当前位置: 仪器信息网 > 行业主题 > >

属温度控仪

仪器信息网属温度控仪专题为您提供2024年最新属温度控仪价格报价、厂家品牌的相关信息, 包括属温度控仪参数、型号等,不管是国产,还是进口品牌的属温度控仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合属温度控仪相关的耗材配件、试剂标物,还有属温度控仪相关的最新资讯、资料,以及属温度控仪相关的解决方案。

属温度控仪相关的论坛

  • 气相色谱仪温度控制系统简述

    气相色谱仪温度控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]温度控制的准确和可靠,对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的可靠性而言至关重要。尤其是环境分析、生命科学、食品安全、石化分析、电子工业等样品较为复杂、分析方法较为复杂或者分析要求较高的领域,样品分析保留时间重现性的要求较高,对色谱系统温度的要求也比较高。本文简述色谱温度控制系统的基本原理和参与温度控制的主要元器件。[/font][align=center][font=宋体]简述[/font][/align][font=宋体]随着社会科技进步,分析工作者面临着日益增多的分析要求较高的工作,例如食品安全、环境分析、石化分析等方面存在较多复杂样品,一般对组分保留时间的重复性有较高的要求,这就要求[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]有更好的温度控制系统。[/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的温度控制系统属于典型的反馈控制系统,控制装置对目标部件的温度施加的控制作用,是取自目标部件温度的反馈信息,用来不断修正设定温度与实际温度之间的偏差,从而实现目标部件的控制任务,温度系统的结构如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][img=,503,129]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836001297_3118_1604036_3.jpg!w690x176.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]温度控制系统框图[/font][/font][/align][font=宋体][font=宋体]以[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱为例对控制系统的工作过程予以说明,在分析工作过程中,如果柱温箱的实际温度发生异常扰动,温度传感器将测定温度值反馈给比较点,温度控制系统将设置温度与测定温度的偏差[/font][font=Times New Roman]e[/font][font=宋体]发送给温度控制器,温度控制器向执行器发出对应的指令——调节加热功率和冷却部件,执行器接受指令使柱温箱温度恢复为设定值。[/font][/font][align=center][font=宋体]温度控制系统元器件组成[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制元器件组成如图[/font][font=Times New Roman]2[/font][font=宋体]所示,被控部件(柱温箱、进样口、检测器或者其他部件)内安装的温度传感器测定其实际温度传送给控制器,控制器调节执行器(包括加热器和冷却器)的工作,使加热器释放的热量与被控部件耗散热量(包括部件自身耗散热量和冷却器消耗热量)达到平衡,被控部件的温度即可达到稳定状态。[/font][/font][align=center][img=,323,158]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836089450_6453_1604036_3.jpg!w690x338.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]温度控制系统元件示意图[/font][/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]温度传感器[/font][/font][font=宋体]常用的温度传感器为铂电阻、热敏电阻和热电偶。温度传感器可以及时准确的测定被控部件的温度反馈给控制器。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]执行器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]通常使用加热器、柱箱风扇、冷却组件、冷却风扇、液氮或液体二氧化碳控制器作为温度执行器。[/font][font=宋体]加热器一般选用加热丝、加热棒等电阻式加热器为进样口、色谱柱、检测器或者其他部件提供加热源,以升高各部件温度。[/font][font=宋体]柱箱一般采用流动空气浴方式加热,柱箱风扇可以使柱箱内温度分布更加均匀,并加快柱箱升温降温速度。[/font][font=宋体]柱箱冷却组件包括柱箱后开门、后开门控制电机、风道、辅助降温风扇以及液氮、液体二氧化碳等部件,以降低柱温箱温度。[/font][font=宋体]某些特殊场合下,某些形式的进样口带有冷却风扇、液氮、液体二氧化碳部件降低进样口温度。[/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]控制器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制器通常情况下由晶闸管之类的电器元件和控制线路组成。色谱系统工作时,由控制器协调加热器和冷却器工作,以获得稳定温度。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]其他部件[/font][/font][font=宋体]保护器(温度熔断器、热电偶或温度开关),当温度控制出现严重故障时,迅速切换系统加热。[/font][align=center][font=宋体]温度控制系统的需要注意的问题[/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]控制系统的时间常数[/font][/font][font=宋体]温度控制系统稳定工作需要传感器与执行器之间的响应时间配合良好,否则将会出现温度震荡的现象。色谱柱温箱要求控制系统响应速度较快,以满足高精度、高速度温度控制要求。一般需要选择响应速度快的薄膜铂电阻符合高速度的控制器工作要求。而检测器、进样口或者其他金属基体的部件,一般需要系统响应时间不要过快。[/font][font=宋体]以进样口为例,常见的进样口使用金属块作为基体,当温度传感器测量到进样口温度低于设定值,控制器发出指令使加热器提高加热功率提高进样口温度。但是进样口温度升高到设定值并不能瞬间完成,即进样口接收到加热指令直至温度上升到设定值之间需要一定的时间差异,如果系统控制时间常数过短,在此期间控制器仍旧发出加热指令,那么进样口温度就会较多超出设定值,降温过程也同样会存在此问题。色谱工作者就会观察到加样口温度在设定值附近发生震荡。[/font][font=宋体]进样口一般使用装配式铂电阻,感知温度也存在一定延迟,与金属块升温延迟都是进样口温度时间常数的重要组成部分,温控系统必须设定有良好的控制信号时间延迟。[/font][font=宋体]也就是说,对于进样口此类的加热惯性较大的部件,当温度控制系统检测到进样口温度发生偏差时,并非迅速给出加热或降温指令,而是首先延迟一段时间,然后再进行调节。[/font][font=宋体]柱温箱系统的加热惯性较小,温控系统需要较短的时间常数。[/font][font=宋体]温度控制不稳定,从而干扰色谱图基线和待测组分的保留时间,比较典型的结果是正弦波状态的基线。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]故障和保护[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度系统的基本原理和常用元器件功能。[/font]

  • 【分享】SWK-B型可控硅数显温度控制器

    SWK-B型可控硅数显温度控制器 该控制器可与箱形高温电阻炉(马弗炉),双管定硫炉、灰熔点测定炉或其它电热设备配合,实现对炉内温度自动控制,以适应不同的试验对升温速度及控制温度的不同要求。 ◆SWK-B型控制器采用数字显示指示温度,炉温显示清晰准确。 ◆使用双向可控硅输出控制,切换无触电,具有寿命长、无噪声等优点。 ◆具有PID调节功能,能有效克服炉温过冲的现象,使得温度控制更准确。 ◆输出电压0~220V连续可调,可适应不同的升温速度要求。 ◆电源:AC 220V±10% ,50HZ ◆全导通输出电压可调 ◆最大允许负载5KW 使用说明书(节选)一、概述SWK-B型数显温度控制器用于配合箱形高温电阻炉、定硫炉及其它电加热设备,实现对炉内温度的自动控制,以适应不同的试验项目对升温速度和温度的不同要求。其主要特点有:1. 温度设定与测量采用数字显示,直观准确 2. 采用双向可控硅控制输出,切换无触点,具有使用寿命长,无噪音等优点。3. 具有PID调节功能,能有效克服炉温过冲现象,使温度控制更准确。4. 输出电压无级调节,可适应不同的升温速度要求。二、主要参数1. 输入电压:220V±10%,50HZ2. 输出电压:0~220V连续可调3. 最大允许负载:5KW4. 精度等级:0.5级5. 配用电偶:镍铬-镍硅,K值,0~1000℃6. 工作环境:0~40℃,相对湿度≯85%三、使用方法1. 使用前应首先检查控制器的内部接线是否脱落,如有松动应按原理图接好,可控硅管壳与散热器应接触良好,保证元件工作是散热正常。2. 控制器不应放置在具有剧烈震动的场合,控制器内部应保持清洁。3. 按电控器上所标输入(220V),输出位置,将电源与负载接好。4. 控制原理图见下图5. 打开电源开关键,工作指示灯亮,表示电源已接通。6. 顺时针转动电压调节选钮,使电压表指示到合适强度(220v),拨动”数显调节仪”右下方开关到设定(OFF)后, 顺时针转动开关上面的调节选钮,使温度显示到需要设定值;设定后,开关拨到测量(ON),绿灯亮开始工作,温度达到设定值后红灯亮,停止工作。四、常见故障及产生原因:......

  • 气相色谱温度控制原理简述及实现方式

    [font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器在正常进行工作时候,往往需要进行温度控制,如进样口温度控制可以使液体样品迅速气化,被载气带入色谱柱;柱温箱温度控制会影响混合样品的分离;检测器温度控制会影响检测器的灵敏度等。常用的温度控制主要是指加热升温(亦有降温和冷却控制)。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]本文介绍[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器进行温度控制的一般原理。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]1 [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]控温原理[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器控温原理简图如下[size=12px](供参考,不同厂家略有不同)[/size]:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d1/88/8d188c50a6ee9d7da973d4496a26fbd1.png[/img][/align][font=微软雅黑, sans-serif]控温过程中,进样口、检测器等部位的铂电阻(PT100)作为温度传感器,其电阻值会随外界温度的升高而增加;测温电路中含有恒流源电路,通过多路模拟开关在不同时刻为不同通道的铂电阻提供恒定电流,从而将温度信号转换为电压信号[i]U[/i][size=12px]1[/size];测温电路中获得电压信号[i]U[/i][size=12px]1[/size]较低,再通过温度调理电路对其进行放大和滤波,得到输出信号[i]U[/i][size=12px]2[/size];放大后的电压信号通过A/D转换电路,将模拟量转换成数字量[i]U[/i][size=12px]3[/size],传递给控制器做数字量运算处理;控制器接受温度数字信号[i]U[/i][size=12px]3[/size],比较设定温度值和实际温度的差异,经过PID算法输出PWM信号,通过双向固态继电器/可控硅等对220V交流信号进行斩波控制,调整加热部件功率,最终达到控温效果。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]控制器输出的信号一般通过光电耦合器(光耦)作用于可控硅,将输入端与输出端进行电气隔离,输出信号对输入端无影响,增强抗干扰能力。[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2 [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]实现温度控制的部件[/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]温度控制电路板[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]仪器温度参数在色谱工作站或者仪器面板上设置后,下发到温度控制板上,仪器开始执行该参数,进行升温或者降温。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]温度控制电路板上具有进行控温的电路模块和控制器等,一般而言,在进行加热升温过程中,可控硅指示灯会持续闪烁,表示仪器在进行升温控制。各厂家设计大同小异,下图为某厂家控温电路板:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/30/38/230387aac5b41bf1345e5baa91c637b3.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.2 [/font][font=微软雅黑, sans-serif]升温和降温执行部件[/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]非柱温箱升温和降温[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]非柱温箱升温和降温指的是进样口、检测器和转化炉等部件。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ae/ae/caeaea3b8b069134c4a55a42ed8007e4.png[/img][/align][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]在进样口、检测器等部位一般使用加热棒+铂电阻,升温时利用220V交流电[size=12px](亦有采用24V直流)[/size]在加热棒[size=12px](高阻值)[/size]上产生热量,通过铂电阻(PT100)对温度进行测量和反馈,使进样口、检测器等部位达到设定温度。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d6/0d/7d60dec18c0f0bc732114323722ee982.png[/img][/align][font=微软雅黑, sans-serif]降温时,加热棒停止加热,进样口、检测器等部位自然冷却或者通过小风扇吹风冷却。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.2 [/font][font=微软雅黑, sans-serif]柱温箱升温和降温[/font][font=微软雅黑, sans-serif]2.2.1 [/font][font=微软雅黑, sans-serif]柱温箱升温和温度混合[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱一般使用加热丝+铂电阻,升温时利用220V交流电在加热丝上产生热量,通过铂电阻(PT100)对温度进行测量和反馈,使进样口、检测器等部位达到设定温度。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/23/87/b23875c3d851b88b446fb55ef59464b7.png[/img][/align][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/96/12/79612fda0a57e20e1b38d292f437b402.png[/img][/align][font=微软雅黑, sans-serif]另外,柱温箱内部挡风板之后安装有风扇,通过风扇的转动和混匀作用,可以将加热丝产生的热量均匀分布在柱温箱内,保持柱温箱内具有合适的温度梯度。其工作的简单示意图如下,下左图为柱温箱风扇和加热丝的相对位置,下右图为升温和恒温时,柱温箱内部的气体流动方向[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/51/f1/851f15f7b55fa2fa82853692a64ab471.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.2.2 [/font][font=微软雅黑, sans-serif]柱温箱的降温[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]早期的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱在需要降温时,通过人工手动开启柱温箱门来实现,待温度降到指定温度后,关闭柱温箱门即可。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]目前的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱在程序升温结束恢复到初始较低温度,或者需要降温时,通过仪器自动实现。其主要实现机构主要为柱温箱内部的风扇和仪器后部的降温通道[size=12px](俗称“后开门”结构)[/size]。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/53/e7/b53e751decc03921882e8e8a7077793f.png[/img][/align][font=微软雅黑, sans-serif]仪器开始降温时,柱温箱后部的降温通道[size=12px](俗称“后开门”结构)[/size]在电机带动下开启,热风从上部出口吹出,冷风从下部进口进入,通过冷热交换,仪器柱温箱迅速降温;待温度达到接近指定温度,“后开门”结构短暂的反复进行开合关闭,对温度进行细调;温度达到指定温度后,“后开门”结构完全关闭。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3 [/font][font=微软雅黑, sans-serif]小结[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的温度控制在仪器分析中极为重要,除了文中常见的升温和降温之外,还涉及到快速升温、冷却剂降温、程序升温和程序降温等多个方面以及结构和设计上的改进与完善。因此了解相关原理,不仅有助于仪器的使用,也有利于仪器的维护和改进。[/font]

  • 胶体金读数仪温度控制

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]胶体金读数仪温度控制,胶体金读数仪在温度控制方面有着特定的要求,这主要是因为胶体金卡免疫反应对温度十分敏感,反应速度与温度成正比。在不同的温度下,同样的样本测量结果可能会有所差异。因此,为了确保测量分析结果的可靠性和重复性,胶体金读数仪通常具备内置的温度控制功能。具体来说,一些胶体金读数仪如河南冠宇仪器有限公司生产的金标读卡仪,就具备内置37℃恒温控制测量的功能。这种设计可以确保在进行胶体金卡免疫反应时,反应环境温度保持稳定,从而减小因温度波动带来的测量误差。此外,对于胶体金读数仪的贮存温度也有一定要求。一般来说,胶体金读数仪的贮存温度范围在-20℃至55℃之间,以确保仪器在存放期间不受极端温度影响而损坏或性能下降。在使用胶体金读数仪时,除了要注意仪器的温度控制外,还需要注意其他环境因素对测量结果的影响。例如,湿度、无腐蚀性气体和通风良好的场所也是保证仪器正常运行和测量结果准确性的重要因素。综上所述,胶体金读数仪在温度控制方面有着严格的要求,通过内置恒温控制功能和合理的贮存温度范围,可以确保测量结果的可靠性和重复性。同时,在使用过程中还需要注意其他环境因素的影响,以保证仪器的正常运行和测量结果的准确性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/07/202407041006162715_1109_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 分享如何判断温度控制仪的输出故障

    一、继电器输出的温度仪表主要故障判别法:  1、热电偶或热电阻完好状况与仪表接线正确的前提下,仪表通电后不升温,甚至测量温度向下跌的现象(设定温度高于测量温度先决条件下)。  1)仪表的主控输出是继电器,输出而被控制的电路中是交流 接触器(或中间继电器)时;首先搞清此输出为触点控制。  检查主控输出的端子接线是否正确。因我厂仪表主控输出是反作用,所以我厂仪表主控输出的继电器闭端应与交流接触器(中间继电器)的线包一端相连,其他接线正确,虽然仪表运行中,绿指示灯亮,但不升温。(由于仪表是反作用原理)。  仪表主控输出继电器常开端,按前述与交流接触器(中间继电器)的线包连线正确的前提下,仪表通电运行中,绿指示灯亮,仍不升温。  检查方法:把万用表放在交流电压、交流250V档,万用表上一根表棒在仪表主控输出的继电器常开的端子上,另一根表棒放在交流220V电源的中线上,万用表显示是否有交流220V电压。  A) 若无电压数值:说明交流接触器(中间继电器)线包的一端没接在仪表主控输出继电器的常开端子上,而接在仪表主控输出的继电器的常闭端子上,(说明交流接触器或中间继电器线包两端无电压输入)。  检查方法,查一下交流220V电源相(火)线有无用电线连到仪表主控输出继电器的中间端子上。或所用的电线内部开路而造成。  仪表主控输出继电器通电后没有反转,说明仪表主控继电器中间端与常闭端咬死。  B)若有约交流220V电压,说明交流接触器或中间继电器线包两端有约交流220V电压加上。  检查方法:查一下交流接触器或中间继电器的线包电压是否定220V。若该产品要求线包电压为交流380交流接触器(中间继电器)就无法工作。要求换上线包电压为交流220V的交流接触或中间继电器。  1)符合上述要求,还不能正常工作。在不通电状况下,用万用表放在电阻×10档上,把万用表的两根表棒按在交流接触器工中间继电器的线包两端,若电阻值很大,说明线包内的线圈断开或损坏,应调换交流接触器或中间继电器。若有电阻数值,说明线包内无铁心,不能产生电磁吸力而无法工作。就应调换交流接触器或中间继电器。  2、仪表运行工作中,测量温度已高于设定温度,仪表绿色指示灯已熄灭,但测量温度还一直上升。  检查方法:  1)表的主控输出是继电器触点输出,而被控电路中是交流接触器或中间继电器时。  (1)仪表不通电时,用万用表电阻×1Ω档去检测,信表主控继电器的中间庙与常开端电阻数值大小来判别。  ①若有电阻,甚至电阻数值很小,说明仪表主控输出的继电器中间端与常开端因长期工作咬死,应调换仪表主控输出的继电器,在现场只能是更换仪表。  ②若电阻数值很大,说明仪表主控输出的继电器完好,被控电路中交流接触器或中间继电器可能有问题。检查方法:  用万用表电阻×1Ω档去检测交流接触器或中间继电器的常开端的电阻值大小来判别。若有电阻数值,甚至电阻数值很小。说明交流接触器或中间继电器常开端因长期工作而咬死。只能把交流接触器或中间继电器更换。反之电阻值很大,说明交流接触器或中间继电器完好。  (2)仪表通电时,信仪表在运行工作中,当测量温度高于设定温度,仪表的绿色指示灯关,并大于10℃时,把万用表放在交流电压250V档上,用万用表一根表棒桉在仪表主控继电器的常开端;另一根表棒桉在交流220V电源的中线万用表显示是否有电压数值。①若仍约交流220V电压值,说明仪表主控继电器长期工作而咬死,应更换仪表。②若无电压值,说明仪表主控继电器完好。再用上述检查方法,用万用表一根表棒桉在交流接触器或中间继电器常开端的出线处,另一根表棒桉在交流220V电源的中线,是否有电压数值。若有约交流220V电压值,说明交流接触或中间继电器常开端长期工作而咬死,应进行调换。若无电压数值,说明交流接触器与中间继电器的常开端完好。  二、SSR(电平输出)的温度控制仪表主要故障判别法:  1、热电偶或热电阻完好状况与仪表接线正确的前提下,仪表通电后不升温,甚至测量温度向下跌的现象(设定温度高于测量温度先决条件下)  仪表的主控输出是SSR(电平)输出而被控制的电路中是外接固态继电器时。应首先应搞清此仪表的主控输出时,仪表上绿色指示灯亮,主控输出端子上有12V电平,而当绿灯指示灯暗,无电平或是OV。  检查方法  1)不通电的状况下  检查一下仪表主控输出同固态继电器之间接线是否正确,仪表主控输出SSR有(+)与(—)同固态继电器上的两小螺钉处或称固态继电器信号控制端的(+)与(—)相连一定要正确。同时把相连的线,用万用表电阻×1Ω档,量一下连线是否开路。  2)电的状况下:  用万用表直流电压20V档,把万用表两表棒按在仪表主控输出的两个端子(但弄清正负),在仪表绿色指示灯亮时,是否有12V直流电压。  A)若万用表测量无12V时,说明仪表主控输出有问题。检查仪表的型号是否正确,应更换仪表。  B)若万用表测量有12V时,说明固态继电器有问题,要更换固态继电器,也可以在不通电时,先把固态继电器大螺钉处的接交流220V电源相(火)线的连线拆掉,然后通电,用万用表电阻×1档,把万用表两根棒按在固态继电器的两个大螺钉上,当仪表绿色指示灯亮时,万用表显示的电阻值很大,也说明固态继电器有问题应更换。反之,万用表显示的电阻值接近0时,说明固态继电器完好  2、仪表运行工作中,测量温度已高于设定温度,仪表绿色指示灯已熄灭,但测量温度还一直上升。仪表主控输出是SSR(电平),而被控电路是固态继电器时。  检查方法:  (1)仪表不通电时,把万用表电阻×1KΩ档上,用万用表的两根表棒桉在固态继电器两个大螺钉上,(但要拆除大螺钉处与外行的连线)。  ①若万用表上显示的电阻数值∞大时,说明固态继电器冷态时完好。  ②若万用表上显示有电阻或电阻数值很小时,说明固态继电器损坏,要调换。  (2)仪表通电时,仪表运行工作中,当测量温度高于设定温度,并大于10℃时,仪表的绿色指示灯灭,把万用表放在直流电压20V档上,用万用表上两根表棒桉在仪表主控输出的两端,但正负要弄清,万用表上显示是否有电压数值。  ①若万用表上显示有直流12V电压值时,说明仪表有问题,应更换仪表。  ②若万用表上显示无电压值,说明仪表正常完好。那么要检查固态继电器。方法是在未通电前,先把固态继电器大螺钉与外界的连线拆除。通电后,把万用表放在电阻×1KΩ档上,用万用表的两根表棒桉在固态继电器两个大螺钉上,若万用表显示有电阻值并电阻值很小时,说明固态继电器处热态时短路,要调换固态继电器。反之电阻值∞大时,说明固态继电器冷态时完好。  三、脉冲输出的温度控制仪表主要故障判别法:  1、热电偶或热电阻完好状况与仪表接线正确的前提下,仪表通电后不升温,甚至测量温度向下跌的现象(设定温度高于测量温度先决条件下)。  当仪表的主控输出是脉冲输出,电路中用的是双向可控硅。首先应弄清仪表的主控输出是什么?仪表的主控输出是脉冲讯号。  检查方法:  当仪表主控输出端不与外界相连,把万用表放在直流电压0.5V档上,用万用表两表棒按在仪表主控输出端子(弄清正负)通电后,仪表绿色指示灯亮(仪表设定温度高于测量温度),万用表显示若有稍许电压说明仪表有脉冲输出,仪表输出正常.当代号为G(或无符号)时,主控输出是仪表内的小可控硅是否导电来定夺。仪表输出端子上与外界相连的电线全部拆除,把万用表放在电阻×1Ω档上,当通电后,仪表绿指示灯亮(信仪表设定温度高于测量温度),万用表显示有较小电阻数值,仪表主控输出正常。反之代号M的无电压与代号为G或无此符号电阻值很大,说明仪表有问题,应更换仪表。  根据以上所讲,若仪表无问题,应检查以下状况。  1)仪表的主控输出与双向可控硅接线是否正确。一定要按照产品使用说明书中接线端子所标明的接线图进行接线,否则无法正常进行。  2)查电路中大功率双向可控硅的质量  A)在不通电状况下,把双向可控硅的控制极轻轻拉一下,是否牢靠。若松动或掉下来,说明双向可控硅坏了要更换。  B)在不通电状况下,用万用表电阻×1Ω档,万用表上一根表棒按在双向可控硅的控制极,一根表棒桉在阴极,若万用表上显示的电阻数值很大或无电阻数值,说明双向可控硅坏了要更换。正常情况其电阻数值为≥20Ω与≤80Ω之间。  C)仪表不通电时,先把电路中大功率双向可控硅阳极同阴极上与外界的连线拆除。把万用表放在电阻×1KΩ档上,用万用表上一根表棒桉在双向可控硅阳极,另一根表棒桉在阴极,万用表显示是否有电阻值,①若万用表上显示的电阻数值∞大时,说明双向可控硅冷态时完好。②若万用表上显示有电阻或电阻数值很小时,说明双向可控硅损坏,要调换。  D)仪表通电时,仪表主控输出是脉冲讯号,未通电前,先把仪表主控输出端与外界的连线拆除,仪表通电时,把万用表放在直流电压0.5V档上,万用表两根表棒桉在主控输出两个端子上(正负要弄清)。当仪表的测量温度高于设定温度,仪表绿色指示灯熄灭。若万用表上显示有一点电压值,说明仪表主控输出有问题应更换仪表。若成万用表显示无电压时,说明仪表完好。此时再入下检查,先把双向可控硅阳极与阴极上与外界的连线拆除当信表通电,测量温度高于设定温度,仪表绿色指示灯熄灭,再把万用表放在电阻×1KΩ档上,用万用表上一根表棒桉在双向可控硅阳极,另一根表棒桉在阴极,若万用表数显示:电阻数值很小,说明双向可控硅热态时短路,要调换双向可控硅。反之电阻数值∞大时,说明双向可控硅完好。

  • 实验室温度控制问答的翻译

    我觉得慢慢读英文的过程也是慢慢理解这些问题的过程,再说让我改成中文难免会有些歪曲一部分理论。不过既然大家都要求,我也就花点时间翻译一下,直接翻译了,有些语句不顺或者拗口的地方请大家提出来我再做详细解释。先翻译了前一部分,我一有时间就会在这个帖上继续翻译的。整个的内容也在这个版的实验室温度控制常见问题那个帖中,大家也可以看看那个帖。有疑问的再提,我们再讨论:)1.什么是工作温度范围工作温度范围是指在没有外界制冷的情况下温度控制器自己所能达到的温度范围。这个温度限一般为20度的外界温度.2.什么是运行温度范围运行温度范围是被控制电信号限制的温度范围。举例来说,加热控制器的工作温度范围可以通过各种方式在操作温度范围中缩小。3.什么是温度稳定性温度稳定性就是在温度浴槽一个精确测量点上多次测量温度的差值。4.什么是温度均匀性?温度均匀性就是在温度浴槽中多个测量点上温度的差值。这对温度的校准特别重要。对JULABO温度循环器而言温度均匀性和稳定性只有微小的不同。其中黏度浴槽和温度专用校准槽提供了最好的温度均匀性。5.JULABO在显示方面有什么特点和优势?JULABO的显示屏在远距离和各个角度都能非常清晰的进行数据显示。多行LED显示屏不仅显示实际和设定温度,而且能显示最高和最低报警温度以及安全断电温度。另外,多行LED显示屏还可以显示电子控制水泵的泵压奇数以及振荡水浴的震荡频率。6.JULABO高端产品以高亮度VFD温度显示为其显示特色这种显示技术目的是为了提高显示亮度,清晰度和对比度和更简便的操作支持。它可以同时显示出浴槽内实际温度,设定温度和外循环实际温度,而且还可以显示出用户选择的泵压级别。7.JULABO什么型号的仪器可以提供交互式操作支持?JULABO的 'HighTech' 系列, 快速动态温度系统 'Presto' and高温控制系统 'Forte HT'以及 LC6 程序控制器可以提供LED/LCD多重显示面板。除了显示实际和设定温度外,还可显示众多的系统参数。例如循环控制方式(外循环或者内循环)。加热和制冷功率以及外循环设定温度等。8.PID和ICC温度控制技术有什么不同?JULABO PID1 PID2 PID3控制技术有固定的XP TV TN参数。有时为了提高外循环控制的温度稳定性,这些参数在PID2 和PID3控制技术下可以手动更改。ICC是世界上最先进和绝对唯一的温度控制技术,它可以根据温度控制的具体需要自动更改和优化XP TV TN 参数,以获得最好的温度稳定性在上面提到过的高JULABO的 'HighTech' 系列, 快速动态温度系统 'Presto' and高温控制系统 'Forte HT'以及 LC6 程序控制器中运用了这个先进的技术。9.TCF(特色温度控制技术)提供了什么优势?内外差极限:当仪器进行外部温度控制时,这个功能允许客户任意设定浴槽温度和外循环温度的最大差值。这样做可以保护温度控制设备,也可以保护整个反应釜中的玻璃设备,防止冷热变化引起的破裂。Dynamics:这个功能允许客户在内部温度控制时进行aperiodic和normal PID behavior中转换Aperiodic:从实际温度达到设定温度的精确度特别高,但可能因为要避免温度的过冲而花费较长的时间。normal PID behavior:能在很快的时间中到达设定温度,但可能因升温速度快而在达到设定温度时有一定的温度过冲。极限设定:在进行外部温度控制时可以设定控制浴槽内的最高和最低极限温度,控制器在工作过程中是不允许超过这个设定极限的。Co-speed factor:和Aperiodic一样,它也可以控制达到设定温度时的温度过冲现象,唯一的不同在于它的设定是在仪器进行外部温度控制时进行的。10.JULABO水泵的主要功能在Economy‘ and ‘TopTech‘ 系列中,水泵是无机械磨损和热磨损的设计,它主要是用来为浴槽内循环和一些小型的封闭体系的水循环提供动力。在MC, ME and ‘Presto‘中,水泵的泵压级别可以调节在HighTech‘系列中,所有的泵都有加压和抽吸两种模式,它可以达到设定的压力,抽吸力和流速来完成对外循环或者封闭体系的水循环。在外接各种反映釜时,它可以被调节到合适的压力,从而避免由于意外压力对反映釜体系造成的损伤

  • 关于微生物培养箱温度监控

    实验室里面有很多微生物培养箱,它自身已经是有温度指示器,再用一个数显温度计监控温度是否多余。且培养箱温度一般要求±1℃,大多数显温度计还达不到这个要求,这样监控温度意义是否不大?再者,我们会做期间核查监控培养箱温度,还要期间核查买的温度计,增加工作量。感觉温度监控是否可以直接看培养箱上面的温度指示器,而不需要额外买数显温度计,这样做合规吗?

  • 顶空仪温度问题

    我们这有台7697A顶空进样仪,检测时加热箱温度设为80℃,仪器运行中发现,加热箱温度波动较大,仪器自动中止序列。请问各位老师,是什么原因导致顶空加热箱温度变化,若是故障,该怎么处理呢?

  • 【求助】数显温控仪器

    各位大侠大家好,小弟在这里请教个关于数显温控仪的事情,我这边的要求是这样的,我有两路的温度输入,要求两路温度超过设定的温度(比如设定 5°C)可以报警,有这样的数显温控仪吗,有的话推荐一下那个厂家的,什么型号 !在线等,急用!

  • 果蔬中重金属的检测中湿法消解温度要怎么控制?

    各位前辈好在使用湿法消解时取1-5g样品,加10mL混合酸(铅:硝酸+高氯酸 9+1;镉:硝酸+高氯酸 4+1)浸泡过夜,然后再电炉子上消解,因为我们实验室没有电炉子,用数显不锈钢电热板代替,这个温度应该怎么控制?听说高氯酸很危险,容易发生爆炸,操作中应该注意什么?

  • 热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    [color=#990000]摘要:本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的基本内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]在稳态法防护热板法导热系数测试过程中,要求在稳定状态下对加载在计量加热器上的电功率进行准确测量。在标准测试方法GB/T 10294中的具体规定是“测量施加于计量部分的平均电功率,准确度不低于0.2%,强烈建议使用直流电。推荐自动稳压的输入功率,输入功率的随机波动、变化引起的热板表面温度波动或变化应小于热板和冷板间温差的0.3%。由此可见,防护热板法导热仪计量单元上直流电功率的加载、控制和测量是保证导热系数测量准确性的关键因素之一。除了平均电功率准确度不低于0.2%之外,对于一般冷热板之间20℃温差的导热系数测试,热板表面温度波动或变化还应小于20℃×0.3%=0.06℃。为了满足稳态法防护热板法上述要求,多年来普遍采用的技术手段是采用直流恒流电源,即在计量加热器上施加高精度恒定的直流电流。尽管加载恒定直流电流可以达到标准方法的规定,但同时存在并带来一系列其他问题:(1)热板温度无法实现10的整数倍温度精确控制。(2)热板温度达到稳定时间长。(3)现有工业用PID控制仪表无法达到电功率准确度要求。(4)采用高精度数字电压表和源表,并结合计算机软件进行电功率的PID控制,虽然完全可以解决上述问题,但整体造价十分昂贵。本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的核心内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[size=18px][color=#990000]二、计量单元电加热功率和温度精密控制问题分析[/color][/size]在现有的防护热板法计量单元电加热功率和温度精密控制中,存在着以下几方面的矛盾。下文将对这些矛盾进行分析,并由此便于提出相应的解决方案。[size=16px][color=#990000]2.1 热板加热功率精度与整10℃倍数设定温度控制的矛盾[/color][/size]在许多防护热板法导热仪中,为了满足测试方法对施加在计量单元上的加热电功率准确度要求,往往会按照标准方法推荐而采用高精度直流电源。尽管采用直流电源可保证加热电功率的准确度,但在实际测试过程中则还需凭借测试数据积累和经验总结,才能确定出不同热板温度所对应的一系列不同的加载电流值。这种加热电流直接加载方式尽管能保证电功率的准确度,但最大的问题是无法将热板温度准确控制在任意所需的设定温度上,如无法准确控制整10℃倍数的设定温度,实际热板温度往往偏离设定温度而呈现为非整数形式。另外,在测试不同导热系数样品时,采用相同加热电流往往会表现出不同的热板温度。直接加载直流电流方式,还存在一个严重问题是升温速度较慢,计量单元达到稳定温度需要漫长时间。特别是对于较大样品尺寸的防护热板法导热仪,相应的计量单元体积和热容都较大,往往需要更长的温度稳定时间。相比于低导热样品的较小热容,计量单元温度稳定所需时间占用了更多的整体达到稳态的时间。由于上述问题的存在,这种直接加载直流电的加热方式很少在商业化导热仪上使用,一般用在早期热导仪和实验室自行搭建的导热系数测试设备上。[size=16px][color=#990000]2.2 现有工业用PID控温仪无法满足准确度要求问题[/color][/size]为了解决上述直接加载直流电流加热方式存在的问题,并同时提高导热仪的自动化水平,目前大多数商业化防护热板法导热仪都采用了PID控温仪技术。采用PID控温技术是将温度传感器、调功器、直流恒流源和PID控制器组成闭环控制回路,通过PID算法将计量单元自动控制在任意设定温度点上。采用PID控制技术,尽量在理论上可以完美的解决早期直接加载直流电流方式存在的问题,但带来的问题则是无法达到测试方法规定的加热电功率准确度要求,也就是使用工业PID控温仪势必要在测量精度上做出牺牲。出现不得不牺牲电功率控制精度的主要原因是目前的工业用PID控温仪存在以下几方面的问题:(1)采集精度不够:PID控制器的模数转换(A/D)精度大多都是8位或12位,极个别能达到16位,这明显不能满足高精度测量要求。(2)控制精度不够:PID控制器的数模转换(D/A)精度大多都是8位或12位,同样不能满足高精度控制要求。(3)浮点运算精度不够:PID控制器内微处理器运算一般都采用单精度浮点运算。对于较低位数的数模转换输出控制,单精度浮点运算已经足够,对应的最小输出百分比为0.1%。但对于防护热板法计量单元电加热功率的高精度控制,0.1%的最小输出百分比显然已经无法满足要求。[size=16px][color=#990000]2.3 能满足准确度要求的专用PID控制设备但造价昂贵问题[/color][/size]为解决上述PID控制中存在的问题,目前比较成熟的技术是采用高精度的专用仪器和仪表,并结合计算机组成超高精度的PID控制系统来实现护热板法计量单元电加热功率的控制,并在任意温度设定上实现超高精度的长时间恒定控制。这种超高精度的PID温度控制系统采用了分体式结构搭建而成,分别采用独立的五位半/六位半的数字电压表和数控直流电源来实现高精度的数据采集和控制输出功能,PID运算处理则采用计算机或微处理器实现双精度浮点运算,并将最小输出功率百分比提高到0.01%甚至更低。通过这种分体式结构的PID温度控制系统,同时完美的解决了上述防护热板法导热仪中计量单元电加热功率和温度的高精度控制问题,同时也可以大幅度缩短测试时间。尽管这种分体结构的PID温度控制系统满足了精密测量的各种技术要求,但同时带来的主要问题是造价太高,同时还需进行编程和复杂的调试,因此这种PID温控系统和控制技术在国内外多用于计量机构和对测量精度有较高要求的研究部门,并不适用于对价格比较敏感的商业化防护热板法导热仪,更不适合工业应用中的普通导热仪使用。[size=18px][color=#990000]三、工业用超高精度PID控制器解决方案[/color][/size]上述保护热板法导热仪计量单元的电加热功率和温度精密控制问题的分析以及相应的技术改进,也是多年来保护热板法导热系数测试技术进步的一个典型过程。从上述分析可以看出,这个测试设备的技术迭代过程显然还未真正达到更理想化的水平。为了既要满足计量单元电加热功率和温度高精度控制要求,又要实现PID控制、运行操作简单化和具有较低的制作成本。我们提出了新的解决方案,即在现有的工业用PID控制器(调节器)技术基础上进行升级,充分发挥工业用PID调节器的运行操作简便、集成化程度高、体积尺寸小安装方便和价格上的优势。核心升级技术的具体内容如下:(1)PID调节器的模数转换(A/D)直接升级到24位,大幅提高采集精度。(2)PID调节器的数模转换(D/A)精度升级到16位,大幅提高控制输出精度。(3)采用双精度浮点运算提高计算精度,并将最小输出百分比降低到0.01%,充分发挥数模转换的16位精度。(4)保持传统工业PID调节器的标准尺寸,如96×96、96×48和48×96规格,而屏幕显示采用真彩色IPS TFT全视角液晶显示,数字全5位显示。(5)全新的PID调节器具有单通道VPC 2021-1和VPC 2021-2两种规格系列,可满足不同变量(如真空、压力、温度和电压等)的高精度调节和控制。升级前后的PID调节器如图1和图2所示。[align=center][color=#990000][img=01.升级前的双通道PID调节器,690,321]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611027835_9284_3221506_3.jpg!w690x321.jpg[/img][/color][/align][align=center][color=#990000]图1 升级前的双通道PID调节器[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=升级后的单通道PID调节器,500,388]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611255867_7954_3221506_3.jpg!w690x536.jpg[/img][/color][/align][align=center][color=#990000]图2 升级后的单通道PID调节器[/color][/align]综上所述,解决方案通过对模数转换、数模转换、浮点运算精度和最小输出百分比的全面升级,可完美的实现防护热板法计量单元的电加热功率和温度的超高精度控制。同时,这种全新的超高精度工业用PID调节器也可能用于其他参数的精密控制,并具有很好的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 立式数控车床温度过高的原因

    一方面,机械部件的异常舫损和管道的阻塞等常见的故障形式都会造成相应部位的温度升高。因此,溢度是表征机械故障的一个特征参量;另一方面,机械零件的性能又与温度有密切的关系,温度过高,会使零件的性能降低,甚至还会造成零件的烧损,因此,温度也是引发立式数控车床机械设备故障的一个重要因素。      所以,温度监测在机械设备故障诊断中占有重要地位。所谓温度监测是指利用各种测温仪器,测量机械装置的温升情况,并与机械装置正常运行时的温度进行比较,从而诊断出发生故障的零件和故障程度。在立式数控车床机械设备的故障诊断与监测中,测温方式可分为接触式测温和非接触式测温两大类。接触式测温具有快速、正确、方便的特点,因而在各工业领域得到广泛应用。      但不能满足某些特殊场合的测温要求,如高压输电线接点处的温度监测、炼钢高炉的温度监测等。而对于这些场合,必须采用非接触式测温的方式。非接触式测温的方式具有不破坏被测对象的温度场,可测量运动部件温度的优点,但其只能测量系统的表面温度,而不能测量内部温度。本文出自:脉搏制造网

  • 【原创大赛】气相色谱温度控制原理简述及实现方式

    【原创大赛】气相色谱温度控制原理简述及实现方式

    [b][font=微软雅黑]摘要[/font][/b][font=微软雅黑][font=微软雅黑]:介绍[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中常见的温度控制原理及其实现方式[/font][font=微软雅黑]……[/font][/font][font=微软雅黑] [/font][font=微软雅黑][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url][/font][font=微软雅黑]仪器在[/font][font=微软雅黑]正常[/font][font=微软雅黑]进行工作时候,[/font][font=微软雅黑]往往需要进行[/font][font=微软雅黑]温度控制,[/font][font=微软雅黑]如进样口温度控制可以使液体样品迅速气化,被载气带入色谱柱;柱温箱温度控制会影响混合样品的分离;检测器温度控制会影响检测器的灵敏度等。常用[/font][font=微软雅黑]的温度控制主要是[/font][font=微软雅黑]指[/font][font=微软雅黑]加热[/font][font=微软雅黑]升温(亦有[/font][font=微软雅黑]降温和冷却控制[/font][font=微软雅黑])。[/font][font=微软雅黑] [/font][font=微软雅黑]本文介绍[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器进行温度控制的一般原理。[/font][font=微软雅黑] [/font][b][font=微软雅黑]1[/font][font=微软雅黑] [/font][font=微软雅黑][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]控温原理[/font][/b][font=微软雅黑] [/font][font=微软雅黑][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器控温原理简图如下[/font][sub][font=微软雅黑][font=微软雅黑](供参考,不同厂家略有不同)[/font][/font][/sub][font=微软雅黑]:[/font][font=微软雅黑][img=,554,287]https://ng1.17img.cn/bbsfiles/images/2021/08/202108031453062824_553_3237657_3.jpg!w554x287.jpg[/img][/font][font=微软雅黑]控温过程中,[/font][font=微软雅黑]进样口、检测器等部位[/font][font=微软雅黑][font=微软雅黑]的铂电阻([/font][font=微软雅黑]P[/font][/font][font=微软雅黑]T100[/font][font=微软雅黑])作为[/font][b][font=微软雅黑]温度传感器[/font][/b][font=微软雅黑],其电阻值会随外界温度的升高而增加;[/font][b][font=微软雅黑]测温电路[/font][/b][font=微软雅黑]中含有恒流源电路,通过多路模拟开关在不同时刻为不同通道的铂电阻提供恒定电流,从而将温度信号转换为电压信号[/font][i][font=微软雅黑]U[/font][/i][sub][font=微软雅黑]1[/font][/sub][font=微软雅黑];测温电路中获得电压信号[/font][i][font=微软雅黑]U[/font][/i][sub][font=微软雅黑]1[/font][/sub][font=微软雅黑]较低,再通过[/font][b][font=微软雅黑]温度调理电路[/font][/b][font=微软雅黑]对其进行放大和滤波,得到输出信号[/font][i][font=微软雅黑]U[/font][/i][sub][font=微软雅黑]2[/font][/sub][font=微软雅黑];放大后的电压信号通过[/font][b][font=微软雅黑]A[/font][font=微软雅黑]/D[/font][font=微软雅黑]转换电路[/font][/b][font=微软雅黑],将模拟量转换成数字量[/font][i][font=微软雅黑]U[/font][/i][sub][font=微软雅黑]3[/font][/sub][font=微软雅黑],传递给控制器做数字量运算处理;[/font][b][font=微软雅黑]控制器[/font][/b][font=微软雅黑]接受温度数字信号[/font][i][font=微软雅黑]U[/font][/i][sub][font=微软雅黑]3[/font][/sub][font=微软雅黑],比较设定温度值和实际温度的差异,经过[/font][font=微软雅黑]PID算法输出PWM信号,通过双向固态继电器[/font][font=微软雅黑]/可控硅等[/font][font=微软雅黑][font=微软雅黑]对[/font]220V交流信号进行斩波控制,调整加热部件功率,最终达到控温效果[/font][font=微软雅黑]。[/font][font=微软雅黑] [/font][font=微软雅黑]控制器输出的信号一般通过光电耦合器(光耦)作用于可控硅,将输入端与输出端进行电气隔离,输出信号对输入端无影响,增强抗干扰能力。[/font][font=微软雅黑] [/font][b][font=微软雅黑]2 [/font][font=微软雅黑][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]实现温度控制的部件[/font][font=微软雅黑]2[/font][font=微软雅黑].1 [/font][font=微软雅黑]温度控制电路板[/font][/b][font=微软雅黑] [/font][font=微软雅黑]仪器温度参数在色谱工作站或者仪器面板上设置后,下发到温度控制板上,仪器开始执行该参数,进行升温或者降温。[/font][font=微软雅黑] [/font][font=微软雅黑]温度控制电路板上具有进行控温的电路模块和控制器等,一般而言,在进行加热升温过程中,可控硅指示灯会持续闪烁,表示仪器在进行升温控制。各厂家设计大同小异,下图为某厂家控温电路板:[/font][font=微软雅黑][img=,554,448]https://ng1.17img.cn/bbsfiles/images/2021/08/202108031426232104_9090_3237657_3.jpg!w554x448.jpg[/img][/font][font=微软雅黑] [/font][b][font=微软雅黑]2[/font][font=微软雅黑].2 [/font][font=微软雅黑]升温和降温执行部件[/font][font=微软雅黑]2[/font][font=微软雅黑].1 [/font][font=微软雅黑]非柱温箱升温和降温[/font][/b][font=微软雅黑] [/font][font=微软雅黑]非柱温箱升温和降温指的是进样口、检测器和转化炉等部件。[/font][font=微软雅黑][img=,554,406]https://ng1.17img.cn/bbsfiles/images/2021/08/202108031426446816_5771_3237657_3.jpg!w554x406.jpg[/img][/font][font=微软雅黑][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]在[/font][font=微软雅黑]进样口、检测器等部位[/font][font=微软雅黑]一般使用[/font][b][font=微软雅黑][font=微软雅黑]加热棒[/font]+铂电阻[/font][/b][font=微软雅黑][font=微软雅黑],升温时利用[/font][font=微软雅黑]22[/font][/font][font=微软雅黑]0[/font][font=微软雅黑]V[/font][font=微软雅黑]交流[/font][font=微软雅黑]电[/font][sub][font=微软雅黑][font=微软雅黑]([/font][/font][/sub][sub][font=微软雅黑][font=微软雅黑]亦有采用[/font][/font][/sub][sub][font=微软雅黑][font=微软雅黑]24V直流)[/font][/font][/sub][font=微软雅黑]在[/font][font=微软雅黑]加热棒[/font][sub][font=微软雅黑][font=微软雅黑](高阻值)[/font][/font][/sub][font=微软雅黑]上[/font][font=微软雅黑]产生热量[/font][font=微软雅黑],通过铂电阻([/font][font=微软雅黑]PT100[/font][font=微软雅黑])[/font][font=微软雅黑]对[/font][font=微软雅黑]温度进行[/font][font=微软雅黑]测量[/font][font=微软雅黑]和反馈,[/font][font=微软雅黑]使[/font][font=微软雅黑][font=微软雅黑]进样口、检测器等部位达到设定[/font][font=微软雅黑]温度[/font][font=微软雅黑]。[/font][/font][font=微软雅黑][img=,554,220]https://ng1.17img.cn/bbsfiles/images/2021/08/202108031427019241_4585_3237657_3.jpg!w554x220.jpg[/img][/font][font=微软雅黑]降温时,加热棒停止加热,[/font][font=微软雅黑]进样口、检测器等部位[/font][font=微软雅黑]自然冷却或者通过小风扇吹风冷却。[/font][font=微软雅黑] [/font][b][font=微软雅黑]2[/font][font=微软雅黑].2 [/font][font=微软雅黑]柱温箱升温和降温[/font][font=微软雅黑]2[/font][font=微软雅黑].2[/font][font=微软雅黑].[/font][font=微软雅黑]1 [/font][font=微软雅黑]柱温箱升温和温度混合[/font][/b][font=微软雅黑] [/font][font=微软雅黑][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱温箱一般使用[/font][b][font=微软雅黑]加热[/font][font=微软雅黑]丝[/font][font=微软雅黑]+铂电阻[/font][/b][font=微软雅黑][font=微软雅黑],升温时利用[/font][font=微软雅黑]22[/font][/font][font=微软雅黑]0[/font][font=微软雅黑]V[/font][font=微软雅黑]交流[/font][font=微软雅黑]电在[/font][font=微软雅黑]加热[/font][font=微软雅黑]丝[/font][font=微软雅黑]上[/font][font=微软雅黑]产生热量[/font][font=微软雅黑],通过铂电阻([/font][font=微软雅黑]PT100[/font][font=微软雅黑])[/font][font=微软雅黑]对[/font][font=微软雅黑]温度进行[/font][font=微软雅黑]测量[/font][font=微软雅黑]和反馈,[/font][font=微软雅黑]使[/font][font=微软雅黑]进样口、检测器等部位达到设定温度。[/font][font=微软雅黑][img=,554,301]https://ng1.17img.cn/bbsfiles/images/2021/08/202108031427182437_8766_3237657_3.png!w554x301.jpg[/img][/font][font=微软雅黑][img=,554,367]https://ng1.17img.cn/bbsfiles/images/2021/08/202108031427344687_3336_3237657_3.jpg!w554x367.jpg[/img][/font][font=微软雅黑]另外,柱温箱内部挡风板之后安装有风扇,通过风扇的转动和混匀作用,可以将加热丝产生的热量均匀分布在柱温箱内,保持柱温箱内具有合适的温度梯度。其工作的简单示意图如下,下左图为柱温箱风扇和加热丝的相对位置,下右图为升温和恒温时,柱温箱内部的气体流动方向[/font][font=微软雅黑][img=,554,304]https://ng1.17img.cn/bbsfiles/images/2021/08/202108031427509319_2077_3237657_3.jpg!w554x304.jpg[/img][/font][font=微软雅黑] [/font][b][font=微软雅黑]2[/font][font=微软雅黑].2[/font][font=微软雅黑].[/font][font=微软雅黑]2 [/font][font=微软雅黑]柱温箱的降温[/font][/b][font=微软雅黑] [/font][font=微软雅黑]早期的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱温箱在需要降温时,通过人工手动开启柱温箱门来实现,待温度降到指定温度后,关闭柱温箱门即可。[/font][font=微软雅黑] [/font][font=微软雅黑]目前的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱温箱在程序升温结束恢复到初始较低温度,或者需要降温时,通过仪器自动实现。其主要实现机构主要为柱温箱内部的风扇和仪器后部的降温通道[/font][sub][font=微软雅黑][font=微软雅黑](俗称[/font][font=微软雅黑]“后开门”结构)[/font][/font][/sub][font=微软雅黑]。[/font][font=微软雅黑][img=,554,295]https://ng1.17img.cn/bbsfiles/images/2021/08/202108031428072955_4929_3237657_3.png!w554x295.jpg[/img][/font][font=微软雅黑]仪器开始降温时,柱温箱后部的降温通道[/font][sub][font=微软雅黑][font=微软雅黑](俗称[/font][font=微软雅黑]“后开门”结构)[/font][/font][/sub][font=微软雅黑][font=微软雅黑]在电机带动下开启,热风从上部出口吹出,冷风从下部进口进入,通过冷热交换,仪器柱温箱迅速降温;待温度达到接近指定温度,[/font][font=微软雅黑]“后开门”结构短暂的反复进行开合关闭,对温度进行细调;温度达到指定温度后,“后开门”结构完全关闭。[/font][/font][font=微软雅黑] [/font][b][font=微软雅黑]3 [/font][font=微软雅黑]小结[/font][/b][font=微软雅黑] [/font][font=微软雅黑][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的温度控制在仪器分析中极为重要,除了文中常见的升温和降温之外,还涉及到快速升温、冷却剂降温、程序升温和程序降温等多个方面以及结构和设计上的改进与完善。因此了解相关原理,不仅有助于仪器的使用,也有利于仪器的维护和改进。[/font][font=微软雅黑] [/font][font=微软雅黑] [/font]

  • ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    [color=#990000][size=16px]摘要:现有的[/size][size=16px]ARC[/size][size=16px]加速量热仪普遍存在单热电偶温差测量误差大造成绝热效果不好,以及样品球较大壁厚造成热惰性因子较大,都使得[/size][size=16px]ARC[/size][size=16px]测量精度不高。为此本文提出了技术改进解决方案,一是采用多只热电偶组成的温差热电堆进行温差测量,二是采用样品球外的压力自动补偿减小样品球壁厚,三是用高导热金属制作样品球提高球体温度均匀性,四是采用具有远程设定点和串级控制高级功能的超高精度[/size][size=16px]PID[/size][size=16px]控制器,解决方案可大幅度提高[/size][size=16px]ARC[/size][size=16px]精度。[/size][/color][align=center][size=16px][color=#990000][b]==============================[/b][/color][/size][/align][b][size=18px][color=#990000]1. 问题的提出[/color][/size][/b][size=16px] 加速量热仪(Accelerating Rate Calorimeter)简称ARC,是一种用于危险品评估的热分析仪器,可以提供绝热条件下化学反应的时间-温度-压力数据。加速量热仪(ARC)基于绝热原理,能精确测得样品热分解初始温度、绝热分解过程中温度和压力随时间的变化曲线,尤其是能给出DTA和DSC等无法给出的物质在热分解初期的压力缓慢变化过程。典型的加速量热仪的结构如图1所示。为了保证加速量热计的测量精度,ARC装置需要实现以下两个重要条件:[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热计典型结构,500,267]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121740385310_8045_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 ARC加速量热仪典型结构[/b][/color][/size][/align][size=16px] (1)被测样品始终处于绝热环境。绝热环境的实施需采用等温绝热方式,即样品球周围的护热加热器温度始终与样品球温度保持一致,两者的温差越小,样品散失或吸收的热量则越小,量热仪测量精度越高。[/size][size=16px] (2)空心结构样品球(样品池或样品容器)的壁厚越薄越好,以最大限度减少热惰性因子,减少球体吸热和放热影响。[/size][size=16px] 在目前的各种商品化ARC加速量热仪中,并不能很好的实现上述两个边界条件,主要存在以下几方面的问题:[/size][size=16px] (1)样品温度和护热温度仅采用了两只热电偶温度传感器,而热电偶的测温精度和一致性本身就较差,仅靠两只热电偶测温和控温,很难保证达到很好的等温效果,往往会造成漏热严重的现象,导致测量精度较差。热电偶在使用一段时间后,这种现象会更加突出。[/size][size=16px] (2)因为化学反应过程中会产生高温高压,使得现有ARC的样品球壁厚必须较厚以具有较大的耐压强度,避免样品球或量热池产生形变或破裂,但这势必增大了热惰性因子。这种壁厚较厚和较大热惰性因子,是造成ARC加速量热仪测量误差较大的另一个主要原因。[/size][size=16px] (3)由于首先要保证壁厚和耐压强度,量热池所用材质往往是高强度金属,但这些金属材质相应的热导率往往较低,较低的热导率则会影响量热池侧壁温度的快速均匀。这种低导热材质所带来的样品球温度非均匀性问题,又会造成周边护热温度控制的误差,所带来的连锁效果会进一步降低测量精度。[/size][size=16px] 为了解决目前ARC加速量热仪存在的上述问题,本文提出了以下解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案主要包括两方面的技术改进,一是采用多只热电偶构成温差热电堆来提高温差检测的灵敏度和更好的保证绝热环境,二是在样品球外增加气体压力自动补偿。改进后的ARC加速量热仪的结构及控制装置如图2所示。[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热仪温度和压力控制装置结构示意图,550,283]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121741195817_6742_3221506_3.jpg!w690x356.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 ARC加速量热仪温度和压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 在如图2所示的高温高压控制装置中,采用了4对热电偶组成的热电堆来检测样品球与护热加热器之间的温差,这样可以使温差测量灵敏度提高4倍,即可使原来采用单只热电偶的量热计测量精度得到大幅提高。在实际应用中,热电堆中的热电偶数量并不限制于4只,可以根据ARC结构和体积采用更多的热电偶,由此可进一步提高温差测量灵敏度,但在选择热电偶时,需要采用尽可能细的热电偶丝,以减少热量通过热电偶丝进行传递。[/size][size=16px] 对于补偿压力的控制,如图2所示,在ARC中增加了一路高压气路。压力控制回路由压力传感器、压力调节器和PID控制器构成,通过压力调节器将来自高压气源(如氮气)的压力进行自动减压控制,使得高温高压腔体内的压力始终跟踪样品球内的压力变化,从而尽可能降低样品球内外的压力差。压力调节器是一个内置压力传感器、PID控制器和两只高速进出气阀门的压力控制装置,可直接接收外部压力设定信号进行快速和准确的压力控制,非常适用于像ARC量热仪高温高压腔这样的密闭腔室的气体压力控制。压力调节器的压力控制范围为0~5MPa(表压),如需要更高压力调节,则需增加一个高压背压阀,但压力调节还是通过压力调节器。[/size][size=16px] 在图2所示的高温高压控制装置中,温差传感器的灵敏度、压力传感器测量精度以及压力调节器控制精度都决定了ARC加速量热计边界条件是否精确,但这些部件对ARC的最终测量精度贡献还需PID控制器来决定。PID控制器作为ARC绝热量热仪的核心仪表,需要满足以下要求才能真正保证最终精度:[/size][size=16px] (1)在量热仪绝热实现方面,采用温差热电堆,可灵敏检测出样品球与护热加热器之间的微小温差变化,但温差灵敏度最终是要通过PID控制器的检测精度得以保证,由此要求PID控制器应有尽可能高的采集精度。同样,绝热控制的最终效果是温差越小越好,这也对PID控制器的控制输出提出了很高的要求,即要求控制精度越高越好。本解决方案中选择了VPC2021系列的超高精度PID控制器,这是目前国际上最高精度的工业用小尺寸PID调节器,具有24位AD、16位DA和0.01%最小输出百分比,可完全满足微小温差热电势信号高精度检测和高精度温度控制的要求。[/size][size=16px] (2)在量热仪高压补偿控制方面,需要对高温高压腔室内的气体压力进行跟踪控制以尽可能的减小样品球内外的压力差。在压力控制回路中,压力传感器用来检测样品球内部的压力变化,同时此传感器的输出压力值又作为高温高压腔室压力控制的设定值,PID控制器根据此设定值来动态控制高温高压腔室压力,这就要求PID控制器具有远程设定点功能,并具有与压力调节器组成串级控制回路的功能,而本解决方案配置的VPC2021系列PID控制器则具备这种高级控制功能。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案采用了温差热电堆和压力补偿两种技术手段对现有ARC加速量热仪进行改进,改进后的ARC加速量热仪具有以下特点:[/size][size=16px] (1)温差热电堆可明显提高温差检测灵敏度,可更好的实现绝热效果。[/size][size=16px] (2)压力补偿可使得样品球的壁厚更薄,并降低了样品球材质的强度要求,样品球就可以采用高导热金属,在降低样品球热惰性因子的同时,更能提高样品球整体的温度均匀性,可显著提高量热仪测量精度。[/size][size=16px] (3)采用了具有远程设定点和串级控制这些高级功能的超高精度PID控制器,可充分发挥上述技术改进措施的优势,真正使ARC加速量热仪测量精度的提高得到了保障。[/size][size=16px] (4)所采用的技术手段,可推广应用到其它形式的热反应量热仪中。[/size][align=center][color=#990000][b][/b][/color][/align][align=center][b]~~~~~~~~~~~~~~~[/b][/align][size=16px][/size]

  • 【求助】石墨炉灰化温度失控

    刚买的石墨炉,测金,自动稀释做标准曲线第3个点的时候,灰化(设置温度为第一步灰化350、第二步800度)时出现温度失控现象,也就是炉子温度明显高于2000度,炉子亮度与除残时亮度差不多,当然最后是没有出峰,赶紧停止,再测同一个点,又正常了,出了峰,吸光度也与前面几个点成相应倍数关系,接着测第4个点,又出现炉子温度明显不对问题,请问大侠们,这个到底是怎么回事啊?着急上火中。。。

  • 首部《温度数据采集仪校准规范》擦亮温度监控的“眼睛”

    近日,国家质检总局发布了《温度数据采集仪校准规范》,对温度数据采集仪的校准设备、校准方法等进行了统一规定。这部校准规范将从2013年1月8日开始正式实施,届此,我国广泛使用的各类温度数据采集仪将拥有统一的性能评价方法,并有望建立起完善的量值溯源体系,实现温度数据采集仪温度测量的准确、可靠。 按照该规范的规定,温度数据采集仪就是可直接置于被测环境中进行测量,具有自动采集被测温度信号、数据存储、记录、通讯等功能的温度测量仪表。该规范的主要起草人、浙江省计量院高级工程师沈才忠介绍,温度数据采集仪包括冷链温度记录仪、灭菌温度记录仪、环境温度记录仪以及炉温跟踪记录仪等,应用领域非常广泛。 以冷链温度记录仪为例,这类温度数据采集仪主要用于农产品、水产品以及药品、疫苗、血液等冷藏、冷冻运输中的温度监测,即用于冷链温度的监测。“现在,基于物联网技术的现代冷链物流技术蓬勃发展,其中,冷链温度监控系统至关重要。为冷藏、冷冻、保鲜产品的全过程控制提供技术保证的核心就是冷链温度记录仪,它的运用可有效保证农产品、水产品以及药品、疫苗、血液的保鲜度,使产品质量在运输、储存过程中得到有效保证。”沈才忠强调,整个冷链物流系统的运转都要以实时的温度监控为基础,所以必须保证温度数据采集仪的计量准确。 在食品、药品生产以及疾病诊疗中用以消杀毒、灭菌温度监测的灭菌温度记录仪也是被广泛使用的一类温度数据采集仪。封闭式的灭菌温度记录仪可以置于消毒、杀毒物品内部,也可投入到需要灭菌的液体或流质之中,以监测、验证消杀毒、灭菌温度是否达到了规定要求,从而保证药品、食品生产的灭菌工序控制能够按照工艺要求进行,以保证药品、食品的安全。 沈才忠还介绍了另两类温度数据采集仪:环境温度记录仪和炉温跟踪记录仪。环境温度记录仪主要用于冷库、仓库、实验室等空间的温度监测,确保需要冷藏储存的物品得到有效保存,实验室环境符合实验要求,使各类科学实验能够正确实施。当需要对环境温度进行连续监控时,环境温度记录仪可实现最小记录间隔为1秒的数据测量,保证监控的连续性和有效性。环境温度记录仪还主要用于育种、育苗的温度监测。在高效生态农业中,可连续监测农作物种苗的生长环境,实现高产稳产,并且帮助农作物新品种的研究;在人工繁殖、养殖中,可监控繁殖、养殖温度,促进养殖、繁殖的顺利进行。炉温跟踪记录仪主要用于工业生产过程中有关工艺过程的温度验证。如玻璃窑炉温度、热处理炉温度、电子产品老化温度、电子线路板贴焊温度的监测、验证等等,以确保工业产品的温度处理工艺符合要求,保证产品质量。 “温度数据采集仪的应用如此广泛,而且很多是涉及人们的食品、药品安全领域,但以前,我国却没有统一的校准设备和校准方法,导致采集仪的计量性能无法得到保证。”沈才忠说,很多温度数据采集仪的使用者对采集仪需要定期校准才能保证计量准确这一点认识不够,他们往往不会主动送检。而温度数据采集仪的量值溯源方法也各不相同,评价标准不一致,导致采集仪应用的通用性、互换性受到限制,阻碍了它的进一步发展。因此,需要制定温度数据采集仪的校准规范,以统一该类测量仪表的性能评价方法,完善温度计量的量值溯源体系,确保温度数据采集仪计量性能的准确可靠。 规范提出,“本规范适用于内置传感器、测量范围为(-50~+150)℃以及外置传感器、测量范围为(-80~+500)℃的温度数据采集仪的校准。”规范还对校准设备、校准项目、校准方法都做出规定。同时,规范还建议,为了确保采集仪在其规定的技术性能下使用,复校时间间隔最长不应超过1年。《中国质量报》

  • 电热板消解温度如何控制

    做固定污染物砷的样品前处理:参考空气与废气监测分析方法第四版书。将滤筒剪碎在锥形瓶中,加30ml硝酸,5ml高氯酸。用电热板消解,这个过程温度控制在多高?微沸2h后再加10ml硝酸,微沸到近干。这个温度控制多高?冷却后滤纸过滤,用蒸馏水洗涤。加热浓近干。这个温度控制多高?冷却后加入1+1盐酸,加热黄褐色烟冒近。这个温度控制多高?

  • 快速温度变化试验箱温度、控温说明

    很多用户在购买快速温度变化试验箱的时候不知道怎么选,其实,快速温度变化试验箱在运行的需要注意下温度以及控温方面的说明,更好的选择快速温度变化试验箱。  快速温度变化试验箱湿度范围的选择需要注意的是在湿度指标后面应该注明相应的温度范围,或给出露点温度。因为相对湿度是与温度直接相关的,对于同样的含湿量,温度越高,相对湿度就越小。快速温度变化试验箱实现高温、高湿只需要往箱体空气中喷水蒸汽或雾化的水珠,进行加湿。低温低湿则相对难于控制,因为此时的含湿量很低,有时比大气中的含湿量低很多,需要对箱体内流动的空气除湿,使空气变得干燥。  普通的快速温度变化试验箱一般指的是恒定快速温度变化试验箱,其控制方式为:设定一个目标温度,试验箱具有自动恒温到目标温度点的能力。恒定温湿度试验箱的控制控制方式也类似,设定一个目标温度、湿度点,试验箱具有自动恒温到目标温度、湿度点的能力。高、低温交变试验箱具有设定一条或者多条高低温变化、循环的程序,试验箱有能力根据预置的曲线完成试验过程,并且可以在升温、降温速率能力的范围内,控制升温、降温的速率,即可以根据设定的曲线的斜率控制升温、降温速率。  同样,高低温交变湿热试验箱也具有预置温度、湿度曲线,并且根据预置进行控制的能力。当然,交变试验箱都具有恒定试验箱的功能,但交变试验箱的制造成本较高,因为交变试验箱需配置有曲线自动记录装置、程序控制仪,还须解决试验箱在工作室内温度较高的情况下开启制冷机等问题,因此,交变试验箱的价格比恒定试验箱的价格一般要高20%以上。因此,我们应当实事求是的以试验方法的需要为出发点,选用恒定试验箱或者是交变试验箱。  不同的快速温度变化试验箱厂家质量有所不一样,所以,用户需要深入了解快速温度变化试验箱,做出更详细的选择。

  • 【讨论】实验过程温度是怎么控制的

    恩,语言能力比较差,希望各位能看懂在做实验中,需要温度控制,如食品接触材料的全迁移测试,测试条件为100℃/2h,各位是如何保证在2h内模拟液的温度为100℃呢,我现在做的把测试烧杯放入105℃的烘箱内2小时,但是测试结束后,测量模拟液温度只有80多℃,各位大侠的是怎么做的?!

  • 超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    [size=14px][color=#ff0000]摘要:超低重力仪器中要求液氦池温度恒定,为实现小于0.1mK的波动度,气压控制的波动度要小于10Pa。为此本文提出了相应技术方案,核心内容是实现缓冲罐的气压精密控制,采用了双向控制模式,并使用了万分之一精度的气压传感器、电动针阀和PID控制器。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#ff0000]一、问题的提出[/color][size=14px]超导重力仪器有超导重力仪和超导重力梯度仪,都是用来对重力信号进行精密测量的仪器。超导重力仪器需要在低温条件对极微弱信号进行测量,所以对低温温度恒定有很高的要求,即要求液氦池温度波动在0.1mK以内。[/size]对于液氦池温度的精密控制可以通过控制液氦池内的气压来实现,这就要求气压的测量和控制达到极高水平。本文将针对超导重力仪器中液氦池内气压的高精密控制问题,提出相应的解决方案。此方案的优势是液氦池温度的控制精度主要受压力传感器精度的影响,选择超高精度的压力传感器,并通过精密数控针阀和高精度PID控制器,采用下游抽气流量控制模式,可使液氦温度的波动稳定控制在0.1mK以内。[size=14px][color=#ff0000]二、技术方案[/color][/size]液氦温度的精密控制原理是基于液氦饱和蒸气压与对应温度的关系。根据液氦饱和蒸气压与温度的对应关系,液氦温度要控制在4K左右,并要求温度波动小于0.1mK,则要求液氦上部气压控制在100kPa左右时,气压的波动要小于10Pa以内。[size=14px]为了实现上述气压控制精度,本文提出的技术方案具体包括以下几方面的内容:[/size][size=14px](1)液氦池上部的气压控制可以抽象为一个密闭容器内的压力控制。对于密闭容器的压力控制需要增加一个缓冲罐,通过缓冲罐的压力控制实现液氦池的压力控制,结构如图1所示。[/size][align=center][size=14px][img=气压控制,550,490]https://ng1.17img.cn/bbsfiles/images/2022/05/202205230927573218_8908_3384_3.png!w690x615.jpg[/img][/size][/align][align=center][size=14px]图1 高精度气压控制系统结构示意图[/size][/align][size=14px][/size][size=14px](2)缓冲罐的压力控制采用了上下游双向控制模式,通过调节进气和抽气流量进行控制。[/size](3)整个控制系统包括缓冲罐、气压传感器、PID控制器、数字针阀和真空泵。[size=14px](4)如果气压控制在100kPa并要求波动小于10Pa,则要求气压的测量和控制要有10/100k=0.0001(万分之一)的精度,由此需要配备万分之一精度的气压计和PID控制器。[/size]总之,本文所述的技术方案,其控制精度主要受气压传感器和PID控制器精度的限制,结合步进电机驱动的小流量电动针阀,通过高精度传感器和控制器,可以实现超导重力仪液氦温度的精密控制,温度波动可以控制在0.1mK以内,且不受外部环境温度变化影响。[size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size]

  • 【原创大赛】电热恒温干燥箱的温度控制系统改造

    【原创大赛】电热恒温干燥箱的温度控制系统改造

    针对一些老式电加热恒温设备需要修理、改造而缺乏配件的困难,找出了在仪器设备原有基础上,利用数显温度控制仪表、接触器以及各种功率模块组合,代替原有温度控制部件,实现了更加直观、方便、可靠,精准的温度控制方案。通过几年来改造过的数台电加热恒温设备运行表明,改造方案是成功的,本文以电热恒温干燥箱改造为例,介绍改造原理及过程,以期对大家有所启发。 在实验室有一些老式电热烘箱,这些烘箱控制温度的方式采用热膨胀调温式即在其工作室内安装测温杆,将两种膨胀系数不同的金属片,或膨胀灵敏的金属杆,借热胀冷缩在不同温度下有不同的伸长或缩短长度来控制断电或通电,来达到温度控制的目的,温度显示需借助顶端的玻璃温度计,这种控制方式控温精度低、读数不直观。由于机械磨损,调温装置损坏,造成温度失控,因这种控温器已没有备件出售,有些烘箱已处于停用状态。若能修复这些设备,不仅能延长其使用寿命,还能为单位节约大量采购经费。存在的问题 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530969_1173612_3.jpg 该电热恒温干燥箱1983年生产,它主要由金属箱体、保温材料、电阻性加热部件、控制电路及控制面板等构成。其中箱体、保温材料等的机械结构还是完好的,托架、隔板齐全、完好,而这些又是设备价值较高的部分,但由于使用多年,温度调节器机械磨损严重,无法正常调节温度,找到同型号配件更换,已处于停用状态。 从以上情况来看,只要修复或更新温度控制系统,该电热恒温干燥箱还是可以恢复使用的。改造方案及实施原有的控制线路及原理 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530970_1173612_3.jpg 其控制温度的原理是:操作者将电源开关拨至接通位置,待箱体上面的水银温度计显示的温度值接近工艺温度时,操作者须不断调节温度调节器旋钮,处于“通——断”状态,直至温度计的稳态值刚好等于工艺温度。通常情况下,要调节出工艺温度需要时间较长,而且误差较大。改进前烘箱的控制缺陷分析 原有机械式温度调节方式:由于在控制过程中,设备的加热只有“通——断”两种状态,所以称为二位式机械控温,这种控温方式具有结构简单、价格低廉、使用维修方便的特点。但是调节精度不高,被调温度始终不能定在给予定值上,总是在给予定值上、下周期性的波动,其特性曲线见图 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530971_1173612_3.jpg 由于加热系统的的热惯性,在某一段时间温度仍然在继续下降,直到t4时才回升。这样反映温度变化的是一条在给定温度上、下一定范围内波动的曲线,这表时存在着“动差”。这种调节方式精度较低,对象的热惯性越大,仪表不灵敏区越大,动差就越大。因此,位式调节不适于热惯性较大的系统,也满足有些实验工艺的要求。改造方案 随着电子技术的飞速发展,数显温度控制仪表技术日益成熟,价格低,通用性更好,使用更为简捷和方便,在各种控制领域中应用越来越广泛。因此,可以利用数显控温仪表作为主控部件,针对不同的控制对象、控制要求及控制成本,合理选用接触器、可控硅、固态继电器等各种功率模块作为执行部件与之相配合,替代老设备原有的控制电路,对其进行改造升级,实现更为直观、方便、精准、可靠的温度控制。 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530972_1173612_3.jpg 温度控制仪表选择:在改造中我们采用了AI808自整定专家PID控制仪表。AI调节器是控温系统的核心部分,AI仪表首创性地采用了平台概念,将非常专业化的数字调节仪表转为平台化设计的产品,采用的是AI人工智能调节算法是采用模糊规则进行PID调节的一种新型算法,在误差大时,运用模糊算法调节,以消除PID饱和积分现象,当误差趋小时,采用改进后的PID算法进行调节,并能在调节中自动学习和记忆被控对象的部分特征以使效果最优化。 控制元件:电热恒温干燥箱加热功率1000W,工作电流4.5A,工作电压220V。而我们选用的BTA41-600,双向可控硅,工作电流41A,耐压600V,完全能够满足要求,而且体积小,便于安装。 温度传感器:电热恒温干燥箱额度工作温度为200℃, Pt100铂热电阻,它用来测量(-200~850)℃范围内的温度,其物理、化学性能稳定,复现性好,铂热电阻与温度是近似线性关系。所以温度传感器选用Pt100。 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021151_530978_1173612_3.jpg控制电路的设计 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021140_530975_1173612_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/01/201501021140_530976_1173612_3.jpg安装调试根据设计图纸,完成了安装、接线并进行调试。

  • 呵呵,大家对于温度控制系统有什么话要说啊??

    看到各位在这里讨论仪器问题,小弟也有一点点手痒哦小弟最熟悉的不过于各种温度控制设备了,各种各样的水浴,加热,制冷,控温的。我知道的品牌有JULABO,HAKKE,LAUDA等,都是德国的东西大家还知道那些温度控制设备吗?进口的或者是国产的,你的实验室里用的,或者是你最近接触过的大家都拿出来聊聊啊。

  • 基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统成果简介半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595303_3112929_3.png图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595304_3112929_3.jpg图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595305_3112929_3.jpg 图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595306_3112929_3.jpg 图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595307_3112929_3.jpg 图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571- 86872415、0571-87676266;Email: yangsuijun1@sina.com。微信公众号:中国计量大学工贸所工贸所网站:itmt.cjlu.edu.cn中国计量大学工业与商贸计量技术研究所中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。“应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。

  • 高精度压强(真空度)和温度同时控制技术在光谱测量及光谱仪中应用的实施方案

    高精度压强(真空度)和温度同时控制技术在光谱测量及光谱仪中应用的实施方案

    [align=center][color=#990000][img=光谱仪压强控制,690,398]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808077473_8105_3384_3.png!w690x398.jpg[/img][/color][/align][color=#990000]摘要:光谱测量和光谱仪是检测监测中的重要技术手段,为了得到满意的测量精度,光谱仪要求配套高精度的压强和温度传感器、执行机构和PID控制器,并需具有适用范围广、精度高、易集成和成本低的特点。本文将针对光谱仪压强和温度控制的特点,结合上海依阳公司的创新性产品,给出高精度和高性价比的光谱测量和光谱仪温压测控方案。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]1. 问题的提出[/color][/size] 光谱测量作为定性、定量的科学分析方法,以其测量精度高、响应速度快的优势成为各种检测监测研究中的重要技术手段,但在实际应用中样品气体的压强和温度变化会对测量结果产生严重的影响,以下是光谱测量中的温压控制方面国内外所做的一些研究工作以及所表现出来的影响特征:[color=#990000](1)压强控制范围[/color] 不同的光谱测量和光谱仪对压强控制范围有着各自不同的要求,如使用气体吸收池的红外光谱仪,吸收峰的强度可以通过调整试样气体的压强(或压力)来达到,一般压强范围为0.5~60kPa。在采用可调谐二极管激光吸收光谱(TDLAS)技术测量大气中二氧化碳浓度时,就需要6~101kPa范围内的稳定压强。在X射线光谱分析仪检测器内压强的精确控制中,要使得工作气体的密度稳定来保证检测器的测量精度,一般压强控制在一个大气压附近或者更高,而激光诱导击穿光谱仪的工作压强最大可达275kPa。由此可见,光谱仪内工作气体的压强控制范围比较宽泛,一般在0.1~300kPa范围内,这基本覆盖了从真空负压到3倍大气压的4个数量级的压强范围。[color=#990000](2)压强控制精度[/color] 在光谱测试中,观察到的谱线强度与真实气体浓度之间的关系取决于气体样品的压强,所以压强控制精度直接决定了光谱测量精度。如美国Picarro公司的光谱分析仪中的压强控制精度±0.0005大气压(波动率±0.05%@1大气压)。文献[1]报道了设定压强为6.67kPa时对吸收池进行控制,经过连续四小时控制,压强波动为±3.2Pa,波动率为±0.047%。文献[2]报道了样品池内气体压强同样被控制在6.67kPa时压强长期波动幅度为7Pa,波动率为±0.047%。文献[3]报道了激光红外多通池压强控制系统的稳定性测量,目标压强设定为60Torr,在150~200s时间内最大波动为±0.04Torr,波动率为±0.067%。文献[4]专门报道了光谱测量仪器的高精度温压控制系统的设计研究,目标压强值为18.665kPa,42小时的恒压控制,最大偏差为5.33Pa,波动率为±0.014%。文献[5]介绍了X射线光谱仪中探测器的恒压控制结果,在工作气体恒压在940hPa过程中,波动小于±2hPa,波动率为±2%。文献[6]介绍了X射线光电光谱仪在0.05~30mbar压强范围内的恒压控制技术,在设定值为0.1mbar时,恒定精度可达±0.001mbar,波动率为±1%。[color=#990000](3)温度控制精度[/color] 在光谱测试中,谱线强度与真实气体浓度之间的关系还取决于气体样品的温度稳定性,而且温度的稳定性同时也会影响压强的稳定性。文献[2]报道了样品池内气体温度控制在室温(24℃)时,温度短期波动为±0.01℃,长期温漂为±0.025℃,波动率为±0.1%。文献[4]报道的光谱测量仪器的高精度温度控制系统中,温度控制在45℃,42小时内的温度波动为±0.0015℃,波动率小于±0.004%。 综上所述,由于样品气体的压强和温度变化是影响测量结果的主要因素,所以在光谱测量以及各种光谱仪中,对样品气体的压强和温度调节及控制有以下几方面的要求: (1)压强控制范围非常宽泛(0.1~300kPa),但相应的测量和控制精度则要求很高,这就对压强测量传感器、控制阀、真空泵和相应的控制器提出了很高的要求,并且这闭环控制系统中的四个组件必须相互匹配,否则很难得到满意的结果。 (2)同样,在温度的高精度控制过程中,也应选择合适的温度传感器、加热装置、电源和控制器,并在温度闭环控制系统中四者也必须相互匹配。 (3)在压强和温度这两个闭环控制系统中,都会用到高精度控制器,为了降低实验成本和光谱仪造价,希望能用一个具有2路同时PID自动控制功能的高精度控制器。 (4)针对不同的光谱测量和光谱仪,其测试结构并不相同,这就要求温压控制系统中的各个部件具有独立性,由此有利于测试装置和光谱仪结构和合理布局和集成。 总之,为了得到光谱测量的满意精度,要求配套高精度的压强和温度传感器、执行机构和PID控制器,并具有适用范围广、精度高、易集成和成本低的特点。本文将针对这些特点,结合上海依阳公司的创新性产品,给出高精度和高性价比的光谱测量和光谱仪温压测控方案。[color=#990000][size=18px]2. 光谱仪压强和温度一体化测控方案[/size]2.1. 控制模式设计(1)压强控制模式[/color] 针对光谱仪上述的压强测控范围(0.1~300kPa),最佳方案是针对具体使用的压强范围选择相应的测控模式,如图2-1所示,针对低压范围建议采用上游控制模式,针对高压范围建议采用下游测控模式,也可以采用上下游同时控制的双向控制模式。[align=center][color=#990000][img=光谱仪压强控制,690,217]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808325845_3021_3384_3.png!w690x217.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-1 压强控制的三种模式[/align] 针对低压采用上游控制模式,可以重复发挥真空泵的抽速,使得真空腔体内的压强可以快速准确的实现恒定控制。针对高压(如1个大气压左右)采用下游控制模式,可以有效控制真空泵的抽速,使得真空腔体内的压强可以快速准确的实现恒定控制,同时还避免了进气口处的样品气体和其他工作气体的流量太大。 如果对进气流量和腔体压强有严格规定并都需要准确控制,则需要采用双向控制模式,双向控制模式可以在某一恒定压强下控制不同的进气流量,但双向控制模式需要控制器具有双向控制功能,这对控制器提出了更高的能力要求。以上三种控制模式的特点更详细介绍,请参考文献[7]。[color=#990000](2)温度控制模式[/color] 同样,温度测控模式也要根据不同的温度范围和控温精度要求进行选择,如在室温附近且控温精度较高的情况下,则需要具有加热和制冷功能的双向控制模式,只有这种模式才能保证足够高的控温精度。如果在高温范围内,也建议采用双向控制方式,即以加热为主同时辅助一定的冷却补偿,以提高控温精度和快速的温度稳定。[color=#990000]2.2. 传感器的选配[/color] 传感器的精度是保证压强和温度测控准确的关键,因此传感器的选择尤为重要。 对于上述范围的压强控制,强烈建议采用目前精度最高的薄膜电容真空计[8],这种真空计的测量精度可以达到其读数的0.2%,全量程内具有很好的线性度,非常便于连接控制器进行线性控制,并具有很高的分辨率和很小的温漂。在实际选型中,需要根据不同的压强范围选择合适量程的真空计,如对于上述0.1~300kPa的压强范围,可以选择2Torr和1000Torr两种规格的真空计,由此对相应压强量程实现准确的覆盖。 对于温度控制而言,当温度不高的范围内,强烈建议测量精度最高的热敏电阻温度传感器,较高温度时也建议采用高温型的热敏电阻或铂电阻温度传感器。如果加热温度超过了热敏电阻和铂电阻传感器的使用范围,则建议采用热电偶型温度传感器。这些温度传感器在使用前都需要进行计量校准。[color=#990000]2.3. 执行机构的选配[/color] 压强控制执行机构是决定能否实现高稳定性恒定控制的关键。如图2-2所示,强烈建议采用线性度和磁滞小的步进电机驱动的电动针阀,不建议采用磁滞和控制误差都较大的比例电磁阀。电动针阀可以布置在进气口和出气口处,也可以根据上游或下游控制模式的选择布置一个电动针阀。如果光谱仪的真空腔体庞大,电动针阀就需要更换为口径和流速更大的电控阀门,以便更快的实现压强恒定控制。详细指标可参见文献[8,9]。[align=center][color=#990000][img=电动针阀和电动调节阀,690,369]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808519287_4900_3384_3.png!w690x369.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-2 小流量电动针阀和大流量电动阀门[/align] 温度控制的执行机构建议采用具有帕尔贴效应的半导体热电片,这种热电片具有加热制冷双向工作模式,配合高精度的热敏电阻和控制器可以实现超高精度的温度控制,非常适合光谱仪小工作腔室的控温。 如果光谱仪工作腔室较大且温度在300℃以下,建议采用具有加热制冷功能的外排式循环浴进行加热,这种循环浴同样具有加热制冷功能,可达到较高的控温精度。 如果光谱仪工作在更高温度,则建议采用电阻丝或光加热方式,同时配备一定的通风冷却装置以提高加热的热响应速度,从而保证温控的稳定性和速度。[color=#990000]2.4. 控制器的选配[/color] 控制器是实现高精度和高稳定性压强和温度测控的最终保障。在压强控制设计中,控制器需要根据所选真空计和执行机构进行选配,选配的详细介绍可参见文献[10]。根据文献的计算可得认为,如果要保证压强测控的精度,必须采用至少16位以上的A/D模数采集器。同样,温度测控的精度保证也是由模数采集器的位数决定。因此,对于光谱仪中压强和温度的控制,建议采用了目前上海依阳实业有限公司开发的精度和性价比最高,并结合了PID参数控制功能的24位A/D采集的控制器,详细内容可参见文献[11]。 按照上述的选型,最终压强和温度的测控方案如图2-3所示。[align=center][color=#990000][img=光谱仪压强和温度控制框图,690,291]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030809355503_6326_3384_3.png!w690x291.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-3 光谱仪压强和温度测控方案示意图[/align] 特别需要指出的是,上述的压强和温度控制,基本都采用了双向控制模式,而我们所开发的这款高精度控制器恰恰具有这个功能。另外,在光谱仪实际应用中,压强和温度需要同时进行控制,可以采用两台控制器分别进行控制,但相应的光谱仪整体体积增大、操作变得繁复并增加成本。而目前所建议使用的高精度控制器则是一台双通道的PID控制器,两个通道可以独立同时进行不同PID参数的控制和PID参数自整定,并且每个通道都具有双向控制功能,这有效简化了控制器并降低了仪器尺寸和成本。[size=18px][color=#990000]3. 总结[/color][/size] 综上所述,通过对光谱测量和光谱仪的压强和温度测控要求的分析,确定了详细的温压测控技术方案,并详细介绍了方案确定的依据以及相应所选部件的技术参数指标。 整个技术方案完全能满足光谱测量和光谱仪对压强和温度测控的要求,并具有测控精度高、功能强大、适用范围广、易集成和成本低的特点。除了薄膜电容真空计为进口产品之外(也可选国产真空计),方案中的所有选择部件和仪表都为国产制造。[color=#990000]4. 参考文献[/color](1)牛明生, 王贵师. 基于可调谐二极管激光技术利用小波去噪在2.008μm波段对δ13CO2的研究[J]. 物理学报, 2017(02):136-144.(2)孙明国, 马宏亮, 刘强,等. 参数主动控制的痕量气体实时在线测量系统[J]. 光学学报, 2018, v.38;No.434(05):344-350.(3)许绘香, 孔国利. 采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统研制[J]. 红外与激光工程, 2020(9).(4)周心禺, 董洋, 王坤阳,等. 用于光谱测量仪器的高精度温压控制系统设计[J]. 量子电子学报, 2020, v.37 No.194(03):14-20.(5)Elvira V H , Roteta M , A Fernández-Sotillo, et al. Design and optimization of a proportional counter for the absolute determination of low-energy x-ray emission rates[J]. Review of Scientific Instruments, 2020, 91(10):103304.(6)Kerherve G , Regoutz A , D Bentley, et al. Laboratory-based high pressure X-ray photoelectron spectroscopy: A novel and flexible reaction cell approach[J]. Review of Scientific Instruments, 2017, 88(3):033102.(7)上海依阳实业有限公司,“真空度(气压)控制:上游模式和下游模式的特点以及新技术“,知乎:https://zhuanlan.zhihu.com/p/341861844.(8)上海依阳实业有限公司,“真空压力控制装置:电动针阀(电控针型阀)”:http://www.eyoungindustry.com/2021/621/29.html.(9)上海依阳实业有限公司,“微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中真空压力控制装置的国产化替代”,知乎:https://zhuanlan.zhihu.com/p/377943078.(10)上海依阳实业有限公司,“彻底讲清如何在真空系统中实现压力和真空度的准确测量和控制”,知乎:https://zhuanlan.zhihu.com/p/343942420.(11)上海依阳实业有限公司,“高精度可编程真空压力控制器(压强控制器和温度控制器)”:http://www.eyoungindustry.com/2021/618/28.html.[align=center]=======================================================================[/align][align=center] [img=,690,345]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030804374064_8626_3384_3.jpg!w690x345.jpg[/img][/align]

  • 色谱仪温度控制系统常见故障解析

    [align=center][font=宋体]色谱仪温度控制系统常见故障解析[/font][/align][font=宋体]首先需要保证实验室的电源电压、功率、温度、安装位置等满足色谱仪的工作要求。[/font][font=宋体][font=Calibri]1 [/font][font=宋体]电源:[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱加热功率较大(一般情况下,大于[/font][font=Calibri]2000W[/font][font=宋体]),实验室电源需要有正确的供电电压与足够的输出功率,否则可能造成温度控制问题,例如温度不能达到设定值或者程序升温过程中,实际柱温不能正确跟随温度程序。[/font][/font][font=宋体][font=Calibri]2 [/font][font=宋体]环境温度:[/font][/font][font=宋体][font=宋体]一般情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的柱温箱仅有加热功能并无制冷功能,柱箱的设置温度必须高于环境温度(一般要求高于环境温度[/font][font=Calibri]10[/font][font=宋体]℃左右)。当使用较低柱箱温度的色谱分析条件时,必须控制实验室温度。[/font][/font][font=宋体][font=Calibri]3 [/font][font=宋体]安装位置:[/font][/font][font=宋体]色谱仪重要的工作模块,例如柱温箱或者检测器,应当处于温度或者气流剧烈变动的位置,尽量避免空调之类的气流直吹。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的安装位置,需要保证散热环境良好。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱的背面设计有后开门以利于降温,日常使用中需要注意色谱仪与实验室墙壁之间保持一定距离,清理其他可能会阻碍气流的障碍物。[/font][font=宋体]色谱仪温度系统常见的故障有:[/font][font=宋体][font=Calibri]1 [/font][font=宋体]部件温度显示数值异常[/font][/font][font=宋体]色谱仪开机自检或者运行过程中出现部件的显示温度明显与真实温度不同,某些情况下会出现开机报警现象。[/font][font=宋体]故障原因可能为:温度传感器开路、短路、绝缘不良或者温度传感器内部或者与色谱仪测控线路之间的连接部分接触不良。[/font][font=宋体] [font=宋体]色谱仪温度测控线路存在异常。[/font][/font][font=宋体][font=Calibri]2 [/font][font=宋体]部件不能升温。[/font][/font][font=宋体]一般情况下与执行器损坏有关,例如加热丝或者加热棒内部开路,温度控制线路或者控制线路供电部分异常。[/font][font=宋体]温度控制系统的执行器一般由加热体、控制线路和电源部分组成。常见的问题有控制线路中的晶闸管、继电器或者电源供电部分损坏。[/font][font=宋体][font=Calibri]3 [/font][font=宋体]部件温度失控。[/font][/font][font=宋体]色谱系统启动之后,某模块温度持续上升,不能稳定于设定数值。一般与控制线路工作异常有关,例如晶闸管失效。[/font][font=宋体][font=Calibri]4 [/font][font=宋体]部件温度不能达到设定值。[/font][/font][font=宋体]色谱系统启动之后,部件温度低于或者高于设定值。一般与温度传感器异或者柱箱后开门有关。[/font][font=宋体]温度传感器氧化或者内部发生接触不良造成传感器总体电阻过大,会造成部件温度显示数值错误。色谱柱温箱后开门不能正常关闭,也会造成色谱柱箱温度不能达到较高的设定值。[/font][font=宋体][font=Calibri]5 [/font][font=宋体]部件温度显示数值不稳定[/font][/font][font=宋体][font=Calibri]5.1 [/font][font=宋体]部件温度显示数值发生震荡[/font][/font][font=宋体]环境影响,实验室温度不稳定或者色谱仪靠近气流,例如空调出口。[/font][font=宋体]温度传感器时间常数过大(尤其是检测器部分),或控制线路异常。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱需要使用时间常数较小的温度传感器,一般使用薄膜式铂电阻,可以迅速感知和传递柱温变化,不可以使用金属或陶瓷外壳的铂电阻代替。[/font][font=宋体]检测器部分的温度传感器一般需要与检测器的金属底座有良好的接触,某些仪器要求温度传感器外层包覆铝箔或者涂覆导热硅脂,如果物理接触不良,可能会造成温度的震荡。[/font][font=宋体][font=Calibri]5.2 [/font][font=宋体]部件温度显示数值发生剧烈变化[/font][/font][font=宋体]需要特别予以注意,受控部件尤其是检测器的真实温度是不会迅速发生变化的,尤其是高温迅速变化到低温。一般的原因是温度传感器内部的绝缘或者引线发生故障。[/font][font=宋体][font=Calibri]6 [/font][font=宋体]部件温度不能正常跟随温度程序。[/font][/font][font=宋体]程序升温过程中,色谱柱温箱温度不能跟随程序。[/font][font=宋体]考虑是否实验室电源的电压或者功率不足,或者柱箱后开门不能正常关闭。[/font][font=宋体][font=Calibri]7 [/font][font=宋体]程序升温降温恢复时间过长。[/font][/font][font=宋体]柱箱后开门不能正常开启,或色谱仪器散热环境较差,色谱柱温箱的热气流出口被阻挡。[/font][font=Calibri] [/font]

  • 【分享】温度及温度控制基础知识

    温度是表征体系中物质内部大量分子、原子平均动能的一个宏观物理量。物体内部分子、原子平均动能的增加或减少,表现为物体温度的升高或降低。物质的物理化学特性,都与温度有密切的关系,温度是确定物体状态的一个基本参量,因此准确测量和控制温度,在科学实验中十分重要。温度是一个特殊的物理量,两个物体的温度不能像质量那样互相叠加,两个温度间只有相等或不等的关系。为了表示温度的数值,需要建立温标,即温度间隔的划分与刻度的表示,这样才会有温度计的读数。所以温标是测量温度时必须遵循的带有“法律”性质的规定。国际温标是规定一些固定点,这些固定点用特定的温度计精确测量,在规定的固定点之间的温度的测量是以约定的内插方法及指定的测量仪器以及相应物理量的函数关系来定义的。确立一种温标,需要有以下三条:1. 选择测温物质:作为测温物质,它的某种物理性质如:体积、电阻、温差电势以及辐射电磁波的波长等与温度有依赖关系而又有良好的重现性。2. 确定基准点:测温物质的某种物理特性,只能显示温度变化的相对值,必须确定其相当的温度值,才能实际使用。通常是以某些高纯物质的相变温度,如:凝固点、沸点等,作为温标的基准点。3. 划分温度值:基准点确定以后,还需要确定基准点之间的分隔,如:摄氏温标是以1个标准大气压下水的冰点(0℃)和沸点(100℃)为两个定点,定点间分为100等份,每一份为1℃。用外推法或内插法求得其它温度。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=69176]温度知识[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制