当前位置: 仪器信息网 > 行业主题 > >

树脂交换器

仪器信息网树脂交换器专题为您提供2024年最新树脂交换器价格报价、厂家品牌的相关信息, 包括树脂交换器参数、型号等,不管是国产,还是进口品牌的树脂交换器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合树脂交换器相关的耗材配件、试剂标物,还有树脂交换器相关的最新资讯、资料,以及树脂交换器相关的解决方案。

树脂交换器相关的资讯

  • 两项空调热交换器效率评价方法国标通过审定
    日前,在全国能源基础与管理标准化技术委员会节能技术与信息分技术委员会召开的国家标准审查会上,《制冷空调用板式热交换器火用效率评价方法》和《空冷式热交换器火用效率评价方法》通过审查。   据了解,由于板式换热器相关标准规定的范围很宽,且板式换热器的应用领域也非常广,所涉及的结构、材料、介质、用途、工况等千变万化,容量与尺寸变化范围也非常广,不可能仅靠一个标准解决其效率评价问题。因此《制冷空调用板式热交换器火用效率评价方法》标准将范围限于技术比较成熟、积累较丰富的制冷空调领域,仅对制冷和空调用板式热交换器换热效率进行了研究。此外,有关换热器效率评价的方法多种多样、研究尚不成熟,基础技术数据的积累也远远不足,标准制定的技术难度与工作量都非常大。作为探索性的标准,该两项标准建立了从有效能角度(火用效率)评价热交换器的方法,所确定的评价指标为提出最早、概念最为成熟的效率参数(热力学第二定律最基本的评价方法),较为科学、合理、可行,争议也较小,为换热器效率评价标准的发展和技术进步奠定基础。
  • 美国博纯发布新BE系列水分交换器
    -BE系列使用Nafion专利技术可靠地为实验室及科学应用中的校准气体进行加湿美国博纯有限责任公司,医疗,科研及环境监测应用气体预处理解决方案的优质供应商近日发布新型BE系列水分交换器。加湿校准气体已被证实可以提高气体检测传感器精度并减少错误报警。博纯以Nafion技术为基础的BE系列专为实现这些结果而设计。高选择性渗透管从周围环境空气中吸收水汽来加湿实验室和科学应用中的校准气体,使之达到要求的水平。博纯BE系列解决方案已为气体检测系统测试和表征,使其在系统校准和设置过程中更容易的加湿气体。这些水分交换器由Nafion材料制成,水分交换器材料都具有耐化学腐蚀性,可用于绝大部分检测气体。BE系列可连续的水汽传递特性可提供长期性能,减少维护成本。公司新的BE系列有多种长度可选,满足常见流速要求。BE系列也可用作气体干燥管来干燥潮湿的气流至周围的环境湿度水平。博纯BE系列重要因素和亮点:安装简单, 只要求BE水分交换器打开伸直,并与环境空气接触水分交换器持续地再生,随着时间的推移可提供稳定的性能使用寿命长,产品重复使用时不会老化或失去性能水分交换器材料具有耐化学腐蚀性,可用于绝大部分检测气体关于博纯:美国博纯(Perma Pure)是英国豪迈旗下公司,是一家提供创新的高性能气体预处理解决方案生产厂商,产品包含干燥管、加湿器、过滤器、凝聚过滤器、专业洗涤器和完整的样气预处理系统。总部位于新泽西州莱克伍德,在中国和印度设有服务支持中心。作为使用Nafion™ (由杜邦公司研发的离子交换共聚物)管解决方案的指定生产商,我们提供高性能、品质和可靠性产品,是医疗、科研和环境监测用户的信赖之选。博纯通过ISO 9001:2015,13485:2016认证,并获得FDA注册。
  • NASA国际空间站开始测试下一代飞船热交换器
    NASA的深空猎户座(Orion)飞船要求精密控制热能温度来保护乘组及设备。  图片来源:洛克希德马丁公司(Lockheed Martin)  在国际空间站(International Space Station)上使用的相变热交换器演示仪(Phase Change Heat Exchanger Demonstration Facility)将测试使用石蜡来控制温度,并且有可能用在猎户座飞船上。  图片来源:NASA/Rubik Sheth  在国际空间站上使用的相变热交换器演示仪将测试使用石蜡来控制温度,并且有可能用在猎户座飞船上。  图片来源:NASA/Rubik Sheth  相变热交换器演示仪有一个类似厨房抽屉的可移动模块携带着10磅(4.5公斤)重的石蜡  图片来源:NASA/Rubik Sheth  2016年7月21日,国际空间站(ISS)的乘组们接收了一件交付的独一无二的硬件,它有助于NASA实现冲出地球进入深空的载人旅程。  相变材料热交换器(PCM HX)演示仪搭上SpaceX公司的龙货运飞船(Dragon cargo craft)来到国际空间站,飞船于7月18日搭载猎鹰9号(Falcon 9)火箭从佛罗里达卡拉维拉尔角空军基地(Cape Canaveral Air Force Station)升空。7月20日早些时候龙飞船抵达了空间站,乘组们即可开始将货运飞船中近5,000磅(4,536公斤)的科学、研究以及轨道试验室用硬件搬上空间站。  此硬件是NASA开创新局发展项目(Game Changing Development program)的努力成果之一,该项目将推进太空科技,并可能推动NASA未来任务的全新进展和国家重大需求的解决方案。更新颖的是这个高科技装置填充着一种与蜡笔质地相似的材料——石蜡。  热力学挑战  “石蜡的使用时间最早可以追溯到公元前221-206年,但它可能不会想到成为21世纪空间旅行的理想材料,但这个例子就是事实,”Rubik Sheth先生解释道。Rubik Sheth先生是NASA休斯顿约翰逊航天中心(Johnson SpaceCenter)热能系统分部(Thermal System Branch)的项目经理和系统工程师。  NASA的猎户座飞船的一项未来使命是支持乘组在月-地空间。“当宇宙飞船位于太阳和月球之间时飞船会变得非常热,所以派遣人类去月球附近的深空是一项热力学挑战。我们需要这些相变材料热交换器去吸收额外多余的,原本猎户座飞船将会接受的能量”,Sheth解释道。  Sheth指出热交换器冷冻或者液化一种材料去维持飞船内部的关键温度,从而保护乘组及设备。  被选择展示在国际空间站相变材料热交换器里的材料是正十五碳烷(N-pentadecane)。Sheth说,“它在自身的一致性和触觉上都非常像蜡笔”。  它如何工作  相变材料热交换器简称——PCM HX,通过液化一种相变材料,如石蜡,作为热冷却剂。能量随后被飞船的散热器辐射出去,然后再冷冻石蜡为下一次热负载峰值做准备。这种新型的热交换器能帮助消除猎户座产生的热并更好的调节温度,Sheth说。“这也是为什么我们让它飞到国际空间站去看它如何在微重力下工作,然后采取下一步实现这一构想。” 把石蜡用于一台PCM HX中反反复复想法源于1973-1974年在NASA天空实验室空间站中乘组们不断的实验和在错误中的尝试。与此类似,石蜡最早曾被应用于阿波罗登月项目的月球车上作为一种被动冷却仪器。然而结果却是前后矛盾的,Sheth指出。  Sheth说我们与康乃迪克州Windsor Locks的联合技术航空航天系统公司(United Technologies Aerospace Systems)一起做了全面回顾,石蜡基的PCM HX被造来用以飞行演示。国际空间站的测试设备使用一种建造在加热器和热电装置的热能控制系统,该系统协助PCM HX的冷冻和液化循环。  一个可移动的厨房抽屉大小的PCM HX部件仪器装载了10磅(4.5公斤)石蜡。每公斤石蜡本身能够锁住200千焦的热能。所以我能在每公斤石蜡那里塞进200千焦的能量,Sheth说。  这等同于点亮一盏紧凑的荧光灯约8小时的能量。一个用石蜡的PCM HX,如同对照的使用数加仑的水,等于为猎户座飞船建造者带来潜在的大规模的节约。  返回地球  在国际空间站上此设备能够日以继夜的运行。但是当它处在10到30摄氏度的低温区工作时它是一个能源消耗大户。这意味着,不得不与空间站其他有效负荷分配电力,电力需要在不同的实验间进行分配。  “我们想在今年12月试一遍”,Sheth说。  Sheth指出待到今年年底石蜡将会从仪器中撤走,然后返回地球。实际的演示仪器将仍然留在国际空间站,为其他温度要求低于零下10摄氏度的制冷剂测试做准备,石蜡一旦回到NASA手中将会对其外观进行形变检查,然后从中间切开。“我们想看石蜡如何保持热交换器单元本身的内部几何结构”,Sheth说。此项评估能够帮助未来石蜡基的PCM HX更有效率。  Sheth说目标是给猎户座飞船团队的猎户座探险任务2(Orion' s Exploration Mission 2,EM-2)一份报告,为EM-2选择的相变材料子系统关键设计审核流程,获取经验将是NASA太空发射系统火箭的第一个乘组的任务。  国际空间站PCM HX演示仪尽力用2年的时间去改进。  “该项目已经在许多方面取得了回报”,Sheth说。“从工程上说仪器已经得到国际空间站的承认,搭载龙飞船运到空间站,我们已经完成的工作是非常了不起的。”
  • 树脂类填料的分类
    树脂通常有两部分组成:一部分为聚合单体和交联剂通过聚合反应生成的具有三维空间的网络骨架,这部分也被称为树脂骨架;另一部分为连接在骨架上的特殊功能基团。其中三维骨架类型和结构决定树脂主要的物理性能,如稳定性、孔结构、密度、溶胀度等;而三维骨架上连接的特殊官能团则在应用时对吸附何种物质起决定性作用。根据骨架上连接的官能团的类型和性质树脂可分为以下几种:非离子型树脂这类树脂中不含特殊的离子和官能团,与其他物质作用时主要依靠分子间的范德华力,而不形成化学键,对不同物质的吸附选择性主要依靠被吸附分子的极性确定。非离子型树脂对弱极性和非极性的有机化合物有很强的吸附作用,这类树脂广泛应用于药物分离、色素提取等领域。金属离子配位型树脂金属离子配位型树脂的骨架上带有特殊的配位基团和配位离子,可以与金属离子进行络合反应,使两者之间形成配位键,树脂与被吸附物质间通过配位键相互作用而吸附到树脂上的,该吸附过程为化学吸附。这类树脂也称为螯合树脂,多用于水溶液过渡金属离子的选择性分离与富集。螯合树脂的官能团是含有一个或多个配位原子的功能基团,可进行配位的原子都具有提供电子对的性质,常见配位原子主要为 O、N、S、P 等元素的原子。这些原子和被吸附物质作用时都可提供配位的孤电子对,因此螯合树脂也可根据配位原子的种类,分为氧配位型螯合树脂、氮配位型螯合树脂、硫配位型螯合树脂等。含有氧原子的螯合官能团有:—OH(醇、酚)、—COOH(羧酸)、—O—(醚、冠醚)、—CO—(醛、酮、醌)、—COOR(酯、盐)、—NO2(硝基)、—NO(亚硝基)等;以氮为配位原子的螯合官能团有:—NH(胺)、2C=NH(亚胺)、C=N—R(席夫碱)、C=N—OH(肟)、—CONH2(酰胺)、—N=N—(偶氮)等。离子型树脂 离子型树脂的骨架上所连的管能团是一种或几种具有化学活性的官能基团,其在水溶液中能离解出某些阳离子(如H+或 Na+)或阴离子(如OH-或Cl-),解离之后骨架上所带的离子基团可以与不同反离子通过静电引力发生作用,将带有相反电荷的离子型物质吸附到树脂上。在水溶液中与其他离子基团作用时,由于竞争性吸附,原来配对的反离子被新的离子取代。树脂中化学活性基团的种类决定了树脂的主要性质和类别。根据交换的离子,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂,阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类。离子型树脂带的强酸性官能团有磺酸基(—SO3H),这种官能团在碱性、中性,甚至在酸性介质中都有交换功能;弱酸性的官能团有羧基(—COOH)或磷酸基(—PO(OH)2),这些官能团只有在pH=5~6,碱性或接近中性的介质中才有离子交换能力;强碱性官能团有季胺基团(NR3),这种官能团在酸性、碱性、中性介质中都可进行离子交换;弱碱性的官能团有伯胺(—NH2)、仲胺(—NHR)和叔胺(—NR2),这几种官能团只有在中性或酸性介质中进行离子交换。此外,树脂也可按化学结构分为极性和非极性树脂。非极性树脂是指由非极性单体聚合而成,如二乙烯苯为单体聚合而成的树脂。极性树脂又可分为强极性、极性和中极性树脂。强极性树脂是含有吡啶基、氨基官能团的树脂;中极性树脂一般有含酯基、羰基的单体聚合而成;极性树脂通常是含有酰氨基、亚砜基、氰基的单体聚合而成。
  • 2022年全球色谱树脂市场近26亿美元 需求推动高速增长
    仪器信息网讯 根据外网研究机构调研显示, 全球色谱树脂市场2022年约为26亿美元,预计到2027年,该市场规模将达38亿美元,预测期间的复合年增长率为8.0%。对仿制药需求的不断增长,制药、生物制药研发活动的增长将成为推动市场增长的主要因素。按照应用领域来看,制药、生物技术是目前最大的细分市场,而食品市场则为第二大市场。驱动因素:不断增长的制药和生物制药研发活动在过去的十年间,越来越多的制药和生物制药研发投入推动了色谱树脂在药物发现领域的应用需求。特别是在亚太地区,仿制药的需求巨大,将持续推动市场增长。对色谱的需求是制药行业研发活动的一个重要组成部分,预计将随着研发支出的增加而增加,从而推动色谱树脂市场的发展。不利因素:缺乏足够的熟练专业人员近年来,色谱树脂市场见证了快速的技术进步。正确使用色谱设备需要具有相关经验和不同色谱技术的专业知识。因此,缺乏熟练的劳动力,可能会阻碍全球色谱树脂市场的增长。机会:药物开发和组学研究中对色谱的需求不断增长色谱是最通用的分离技术。在药物发现的早期阶段,许多相关化合物被合成出来,并需要进行进一步分离,它们的类别鉴定及提纯非常重要。色谱在原料药、活性药物成分(API)和药用辅料等分离、纯化和分析方面应用非常广泛。因此,对高质量药物日益增长的需求以及严格的政府监管的实施正在推动一些国家对色谱树脂的需求的增长。 色谱树脂行业生态报告指出,按照色谱树脂类型看,在预测期内,合成树脂预计将成为增长最快的色谱树脂类型,其需求预计将受到其在离子交换色谱中应用的推动。聚苯乙烯-二乙烯基苯是最常用的合成树脂,它越来越多地用于离子交换层析中。合成树脂部分的增长预计将受到其在分析或实验室规模应用中的使用增加的推动。而按照技术分类看,亲和色谱是 2021 年价值最大的色谱技术。Protein A亲和色谱法是抗体纯化的首选。对抗体纯化需求的不断增长,将大大推动亲和层析的市场。亲和色谱通过目标蛋白(或蛋白组)与色谱基质上的特定配体之间的可逆相互作用来分离蛋白质,具有高选择性,高分辨率和高载量等优点,使得它在蛋白纯化中具有很强优势和应用前景,所有这些因素都推动了市场对亲和色谱技术的需求。报告还指出,在预测期内,北美将占全球色谱树脂市场的最大份额。2021 年,无论是从数量和金额来看,北美都在全球色谱树脂市场中占据最大份额。美国是北美色谱树脂的主要市场,其次是加拿大。北美巨大的单克隆抗体市场是色谱树脂市场的主要驱动力之一。现代色谱技术在美国和加拿大也越来越多地应用于食品分析、医疗诊断等领域。同时,大多数主要制药公司都在北美设有研究中心。所有这些因素推动了北美对色谱树脂的需求。色谱树脂市场目前的一些主要参与者包括:丹纳赫(思拓凡)、伯乐、默克、东曹、赛多利斯、Bio-Works,钟化,艾万拓,漂莱特以及赛默飞等。
  • 金欧亚独家代理意大利RESINION公司树脂产品
    RESINDION SRL是日本三菱集团(MCI-Mitsubishi Chemical Corporation)下属的意大利子公司,该公司成立于1959年,主要生产RELITE离子交换树脂。1989年并入世界著名离子交换吸附树脂集团—日本三菱集团。合并后,RESINDIONSRL公司成功对生产线进行了改进,并开发出了工业规模的诸如用于酶固定和生物法层析的SEPABEADS® ,用于固相有机化学的SYNBEADS® 等一系列树脂新产品。 RESINDION SRL可生产从分析级到工业级的多种树脂产品,这些产品应用范围广,几乎覆盖了所有可能的应用。金欧亚公司在提供该公司生产的优质产品的同时,还为用户提供完善的服务和技术支持。 金欧亚公司是RESINDION SRL在中国的分析级和制备级领域的唯一代理。我们将秉承RESINDION SRL公司的传统,为您提供优质的产品与服务。 热线电话:010-67100708;67114016;67136152
  • 未来五年 色谱树脂在药物发现领域市场将达到4亿美元
    p   用于药物发现的色谱填料包括离子交换色谱填料、亲和色谱填料、疏水相互作用色谱填料、体积排除色谱填料以及多模态色谱填料等。据MarketsandMarkets预测,至2022年,用于药物发现的色谱树脂市场将达到4.01亿美元,2017年到2022年,以6.65%年均复合增长率增长。该市场增长驱动力主要来源于不断增长的治疗性抗体的需求以及和生物制药研发的快速增长等因素。 /p p    strong 离子交换树脂份额最大 /strong /p p   报告分析,用于药物发现的填料中,离子交换层析填料的市场份额最大。报告指出,在2016年,离子交换树脂已经成为用于药物发现的份额最多的色谱填料,未来预期将以相当大的速度增长。离子交换色谱技术广泛应用于生物制药纯化工艺。生物药物的工业规模净化和药物的定性和定性分析是色谱树脂的关键应用领域。越来越多地使用色谱法来制造生物药物,例如单克隆抗体和其他重组蛋白质,这有望推动色谱树脂在药物发现中的应用。 /p p    strong 天然聚合物领域需求最大 /strong /p p   报告指出,2016年,天然聚合物的药物发现对色谱树脂的需求最多,尤其是琼脂糖,纤维素和葡聚糖三类天然聚合物。此类聚合物最大的特点是在其结构中具有大量的羟基,因此,亲水性较好,提供了适当配体偶联功能位点。 /p p    strong 北美最大 亚洲增长最快 /strong /p p   从区域上看,用于药物发现的色谱树脂市场主要分布在北美、欧洲、亚太和其他地区。研究报告指出,美国是此类色谱树脂的主要市场,其次是加拿大,主要是因为该地区单克隆抗体治疗市场的强劲增长带动了色谱树脂的需求。此外,由于中国,印度和南韩等国家仿制药和生物仿制药的增长,亚太地区药物发现的色谱树脂市场预计将从2017年至2022年以最高的速度增长。由于经济效益和技术专业人才的可用性,全球大量制药企业正在这些国家建立研发中心。 /p p   用于药物发现的色谱树脂供应商包括通用电气、德国默克、美国颇尔、伯乐、赛默飞和日本东曹。这些公司通过新产品发布,扩张,合同和协议等策略,逐步加强市场地位,扩大产品组合,扩展客户群。 /p p br/ /p
  • 博纳艾杰尔全国Triskem树脂应用技术研讨会巡讲
    2013年4月,天津博纳艾杰尔科技有限公司全国包括兰州,西安,广州,苏州等多地举办了Triskem树脂应用技术研讨会。天津博纳艾杰尔科技有限公司及其放射性萃取树脂供应商Triskem公司共同参办了本次研讨会的巡讲。会议期间,一直致力于放射化学萃取色谱技术研发和应用的Steffen博士在会上作了精彩的报告,很多参会代表和专家对Triskem萃取色谱树脂的发展和应用给予了极大的关注。 Triskem树脂应用技术研讨会(西安)会场 Triskem树脂应用技术研讨会研讨会(广州)会场 Triskem International公司即原Eichrom欧洲分公司,生产和分销Eichrom公司的各种萃取色谱树脂。目前Triskem树脂可以分离和富集各种镧系、锕系,尤其是U、Pu、Sr、Am、Th、Pb、Po等一系列放射性核素。领先的技术,稳定的产品受到了很多科研机构专家和老师的认可和青睐。 我们的产品包括: 产品 应用* AC 树脂 锕系元素分离/总&alpha 测量 BE 树脂 Be CL 树脂 Cl, I Cs 树脂 Cs CU 树脂 Cu DGA 树脂 锕系元素, Am, Y, Ra Diphonix® 树脂 锕系元素和过渡金属 离子交换树脂 分析级离子交换树脂 LN 树脂 镧系元素, Ra-228 MnO2 树脂 Ra NI 树脂 Ni PB 树脂 Pb 预过滤树脂 痕量有机物去除 RE 树脂 Th, U, Np, Pu, Am, Cm, 稀土元素 SR 树脂 Sr, Pb TEVA® 树脂 Tc, Th, Np,Pu,Am/镧系元素 Tritium柱 ³ H TRU 树脂 Fe, Th, Pa, U, Np, Pu, Am, CmUTEVA® 树脂 Th, U, Np, Pu Nucfilm片 Ra, U 欢迎您来电咨询,索要资料。服务热线:400-606-8099
  • 粘度测定仪用毛细管法测定PET(聚对苯二甲酸乙二醇酯)树脂稀溶液的特性黏度
    PET又名聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate)是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。PET分为纤维级聚酯切片和非纤维级聚酯切片。①纤维级聚酯用于制造涤纶短纤维和涤纶长丝,是供给涤纶纤维企业加工纤维及相关产品的原料。涤纶作为化纤中产量最大的品种。②非纤维级聚酯还有瓶类、薄膜等用途,广泛应用于包装业、电子电器、医疗卫生、建筑、汽车等领域,其中包装是聚酯最大的非纤应用市场,同时也是PET增长最快的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,特别是热灌级聚酯产品生产过程中,由于该品种粘度指标范围窄,一旦受原料、生产过程控制等因素影响,未及时判断出原因进行调整,基础切片粘度无论是下降还是升高,若未及时将该部分切片进行有效隔离,直接进入到后续系统,将对后续固相增粘造成极大影响,致使调整困难,导致产品质量降等。聚酯生产过程中影响聚酯产品质量的因素很多,从纺丝的角度出发,主要有色相、端羧基、二甘醇含量及黏度等,其中以黏度对可纺性的影响最为显著。目前,绝大多数聚合装置都与直接纺长丝或短纤维的装置街接,并且越来越多的纺丝装置采用高速纺和细旦的品种,这就对熔体的质量特别是熔体的特性黏度稳定提出了更高的要求。 乌氏毛细管法是PET(聚对苯二甲酸乙二醇酯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性粘度也是PET(聚对苯二甲酸乙二醇酯)材料的核心指标之一。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:根据PET材料分类所选溶剂配比不同,纤维级聚酯切片可选择苯酚/1,1.2,2-四氯乙烷(质量比3:2)亦可选苯酚/1,1.2,2-四氯乙烷(质量比1:1),瓶级聚酯切片选择苯酚/1,1.2,2-四氯乙烷(质量比3:2); 2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PET树脂稀溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过ZPQ-50自动配液器将溶液浓度精准配制到0.005g/ml,再将样品瓶放置到MSB-15多位溶样器中(纤维级90~100℃,瓶级110℃~120℃),待半小时内溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。苯酚/1.1.2.2—四氯乙烷(质量比50:50)作溶剂的试验,按公式(1)、(2)、(3)计算相对黏度(ηr)、增比黏度(ηsp)和特性黏度([η]):式中:ηr——相对黏度;t1——溶液流经时间,单位为秒(s);to——溶剂流经时间,单位为秒(s);ηsp——增比黏度;[η]——特性黏度;c——溶液浓度,单位为克每百毫升(g/100mL)苯酚/1.1.2.2一四氯乙烷(质量比60:40)作溶剂的试验,其结果按公式(4)计算:本文章为原创作品,无原作者授权同意,不得随便转载拷贝,侵权必究!
  • 环氧树脂的羟值测定
    环氧树脂优良的物理机械和电绝缘性能、与各种材料的粘接性能、以及其使用工艺的灵活性是其他热固性塑料所不具备的。因此它能制成涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料,在国民经济的各个领域中得到广泛的应用。5月份,我们带来了环氧树脂水分含量检测的应用方案,现在我们带着环氧树脂羟值测定的应用方案与您见面了! 一、背景介绍羟值是指1g样品中羟基所相当的氢氧化钾的毫克数,以mgKOH/g表示。目前胶黏剂中的环氧树脂、聚酯多元醇和聚醚多元醇及聚氨酯等对羟值有要求。羟值是环氧树脂羟基含量的量度,可以直接反映出环氧树脂分子量的大小;在聚酯多元醇的合成过程中,利用羟值与酸值的测试来监控合成反应程度,用来检验树脂分子量是否符合产品出厂要求;在聚氨酯胶黏剂生成时,羟值与酸值大小,是异氰酸酯加入改性的重要依据。故我们需要对羟值进行检测。依据标准:GB/T 12008.3-2009 塑料 聚醚多元醇 第3部分:羟值的测定。 二、羟值测定方法1、测试原理用过量酸酐与产品中羟基反应生成酯和酸,多余的酸酐水解成酸,再用碱进行中和滴定。根据氢氧化钠的消耗量,可计算出产品的羟值。由于滴定终点颜色变化不易观察,因此通过电位来指示终点。 2、仪器及试剂:● ZDJ-5B型自动滴定仪● 231-01 pH玻璃电极+232-01参比电极● 咪唑、吡啶、邻苯二甲酸酐、0.5mol/L氢氧化钠标定滴定溶液 3、测试(1)样品前处理:● 向试料和空白锥形瓶中准确移取25ml邻苯二甲酸酐酰化试剂。摇动瓶子,至试料溶解,每个锥形瓶接上空气冷凝管,放在115+2℃油浴里30min。● 加热后,将装置从油浴中拿出并冷却至室温。用30ml吡啶冲洗冷凝管并取下冷凝管。将溶液定量转移到250ml烧杯中,用20mL吡啶冲洗锥形瓶。(2)空白测定:将空白样品置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。(3)样品测定:将试样置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。注意事项图1 样品测定曲线 (1)过量的水会破坏酯化试剂而干扰测定,试剂需要保持干燥,酰化试剂吸潮后需要重新配置。(2)酯化完成,冷却后,可以先加少量水,使过量的酸酐直接水解,在用氢氧化钠标准溶液进行滴定。(3)样品的取样量要进行估算,尽可能的使试料质量与理论计算值相近。 三、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 拒绝污染,所企合作攻关水性底涂树脂
    长春一汽富维东阳汽车塑料零部件有限公司生产车间(受访者供图)“大多数油性底涂含有二甲苯有机物,每1000克的油性底涂中约有700克的挥发性苯,在生产和使用油性底涂过程中,这些苯释放到了大气中,会给环境造成污染。”中国科学院长春应用化学研究所副研究员张红明告诉《中国科学报》。日前,中科院STS计划区域重点项目“千吨级汽车保险杠水性底涂关键技术”通过验收,张红明是该项目的负责人。他介绍,通过与长春一汽富维东阳汽车塑料零部件有限公司合作,项目建设完成了一条年产1000吨汽车保险杠水性底涂树脂产业化生产示范线,为实现国产化汽车保险杠的低能耗、低污染涂装奠定了工业化基础。企业面临污染困境近年来,随着国家对生态环境保护的重视程度不断提升,低挥发性有机物(VOCs)、低污染一直都是涂料行业追求的发展方向。2020年3月,国家市场监督管理总局和国家标准化管理委员会批准发布了强制性国家标准《车辆涂料中有害物质限量》,对汽车用零部件涂料中的挥发性有机物(VOCs)进行了限量要求,底漆为≤700g/L,色漆≤770g/L,清漆≤560g/L。当前,VOCs的排放管控越来越严格,采用低VOCs的环境友好型涂料,如水性漆替代溶剂型涂料,是较彻底地解决VOCs对大气污染的治本措施。由于水性涂料以水充当溶剂,具有挥发性气体少、施工时气味可接受度高、不易燃等优点,涂料行业的“油改水”已在全国各大城市推动开来。吉林省作为汽车产业基地,但保险杠涂装的相关企业长期面临着油性底涂给周围环境造成重大污染的难题,亟需水性底涂核心树脂来解决此困境。在一次交流中,张红明发现,长春一汽富维东阳汽车塑料零部件有限公司就面临着这样的困境,其汽车保险杠水性底涂核心涂树脂一直未获得突破性进展,导致了保险杠底涂无法完成水性化涂装。2020年,长春应化所牵头设立了中科院科技服务网络计划(STS计划)区域重点项目“千吨级汽车保险杠水性底涂关键技术”,携手长春一汽富维东阳汽车塑料零部件有限公司,攻关汽车保险杠水性底涂核心涂树脂。携手攻关水性树脂张红明团队在水性树脂领域有着多年的积累,并开发 “水性树脂的制备方法及水性涂料组合”的发明专利。采用该专利制备的水性树脂的主链结构中包括环氧树脂基团、丙烯酸树脂基团和聚氨酯基团。由于水性树脂具有无毒无害的性质,减少了有机溶剂的挥发给环境带来的危害,可以满足企业的需求。在此基础上,长春应化所与企业开展了成功的合作。2019年,张红明团队与吉林天泽二氧化碳科技有限公司合作,建设年产1万吨二氧化碳基汽车内饰水性胶粘剂项目。据介绍,该项目采用二氧化碳基汽车内饰水性胶粘剂制备技术和二氧化碳基水性树脂合成技术,研发生产具有自主知识产权的汽车内饰水性胶粘剂产品,可以有效利用废弃二氧化碳,每年减排二氧化碳27万吨,对探索建设资源节约型、环境友好型社会具有借鉴意义。张红明指出,STS计划项目以原来成熟的二氧化碳基水性聚氨酯技术作为主体,在此基础上引入了低表面能结构的烯烃结构基团作为接枝组分,提高了水性树脂在保险杠聚丙烯这种低极性基材上的综合性能,满足企业对保险杠水性底涂树脂要求。“千吨级汽车保险杠水性底涂关键技术”的核心是水性底涂树脂的性能突破,属于一项化工水性树脂产品的工业化生产技术。张红明介绍,该技术主要难点是水性底涂树脂能否达到保险杠底涂树脂性能要求,包括硬度、耐水等性能。记者还了解到,在STS计划项目立项前,长春应化所不仅选择了从事5年以上的具有水性树脂设计和合成的相关人员加入项目团队,而且选择了具有丰富产业化经验的工程人员参与该项目。首次合作慢慢磨合2021年10月,为落实《中国第一汽车集团有限公司中国科学院战略合作框架协议》内容,中国科学院长春分院组织一汽集团与长春应化所召开技术对接会。作为一汽集团富维公司的企业,长春一汽富维东阳汽车塑料零部件有限公司在与应化所进行技术交流的时候,达成了STS计划项目的共识。这也是双方的第一次合作。在合作过程中,难免会遇到一些困难。“最大的困难是水性树脂生产出来后,我们还需要和企业进一步沟通产品试制。”张红明表示,由于企业有生产任务,但要使用对方的生产线进行试制,就得抽时间空出一条生产线进行试制。企业比较配合,只是在沟通过程中比较耗费精力,需要慢慢磨合。据悉,长春一汽富维东阳汽车塑料零部件有限公司涉及到保险杠的总成业务,保险杠材料的制备也是该公司的重要业务内容。双方合作完成的年产1000吨汽车保险杠水性底涂树脂产业化生产示范线于2020年11月安装完成,2021年5月份完成调试,每年可新增产值1亿元。张红明算了一笔账:“如果未来水性底涂树脂可代替目前50%的油性底涂市场,按照目前市场用量计算,水性底涂树脂年用量可达3.5万吨,有望形成35亿元以上市场。“该项目落地顺利将解决保险杠涂装领域的水性化涂装进程,改善相关企业的生态环境,为汽车绿色装备制造迈出重要的一步。”张红明说。近期,生物降解材料也引起了长春一汽富维东阳汽车塑料零部件有限公司的关注。张红明透露,目前双方正在商谈生物降解材料在保险杠材料中的应用可行性。
  • 安捷伦和沃特世就交换仪器控制签署正式协议
    6月11日,安捷伦和沃特世宣布签署正式的交换仪器控制协议,以提高同时拥有两家仪器和软件的客户的生产率。   新协议取代了之前的规定,之前安捷伦的OpenLAB色谱数据系统可以控制沃特世的仪器,沃特世的Empower软件可以控制安捷伦的液相色谱仪器。   新签协议规定了企业如何交换仪器控制文件和驱动程序软件以及公司之间如何给彼此提供开发人员和技术支持的条款。此外,新条款还阐述了为他们共同的客户解决技术问题的升级机制。   &ldquo 安捷伦的实验室信息学开放系统方法允许我们的客户根据自己的需求选择最佳的硬件和软件,&rdquo 安捷伦科技公司副总裁和软件和信息总经理John Sadler说, &ldquo 在与其他分析仪器制造商合作过程中,我们正在整合一系列的第三方气相和液相色谱仪器进入我们OpenLAB软件可以控制的范围。我们的目标是为我们共同的客户提供最佳的工作软件。&rdquo   &ldquo 对于采用单一色谱数据管理和仪器控制软件平台等实验室标准化的趋势,如沃特世的Empower软件,将在企业层面给科学组织/机构带来重要的价值,&rdquo 沃特世负责营销的副总裁Rohit Khanna博士说,&ldquo 本协议的更新表明沃特世将继续致力于确保我们共同客户的成功。&rdquo   沃特世和安捷伦在1999年首次协议交换仪器控制代码。多年来,技术交流和供应商协作在分析仪器行业中越来越重要,仪器公司可以用他们自己的色谱数据控制来自多个供应商的仪器,对科学界也有实质性的好处。
  • 洞微知物、“微”力无限 | 谱育科技EXPEC 750型全自动离子交换系统
    EXPEC 750型 全自动离子交换系统有效去除干扰成分,重塑基体环境高通量处理样品,自动化流程,工作效率高离子交换树脂可重复使用,实践绿色分析化学产品介绍可根据不同样品的目标分析元素,选择合适的树脂填装离子交换层析柱。活化之后,采用匹配的上样、淋洗、洗脱等方法流程,利用树脂与目标分析元素及干扰元素的物理化学过程,完成分离、富集。产品特点自动化活化、上样、淋洗、洗脱等流程可组合编辑,一键启动。高精度闭环式系统,承压式分离柱,样品/试剂恒速过柱(0.5~100mL/min)。高效率可实现最多六个通道样品同时处理,处理时间在10~20min之间。智能化程序控制智能化,界面简洁、可视化,状态实时显示。高兼容性自动上样、自动收集装置一体化设计,同时兼容ICP/ICP-MS自动进样。模块化方式,灵活组合,有机结合前处理与分析检测过程,构建自动化分析系统,实现实验室4.0。离子交换+快速进样+智能稀释+检测终端(ICP/ICP-MS/… )产品应用EXPEC 750型全自动离子交换系统可应用于无机元素的分离富集前处理,对于高基体样品,可分离基体干扰;对于低浓度样品,可实现目标元素的富集。通过对样品中痕量元素进行除盐分离富集前处理,可以去除碱土金属及F-、Cl-、Br-等基体,重塑样品的分析基体环境,提升样品回收率至95%-105%。对于低至ppt数量级样品进行富集处理,提高检测终端对样品检测分析的检出限、准确度。
  • 【瑞士步琦】通过SFC(超临界流体色谱)分离三萜香树脂醇的方法
    分离三萜香树脂醇的方法香树脂醇属于三萜类的天然产物,它们有一个双键,结构为五环三萜醇。自然界中的香树脂醇通常以 α-香树脂醇和 β-香树脂醇形式存在,它们互为同分异构体。其中 β-香树脂醇,又称白桦酯醇,具有较高的药用价值,能抑制胆固醇和甘油三酯合成,有效预防肥胖症、动脉粥样硬化症和 2 型糖尿病。α-香树脂醇β-香树脂醇作为两个极性接近的同分异构体,如何利用色谱法有效分离和收集 α-香树脂醇和 β-香树脂醇一直是天然产物界的研究课题之一。由于香树脂醇的化学结构特性,在 HPLC-UV 上会采用 200nm 左右的吸收波长来检测,很容易受到溶剂或其他杂质的影响,而且分离时间也比较长。如图 1 采用 250×3mm I.D,3μm 的 C18 色谱柱分离一系列三萜化合物的混合物。 M. Martelanc et al. / J. Chromatogr. A 1216 (2009) 6662–6670图1、用 HPLC-UV 分离羽扇豆醇(L1),羽扇烯酮(L3),α-香树脂醇(αAm),β-香树脂醇(βAm),δ-香树脂醇(δAm),乙酸环阿屯酯(C2), β-谷甾醇(S2)以及豆甾醇(S1)混合物,流动相为 6.5%水/93.5% 乙腈。本文介绍了一种利用 BUCHI Sepiatec SFC 仪器分离 α-香树脂醇和 β-香树脂醇的方法。SFC 仪器与蒸发光散射检测器(ELSD)相连。为了提高生产效率,采用了堆叠注入模式。▲ BUCHI Sepiatec SFC-50 1实验条件设备Sepiatec SFC-50色谱柱Reprosher C30 10um 100x10mm流动相种类A=CO2B=甲醇流动相条件A/B=85%/15%,等度 18min流速30 mL/min背压150 bar柱温40℃样品25 mg/mL 香树脂醇甲醇溶液进样量11 次叠层进样,每次 100uL▲ 图2、香树脂醇经过 11 次叠层进样,分离为 α-香树脂醇和 β-香树脂醇 2结果与讨论由于 α-香树脂醇和 β-香树脂醇之间没有基线分离,所以分为三组馏分收集,中间部分重新注入以提高回收率。在图 1 的 HPLC-UV 分离方法中,α-香树脂醇和 β-香树脂醇的出峰时间为 20-25 分钟,基线部分波动较大。在图 2 中,SFC-ELSD 采用 11 次叠层进样,总时长为 18 分钟,相比 HPLC 法效率更加高,基线也更加平稳。在馏分收集方面,得益于叠层进样和主要溶剂为 85% CO2,可以在收集大量样品的同时减少溶剂后处理的时间。 3结论α-香树脂醇和 β-香树脂醇可以用 Sepiatec SFC-50 有效分离,结合 ELSD 可实现高产率的检测和连续分馏。 4文献来源Separation and identification of some common isomeric plant triterpenoids by thin-layer chromatography and high-performance liquid chromatographyMitja Martelanc, Irena Vovk, Breda SimonovskaNational Institute of Chemistry, Laboratory for Food Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
  • 帝斯曼在华成立复合材料树脂新研发中心
    全球复合材料行业树脂领导者帝斯曼(DSM)公司昨日宣布在对其南京现有的技术服务队伍进行扩充的同时,将在上海帝斯曼中国园区内成立一个全新的复合材料树脂研发中心,进一步提升其在中国的创新实力。新的研发中心将于2010年11月正式启用。   媒体发布会上,帝斯曼复合材料树脂总裁MichaelEffing先生表示,中国和亚洲地区的经济正在迅速增长,本地的产品创新和应用发展已经成为关键的驱动力,需要更多更深入的专业技术。而此前,这些研发项目都是由帝斯曼在荷兰Zwolle以及Geleen的性能材料研究中心来完成。   “我们预计未来中国市场强劲增长的势头将会继续,为了更好地向客户提供本地化支持和专业技术,我们增加了在中国的投资,包括在上海设立新的研发中心,以及在南京扩充技术服务能力。”帝斯曼复合材料树脂亚洲业务总监唐航初说。   新的研发中心拥有从树脂配方到复合材料应用开发的一系列研发能力,以及高素质的技术人员。此外,它也将成为帝斯曼全球拉挤工艺和FST(燃烧,烟雾生成和毒性)研究的卓越中心。
  • 《核出口管制清单》已实施 质谱等仪器及部件受管制
    p   根据《中华人民共和国核出口管制条例》,国家原子能机构、中华人民共和国商务部、中华人民共和国外交部、中华人民共和国海关总署联合修订《核出口管制清单》,清单自2018年10月1日起实施。 /p p   说明指出,与本清单所列物项直接有关的“技术”将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。为“研制”、“生产”或“使用”本清单所列任何物项而专门设计或开发的“软件”转让将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。 /p p   清单中涵盖了溶剂萃取设备、气体离心机、UF6质谱仪/离子源、同位素电磁分离器、离子源、离子收集器、 高压电源、磁体电源等科学仪器及部件。详情如下: /p p style=" text-align: center " strong 核出口管制清单 /strong /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 说 明 /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 一、总说明 /strong /span /p p   下述各段适用于《核出口管制清单》: /p p   (一)本清单中所说明的各个物项既包括未使用过的物项,亦包括使用过的物项。 /p p   (二)如果对本清单中任何物项的说明不含限制条件或技术规格,这种说明是指该物项的全部品种。 /p p   (三)当设施的设计、建造或运行过程所依据的物理过程或化学过程与本清单中确定的相同或相似时,该设施应被视为与受管制设施“同种型号”。 /p p   (四)不应由于部件的转让而排除对这类物项的管制。 /p p    span style=" color: rgb(255, 0, 0) " strong 二、技术控制 /strong /span /p p   (一)“技术”转让根据《中华人民共和国核出口管制条例》的规定进行管制。与本清单所列物项直接有关的“技术”将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。 /p p   (二)对“技术”转让的管制不适用于“公开”资料或“基础科学研究”资料。 /p p    span style=" color: rgb(255, 0, 0) " strong 三、关于软件的说明 /strong /span /p p   (一)为“研制”、“生产”或“使用”本清单所列任何物项而专门设计或开发的“软件”转让将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。 /p p   (二)“软件”转让应与“技术”转让采用同样的管制原则。 /p p   span style=" color: rgb(255, 0, 0) " strong  四、定义 /strong /span /p p   1.“公共使用的”是指已经公开使用的“技术”或“软件”,而对其进一步传播可以不加限制(包括受版权限制的“技术”或“软件”)。 /p p   2.“基础科学研究”是指主要为获得关于现象和可观察到的事实的基本原理的新知识而从事的实验性或理论性工作,此类工作主要不是针对某一具体的实际目的或目标。 /p p   3.“技术”是指本清单所列物项的“研发”、“生产”或“使用”所要求的特定资料。这些资料可以采用“技术数据”或“技术援助”的形式。其中,“研发”涉及“生产”前的各个阶段:设计、设计研究、设计分析、设计概念、样机的装配和试验、小规模试生产计划、设计数据、把设计转换成产品的过程、结构设计、总体设计、布置等 “生产”是指建造、生产工程、制造、合成、组装(装配)、检查、试验、质保等各个阶段 “使用”是指运行、安装(包括现场安装)、维护(校核)、修理、大修和翻修等 “技术数据”可以采用蓝图、平面图、图表、模型、公式、工程设计和技术规格、手册与规程等形式,被写入或记录在诸如磁盘、磁带、只读存储器等器件或其他载体 “技术援助”可以采用规程、技能、培训、操作知识和咨询服务等形式,可以包括“技术数据”的转让。 /p p   4.“软件”是指载入于有形媒介中的一个或多个“程序”或“微程序”,其中“程序”是指电子计算机可执行的或可转换成可执行某一过程的指令序列 “微程序”是指保存在一个特殊的存储器里的基本指令序列,通过把其参考指令引入指令寄存器开始执行该基本指令序列。 /p p   5.“其他元素”是指氢、铀和钚以外的所有元素。 /p p    span style=" color: rgb(255, 0, 0) " strong 五、单位 /strong /span /p p   本清单使用国际单位制(SI)。在任何情况下,国际单位制规定的物理量应被认为是正式建议的管制值。本清单相关国际单位通常使用的缩写符号(及其表示量值的前缀)如下(按字母顺序): /p p   A - 安培 /p p   Å - 埃 /p p   ℃ - 摄氏度 /p p   cm - 厘米 /p p   cm2 - 平方厘米 /p p   cm3 - 立方厘米 /p p   ° - 度 /p p   g - 克 /p p   g0 - 重力加速度 (9.80665米/秒2) /p p   GHz - 千兆赫 /p p   GPa - 吉帕 /p p   h - 小时 /p p   H - 亨利 /p p   MPa - 兆帕 /p p   μm - 微米 /p p   N - 牛顿 /p p   nm - 纳米 /p p   Ω - 欧姆 Hz - 赫兹 /p p   J - 焦耳 /p p   K - 开[尔文] /p p   kg - 千克 /p p   kHz - 千赫兹 /p p   kJ - 千焦耳 /p p   kPa - 千帕 /p p   kW - 千瓦 /p p   m - 米 /p p   m2 - 平方米 /p p   m3 - 立方米 /p p   mA - 毫安 /p p   min - 分钟 /p p   mm - 毫米 /p p   Pa - 帕[斯卡] /p p   s - 秒 /p p   ″- 弧秒 /p p   V - 伏 /p p   VA - 伏安 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 第一部分 核材料 /span /strong /p p   核材料系指源材料和特种可裂变材料。其中: /p p   1. 源材料系指天然铀、贫化铀和钍,呈金属、合金、化合物或浓缩物形态的上述各种材料。但不包括: /p p   (1)政府确信仅用于非核活动的源材料 /p p   (2)在一个自然年(1月1日至12月31日)内向某一接受国出口: /p p   ①少于500kg的天然铀 /p p   ②少于1000kg的贫化铀 /p p   ③少于1000kg的钍。 /p p   2. 特种可裂变材料系指钚-239、铀-233、含同位素铀-235或铀-233或兼含铀-233和铀-235其同位素总丰度与铀-238的丰度比大于自然界中铀-235与铀-238的丰度比的铀,以及含有上述物质的任何材料,包括核燃料组件。但不包括: /p p   (1)钚-238同位素丰度超过80%的钚 /p p   (2)克量或克量以下用作仪器传感元件的特种可裂变材料 /p p   (3)在一个自然年(1月1日至12月31日)内向某一接受国出口少于50有效克的特种可裂变材料。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 第二部分 核设备和反应堆用非核材料 /span /strong /p p span style=" color: rgb(255, 0, 0) " strong   1.核反应堆和为其专门设计或制造的设备和部件 /strong /span /p p    strong 按语 /strong /p p   各种类型的核反应堆,无论其按所用慢化剂(如石墨、重水、轻水、无慢化剂)、核反应堆内中子谱(如热中子、快中子)、所用冷却剂类型(如水、液态金属、熔盐、气体)为特征,或以功能类型(如动力堆、研究堆、试验堆)为特征进行区分。上述所有类型的核反应堆都属于本条款范围并受本条款所有可适用分项管控。本条款的控制范围不包括聚变反应堆。 /p p   strong  1.1 整体核反应堆 /strong /p p   能够保持受控自持链式裂变反应的可运行核反应堆。 /p p    strong 注释 /strong /p p   一个“核反应堆”基本上包括反应堆容器内或直接安装在其上的物项、控制堆芯功率水平的设备和通常含有或直接接触或控制反应堆堆芯一次冷却剂的部件。 /p p    strong 1.2 核反应堆容器 /strong /p p   金属容器,或工厂预制的该装置的主要部件,被专门设计或制造来容纳上述1.1定义的核反应堆的堆芯以及下文1.8定义的相关堆内构件。 /p p    strong 注释 /strong /p p   物项1.2涵盖的核反应堆容器不分压力等级,包括反应堆压力容器和排管容器。物项1.2包括反应堆压力容器顶盖,它是工厂预制的反应堆容器的主要部件。 /p p    strong 1.3 核反应堆燃料装卸机 /strong /p p   专门设计或制造用于在上述1.1定义的核反应堆中插入或取出燃料的操作设备。 /p p    strong 注释 /strong /p p   上述物项能够进行有载操作或利用技术先进的定位或准直装置进行复杂的停堆装料操作,例如通常不可能直接观察或接近燃料的操作。 /p p    strong 1.4 核反应堆控制棒和设备 /strong /p p   专门设计或制造用于控制上述1.1定义的核反应堆裂变过程的棒、支承结构或悬吊结构、棒驱动机或棒导向管。 /p p    strong 1.5 核反应堆压力管 /strong /p p   专门设计或制造用于容纳上述1.1定义的核反应堆的燃料元件和一次冷却剂的压力管。 /p p    strong 注释 /strong /p p   压力管是燃料通道的一部分,按设计在高压下运行,压力有时超过5MPa。 /p p    strong 1.6 核燃料包壳 /strong /p p   专门设计或制造在上述1.1定义的核反应堆中作为燃料包壳使用的数量超过10kg的锆金属和合金的管或管组件。 /p p   注意:锆压力管的管制适用于1.5,锆排管的管制适用于1.8。 /p p    strong 注释 /strong /p p   在核反应堆中使用的锆金属管或锆合金管含铪与锆的重量之比通常低于1:500。 /p p    strong 1.7 一次冷却剂泵或循环泵 /strong /p p   专门设计或制造用于循环上述1.1定义的核反应堆的一次冷却剂的泵或循环泵。 /p p    strong 注释 /strong /p p   专门设计和制造的泵或循环泵包括水冷堆泵、气冷堆循环泵以及液态金属冷却堆用电磁泵和机械泵。这种设备可包括防止一次冷却剂渗漏的精密密封或多种密封的系统、全密封驱动泵,及有惯性质量系统的泵。这一定义包括鉴定为NC-1或相当标准的泵。 /p p    strong 1.8 核反应堆内部构件 /strong /p p   专门设计和制造用于上述1.1定义的核反应堆的“核反应堆内部构件”,包括堆芯支承柱、燃料通道、排管、热屏蔽层、堆芯缓冲层、堆芯栅格板和扩散板。 /p p    strong 注释 /strong /p p   “核反应堆内部构件”是反应堆容器内的主要结构,具有一种或多种功能,例如支承堆芯、保持燃料对准、引导一次冷却剂流向、为反应堆容器提供辐射屏蔽层、导向堆芯内仪表。 /p p    strong 1.9 热交换器 /strong /p p   (a)专门设计或制造用于上述1.1定义的核反应堆的一次冷却剂或中间冷却剂回路的热交换器(蒸汽发生器)。 /p p   (b)专门设计或制造用于上述1.1定义的核反应堆的一次冷却剂回路的其他热交换器。 /p p    strong 注释 /strong /p p   蒸汽发生器是专门设计或制造用于将反应堆内生成的热量(一回路侧)输送到进水(二回路侧)以产生蒸汽。对有一个中间回路的快堆的情况,除蒸汽发生器外,用于将一回路侧的热量输送到中间冷却回路的热交换器理所当然地属于控制范围以内。在气冷堆中,可利用热交换器向驱动燃气轮机的二次气体回路传热。本条款的控制范围不包括反应堆支持系统如应急冷却系统和衰变热冷却系统的热交换器。 /p p    strong 1.10 中子探测器 /strong /p p   专门设计或制造用于测定上述1.1定义的核反应堆堆芯内中子通量的中子探测器。 /p p    strong 注释 /strong /p p   本条款的范围包括用于测定大量程范围中子通量的堆芯内和堆芯外探测器,典型地从每平方厘米每秒104个中子或更高。堆芯外意指那些上述1.1定义的核反应堆堆芯外,但是位于生物屏蔽层内的仪器。 /p p    strong 1.11 外热屏蔽体 /strong /p p   专门设计或制造供上述1.1定义的核反应堆中用于减少热损失同时也用于安全壳保护的“外热屏蔽体”。 /p p    strong 注释 /strong /p p   “外热屏蔽体”是置于反应堆容器上方的主要结构,用于减少反应堆的热损失和降低安全壳内的温度。 /p p    span style=" color: rgb(255, 0, 0) " strong 2.反应堆用非核材料 /strong /span /p p    strong 2.1 氘和重水 /strong /p p   任一接受方在任何一个自然年(1月1日至12月31日)内收到的供上述1.1定义的核反应堆用的数量超过200kg氘原子的氘、重水(氧化氘)以及氘与氢原子之比超过1∶5000的任何其他氘化物。 /p p   strong  2.2 核级石墨 /strong /p p   数量超过1kg、纯度高于百万分之五硼当量、密度大于1.50g/cm3的石墨。 /p p    strong 注释 /strong /p p   为了出口控制的目的,政府将确定出口符合上述技术指标的石墨是否用于核反应堆。 /p p   硼当量(BE)可以实验测定或以包括硼在内的杂质BEZ之总量计算得出(由于碳不被考虑是一种杂质,因此不包括 /p p   BE碳),其中: /p p   BEZ(ppm)=CF× 元素Z的浓度(ppm为单位) /p p   CF为转化因子:(σZ× AB)除以(σB× AZ) /p p   σB和σZ分别为自然界形成的硼和元素Z的热中子俘获截面(巴为单位),AB和AZ分别为自然界形成的硼和元素Z的原子质量。 /p p    span style=" color: rgb(255, 0, 0) " strong 3. 辐照燃料元件后处理厂以及为其专门设计或制造的设备 /strong /span /p p    strong 按语 /strong /p p   辐照核燃料经后处理能从强放射性裂变产物以及其他超铀元素中分离钚和铀。有各种技术工艺流程能够实现这种分离。但是,多年来,“普雷克斯”已成为最普遍采用和接受的工艺流程。“普雷克斯”流程包括:将辐照核燃料溶解在硝酸中,然后利用磷酸三丁酯与一种有机稀释剂的混合剂通过溶剂萃取法分离铀、钚和裂变产物。 /p p   各种“普雷克斯”设施具有彼此相似的工艺功能,包括:辐照燃料元件的切割、燃料溶解、溶剂萃取和工艺液流的贮存。还可能有种种设备,用于:使硝酸铀酰热脱硝,把硝酸钚转化成氧化钚或金属钚,以及把裂变产物的废液处理成适合于长期贮存或处置的形式。但是,实现这些功能的设备的类型和结构在各种“普雷克斯”设施之间可能不同,原因有几个,其中包括需要后处理的辐照核燃料的类型和数量、打算对回收材料的处理和设施设计时所考虑的安全和维修原则。 /p p   一个“辐照燃料元件后处理厂”包括通常直接接触和直接控制辐照燃料和主要核材料以及裂变产物工艺液流的设备和部件。可以通过采取各种避免临界(例如通过几何形状)、辐射照射(例如通过屏蔽)和毒性危险(例如通过安全壳)的措施来确定这些过程,包括钚转换和钚金属生产的完整系统。 /p p   strong  3.1 辐照燃料元件切割机 /strong /p p   专门设计或制造供上述确定的后处理厂用来切割或剪切辐照燃料组件、燃料棒束或棒的遥控设备。 /p p    strong 注释 /strong /p p   这种设备能切开燃料包壳,使辐照核材料能够被溶解。专门设计的金属切割机是最常用的,当然也可能采用先进设备,例如激光器。 /p p    strong 3.2 溶解器 /strong /p p   专门设计或制造供上述确定的后处理厂用来溶解辐照核燃料,并能承受热、腐蚀性强的液体以及能远距离装料和维修的临界安全容器(例如小直径、环形或平板式的容器)。 /p p    strong 注释 /strong /p p   溶解器通常接受切碎了的乏燃料。在这种临界安全的容器内,辐照核材料被溶解在硝酸中,而剩余的壳片从工艺液流中被去掉。 /p p    strong 3.3 溶剂萃取器和溶剂萃取设备 /strong /p p   专门设计或制造用于辐照燃料后处理厂的溶剂萃取器,例如填料塔或脉冲塔、混合澄清器或离心接触器。溶剂萃取器必须能耐硝酸的腐蚀作用。溶剂萃取器通常由低碳不锈钢、钛、锆或其他优质材料,按极高标准(包括特种焊接和检查以及质量保证和质量控制技术)加工制造而成。 /p p    strong 注释 /strong /p p   溶剂萃取器既接受溶解器中出来的辐照燃料的溶液,又接受分离铀、钚和裂变产物的有机溶液。溶剂萃取设备通常设计得能满足严格的运行参数,例如很长的运行寿命,无需维修或易于更换,操作和控制简便以及可适应工艺条件的各种变化。 /p p    strong 3.4 化学溶液保存或贮存容器 /strong /p p   专门设计或制造为辐照燃料后处理厂用的保存或贮存容器。这种保存或贮存容器必须能耐硝酸的腐蚀作用。保存或贮存容器通常用低碳不锈钢、钛或锆或其他优质材料制造。保存或贮存容器可设计成能远距离操作和维修,而且它们可具有下述控制核临界的特点: /p p   (1)壁或内部结构至少有百分之二的硼当量,或 /p p   (2)对于圆柱状容器来说,最大直径175mm,或 /p p   (3)对于平板式或环形容器来说,最大宽度75mm。 /p p   注释 /p p   溶剂萃取阶段产生三种主要的工艺液流。所有这三种液流在如下的进一步处理过程中要使用保存或贮存容器: /p p   (a)用蒸发法使纯硝酸铀酰溶液浓缩,然后使其进到脱硝过程,并在此过程中转变成氧化铀。这种氧化物再在核燃料循环中利用。 /p p   (b)通常用蒸发法浓缩强放射性裂变产物溶液,并以浓缩液形式贮存。随后可蒸发这种浓缩液并将其转换成适合于贮存或处置的形式。 /p p   (c)在将纯硝酸钚溶液转到下几个工艺步骤前先将其浓缩并贮存。尤其是,钚溶液的保存或贮存容器要设计得能避免由于这种液流浓度和形状的改变导致的临界问题。 /p p   3.5 流程控制用中子测量系统 /p p   专门设计或制造与辐照燃料元件后处理厂的自动化流程控制系统相结合和共同使用的中子测量系统。 /p p    strong 注释 /strong /p p   这些系统涉及能动和非能动中子测量和鉴别能力,目的是确定特种可裂变材料的数量和成分。整套系统由中子发生器、中子探头、放大器和信号处理电子元件组成。 /p p   本条款的范围不包括为核材料衡算和保障或与辐照燃料元件后处理厂自动化流程控制系统的结合和共同使用无关的任何其他应用设计的中子探测和测量仪器。 /p p    span style=" color: rgb(255, 0, 0) " strong 4.用于制造核反应堆燃料元件的工厂和为其专门设计或制造的设备 /strong /span /p p    strong 按语 /strong /p p   核燃料元件是由本清单第一部分所述的一种或多种源材料或特种可裂变材料制造的。对于氧化物燃料这一种最常用的燃料类型,常用芯块压制、烧结、研磨和分级的设备。直到密封于包壳内,混合氧化物燃料是在手套箱内操作的(或等效的箱体)。在所有情况下,燃料被密封于一个合适的包壳内,这种包壳是设计作为包装燃料的主要包壳,以便在反应堆运行时提供适当的性能和安全。此外,在所有情况下,为保证可预计的和安全的燃料性能,必须按照最高标准精确控制流程、程序和设备。 /p p    strong 注释 /strong /p p   考虑属于燃料元件制造的和“专门设计或制造的设备”这一 /p p   含义的设备项目包括: /p p   (a)通常直接接触或加工或控制核材料生产流程的设备 /p p   (b)将核材料封入包壳的设备 /p p   (c)检验包壳或密封完整性的设备 /p p   (d)检验密封燃料的最终处理的设备 /p p   (e)用于装配核燃料元件的设备。 /p p   这一设备或这些设备系统可能包括: /p p   (1)专门设计或制造用于检验燃料芯块的最终尺寸和表面缺陷的全自动芯块检查台 /p p   (2)专门设计或制造用于将端塞焊接于燃料细棒(或棒)的自动焊接机 /p p   (3)专门设计或制造用于检验燃料细棒(或棒)成品密封性的自动化测试和检查台 /p p   (4)专门设计或制造用于制造核燃料包壳的系统。 /p p   第(3)项典型的包括设备用于:(a)细棒(或棒)端塞焊缝X射线检测,(b)充压细棒(或棒)的氦检漏,(c)细棒(或棒)的γ射线扫描以检验内部燃料芯块的正确装载。 /p p    span style=" color: rgb(255, 0, 0) " strong 5. 天然铀、贫化铀或特种可裂变材料同位素分离厂以及为其专门设计或制造的(除分析仪器以外的)设备 /strong /span /p p    strong 按语 /strong /p p   在很多情况下,铀同位素分离厂、设备和技术与“其他元素”的同位素分离厂、设备和技术有着密切联系。在特定情况下,本条款所述控制也适用于拟进行“其他元素”的同位素分离的工厂和设备。对“其他元素”的同位素分离厂和设备进行的这些控制是对《核出口管制清单》所涵盖的特种可裂变材料的加工、使用或生产而专门设计或建造的工厂和制造的设备进行控制的补充。本条款关于涉及“其他元素”的使用的这些补充控制适用于气体离心法、气体扩散法、等离子体分离法和空气动力学过程,不适用于电磁同位素分离法。对一些过程而言,其与铀同位素分离的关系取决于将要分离的元素。这些过程是:基于激光的过程(如分子激光同位素分离和原子蒸气激光同位素分离)、化学交换和离子交换。因此,供应方必须对这些过程逐一进行评价,以便相应地适用本条款对涉及“其他元素”的使用的控制。 /p p   可以认为属于为铀同位素分离“专门设计或制造的(除分析仪器外的)设备”这一概念范围的设备物项包括: /p p    strong 5.1 气体离心机和专门设计或制造用于气体离心机的组件和构件 /strong /p p    strong 按语 /strong /p p   气体离心机通常由直径在75mm 和650mm之间的薄壁圆筒组成。圆筒处在真空环境中并且以大约300m/s或更高的线速度旋转,旋转时其中轴线保持垂直。为了达到高的转速,旋转构件的结构材料必须具有高的强度/密度比,而转筒组件及其单个构件必须按高精度公差来制造以便使不平衡减到最小。 /p p   与其他离心机不同,浓缩铀用的气体离心机的特点是:在转筒室中有一个(或几个)盘状挡板和一个固定的管列用来供应和提取UF6气体,其特点是至少有三个单独的通道,其中两个与从转筒轴向转筒室周边伸出的收集器相连。在真空环境中还有一些不转动的关键物项,它们虽然是专门设计的,但不难制造,也不是用独特材料制造的。不过,一个离心机设施需要大量的这种构件,因此其数量是能够反映最终用途的一个重要指标。 /p p    strong 5.1.1 转动部件 /strong /p p strong   (a)完整的转筒组件: /strong /p p   用本节注释中所述的一种或一种以上高强度/密度比材料制成的若干薄壁圆筒或一些相互连接的薄壁圆筒 如果是相互连接的,则圆筒通过以下5.1.1(c)所述的弹性波纹管或环连接。转筒(如果是最终形式的话)装有以下5.1.1(d)和(e)所述一个(或几个)内挡板和顶盖/底盖。但是完整的组件可能只以部分组装形式交货。 /p p   strong  (b)转筒: /strong /p p   专门设计或制造的厚度为12mm或更薄的直径在75mm和650mm之间、用本节注释中所述一种或一种以上高强度/密度比材料制成的薄壁圆筒。 /p p   strong  (c)环或波纹管: /strong /p p   专门设计或制造用于局部支承转筒或把数个转筒连接起来的构件。波纹管是壁厚3mm或更薄的直径在75mm和650mm之间、用本节注释中所述一种或一种以上高强度/密度比材料制成的有褶短圆筒。 /p p    strong (d)挡板: /strong /p p   专门设计或制造的直径在75mm和650mm之间、用本节注释中所述各种高强度/密度比材料之一制成的安装在离心机转筒内的盘状构件,其作用是将排气室与主分离室隔开,在某些情况下帮助UF6气体在转筒的主分离室中循环。 /p p    strong (e)顶盖/底盖: /strong /p p   专门设计或制造的直径在75mm和650mm之间、用本节注释中所述各种高强度/密度比材料之一制成的装在转筒端部的盘状构件,这样就把UF6包容在转筒内,在有些情况下还作为整体一部分支承、保持或容纳上轴承件(顶盖)或支持马达的旋转件和下轴承件(底盖)。 /p p   注释 /p p   离心机转动构件所用材料包括: /p p   (a)极限抗拉强度为1.95× 109N/m2或更高的马氏体钢 /p p   (b)极限抗拉强度为0.46× 109N/㎡或更高的铝合金 /p p   (c)适合于复合结构用的纤维材料,其比模量应为3.18× 106m或更高,比极限抗拉强度应为7.62× 104m或更高(“比模量”是用N/m2表示的杨氏模量除以用N/m3表示的比重 “比极限抗拉强度”是用N/m2表示的极限抗拉强度除以用N/m3表示的比重)。 /p p    strong 5.1.2 静态部件 /strong /p p strong   (a)磁悬浮轴承: /strong /p p   1)专门设计或制造的轴承组合件,由悬浮在充满阻尼介质箱中的一个环形磁铁组成。该箱要用耐UF6的材料(见5.2的注释)制造。该磁铁与装在5.1.1(e)所述顶盖上的一个磁极片或另一个磁铁耦合。 /p p   此磁铁可以是环形的,外径与内径的比小于或等于1.6:1。它的初始磁导率可以是0.15H/m(120000CGS制单位)或更高,或剩磁98.5%或更高,或产生的能量高于80kJ/m3。除了具有通常的材料性质外,先决条件是磁轴对几何轴的偏离应限制在很小的公差范围内(低于0.1mm)或特别要求磁铁材料有均匀性。 /p p   2)专门设计或制造供气体离心机使用的主动磁轴承。 /p p    strong 注释 /strong /p p   这些轴承通常具有下述特点: /p p   是为使以600Hz 或更高速度旋转的转子保持居中而设计的 /p p   与可靠的电源和(或)不间断电源单元相连,以便运行1小时以上。 /p p    strong (b)轴承/阻尼器: /strong /p p   专门设计或制造的架在阻尼器上的具有枢轴/盖的轴承。枢轴通常是一种淬硬钢轴,一端精加工成半球,而另一端能连在5.1.1(e)所述底盖上。但是这种轴可附有一个动压轴承。盖是球形的,一面有一个半球形陷穴。这些构件通常是单独为阻尼器提供的。 /p p    strong (c)分子泵: /strong /p p   专门设计或制造的内部有已加工或挤压的螺纹槽和已加工的腔的泵体。典型尺寸如下:内径75mm到650mm,壁厚10mm或更厚,长度等于或大于直径。刻槽的横截面是典型的矩形,槽深2mm或更深。 /p p    strong (d)电动机定子: /strong /p p   专门设计或制造的环形定子,用于在真空中频率范围为600Hz或更高、功率范围为40VA或更高条件下同步运行的高速多相交流磁滞(或磁阻)式电动机。定子由在典型厚度为2.0mm或更薄一些的薄层组成的低损耗叠片铁芯上的多相绕组组成。 /p p    strong (e)离心机壳/收集器: /strong /p p   专门设计或制造用来容纳气体离心机的转筒组件的部件。离心机壳由一个壁厚达30mm的刚性圆筒组成,它带有经过精密机械加工的两个端面以便固定轴承和一个或多个便于安装的法兰盘。这两个经过机械加工的端面相互平行,并以不大于0.05度的误差与圆筒轴垂直。离心机壳也可是一种格状结构以容纳几个转筒。 /p p    strong (f)收集器: /strong /p p   专门设计或制造的管件,它们用来借助皮托管作用(即利用一个例如扳弯径向配置的管的端部而形成的面迎转筒内环形气流的开口)从转筒内部提取UF6气体,并且能与中心气体提取系统相连。 /p p    strong 5.2 为气体离心浓缩工厂专门设计或制造的辅助系统、设备和部件 /strong /p p strong   按语 /strong /p p   气体离心浓缩工厂用的辅助系统、设备和部件是向离心机供应UF6,把单个离心机相互联接组成级联(多级)从而逐渐提高浓缩度并且从离心机中提取UF6“产品”和“尾料”所需的各种工厂系统,以及驱动离心机或控制该工厂所需要的设备。 /p p   通常利用经加热的高压釜将UF6从固体中蒸发出来,气态形式的UF6通过级联集管线路被分配到各个离心机。通过级联集管线路使从离心机流出的UF6“产品”和“尾料”气流通到冷阱(在约203K(-70℃)下工作),气流在冷阱先冷凝,然后再送入适当的容器以便运输或贮存。由于一个浓缩工厂由排成级联式的数千个离心机组成,所以级联的集管线路有数公里长,含有几千条焊缝而且管道布局大量重复。上述设备、部件和管道系统都是按非常高的真空和净度标准制造的。 /p p    strong 注释 /strong /p p   以上所列一些物项不是直接接触UF6工艺气体就是直接控制离心机和直接控制这种气体从离心机到离心机以及从级联到级联的通路。耐UF6腐蚀的材料包括铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%以上的合金以及氟化的烃聚合物。 /p p    strong 5.2.1 供料系统/产品和尾料提取系统 /strong /p p   专门设计或制造的工艺系统或设备,由耐UF6腐蚀的材料制造或用这种材料进行保护,包括: /p p   (a)供料釜(或供料器)、加热炉或系统,用于将UF6送往离心机级联 /p p   (b)凝华器(或冷阱)或泵,用于从级联中取出UF6,以便随后加热转送 /p p   (c)固化站或液化站,用来通过压缩UF6和将其转化成液态或固态,使UF6离开浓缩工艺线 /p p   (d)“产品”和“尾料”器,用来把UF6收集到容器中。 /p p    strong 5.2.2 机械集管管路系统 /strong /p p   专门设计或制造用于在离心机级联中操作UF6的管路系统和集管系统。管路网络通常是“三头”集管系统,每个离心机连接一个集管头。这样,在形式上有大量重复。全都用耐UF6的材料(见本节注释)制成或用这种材料进行保护并且按很高的真空和净度标准制造。 /p p    strong 5.2.3 特种截流阀和控制阀 /strong /p p   (a)专门设计或制造的作用于单台气体离心机中的供料、产品或尾料UF6气流的截流阀。 /p p   (b)专门设计或制造用于气体离心浓缩厂主系统或辅助系统的手动或自动波纹管密封阀、截流阀或控制阀,用耐UF6腐蚀的材料制成或用这种材料进行保护,内径10-160mm。 /p p   注释 /p p   专门设计或制造的阀,典型的包括波纹管密封阀、速动封闭阀、速动阀和其他阀。 /p p    strong 5.2.4 UF6质谱仪/离子源 /strong /p p   专门设计或制造的质谱仪,这些质谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1. 能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集系统。 /p p    strong 5.2.5 频率变换器 /strong /p p   为满足5.1.2(d)中定义的电动机定子的需要而专门设计或制造的频率变换器(又称变频器或变换器)或这类频率变换器的部件、构件和子配件。它们具有下述所有特点: /p p   1. 多相输出600Hz或更高 /p p   2. 高稳定性(频率控制优于0.2%)。 /p p    strong 5.3 专门设计或制造用于气体扩散浓缩的组件和部件 /strong /p p    strong 按语 /strong /p p   用气体扩散法分离铀同位素时,主要的技术组件是一个特制的多孔气体扩散膜、用于冷却(经压缩过程加热的)气体的热交换器、密封阀和控制阀以及管道。由于气体扩散技术使用的是六氟化铀(UF6),所有的设备、管道和仪器仪表(与气体接触的)表面都必须用同UF6接触时能保持稳定的材料制成。一个气体扩散设施需要许多这样的组件,因此其数量是能够反映最终用途的一个重要指标。 /p p   strong  5.3.1 气体扩散膜和扩散膜材料 /strong /p p   (a)专门设计或制造的由耐UF6腐蚀的金属、聚合物或陶瓷材料(见5.4款注释)制成的很薄的多孔过滤膜,孔的大小为100-1000Å ,膜厚5mm或以下,对于管状膜来说,直径为25mm或以下。 /p p   (b)为制造这种过滤膜而专门制备的化合物或粉末。这类化合物和粉末包括镍或含镍60%(或以上)的合金、氧化铝或纯度99.9%(或以上)的耐UF6的完全氟化的烃聚合物(见5.4款注释),粒度小于10μm,粒度高度均匀。这些都是专门为制造气体扩散膜制备的。 /p p    strong 5.3.2 扩散室 /strong /p p   专门设计或制造的密闭式容器,用于容纳气体扩散膜,由耐UF6的材料(见5.4款注释)制成或用这种材料进行保护。 /p p   strong  5.3.3 压缩机和鼓风机 /strong /p p   专门设计或制造的压缩机或鼓风机,吸气能力为1m3UF6/min或更大,出口压力高达500kPa,其被设计成在UF6环境中长期运行。这种压缩机和鼓风机的压力比10:1或更低,用耐UF6的材料(见5.4款注释)制成或用这种材料进行保护。 /p p   strong  5.3.4 转动轴封 /strong /p p   专门设计或制造的真空密封装置,有密封式进气口和出气口,用于密封把压缩机或鼓风机转子同传动马达连接起来的转动轴,以保证可靠的密封,防止空气渗入充满UF6的压缩机或鼓风机的内腔。这种密封装置通常设计成将缓冲气体泄漏率限制到小于1000cm3/min。 /p p    strong 5.3.5 冷却UF6的热交换器 /strong /p p   专门设计或制造的用耐UF6材料(见5.4款注释)制成或保护的热交换器,在压差为100kPa下渗透压力变化率小于10Pa/h。 /p p    strong 5.4 专门设计或制造的用于气体扩散浓缩的辅助系统、设备和部件 /strong /p p strong   按语 /strong /p p   气体扩散浓缩工厂用的辅助系统、设备和部件是向气体扩散组件供应UF6,把单个组件相互联接组成级联(或多级)以便使浓缩度逐步增高并且从各个扩散级联中提取UF6“产品”和“尾料”所需的工厂系统。由于扩散级联的惯性很大,级联运行的任何中断,特别是停车,会导致严重后果。因此,在所有工艺系统中严格持续地保持真空、自动防止事故、准确地自动调节气流对气体扩散工厂是很重要的。所有这一切,使该工厂需要装备大量专用的测量、调节和控制系统。 /p p   通常UF6从置于高压釜内的圆筒中蒸发,以气态形式经级联集管管路被分配到进口。从出口流出的UF6“产品”和“尾料”气流通过级联集管管路被分配到冷阱或压缩装置,UF6气体在那里液化,然后再进到适当的容器以便运输或贮存。由于一个气体扩散浓缩工厂由排成级联式的大量气体扩散组件组成,所以级联的集管管线有数公里长,含有几千条焊缝而且管道布局大量重复。上述设备、部件和管道系统都按非常高的真空和净度标准制造。 /p p    strong 注释 /strong /p p   耐UF6腐蚀的材料包括铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%以上的合金以及氟化的烃聚合物。 /p p   以下所列物项直接接触UF6气体或直接控制级联中的气流: /p p   strong  5.4.1 供料系统/产品和尾料提取系统 /strong /p p   为浓缩厂专门设计或制造的工艺系统或设备,由耐UF6腐蚀的材料制造或用这种材料进行保护,包括: /p p   (a)供料釜、加热炉或系统,用于将UF6送入气体扩散级联 /p p   (b)凝华器、冷阱或泵,用于从扩散级联中取出UF6以便随后在加热时转送 /p p   (c)固化站或液化站,将来自级联的UF6气体压缩并冷凝成液态或固态,使其离开气体扩散级联 /p p   (d)“产品”器或“尾料”器,用来把UF6收集到容器中。 /p p    strong 5.4.2 集管管路系统 /strong /p p   专门设计或制造用于在气体扩散级联中操作UF6的管路系统 /p p   和集管系统。 /p p   注释 /p p   这种管路网络通常是“双头”集管系统,每个扩散单元连接一个集管头。 /p p    strong 5.4.3 真空系统 /strong /p p   (a)专门设计或制造的大型真空歧管、真空集管和抽气能力为5m3/min(或以上)的真空泵。 /p p   (b)专门设计的在含UF6气氛中使用的真空泵,用耐UF6腐蚀的材料制成或保护(见本条款注释)。这些泵可以是旋转式或正压式,可有排代式密封和碳氟化合物密封并且可以有特殊工作流体存在。 /p p    strong 5.4.4 特种截流阀和控制阀 /strong /p p   专门设计和制造的由耐UF6材料制成或保护、手动或自动的波纹管密封阀、截流阀和控制阀,用来安装在气体扩散浓缩工厂的主系统和辅助系统中。 /p p    strong 5.4.5 UF6质谱仪/离子源 /strong /p p   专门设计或制造的质谱仪,这些谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1. 能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集系统。 /p p    strong 5.5 专门设计或制造用于气动浓缩厂的系统、设备和部件 /strong /p p    strong 按语 /strong /p p   在气体动力学浓缩过程中,要压缩气态UF6和轻气体(氢或氦)的混合气,然后使其通过分离元件。在这些元件中,通过在一个曲壁几何结构面上产生的高离心力,完成同位素分离。已经成功地开发了这种类型的两个过程:喷嘴分离过程和涡流管过程。就这两种过程而言,一个分离级的主要部件包括容纳专用分离元件(喷嘴或涡流管)的圆筒状容器、气体压缩机和用来排出压缩热的热交换器。一座气动浓缩工厂需要若干个这种分离级,因此其数量是能够反映最终用途的一个重要指标。由于气动过程使用UF6,所有设备、管线和仪器仪表中与这种气体接触的表面,都必须用同UF6接触时能保持稳定的材料制成或加以保护。 /p p    strong 注释 /strong /p p   本节所列物项不是直接接触UF6流程气体就是直接控制级联中的这种气流。所有接触流程气体的表面,均需用耐UF6材料制成或用耐UF6材料保护。就本节有关气动浓缩物项而言,耐UF6腐蚀的材料包括:铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%或以上(按重量计)的合金以及氟化的烃聚合物。 /p p    strong 5.5.1 分离喷嘴 /strong /p p   专门设计或制造的分离喷嘴及其组件。分离喷嘴由一些狭缝状、曲率半径小于1mm的耐UF6腐蚀的弯曲通道组成,喷嘴中有一分离楔尖能将流过该喷嘴的气体分成两部分。 /p p    strong 5.5.2 涡流管 /strong /p p   专门设计或制造的涡流管及其组件。涡流管呈圆筒形或锥形,用耐UF6腐蚀材料制成或加以保护,并带有1个或多个切向进口。这些涡流管的一端或两端装有喷嘴型附件。 /p p    strong 注释 /strong /p p   供料气体在涡流管的一端切向进入涡流管,或通过一些旋流叶片,或从沿涡流管周边分布的若干个切向位置进入涡流管。 /p p    strong 5.5.3 压缩机和鼓风机 /strong /p p   专门设计或制造的用耐UF6/载气(氢或氦)混合气腐蚀材料制成或加以保护的压缩机或鼓风机。 /p p    strong 5.5.4 转动轴封 /strong /p p   专门设计或制造的带有密封式进气口和出气口的转动轴封,用于密封把压缩机或鼓风机转子同驱动马达连接起来的转动轴,以保证可靠的密封,防止过程气体外漏或空气或密封气体渗入充满UF6/载气混合气的压缩机或鼓风机内腔。 /p p    strong 5.5.5 冷却气体用热交换器 /strong /p p   专门设计或制造的用耐UF6腐蚀材料制成或加以保护的热交换器。 /p p    strong 5.5.6 分离元件外壳 /strong /p p   专门设计或制造的用耐UF6腐蚀的材料制成或加以保护的用作容纳涡流管或分离喷嘴的分离元件外壳。 /p p    strong 5.5.7 供料系统/产品和尾料提取系统 /strong /p p   专门为浓缩工厂设计或制造的用耐UF6腐蚀材料制成的或加以保护的流程系统或设备,包括: /p p   (a)供料釜、供料加热炉或供料系统,用于将UF6送入浓缩过程 /p p   (b)凝华器(或冷阱),用于从浓缩过程中移出UF6,供下一步加热转移 /p p   (c)固化器或液化器,用于通过压缩UF6并将其转换为液态形式或固态形式,从浓缩流程中移出UF6 /p p   (d)“产品”器或“尾料”器,用于把UF6收集到容器中。 /p p    strong 5.5.8 集管管路系统 /strong /p p   专门为操作气动级联中的UF6设计或制造的用耐UF6腐蚀材料制成或保护的集管管路系统。这种管路系统通常是“双头”集管系统,每级或每个级组连接一个集管头。 /p p    strong 5.5.9 真空系统和泵 /strong /p p   (a)为在含UF6气氛中工作而专门设计或制造的由真空歧管、真空集管和真空泵组成的真空系统 /p p   (b)为在含UF6气氛中工作而专门设计或制造的用耐UF6腐蚀的材料制成或保护的真空泵。这些泵也可用氟碳密封和特殊工作流体。 /p p    strong 5.5.10 特种截流阀和控制阀 /strong /p p   专门设计或制造的由耐UF6腐蚀材料制成或保护的直径为40mm或更大的可手动或自动的波纹管密封阀、截流阀和控制阀,用来安装在气动浓缩工厂的主系统和辅助系统中。 /p p    strong 5.5.11 UF6质谱仪/离子源 /strong /p p   专门设计或制造的质谱仪,这些谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1. 能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集器系统。 /p p    strong 5.5.12 UF6/载气分离系统 /strong /p p   专门设计或制造的将UF6与载气(氢或氦)分离开来的过程系统。 /p p   注释 /p p   这些系统是为将载气中的UF6含量降至1ppm或更低而设计的,并可装有下述的设备: /p p   (a)低温热交换器和低温分离器,能承受153K(-120℃)或更低的温度 或 /p p   (b)低温制冷设备,能承受153K(-120℃)或更低的温度 或 /p p   (c)用于将UF6与载气分离开来的分离喷嘴或涡流管设备 或 /p p   (d)能冻结分离出UF6的冷阱。 /p p    strong 5.6 专门设计或制造用于化学交换或离子交换浓缩工厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   铀的几种同位素在质量上的微小差异,能引起化学反应平衡小的变化。这可用作同位素分离的基础。已经开发成功两种工艺过程:液-液化学交换过程和固-液离子交换过程。 /p p   在液-液化学交换过程中,两种不混溶的液相(水相和有机相)作逆流接触,结果给出数千分离级的级联效果。水相由含氯化铀的盐酸溶液组成 有机相由载氯化铀的萃取剂的有机溶剂组成。分离级联中使用的接触器可以是液-液交换柱(例如带有筛板的脉冲柱),或是液体离心接触器。在分离级联的两端要求实现化学转化(氧化和还原)以保证各端的回流要求。一个重要的设计问题是避免这些过程物流被某些金属离子沾污。所以,一般使用塑料的、衬塑料的(包括用氟碳聚合物)和(或)衬玻璃的柱和管线。 /p p   在固-液离子交换过程中,浓缩是由铀在一种特制的作用很快的离子交换树脂或吸附剂上的吸附/解吸完成的。使铀的盐酸溶液和其他化学试剂,从载有吸附剂填充床的圆筒形浓缩柱中通过。就一个连续过程而言,需要有一个回流系统,以便把从吸附剂上解吸下来的铀返回到液流中,这样便可收集“产品”和“尾料”。这是通过使用适宜的还原/氧化化学试剂来完成的。这些试剂可在单独的外部系统中完全再生,并可在同位素分离柱内部分地再生。由于在这种工艺过程中有热的浓盐酸溶液存在,使用的设备应该用专门的耐腐蚀材料制造或保护。 /p p    strong 5.6.1 液-液交换柱(化学交换) /strong /p p   为使用化学交换过程的铀浓缩工厂专门设计或制造的有机械动力输入的逆流液-液交换柱。为了耐浓盐酸溶液的腐蚀,这些交换柱及其内部构件一般用适宜的塑料(例如氟碳聚合物)或玻璃制作或保护。交换柱的级停留时间一般被设计得很短(30秒或更短)。 /p p    strong 5.6.2 液-液离心接触器(化学交换) /strong /p p   为使用化学交换过程的铀浓缩工厂而专门设计或制造的液-液离心接触器。此类接触器利用转动来达到有机相与水相的分散,然后借助离心力来分离开这两相。为了耐浓盐酸溶液的腐蚀,这些接触器一般用适当的塑料(例如碳氟聚合物)或玻璃来制造或保护。离心接触器的级停留时间被设计得很短(30秒或更短)。 /p p    strong 5.6.3 铀还原系统和设备(化学交换) /strong /p p   (a)为使用化学交换过程的铀浓缩工厂专门设计或制造的、用来将铀从一种价态还原为另一种价态的电化学还原槽。与过程溶液接触的这种槽的材料必须能耐浓盐酸溶液腐蚀。 /p p    strong 注释 /strong /p p   这种槽的阴极室必须设计成能防止铀被再氧化到较高的价态。为了把铀保持在阴极室中,这种槽可有一个由特种阳离子交换材料制成的抗渗的隔膜。阴极一般由石墨之类适宜的固态导体组成。 /p p   (b)装在级联的产品端,为将有机相流中的U+4移出、调节酸浓度和向电化学还原槽供料而专门设计或制造的系统。 /p p    strong 注释 /strong /p p   这些系统由以下设备组成:将有机相流中的U+4反萃取到水溶液中的溶剂萃取设备,完成溶液pH值调节和控制的蒸发设备和(或)其他设备,以及向电化学还原槽供料的泵或其他输送装置。一个重要的设计问题是要避免水相流被某些种类的金属离子沾污。因此,对该系统那些接触这种过程物流的部分,要用适当的材料(例如玻璃、碳氟聚合物、聚苯硫酸酯、聚醚砜和用树脂浸过的石墨)制成或保护的设备来构成。 /p p   strong  5.6.4 供料准备系统(化学交换) /strong /p p   专门设计或制造的用来为化学交换铀同位素分离工厂生产高纯氯化铀供料溶液的系统。 /p p    strong 注释 /strong /p p   这些系统由进行纯化所需的溶解设备、溶剂萃取设备和(或)离子交换设备,以及用来将U+6或U+4还原为U+3的电解槽组成。这些系统产生只含几个ppm的铬、铁、钒、钼和其他两价或价态更高的阳离子金属杂质的氯化铀溶液。处理高纯度U+3系统的若干部分的建造材料包括玻璃、碳氟聚合物、聚苯硫酸酯或聚醚砜塑料衬里的石墨和用树脂浸过的石墨。 /p p    strong 5.6.5 铀氧化系统(化学交换) /strong /p p   专门设计或制造用于将U+3氧化为U+4以便返回化学交换浓缩过程的铀同位素分离级联的系统。 /p p    strong 注释 /strong /p p   这些系统可装有如下设备: /p p   (a)使氯气和氧气与来自同位素分离设备的水相流相接触的设备以及将所得U+4萃入由级联的产品端返回、已被反萃取过的有机相的设备 /p p   (b)使水与盐酸分离开来,以便水和加浓了的盐酸可在适当位置被重新引入工艺过程的设备。 /p p   strong  5.6.6 快速反应离子交换树脂/吸附剂(离子交换) /strong /p p   为以离子交换过程进行铀浓缩而专门设计或制造的快速反应离子交换树脂或吸附剂包括:多孔大网络树脂,和(或)薄膜结构(在这些结构中,活性化学交换基团仅限于非活性多孔支持结构表面的一个涂层),以及处于包括颗粒或纤维在内的任何适宜形式的其他复合结构。这些离子交换树脂/吸附剂的直径有0.2mm或更小,而且在化学性质上必须能耐浓盐酸溶液腐蚀,在物理性质上必须有足够的强度因而在交换柱中不被降解。这些树脂/吸附剂是专门为实现很快的铀同位素交换动力学过程(低于10秒的交换速率减半期)而设计的,并且能在373-473K(100-200℃)的温度范围内操作。 /p p    strong 5.6.7 离子交换柱(离子交换) /strong /p p   为以离子交换过程进行铀浓缩而专门设计或制造的用于容纳和支撑离子交换树脂/吸附剂填充床层的直径大于1000mm的圆柱。这些柱一般用耐浓盐酸溶液腐蚀的材料(例如钛或碳氟塑料)制成或保护,并能在373-473K(100-200℃)的温度范围内和高于0.7MPa的压力下操作。 /p p   strong  5.6.8 离子交换回流系统(离子交换) /strong /p p   (a)专门设计或制造的用于使离子交换铀浓缩级联中所用化学还原剂再生的化学或电化学还原系统。 /p p   (b)专门设计或制造的用于使离子交换铀浓缩级联中所用化学氧化剂再生的化学或电化学氧化系统。 /p p    strong 注释 /strong /p p   离子交换浓缩过程可使用例如Ti+3作为还原阳离子,在这种情况下,所用还原系统将通过还原Ti+4使Ti+3再生。 /p p   离子交换浓缩过程可使用例如Fe+3作为氧化剂,在这种情况下,所用氧化系统将通过氧化Fe+2来使Fe+3再生。 /p p    strong 5.7 专门设计或制造用于以激光为基础的浓缩工厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   目前利用激光的浓缩过程的系统有两类:一类是过程介质为原子铀蒸气的系统,另一类是过程介质为铀化合物蒸气的系统。这些过程的通用名称包括:第一类——原子蒸气激光同位素分离(AVLIS或SILVA) 第二类——分子激光同位素分离(MLIS或MOLLS),包括同位素选择性激光活化化学反应(CRISLA)。 /p p   用于激光浓缩厂的系统、设备和部件包括:(a)铀金属蒸气供料装置(用于选择性光电离)或铀的化合物蒸气供料装置(用于选择性光离解或化学活化) (b)第一类中作为“产品”和“尾料”浓缩的铀金属和贫化的铀金属收集装置,和第二类中作为“产品”的浓缩的铀化合物和作为“尾料”的贫化的铀化合物的收集装置 (c)用于选择性地激发铀-235的激光过程系统 和(d)供料准备设备及产品转化设备。鉴于铀原子和铀化合物能谱的复杂性,可能需要与现有激光和激光光学技术中的任何一种联合使用。 /p p    strong 注释 /strong /p p   本节所列的许多物项将直接接触铀金属蒸气、液态金属铀,或由UF6或UF6和其他气体的混合物组成的过程气体。所有与铀或UF6接触的表面,都全部由耐腐蚀材料制造或保护。就有关基于激光的浓缩的物项而言,耐铀金属或铀合金蒸气或液体腐蚀的材料包括:氧化钇涂敷石墨和钽 耐UF6腐蚀的材料包括:铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或镍含量60%(按重量计)或以上的合金和氟化的烃聚合物。 /p p    strong 5.7.1 铀蒸发系统(AVLIS) /strong /p p   专门设计或制造的铀蒸发系统,供用于激光浓缩。 /p p    strong 注释 /strong /p p   这些系统可能含有电子束枪,设计供到靶上的功率(1kW或更大)足以按激光浓缩功能要求的速率产生铀金属蒸气。 /p p    strong 5.7.2 液态或蒸气铀金属处理系统(AVLIS)和部件 /strong /p p   专门设计或制造的用于激光浓缩的熔融铀、熔融铀合金或铀金属蒸气处理系统,或为这些系统专门设计或制造的部件。 /p p   strong  注释 /strong /p p   液态金属铀处理系统可包括坩埚及其冷却设备。这种系统的坩埚和其他接触熔融铀、熔融铀合金或铀金属蒸气的部分,要用有适当的耐腐蚀和耐高温性能的材料制成或保护。适当的材料可包括钽、氧化钇涂敷石墨、用其他稀土氧化物(见《核两用品及相关技术出口管制清单》)或其混合物涂敷的石墨。 /p p    strong 5.7.3 铀金属“产品”和“尾料”收集器组件(AVLIS) /strong /p p   专门设计或制造用于收集液态或固态铀金属的“产品”和“尾料”收集器组件。 /p p    strong 注释 /strong /p p   这些组件的部件由耐铀金属蒸气或液体的高温和腐蚀性的材料(例如氧化钇涂敷石墨或钽)制成或保护。这类部件可包括用于磁、静电或其他分离方法的管、阀、管接头、“出料槽”、进料管、热交换器和收集板。 /p p    strong 5.7.4 分离器组件外壳(AVLIS) /strong /p p   专门设计或制造的圆筒状或矩形容器,用于容纳铀金属蒸气源、电子束枪,及“产品”与“尾料”收集器。 /p p    strong 注释 /strong /p p   这些外壳有多种样式的开口,用于供电线路、供水管、激光束窗、真空泵接头及仪器仪表诊断和监测。这些开口均设有开闭装置,以便整修内部的部件。 /p p    strong 5.7.5 超声膨胀喷嘴(MLIS) /strong /p p   专门设计或制造的超声膨胀喷嘴,用于冷却UF6与载气的混合气至150K(-123℃)或更低的温度。这种喷嘴耐UF6腐蚀。 /p p    strong 5.7.6 “产品”或“尾料”收集器(MLIS) /strong /p p   专门设计或制造的用于在激光照射后收集铀产品材料或铀尾料材料的部件或设备。 /p p    strong 注释 /strong /p p   例如,产品收集器的作用是收集浓缩UF5固态材料。这种收集器可包括过滤式、冲击式或旋流式收集器,或其组合 并且耐UF5/UF6环境的腐蚀。 /p p    strong 5.7.7 UF6/载气压缩机(MLIS) /strong /p p   为在UF6环境中长期操作而专门设计或制造的UF6/载气混合气压缩机。这些压缩机中与过程气体接触的部件用耐UF6腐蚀的材料制成或保护。 /p p   strong  5.7.8 转动轴封(MLIS) /strong /p p   专门设计或制造的带密封进气口和出气口的转动轴封,用于密封把压缩机转子与驱动马达连接起来的转动轴,以保证可靠的密封,防止过程气体外漏,或空气或密封气体漏入充满UF6/载气混合气的压缩机内腔。 /p p    strong 5.7.9 氟化系统(MLIS) /strong /p p   专门设计或制造的用于将UF5(固体)氟化为UF6(气体)的系统。 /p p    strong 注释 /strong /p p   这些系统是为将所收集的UF5粉末氟化为UF6而设计的。其UF6随后将被收集于产品容器中,或作为进料被转送到为进行进一步浓缩而设置的MLIS单元中。在一种方案中,这种氟化反应可在同位素分离系统内部完成,以便一离开“产品”收集器便反应和回收。在另一种方案中,UF5粉末将被从“产品”收集器中移出/转送到一个适当的反应容器(例如流化床反应器、螺旋反应器或火焰塔式反应器)中进行氟化。在这两种方案中,都使用氟气(或其他适宜的氟化剂)贮存和转送设备,以及UF6收集和转送设备。 /p p    strong 5.7.10 UF6质谱仪/离子源(MLIS) /strong /p p   专门设计或制造的质谱仪,这些质谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1.能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集器系统。 /p p    strong 5.7.11 进料系统/产品和尾料提取系统(MLIS) /strong /p p   为浓缩厂专门设计或制造的工艺系统或设备,用耐UF6腐蚀的材料制成或保护,包括: /p p   (a)供料釜、加热炉或系统,用于将UF6送入浓缩过程 /p p   (b)凝华器(或冷阱),用于从浓缩过程中移出UF6,供下一步加热转移 /p p   (c)固化或液化器,用于通过压缩UF6并将其转换为液态形式或固态形式,从浓缩过程中移出UF6 /p p   (d)“产品”器或“尾料”器,用于把UF6收集到容器中。 /p p    strong 5.7.12 UF6/载气分离系统(MLIS) /strong /p p   为将UF6从载气中分离出来专门设计或制造的工艺系统。 /p p    strong 注释 /strong /p p   这类系统可装有如下设备: /p p   (a)低温热交换器或低温分离器,能承受153K(-120℃)或更低的温度 或 /p p   (b)低温冷冻器,能承受153K(-120℃)或更低的温度 或 /p p   (c)能冻结分离出UF6的冷阱。 /p p   载气可为氮、氩或其他气体。 /p p    strong 5.7.13 激光系统(AVLIS,MLIS和CRISLA) /strong /p p   为铀同位素分离专门设计或制造的激光器或激光系统。 /p p    strong 注释 /strong /p p   在以激光为基础的浓缩过程中有重要意义的激光器和激光部件包括《核两用品及相关技术出口管制清单》中所列的那些激光器和激光部件。激光系统一般包含用于管理激光束(一个或多个)和向同位素分离室发射激光束的光学和电子部件。AVLIS过程使用的激光系统通常由两个激光器组成:一个铜蒸气激光器或某些固体激光器和一个可调染料激光器。MLIS使用的激光系统通常由一个CO2激光器或受激准分子激光器和一个多程光学池(两端有旋转镜)组成。这两种过程使用的激光器或激光系统都需要有一个谱频稳定器以便能够长时间地工作。 /p p    strong 5.8 专门设计或制造的用于等离子体分离浓缩厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   在等离子体分离过程中,铀离子等离子体通过一个调到铀-235 离子共振频率的电场,使铀-235离子优先吸收能量并增大它们螺旋状轨道的直径。具有大直径径迹的离子被捕集从而产生铀-235 被浓集的产品。由电离的铀蒸气组成的等离子体被约束在由超导磁体产生的高强度磁场的真空室内。这个过程的主要技术系统包括铀等离子体发生系统、带有超导磁体(见《核两用品及相关技术出口管制清单》)的分离器组件和用于收集“产品”和“尾料”的金属移出系统。 /p p   strong  5.8.1 微波动力源和天线 /strong /p p   为产生或加速离子专门设计或制造的微波动力源和天线,具有以下特性:频率高于30GHz,且用于产生离子的平均功率输出大于50kW。 /p p    strong 5.8.2 离子激发线圈 /strong /p p   专门设计或制造的射频离子激发线圈,用于高于100kHz的频率并能够输送的平均功率高于40kW。 /p p   strong  5.8.3 铀等离子体发生系统 /strong /p p   为产生铀等离子体专门设计或制造的系统,供等离子体分离浓缩厂使用。 /p p   strong  5.8.4 铀金属“产品”和“尾料”收集器组件 /strong /p p   专门设计或制造的用于固态铀金属的“产品”和“尾料”收集器组件。这类收集器组件由抗热和抗铀金属蒸气腐蚀的材料构成或由这类材料作防护层,例如有钇涂层的石墨或钽。 /p p    strong 5.8.5 分离器组件外壳 /strong /p p   专门设计或制造的圆筒形容器,供等离子体分离浓缩厂用来容纳铀等离子体源、射频驱动线圈及“产品”和“尾料”收集器。 /p p    strong 注释 /strong /p p   这种外壳有多种形式的开口,用于供电线路、扩散泵接头及仪器仪表诊断和监测。这些开口设有开闭装置,以便整修内部部件 它们由适当的非磁性材料例如不锈钢构成。 /p p    strong 5.9 专门设计或制造的用于电磁浓缩厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   在电磁过程中,由一种盐原料(典型的是四氯化铀)离子化产生的金属铀离子被加速并通过一个能使不同同位素离子沿不同轨迹运动的磁场。电磁同位素分离器的主要部件包括:同位素离子束分散/分离用的磁场、离子源及其加速系统和收集经分离的离子的系统。这个过程的辅助系统包括磁体供电系统、离子源高压供电系统、真空系统以及产品回收及部件的清洁/再循环用多种化学处理系统。 /p p    strong 5.9.1 同位素电磁分离器 /strong /p p   为分离铀同位素专门设计或制造的同位素电磁分离器及其设备和部件包括: /p p    strong (a)离子源 /strong /p p   专门设计或制造的单个或多个铀离子源由蒸气源、电离器和束流加速器组成,用石墨、不锈钢或铜等适当材料制造,能提供总强度为50mA或更高的离子束流。 /p p    strong (b)离子收集器 /strong /p p   收集器板极由专门为收集浓缩和贫化铀离子束而设计或制造的两个或多个槽和容器组成,用石墨或不锈钢一类的适当材料制造。 /p p   strong  (c)真空外壳 /strong /p p   为铀电磁分离器专门设计或制造的真空外壳,用不锈钢一类适当的非磁性材料制造,设计在0.1Pa或以下的压力下运行。 /p p    strong 注释 /strong /p p   外壳专门设计成装有离子源、收集器板极和水冷却管路,并有用于扩散泵连接结构和可用来移出和重新安装这些部件的开闭结构。 /p p    strong (d)磁极块 /strong /p p   专门设计或制造的磁极块,直径大于2m,用来在同位素电磁分离器内维持恒定磁场并在毗连分离器之间传输磁场。 /p p    strong 5.9.2 高压电源 /strong /p p   为离子源专门设计或制造的高压电源,具有以下所有特点:能连续工作,输出电压为20000V或更高,输出电流为1A或更大,电压稳定性在8小时内高于0.01%。 /p p   strong  5.9.3 磁体电源 /strong /p p   专门设计或制造的高功率直流磁体电源,具有以下所有特点:能在100V或更高的电压下持续产生500A或更大的电流输出,电流或电压稳定性在8小时内高于0.01%。 /p p    span style=" color: rgb(255, 0, 0) " strong 6. 生产和浓集重水、氘和氘化物的工厂和专门为其设计或制造的设备 /strong /span /p p    strong 按语 /strong /p p   重水可以通过多种方法生产。然而只有两种方法已证明具有商业意义:水-硫化氢交换法(GS法)和氨-氢交换法。 /p p   GS法是基于在一系列塔内(通过顶部冷和底部热的方式操作)水和硫化氢之间氢与氘交换的一种方法。在此过程中,水向塔底流动,而硫化氢气体从塔底向塔顶循环。使用一系列多孔塔板促进硫化氢气体和水之间的混合。在低温下氘向水中迁移,而在高温下氘向硫化氢中迁移。氘被浓缩了的硫化氢气体或水从第一级塔的热段和冷段的接合处排出,并且在下一级塔中重复这一过程。最后一级的产品(氘浓缩至30%的水)送入一个蒸馏单元以制备反应堆级的重水(即99.75%的氧化氘)。 /p p   氨-氢交换法可以在催化剂存在下通过同液态氨的接触从合成气中提取氘。合成气被送进交换塔,而后送至氨转换器。在交换塔内气体从塔底向塔顶流动,而液氨从塔顶向塔底流动。氘从合成气的氢中洗涤下来并在液氨中浓集。液氨然后流入塔底部的氨裂化器,而气体流入塔顶部的氨转换器。在以后的各级中进一步浓缩,最后通过蒸馏生产出反应堆级重水。合成气进料可由氨厂提供,而这个氨厂也可以结合氨-氢交换法重水厂一起建造。氨-氢交换法也可以用普通水作为氘的供料源。 /p p   利用GS法或氨-氢交换法生产重水的工厂所用的许多关键设备物项是与化学工业和石油工业的若干生产工序所用设备相同的。对于利用GS法的小厂来说尤其如此。然而,这种设备物项很少有“现货”供应。GS法和氨-氢交换法要求在高压下处理大量易燃、有腐蚀性和有毒的流体。因此,在制定使用这些方法的工厂和设备所用的设计和运行标准时,要求认真注意材料的选择和材料的规格,以保证在长期服务中有很高的安全性和可靠性。规模的选择主要取决于经济性和需要。因而,大多数设备物项将按照用户的要求制造。 /p p   最后,应该指出,对GS法和氨-氢交换法而言,那些单独地看并非专门设计或制造用于重水生产的设备物项可以组装成专门设计或制造用于生产重水的系统。氨-氢交换法所用的催化剂生产系统和在上述两种方法中将重水最终加浓至反应堆级所用的水蒸馏系统就是此类系统的实例。 /p p   专门设计或制造用于利用GS法或氨-氢交换法生产重水的设备物项包括如下: /p p    strong 6.1 水-硫化氢交换塔 /strong /p p   专门设计或制造用于利用GS法生产重水的交换塔。该塔直径1.5m或更大,能够在大于或等于2MPa压力下运行。 /p p    strong 6.2 鼓风机和压缩机 /strong /p p   专门为利用GS法生产重水而设计或制造的用于循环硫化氢气体(即含H2S70%以上的气体)的单级、低压头(即0.2MPa)离心式鼓风机或压缩机。这些鼓风机或压缩机的气体通过能力大于或等于56 m3/s,能在大于或等于1.8MPa的吸入压力下运行,并有对湿H2S介质的密封设计。 /p p    strong 6.3 氨-氢交换塔 /strong /p p   专门设计或制造用于利用氨-氢交换法生产重水的氨-氢交换塔。该塔高度大于或等于35m,直径1.5m至2.5m,能够在大于15MPa压力下运行。这些塔至少都有一个用法兰联接的轴向孔,其直径与交换塔筒体直径相等,通过此孔可装入或拆除塔内构件。 /p p   strong  6.4 塔内构件和多级泵 /strong /p p   专门为利用氨-氢交换法生产重水而设计或制造的塔内构件和多级泵。塔内构件包括专门设计的促进气/液充分接触的多级接触装置。多级泵包括专门设计的用来将一个接触级内的液氨向其他级塔循环的水下泵。 /p p    strong 6.5 氨裂化器 /strong /p p   专门设计或制造的用于利用氨-氢交换法生产重水的氨裂化器。该装置能在大于或等于3MPa的压力下运行。 /p p    strong 6.6 红外吸收分析器 /strong /p p   能在氘浓度等于或高于90%的情况下“在线”分析氢/氘比的红外吸收分析器。 /p p    strong 6.7 催化燃烧器 /strong /p p   专门设计或制造的用于利用氨-氢交换法生产重水时将浓缩氘气转化成重水的催化燃烧器。 /p p    strong 6.8 整体重水提浓系统,或其蒸馏塔 /strong /p p   专门设计或制造用于将重水提浓至反应堆级氘浓度的整体重水提浓系统,或其蒸馏塔。 /p p    strong 注释 /strong /p p   通常采用水蒸馏技术从轻水中分离重水的这些系统是专门设计或制造用于由浓度较低的重水原料生产反应堆级重水的(即典型地99.75%氧化氘)。 /p p    strong 6.9 氨合成转换器或合成器 /strong /p p   专门设计或制造的用于利用氨-氢交换法生产重水的氨合成转换器或合成器。 /p p   注释 /p p   这些转换器或合成器从氨/氢高压交换塔获得合成气体(氮和氢),而合成氨则返回到交换塔里。 /p p   strong   span style=" color: rgb(255, 0, 0) " 7. 分别如4.和5.所定义的用于燃料元件制造和铀同位素分离的铀和钚转换厂和专门为其设计或制造的设备 /span /strong /p p   出口 /p p   只有遵照《中华人民共和国核出口管制条例》所规定的程序才能出口本条款范围之内的成套主要设备。在本条款范围之内的所有工厂、系统和专门设计或制造的设备可用于处理、生产或使用特种可裂变材料。 /p p    strong 7.1 铀转化厂及专门为其设计或制造的设备 /strong /p p strong   按语 /strong /p p   铀转化厂和系统可以对铀进行一种或几种转化使其从一种化学状态转变为另一种化学状态,包括:从铀矿石浓缩物到UO3的转化 从UO3到UO2的转化 从铀的氧化物到UF4或UF6的转化 从UF4到UF6的转化 从UF6到UF4的转化 从UF4到金属铀的转化 以及从铀的氟化物到UO2的转化。铀转化工厂所用许多关键设备物项与化学加工工业的若干生产工序所用设备相同。例如,这些过程中使用的各类设备可以包括:加热炉、回转炉、流化床反应器、火焰塔式反应器、液体离心机、蒸馏塔和液-液萃取塔。不过,这些物项中很少有“现货”供应,大部分将须按用户要求和规格制造。在某些情况下,为了适应所处理的一些化学品(HF、F2、ClF3和各种铀的氟化物)的腐蚀性质,需要作专门的设计和建造考虑。最后应该指出,在所有铀转化过程中,那些单独地看不是为铀转化专门设计或制造的设备物项,可被组装成专门为铀转化而设计或制造的系统。 /p p    strong 7.1.1 将铀矿石浓缩物转化为UO3而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从铀矿石浓缩物到UO3的转化可通过以下步骤实现:首先,用硝酸溶解铀矿石浓缩物,用磷酸三丁酯之类溶剂萃取纯化的硝酸铀酰 然后,硝酸铀酰通过浓缩和脱硝转化为UO3,或用气态氨中和产生重铀酸铵,接着通过过滤、干燥和煅烧转化为UO3。 /p p   strong  7.1.2 为将UO3转化为UF6而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UO3到UF6的转化可以直接通过氟化实现。该过程需要一个氟气源或三氟化氯源。 /p p    strong 7.1.3 为将UO3转化为UO2而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UO3到UO2的转化,可以用裂解的氨气或氢气还原UO3来实现。 /p p    strong 7.1.4 为将UO2转化为UF4而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UO2到UF4的转化,可以用氟化氢气体(HF)在300—500℃与UO2反应来实现。 /p p    strong 7.1.5 为将UF4转化为UF6而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF4到UF6的转化,可以用氟气在塔式反应器中与UF4发生放热反应来实现。使流出气体通过一个冷却到-10℃的冷阱把热的流出气体中的UF6冷凝下来。该过程需要一个氟气源。 /p p    strong 7.1.6 为将UF4转化为金属铀而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF4到金属铀的转化,可用镁(大批量)或钙(小批量)还原UF4来实现。还原反应一般在高于铀熔点(1130℃)的温度下进行。 /p p    strong 7.1.7 为将UF6转化为UO2而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF6到UO2的转化,可用三种方法来实现。在第一种方法中,用氢气和水蒸气将UF6还原并水解为UO2。在第二种方法中,通过溶解在水中而将UF6水解,然后加入氨沉淀出重铀酸铵,接着可在820℃用氢气将重铀酸铵还原为UO2。在第三种方法中,将气态UF6、CO2和NH3通入水中,结果沉淀出碳酸铀酰铵。在500-600℃,碳酸铀酰铵与水蒸气和氢气发生反应,生成UO2。 /p p   从UF6到UO2的转化,通常是燃料制造厂的第一个工序。 /p p    strong 7.1.8 为将UF6转化为UF4而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF6到UF4的转化,是用氢还原实现的。 /p p    strong 7.1.9 为将UO2转化为UCl4而专门设计或制造的设备 /strong /p p strong   注释 /strong /p p   从UO2到UCl4转化可通过两个流程之一。在第一个流程中,在大约400℃的温度下,UO2与四氯化碳(CCl4)发生反应。在第二个流程中,在大约700℃的温度下,以及存在炭黑(CAS1333-86-4)、一氧化碳的条件下,UO2与氯发生反应产生UCl4。 /p p    strong 7.2 钚转化厂和专门为其设计或制造的设备 /strong /p p strong   按语 /strong /p p   钚转化厂和系统可以对钚进行一种或几种转化使其从一种化学状态转化为另一种化学状态。包括,从硝酸钚到PuO2的转化 从PuO2到PuF4的转化 以及从PuF4到钚金属的转化。通常钚转化厂与后处理设施相关,但是,也可能与钚燃料元件制造设施相关。许多钚转化厂的关键设备物项与化学加工工业的若干生产工序所用设备相同。例如,这些过程中使用的各类设备可以包括:加热炉、回转炉、流化床反应器、火焰塔式反应器、液体离心机、蒸馏塔和液-液萃取塔。也需要热室、手套箱和遥控机械手。但是,这些物项很少有“现货”供应,大部分须按用户的要求和规格制造。对与钚有关的特殊的放射性、毒性和临界危险特别仔细的设计是关键的。在某些情况下,为了适应所处理的一些化学品(例如HF)的腐蚀性质,需要作专门的设计和建造考虑。最后应该注意,在所有的钚转化流程中,那些单独地看不是为钚转化专门设计或制造的设备物项,可被组装成专门为钚转化而设计或制造的系统。 /p p   strong  7.2.1 为将硝酸钚转化到氧化钚而专门设计或制造的设备 /strong /p p strong   注释 /strong /p p   该流程包括的主要功能为:流程供料贮存和调料、沉淀和固-液分离,煅烧、产品处理、通风、废物管理,以及流程控制。流程系统经过特别的设计,以避免发生临界和辐射效应,以及使得毒性危险最小。在大多数后处理设施中,这一流程包括将硝酸钚转化到氧化钚。其它流程可能包括草酸钚或过氧化钚的沉淀。 /p p    strong 7.2.2 为生产钚金属而专门设计或制造的设备 /strong /p p strong   注释 /strong /p p   该流程通常包括氧化钚的氟化,通常以高腐蚀性的氢氟酸来生产氟化钚,而后用高纯钙金属还原生成金属钚和氟化钙残渣。该流程所包括的主要功能是氟化(例如,包括采用贵重金属制造的或作为内衬的设备)、金属还原(例如,使用陶瓷坩埚)、残渣回收、产品处理、通风、废物管理和流程控制。流程系统经过特别的设计,以避免发生临界和辐射效应,以及使得毒性危险最小。其它流程包括草酸钚或过氧化钚的氟化,然后还原至金属。 /p
  • 美国环氧树脂易盛板原产地声明
    尊敬的新老用户:   近日,美国某环氧树脂生产商及中国代理商为抢夺中国部分客户,竟然混淆事实,在市场上宣扬上海台雄公司销售的美国环氧树脂易盛板原产地不是美国而是中国境内的虚假信息。针对此事,为还原真相,我司特发表以下声明:   上海台雄工程配套设备有限公司销售的美国环氧树脂易盛板为世界500强之一的THERMO FIHSER全资子公司EPOXYN在美国原厂生产,对于市场上的造谣、诽谤行为我司保留追溯其法律责任的权利。 《EPOXYN授权上海台雄工程配套设备有限公司为中国独家经销商的证明》 《EPOXYN易盛板美国原产地证明》   上海台雄工程配套设备有限公司   2011年7月29日
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
    背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers® M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。◆ ◆ ◆联系我们,了解更多!参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
  • 微量树脂打印系统—解决新材料开发阶段的难题
    很多进行新材料研发及相应创新应用研究的用户,使用的打印材料配制难度大且昂贵,或需进行材料快速筛选时,可提供的打印材料量很少(通常只有几十毫升),例如生物医疗材料(如GelMA每克需几百元)、水凝胶、新型功能材料等。对于这类材料的3D打印,通常情况下打印设备配置的标准材料容器相对而言容积过大,用户能够提供的材料由于量少而无法实现打印,或者为了匹配打印设备标准材料容器,增加材料配制量而带来巨大的成本和材料浪费。承装液态光敏材料的树脂槽是PμSL 3D打印系统中的关键组件。通常地,对于面投影光固化打印,特别是自上而下投影方式,树脂槽容量与打印尺寸成正比,即打印系统可实现的最大成型尺寸越大,相应配置的树脂槽容量也越大,因此,打印时所需的材料也越多。如摩方公司的10 μm光学分辨率的3D打印系统S140,最大打印样品尺寸为94 mm × 52 mm × 45 mm,系统标配的树脂槽容量为800 ml。图1 摩方公司S140标准树脂槽规格基于稀贵材料的特殊打印需求,摩方公司自主研发出容量20 ml的微量树脂槽系统,以满足这一材料的打印及相应研究,如图2所示为20 ml树脂槽系统设计。为了匹配设备原有结构设计并简化树脂槽更换程序,微量树脂槽直接配置于设备的标准树脂槽中,安装更换便捷。同时,配备相应的打印平台和打印离型膜,以实现稀贵材料的特殊打印。这一微量树脂槽系统可实现10 mm × 10 mm × 10 mm的最大打印尺寸。图2 摩方公司S140 20ml树脂槽系统图3 摩方公司S140800 ml标准树脂槽和20ml微量树脂槽实物对比利用上述20 ml树脂槽系统,摩方公司做了系列新材料的3D打印及应用研究。如图3所示是使用该微量树脂槽打印的微弹簧阵列结构,所用材料为磁性颗粒复合树脂(单价约10元/mg),材料配比5%质量比,打印弹簧线径约100 μm。图3 磁性颗粒复合树脂打印在实现设备最大打印尺寸的标准树脂槽基础上,新增适用于稀贵新型材料打印的微量树脂槽,解决了初期材料开发量少、材料浪费、成本高、材料筛选周期长等难题,可有效促进新材料的开发及相关应用研究。官网:https://www.bmftec.cn/links/10
  • 石墨烯助阵电子应用新进展 碳复合树脂或将被取代?
    p style=" text-indent: 2em text-align: justify " 莱斯大学的科学家已经为电子应用制造了一种更好的环氧树脂。在化学家James Tour的Rice实验室发明的环氧树脂与“超级”石墨烯泡沫材料相结合,比纯环氧树脂坚固很多,比其他环氧树脂复合材料导电性能更好,同时保持了材料的低密度。通过添加导电填料,可以改善目前使用中会削弱材料结构的环氧树脂。美国化学学会杂志期刊ACS Nano详细介绍了这种新材料。 /p p style=" text-indent: 2em text-align: justify " 环氧树脂本身是绝缘体,通常用于涂料、粘合剂、电子、工业工具和结构复合材料中。通常添加金属或碳填料用于需要导电性的应用,如电磁屏蔽应用。但需要权衡的是:更多的填充物以重量和抗压强度为代价带来更好的导电性,而复合材料变得更难加工。 /p p style=" text-indent: 2em text-align: justify " 莱斯(Rice)实验室的解决方案用一种由纳米级石墨烯制成的三维泡沫取代金属或碳粉,石墨烯是只有一个碳原子厚度的碳薄片。 /p p style=" text-indent: 2em text-align: justify " Tour实验室与莱斯大学的材料科学家PulickelAjayan、RouzbehShahsavari,北京航空航天大学的娄军和肇研合作,从环氧树脂注入三维支架的项目中汲取灵感,包括石墨烯气凝胶,泡沫和各种工艺的支架。 /p p style=" text-indent: 2em text-align: justify " 新方案技术用聚丙烯腈(PAN)制成更强的支架,聚丙烯腈是一种粉末状聚合物树脂,用作碳源,与镍粉混合。在四步过程中,他们冷压材料使其致密,在炉子中加热使PAN变成石墨烯,化学处理所得材料以去除镍,并使用真空将环氧树脂拉入现有多孔材料中。 /p p style=" text-indent: 2em text-align: justify " “石墨烯泡沫是单层石墨烯,”Tour说。 “因此,实际上,整个泡沫是一个大分子。当环氧树脂渗透泡沫然后硬化时,由于嵌入的石墨烯支架,环氧树脂在一个位置中的任何弯曲都会在其他位置处对整料施加应力。这最终会使整个结构变硬。” /p p style=" text-indent: 2em text-align: justify " 据研究人员称,这种泡沫含量为32%的球形复合材料密度略高,但电导率约为每厘米14西门子(电导率或反向欧姆的衡量标准)。泡沫不会增加化合物的重量,但使其抗压强度是纯环氧树脂的7倍。 /p p style=" text-indent: 2em text-align: justify " 石墨烯和环氧树脂之间的简单互锁也有助于稳定石墨烯的结构。Tour说: “当环氧树脂渗透石墨烯泡沫然后硬化时,环氧树脂被捕获在石墨烯泡沫的微米大小的区域。” /p p style=" text-indent: 2em text-align: justify " 实验室通过将多壁碳纳米管混合到石墨烯泡沫中来提高赌注。研究人员称,纳米管充当与石墨烯结合的增强材料,使复合材料的硬度比纯环氧树脂高出1732%,导电性能提高近三倍,约为41西门子(Siemens)/厘米,远远高于迄今报道的几乎所有基于支架的环氧树脂复合材料。 /p p style=" text-indent: 2em text-align: justify " Tour预计该工艺流程将针对工业规模进行扩展。 “人们只需要一个足够大的炉子来生产最终的部件,”他说。 “但一直都是这样的,通过冷压,然后加热来制造大型金属零件。” /p p style=" text-indent: 2em text-align: justify " 他说,这种材料最初可能会取代碳复合树脂,这种碳复合树脂用于预浸渍和加固从航空航天结构到网球拍等材料中的织物。 /p
  • 荧光分布成像系统(EEM View)观察荧光体树脂片
    目前,照明灯和液晶显示屏的背光源均采用白色LED灯。因此,为了进一步提升产品性能,Mini LED背光源和Micro LED显示屏的研发正在紧锣密鼓的进行中。荧光分布成像系统(EEM View)是能够同时获取样品图像和光谱信息的新附件。入射光通过照射积分球内壁,获得均匀光源,进而观察样品。利用F-7100标配的荧光检测器可以获得荧光光谱,结合积分球下方的CMOS相机装置拍摄图像,并利用AI光谱处理算法,可以同时得到反射和荧光图像。相信未来EEM View会在LED零配件内的荧光体光学特性评价中得到广泛的应用。1. 荧光体树脂片(50 mm×50 mm)的荧光特性此次实验测定了在面发光LED中使用的荧光体树脂片。对样品照射360~640nm的单色光,得到了样品特有的荧光特性。EEM View模式下,可同时获得不同光源条件的样品图像。通常,白色LED灯发光原理是采用蓝光LED发光二极管在455nm附近激发荧光体,产生580~650nm的黄色荧光,从而与LED发出的蓝光混合形成白光(图1)。由图2、图3可以看出,此次测定的样品荧光体树脂片,在455nm附近被蓝光LED灯激发,发出相当于625nm的黄色荧光。图1 白色LED发光原理 图2 三维荧光光谱图3 激发光谱和发射光谱2. 荧光体树脂片的分布均匀性确认 荧光成分图像 荧光成分图像 (分布不均匀区域) (分布均匀区域) 图4 树脂片的图像和光谱图4为树脂片的荧光成分图像,左边是荧光体分布不均匀区域的荧光图像和光谱,右边是荧光体分布均匀的荧光图像和光谱,从荧光图像中可以看出荧光体的分布情况。此外,通过不同位置计算出的荧光光谱,可以发现树脂片不同位置的荧光强度存在差异。对于荧光体分布不均匀的树脂片(左图),它的中心位置亮度偏高。而且从荧光光谱中可以看到,3个位置的荧光光谱峰值荧光强度最 大偏差15%。荧光分布成像系统是全球首创的新技术,它将有助于获得研发和应用领域的多方面信息表征,密切关注日立高新技术公司官网,更多应用持续更新中。
  • 燕山石化树脂应用研究所技术交流会
    2014年4月17日上午,由北京亿路达公司举办的聚烯烃表征技术交流会在燕山石化树脂应用研究所顺利举行,研究所各科室技术工程师及领导共20多人参与,主讲人是前美国陶氏化学的专家Wallace W. Yau博士(下面简称姚博士)。 作为世界著名的聚烯烃表征技术研发及其设备生产商-Polymer Char公司在中国的独家代理商,北京亿路达机电设备有限公司应从事聚烯烃研究与分析工作者们的强烈要求,特邀全球聚烯烃表征领域著名专家——前陶氏化学美国研发中心聚合物表征高级科学家、中国石化特聘高级顾问姚博士就“聚合物结构对材料性能的影响”以及“Polymer char仪器在聚烯烃表征的应用”两个话题与燕山石化的技术工程师进行了深入探讨。会上,姚博士通过分享自己丰富的经验与贴合实际的案例,通过细致耐心的解答,令与会者受益匪浅。 本次交流会按计划圆满完成,客户满意度很高,并对下一次交流会提出了期望与建议。
  • 利用DSC方法评价热固性树脂—热固化粘合剂
    热固化粘合剂主要成分为热固性树脂,使用在材料之间的粘合上。根据粘合剂成分,粘合时的温度,时间不同,粘合强度与粘合性也不同。通过加热可促进固化,缩短粘合时间。此外还开发了即使在低温下也可进行固化反应的粘合剂,提高了通用性及便捷性。 热固化粘合剂的固化度和性能,通常使用DSC进行玻璃化转变的测试来评价。下面,就让我们用日立DSC7000X研究热固化粘合剂的玻璃化转变和固化反应。■ 实验条件 样品:双组分液体混合型粘合剂样品量:约1mg升温速率:10℃/min样品容器:Al开口容器 ■ 实验结果放置3—10min的样品,可在0—50℃之间观察到热固化反应的放热峰。随着时间增长放热峰减小,推测室温下发生固化反应放置3—10min的样品其玻璃化转变在0℃以下,放置15min以上的样品则在0℃—室温之间。3-15min样品玻璃化转变有大幅的变化,15min以后变化变缓。可以推测双组分混合型粘合剂混合开始大概经过15min以上才能充分粘合。 常见问题?测试中可能遇到的问题:在评价热固性树脂的过程中,未固化部分的反应峰(放热)与玻璃化转变的区域发生重叠时,玻璃化转变的判定就会变得困难。解决办法!使用调制DSC方法,进行热固性树脂成型品(含填料)和热固化胶粘剂的玻璃化转变测试,可以排除可逆反应(如固化反应,以及其他热历史),从而更容易判断玻璃化转变。测试案例如下图所示: 日立差示扫描量热仪DSC7000X,拥有新型传感器和炉体,实现世界顶级的灵敏度和重现性,配备的最新热分析软件EMA,一次购买就可包含所有高级功能,如调制DSC,比热容分析,动力学分析等。并可配备Real View TA样品观察系统,可将一些难以分辨的现象可视化,从而获得可靠度更高的数据。关于日立差示扫描量热仪 DSC7000系列热分析仪详情,请见:https://www.instrument.com.cn/netshow/SH102446/C313721.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 禾工一站式解决方案提升树脂生产速度和成本效益
    2018年新年伊始,1月24日,上海禾工技术员李工在廊坊市北辰创业树脂材料有限公司安排了一场产品安调、技术交流培训。廊坊市北辰创业树脂材料有限公司主要研发生产销售表面活性剂、聚氨酯粘合剂、防水涂料等产品。 据了解,该单位仪器设备采购时,只拿着一张在同行单位拍下的仪器照片,指定要禾工AKF-1型号卡尔费休容量法水分测定仪。可见上海禾工科仪AKF-1卡氏水分仪在市场上有着极好的口碑,数据准确、运行稳定、维护简单的特性深深植入用户心中。聚氨酯的用途非常广,家里常用的冰箱、沙发都大量用到聚氨酯。聚氨酯还可以代替橡胶、塑料、尼龙等,广泛用于各类建筑上,包括外墙保温、建筑防水等。目前,我国聚氨酯行业三分之一的产能都用于防水材料的生产。由于聚氨酯生产其实就是一个化学反应控制的过程,因而它的反应速率很重要。对于聚氨酯反应来说,水分含量严格控制对保证和提高产品品质和质量有重要作用。 而采用AKF-1卡尔费休快速水分测定仪直接进样法测定聚氨酯的含水量,快速方便,测试结果的准确度和重复性较好。
  • CEM公司发布TRT-DCA SpheriTide新型固相多肽合成树脂
    CEM公司,一个全球领先的微波多肽合成仪和试剂生产商,很高兴给大家介绍一种新的专为碳端为羧酸的多肽进行固相多肽合成设计的所需通用树脂。通过使用三苯甲二氯乙酸类连接基(TRT-DCA),这种新型的树脂免除了第一个氨基酸在多肽合成中的预装载。相比与传统连接基做这类合成,TRT-DCA允许任何氨基酸的简单连接,避免了需要存储全部20种预装的树脂,同时对水解仍保持较高的稳定性。曾经,往羧基端连接基上连接第一个氨基酸是非常困难的,因为需要羟基作为亲核试剂(比如Wang树脂,HMPA树脂)。需要特定的条件,同时会产生副反应,包括差向异构化,二肽的形成,和不完全的偶联。因此,使用酸性连接基的树脂通常已经连接了第一个氨基酸。作为超高酸敏感的连接基(2-Cl-trityl, trityl)的一个优势,提供了一个更容易偶联的氯化物结构,然而这种结构对于水解非常敏感,对于长期使用来说,稳定性有限。 TRT-DCA连接基类似于酸敏感树脂,但提供一个对水解更稳定的结构。在连接第一个氨基酸之后,多肽合成过程中一直保留一个三苯甲基连接基。相比较Wang/HMPA连接基,三苯甲基庞大的空间结构有利于最小化二酮哌嗪和3-(1-哌啶基)丙氨酸构型的形成。 此外,三苯甲基的高酸敏感特性使得可以用适当的切割液,切割得到一个全保护的多肽序列。 高酸敏感树脂的使用通常仅限于温和的温度,以防过早的从树脂上解离。最近,CEM出台了一个新的基于碳二亚胺缩合剂的方法,可以在90° C下,基于高效固相多肽合成技术(HE-SPPS)使用三苯甲基树脂得到更高的多肽产率。这个方法被发现可以增加多肽的纯度,超越现有的任何活化方法,在高温下也能提供诸如磷酸化多肽的敏感序列。总之,新的TRT-DCA SpheriTide?树脂和新的碳二亚胺耦合方法使得多肽化学家充分利用该酸敏树脂对羧基肽进行高效固相多肽合成。 CEM商务开发主任Jonathan M. Collins说:“TRT-DCA SpheriTide树脂和新开发的碳二亚胺耦合方法的结合对于高温下简化和改善多肽合成是非常有用的,这不仅免除了购买预装树脂的需要,而且通过树脂自保护防止副反应的发生,提高了多肽的纯度。”CEM的Liberty Blue? Peptide Synthesizer 现在包括一个连接TRT-DCA SpheriTide树脂的自动化标准方法。Trityl-DCA SpheriTide树脂现在可以在线购买。 CEM公司,一家坐落在美国北卡罗莱纳马修斯的公司,是一个为世界顶级实验室提供科学解决方案的世界级领先供应商。公司在英国,德国,意大利,法国,和日本均拥有子公司并有全球分销商网络。CEM为生命科学、分析实验室和过程控制领等域设计和制造先进仪器。公司的产品广泛应用与许多行业,包括制药、生物技术、化学和食品加工、以及科研。 更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288Email: sales@pynnco.com 网站:www.pynnco.com
  • IKA LR1000反应釜在环氧树脂乳化中的应用案例分享
    LR1000反应釜应用案例分享 /// 用户国内知名特种纤维复合材料研发生产企业 /// 环氧树脂环氧树脂是泛指分子中含有两个或两个以上活泼的环氧基团的高分子化合物,可与多种类型的固化剂发生交联反应而形成不溶的具有三向网状结构的高聚物。固化后的环氧树脂具有良好的物理、化学性能,它对金属和非金属材料的表面具有优异的粘接强度,导电性能良好,变形收缩率小,制品稳定性好,硬度高,柔韧性较好,对碱及大部分溶剂稳定,因而广泛应用于国防、国民经济各部门,作浇注、浸渍、层压料、粘接剂、涂料等用途。 /// 挑战客户采用转相乳化法乳化环氧树脂的过程中,无法判断转相点,并且真空及乳化效果不佳,最终转相后乳液的粒径达不到理想效果。 /// 解决方案选用 IKA LR1000控制型反应釜,配套T25分散机,RC2冷水机,MVP10及VC10真空系统,不仅能通过LR1000控制型的扭矩监测功能帮助用户判断转相点(粘度明显增大),而且模块化的系统,可实现温度、搅拌、分散、真空等关键条件按需调控,保证最终乳化液粒径达到用户要求。 /// 实验过程1. 称量659.5g 环氧树脂于LR1000中,加热至40℃,开启搅拌80rpm;2. 开启T25,设置20000rpm分散乳化,逐步滴加水,保证水在树脂中分散均匀,同时开启RC 2保持样品温度低于50℃。当增加水量达到135ml时,树脂粘度明显增大,有明显的转相现象。 3. 保持T25分散,继续添加水约265ml,乳液固含量约55%。打开配套V10的MPC10真空泵 抽真空至790mbar,用RC 2降温至20℃,得到成品。环氧树脂乳化后粒径分析结果 /// 用户受益1. 环氧树脂乳化过程中转相时,采用传统的方式,无法判断转相点,使用LR1000控制型反应釜,其扭矩监测功能可以判断样品粘度的变化趋势,很好的解决了这一难点;2. 控温、搅拌的同时,进行均质乳化,成品的粒径达到理想要求,解决了之前工艺过程中,乳化效果不佳的问题;3. 环氧树脂乳化需要的控温、搅拌、均质、真空等工艺要求,可以在LR1000一个系统中实现,简化了研发过程,而且LR1000的紧凑结构,也节省了实验室空间。
  • pvc(糊树脂)难溶甲醇,听听禾工技术员怎么说
    pvc糊树脂是一种特殊的pvc,外观为白色细微粉末,主要用于制造人造革、纱窗、汽车胶、壁纸、地板卷材、玩具等。生产过程中,pvc糊树脂中水分含量是一项重要的测量指标,对生产具有重要的指导意义。 国家标准GB-T2914-20008《塑料 氯乙烯均聚合共聚树脂挥发物(包括水)的测定》方法中主要测定树脂本身所含有的水分及挥发性有机杂质,这些组分在加工过程中将成为气泡含于制品中,影响制品的强度、外观等性能,是衡量糊树脂产品质量的一项重要指标。但是由于国家标准分析方法采用烘箱法,且糊树脂具有颗粒小、质量轻、有静电等特点,所以环境条件和设备条件对分析结果影响很大,分析结果准确度和可靠度不高。卡尔费休法在测定物质水分的各类化学方法中,是世界公认的测定物质水分含量的最为专一和准确的经典方法。使用卡尔费休水分测定仪可快速的测出糊树脂中的水分含量,但是由于糊树脂不溶于甲醇,不能直接与卡尔费休试剂反应,因此我们需要卡尔费休水分测定仪与卡式加热炉一起使用。使用禾工AKF-PL2015C卡氏水分仪(配有卡式加热炉)把糊树脂样品称重后放入样品瓶,样品瓶在卡式加热炉中均匀加热,蒸发后的水分在高纯惰性气体作为载气引导下,进到滴定池内进行水分含量分析。 使用禾工AKF-PL2015C卡氏水分仪的优势:AKF-PL2015C塑料粒子专用水分测定采用瓶式加热技术,既能避免反应杯和加热炉膛污染问题,也能减少载气消耗。无需穿刺隔垫,样品瓶洗净可反复利用,耗材损耗小。 管路设计死体积小,无残留,无记忆效应,配备加热伴管防止水汽凝结 操作简单,自动扣除漂移,简化计算操作,测试结束自动计算含水量。 塑料粒子(树脂)含水量专用卡尔费休水分测定仪测定范围: 适用多种塑料粒子的生产及注塑,实现塑料粒子的水分含量检测。可测定abs、聚丙烯酰胺(pam)、聚酰胺(pa)、聚氯乙烯(pvc)聚碳酸酯(pc)、聚乙烯(pe)。聚对苯二甲酸乙二醇酯(pet)、聚甲基丙烯酸甲酯(亚克力、pmma)、聚丙烯(pp)、聚苯乙烯(ps)、聚乙烯醇缩丁醛(pvb)、硅橡胶塞等等。禾工将为首次申请样品检测的客户,免费检测两个样品,并承诺在7天内提供检测服务报告!您得到的不仅仅是一份报告,更可能是一份行业专业的解决方案!
  • 答疑解惑丨关于Cla多联系统的几大疑问?
    由于Cla系列发酵罐的模块化设计特点,使得它成为多联发酵罐的不二之选。而随着Cla多联系统发酵罐逐渐走入市场,许多疑问也随之产生,HOLVES 将用本篇文章为客户进行解答。(霍尔斯Cla系列发酵罐)(Cla多联系统呈现方式)疑问一:多联罐系统究竟如何连接?Cla多联系统是类似搭积木的方式,将功能模板与机箱、罐体进行联合。每个罐体的参数监测电极线与机箱连接,另外置交换机通过网线将每个机箱连接,进行数据传输、控制,由其中一台机箱配置14寸HMI进行总控。(Cla多联系统 连接示意图)疑问二:总线是什么?总线是一种描述电子信号传输线路的结构形式,是一类信号线的集合,是子系统间传输信息的公共通道。通过总线能使整个系统内各部件之间的信息进行传输、交换、共享和逻辑控制等功能。疑问三:Cla多联系统使用哪种控制网络?目前,在工控领域,应用最广泛的是工业以太网技术和工业现场总线技术。基于产品的强度、适用性以及实时性、可互操作性、可靠性、抗干扰性、本质安全性等方面的需要,我们的Cla多联系统选择了工业以太网总线技术中非常具有影响力的西门子PROFINET协议。在发酵罐多联系统中,总线交换机是所有机箱数据传输的媒介,交换机内部的CPU会在每个端口即每台机箱成功连接时,通过将物理地址(MAC)和端口对应,形成一张MAC表。在今后的通讯中,发往该地址的数据将仅送往其对应的端口,而不是所有的端口。疑问四:以太网总线设计的优点是什么?① 交换机有带宽很高的内部交换矩阵和背部总线,并且这个背部总线上挂接了所有的端口,通过内部交换矩阵,就能够把数据包直接而迅速地传送到目的机箱而非所有机箱,这样就不会浪费网络资源,从而产生非常高的效率。② 数据传输的安全程度非常高。③ 交换机的数据带宽具有独享性。在这样的前提下,在同一个时间段内,交换机就可以将数据传输到多个机箱之间。疑问五:多台Cla210单罐可以并联使用吗?Cla多联罐系统可以拆分为单罐使用吗?在这个问题的答案之前,需要知道单罐与多联系统的其中两个特殊性:① 单罐系统配置10寸触摸屏,多联系统配置14寸触摸屏,这个尺寸大小是根据其中的系统固定的,无法进行更改;② 单罐系统内置交换器,而多联系统还需要增设外置交换器用于数据的传输。单罐如何变成多联罐:如果客户购买了多台Cla210单罐系统,在后续的使用中希望把其改为多联系统使用,需要专业的工程师上门改装,另增设多联系统的14寸触摸屏总控,与一个外置的交换器进行数据传输。多联系统如何变为单罐:客户购买了多联系统后需要更换为单罐系统,需要联系HOLVES专业工程师,上门将每台机箱上增设10寸触摸屏,取消外置交换器,并将部分线路重新改装。综上,根据不同客户的不同需求,Cla系列都可以灵活适用,但必须要HOLVES专业的工程师进行操作。疑问六:多联系统功能界面与单罐功能界面的不同?多联罐的主控界面如下图所示,所有罐体的主要参数数据都会在总界面显示,方便监控。( 图例为Cla三联罐系统 主控界面 )需要单个进行参数细节调控或者其他功能,可以展开具体的单罐操纵界面,如图下所示。( Cla多联系统 控制选择界面 ) ( Cla单罐控制界面 )以上为霍尔斯Cla系列发酵罐,多联系统的相关问题解答,如有其他疑问,可与我们联系,霍尔斯将为您解答。
  • 宁波材料所在树脂基三维碳材料制备技术上取得系列进展
    三维石墨烯碳材料是一种由二维石墨烯在宏观尺度上构成的新型碳纳米材料,在能量储存与转化、催化、吸附分离等领域具有广阔的应用前景。迄今为止已经涌现了大量三维碳材料的制备方法,可以被归类为固态路线(以氧化石墨烯、天然和合成聚合物等为前驱体)和气态路线(气体碳源的化学沉积)。其中,固态路线往往缺乏对产物成分和结构灵活调控的能力,而气态路线极度依赖催化模板且效率低。液态是介于固、气之间的一种特殊状态,兼具固态的分子堆积密度以及气体的流动与兼容性。对液态路线的开发探索被认为是实现三维石墨烯材料结构与性能高效可控制备的关键。长期以来,科研人员在建立一条液态的三维石墨烯材料合成路线方面付出了大量的努力与尝试,但始终未取得实质性的进展。  中国科学院宁波材料技术与工程研究所新型热固性树脂团队刘小青研究员基于多年的生物基热固性树脂研究经验(Composites Part B, 2020, 190, 107926;Green Chemistry, 2021, 23, 8643;Progress in Polymer Science, 2021, 113,101353 Chemical Engineering Journal 2022, 428,131226 Composites Science and Technology, 2022, 219, 109248),提出开发生物基材料的本质是为了实现对生物碳的高效利用。基于此,团队利用激光烧蚀的方法,将生物基热固性树脂转化为功能性碳材料(Carbon, 2020, 163, 85 Carbon, 2021, 183, 600 ACS Nano, 2021, 15, 12, 19490 Nano Energy, 2022, 100, 107477;Small, 2022, 2202960),拟完成从“生物碳”到“生物基树脂”再到“功能碳”的闭环转化。  最近,基于在这两个交叉领域丰富的研究基础,该团队通过对碳前体的分子结构设计,并利用激光刻蚀成功实现了从液态前驱体直接转化为三维石墨烯材料(如图1所示)。这条全新的制备路线集成了激光制造与液态前驱体两者的优势。几乎所有目前广泛应用的石墨烯宏观结构都可以通过这条液态路线直接一步制备,包括粉末、多孔膜、功能涂层、柔性Janus结构,以及结构定制化的宏观三维石墨烯材料,展现出巨大的研究价值与应用前景。图1 激光诱导石墨烯材料从液态前驱体直接合成  此外,制备得到的三维石墨烯材料的功能组分也具有高度的可控性。得益于液体良好的兼容性,功能性的有机或无机填料可以直接混入液态前驱体中,并在激光的辐照下原位形成石墨烯基复合材料,实现包括杂原子掺杂、金属纳米粒子掺杂、金属氧化物纳米粒子掺杂以及其他功能性组分的掺杂等(如图2所示)。比如,将多种金属有机化合物与液体共混之后进行激光辐照可以得到高熵合金掺杂石墨烯材料。其中,高熵合金以纳米粒子的形式均匀分布在三维石墨烯的多孔骨架表面,其粒径和含量则可以通过前驱体的掺杂比例灵活调节。图2 三维石墨烯功能复合材料的制备表征  值得一提的是,文中还提出了一种全新的3D打印原理(Selective Laser Transforming,SLT,如图3所示),即通过对液态前驱体的逐层转化实现对石墨烯材料三维结构的定制化构造,对于当前极为有限的碳材料3D打印技术做出了重要的扩充。由于不熔不溶不聚合,开发适用于碳材料的3D打印技术长期以来被视为一项巨大的挑战。而与现有的打印策略相比,除了在原理上具有本质的不同之外,这种通过面单元原位生长的打印方式最大的优势在于打印过程简单高效以及打印得到的产品具有高结构连续性。SLT打印过程不仅避免了传统的高耗能高污染的氧化石墨烯的制备,得到的打印产物也无需额外的高温退火还原过程。打印产物的电导率和强度更是分别达到了4380 S/m和4.4 Mpa,明显优于传统的3D打印石墨烯材料。图3 全新的SLT石墨烯3D打印技术  相关结果以“Direct Conversion of Liquid Organic Precursor into 3D Laser-induced Graphene Materials”为题在材料领域顶级期刊Advanced Materials上在线发表。本工作得到了国家自然科学基金(52003282、U1909220)、浙江省杰出青年基金(LR20E030001)和浙江省领军型创新团队项目(2021R01005)的支持。  原文连接:https://doi.org/10.1002/adma.202209545
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制