当前位置: 仪器信息网 > 行业主题 > >

高温剪切仪

仪器信息网高温剪切仪专题为您提供2024年最新高温剪切仪价格报价、厂家品牌的相关信息, 包括高温剪切仪参数、型号等,不管是国产,还是进口品牌的高温剪切仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温剪切仪相关的耗材配件、试剂标物,还有高温剪切仪相关的最新资讯、资料,以及高温剪切仪相关的解决方案。

高温剪切仪相关的资讯

  • Granutools发布粉体剪切性能分析仪 Granudrum新品
    说明GranuDrum是一种基于转鼓原理的粉体流动性自动测量方法。实验时,粉体样品将带有透明侧壁的水平圆筒的一半填满。圆筒绕轴旋转的角速度从每分钟2转到每分钟60转。运动到每一个角速度时,CCD相机都会拍很多快照。然后,对于每个转速,从平均界面位置计算出流动角度(一些文献中也称为“静止的动态角度”),从界面波动量计算出动态内聚指数。流动角值越低,则流动性越好。原理流动角度受一系列参数的影响:颗粒间的摩擦、颗粒的形状、颗粒间的内聚力(范德瓦尔斯力、静电力和毛细管力)。动态粘聚指数只与颗粒间的粘聚力有关。粘性粉体趋向于间歇流动,而非粘性粉体则为规则流动。因此,接近于零的动态粘性指数对应于非粘性粉体。当粉体的粘结性增大时,粘结指数也随之增大。因此,粘结指数也可以量化粉体的展布性。优势测量简单、快速、直观、易于解释。圆筒的填充和清洗简单快捷。在安全转移到仪器之前,圆筒可以放在手套箱、防尘罩或封闭的环境中进行操作。通过软件的直观性,平均和方差结果都很容易获得,并允许结果的比较。自动收集和存储所有的图片和数据,以便后期处理。数据传输和自动生成报告也非常方便。标准操作程序是可记录,增加了测量的重复性。圆筒具有化学涂层,可以处理各种规格的粉粉体。独特性测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。简单明了的数据解释和物理原理。使用波动量来量化粉体的粘结力。在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。理想的设计保证了稳定性和长使用寿命。圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。应用在具有广泛的应用,需要对粉体流动性进行分析。适用于高剪切、低压力的工况下,如增材制造、铺展性、制药行业涉及的气力输送等。在增材制造的铺粉过程中,可用于量化粉体铺展能力和优化铺粉速度 (由于其原有的粘性指数分析)。气力输送过程中粉体流动特性的预测。可选附件额外的测量圆筒,满足小样品量测量 (10、20、30和40ml),特别适用于制药和贵金属。适用于高温工况的测量圆筒,可使用高达200℃校准套件。离线分析软件授权许可:一台计算机运行测量,同时可使用另一台计算机分析数据,从而提高实验和数据分析效率。GRANUDRUM 参数图 1: 增材制造中的粉体铺展性研究图 2: 气动传输工艺优化创新点:1.测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。 2.简单明了的数据解释和物理原理。 3.使用波动量来量化粉体的粘结力。 4.在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。 5.高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。 6.理想的设计保证了稳定性和长使用寿命。 7.圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。 粉体剪切性能分析仪 Granudrum
  • 全自动核酸剪切仪新品Megaruptor
    Diagenode公司推出全自动核酸剪切仪新品Megaruptor Diagenode公司推出全自动核酸剪切仪新品Megaruptor 比利时 Diagenode公司自成立以来,一如既往地服务表观遗传学研究领域,为表观遗传学科学工作者们提供卓越的自动化设备和优质的抗体等试剂,完善了该领域的实验流程同时提高了实验效率,研发的Bioruptor系列非接触式超声破碎设备,卓有成效地高重复性地解决了染色质片段化和核酸片段化,为chip(染色质免疫共沉淀)和二代测序等下游实验完美对接。在第三代测序仪器出现后,核酸大片段测序得以实现,全自动核酸剪切仪Megaruptor就是用于核酸大片段化的三代测序。Diagenode 全自动核酸剪切仪 MegaruptorMegaruptor的完美设计,使其具有简单化、自动化、高重复性,可以获得2 kb-75 kb长度的DNA片段。剪切性能卓越,不受DNA样品来源、集中度、温度、盐浓度的限制,完全符合了科研人员的实验要求。同时,在无人员值守的情况下,友好的软件系统可以允许两个样品相继被片段化处理,不存在交叉污染。科研人员只需要简洁有效地设定好参数,仪器便可以自动化地进行处理获得目的片段。仪器特点:设定目的片段长度(2kb-75kb),快捷方便地获得集中于目的长度的片段分布获得高质量文库,用于Illumina?, Ion Torrent?, 和 PacBio? 平台自动多端口阀,配置五通道的洗涤平台全程有软件控制,洗涤、剪切自动一体化,彻底解决管路堵塞问题一次可剪切两个样本,剪切参数可完全独立全程电脑程序自动操控,操作界面友善不须定期校正,仪器维护容易绝佳的结果重复性与精准的剪切范围技术参数1. 自动多端口阀,配置了5信道的洗涤平台用于洗涤DNA2. 全程由软件控制:洗涤、切割自动一体化。绝无有卡管问题3. 可产生完全随机、均匀、完整具有代表性的目标大小DNA片段4. 切割DNA片段大小:2-10kb 组件;13Kb-75kb组件, 剪切范围最宽广5. 样品DNA浓度:1-50ng/ul, 最适浓度为20ng/ul6. 样品DNA原始长度:对切割片段大小无影响7. 样品体积:50-400ul8. 一次可上两个样本, 剪切参数可完全独立9. 处理时间:每个样品10-20分钟, 包含样本处理与自动管线清洗时间10.计算机(笔记本)为标准配备及操控软件11.试剂:优化好, 客户可自行配置上海博谊生物科技有限公司是比利时Diagenode公司全自动核酸剪切仪 Megaruptor的代理商,欲知更多产品详情,请联系我们。 发布者:上海博谊生物科技有限公司联系电话:021-51691651E-mail:18616023651@163.com
  • 模拟性质:聚环氧乙烷中的剪切诱导相变
    多年来,蜘蛛丝一直是仿生研究的主题。众所周知,它具有令人难以置信的拉伸强度和生物相容性。因此,基于各种材料的人工模拟例子数不胜数。研究较少但却同样有趣的是丝纤维的形成机制。蛛丝是在蛛丝导管对储存在蜘蛛体内的液体蛛丝的剪切力作用下形成的固体纤维。这些剪切力促使晶核的形成,材料在晶核上进一步结晶。有趣的是,相应的合成过程需要的活化能要比蛛丝形成的活化能高得多。谢菲尔德大学的G.J. Dunderdale等人现在已经成功地开发了一种节能程序,通过诱发剪切应力来诱导聚环氧乙烷水溶液(PEO)的结晶。 结晶的形成是通过加热溶液来获得均匀样品,然后通过冷却和剪切溶液来进行关键的具体工作。在小角和广角X射线散射(SAXS和WAXS)原位模式下收集到的图谱,以及当溶液被Linkam CSS 450剪切池剪切时,清楚地显示了结晶的开始。这不仅体现在散射强度的稳步增加,而且Herman定向函数P2(见上图2D SAXS图谱和演变的图像)的上升也表明了样品的方向。同时采集的2D WAXS图谱也清楚地显示了peo72螺旋结构形成的反射特性。 这些结果与剪切诱导偏振光成像(SIPLI)非常吻合,在SIPLI中Maltese Cross图谱的形成表明了结晶的开始。通过这种技术的结合,研究人员已经清楚地证明了在剪切过程中模拟聚合物水溶液到固体材料相变的能力。
  • 施一公组首次报道人源剪切体原子分辨率结构
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在Science杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。5月11日,施一公教授领导的团队又在Cell杂志上发表了题为“An Atomic Structure of the Human Spliceosome”的论文,这是该研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。该论文的第一作者分别为张晓峰、闫创业和杭婧,施一公教授和闫创业博士为共同通讯作者。特别值得一提的是,这篇Cell论文从投稿到接收只用了11天。鉴于该成果的重要意义,BioArt特别邀请了著名的结构生物学家、清华大学生命科学学院杨茂君教授撰写了该篇特别评论文章,以飨读者。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/4bc262af-0d77-4cd2-9b46-7d997bd2ca4c.jpg" title=" 微信图片_20170512000929_副本.jpg" / /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span br/ /p p   5月11日,清华大学施一公教授研究组在《细胞》杂志发表研究文章,首次报道了人源剪切体C* complex的原子分辨率结构。施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在《科学》杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。这是施一公教授研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。 /p p   剪切体催化的前体mRNA剪切过程是生物体内最基础最关键的生命活动之一,是遗传信息从DNA传递给蛋白质的中心法则中关键的一环。在所有真核细胞中,基因表达分为三步进行,分别由RNA聚合酶 (RNA polymerase)、剪接体(Spliceosome)和核糖体 (Ribosome)执行。第一步简称转录(transcription),即储存在遗传物质DNA序列中的遗传信息通过RNA聚合酶的作用转变成前体信使RNA(pre-mRNA) 第二步简称剪接(splicing),即由多个内含子和外显子间隔形成的前体信使RNA通过剪接体的作用去除内含子、连接外显子,转变为成熟的信使RNA 第三步简称翻译(translation),即成熟的信使RNA通过核糖体的作用转变成蛋白质,从而行使生命活动的各种功能。描述这一过程的规律被称为分子生物学的中心法则,多个诺贝尔奖围绕此发现和阐述产生。其中,RNA聚合酶的结构解析获得2006年的诺贝尔化学奖,而核糖体的结构解析获得2009年的诺贝尔化学奖。 /p p   由于真核生物中的基因编码区中存在不翻译成蛋白质的序列(称为内含子),染色体DNA转录出来的前体mRNA(pre-mRNA)并不直接参与蛋白质翻译,而是需要先将其中的内含子片段去除,才能进入核糖体进行蛋白质合成。内含子的去除需要通过两步转酯反应来实现:首先,位于内含子序列中下游被称为分支点(branch point sequence)的序列中有一个高度保守的腺嘌呤核苷酸(A),其2’羟基亲核攻击内含子5’末端的鸟嘌呤(G),于是第一步反应发生,形成套索结构 然后,5’外显子末端暴露出的3’-OH向内含子3’末端的鸟嘌呤发起攻击,第二步反应发生,两个外显子连在一起。通过这两步反应,前体信使RNA中数量、长度不等的内含子被剔除,剩下的外显子按照特异顺序连接起来从而形成成熟的信使RNA(mRNA)(下图)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/8c47205d-f67a-471b-b897-662b42995cae.jpg" title=" 微信图片_20170512001013_副本.jpg" / /p p   这两步化学反应在细胞内是由庞大、复杂而动态的分子机器——剪接体催化完成的。对于每一个内含子来说,为了调控反应的各个基团在适当时机呈现合适的构象从而发挥其活性,剪接体各组分按照高度精确的顺序结合和解离,组装成一系列具有不同构象的分子机器,统称为剪接体。根据它们在RNA剪接过程中的生化性质,这些剪接体又被区分为E、A、B、Bact、B*、C、C*、P、ILS等若干状态。剪接体由五个小核核糖核蛋白(snRNP)、十九号复合物(Nineteen Complex,简称NTC)、十九号复合物相关蛋白(NTC Related)和一系列的辅助蛋白所构成,共涉及到100多个蛋白质和至少五条RNA分子。在剪接的过程中,剪接体以前体信使RNA分子为中心,按照高度精确的顺序进行逐步组装并发生大规模结构重组,使之得以完成复杂的剪接任务。剪接是真核细胞进行正常生命活动不可或缺的核心环节,因此具有重大的生物学意义,获取剪接体在组装、激活、催化反应过程中各个状态的结构是最基础也是最富挑战性的结构生物学难题之一。 /p p   此前,施一公教授研究组共报道了酵母来源的剪接反应中5个关键状态的剪接体复合物的高分辨率结构,分别是3.8埃的预组装复合物tri-snRNP、3.5埃的激活状态复合物Bact complex、3.4埃的第一步催化反应后复合物C complex、4.0埃的第二步催化激活状态下的C* complex以及3.6埃的内含子套索剪接体ILS complex。这5个酵母来源的高分辨率结构所代表的剪接体状态,基本覆盖了整个剪接通路中关键的催化步骤,提供了迄今为止最为清晰的剪接体不同工作状态下的结构信息,大大推动了RNA剪接研究领域的发展。而最新的这一篇《细胞》论文所报道的3.76埃第二步催化激活状态下的人源C* complex使我们第一次在原子分辨率上看到了人源剪切体的工作状态,并首次详细阐释了人源剪切体催化第二步转酯反应的功能机理。 /p p   人源C* complex与酵母来源C* complex在结构上有许多不同。与酿酒酵母来源的复合物结构相比,在这一原子分辨率人源复合物结构中额外鉴定出9个蛋白亚基(Aquarius、Brr2、PPIL1、PRKRIP1、U5-40K、以及EJC的4个蛋白亚基)。另外,第二步反应的关键因子Slu7和Prp17在人源复合物中更加清晰。相反的,酵母复合物中第二步反应的关键因子Prp18在人源复合物中缺失,反映了人和酵母在催化第二步反应过程中功能机理的细微差别。另一个重要的差别是酵母复合物中的Ecm2和Cwc2亚基被人源复合物中的RBM22亚基所取代,使得其周围的蛋白亚基重新排布(下图)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/f0ba68fc-ec88-43f2-b80b-2353dc5f37a3.jpg" title=" 微信图片_20170512001027_副本.jpg" / /p p   此次发表的关于人源剪切体复合物原子分辨率结构的研究承接之前酵母来源剪切体复合物的研究工作,在攻克剪切过程详细反应机理的道路上再进一步。施一公教授这一系列的研究工作具有极为重要的意义,是对中心法则的研究中最为复杂、最为关键的一环。自1993年RNA剪接的发现被授予诺贝尔生理及医学奖以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。剪切体一系列关键状态复合物高分辨率结构的解析,一步一步揭开了RNA剪接这一复杂生化过程神秘的面纱,可以说,这一系列研究工作是当今结构生物学领域里一项里程碑式的、有望获得诺贝尔奖的重量级工作。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/95c0871b-e076-40e5-8e71-19b0f0a22f55.jpg" title=" 微信图片_20170512001044_副本.jpg" / /p p style=" text-align: center " 图为Cell论文的通讯作者施一公教授和卓越中心创新学者闫创业博士 /p p style=" text-align: right " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 撰文丨杨茂君 (清华大学生命科学学院、结构生物学高精尖创新中心教授,“长江学者”特聘教授,国家“杰青”) /span /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 后记:到目前为止,闫创业博士已发表的53篇SCI论文中,其中在Nature、Science和Cell杂志上以第一作者(包含共同一作)或共同通讯作者身份已发表10篇研究型论文。自闫创业博士2005年进入清华化学系以来到如今成为清华结构生物学高精尖创新中心卓越学者总共已经快12年了。从施一公教授课题组的相继发表的这7篇有关剪接体结构的论文署名来看,闫创业博士是这7篇论文的第一作者(三篇)或共同第一作者(4篇),特别值得一提的是在这篇Cell文章中首次成为共同通讯作者。可以说,整个剪接体系列工作中,闫创业博士起到了中流砥柱般的作用,称得上当今结构生物学领域“夜空中最亮的星” /span 。 /p p br/ /p
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 胶黏剂拉伸剪切试验方法电子拉力拉伸试验机
    胶黏剂拉伸剪切试验方法电子拉力拉伸试验机:原理试样为单搭接结构,在试样的搭接面上施加纵向拉伸剪切力,测定试样能承受的最大负荷。搭接面上的平均剪应力为胶粘剂的金属对金属搭接的拉伸剪切强度,单位为 MPa。试样1)试验机:使用的试验机应使试样的破坏负荷在满标负荷的(15~85)%之间。试验机的力值示值误差不应大于1%。试验机应配备一副自动调心的试样夹持器,使力线与试样中心线保持一致。试验机应保证试样夹持器的移动速度在 (5±1) mm/min 内保持稳定。2)量具:测量试样搭接面长度和宽度的量具精度不低于 0.05 mm。3)夹具:胶接试样的夹具应能保证胶接的试样符合要求,在保证金属片不破坏的情况下,试样与试样夹持器也可用销、孔连接的方法,但不能用于仲裁试验。4)标准试样的搭接长度是(12.5±0.5)mm,金属片的厚度是 (2.0± 0.1 ) mm,试样的搭接长度或金属片的厚度不同对试验结果会有影响。5)试样数量不应少于 5 个,仲裁试验试样数量不应少于 10 个;对于高强度胶粘剂,测试时如出现金属材料屈服或破坏的情况,则可适当增加金属片厚度或减少搭接长度,两者中选择前者较好。测试时金属片所受的应力不要超过其屈服强度 σS ,金属片的厚度 δ可按式( 11-12)计算:δ=( Lτ) /σ S (11-12)式中:δ——金属片厚度;L——试样搭接长度;τ——胶粘剂拉伸剪切强度;σS ——金属材料屈服强度(MPa)。试样制备1)试样可用不带槽或带槽的平板制备,也可单片制备。2)胶接用的金属片表面应平整,不应有弯曲、翘曲、歪斜等变形。金属片应无毛刺,边缘保持直角。3)胶接时,金属片的表面处理、胶粘剂的配比、涂胶量、涂胶次数、晾置时间等胶接工艺以及胶粘剂的固化温度、压力、时间等均按胶粘剂的使用要求进行。4)制备试样都应使用夹具,以保证试样正确地搭接和精确地定位。5)切割已胶接的平板时,要防止试样过热,应尽量避免损伤胶接缝。试验条件试样的停放时间和试验环境应符合下列要求:1)试样制备后到试验的最短时间为 16 h,最长时间为 30 d。2)试验应在温度为( 23±2)℃ 、相对湿度为( 45~55)%的环境中进行。3)对仅有温度要求的测试,测试前试样在试验温度下停放时间不应少于 0.5 h;对有温度、湿度要求的测试,测试前试样在试验温度下停放时间一般不应少于 16 h。实验步骤1)用量具测量试样搭接面的长度和宽度,精确到 0.05 mm。2)把试样对称地夹在上下夹持器中,夹持处到搭接端的距离为( 50± 1)mm3)开动试验机,在 (5±1) mm/min 内,以稳定速度加载。记录试样剪切破坏的最大负荷,记录胶接破坏的类型(内聚破坏、粘附破坏、金属破坏)。
  • 力学所戴兰宏团队揭示非晶合金剪切带涌现的时空序列与临界行为
    非晶合金(又称金属玻璃)因具有一系列优异性能,在空天、国防、能源等领域显示出广阔应用前景。然而,非晶合金极易形成纳米尺度变形局部化剪切带,而剪切带快速扩展诱致的宏观脆性严重地限制了其走向广泛的工程应用。因此,非晶合金剪切带问题成为力学、物理与材料等相关领域共同关注的重要课题。本征上,非晶合金剪切带涌现是一类远离热力学平衡下时空多尺度耦合的非线性过程。空间上,固有的结构不均匀性会引起强烈的变形及动力学行为的梯度效应。时间上,涵盖原子振动、原子团簇协同重排、塑性流动等多个速率过程。这些事件均具有各自的特征时间和空间尺度,他们的关联耦合控制剪切带涌现,使变形高度集中在宽度或厚度为数十纳米的带状区域,并以近声速的模式快速扩展。与原子周期有序排列的晶态合金不同,原子长程拓扑无序堆垛的非晶合金变形内蕴三种高度耦合纠缠的原子尺度运动:剪切、体胀和旋转。这三种局域原子运动的强纠缠是非晶合金剪切带涌现精细物理图像尚未探明的关键瓶颈。近期,中科院力学所戴兰宏研究团队在该问题研究上取得新进展。基于连续介质力学理论框架,研究人员首先提出了一个同时考虑仿射和非仿射变形信息的两项梯度模型(Two-term gradient model, TTG模型),可以完整地描述无序固体介质的局部变形场,突破了目前广泛使用的单纯仿射或非仿射模型的局限。研究人员进一步完成了对剪切、体胀、旋转这三个高度纠缠的局域运动的解耦,并在原子尺度上定义了全新的局部剪切、体胀、旋转运动事件的定量描述符。为了表征这三类原子团簇运动,提出了剪切主导区(shear dominated zone, SDZ)、体胀主导区(dilatation dominated zone, DDZ)及旋转主导区(rotation dominated zone,RDZ)的概念和定量表征方法,克服了目前流行的剪切转变区(shear transformation zone, STZ)不能表征原子团簇旋转运动和定量描述体胀运动的不足。在此基础上,研究人员利用大规模分子动力学模拟,对非晶合金从均匀变形到局部化剪切带涌现全过程进行精细表征。通过追踪SDZ、DDZ及RDZ原子团簇运动演化时空序列,发现初始宏观均匀变形阶段剪切、体胀及旋转团簇运动事件呈现出类似“军队行动”式的步调协同一致行为,具体表现为SDZ、DDZ及RDZ在空间离散的“类液”软区随机同步激活。基于统计学的极值理论分析,研究人员发现在这个阶段,体胀局域运动事件较剪切和旋转事件的空间分布展现出更明显的非高斯长拖尾特征,表明体胀局域化流动(DDZ)起先导的主控作用。原子团簇通过体胀运动(DDZ)完成局部软化过程,随着变形加剧,这种体胀局域软化进一步激活其邻近硬区的旋转运动,进而逐渐打破了SDZ、DDZ和RDZ三者间同步激活,转变为SDZ、DDZ及RDZ的非均匀间隔分布。增强的RDZ运动又进一步加剧了SDZ和DDZ局域运动,进而诱发硬区团簇的软化。当软化程度达到临界时,硬区壁垒被打破,激活的SDZ、DDZ及RDZ相互贯穿形成剪切带。研究人员进一步基于逾渗理论,对SDZ、DDZ及RDZ原子团簇运动事件从初期均匀变形阶段的随机离散激活到变形局部化剪切带涌现时的群体贯穿演变全过程进行定量分析,发现剪切带涌现属于定向逾渗(directed percolation),并且呈现出临界幂律标度行为。本项工作提出的两项梯度(TTG)模型及三种原子团簇运动单元(SDZ、DDZ及RDZ)新概念为无序固体介质变形定量描述提供了基本工具,所揭示的剪切带涌现过程原子尺度精细图像及临界行为为深入认知非晶合金剪切带提供了新的线索。该研究成果近期以“Hidden spatiotemporal sequence in transition to shear band in amorphous solids”为题发表在Physical Review Research 4, 23220 (2022),第一作者为博士生杨增宇。该项研究工作得到了国家自然科学基金重大项目“无序合金的塑性流动与强韧化机理” 、基础科学中心项目“非线性力学的多尺度问题”、中科院B类战略性先导科技专项项目“复杂介质系统前沿与交叉力学”等资助。论文链接:doi:10.1103/PhysRevResearch.4.023220图1 非晶合金剪切带中的旋转(涡旋)、剪切和体胀运动事件图2 剪切-体胀事件与旋转事件的关联“破缺”,空间分布从同步激活转变为交替间隔分布图3 剪切带涌现前出现原子旋转团簇运动(RDZ)显著增强(图中白色气泡代表RDZ,也即原子运动的涡旋结构)图4 非晶合金剪切带涌现原子尺度演变过程示意图
  • 高分子表征技术专题——流变技术在高分子表征中的应用:如何正确地进行剪切流变测试
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20230《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304流变技术在高分子表征中的应用:如何正确地进行剪切流变测试刘双 1,2 ,曹晓 1,2 ,张嘉琪 1,2 ,韩迎春 1,2 ,赵欣悦 1,2 ,陈全 1,2 1.中国科学院机构长春应用化学研究所 高分子物理与化学国家重点实验室 长春 1300222.中国科学技术大学应用化学与工程学院 合肥 230026作者简介: 陈全,男,1981年生. 中国科学院长春应用化学研究所研究员. 本科和硕士毕业于上海交通大学,2011年在日本京都大学取得工学博士学位,之后赴美国宾州州立大学继续博士后深造. 于2015年回国成立独立课题组,同年当选中国流变学学会专业委员会委员;于2016年获美国TA公司授予的Distinguished Young Rheologist Award (2~3人/年),同年入选2016年中组部QR计划青年项目;于2017年获基金委优青项目资助;于2019年入选中国化学会高分子学科委员会委员,同年获得日本流变学会奖励赏(1~2人/年),目前担任《Nihon Reoroji Gakkaishi》(日本流变学会志)和《高分子学报》编委 通讯作者: 陈全, E-mail: qchen@ciac.ac.cn摘要: 流变学是高分子加工和应用的重要基础,流变学表征对于深入理解高分子流动行为非常重要,获取的流变参数可用于指导高分子加工. 本文首先总结了剪切流变测试中的基本假设:(1)设置的应变施加在样品上,(2)应力来源于样品自身的响应和(3)施加的流场为纯粹的剪切流场;之后具体阐述了这些假设失效的情形和所导致的常见的实验错误;最后,通过结合一些实验实例具体说明如何培养良好的测试习惯和获得可靠的测试结果.关键词: 流变学 / 剪切流场 / 剪切流变测试 目录1. 流场分类2. 剪切旋转流变仪概述2.1 测试原理2.2 测试模式3. 旋转流变仪测试中的常见问题3.1 测试过程的基本假设和常见问题概述3.1.1 输入(输出)应变为施加在样品上的应变3.1.2 流场为简单的剪切流场3.1.3 输入(输出)应力为样品的黏弹响应3.2 测试中常见问题I:仪器和夹具柔量3.3 测试中常见问题II:仪器和夹具惯量的影响3.4 测试中常见问题III:样品自身惯量的影响3.5 测试中常见问题IV:二次流的影响3.5.1 同轴圆筒夹具二次流边界条件3.5.2 锥板和平板夹具二次流边界条件3.6 测试中常见问题V:样品表面张力3.6.1 样品的各向对称性3.6.2 样品本身表面张力大小3.6.3 大分子聚集3.7 测试中常见问题VI: 测试习惯3.7.1 样品的制备:干燥和挥发问题3.7.2 确定样品的热稳定性3.7.3 样品体系是否达到平衡态3.7.4 夹具热膨胀对测试的影响3.7.5 夹具不平行和不同轴对测试的影响4. 结论与展望参考文献流变学是研究材料形变和流动(连续形变)的科学,其重要性已在学术界和工业界得到了广泛的认可. 流变仪是研究材料流变性能的仪器,利用流变仪进行流变测试已成为食品、化妆品、涂料、高分子材料等行业的重要表征和研究手段[1~8].本文从流变测试的角度,详细介绍了流场的分类和旋转流变仪测试的基本原理和测试技巧,重点阐述了剪切流变学测试中的基本假设和这些假设在特定的条件下失效的情况. 最后,通过结合具体的实验测试实例,详细地阐述了如何避免流变测试中的错误和不良测试习惯. 笔者希望本文能够对流变学测试人员有一定的帮助和启发,找到获得更可靠和准确的实验测试结果的有效途径.1. 流场分类高分子加工过程中的流场往往非常复杂,例如:在共混与挤出的工艺里,占主导的流场是剪切流场;在吹塑和纺丝等工艺里,占主导的流场是拉伸流场. 更多加工过程中,用到的流场是剪切与拉伸等流场的复合流场[9~12].在流变学测试中,为了得到更明确的测试结果,往往选择比较单一和纯粹的流场,如剪切或者单轴拉伸流场(此后简称“拉伸流场”). 流变仪的设计往往需要实现特定的流场,并表征材料在该特定流场下的响应. 虽然剪切流场和拉伸流场在高分子加工中同等重要,高分子流变学的测试研究却呈现了一边倒的局面:目前大量常用的商用流变仪,如应力和应变控制型的旋转流变仪、转矩流变仪、毛细管流变仪的设计基础都是针对剪切流场的(利用这些仪器仅可进行比较粗略的拉伸流变测试,例如在旋转流变仪的基础上添加如Sentmanat Extensional Rheometer在内的附件测量拉伸黏度[13]或者利用毛细管流变仪的入口效应来估算拉伸黏度.),而针对拉伸流场的拉伸流变仪则比较稀缺.剪切和拉伸流场自身的区别是造成以上局面的主要原因. 图1中分别展示了剪切和拉伸2种形变[14]. 施加剪切形变时(图1上),力位于样品顶部,力的方向与上表面平行,该应力会造成样品的剪切形变,而连续的剪切形变则称为剪切流动. 剪切流动的特点是,底部速度为0(不考虑滑移),顶部速度最大,速度梯度的方向与速度的方向垂直. 而施加拉伸形变时(图1下),力位于样品右侧,力的方向与右侧面垂直,该应力会造成样品拉伸形变. 同样,连续的拉伸形变称为拉伸流动. 拉伸流动的特点是,样品左侧固定,速度为0,右侧拉伸速度最大,因此速度梯度的方向与速度方向平行. 施加剪切流场时,剪切速率等于上表面的绝对速率除以两板间的距离. 在旋转流变仪中,使用匀速转动的锥板或者同轴圆筒即可实现单一的剪切流场. 然而,拉伸速率的大小等于右侧表面绝对速率除以样品的长度. 在拉伸过程中,样品越拉越长,因此右侧面的速度需要越来越大,方可实现稳定的拉伸流场. 假设t时刻样品的长度为L,则此时的拉伸速率等于[15]:图 1Figure 1. Illustration of two representative modes of deformation: the simple shear for which the direction of velocity gradient is perpendicular to that of velocity, and the uniaxial elongation for which the direction of velocity gradient is parallel to that of velocity. (Reprinted with permission from Ref.[14] Copyright (2012) Elsevier)将式(1)进行积分可以得到L(t)=L0exp(ε˙t),表明样品的长度正比于时间的幂律函数. 为了实现稳定的拉伸流场,实验中右侧面速度随时间呈指数增长,因此拉伸流场相较剪切流场更难以实现,这就是造成拉伸流变仪器较为稀缺的主要原因.有人要问,为什么需要测试2种典型流场,我们能从剪切实验的结果来推导其拉伸的行为吗?对于线性流变的行为,答案是肯定的. 即当体系位于平衡态附近,施加微弱的扰动时,拉伸黏度ηE,0与剪切黏度η0存在着简单的正比关系ηE,0=3η0=3∫0tG(t′)dt′,其中G(t)为线性剪切模量相对于时间的函数[16,17]. 该正比关系由Trouton在牛顿流体中发现,被称作Trouton比[18]. 然而,对于流场较强的非线性的流变测试,无法从剪切流变行为直接推导拉伸流变行为,或反之,从拉伸流变行为推导剪切流变行为,主要原因是,剪切与拉伸测试不同流场下的应力张量的不同分量:如在图1中可见,剪切测试中主要测量上板作用力Fs,其除以上板面积可得到剪切条件下应力张量σ的xy分量,而拉伸测试中主要测量右侧力FE,其除以右侧面面积主要得到拉伸条件下应力张量的xx分量.2. 剪切旋转流变仪概述本文重点介绍剪切流变测试中的仪器原理和测试技巧(笔者计划在后续文章介绍拉伸测试的原理和技巧). 目前商业的用于剪切测试的流变仪为旋转流变仪和毛细管流变仪. 本小节主要围绕旋转流变仪展开介绍. 旋转流变仪主要分为应力控制型和应变控制型2种. 应力控制型旋转流变仪一般使用组合式马达传感器(combined motor transducer,CMT),即驱动马达和应力传感器集成在一端,也被简称为“单头”设计;应变控制型的流变仪一般使用分离的马达和传感器(separate motor transducer,SMT),即驱动马达和应力传感器分别集成在上下两端,简称为“双头”设计,这2种设计的主要区别在于:“单头”设计更为简单,仪器容易保养和维护,但是夹具和仪器的惯量、马达内部的摩擦力容易对应力的测试结果造成影响,需要对仪器定期进行校正;“双头”的设计更为复杂,仪器操作步骤较多,需要更专业的仪器培训和仪器维护来防止操作不当带来的仪器损害,但是由于其马达和应力传感器分离的优势,可以更准确地进行应变和应变速率控制模式的测量,“双头”的流变仪的测试范围更宽,可以在更高的频率和更低的扭矩下得到准确的测试结果.下面我们将从旋转流变仪的测试原理(2.1节)和测试模式(2.2节)两个方面分别对于剪切流变测试进行简单的概述,这部分内容对于“单头”或者“双头”流变仪同样适用. 之后,我们会结合具体例子详细地介绍流变仪测试中需要注意的问题,部分内容会涉及“单头”和“双头”流变仪的区别. 对于流变测试比较熟悉的读者可以跳过2.1和2.2小节,直接阅读第3节.2.1 测试原理对于旋转流变仪,无论是应力控制还是应变控制模式,应变γ和应变速率γ˙均分别通过电机马达旋转的角位移θθ和角速率Ω转换得到,而应力均通过扭矩T (T=R×F,其中F为力,R为力臂)转化得到,上式中Kγ和Kσ分别为应变因子和应力因子,由测试夹具的类型、大小、间距等夹具的几何因子决定,而流变学测得的所有流变学参量,如剪切模量,黏度等都是应力应变的函数. 因此, 可以从原始测量的角位移θθ、角速率ΩΩ、扭矩T和应变因子Kγ、应力因子Kσ计算得到:剪切流变测试中通常用到的夹具为平行板、锥板和同轴圆筒3种,其基本结构、流场特征,应变和应力因子(Kγ和Kσ)总结在图2中.图 2Figure 2. Geometry and parameters Kγ and Kσ of parallel-plate, cone-and-plate and Couette fixtures平行板、锥板和同轴圆筒三者基本结构的特点也决定了其使用场合不同,具体总结如下:(1)平行板夹具具有剪切流场分布不均一的特点,施加应变时,其圆心处剪切应变为0,最外侧剪切应变最大,应变沿半径方向线性增加;平行板夹具的优点是制样和上样都很方便,但由于其内部流场不均一的特点,平行板夹具一般只用于线性流变测试. 但是,对于一些特殊的实验需求,选择平板进行剪切实验具有一定的优越性. 例如,可以利用平板间剪切速率随半径线性增加的特性,研究不同剪切速率下的流动诱导结晶行为[19,20]. (2)锥板夹具相对于平行板夹具具有内部剪切流场均一的特性,但其制样和上样相对于平行板要复杂,特别是难以流动的样品上样比较困难,因此一般仅在非线性流变测试时选择. 此外,需要注意的是, 为了避免测试时锥板和其对面板直接接触,通常在锥面顶点处截去一小段锥尖,使用锥板测试时,设定的夹具间距即被截去的锥尖高度. (3)同轴圆筒夹具相对于平行板和锥板通常需要使用更多的样品,但是由于其具有较平行板和锥板更大的夹具/样品接触面积和测试力臂(介于样品内径R1和外径R2之间),使用其测试可得到更高的扭矩,因此,其可用于测试更低黏度的样品.2.2 测试模式仪器测试的基本原理通常是对样品施加一个扰动或者刺激并记录其响应. 在旋转流变仪的测试中,通常对样品施加应变并记录应力响应,或反之,施加应力并记录应变的响应. 根据施加应变或应力随着时间的变化情况,流变测试通常可以分为稳态、瞬态、动态3种测试模式(如图3),总结如下:图 3Figure 3. The different responses of Newtonian fluid, Hookean solid, and viscoelastic materials to the imposed steady flow (stress growth, transient or steady mode that depends on the focus), step strain (stress relaxation, transient mode), step stress (creep and recovery, transient mode) and small amplitude oscillatory shear (SAOS, dynamic mode).(1)稳态测试模式通常测试样品在外加流场达到稳定状态下的响应. 通常,达到稳定的状态需要一定的时间,如果测试关注的是体系达到稳态过程,其测试模式一般称作瞬态模式,而如果测试关注的是体系达到稳态之后的过程,则测试模式为稳态模式. 通常仪器的软件内置了一些检验样品是否达到稳态的标准,如剪切速率扫描测试的过程中,仪器会记录应力的变化,当其测试应力在一定的时间内稳定后,仪器才会记录此时的应力. 剪切条件下,牛顿流体通常可以瞬间达到稳态流动,黏弹体通常需要一定的时间达到稳态流动,而胡克固体通常应力随应变增加,在结构不破坏的前提下无法达到稳态流动. (2)瞬态测试模式通常指从一个状态瞬间变化到另一个状态的过程,如施加阶跃应变(应变控制模式)、阶跃应力(应力控制模式)或者阶跃剪切速率等. 其中最典型的测试就是,施加一个固定应变,记录应力随时间变化的应力松弛(stress relaxation)测试,施加或撤销一个固定的应力,记录应变随时间变化的蠕变和回复(creep and recovery)测试,或者施加一个阶跃剪切速率,记录瞬态黏度随时间变化的应力增长测试(stress growth). 这些测试的共性是关注样品在一个特定刺激下的转变过程. 以阶跃应变为例,迅速施加应变后,牛顿流体的应力可迅速松弛,胡克固体的应力达到一个恒定值无法松弛,而黏弹体的应力需要经过一定的时间松弛,这个时间通常反映黏弹体系在应变下结构重整的特征时间. (3)动态测试模式是施加一个交变的应变或者应力,如正弦变化的交变应变或者应力,并记录响应. 以施加正弦应变的测试为例,由于测试的频率和应变大小均可调整,因此,测试有很大的参数空间. 通常,小应变下,体系结构仅稍微偏离无扰状态,应力响应的信号也是正弦波,该测试通常被称作小振幅振荡剪切(small amplitude oscillatory shear,简称SAOS). 对于胡克固体,应力的相位与应变相位相同;而对于牛顿流体,则应力的相位与应变速率(应变对时间的导数)的相位相同,与应变相位差π/2;对于黏弹体,应力的相位与应变的相位在0~π/2之间. 当应变较大时,体系的结构严重偏离无扰状态且随时间改变,此时的应力响应通常不是正弦波,该测试通常被称作大振幅振荡剪切(large amplitude oscillatory shear,简称LAOS). 需要指出的是,一些仪器软件会用正弦波来拟合非正弦的应力结果得到包括模量在内的测量结果,此时对于结果的解读需要非常小心. 因此,一般的测试过程中建议打开仪器的应力记录来观察测量应力波的波形,并据此判定测试的线性/非线性.3. 旋转流变仪测试中的常见问题3.1 测试过程的基本假设和常见问题概述上文提到,旋转流变仪的原始测量的角位移θ和扭矩T可转化为应变和应力. 然而,测量的应变和应力是否就是施加在样品上的真实的应变和应力呢?这显然是流变测试中最关键的问题. 需要指出的是,旋转流变仪的测试结果是建立在3个基本假设上面的:(1) 应变作用在样品上;(2) 应力为样品自身的响应;(3) 流场为简单剪切流场. 这些假设都是会在一定的测试条件下失效,从而导致测试结果不可靠. 接下来我们将详细地介绍这些假设条件分别在什么测试情况下失效.,则样品上的实际角位移θeff小于施加的角位移θ(=θslip+θeff). 对于平行板样品,由于应变参数K
  • 中国第一台界面剪切流变仪ISR400在中石油落户
    2008年3月24日,中国第一台界面剪切流变仪ISR400在中国石油天然气股份有限公司&中国科学院 廊坊分院渗流流体力学研究所正式落户。制造商芬兰KSV公司专门派遣工程师来华进行培训。
  • ibiPore可视化的Transwell:可实时观察流动、剪切力作用下细胞迁移、侵袭、细胞间相互作用
    德国ibidi的ibiPore可以实时观察流动、剪切情况下的细胞侵袭、迁移、细胞相互作用等实验。对实验结果进行观察统计时,不需要将膜取下,也不需要将另一边的细胞擦掉(经常将膜擦破,导致实验失败),可直接将μ-Slide放于显微镜下观察统计。细胞可以通过两种方式,选择贴壁于氮化硅膜的上下两侧。可以把细胞种植在膜下边,避免自由落体的说法,大大提高了实验的准确性。21世纪注定是一个生命科学的世纪,科研工作者们如果想在这个世纪去决胜,能做到一点,不仅要好的idea,领先的技术,更需要得心应手的好工具。所谓工欲善其事必先利其器,今天为大家介绍德国ibidi的μ-Slide ibipore SiN (图1), 一款具有多孔氮化硅膜的μ-Slide载玻片,可用于实时观察流动、剪切力条件下的细胞侵袭、迁移以及细胞相互作用的可视化的“ transwell ”,更多应用请参阅文中(Intended Use的相关内容)。图1. ibipore及ibipore SiN氮化硅膜培养细胞的染色结果。图片背景为在ibipore氮化硅膜上培养细胞的荧光染色结果,规则排布的白色圆点为氮化硅膜的孔隙ibipore有上下两个独立的通道(见图2),两个通道 overlap 的区域由一个孔径大小均一的氮化硅膜隔离开(见图3)。两个通道可以分别培养细胞,通过两种方式,细胞可以贴壁于氮化硅膜的上下两侧。在细胞侵袭实验中,普通的transwell只能将细胞培养在上侧,这样所得到的实验结果并不能明确的说明是由于重力作用还是侵袭能力本身造成的。而ibipore考虑到这一因素,建议实验者在氮化硅膜的下侧进行细胞培养,检测细胞向上侧通道进行迁移的能力,进而巧妙的排除了重力作用对侵袭实验的影响。配合ibidi流体剪切力系统以及加热孵育系统,可以在流动、剪切力条件下实时的观察细胞的侵袭以及迁移等实验。德国ibidi公司为满足不同实验的需求设计了不同孔径的氮化硅膜(见图4)。ibipore与传统的transwell实验最大区别有三点:①. ibipore可以在上下两个通道中培养细胞,这样可以观察细胞向上的侵袭情况,排除以往实验中重力作用的影响;②. ibipore中间的氮化硅膜具有良好的光学特性,可以实时成像观察侵袭情况,也可以进行免疫荧光染色实验;③. ibipore可以配合ibidi流体剪切力系统,观察淋巴细胞等在流动状态下的侵袭情况。ibipore产品介绍ibipore产品特点:* 透过薄而多孔的薄膜获得卓越的光学性能* 有着广泛的应用,细胞可完全粘附到顶部-基底* 对于不同细胞类型有多种孔径大小可以选择应用:1.流动状态下跨内皮细胞迁移2.2D或3D凝胶内细胞层的共培养和传输分析3.顶部-基底细胞极性分析4.顶部-基底梯度的细胞屏障模型分析5.细胞迁移分析(例如,用于研究肿瘤侵袭或转移)在μ-Slide ibiPore IV型胶原涂层3μm孔径中人类内皮细胞的免疫荧光染色,相位对比度、DAPI(蓝色)、VE钙粘蛋白(绿色)和F肌动蛋白(红色)的叠加图像。技术特点:1.SiMPore的微孔氮化硅膜2.中间具有多孔光学膜的跨通道结构3.优异的光学性能,堪比盖玻片4.孔径大小0.5μm,3μm,5μm,8μm供选择5.中间膜0.4µ m(400 nm)6.使用工作距离0.5mm的物镜7.与ibidi泵系统(流体剪切力系统)完全兼容8.下部通道中明确的剪切力和剪切速率范围µ -Slide ibiPore SiN工作原理µ -Slide ibiPore SiN由插入两个通道之间的水平多孔膜组成。上部通道是膜上方的静态储液池。下部通道是灌注通道,用于对附着在膜上的细胞施加限定的剪切应力。上部通道和下部通道仅通过隔膜彼此连通。图2. ibipore组成示意图多孔膜由氮化硅(SiN)制成,这种材料具有非常高的化学和机械稳健性。400nm厚的氮化硅膜非常适合成像和显微镜观察,没有任何自发荧光或透明度问题(如玻璃)。SiN材料可以直接用于贴壁细胞培养,也可以选择用ECM蛋白包被。应用建议:孔径 & 孔密度什么是孔密度孔密度是指膜的空隙体积分数。是孔隙的体积除以膜的总体积。下面的图形为采用相同的放大倍数。图3. 不同孔径的氮化硅膜不同应用的建议孔径:不同的细胞大小和直径不同,根据具体实验请选择不同孔径图 4. 为不同应用推荐的不同孔径的氮化硅膜Intended Use经证实的应用这些应用已由ibidi研发团队或者我们的用户进行过试验。Endothelial Barrier Assays内皮屏障分析在膜一侧培养单层细胞。细胞可以在静止或者流动剪切力条件下培养。Co-Culture and Cell Barrier Assay共培养和细胞屏障分析在膜的两侧分别培养单层细胞。通过这种方法可以进行信号传递、共培养以及迁移实验(例如,分析药物通过上皮或内皮屏障的传递)。Apical-Basal Cell Polarity Assays顶端-?基底端细胞极性分析3D凝胶基质中的化学因子可以导向在膜另一侧培养的单层细胞的极性发生。Potential Use潜在应用以下示例将讲述该产品进一步的潜在应用。ibidi仍需在内部测试这些应用,因此我们无法提供特定的实验方案。但是,从技术角度来看,这些应用应该是可行的。Trans-Membrane Migration in 2D/2D跨膜迁移在膜的一侧培养单层细胞。可以观察悬浮的白细胞在流动状态下的滚动、粘附以及侵袭情况。Cell Transport in a 3D Gel Matrix细胞在3D凝胶基质中的传递3D凝胶基质中的细胞迁移:在流动状态下,观察白细胞的滚动、粘附以及向3D凝胶基质中肿瘤细胞方向的迁移情况。Application Examples 应用实例MDCK和NIH-3T3细胞的相差显微镜观察Madin-Darby犬肾(MDCK,左)和NIH-3T3(右)细胞在μ-Slide ibiPore SiN,孔径0.5μm的玻片中,无蛋白质包被。接种后,将细胞在静态条件下在培养箱中保持20小时。相差显微镜,4倍物镜。请注意,这张图像中的中心多孔区域看起来更暗,因为0.5μm的孔隙无法用低分辨率物镜分辨。流动条件下HUVECS的相差显微观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN中,孔径3μm的玻片中,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。固定后的相位对比显微镜,10倍物镜。流动下HUVECs F肌动蛋白细胞骨架的荧光显微镜观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN,孔径5μm玻片中的免疫荧光染色,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。绿色:肌动蛋白(鬼笔肽),蓝色:细胞核(DAPI)。荧光显微镜,20倍物镜。选择指南:ibidi跨膜分析实验解决方案参考文献:Salvermoser, Melanie, et al. "Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation." Blood, The Journal of the American Society of Hematology 131.17 (2018): 1887-1898. 10.1182/blood-2017-10-811851Rohwedder, Ina, et al. "Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration." Haematologica (2019). 10.3324/haematol.2019.225722Non-Recommended Applications不建议的应用因技术原因,本产品不适用于以下应用,应避免使用.本产品不适用于:1.上通道灌流2.两个通道的灌流3.跨膜流动4.筛选应用订购信息
  • 自然资源部发布 《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等多项行业标准报批稿
    按照自然资源行业标准制定程序要求和计划安排,自然资源部组织有关单位制定了《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等10项行业标准,并于2024年1月18日予以公示。其中4项标准涉及在线监测设备、便携设备等。一、《海洋饱和软黏土强度的测定 微型十字板剪切仪法》(报批稿)规定了微型十字板剪切仪测定饱和软黏土不排水抗剪强度的仪器及组件要求、仪器标定方法、 试验步骤与要求和试验数据采集与处理方法等,适用于海洋原状或重塑饱和软黏土的不排水抗剪强度和灵敏度的室内或野外现场测定。二、《海上油气生产设施水文气象观测系统建设规范规范》(报批稿)规定了海上油气生产设施水文气象观测系统的选址、观测要素、系统组成、仪器安装、试运行管理、接收岸站的要求,适用于在海上油气生产设施上新建或升级改造的水文气象观测系统。海上油气生产设施水文气象观测系统的观测要素主要包括以下内容:a)水文要素应包括但不限于:流向、流速、水位、水温、波向、波高、波周期、潮高等;b)气象要素应包括但不限于:风向、风速、气温、气压、相对湿度、能见度等。海上油气生产设施水文气象观测系统主要包括:数据采集器、定位装置、方位传感器、风速风向传感器、气温和湿度传感器、气压传感器、波潮仪、能见度传感器、流速流向传感器、水温和盐度传感器、卫星通信系统、供电系统、防雷系统等。三、《海洋岸(岛)基水质自动监测站在线运行维护技术要求》(报批稿)规定了海洋岸(岛)基水质自动监测站在线运行维护管理基本要求、检查维护、质量保证与质量控制及运行维护记录等内容,适用于海洋岸(岛)基水质自动监测站在线运行维护管理工作。海洋岸(岛)基水质自动监测站用于海岸(岛)边海洋水质监测,通过系统集成技术、数据采集与传输技术及通讯网络集成的综合性监测系统。主要由站房、分析单元、采配水单元、控制单元、通讯单元和辅助设备等组成,其核心设备为在线分析仪器,可以定期或长期、在线、自动、连续地进行采集、处理、存储和传输监测数据。四、《走航式温盐深剖面测量仪》(报批稿)本文件规定了走航式温盐深剖面测量仪的要求、检验方法、检验规则以及标注、包装、运输和贮存。 本文件适用于走航式温盐深剖面测量仪的设计、生产、试验和检验。走航式温盐深剖面测量仪以海上移动载体为使用平台,在规定航速范围内,利用可回收的测量探头进行海水温度、电导率和压力剖面测量的仪器。
  • 836.6万元!三峡大学获批重大仪器项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”
    据三峡大学网站信息,三峡大学于近日接到国家自然科学基金委通知,获批国家重大科研仪器研制项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”。该项目由李建林教授主持申报,直接经费836.6万元,执行期限五年。该类型项目是三峡大学自建校以来首次获批,也是三峡大学受国家自然科学基金项目单项资助额最高的项目。项目面向高坝大库工程安全运行,研发模拟库岸边坡复杂条件耦合作用的试验系统,形成库岸边坡水岩与动力剪切耦合作用重大科学装置,解决库岸边坡岩体复杂库水和应力环境耦合作用的准确模拟的“卡脖子”问题,为岸坡岩体在复杂水力环境和应力耦合作用下的损伤劣化机制分析提供良好的试验平台,弥补国内在库岸边坡岩体水-岩作用试验研究中专用仪器设备的不足,有助于了解在水库蓄水条件下库岸再造的机理,对已建和在建的大中型水库,特别是库水深度达到100m以上的大型水库岸坡意义重大,同时,可以在水工隧洞、水封油库、地下开采、能源存储等水-力耦合作用相关的工程中推广应用。预期研究成果服务于“自然灾害防治九大工程”和“提高防灾减灾救灾和急难险重突发公共事件处置保障能力”等国家战略目标需求,对于保证水电工程的安全和有效运营以及库区人民的生命财产安全、航道安全和社会公共安全均有重要意义,有助于提升我国地质灾害防治技术水平和创新能力。
  • 实现精准的基因剪切 中国科研人员开发出新型“基因剪刀”载体
    p   新华社华盛顿4月6日电(记者 周舟)来自南京大学、厦门大学和南京工业大学的科研人员日前在新一期美国《科学进展》杂志上发表论文说,他们开发出一种“基因剪刀”工具的新型载体,可实现基因编辑可控,在癌症等重大疾病治疗方面具有广阔的应用前景。 /p p   被誉为“基因剪刀”的CRISPR基因编辑技术能精确定位并切断DNA(脱氧核糖核酸)上的基因位点,可以关闭某个基因或引入新的基因片段,从而达到治病目的。但脱靶效应一直是阻碍其应用的关键障碍之一。 /p p   论文通讯作者、南京大学现代工程与应用科学学院教授宋玉君对新华社记者说,目前的CRISPR-Cas9技术本身具有脱靶效应,给精准治疗带来挑战,且这种技术主要以病毒为载体,还可能导致细胞癌化。 /p p   据介绍,研究人员新开发的方法采用了一种名叫“上转换纳米粒子”的非病毒载体。这些被“锁”在“基因剪刀”CRISPR-Cas9体系上的纳米粒子可被细胞大量内吞。由于 strong 这些纳米粒子具有光催化性,在无创的近红外光照射下,纳米粒子可发射出紫外光,打开纳米粒子和Cas9蛋白之间的“锁”,使Cas9蛋白进入细胞核,从而实现精准的基因剪切 /strong 。研究显示, strong 这种方法的有效性已在体外细胞和小鼠活体肿瘤实验中得到验证。 /strong /p p   宋玉君说,红外光具有强大的组织穿透性,这为在人体深层组织中安全、精准地应用基因编辑技术提供了可能。 /p
  • 新款SmartPave 92动态剪切流变仪——安东帕为您沥青检测铺平道路
    安东帕为沥青、柏油行业及应用量身定制高质量的解决方案。安东帕提供多种产品线的综合解决方案,ProveTec系列产品在石油石化分析领域有多年经验,拥有软化点测试仪、弗拉斯脆点测试仪、数字延度仪等产品,结合密度计、旋转流变仪等多达9种仪器,为您提供测量21种参数的可能并符合36项标准,测量柏油组成和成分的粘度、形变和流动特性、后续跟踪分析的消解柏油样品、软化点、渗透力、延展性、拉伸性能、脆点等。 2017年,安东帕隆重推出全新的SmartPave 92动态剪切流变仪。SmartPave 92可以满足实验室对于沥青结合料以及混合料的检测和质控的需要。如同SmartPave 102,这一新产品基于安东帕成功的模块化智能流变仪技术,确保您获得最精确和最稳定的测量结果。 SmartPave 92采用帕尔贴温控系统对沥青样品进行精确的温度控制,从而可以按照各种行业标准进行结合料和混合料的测试,符合的标准包括AASHTO T315, AASHTO T350, AASHTO TP101, ASTM D7175, ASTM D7405, DIN EN16659,和DIN EN14770。 同时,SmartPave92流变仪可以使用同心圆筒帕尔帖温控测量系统,替代旋转粘度计,进行符合AASHTO T316, ASTM D4402 和 DIN EN13302标准的黏度测试。 SmartPave 92 的优势1.RheoCompass软件提供功能强大,又易于上手的测试模板,手把手协助您展开对于沥青的测试2. 独特的环形TruRay光源让您更清楚的观测样品和测量区域,确保正确的样品填充量3. 使用快速连接器,单手即可方便快捷地安装或更换测试夹具,无需使用额外的工具4. ToolmasterTM自动识别功能,快速自动识别测量夹具和温控系统的型号并设置参数
  • 耐超高温隔热-承载一体化轻质碳基复合材料取得重要进展
    中国科学院金属研究所热结构复合材料团队采用高压辅助固化-常压干燥技术,并通过基体微结构控制、纤维-基体协同收缩、原位界面反应制备出耐超高温隔热-承载一体化轻质碳基复合材料。近日,《ACS Nano》在线发表了该项研究成果。 航天航空飞行器在发射和再入大气层时,因“热障”引起的极端气动加热,震动、冲击和热载荷引起的应力叠加,以及紧凑机身结构带来的空间限制,给机身热防护系统带来了异乎寻常的挑战,亟需发展耐超高温并兼具良好机械强度的新型隔热材料。碳气凝胶(CAs)因其优异的热稳定性和热绝缘性,有望成为新一代先进超高温轻质热防护系统设计的突破性解决方案。然而,CAs高孔隙以及珠链状颗粒搭接的三维网络结构致使其强度低、脆性大、大尺寸块体制备难,大大限制了其实际应用。国内外普遍采用碳纤维或陶瓷纤维作为增强体,以期提升CAs的强韧性及大尺寸成型能力。然而,由于碳纤维或陶瓷纤维与有机前驱体气凝胶炭化收缩严重不匹配,导致复合材料出现开裂甚至分层等问题,反而使材料的力学和隔热性能显著下降。目前,发展兼具耐超高温、高效隔热、高强韧的碳气凝胶材料及其大尺寸可控制备技术仍面临巨大挑战。 超临界干燥是碳气凝胶的主流制备技术,其工艺复杂、成本高、危险系数大。近年来,热结构复合材料团队相继发展了溶胶凝胶-水相常压干燥(小分子单体为反应原料)、高压辅助固化-常压干燥(线性高分子树脂为反应原料)2项碳气凝胶制备新技术。为了实现前驱体有机气凝胶和增强体的协同收缩,本团队设计了一种超低密度碳-有机混杂纤维增强体,其碳纤维盘旋扭曲呈“螺旋状”,有机纤维具有空心结构,单丝相互交叉呈“三维网状”,赋予其优异的超弹性。该超弹增强体的引入可大幅降低前驱体有机气凝胶干燥和炭化过程的残余应力,进而可获得低密度、无裂纹、大尺寸轻质碳基复合材料。该材料在已知文献报道的采用常压干燥法制备CAs材料领域处于领先水平,可实现大尺寸样件(300mm以上量级)的高效、低成本制备,并具有低密度(0.16g cm-3)、低热导率(0.03W m-1 K-1)和高压缩强度 (0.93MPa)等性能。相关工作在Carbon 2021,183上发表。 在此基础上,本团队以工业酚醛树脂为前驱体,采用高沸点醇类为造孔剂并辅以高压固化,促使有机网络的均匀生长及大接触颈、层次孔的生成,实现了骨架本征强度的提升,同时采用与前驱体有机气凝胶匹配性好的酚醛纤维作为增强体,通过纤维/基体界面原位反应,实现了炭化过程中基体和纤维的协同收缩及纤维/基体界面强的化学结合,最终获得了大尺寸、无裂纹的碳纤维增强类碳气凝胶复合材料。该材料密度为0.6g cm-3时,其压缩强度及面内剪切强度分别可达80MPa和20MPa、而热导率仅为0.32W m-1 K-1,其比压缩强度(133MPa g-1 cm3)远远高于已知文献报道的气凝胶材料和碳泡沫。材料厚度为7.5–12.0mm时,正面经1800°C、900s氧乙炔火焰加热考核,背面温度仅为778–685°C,且热考核后线收缩率小于0.3%,并具有更高的力学强度,表现出优异的耐超高温、隔热和承载性能。相关工作在ACS Nano 2022,16上发表。 此外,上述隔热-承载一体化轻质碳基复合材料还首次作为刚性隔热材料在多个先进发动机上装机使用,为型号发展提供了关键技术支撑。 上述工作得到了国家自然科学基金委重点联合基金、优秀青年基金、青年科学基金、科学中心以及中科院青促会会员等项目的支持。 图1. 轻质碳基复合材料表现出优异的承载能力、抗剪切能力以及大尺寸成型能力图2. 高压辅助固化-常压干燥可实现较大密度范围轻质碳基复合材料的制备,其压缩强度显著高于文献报道的气凝胶和碳泡沫
  • IMCE发布高温动态弹性模量和阻尼分析系统新品
    仪器简介:比利时IMCE公司是一家专业的测试弹性模量和阻尼内耗分析仪器的生产厂家, 仪器基于共振频率动态测量方法, 应用完全非破坏性测试技术, 适用于陶瓷及金属等多种材料的生产(质量控制)及科学研究领域, IMCE公司是目前世界上唯一能在1750C高温和气氛控制条件下, 利用目前最先进的软件评估及研究, 精确测定共振频率、弹性模量、剪切模量和阻尼内耗等相关技术指标。 公司主要产品有:1、弹性模量和阻尼内耗分析仪 型号:RFDA MF Professional 2、高温炉: 型号:RFDA-HT1700 型号:RFDA-HTVP1700C 型号:RFDA-HTVP1600 HT1600, HT650. HT1050 3、软件 型号:RFDA MF Software 在中科院沈阳金属研究所高性能陶瓷与复合材料重点实验室及测试中心有该公司2套先进的高温测试系统。 技术参数:1、共振频率。 10Hz ~ 130KHz2、阻尼或内耗(10ˉ5-----0.1) 3、弹性模量 4、剪切模量 5、泊松比率 6、温度:室温--1750C。 7、气氛控制8,真空系统,激光检测主要特点:1、动态法测试(线性或非线性) 2、样品完全非破坏性测试符合ASTM-E-1876-99方法创新点:双样品高温弹性模量仪HT1700,在原有HTVP1700基础上,简化结构,去掉真空组件,增加了双样品支座及测试系统;性能上除了不能做真空及密封外,其它指标同HTVP1700相同,并且可以在普通空气下实验,可以同时测试2个样品,设备体积减小,提高测试效率一倍,价格降低一半!目前世界上同类设备中温度最高,双样品结构独一无二! 高温动态弹性模量和阻尼分析系统
  • 国际首台材料超高温力学性能测试系统在中国问世
    &ldquo 把脉&rdquo 极端环境下的材料性能 &mdash &mdash 中国建材检验认证集团首席科学家包亦望教授专访   2000℃的环境下,铁已熔成液体,有人想到变通办法,在铁表面镀一层&ldquo 膜&rdquo &mdash &mdash 可以胜任高达2000℃以上超高温氧化环境的陶瓷材料。但问题接踵而至,现有试验机的夹具和压头材料本身难以承受1500℃以上的超高温氧化极端环境,如何评价材料的可靠性?这个问题曾经难倒了我国科研人员,也包括国际同行。   如今,问号已经拉直。   1月9日,在2014年度国家科技奖励大会上,中国建筑材料科学研究总院博导、中国建材检验认证集团(CTC)首席科学家包亦望教授和他的团队凭借&ldquo 结构陶瓷典型应用条件下力学性能测试与评价关键技术及应用&rdquo 捧得国家科技进步二等奖。 包亦望在操作超高温极端环境力学测试系统   缺失的极端环境下材料评价方法   2003年,包亦望还在中科院金属所做&ldquo 百人计划&rdquo 研究,所里一位研究人员找到他,寻问有没有陶瓷复合构件界面强度的评价方法。这个问题来源于工程实践。   之所以找到包亦望,不仅因为他是有名的&ldquo 点子王&rdquo ,更重要的是,解决这个世界性难题已经越来越迫切。   结构陶瓷具有高强耐磨、抗腐蚀、耐高温等许多优异性能,因此被广泛应用于航空航天、机械、石油化工和建筑等高技术领域。   但陶瓷本身是脆性的,具有&ldquo 宁碎不屈&rdquo 的特点,服役中的陶瓷及构件容易发生突发性灾难事故,故又成为最不安全的材料。   时隔近30年,1986年的&ldquo 挑战者&rdquo 号航天飞机灾难仍被多次提及,刚起飞73秒,航天飞机发生解体,机上7名机组人员丧命。这次灾难性事故导致美国航天飞机飞行计划被冻结了长达32个月之久。最终调查发现,原因之一是陶瓷隔热瓦与母体界面脱粘后失去隔热能力,导致价值12亿美元的航天飞机被炸成碎片。   如果能对结构陶瓷力学性能做出准确评价,不仅可以保证构件安全可靠,还能对其失效时间做出预测。   但由于涂层与基体间难以剥离作为单质材料进行测试,如何评价材料的可靠性是一项国际难题。   包亦望告诉记者,具体来说,难题体现在四个方面:界面问题:陶瓷复合构件界面强度和不同环境下的服役安全评价;异型件:管状或环形陶瓷构件的力学性能无法参照现有标准和检测技术;陶瓷涂层:热障涂层、耐磨涂层的模量或强度无法直接测试 极端环境:超高温氧化环境下陶瓷性能评价无技术,无标准,无测试设备 构件性能预测:通过表面痕迹和接触响应非破坏性的监测和预测构件可靠性。   &ldquo 因为评价标准缺失,目前大多采用&lsquo 牺牲层&rsquo 的办法。&rdquo CTC研究中心副主任万德田解释,所谓&ldquo 牺牲层&rdquo ,是指本来只要10毫米的涂层,被加厚到了15&mdash 20毫米,这样虽然安全系数提高了,代价是飞行器重量也提高了,成本随之增加。   随着航天、航空、航海、化工、冶金等工业的快速发展,准确评价涂层材料力学性能显得越来越紧迫和重要。   中国工程院院士杜善义曾经说过,超高温试验是一个很复杂的技术问题,每一系统的建立难度都很大,但我国航空航天工业的发展需要建立超高温测试技术。   &ldquo 雕虫小技&rdquo 解决大难题  &ldquo 方法非常简单,在外行看来可能就是雕虫小技。&rdquo 但包亦望说,这其中最难的是首先要想到捅破那一层窗户纸的方法,而这得建立在大量分析计算基础上。   随手翻开一本笔记本,除了看似简单的图示,就是密密麻麻的计算式。   &ldquo 有时候为了一个小公式,花几个月推导都是正常的。&rdquo 经过长达十多年的研究,包亦望和团队不断试验,反复采集整理数据,发明了一系列评价新技术。   陶瓷材料难以直接进行拉伸载荷试验,如何测得界面拉伸强度和界面剪切强度?传统的测试方法将试验样品叠加或者拼接,然后在叠加处或拼接处施力,但都无法获得界面拉伸强度。   &ldquo 十字交叉法&rdquo 提出,将两根矩形截面短棒以十字交叉方式粘接成测试样品,设计专用带槽夹具和圆弧形压头,分别测得界面拉伸强度和界面剪切强度。   这项技术适用任何固相材料之间的界面强度和疲劳性能评价,并可推广到各种高强粘接剂的强度和耐久性评价,此方法一经推广,受到国内外无机材料检测领域专家的赞赏。   但新课题又来了。   不是所有产品的样品都能加工成常规的矩形截面,而这类产品的应用范围又很广,如模拟核爆用石英玻璃管,光纤套管,火箭或导弹的尾喷管,石油化工用防腐内壁管等。   &ldquo 缺口环法&rdquo 能简单、方便、快捷的评价管状和环状脆性材料的基础力学性能。   &ldquo 无需特殊的夹具,节省了大量的试验经费和时间。&rdquo 包亦望说。   &ldquo 相对法&rdquo 则是通过已知或容易测量的材料参数去计算出无法直接测量的未知参数。   &ldquo 这就好比即使没有秤砣,只要知道一公斤白糖在杆秤的什么位置,就能称出同样质量的其他物质。&rdquo 包亦望说,这解决了陶瓷涂层的基础力学评价问题。此前涂层材料力学性能测试基本上空白,世界各国都在寻求测试技术。   试验证明该方法简单、准确、可靠达到事半功倍的效果,解决了热障涂层、防腐涂层和耐磨涂层等力学性能测试的空白。   &ldquo 局部受热同步加载法&rdquo 解决了超高温氧化环境下测试的国际难题。   &ldquo 痕迹法&rdquo 则有点类似于&ldquo 中医号脉&rdquo ,通过分析试验后样品残余压痕痕迹的形貌和尺寸,推测出几乎全部的材料力学性能。该方法受到国内外专家的高度赞赏,国际评审专家认为&ldquo 这项工作确实是对纳米压痕技术的一个新贡献&rdquo ,并在国际综述文献里被称为&ldquo BWZ method&rdquo (其中B指包亦望)。   主导制定国际标准提高话语权   建立方法、发明技术,包亦望和团队不满足于此,近年来一直致力于将技术转化为国家标准和国际标准。   &ldquo 国际标准的形成过程是一个博弈过程,体现了技术、产业乃至国家的综合影响力和话语权,是市场的竞争源头,为此国际上对标准的竞争极为激烈。&rdquo 包亦望印象深刻的是将&ldquo 相对法&rdquo 形成国际标准中的波折。   2007年,包亦望将发明的&ldquo 相对法&rdquo 在国际刊物发表,受到国际同行的高度认可,实验证明该方法简单、准确、可靠。此前虽然国内外有用纳米压痕技术来评价陶瓷涂层的弹性模量,但反映的仅仅是局部甚至某晶粒的性能,只对理想均匀致密材料有效,而且设备昂贵,尚不能测量涂层的强度。   2013年,ISO组织向全世界征求陶瓷涂层测试技术时, &ldquo 相对法&rdquo 评价技术与日本提出的类似国际标准草案形成竞争,最后交由ISO顾问Peter(皮特)先生仲裁,由于相对法具有原创性,适用范围更广泛,最后被成功立项。   利用自主知识产权转化成的国际、国内及行业标准,已被用于1000多家陶瓷企业和军工企业的相关产品各项力学性能检测与分析,经济效益数亿元。   包亦望认为,标准的社会效益意义更重大。大量性能检测方面的标准技术的制定,对于促进工程陶瓷和玻璃行业健康发展、无机非金属材料力学性能的学科发展、切实保障老百姓生命财产安全方面具有重要意义。   2007年,包亦望向ISO组织提交的以&ldquo 十字交叉法&rdquo 技术为基础的国际标准获得一致通过,在此前的陈述环节中,他提出的创新性、实用性受到高度关注,与会的六七个国家代表找到包亦望,反映该标准简洁明了,并找他要PPT,提出在自己的国家先用。   不将技术装在口袋里   让科技成果落地开花,而不是将技术装在口袋里。   有别于大多数科研工作者,包亦望不仅建立了很多创新的理论,还能将抽象的理论转化为可操作的方法与技术,并通过仪器设备这种载体来实现,反过来,自主研发的科学仪器设备又成为产生新观点的重要工具。   在中国建筑材料科学研究总院的实验室里,庞大的超高温极端环境力学测试系统塞满了约40平米的屋子。   &ldquo 该系统是国际上唯一针对陶瓷、复合材料的超高温力学性能测试仪器,温度最高可达2200℃,已经为多家合作单位进行了材料的超高温测试试验,解决了材料的超高温力学性能评价技术难题。&rdquo 万德田言语间透出自豪,他告诉记者,以近地空间用超高声速飞行器为例,该系统可为飞行器所用特种材料的服役安全和结构设计提供重要技术支撑,此外还有助于低成本选材。   超高温氧化耦合极端环境下,航天、航空飞行器的外围材料,如发动机和喷火管等处材料的安全性性能评价和设计至关重要。现有试验机的夹具和压头材料本身难以承受1500℃以上的超高温极端环境,这样使得材料的力学性能试验样品无法测试。该系统就是包亦望和团队运用&ldquo 局部受热同步加载法&rdquo 生产出来的。   包亦望教授率领他的团队不断攻克难题,从理论到技术、从实验到装置,发明了一套评价材料在极端超高温氧化环境下的力学性能测试方法与评价技术,开发了国际上首台&ldquo 材料超高温力学性能测试系统&rdquo ,并获得863计划和首批国家重大科学仪器设备开发专项的支持。   这些年,包亦望和团队将取得的理论成果和新方法、新技术转化为一系列有特色的仪器设备,包括常温和高温固体材料弹性模量测试仪、安全玻璃冲击失效检测仪、多功能零能耗钢化玻璃检测器、钢化玻璃表面平整度测试仪、钢化玻璃缺陷和自爆风险检测仪、硬脆材料性能检测仪、幕墙松动脱落风险测试仪等,这些仪器设备有的已经进入国内多所高校和科研机构的实验室,成为科研工作者探索科学的有力工具。
  • 得利特更新润滑脂万次剪切实验仪参数
    在20世纪前些年,经典的分析技术现代产业大生产服务,主要为了适应分析、监控工农生产,保证产品质量,保障大生产流程安全术和分析仪器的“用武之地”已经大大拓展,最引人注目的是在生物、环保、医学等有关人的生存、发展领域的应用日新月异,现代高科技在军事方面的发展也促进了分析技术和分析仪器的应用拓展(例如生物武器、化学武器战争中调整、灵敏、准确的现场毒物检测、生命保障任务也大大扩大了分析仪器的应用领域)。 可以肯定:在新世纪到来后,分析技术和分析仪器的应用由“物”到“人”的拓展趋势将更加显著。我们必须看准这个发展潮流,分析仪器事业的发展思路中摆正位置、选好方向。润滑脂万次剪切实验仪用于在测定润滑脂的锥入度前,使试样在润滑脂工作器中往返工作多次(通常是60次、1万次或10万次),以便于测定出润滑脂的延长工作锥入度或工作锥入度。执行标准:适用标准:GB/T 269《润滑脂和石油脂锥入度测定法》及ISO 2137、ASTM D217、FED-STD-791/313.3技术参数:• 工作次数:10次~99.99万次• 安放工作器个数:2个• 孔板规格:3圈51个孔(GB/T 269、ISO 2137、ASTM D217)或6圈270个孔(FED-STD-791/313.3)• 工作速度:每分钟60±10次• 报警:达到设定次数后有蜂鸣报警• 使用电源:AC220V±5%,50Hz±1Hz• 额定功率:约600W
  • 切向流过滤工艺主要可以从哪些方面进行优化?
    切向流技术(Tangential Flow Filtration, TFF),又称错流过滤(Cross-Flow Filtration,CFF)料液以一定的流速在膜表面循环,小于膜孔径的物质可以透过膜到透过端,而大于膜孔径的物质会被膜截留,从而实现不同物质的分级分离。相比于死端过滤,切向流过滤再循环料液流经膜表面,液体形成的“冲刷作用”冲洗整个膜表面,降低了膜孔堵塞及膜污染的风险,形成长时间稳定的膜过滤生产能力。 通过对切向流工艺中的操作参数及各种变量进行优化,可以有效提高过滤效率,同时降低物料成本,在达到产品质量要求的同时实现收率的最大化。一、膜的优化1、膜孔径选择通常用截留分子量(MWCO: molecular weight cutoff)表征孔径大小,但不同结构的分子,即使分子量相同,其分子粒径也有较大的差异。不同厂家使用的标定物质也会不同,因此实际使用时,截留率也会有一定的差异。希望目标物质透过膜孔,一般选择膜截留分子量为目标物质分子量的5-10倍或以上;希望目标物质充分截留,一般选择膜截留分子量为目标分子量的1/3-1/5。2、膜材质膜材质是切向流过滤工艺中的关键点,不同材质的过滤膜从化学性质、溶析出性质、机械强度、蛋白吸附等方面有较大差异。用户需要根据料液的性质、缓冲体系的要求等选择合适材质的过滤膜。3、膜面积膜面积决定了单次过滤工艺中所能处理的料液的量,所需膜面积的可以按照以下公式大致计算:膜面积=料液透过体积/(膜通量*工艺时间)例如对200L某料液进行10倍浓缩,要求超滤工艺在2小时内完成,假设使用的超滤膜对该料液的稳定通量为50LMH(升每平米每小时),则需要的膜面积计算为:浓缩料液透过体积=200L-200L/10=180L膜面积=180L/(50LMH*2)=1.8m2二、TMP优化TMP(Transmembrane Pressure)跨膜压,物质跨膜所需的驱动力,是工艺放大的基本和必要参数。在工艺起始阶段,增加TMP,可线性增加滤液通量,但随着凝胶极化层的形成,其对过滤的阻力会抵消TMP的作用。所以,优化的TMP取值应为凝胶层完全形成前的拐点最高值。简易TMP优化方法1、确定一个合适的切向流速;2、切向流速稳定后设定一个较小的TMP值;3、在设定的TMP值下稳定运行5-10min 4、记录下此TMP下通量(LMH) 5、调整TMP值,每次增加1-2psi,重复步骤3、4;6、对不同TMP及运行的通量进行分析,即可找出比较合适的TMP。三、切向流速切向流过滤工艺中的切向流流速(进料速度)主要作用是减少凝胶层的形成,降低透过的阻力,提高通量。增加切向流速度将增加膜剪切力并通常会提高过滤速度,但是对于剪切力敏感的料液,过高的流速带来的高剪切力会对样品造成破坏。高切向流速的好处,一方面能在相同TMP下获得相对更高的通量,另一方面能够有效降低凝胶层的形成。但是高切向流速也存在诸多不足,为得到高流速需要配置更大的泵及管路,这样就会使系统的滞留体积增加,也增加了固件的成本。另外,膜的通量达到最佳值时,即时进一步提高切向流速度,通量也不会有明显增加。Challenge Dream切向流过滤系统Challenge Dream系列是基于切向流过滤技术开发的一套全自动、集成化的过滤系统,搭载成器智造自主开发的Challenge Navigator流程控制软件,满足用户对切向流工艺的研发、中试、生产的需求。智能化、自动化系统预设多种自动化处理模式,浓缩、洗滤、冲洗等工艺方法,一键调用新增TMP优化程序,challenge Dream可以根据您的需求,在对新过滤膜不了解的情况下可以自动运行计算出最佳的TMP可用于研发及生产,灵活多用Challenge Dream系列切向流系统产品线完善,能够稳定的支持从工艺研发至中试放大及小规模商业化生产的所有需求数据电子化,稳定可靠优秀易用的Challenge Navigator软件提供智能化的操作界面和符合21 CFR Part 11的数据管理系统,保证了工艺的稳定和可重复性,参照商业化生产设备的自动化操作方式以及程序架构,为生产工艺的缩小或放大提供了极大便
  • 上海沪析发布沪析HR-500 高剪切分散乳化机新品
    产品应用:● 实验室高剪切分散乳化机集灵巧、方便于一身。可手持操作。选用德国原装马达,运行更稳定,噪音更小。可长时间运转,20余种工作头可供选择,可实现真空操作,轻松满足多种高要求分散、乳化、均质的实验要求。主要特征:● 选用德国原装马达、运行稳定,噪音更小,可长时间运转,设计安全可靠。● 工作头接触物料部位全部采用优质不锈钢制作,耐腐蚀性好。● 工作头采用联轴器与驱动电机连接,拆装简便灵活。● 调速机座采用无极调速器,调速方便,运转稳定。产品参数:型号HR-500转速范围8000-28000r/min处理量0.2-7000ml (H2O)标准工作头HR-500A输入功率500W输出功率320W转速显示刻度显示调速方式无极调速接触物料材质316L不锈钢进入物料部分轴套材质PTEE适用温度≤120C°允许环境温度5-40C°允许相对湿度80%工序类型分批处理成套重量9KG电源220V 50HZ定子转子配置:定子转子功能描述:型 号转子定子功能描述工作容积转子直径定子直径线速度浸没深度分散粒径灭菌乳适应领域组合方式mlmmmmm/smm悬浮液状液HR-500AS20CSR20固液混合介质10-5000152023.540/17010-501-10制药.陶瓷,石化HR-500BS20CCR20纤维类材质10-5000152023.540/17010-501-10污水,药品.食品.造纸,烟草HR-500CS20CMR20固液混合介质10-5000152023.540/17010-501-10陶瓷,涂料HR-500DS20FER20乳状液10-5000152023.540/17010-501-10污水,涂料,造纸,制药HR-500ES20FCR20纤维类材质10-5000152023.540/17010-501-10污水,生物,药品.食品.造纸,烟草HR-500FS20FMR20固液混合介质10-5000152023.540/17010-501-10陶瓷,化妆品涂料,食品.造纸,石化HR-500GS30CMR20搅拌桨功能250-20000153036.140/170高速混合陶瓷,食品.污水HR-500HS30CSR30固液混合介质100-8000233036.140/1705-251-5污水,药品.食品.造纸,制药HR-500IS30CCR30纤维类材质100-8000233036.140/1705-251-5污水,药品.食品.造纸,制药HR-500JS30CMR30固液混合介质100-8000233036.140/1705-251-5陶瓷,涂料HR-500KS30FSR30固液混合介质100-8000233036.140/1705-251-5污水,涂料,造纸,制药HR-500LS30FER30乳状液100-8000233036.140/1705-251-5污水,涂料,造纸,制药HR-500MS30FMR30固液混合介质100-8000233036.140/1705-251-5陶瓷,化妆品.制药.食品.烟草HR-500NS30CMR30搅拌桨功能1000-40000234036.140/170高速混合陶瓷,食品.污水HRZ5小样品分散0.2-50456.340/6010-501-10生物药品.HRZ10小样品分散1-2509106.310/6010-501-10生物药品.HRZ14小样品分散100-100013146.310/6010-501-10生物药品.创新点:1)采用进口电机,运行稳定,噪音低,可长时间运作 2)工作头部分采用不锈钢材质,耐腐蚀 30无极调速 沪析HR-500 高剪切分散乳化机
  • 首例国产全自动高温气体分析仪进入美国市场
    专业容量法高温高压气体吸附仪研发及生产厂家--北京金埃谱科技有限公司,与美国佛吉尼亚理工大学在不久前签订了高温高压气体吸附仪采购合同,并于近日顺利完成仪器的验收及调试!这是国产高温高压气体吸附仪首次成功杀入美国市场,对于国产高温高压吸附仪器具有里程碑式意义 同时也打断了国外产品的垄断地位!这是继金埃谱科技的容量法高温高压气体吸附仪获得国内众多用户(中国石油大学、四川大学、北京化工大学、河南理工大学、中国矿业大学、中国地质大学、国电科学技术研究院等)的信赖后,又博得国外用户亲睐的力证!   在采购初期,金埃谱科技给予佛吉尼亚理工大学提供了免费的储氢材料测试服务。并且,金埃谱从客户那得知,客户也给其竞争对手们(美国本土企业)提供了相同样品供测试。但是,经客户对比3家的测试数据,金埃谱科技的测试结果(如下图)更加准确可信且符合其储氢材料的实际值,从而赢得了客户的高度赞许、认可并达成采购协议!期间共历时一年多,这对于国产高温高压气体吸附仪行业来说实在是不容易!但是事实证明:可靠的质量、准确的数据、高性价比和完美的服务是所有客户所钟爱的!   弗吉尼亚理工大学(Virginia Tech),全称为弗吉尼亚理工学院暨州立大学(Virginia Polytechnic Institute and State University),是一所位于美国东岸弗吉尼亚州(Virginia)的著名公立大学。弗州理工成立于1872年,现已发展成弗吉尼亚州内规模最大、提供学位最多的创新研究性综合高等院校。根据卡内基教育基金会于2005年公布的大学分类,弗吉尼亚理工被归类为特高研究型大学(very high research activity)。是全美最强四大理工之一。到2009年5月为止,弗州理工师生正在共同研究的项目多达6,697个,研究范围跨度很大,从生物技术到材料工程,从环境能源到食品健康,从土木建设到计算机信息,研究成果都令人刮目相看。
  • 拓捷仪器发布TOP系列高温高压消解仪新品
    高温高压消解仪一:产品简介 TOP系列高温高压消解仪是浙江拓捷仪器设备有限公司独立研制的产品。一体式智能液晶触摸屏控制,具有消解快速、高效、节能、方便等优点,适用于实验室各类样品的消解前处理过程,为实验样品中主量及微量元素的分析提供高效优质的样品制备。能够快速地同批次处理49个土壤、食品、化妆品等样品,是实验样品中主量及微量元素的消解前处理的一把好手!二:市场前景元素的分析测定是否准确对实验研究相当的重要,而在元素分析前对样品前处理是分析化学研究的重要过程。作为测定微量元素及痕量元素时消解样品的得力助手,高温高压消解仪主要通过利用高压消解罐体内强酸或强碱且高温高压密闭的环境来达到快速消解难溶物质的目的。三:基本参数四:竞争优势世界上第一台高温高压电热消解仪1:高温高压高通量2:专利反应槽结构设计3:专利冷却块结构设计4:操作简单,维护方便,5:性价比高。五:消解罐组件创新点:(1)现在市场上的消解仪主要有微波消解仪和电热消解仪,微波消解仪能够做高温高压消解,而电热消解仪只能做常压的消解。拓捷仪器生产的高温高压电热消解仪现在是市场上唯一的高温高压电热消解仪。 (2)拓捷仪器通过技术革新的高温高压电热消解仪能够进行高温高压的消解反应,消解效果可以跟微波消解相媲美。 (3)专利的反应槽结构设计使得消解罐内罐有消解外罐的保护,能够进行高温高压的消解反应。专利的冷却块设计解决了电热消解仪消解反应完成后的快速冷却问题,大大提高了消解效率。 TOP系列高温高压消解仪
  • IMCE发布双样品高温弹性模量仪新品
    双样品高温弹性模量仪HT1600-DS,在原有HT1600基础上,增加了双样品支座及测试系统;性能上,指标同HT1600相同,可以同时测试2个样品,提高测试效率一倍,并且可以添加可选件立式膨膨胀仪!创新点:双样品高温弹性模量仪HT1600-DS,在原有HT1600基础上,增加了双样品支座及测试系统;性能指标同HT1600相同,可以同时测试2个样品,提高测试效率一倍,并且可以添加可选件膨胀仪! 双样品高温弹性模量仪
  • 科学期刊计划建立防剽窃机制
    科学期刊计划建立防剽窃机制   “剪切—粘贴”文化将被交叉检查软件阻击   据《自然》网站报道,包括Elsevier和Springer在内的一些大的出版商正在准备打击剽窃,他们将推出软件(CrossCheck software)来检查投稿文章是否存在雷同,或是从已发表文章大块改写而来。   在此之前,据《自然》所做的一项非正式调查显示,使用该软件可确定大量的投稿文章存在剽窃行为,某杂志甚至查出剽窃行为达23%。从2008年6月开始,许多出版商(包括自然出版集团)在过去的两年里已开始试验交叉检查软件。该项服务使用美国加州奥克兰iParadigms公司生产的iThenticate交叉检查软件,它的优势是其数据库具有的全文文章数量巨大,使之能够与其他文章比对。   在过去几个月里,随着出版商扩大他们的交叉检查测试,一些人发现了惊人的剽窃程度——从自我剽窃到拷贝其他文章的几个段落或全文。Taylor & Francis公司6个月来一直对三本科学杂志进行交叉检查测试,发现其剽窃率分别为10%、6%和23%。   出版者不能确定剽窃是否在增加,抑或是现在被发现的更多,或两者兼而有之。“几年以前,我们1年发现一两个剽窃案例。现在我们1个月发现一两个”,刚刚开始采用交叉检查的美国计算机学会出版主任Bernard Rous说。   交叉检查揭露出的剽窃程度已经足够让出版商喜欢这款软件,但使用交叉检查软件给出版商增加了额外的成本和管理费用。看起来检查每篇文章花费0.75美元很合理,但是编辑们需要花费大量时间来检查被软件怀疑的文章。   此外,确定剽窃需要对相关的两篇文章都给以专业的解释,有时“抄袭”自己以前的方法和材料是正当的,比如可以用不同的方式来描述如何跑凝胶电泳。
  • 新区企业自研高温测压取样仪器国内首次应用成功
    近日记者获悉,新区企业中海油服油田技术事业部塘沽作业公司作业小队在渤海油田渤中区块某井成功完成自研205℃高温地层测试仪器(简称“EFDT-Flame”)的首次海试作业,累计完成测压7个点,并取得1个深度点2280毫升稠油样品。本次作业成功,为中海油服自主研发的钻井中途油气层测试仪进军高温高压市场打下了坚实基础。据了解,EFDT-Flame是中海油服油田技术事业部自主研发的全新一代电缆地层测试仪,依托于集团公司《超高温高压电缆测井系统研制与产业化应用》项目,各模块全部采用耐温205℃、耐压140MPa指标设计,定位中深层高温高压油气勘探市场。本次作业仪器组成主要包含集成化遥传模块(含通讯和伽马功能)、集成化电子线路、宽频调速液压动力、大容量多PVT、井下流体实验室、大排量等压差泵抽、探针双挂和异向解卡等主要功能模块。其中,井下流体实验室可提供密度、粘度、电导率、光谱组分及荧光五种实时流体识别数据,宽频调速液压动力配合大排量等压差泵抽模块实现精准流动压力控制、效率更高,仪器整体具有集成化高、功能全、适应力强等优点。中海油服自主研发的钻井中途油气层测试仪自2010年首次在渤海地区投产应用以来,经过长达十几年的有效经营,通过软硬件升级、模块优化、科研产品推陈出新,已形成模块化、集成化、数字化等多元成熟体系。现场作业队伍具备丰富的测井经验、成熟的资料解释评价、可靠的装备维保输出、过硬的研发技术支持,能够高质高效提供测压、取样推荐深度及仪器优化组合建议,同时结合RTC实时作业支持系统,现场通过密切监测作业参数和精细化操作仪器,高质量完成每口井作业。自钻井中途油气层测试仪商业化投产以来,已累计作业700余井次,取得地层样品1500余个,测压数据高达上万个设计点。截至目前,中海油服自研钻井中途油气层测试仪已具备23支作业队伍,广泛分布渤海、黄海、东海、南海、陆地以及国外众多市场,与全球多个国家建立战略合作伙伴关系。应用市场存在150°型、175°型、205°型三种可耐不同地下井温的作业设备,9种探针系列、3种泵抽模式、6种取样模块、全系19种作业模块,可适配不同渗透、不同流度、不同岩层等全方位测井保障,成功打破市场限制,进军国际化高温高压等高难度测井市场。
  • 高温老化试验箱试验时注意事项
    高温老化试验箱试验时注意事项:1.高温老化试验箱应安放在室内干燥和水平处,防止振动和腐蚀。2.要注意安全用电,根据烘箱耗电功率安装足够容量的电源闸刀。选用足够的电源导线,并应有良好的接地线。3.带有电接点水银温度计式温控器的烘箱应将电接点温度计的两根导线分别接至箱顶的两个接线柱上。另将一支普通水银温度计插入排气阀中,(排气阀中的温度计是用来校对电接点水银温度计和观察箱内实际温度用的)打开排气阀的孔。调节电接点水银温度计至所需温度后紧固钢帽上的螺丝,以达到恒温的目的。但必须注意调节时切勿将指示铁旋至刻度尺外。4.当一切准备工作就绪后方可将试品放入烘箱内,然后连接并开启电源,红色指示灯亮表示箱内已加热。当温度达到所控温度时,红灯熄灭绿灯亮,开始恒温。为了防止温控失灵,还必须照看。5.放入试品时应注意排列不能太密。散热板上不应放试品,以免影响热气流向上流动。禁止烘焙易燃、易爆、易挥发及有腐蚀性的物品。6.当需要观察工作室内样品情况时,可开启外道箱门,透过玻璃门观察。但箱门以尽量少开为好,以免影响恒温。特别是当工作在200℃以上时,开启箱门有可能使玻璃门骤冷而破裂。7.有鼓风的烘箱,在加热和恒温的过程中必须将鼓风机开启,否则影响工作室温度的均匀性和损坏加热元件。8 工作完毕后应及时切断电源,确保安全。9 高温老化试验箱内外要保持干净。
  • 粉体流变仪 | 置换,升级
    置换,升级-粉体流变学设备-置换您的粉体流变学设备,开始在安全、无尘的环境中,利用最新的软件功能,在各种温度下对粉体进行表征。获取世界上用途最广的粉体流变设备的机会将您的粉体流变设备置换为安东帕多功能、面向未来的 MCR流变仪粉体用途多样,我们的粉体流变平台也如是。表征任何粉体,从低负荷(基本流动性能、内聚强度、空气保留等)到高负荷(剪切试验、壁面摩擦、压缩性等),从低温到高温,均可在完全无尘的环境中进行。用您的旧粉体流变学设备置换全新的 MCR 流变仪,并免费获得这些粉体配件。一个基本流动性能(BFE)套件,包括所需的螺旋形双叶片搅拌器一个粉体流动池获得专利的防尘保护罩大容量和小容量环形剪切池(18.9 ml 和 4.3 ml)一种用于剪切池的对流温度装置(-20 °C 至 +180 °C),可选配湿度控制系统(相对湿度 5%-95%)此流变学模块包含一套Peltier控温系统(-20℃至+180℃)和一套平行板测量系统流变仪软件包兼容Windows10及以上系统(SQL数据库和制药合规)安东帕的粉体流变学设备,以粉体流动池和粉体剪切池为中心,用途广泛多样。粉体流动池作为一个灵活、安全的工作平台,用于测量公认的粉体特性,如基本流动性能、内聚强度、压降、脱气时间等,同时通过专利的防尘罩保证无尘工作环境。环形粉体剪切池完善了安东帕粉体流变学产品的组合,多种方法的组合提供了更高级别的工艺条件模拟能力。剪切力、压缩性和壁面摩擦力的测量可以在温度范围从 -160 °C 到 +600 °C 和相对湿度水平从 5 %rH 到 95 %rH 的条件下进行。不断更新的软件确保了实现无瑕疵表征,并指导你逐步完成测量。您还可以使用流变仪来表征液体,其所使用的流变仪模块由一个珀尔帖温度装置和一个平行板测量系统组成。 请与我们联系了解您的置换价格为您的粉体流变设备进行置换方式1:识别下方二维码 方式2:点击“阅读原文”
  • 铁基高温超导研究成果再夺国家自然科学一等奖
    2014年1月10日,国家科技奖励大会在人民大会堂隆重召开。中共中央总书记、国家主席、中央军委主席习近平,中共中央政治局常委、国务院总理李克强等出席大会并为获奖科学家颁奖。   以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所/北京凝聚态国家实验室(筹)(以下简称&ldquo 物理所&rdquo )和中国科学技术大学(以下简称&ldquo 中国科大&rdquo )研究团队因为在&ldquo 40K以上铁基高温超导体的发现及若干基本物理性质研究&rdquo 方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。   这也是继物理所在1989年&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 获得国家自然科学一等奖以来,又一项高温超导研究领域的国际一流成果。   物理学中的璀璨明珠,未来应用的希望之星   超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。   在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。它仿佛是镶嵌在山巅的一颗璀璨明珠,吸引着全世界无数的物理学家甘愿为之攀登终生。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。   也许大多数人还没有察觉到,其实超导已经或多或少地走进了人们的生活。近年来,国内外相继研制成功了多种超导材料和超导应用器件,超导正在为人类的工作、学习和生活提供着便利。如高温超导滤波器已被应用于手机和卫星通讯,明显改善了通信信号和能量损耗 世界上各医院使用的磁共振成像仪器(MRI)中的磁体基本上都是由超导材料制成的 使用的超导量子干涉器件(SQUID)装备在医疗设备上使用,大大加强了对人体心脑探测检查的精确度和灵敏度 世界上首个示范性超导变电站也已在我国投入电网使用,它具备体积小、效率高、无污染等优点,是未来变电站发展的趋势。   这些超导应用,在1911年荷兰物理学家Onnes发现超导的时候,人类绝对没有预测到它今天的应用。超导在未来可能给人类生活带来多大的变化,也将大大超乎我们今天的预期。若能发现室温超导体,人类生存所面临的能源、环境、交通等问题将迎刃而解。   中国成果震动学术界   物理学家麦克米兰根据传统理论计算断定,超导体的转变温度一般不能超过40K(约零下233摄氏度),这个温度也被称为麦克米兰极限温度。   是否人类对超导的应用确实只能被限制在40K以下,还是麦克米兰使用的传统理论本身存在缺陷?40K麦克米兰极限温度是否可能被突破?为了探索这个问题,世界各地的科学家们做了无数次尝试。1986年,两名欧洲科学家发现以铜为关键超导元素的铜氧化物超导体,转变温度高于40K,因而被称作为高温超导体。2007年10月以来,王楠林、陈根富研究组就尝试生长LaOFeP和LaOFeAs单晶样品,并计划开展其他稀土替代物CeOFeAs等材料的合成。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。之后,中国的铁基超导研究工作像井喷一样。中国科学家首先发现了转变温度40K以上的铁基超导体,接着又发现了系列的50K以上的铁基超导体。与铜氧化物高温超导体不同,初步的研究表明,铁基超导体在工业上更加容易制造,同时还能够承受更大的电流,这为应用奠定了基础。但与此同时,铁基超导体性质极为复杂,对科研人员的理论功底和实验技能都提出了更高的要求。   为了彻底揭开高温超导的原理,探索和寻找到临界温度更高、更能广泛应用于实际生产生活、惠及千家万户的超导体,物理所和中科大的科学家们在铁基高温超导研究中引领了国际研究的热潮。国际知名科学刊物Science刊发了&ldquo 新超导体将中国物理学家推到最前沿&rdquo 的专题评述,其中这样评价道:&ldquo 中国如洪流般涌现的研究结果标志着,在凝聚态物理领域,中国已经成为一个强国&rdquo 。同时铁基超导体工作研究被评为美国Science杂志&ldquo 2008年度十大科学突破&rdquo 、美国物理学会&ldquo 2008年度物理学重大事件&rdquo 及欧洲物理学会 &ldquo 2008年度最佳&rdquo 。   2013年2月,中国科学院国家科学图书馆统计显示,世界范围内铁基超导研究领域被引用数排名前20的论文中,9篇来自中国,其中7篇来自该研究团队。这一切都表明,该团队在铁基超导方面的研究,毫无疑问已经走在了世界的最前沿。   高温超导的研究基地   物理所对高温超导的探索和研究历史可以追溯到上世纪70年代。1986年,铜氧化物高温超导体被发现。1987年物理所研究组独立地发现了起始转变温度在100K以上的Y-Ba-Cu-O新型超导体。在此之前,世界上一切超导研究都必须采用昂贵并难以使用的液氦来使超导体达到转变温度,这对超导研究形成了巨大的障碍。物理所的这项成果把使用便宜而好用的液氮来达到超导转变温度变为现实,为超导研究开辟了一片崭新的天地,大大方便和加速了全世界的高温超导研究,并荣获1989年国家自然科学一等奖。同年,经国家计委批准,物理所成立了超导国家重点实验室。 以&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 为代表,物理所作为中国最重要的高温超导研究基地,在铜氧化物高温超导体的研究中做出了一系列重要的研究成果,为人类理解和应用超导体做出了中国人应有的贡献。   中科大从上个世纪80年代以来,也一直在高温铜氧化合物超导研究领域从事着重要的工作,并于1992年成立了中科大超导研究所,为我国在高温超导领域的发展做出了重要的贡献。同时,经过中科大几代人的努力坚持,为我国培养并储备了一批从事高温超导研究的专业人才。   铜氧化物高温超导体在人类超导研究的历史上发挥了重要的作用,但它们属于陶瓷性材料,复杂的制作工艺使其大规模应用难以实现。上个世纪九十年代中后期,国际物理学界倾向认为铜氧化物超导体能给出的信息基本上被挖掘殆尽,通过铜氧化物超导体探索高温超导机理的研究遇到了瓶颈。   机遇和有准备的头脑   铜氧化物高温超导体研究进入瓶颈期以后,国际上的相关研究进入低谷,在各种学术期刊,特别是那些高影响因子的期刊上发表高温超导的论文变得愈发困难。国内的高温超导研究因此遭受了打击,相关研究人员纷纷转到其他领域。   物理所很早认识到评价科学研究的关键是工作本身的科学意义,而非论文数量或影响因子。高温超导具有极高的科学重要性和广泛的应用前景,探索新型高温超导材料,开辟更多的高温超导研究蹊径,才是应对瓶颈期的正确态度。在这样的评价机制下,物理所顶着&ldquo 没有好文章&rdquo 的压力坚持高温超导研究,为将来的科学突破做好了准备。与此同时,以陈仙辉为代表的中科大超导研究所的研究人员也一直坚持在高温超导研究领域默默耕耘,并保持着对高温超导二十年如一日的研究热情,并与物理所的同行建立了良好的合作研究,为后来的铁基超导研究奠定了合作基础。   基于长期的超导研究,物理所赵忠贤院士等从事超导研究的科研人员认为在某些具有特殊磁或电荷性质的层状结构体系中可能存在高温超导体,并一直不懈探索。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。虽然这个转变温度仍然低于40K,但它立刻引起了物理所人的注意。由于铁的3d轨道电子通常倾向形成磁性,在该种结构体系中出现26K超导则非同寻常,有可能具有非常规超导电性。以赵忠贤院士为首,大家一致认为:LaOFeAs不是孤立的,26K的转变温度也大有提升空间,类似结构的铁砷化合物中很可能存在系列高温超导体。必须抓住机遇,全力以赴!   突破极限,勇攀新高   由于最早发现的铁基超导样品转变温度只有26K,低于麦克米兰极限,当时的国际物理学界对铁基超导体是不是高温超导体举棋不定。中科大陈仙辉研究组和物理所王楠林研究组同时独立在掺F的SmOFeAs和CeOFeAs中观测到了43K和41K的超导转变温度,突破了麦克米兰极限,从而证明了铁基超导体是高温超导体。这一发现在国际上引起了极大的轰动,标志着经过20多年的不懈探索,人类发现了新一类的高温超导体。   为了进行更加系统和深入的研究,必须合成一系列的铁基超导材料才能提供全面、细致的信息。物理所的赵忠贤组利用高压合成技术高效地制备了一大批不同元素构成的铁基超导材料,转变温度很多都是50K以上的,创造了55K的铁基超导体转变温度纪录并制作了相图,被国际物理学界公认为铁基高温超导家族基本确立的标志。   中科大陈仙辉组在突破麦克米兰极限后,又对电子相图和同位素效应进行了深入研究,发现在相图区间存在超导与磁性共存和超导电性具有大的铁同位素效应,这些现象后来都被证明是大多数铁基超导体的普适行为,对理解铁基超导体的超导机理提供了重要的实验线索。另外,陈仙辉组发展了自助溶剂方法,生长出高质量的单晶,为后续的物性研究奠定了基础。   物理所王楠林组从实验数据出发,猜测LaOFeAs在低温时有自旋密度波或电荷密度波的不稳定性,超导与其竞争。闻海虎小组合成了首个空穴型为主的铁基超导体。方忠与实验工作者深入合作,进一步加强了有关物性研究。方忠及其合作者计算了LaOFeAs的磁性,并且得到了和猜测一致的不稳定性,做出了&ldquo 条纹反铁磁序自旋密度波不稳定性与超导竞争&rdquo 的判断。这一预言随后被国外同行的中子散射实验证实。在当前的铁基超导机理研究中,自旋密度波不稳定性同超导的关系已经成为最主流的方向。   截至2013年1月4日,铁基超导体的8篇代表性论文SCI共他引3801次, 20篇主要论文共SCI他引5145次。相关成果在国际学术界引起强烈反响,被Science、 Nature、 Physics Today、Physics World等国际知名学术刊物专门评述或作为亮点跟踪报道。著名理论物理学家,美国佛罗里达大学Peter Hirschfeld教授说:&ldquo 一个或许本不该让我惊讶的事实就是,居然有如此多的高质量文章来自北京,他们确确实实已进入了这个(凝聚态物理强国)行列&rdquo 美国斯坦福大学Steven Kivelson教授说:&ldquo 让人震惊的不仅是这些成果出自中国,重要的是它们并非出自美国。&rdquo   默默无闻,无私奉献   在五名获得国家自然科学一等奖的科学家背后,有着一支庞大的研究团队。他们虽然默默无闻,但所做的杰出贡献都在铁基超导体的研究中熠熠闪光。   当已经发现的铁基超导体系不断产出优秀论文的时候,物理所的靳常青&ldquo 要走别人没走过的路,要做出自己的新体系&rdquo 。他通过不懈地尝试和探索,在铁基超导体1111体系和122体系之外,找到了第三种全新的以LiFeAs为代表的111体系超导体,引起了强烈的国际反响。LiFeAs的自旋密度波性质和其他体系有着明显的不同,这对进一步探索高温超导的内在物理机制和提高超导转变温度都有重要的意义。   丁洪是国家第一批&ldquo 千人计划&rdquo 入选者。他放弃了美国波士顿学院的终身教授职位毅然回国后的第二天就投入到了铁基超导的研究当中。当时,丁洪在国内的实验室还没有建成,他拿着样品跑到日本完成了测量,首次在实验上提出了铁基超导体的能隙对称性,解决了这个曾在铜氧化物超导体中被长时间争论的问题。   任治安当时是赵忠贤组的主要成员之一,之前也是赵忠贤的博士生,直接与其他80后一起合成了一系列转变温度在50K以上的铁基超导体。   王楠林研究组当时有一员干将名叫陈根富,2007年10月回国加入该组后,即着手开展了LaFeAsO等铁砷超导材料的探索合成工作。他不但率先发现了41K的CeFeAs(O,F)新超导体,还首次生长出了一批高品质的超导单晶样品,推动了相关铁基超导机理的研究。   就是这样一群值得世人崇敬的科学家,积极进取,努力拼搏,淡泊名利,勇攀高峰,让世界对中国竖起了大拇指。而在我们满怀着景仰之情采访他们的时候,他们却一点也不觉得自己做了什么了不起的事情。就像赵忠贤院士说的那样,&ldquo 荣誉归于国家,成绩属于集体,个人只是其中的一分子&rdquo 是每一个物理所人心中的信条。他们还反复强调说,自己只是中国科研人员中一个最最普通的集体。我们相信,和他们一样优秀和勤奋,乐于奉献,有志报国的科学家在中国的各个地方、各个领域还有很多,都在等待着厚积薄发,破茧而出的那一刻。   民生超导,强国超导   百余年长盛不衰的超导研究历史,表明新超导体探索存在广阔的空间,特别是铁基高温超导体的发现也为潜在的重大应用提供了全新的材料体系。无论是比高铁快近一倍的超导磁悬浮列车,比现有计算机快数十倍的超导计算机,还是基于超导技术的导弹防御和潜艇探测系统,都将在不远的未来走进我们的生活、生产和国防。超导,这项二十世纪初的伟大科学发现,必将在二十一世纪改变每一个人的生活。   习近平总书记在考察中科院时,提出了&ldquo 率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构&rdquo 的明确要求和殷切期望,为中科院引领支撑创新驱动发展战略,全面深化科研体制改革,取得科技跨越发展,建设一流科研机构指明了方向。世界科技的竞争已经演化为国家综合实力的竞争,物理研究所放眼前沿,勇争一流,铁基高温超导只是他们科技强国梦里的一个片段。许许多多这样的片段连接起来,就可以被谱写成中华民族伟大复兴的感人篇章。
  • 钢铁厂热像仪选购指南,检测高温只是基本要素!
    安全生产,是钢铁行业的头等要事。无论是高温生产冶金设备(如冶金窑炉等),还是辅助性设备(如电力、电器和原料化工等),在运转的过程中,都需要定时巡查,避免因细小故障,造成整个生产系统的瘫痪,那么钢铁厂检修员该如何选择设备呢?01检测高温细节,保障人员安全钢铁在生产的过程中,都是在极端高温的环境下进行的,比如转炉、高炉料面、铁水罐/鱼雷罐等。在设备运行时,最高温度可达上千摄氏度,在高温铁水的长期侵蚀下,其内部耐火材料受到多次冲刷腐蚀很容易损坏脱落,需重点防范高温钢水穿包。但一般热像仪的测温范围达不到上千摄氏度,因此无法对钢铁设备进行检测,传统测温枪虽然能检测高温,但却只能测量点的温度,巡检工作繁重且不准确。红外热像仪清晰展示生产过程中鱼雷罐上的细小温差FLIR T800系列热像仪,能完美解决上述问题!T800系列热像仪最高可测2000℃,搭配FlexView双视场镜头,“1个镜头可拥有2种场景”,让您瞬间从广域视场切换到长焦视场,无需更换镜头。在钢铁厂的巡检过程中,既可以远距离大面积扫描,也可以近距离针对性定位,一机两用,非常实惠!02全天实时监控,保障钢材品质在钢铁各类产品生产的过程中,温差的区别可被用于确定从产品生产、压铸及各种其它应用的合格/不合格标准。红外热成像技术可重复精确地绘制热图像和热梯度,用于识别生产过程中的缺陷产品,这样就可以大大提高炼钢厂产品的合格率,符合国家出厂的标准!热图像清楚监测到钢坯中的缺陷钢铁企业可以选择FLIR Axxx系列热像仪,来定制钢铁厂专属自动化监控解决方案。配置智能传感器模式以后,FLIR Axxx系列热像仪便得以实现先进的红外热成像、边缘计算和工业物联网(IIoT)功能,用户可提前设置好预警标准,一旦发现不合格产品就能提醒工作人员查看,避免劣质产品出厂,影响企业形象。03维稳电力设备,保障后方稳定在钢铁厂实际的生产运行过程中,电力需量管理存在难预测、难发现、难降本、难调控等诸多痛点。据悉,一般钢铁厂内存在上百种设备,而且设备之间的关系较为复杂,根据生产需要,对不同的设备需要进行母联切换,这就导致电力系统拓扑非常复杂。如果一旦某个环节的电力设备失灵,很可能导致整个钢铁生产系统的突然停机,那么造成的成本损失将十分巨大,因此钢铁厂的电力巡检工作也非常重要!FLIR Ex-XT系列热像仪满足了用户在目标尺寸、工作距离、视觉细节和预算方面的各项需求,其红外分辨率最高可达320x240像素,所有型号均支持MSX® 技术(专利号:CN201380073584.9)和Wi-Fi功能,用户可从任意地点轻松分享图像,报告。FLIR Ex-XT系列热像仪操作还很简便,甚至只需要一根手指按压即可操作,非常适合钢铁厂繁重的电力巡检工作!以安全为本的钢铁企业在各部门检修设备的过程中不仅要维持设备运行,更要保障人身安全非接触式红外热成像技术就非常适合无论您是电气检修员,还是机械检修焊钳工
  • 谱育便携 | 致敬高温下的工作者 -- 夏季臭氧监督帮扶 第一弹
    夏季是臭氧污染频发的季节,为科学有效应对臭氧污染,持续改善区域环境空气质量,深入打好蓝天保卫战,谱育科技便携产品应用服务中心在这个酷暑,派出了帮扶小队,头顶烈日,脚踏热土,迎酷暑,战高温,配合多地环保监察部门,对企业进行现场帮扶检查,帮助其实现“在源头上削减产出、在过程中控制释放,在末端环节加强治理”。治理臭氧污染从VOCs入手臭氧生成的重要前提之一是挥发性有机化合物(volatile organic compounds,VOCs)。空气中的VOCs和NOx等气体在紫外光照射和高温条件下,会发生光化学反应,形成臭氧,而夏季紫外线强烈,更为臭氧的大量生成提供了条件。追根溯源,加强VOCs治理是控制臭氧污染的有效途径。第一站配合湖南省某生态环境保护综合行政执法支队进行大气督查帮扶集中培训在湖南某市,为加快解决其在2022年重点区域空气质量改善夏季监督帮扶工作中发现的问题,队伍工程师应邀参加当地政府环保部门组织的集中培训,讲解红外热成像气体泄漏检测仪和手持式FID(氢火焰离子化检测器)的原理、应用场景以及在检查中的作用,并配合环保部门到加油站和企业进行大气督察帮扶。加油站检查在加油站检查时,主要以加油站油气回收系统建设、密闭、操作方式和系统运行状况为重点,利用红外热成像气体泄漏检测仪和手持式FID相结合的方式,重点检查检测卸油口、油气回收口、回收管线、油罐车油气回收系统、耦合阀门等点位油气浓度是否满足《加油站大气污染物排放标准》(GB 20952-2020)要求。检查发现,多个加油站量油井存在油气泄漏,利用红外热成像泄漏检测仪拍摄到了明显的泄漏影像,能够直观地定位泄漏点位,在定位取证的同时,又方便了加油站工作人员进行检修和排查安全隐患的工作。企业检查在检查有组织排放的基础上,加强了对开放式作业场所逸散,以及通过缝隙、通风口、敞开门窗等无组织排放的检查。检查发现,在某工厂的涂装车间,依旧使用VOCs含量高的原料,并且在油漆使用、储存过程中,存在大量的VOCs逸散,手持FID检测到最大浓度超过了10000 ppm,车间内无组织排放严重。反馈当地环保部门某位工作人员说道:“多亏了谱育便携服务中心派来的专业人员,在这么热的天来到现场帮助我们,感谢他们的辛苦付出;也多亏有了这两款设备,可以摒弃以往依靠‘肉眼看、鼻子闻’的传统监测监管手段,把红外热成像气体泄漏检测仪当做我们的‘眼睛’,把手持式FID当做我们的‘鼻子’,在提高监测效率的同时,更大地提升了监测的灵敏度和准确度,真是事半功倍。”帮扶小队无惧酷暑,一往无前,冲在现场第一线,利用专业的技术知识和先进的仪器设备,帮助湖南省某环保部门和企业解决了许多“疑难杂症”,获得一致认可。此站帮扶结束后,队伍收到了对人员和仪器表示双重认可的感谢信。产品介绍EXPEC 1880 红外热成像气体泄漏检测仪► 准确泄漏定位,非接触,远距离操作,更安全► 图像增强模式,能检测到微小泄漏► 通过 WIFI 连接便携式挥发性有毒有害气体分析仪(FID+PID),红外热像仪屏幕可以同时显示FID和PID的检测数据► 通过 WIFI 连接防爆手抄器,红外热像仪图像可远程传输和控制► 具有视频录制和拍照功能,GPS定位,便于监督执法现场取证EXPEC 3050 手持式挥发性有机气体分析仪► 本安防爆+隔爆设计► PID+FID双检测器,满足不同监察场景需求► 主机重量不足2kg,体积小巧,便于携带► 内置防爆电池、储氢合金可现场更换,延长续航时间► 储氢合金使用氢气发生器电解纯水充氢,安全方便写在最后谱育便携致敬所有在酷暑里依然坚守岗位的战士们!这个夏天,“暑”你们最美!Ps:夏季进行室外工作或活动时,一定不要忘记做好防暑降温工作!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制