气流速:50L/h 雾化气流速:650L/h 样品前处理: 按照农业部1025号公告-18-2008方法执行; SPE柱:Agela Cleanert PCX(60mg, 3mL)货号:CX0603 试验结果: 图1 3种&beta -受体激动剂(沙丁胺醇、克伦特罗、莱克多巴胺,浓度为10&mu g/L)混合标准溶液特征离子质量色谱图(LC-MS/MS) 注:沙丁胺醇(定量离子对m/z=240.1221.97, 保留时间t=2.08min)、莱克多巴胺(定量离子对m/z=202.2164, 保留时间t=3.14min)、克伦特罗(定量离子对m/z=277.11202.78, 保留时间t=3.21min) 图2-1 空白火腿肠添加3种&beta -受体激动剂(沙丁胺醇、克伦特罗、莱克多巴胺添加浓度为1&mu g/kg)特征离子质量色谱图(LC-MS/MS)[平行样1] 实验数据分析: 准确度和精密度:本方法采用两个添加浓度(1&mu g/kg和10&mu g/kg),用空白添加标准校正,其回收率范围为70%-110%。三个平行样的相对标准偏差小于20%。 总结: Agela Cleanert PCX以及Agela Venusil MP C18 在前处理及液相色谱-串联质谱仪法测定沙丁胺醇、克伦特罗、莱克多巴胺等3种&beta -受体激动剂试验中性能表现优异,可用于问题猪肉及其制品中的瘦肉精的检测。
  • 葛瑛团队利用自上而下质谱法揭示新冠病毒刺突蛋白受体结合域的结构 O-糖型异质性
    仪器信息网讯 据WHO官网数据显示,截至2021年8月6日,新型冠状病毒(SARS-CoV-2)已致全球2亿人感染,425万人死亡,这是本世纪最为严重的全球公共性卫生事件。  刺突蛋白(Spike, S)是病毒表面重要的标志蛋白,是一种三个相同亚基以非共价键结合成同源三聚体 同时刺突蛋白存在多个N-糖基化位点,糖基通过共价键与蛋白相连组成糖蛋白,而大量糖基的存在则可通过糖基化改变蛋白质分子的空间结构而封闭或破坏抗原表位,从而抑制机体产生免疫应答,对病毒起到保护作用。刺突蛋白的序列主要包括N端结构域(N-Terminal Domain,NTD)、受体结合结构域(Receptor Binding Domain,RBD)、融合肽段(Fusion peptide,FP)、2段七肽重复序列(Heptad Repeat,HR)、中央螺旋(Central Helix,CH)、连接域(Connector Domian,CD)、跨膜结构域(Transmembrane Domain,TD)等。  SARS-CoV-2通过高度糖基化的刺突蛋白(Spike, S)上的受体结合域(RBD)与人受体蛋白血管紧张素转换酶(ACE2)结合,进而入侵人体细胞,因此刺突蛋白糖基化在改变病毒结合/功能和感染性方面起着关键作用。然而由于传统自下而上糖蛋白组学方法分析完整糖型面临挑战,因此在刺突蛋白受体结合域(S-RBD) 上揭示新O-聚糖的分子结构和聚糖异质性仍是个难题。  基于此,2021年7月,威斯康星大学葛瑛教授团队在《美国化学会志》(Journal of the American Chemical Society, JACS)上发表了最新的成果,题为“Structural O‑Glycoform Heterogeneity of the SARS-CoV‑2 Spike Protein Receptor-Binding Domain Revealed by Top-Down Mass Spectrometry”。该研究利用自上而下蛋白质组学方法,提供了刺突糖蛋白不同O-糖型的高分辨率蛋白质解析图,为揭示其 O-聚糖的功能作用奠定了强大的分子基础。这种蛋白质解析方法可用于揭示新出现的 SARS-CoV-2 S-RBD 变体以及其他O-糖蛋白的结构O-糖型异质性。  该工作中,研究人员通过利用捕集离子淌度 (TIMS)-四极杆飞行时间质谱法和超高分辨率傅里叶变换离子回旋共振质谱法解析了完整的 O-聚糖蛋白型的完整结构。自上而下的 TIMS-MS/MS 分离 S-RBD 的蛋白质构象异构体以揭示其气相结构异质性,而自上而下的 FTICR-MS/MS 提供深入的糖型分析,以明确识别聚糖结构和他们的糖基。  该工作内容首次在结构上阐明了总共八种O-糖型及其相对分子丰度。该发现表明,这种自上而下的混合质谱分析方法可以提供S糖蛋白的不同 O-糖型的高分辨率蛋白质型解析图,这为揭示其 O-聚糖的功能作用奠定了强大的分子基础。这种蛋白质型解析方法可用于揭示新出现的 SARS-CoV-2 S-RBD 变体以及其他 O-糖蛋白的结构 O-糖型异质性。  研究团队: https://labs.wisc.edu/gelab/  葛瑛教授
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(一)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,我们将分三期陆续介绍。本期介绍第一部分。1. 背景介绍成像技术是推动生命科学几乎所有学科基础研究的核心平台。在神经科学领域,近几十年来,共聚焦显微镜技术已成为分析神经组织的标准荧光成像技术。激光扫描共聚焦显微镜对固定的神经元样本进行观察,在扫描水平上提供了三维和多色图像并使单个细胞达到树突结构的分辨率。作为补充,电子显微镜(EM)用于获取神经元和亚区室超微结构的信息,并用于大脑的连通性分析。EM非常适合于神经元突触和囊泡、细胞器和膜构象的结构分析。然而,由于靶向特异性标记方法的局限性,基于EM的复杂样品中蛋白质和特定电子密度特征的识别受到限制。为了进一步理解神经元功能,包括双光子显微镜在内的几种活体视频显微镜应用的发展使神经元细胞培养的活细胞成像、器官型切片培养和动物模型的活体成像成为可能。同时,新的荧光染料、功能探针和荧光蛋白以及光遗传学方法和光驱动(如笼状化合物)不仅可以表征神经元,还可以操纵神经元及其从单分子水平到整个神经系统的相互作用。然而,荧光显微图像中可见细节的水平,即图像分辨率,仍然受到衍射极限的限制。一个多世纪以来,由λ/2NA定义的阿贝衍射极限(λ为波长,NA为显微镜物镜的数值孔径)决定了光学显微镜的分辨率极限,限制了两个位置小于200纳米的细节分辨。在过去的二十年中,超分辨显微镜(SRM)已经发展成为一种非常有效的亚细胞水平荧光成像和分辨细胞器结构的研究手段。SRM现在可以提供远低于常规光学显微镜衍射极限的空间分辨率,从而能够深入了解神经元细胞和组织中蛋白质的空间结构和相互作用。本文综述了超分辨显微镜和荧光标记方法及其在神经科学中的成功应用。我们将首先详细介绍各种SRM方法的基本原理、新的功能型荧光探针和标记技术。接着,我们将回顾SRM如何有助于我们理解神经元亚细胞结构和功能以及神经元−胶质细胞相互作用。此外,我们将概述超分辨率成像方法如何帮助研究自身免疫和神经退行性疾病的病理生理学。最后,我们将介绍这些新的成像方法是如何应用于神经精神疾病相关的人类样本的分析。由于该领域持续快速发展,我们最多只能代表一份中期报告。进一步的创新和新的显微镜方法的发展将使人们对神经系统功能有更详细的了解。 2. 神经科学中的超分辨率成像方法2.1. 光学衍射极限及其对神经科学的影响人类大脑包含超过800亿个神经元,每个神经元由数千个突触连接。因此,它构成了复杂神经元网络。这些网络的主要组成部分,例如突触神经末梢,显示的空间维度接近于光学衍射极限分辨率∼200 nm。释放递质的突触活性区(突触前细胞基质的特化区)的直径通常约为300±150 nm。突触小泡作为递质运输和释放的关键元件,其尺寸平均小10倍,直径为40−50nm。这些递质被释放到宽度为20-50nm的突触间隙中−再结合突触后受体。由于衍射极限的尺寸限制,胞吐机制和跨突触信号在传统的光学显微镜下基本上是无法观测到的,因此需要用提高10倍分辨率的方法进一步研究。(图1)。图1. 兴奋性突触结构组成。左图为兴奋性突触的油画示意图,右图为左图的灰度图像,其中浅紫色圆圈为衍射极限光斑;玫红色圆圈为兴奋性突触囊泡,约40-50nm;绿色为突触后膜AMPA受体,尺寸小于10nm;黄色部分为突触间隙,约20-30nm。 此外,大量参与突触信号传导的不同的分子,位于极小的突触内,造成很高的分子分布密度,这对微观研究具有挑战性。例如,对于较小的突触,兴奋性突触可以包含数百个小泡,对于大型苔藓纤维束突触,可以包含数千个小泡,每个小泡包含多达1万到10万个递质分子。在这些囊泡中,约有10±5个与释放部位对接,释放的递质平均与0−20 个NMDA受体和0−200个AMPA受体结合,而这些突触后受体又被320±130个突触后PSD-95密度蛋白分子环绕。由于加速电子的波长要短得多,因此EM是唯一能够解析突触纳米级结构的方法。然而,虽然传统的EM产生的电子密度图像具有极好的超微结构分辨率,但需要进行固定和靶向特异性标记的制样方法在很大程度上限制了蛋白质识别和神经元追踪。荧光显微镜可以很容易地对蛋白质进行选择性标记,但是受制于可见光的衍射(400−700 nm)使生成的图像无法实现对纳米结构的分析。 2.2.绕开光学衍射极限的光学显微镜方法 20世纪后期,人们开发了新的策略,通过利用物理或化学手段来区分不同荧光团的发射或减少同一时间荧光分子的数量,以尽量绕过衍射极限。减少荧光团的点扩散函数(PSF)的重叠可以通过生成光图案在集合级别以确定性方式进行,或者通过减少同一时间荧光团的数量在单分子水平上以随机方式进行。在下文中,我们将从确定性集合方法开始介绍,该方法将激光扫描共聚焦显微镜(CLSM)的有效空间分辨率推到理论极限。2.2.1. 确定性集合超高分辨率成像方法(Deterministic Ensemble SR-Imaging Methods) CLSM用针孔探测器阵列替换单点探测器,空间分辨率可以提高√2倍。CLSM测量每个扫描位置探测器每个点的荧光信号。在应用适当的算法后,生成分辨率提升的图像。这些所谓的像素重分配方法包括图像扫描显微镜(ISM)、重扫描共聚焦(RSC)、光学光子重分配(OPRA)、AiryScan和即时结构照明显微镜(iSIM)。对于信号检测,使用了诸如CCD相机、光电倍增管阵列、单光子雪崩二极管阵列和六角光纤束等探测器阵列。结构照明显微镜(SIM)在光路中插入光栅,产生与样品干涉的相干光束,生成横向和轴向方向不同的新照明图案。然后可以使用傅里叶变换提取这种新照明图案的信息,从而在所有三维空间中实现空间频率分解和分辨率倍增。SIM对样品制备的要求最低,并且可使用所有常规荧光探针,这些探针具有最低的光稳定性,并且可以很容易地扩展到多色成像。然而,当记录三维或长时间成像时,强烈建议使用光稳定性更高的荧光团。此外,SIM使用更低的激发强度,因此是活细胞SR实验的理想选择。为了获得更高的分辨率,引入了通过图案化饱和或荧光激发或图案化耗损光开关染料的非线性SIM(NL-SIM)。然而对染料开关特性的苛刻要求限制了NL-SIM在常规生命科学实验中的适用性。非线性SIM单位时间内还需要采集更多的图像,因此实际上仅限于2D成像。另一方面,掠入射(GI)-SIM显示了高达每秒266帧的快速超分辨率成像以及100nm分辨率,揭示前所未有的细胞器动力学细节。结构照明的局限性在于其对波长的普遍依赖性、与其他SR成像技术相比的低分辨率以及对系统稳定校准的需要。最后,后处理需要进行先验质量检查以避免伪影,例如由于高背景信号或不充分标记产生的低对比度图像导致的人工蜂窝图案。通过受激发射耗损(STED)显微镜进行超分辨率成像是一种实现更高空间分辨率的成像方法。这里,高斯分布的激发激光束被中空的甜甜圈样的耗损激光束覆盖,使扫描点外围的荧光团返回基态,这导致纳米级焦点区的直径与耗损光束的强度成反比,耗损光束的强度直接转换为STED显微镜的分辨能力:上图公式中λ为波长,n为折射率,α为物镜的收集角,ISTED为STED光束的照射强度,IS为饱和强度。因此,可以通过改变损耗激光强度来调整分辨率,可定制设计分辨率达30−80nm 的显微镜。STED显微成像可通过连续或脉冲激光激发、门控检测。带有脉冲激光的STED显微镜会降低激发能量,从而减少实时成像中的光毒性效应。STED显微镜中的时间门控检测可以去除荧光团光子到达时间前的空间信息,并且可以在较低的平均功率下工作。商品化STED能提供用户友好的高分辨率成像,无需进一步的数据后处理。活体成像,例如活体树突棘动态成像已经很成熟,但快速动态成像仅限于小帧尺寸,因为它仍然是点扫描方法,高激光强度可能会导致光损伤。STED通过应用自适应照明方式Dymin和rescue技术,可以明显减少光损伤。在Dymin STED中,在共聚焦模式下扫描时确定最低可能的STED光束强度。根据样品的标记密度,这将使STED光束强度降低20到100倍。Rescue STED同样通过减少STED激光开放的区域,从而比普通STED减少光漂白接近8倍。STED的另一个限制是对荧光团光稳定性的依赖,因为在高激光强度下会发生明显的光漂白。这影响了动力学的研究和三维图像的获取。值得注意的是,最近通过使用荧光团标记的寡核苷酸(瞬时结合到连接靶蛋白结合探针的互补寡核苷酸)或非结合荧光团来进行细胞STED成像,从而绕过了STED光漂白问题。这两种方法中,基于DNA互补标记的STED成像和超分辨率阴影成像SUSHI分别通过荧光团标记的寡核苷酸和高浓度的非结合和自由扩散的荧光团不断交换来防止光漂白。SUSHI的方法已经成功地用于活体脑片中细胞外间隙和神经肽的结构解析及其动力学的STED成像。如果使用具有毫秒或更长寿命的两种稳定状态的可逆切换荧光团来代替标准荧光团,则STED强度可以显著降低。可逆饱和切换光学线性荧光转换方法(RESOLFT)已通过可逆可切换荧光蛋白(reFPs)实现,并成功应用于活体海马脑片树突棘的超分辨率成像。2.2.2. 随机单分子SR成像方法(Stochastic Single-Molecule SR-Imaging Methods)上述的确定性方法是通过改变激发模式或相位掩膜来暂时控制荧光发射达到超分辨成像,而基于单分子的定位SR显微镜则是随机地在时间上分离单个荧光团的发射。单分子定位显微镜(SMLM)基于单个荧光团的随机激活,使用配备高灵敏相机(EMCCD或sCMOS)的宽场荧光显微镜进行单分子检测,以及精确的位置测定。通过将理想PSF与实际测量的光子分布拟合来进行分子定位。只要信号来自单个发射区,且单个发射区之间的距离大于显微镜能分辨的最小距离,则通过收集更多光子和最小化噪声,定位的标准误差可以任意小。激活和定位过程重复多次,所有定位最终用于重建超分辨率图像。为了确保在成像的任何时候,只有稀疏的小荧光团以其活性荧光形式存在(开启状态),使用了光开关、光转换、光激活或自发闪烁的荧光团。由于定位精度和最终图像分辨率取决于每次检测到的光子数量,通常采用明亮且稳定的荧光团与1 kW/cm2的辐照强度相结合的方式。根据所使用的荧光团不同,SMLM可达到10−50 nm横向分辨率。光激活荧光蛋白(FPs),自2006年以来已用于光激活定位显微镜(PALM),例如在405 nm的激光照射下可从关闭状态不可逆地转换为打开状态的PA-GFP和PA-mCherry 以及可通过适当波长的激光照射从一种波长状态不可逆地转移到另一种波长状态的光转换FPs,例如MEO。此外,还成功地应用了诸如Dronpa之类的光开关FPs,其在不同激发波长的激光照射下可在非荧光和荧光状态之间可逆地切换。对于活细胞应用,使用荧光蛋白的PALM是首选方法。因为在理想情况下,每个感兴趣的蛋白质都可以用荧光蛋白进行计量标记。然而,荧光蛋白比有机染料表现出更低的光稳定性和光子计数,从而降低了定位精度,并且通常需要更长的采集时间。此外,对于PALM成像而言,融合蛋白通常会过度表达,这可能会导致不真实图像,而用转基因变体替代显示野生型表达和功能的自身蛋白仍然具有挑战性。对于细胞内源性蛋白质的标记,通常使用有机染料的免疫标记。SMLM适用的有机染料必须是光开关、光激活或自发闪烁的,以实现单个染料发射的时间分离,但化学计量标记要困难得多。有机染料通常表现出较高的光子计数和光稳定性,从而使定位精度达到5−10nm。花菁染料Cy5和Alexa Fluor 647可以在荧光开启状态(其典型寿命为10 ms)和非荧光关闭状态(寿命为几秒,利用光开关缓冲液,缓冲液包括PBS,10−100mM硫醇,如ß-巯基乙缅(MEA),酶促氧清除剂,可以有/没有激活染料)之间可逆切换,为随机光学重建显微镜(STORM)和直接型STORM(dSTORM)的发展铺平了道路。近年来,应用于(d)STORM的染料已大大扩展,除了菁染料外,还包括罗丹明和恶嗪染料。有趣的是,最近的研究表明,即使是多个标记的抗体在光开关缓冲液中也呈现出类似于单发射的表现,因此适用于dSTORM实验。光活化染料的作用与光活化荧光蛋白相似。也就是说,它们在被光照射或自发激活之前处于非荧光状态。罗丹明衍生物PA-JF549和PA-JF646以及桥环菁染料Cy5B是已成功用于SMLM的光活化染料。此外,在没有光开关缓冲液的水溶液中,硅罗丹明HMSiR等自发闪烁染料也能应用于SMLM。最近,通过图案化照明方式实现更高的定位精度,单个荧光发射区的定位得到了改进。定位精度取决于信号的大小和强度,可以通过测量的PSF标准偏差的平方除以收集的光子数来估计。然而,包括拟合性能、标记密度、标记误差和显微镜漂移在内的其它参数决定了高定位精度是否可以转化为低于10 nm的空间分辨率。此外,到目前为止,因为SMLM方法成像需要昂贵的仪器和成像者具备广泛的专业知识,这在一定程度上阻碍了其广泛应用。2.2.3. SMLM-点累计纳米成像技术(PAINT,Point Accumulation for Imaging Nanoscale Topography)第一代SMLM技术依赖于荧光团的光开关和光激活,其分辨率需要有效地利用荧光团发出的光子数,而PAINT(point accumulation for imaging nanoscale topography)方法使用活的,与目标区域结构短瞬结合的染料。在成像过程中,被漂白的荧光团可以被成像介质中充足的新鲜荧光团不断置换替补。由于游离染料在采集单个图像帧期间在多个像素上快速扩散,因此它们仅显示为模糊背景且不能准确定位,而结合染料显示为PSF且能准确定位。因此PAINT的第一种方法是将荧光染料(如尼罗红)与细胞膜进行非特异性结合,然后进行光漂白和新的结合。此外,基于蛋白质片段的探针被用于单分子定位标记。在最近的一个研究中,将这种方法与传统的基于phalloidin的肌动蛋白标记方法进行了比较。通过引入通用PAINT(uPAINT)使Ni-Tris-NTA与转基因蛋白质上表达的His-Tags更特异结合,并可用于突触间隙成像。uPAINT也可以应用于其它标记方法,如免疫标记(内源性蛋白抗体、纳米抗体如绿色荧光蛋白)或受体配体结合。为了提高PAINT的适用性和特异性,引入DNA-PAINT方法。它使用长度小于10个核苷酸的短的可控的寡核苷酸链(成像链)瞬时标记其靶结合互补寡核苷酸链(对接链)。成像链与对接链的瞬时结合产生明显的闪烁。因此,荧光团开-关状态之间的切换与其光物理性质不直接关联。DNA-PAINT首先在DNA折纸(DNA-origami)上得到验证。DNA折纸是一种自组装的DNA结构(具有已知的大小),通过侧链和荧光团进行结合,并通过宽场显微镜观察。总的来说,DNA-PAINT是一种易于实现的SR成像标记方法,无需特定光物理特性的荧光团。因为探针可以在一轮结合后,从成像介质中置换补充荧光团,从而避免了光漂白。DNA-PAINT的缺点是图像获取时间长,这是由成像链与对接链的结合和解离速率决定的,以及荧光成像链的纳摩尔浓度引起的背景信号。尽管通过使用优化的DNA序列和缓冲条件,以及使用串联的周期性DNA结构域或通过短肽的卷曲螺旋相互作用(称为“Peptide-PAINT”),可以加快采集速度,但还是要利用全内反射荧光(TIRF)(仅限于对靠近盖玻片结构进行成像的特点),才能更好地减少成像链的背景信号。另一方面,基于DNA的探针提供了序列成像复用的明显优势,如Exchange PAINT中所述,已成功用于小鼠视网膜切片中多个结构的成像(图2)。Exchange PAINT的概念也被推广到dSTORM、STED、SIM和更传统的衍射限制的宽场和共聚焦荧光显微镜。最近,通过一种称为PRISM(probe-based imaging for sequential multiplexing)的基于DNA-PAINT的成像方法,实现了高达10个神经元蛋白质的分辨率约为20nm的多通道成像。该方法使用了低亲和力成像探针,该探针与突触、肌动蛋白和微管一抗上的对接链结合。图2 原代神经元中多个神经元靶点的多标Exchange-PAINT成像。(A)DNA-PAINT顺序成像的四种突触蛋白的超分辨图像:圆圈表示漂移校正的基准点;(B)为(A)中不带*的感兴趣区域的高放大倍率图和超分辨图像。(C)为(A)中带*的感兴趣区域的超分辨结果及单通道图像。2.2.4. 定量SMLM如果每个目标分子都可以单独标记和定位的话,与所有其他超分辨率成像技术相比,SMLM还可以提供有关分子分布和分子绝对数的单分子信息。然而,内源性蛋白质的定量免疫标记仍然是一个挑战,并且多标记抗体的不同定位数目也会使数据解释复杂化。另一方面,达到内源性表达水平比较困难,另外FPs蛋白成熟缓慢也同样会令定量化困难。然而,可以通过设计专门的对照实验估计拷贝数,并提取出有关生物目标结构分子的真实信息。借助合适的算法,SMLM可以提供有关拷贝数、聚类、共定位和复杂化学计量的数据,用于定量模型的生成和模拟。此外,还可以通过将突触结构信息与其功能关联来实现量化,例如膜片钳神经元的生物细胞素标记。例如,通过对链霉亲和素标记后膜片钳神经元进行STORM成像,结合CB1受体的免疫标记,然后在GABA能的海马轴突终端内定量,研究了内源性大麻素信号。本研究发现,与树突投射型中间神经元相比,胞周投射型中间神经元具有更高的CB1受体密度和更复杂的活动区。通过免疫标记和dSTORM研究了黑腹果蝇神经肌肉连接处内源性Bruchpilot(Brp)分子的数量。利用抗体滴定实验,确定了野生型神经肌肉连接处活性区细胞基质中Brp蛋白的数量为137个,其中四分之三以约15个七聚体簇状排列结合从相同组织样本记录的电生理数据,研究Brp如何组织控制活动区功能。利用DNA纳米结构作为校准,每个活性区Brp蛋白的数量估计通过定量DNA-PAINT(qPAINT)实验证实。此外,定量dSTORM实验表明,每个活性区Brp蛋白的数量和分布受突触标记蛋白-1的影响,这说明突触活性区递质释放的复杂性。在最近的一项研究中,使用Alexa Fluor 532和Alexa Fluor 647免疫标记的双色dSTORM已用于小鼠小脑平行纤维活性区中代谢型谷氨酸受体4(mGluR4)的定量研究(图3)。该研究还使用抗体滴定实验估计每个活性区平均包含约35个mGluR4分子,并排列在小纳米结构中。此外,mGluR4通常在munc-18-1和CaV2.1通道附近被发现,这支持了mGluR4与这些蛋白质相互作用以调节突触传递的观点。图3小鼠脑片中代谢型mGluR4受体定位定量双色dSTORM。上图:mGluR4和Bassoon免疫染色的小脑冠状切片的dSTORM图像,作为活性区参考。与宽场显微镜结果的比较。(A)DBSCAN聚类算法定义了近距离的En face活性区表面积(灰色)和mGluR4信号(品红)。(B)活性区大小的频率分布直方图(C)mGluR4信号到突触和突触外区域的映射。(D)通过Ripley H函数分析评估Bassoon和mGluR4的聚集分布。与随机分布的分子(蓝色、灰色)进行比较。虚线表示Ripley分析的最大值。这些研究显示了定量SMLM在神经科学研究中的潜力。可以预见,定量SMLM的进一步发展将为突触前和突触后蛋白质的功能关系,及其组织和结构的研究提供更有价值的信息。2.2.5. 组织三维(3D)SMLM虽然SMLM方法实现了仅几纳米的非常高的水平定位精度,但它需要特殊的方法来打破图像平面上方和下方PSF的对称性,来实现高轴向定位精度。实现高轴向定位精度的两种方法是PSF重塑和多焦面检测,通常用于在3D中精确定位荧光团。在SMLM中最常用的方法是通过在成像路径中插入单个柱面透镜从而不对称地扭曲PSF,利用光学像散原理来实现三维定位。基于像散方法的3D dSTORM技术还可以与光谱拆分相结合,对COS-7细胞中的网格蛋白表面小窝成像。像散引起的畸变程度由荧光团的轴向位置决定,因此可用于轴向位置计算。例如,3D散光SMLM已用于确定抑制性突触后密度区gephyrin蛋白和受体复合物的分布和拷贝数,或突触前活动区和突触后密度区各种成分的空间关系。采用双物镜像散成像方案,通过3D SMLM研究组织中肌动蛋白、血影蛋白和其他相关蛋白的结构,发现这些蛋白在轴突中形成190nm的周期性环状结构。替代方法包括使用相位掩模、变形镜实现双螺旋、四足或鞍点PSF重塑,和双焦面成像方法实现更大的轴向范围,并已成功应用于不同的应用中。为了在2D和3D中定位单个荧光发射区,已经开发了不同的算法和软件工具。在最近的一次综述中,列出了不同3D SMLM方法获得的水平和轴向分辨率,以供比较高30倍。此外,使用NHS染料对所有蛋白进行标记,然后进行迭代ExM,可以对高蛋白密度的结构或细胞器(如线粒体),实现与EM相比具有更高对比度的超微结构细节。为了在分子尺度上进行成像,ExM与SMLM方法(如dSTORM)相结合是一个理想的选择。然而在含有硫醇和盐的传统光转换缓冲液中,会发生荷电氢凝胶收缩。可通过使用低离子强度缓冲液或加入中性溶液使凝胶稳定以避免收缩。另一种策略是使用自发闪烁的荧光团(如HMSiR)在水中进行SMLM。通过Ex-dSTORM实现分子分辨率的关键是膨胀后标记,这增加了表位可及性,从而提高了标记效率并减少了标记错误。Ex-dSTORM超分辨成像已成功应用于原代细胞和神经元中微管和中心粒结构的解析。
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(三)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,分四期介绍。本期为第三部分内容。5.3. 突触后室突触受体位于突触后室,负责传递来自突触前末端的信号。它包含支架蛋白--负责锚定突触后受体的专门用于信号整合的信号分子。在神经元树突中,从主要树突轴起源并突起的小体积树突棘提供分区功能,并根据突触活动和发育阶段显示大小和形状的动态变化。树突棘是突触长时程增强(LTP)的结构相关物,因此与学习和记忆有关。要想准确观察树突棘的小尺寸、不同形状和动力学,一般要求采用超过衍射极限的分辨率并有可能进行活体成像的光学显微镜方法。第一个将活细胞SMLM应用于原代神经元的研究之一是使用碳菁染料(如Dil)可视化脊髓和丝状足。对于突触后膜结构的可视化,已经发现了一个新的膜标记试剂系列,该系列可实现神经元追踪和树突棘的可视化。最近,通过快速SIM和增强共聚焦显微成像研究了树突棘上微小突起(称为小刺)的动力学。通过将SIM成像与计算方法相结合,进一步评估了树突棘的几何结构,证实凹面对于棘结构稳定的重要性。在树突棘中,F-肌动蛋白高度定位富集在突触后密度区(PSD)和树突棘膜上。肌动蛋白的分子速度升高已让其扩散到除棘尖外整个棘的亚区。为了分析脊髓中肌动蛋白的动力学,我们设计了一种低亲和力的光转换肌动蛋白探针,并利用像差校正光学系统对活体脑切片动力学进行了表征。通过STED显微镜观察对phalloidin-ATTO647N标记的原代神经元,可以在树突棘颈和丝状棘中观察到F-肌动蛋白的周期性片段。同年,STORM成像也显示树突棘颈和丝状棘中存在以肌动蛋白为基础的周期性膜骨架。在树突棘中,分支的F-肌动蛋白在PSD附近聚集,而延伸仅限于指状突起的尖端,并为棘突提供了基础。通过基于监督学习的模式识别进行图像分割,可以对树突肌动蛋白组成异质性做自动分析。用SMLM也对树突F-肌动蛋白进行了同样的分析,并使用树突铂复原电镜进行了验证。使用STED显微镜在活体小鼠脑切片海马CA1神经元上进行延时拍照并结合FRAP及电生理学检查,证明在神经递质释放诱导的长时程增强(LTP)时树突棘颈部具有可塑性(宽度增加并长度减少)。使用正置STED显微镜实现了活体小鼠树突棘动力学的首次超高分辨率成像。在这里Thy1 EYFP小鼠体感皮层中的树突棘在其头部和颈部表现出形态可塑性。另外使用双光子STED成像对活体小鼠的海马树突棘动力学进行了研究,树突棘密度与早期报告相比高出2倍,并能测算几天内的树突棘蛋白周转率(图10)。图10 体内长时程双光子STED成像--海马CA1锥体神经元树突棘蛋白周转。左上图:使用长工作距离物镜的实验方法和CA1锥体神经元的双光子整体图像。右上图:传统的双光子成像与双光子STED成像的比较,显示了总体上更高的棘突密度和更详细的形态,特别是在轴和棘突中。空的箭头标志着常规双光子成像不能显示的棘突,而填充的箭头表示双光子STED报告的棘突数量更多、形态更复杂。底部图像:在海马CA1区基底树突的一个选定区域内,连续几天(第0天、第2天和第4天)成像的树突棘周转。树突棘被连续编号。AB=接近树突的轴突(缩回的棘突用红色标记;新的棘突用绿色标记)。转载自原文参考文献 273。此外,sptPALM揭示了富集在突触棘的突触后激酶CaMKII的空间和动力学亚群,该激酶介导钙依赖性可塑性机制。这些动力学似乎由棘肌动蛋白调节,因为Latrunculin A导致棘内CaMKII扩散显著改变。在PSD内的棘头,一个密集的蛋白质复合物含有不同的突触后支架蛋白,如PSD-95、homer1和shank3,它们排列在大小为∼80纳米的亚突触域中。根据不同的突触类型,PSD-95被动态组织为单个单元或多个纳米簇的形式。STED显微镜揭示了突触后支架蛋白负责将离子受体锚定到突触后膜上,SMLM观察到的活体原代神经元也是一样。在这里,活细胞单分子成像结合定量分析揭示了含有GluA2的AMPA-Rs(优先聚集在突触下的PSD-95簇中)的稳态调节。而PSD-95的uPAINT成像和AMPA-Rs的spt PALM报告在70 nm大小的PSD-95纳米域内平均聚集了20个AMPA-Rs,进一步证实了上面提到的这个发现。AMPA-Rs形成纳米颗粒,并能在几分钟内动态改变其大小和形状。与突触可塑性匹配的是:动态变化是通过突触内和突触外隔室之间的AMPA-Rs在时间维度交换,通过横向扩散来实现的。这些过程通过以微球标记抗体为靶点的内源性受体的单分子追踪实验得到证实。受体运动的类型被认为是布朗扩散,与突触后元件发生短暂的、低亲和力的相互作用。单分子追踪实验中使用Atto 647N修饰的抗体揭示了谷氨酸诱导的脱敏AMPA-Rs的侧向扩散增加导致的短期可塑性。AMPA-Rs的侧向扩散也与突触的短时程增强和长时程增强(分别为STP和LTP)有关。例如,已经证明,为了从突触抑制中恢复,脱敏受体通过侧向扩散被功能受体替换。此外,追踪实验表明,在CaMKII激活诱导LTP后,AMPA-Rs扩散到突触部位。这一过程由钙浓度升高触发,它导致CaMKII介导的stargazin(它与PSD-95一起能够调节AMPA-R的迁移率)磷酸化。进一步的研究报道,AMPA-Rs的交联导致膜上受体制动,它阻止了成功的LTP诱导。这一机制也可能导致由AMPA的致病性抗体介导的自身免疫性CNS疾病的病理生理学。与NMDA-R和mGluR5代谢受体的GluN1亚单位相比,AMPA-Rs的纳米级结构以不同的簇大小为特征。令人惊讶的是,突触前mGluR5受体表现出更均匀的分布,没有聚集行为。通过一种新的基于敲入的基因组编辑方法观察到,代表NMDA-R总库的内源性GluN1亚单位受体被证明聚集在一个由单个受体包围的主要单簇中。在关注NMDA-R细分的NR2A和NR2B亚型时,SMLM表明,在突触发育过程中,这些亚型被分割成纳米结构域,并根据其突触比率进行重塑。关于谷氨酸受体的活动性,单分子追踪实验揭示,神经元活动优先影响AMPA-R的活动性,而NMDA-R的活动是由蛋白激酶C活动触发的,而不是由钾升高触发的。此外,dSTORM成像表明,不同的NR2亚单位定位于不同的纳米结构域,这些纳米结构域在神经元发育过程中表现出灵活性。根据NR2A和NR2B的纳米结构,LTP的表达可以双向调节。kainate受体的单分子追踪实验也表明,突触捕获紧随着突触活性增加后发生。这里,突触激活导致的kainate受体与突触β-连环蛋白/N-钙粘蛋白复合物结合,形成短期可塑性。作为抑制性突触的对应物,gephyrin是将GABAA(GABA-a R)或甘氨酸受体(GlyR)并入突触后膜所必需的关键锚定分子。通过对突触中gephyrin分子的PALM/dSTORM成像发现:抑制性PSD(iPSD)体积为0.01至0.1μm3,并且每个iPSD中有200−250个gephyrin分子。单分子成像进一步揭示了gephyrin分子与受体结合位点的化学计量比约为1:1.96。类似于兴奋性突触,抑制性PSD(IPSD)根据突触活动动态调节其大小。通过NMDA-R激活形成的抑制性突触LTP加剧突触gephyrin积累,从而以CaMKII依赖的方式增加GABA-AR聚集,从而诱导GABA能突触后电流的增强。相反,抑制gephyrin向突触区的募集导致GABA-AR迁移率降低,并阻止iLTP的诱导。iLTP诱导后,gephyrin片段化为纳米结构域。gephyrin的重组降低了抑制性突触后电流的振幅变异性,证明了GABA-AR准确定位对于iLTP的真正表达非常重要。有趣的是,单粒子追踪显示,脱敏的GABA-AR甚至可以通过侧向扩散在并列的GABA能突触之间交换,为控制GABA能电流提供了另一种机制。此外,为了阐明多巴胺能突触的超微结构布局,dSTORM成像将多巴胺转运体映射到胆固醇依赖性纳米结构域,从而为更好地理解多巴胺能神经传递的病理生理过程奠定基础。5.4.亚突触结构域中的跨突触排列早期电生理学实验中已经发现,突触强度取决于突触前融合位点和突触后受体组织之间的空间关系,突触释放由释放位点的数量,突触小泡的释放概率,以及受体提供的突触后基本反应来决定。首先观测到的亚结构域的跨突触组织是突触粘附分子SynCAM 1位于边缘,EphB2位于PSD的中央。SynCam1在PSD中形成突触下云,可被长期抑郁症模式重塑。SMLM观察链霉亲和素的新单体变体(设计用于减少突触区域的交联和空间位阻),表明跨突触伙伴神经肽原1和神经纤维素1ß在突触处扩散受阻,形成相反的簇。这项研究还表明,另一种粘附分子LRRTM2的流动性不如神经肽1,并形成更密集、更稳定的簇。最近揭示了兴奋性突触上活性区的细胞基质和突触后受体支架的跨突触排列,它与提供高保真突触传递的靶向神经递质释放有关。在这里,释放位点定位是通过一种基于融合到突触囊泡蛋白Vglut1的pHluorin标记和RIM1/2纳米簇的超分辨检测的新方法实现的。多色3D定位显微镜显示RIM1/2和突触后PSD-95形成相反的纳米簇。LTP诱导导致PSD-95密度断裂增加,同时增强了纳米柱的排列,而LTD导致突触后柱的紊乱。突触前和突触后关键分子的这种纳米级排列主要由于neuroligin 1。此外,在应用STED显微镜的实时成像实验中,已经报道了树突棘体积增加和排列的纳米模块数量之间的紧密相关性。还报道了抑制性突触的亚突触结构域的纳米级排列。在这里,STED和SIM阐明了gephyrin和GABA-AR突触前亚区域的紧密联系。此外,突触后GABA-A 受体云显示与突触前边缘结构域结合(图11)。在小鼠神经肌肉连接处,带连接褶开口的突触后乙酰胆碱受体和突触前活动区的排列已通过应用SIM成像可视化。图11. 抑制性突触上的突触亚结构域。突触前的RIM元素与突触后的gephyrin支架分子以及抑制性突触的GABA-A R的突触下结构域的排列。PSD的体积和突触下域的数量随着活动相关的突触大小的变化而变化。转载自原文参考文献302。5.5. 三联突触星形胶质细胞是神经传递的基本调节者,神经元突触周围突触前星形细胞突起(PAPs)的吞噬产生了三联突触这一术语。PAPs能够通过传递调节分子来改变和控制突触的传递。通过dSTORM重建星形细胞突起,可以通过标记胶质酸性纤维蛋白(GFAP)和谷氨酰胺合成酶和S100b的成像来实现星形细胞的纳米级可视化。最近的一份报告应用ExM来观察脑片中突触周围的星形胶质细胞谷氨酸转运体显示,在与这些棘附近的GLT-1水平较高有关的较大的神经元树突棘中,谷氨酸的摄取效率降低(图12)。图12. 海马大脑切片中CA 1锥体神经元周围的星形细胞突起。锥体神经元的树突在Thy1-YFP小鼠系标记(绿色);星形胶质细胞则是在海马脑片上的GLT-1免疫染色显示(红色)。蓝色信号代表树突区和星形细胞突起的共同定位。更高的放大率插图见右图。左下:大棘和小棘的分类。底部中间和右侧:GLT-1和神经元YFP的共定位像素的量化。请注意右图树突棘体积归一化后的变化;红点表示平均数和SEM,p = 0.0220 (绝对GLT-1覆盖率),p = 0.00223(相对GLT-1覆盖率)。转载自原文参考文献307。EM和STORM发现,PAPs也配备了局部翻译位点,以避免星形细胞体细胞中合成的蛋白质的长距离运输路线。最近在器官型切片中进行的3D STED显微镜研究揭示了星形细胞钙信号的结构前提。在星形细胞内检测到了海绵状结构,它包含了接近突触部位的节点和轴。钙离子瞬变的共聚焦成像与星形细胞结构的STED显微镜相结合,显示自发的钙离子瞬变紧密地映射到这些结点。因此,这些结点被认为是类似于树突棘的空间分隔作用。胶质传导物质的外渗需要提供胶质囊泡。通过将电容测量与葡聚糖摄取后星形胶质细胞内的囊泡的SIM图像相关联,发现了外吞和内吞之间的Dynamin依赖性膜中间物。通过STED显微镜和SIM分析单个胶质小泡的特征,在星形胶质细胞中有两个小泡群,其大小和融合能力不同。Phluorin实验结合SIM确定星形胶质细胞囊泡上Syb2分子的拷贝数为25∼。此外,应用STED和TIRF显微镜对培养的星形胶质细胞中的VAMP3阳性囊泡进行了单囊水平的分析。测量结果显示VAMP3覆盖的囊泡大小约为80纳米,并提供证据表明这些囊泡参与了钙依赖性的囊泡循环。SIM成像还可以发现,突触蛋白中一种已知的参与神经元外排的v-SNARE蛋白,也普遍存在并组织在单个星形胶质细胞的囊泡上,以实现高效的外排。星形胶质细胞还通过回收proBDNF到BDNF参与促进兴奋性LTP。这里,SIM成像显示,proBDNF在体细胞区域位于囊泡大小的集群中,而沿星形胶质细胞末梢的点状模式占主导地位,以扩大BDNF对记忆的作用。为了最大限度地减少激发光的散射,通过应用被动CLARITY进行组织透明化和多光子显微镜,改善了组织深处的星形细胞成像。通过使用SiR-actin和SiR-tublulin探针的STED显微镜和原子力显微镜(AFM)的相关方法来测量膜的拓扑结构和硬度,将星形细胞的细胞骨架和膜的生物物理特性联系起来。(未完待续)本文由超高显微技术应用工程师郭连峰、黄梓彤编译(受篇幅限制,未将参考文献列出)相关阅读:超高分辨率显微技术在神经科学中的应用(一)超高分辨率显微技术在神经科学中的应用(二)
  • 升级版DGB-402A型便携式余氯/总氯测定仪——轻松搞定医疗废水中的余氯检测
    面对来势汹汹的奥密克戎病毒,涉疫重点场所废水消毒是重中之重,要严格按照要求做好涉疫重点场所废水消毒,充分考虑不同疫情形势下涉疫废水处置方式,确保在极端情况下涉疫废水得到有效处理,余氯含量保持在6.5-10mg/L之间。但是过量加入消毒剂会影响水环境并破坏城镇污水处理系统,面对治疗和防护过程中源源不断产生的医疗废水,如何及时、有序、高效、无害化的检测及处理? 序号项目详情1依据新型冠状病毒污染的医疗污水应急处理技术方案(试行)2场所接收肺炎患者或疑似患者诊疗的定点医疗机构(医院、卫生院等)以及相关单位3消毒剂液氯、二氧化氯、氯酸钠、漂白粉或漂白精4要求有效氯投加量为50mg/L:消毒接触池的接触时间≥1.5小时,余氯量大于6.5mg/L(以游离氯计)有效氯投加量为80mg/L:接触时间为1.0小时的,余氯大于10mg/L(以游离氯计) “雷磁”2022年新上市的升级版DGB-402A型便携式余氯/总氯测定仪,采用DPD法测量原理,内置锂电池续航能力强,内置校准曲线,一键校零,一键完成测量,标配手提箱和配套检测试剂。与旧版相比,简单易用,极大地方便现场操作人员的工作,已经在一线生态环境检测机构和医疗机构得到应用。 型号名称升级版DGB-402A型便携式余氯/总氯测定仪旧版DGB-402F便携式余氯/总氯测定仪产品照片基本误差≤±0.03 mg/L 或 ±5%≤1mg/L:±0.05 mg/L;>1mg/L:±5%重复性≤1%≤2.5%供电内置锂电池5号碱性电池*4尺寸/重量80*190*60mm,0.35kg85*230*50mm,0.4kg比色管比色瓶,φ25*60(具有2/5/10ml刻度线及定位标志)16mm 直径比色管,5只,φ16*100mm防护箱310*245*110 mm470×350×130 mm测试过程:1. 开机后等待约30秒,让光源稳定下来。2. 用水样清洗比色瓶三次。3. 向比色瓶中加入10mL水样,将比色瓶放入仪器中。按“□”键进行清零。若水样中余氯或总氯浓度超过仪器量程,比色瓶中自带2mL、5mL、10mL刻度,则取适当水样,用无氯水稀释至10mL进行显色。最终水样浓度将仪器测量浓度乘以稀释倍数即可。4. 取出比色瓶,加入试剂包(测量余氯和总氯需加入相对应的试剂包),盖好瓶盖,摇晃比色瓶使显色剂溶解。上下颠倒比色瓶,消除气泡后放入仪器。按“√”键开始测量,约几秒后直接读取测试结果。5. 测试完的比色瓶应立即用纯水清洗。 疫情期间,废水检测的一线检测人员工作人员,在取样和检测过程中一定要做好防疫防护,检测完成后也需要对检测仪器及配套配件进行消杀,确保安全。
  • 2018年上海药物所吴蓓丽连发3篇高水平文章(总影响因子90多)为靶向NPY受体的药物发现提供新思路
    p   2018年5月28日, strong span style=" color: rgb(31, 73, 125) " 中科院上海药物研究所吴蓓丽课题组与中科院生物物理研究所的研究人员合作在Nature Structural & amp Molecular Biology上在线发表了题为“Structural basis for signal recognition and transduction by platelet-activating-factor receptor”的研究论文。 /span /strong 这是继2018年1月5日吴蓓丽研究组在Nature报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构和2018年4月19日在Nature发表题为“Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor”的研究论文, strong span style=" color: rgb(31, 73, 125) " 报告了2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构 /span /strong 。并且首次,确定其N端与受体相互作用。对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现的又一重磅研究成果。 /p p    strong span style=" color: rgb(31, 73, 125) " 1Nature子刊:血小板活化因子受体识别和转导信号的结构基础 /span /strong /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/bf8ea427-658e-4ba7-a8be-0ce3466f51d9.jpg" / /p p   血小板活化因子受体(PAFR)对血小板活化因子(PAF)有反应,PAF是细胞间通讯的磷脂介质,表现出不同的生理效应。 PAFR被认为是治疗哮喘,炎症和心血管疾病的重要药物靶标。在这里,研究人员报告了分别与拮抗剂SR 27417和反向活化剂ABT-491在2.8Å 和2.9Å 分辨率下复合的人PAFR的晶体结构。由PAF的分子对接支持的结构提供对PAFR的信号识别机制的见解。 PAFR-SR 27417结构揭示了一种不寻常的构象,显示螺旋II和IV的细胞内尖端分别向外移动13Å 和4Å ,螺旋VIII采用向内构象。 PAFR结构与单分子FRET和基于细胞的功能测定相结合,表明螺旋束中的构象变化是配体依赖性的,并且在PAFR激活中起关键作用,因此极大地扩展了G蛋白偶联信号的知识受体。 /p p   原文链接:https://www.nature.com/articles/s41594-018-0068-y /p p    strong span style=" color: rgb(31, 73, 125) " 2Nature:2018年第一弹,中科院药物所吴蓓丽等研究组揭示GPCR复合物结构(糖原受体) /span /strong /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/89bf1c1d-b8bb-4254-8306-136cbe73dc94.jpg" / /p p    strong span style=" color: rgb(31, 73, 125) " 吴蓓丽研究组报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构。 /span /strong 该结构提供了GCGR与肽配体之间相互作用的分子细节。吴蓓丽研究组进一步提出了GCGR激活的双结合位点触发模型,其需要茎,第一细胞外环和TMD的构象变化,这扩展了我们对先前建立的B类GPCR的双结构域肽结合模型的理解。 /p p   近日,中国科学院上海药物研究所在B型G蛋白偶联受体(G protein-coupled receptor, GPCR)结构与功能研究方面取得又一项重要进展: strong span style=" color: rgb(31, 73, 125) " 首次测定了胰高血糖素受体(Glucagon receptor, GCGR)全长蛋白与多肽配体复合物的三维结构,揭示了该受体对细胞信号分子的特异性识别及其活化调控机制。 /span /strong 这项成果有助于深入理解B型GPCR发挥生理效应的结构生物学基础,加快2型糖尿病治疗新药的开发。相关研究论文于北京时间2018年1月4日在国际顶级学术期刊《自然》(Nature)上发表,通讯作者为吴蓓丽研究员和赵强研究员。 /p p   GPCR是人体内最大的膜受体蛋白家族,在细胞信号转导中发挥重要作用。GPCR与人体疾病关系密切,目前有40%以上的上市药物以GPCR为靶点。根据其相似性,GPCR可分为A、B、C和F等四种类型。B型GPCR包括GCGR等多种重要的受体蛋白,识别并结合多肽类激素,对于维持体内激素平衡至关重要。这类受体包含胞外结构域和跨膜结构域,两者共同参与识别细胞信号。由于获得稳定和完整的B型GPCR蛋白(尤其是B型GPCR与多肽配体结合的复合物)难度极大,其结构研究极具挑战性。 /p p   GCGR参与调节体内血糖稳态,是治疗2型糖尿病药物的重要靶点,其结构信息的缺失不仅严重制约了对该受体信号识别和转导机制的认识,也极大地影响了靶向GCGR的药物研发?目前尚无上市药物。2017年,由中国科学院上海药物研究所吴蓓丽、王明伟和蒋华良分别领衔的三个研究组合作解析了全长GCGR蛋白同时与一种小分子变构调节剂(NNC0640)和拮抗性抗体(mAb1)抗原结合片段结合的复合物晶体结构,首次在较高分辨率水平为人们呈现了全长B型GPCR蛋白的三维结构,并揭示该受体不同结构域对其活化的协作调控机制,迈出了阐明B型GPCR信号转导机制的关键一步。 /p p   尔后, strong span style=" color: rgb(31, 73, 125) " 中国科学院上海药物研究所的相关科研团队再次联合攻关,成功解析了全长GCGR与胰高血糖素类似物NNC1702结合的复合物晶体结构,从而揭示了B型GPCR与多肽配体结合的精细模式。 /span /strong 该项目负责人吴蓓丽研究员表示:“这项成果是我们针对B型GPCR开展结构与功能研究的又一重要进展。GCGR与多肽配体相互作用模式的阐明不仅有助于深入理解B型GPCR对细胞信号分子的识别机制,并且为靶向GCGR的药物设计提供了迄今为止精度最高的结构模版,将在很大程度上促进治疗2型糖尿病的新药的研发”。 /p p   该团队成员在以往的研究中发现,GCGR连接胞外结构域和跨膜结构域的肽段通过与受体蛋白其他区域的相互作用在受体活化调控中扮演关键角色。分析GCGR与多肽配体NNC1702结合的复合物结构,并与以往解析的全长GCGR结构进行比较,他们进一步发现该连接肽段在受体结合多肽配体时发生了显著的构象变化,其二级结构由β折叠转变为α螺旋,并伴随结构的迁移,使受体的两个结构域之间的相对取向发生了巨大变化,从而促进受体与多肽配体的紧密结合,导致受体激活。此外,该连接肽通过与多肽配体中段区域的相互作用对受体跨膜结构域的构象进行精细调节,进而调控受体活化。该论文的共同通讯作者赵强研究员说:“这一发现着实令人惊叹,虽然只含12个氨基酸,但这个连接肽却发挥着如此重要的作用,这在过去的GPCR结构研究中从未被发现过,使我们对B型GPCR的信号调控机制有了更为深入的认识”。 /p p   基于GCGR与NNC1702结合的复合物结构,该团队还运用受体?配体竞争结合、计算机模拟和双电子共振等多种技术手段开展了一系列功能性研究,阐明了GCGR在不同功能状态下构象的动态变化,并对受体活化的调控机制进行了深入的探究。这项研究得到上海药物研究所、复旦大学和上海科技大学等多个研究组的大力支持。项目的主要合作者之一、上海药物研究所所长蒋华良院士强调:“这不仅是上海药物所GPCR研究团队取得的又一项重大研究成果,也标志着一个GPCR研究高地已在上海科创中心建设的核心区——张江高科技园区崛起”。 /p p   研究论文的第一作者是研究生张浩楠,该项目的主要合作者还有中国科学院上海药物研究所王明伟研究员、杨德华研究员,上海科技大学iHuman研究所Raymond Stevens教授,丹麦诺和诺德公司Steffen Reedtz-Runge博士,加拿大多伦多大学Oliver Ernst教授,美国GPCR研究联盟Michael Hanson博士,郑州大学杨琳琳博士以及华东师范大学阳怀宇教授等。中国科学院、国家自然科学基金委员会、上海市科学与技术发展基金和上海市教育委员会等部门资助了这项研究。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/666c231c-94ff-404e-b55a-21bdda1b803e.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(31, 73, 125) " 全长GCGR结构示意图 /span /strong :GCGR参与调节体内血糖稳态,是治疗2型糖尿病药物的重要靶点。 /p p style=" text-align: center " 左图为全长GCGR蛋白与小分子变构调节剂NNC0640以及拮抗性抗体mAb1结合的复合物晶体结构 /p p style=" text-align: center " 右图为全长GCGR蛋白与多肽配体NNC1702结合的复合物晶体结构。 /p p style=" text-align: center " 两个结构以飘带图和表面图表示,GCGR的跨膜结构域为蓝色,胞外结构域为橙色,连接肽为绿色,第一个胞外环区为紫红色,NNC1702为红色(右图),NNC0640为黄色(左图),抗体mAb1为蓝绿色(左图)。细胞膜以灰色区域表示 /p p    strong span style=" color: rgb(31, 73, 125) " 3Nature:厉害了,2018年上海药物所吴蓓丽研究组再次发表重磅研究成果 /span /strong /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/b7ee28c2-3ed2-44b5-baa2-ac490b0f1a3f.jpg" / /p p   2018年4月19日,上海药物所吴蓓丽研究组,德国雷根斯堡大学Keller研究组,莱比锡大学Beck-Sickinger研究组合作在Nature发表题为 strong span style=" color: rgb(31, 73, 125) " “Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor”的研究论文 /span /strong ,该论文报告 span style=" color: rgb(31, 73, 125) " strong 分别以2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构 /strong /span 。结合诱变研究的结构揭示了Y1R与几种结构不同的拮抗剂的结合模式以及配体选择性的决定因素。 Y1R结构和内源性激动剂NPY的分子对接,以及核磁共振,光交联和功能研究,为激动剂的结合行为提供了深入的见解,并且首次,根据上海药物所吴蓓丽等研究组的知识,确定其N端与受体相互作用。 strong span style=" color: rgb(31, 73, 125) " 对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现。 /span /strong 这是继2018年1月5日吴蓓丽研究组在Nature报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构的又一重磅研究成果。 /p p   神经肽Y(NPY)受体属于G蛋白偶联受体超家族,在食物摄入,焦虑和癌症生物学中具有重要作用。 NPY-Y受体系统已经成为具有三种肽配体(NPY,肽YY和胰多肽)与大多数哺乳动物中的四种受体结合的最复杂网络之一,即具有不同亲和力的Y1,Y2,Y4和Y5受体和选择性。 NPY是最强大的食物摄入兴奋剂,这种作用主要由Y1受体(Y1R)介导。许多肽和小分子化合物已被定性为Y1R拮抗剂,并且在治疗肥胖,肿瘤和骨丢失方面显示出临床潜力。然而,它们的临床使用受低效力和选择性,脑穿透能力差或口服生物利用度不足妨碍。 /p p   在这里,上海药物所吴蓓丽等研究组报告分别以2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构。结合诱变研究的结构揭示了Y1R与几种结构不同的拮抗剂的结合模式以及配体选择性的决定因素。 Y1R结构和内源性激动剂NPY的分子对接,以及核磁共振,光交联和功能研究,为激动剂的结合行为提供了深入的见解,并且首次,根据上海药物所吴蓓丽等研究组的知识,确定其N端与受体相互作用。 strong span style=" color: rgb(31, 73, 125) " 对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现。 /span /strong /p
  • 三部委联手提升环境监管能力 2年投400亿
    环境保护部、国家发展改革委、财政部近日联合印发《国家环境监管能力建设&ldquo 十二五&rdquo 规划》,以总量减排、质量改善、风险防范、基础完善为着力点,开展能力建设,切实加强环境监管能力。《规划》将实施基础、保障、人才等三大工程,总投资400亿元。   《规划》提出,环境监管能力建设的目标包括:污染源与总量减排监管能力全面提高、环境质量监测与评估考核能力显著提升、环境预警与应急能力系统加强、环境综合监督管理基础设施基本完善等4个方面。   《规划》明确,到2015年,全国县级环境监察机构装备达标率达到85%,地市级达到90%,省级达到95%。机动车、污染源监管、科技支撑和统计能力显著增强。全国县级环境监测站基本设备配置达标率达到90%,地市级站基本实现标准化,省级站全部达标。中央本级环境监测能力显著加强。重金属、危险废物、危险化学品、放射性物质等污染事件防范水平显著提高。地市级环境监测站具备较强的应急监测能力,省级站基本具备预警监测能力。地市级环境应急管理机构二级达标率达70%以上,省级机构二级达标率达到100%。国家、省级辐射环境监测能力达到标准化要求,初步具备相对独立、较为完整的安全分析评价、校核计算和实验验证能力,核与辐射安全监管能力与核事业发展同步提高。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制