当前位置: 仪器信息网 > 行业主题 > >

数显恒定仪

仪器信息网数显恒定仪专题为您提供2024年最新数显恒定仪价格报价、厂家品牌的相关信息, 包括数显恒定仪参数、型号等,不管是国产,还是进口品牌的数显恒定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数显恒定仪相关的耗材配件、试剂标物,还有数显恒定仪相关的最新资讯、资料,以及数显恒定仪相关的解决方案。

数显恒定仪相关的资讯

  • 泰州LED恒定湿热试验机新品上市!
    泰州LED恒定湿热试验机新品上市! 昆山宏展仪器!一直以来我们都专精于可靠度环境测试设备的技术,不断精益求精,创造符合国际规范要求的可靠度应用价值。以下是高低温试验箱昆山宏的简单介绍,谢谢您对宏展仪器的了解! 泰州LED恒定湿热试验机新品上市! 产品型号:lc-225 高低温试验箱简介:采用原装进口薄摸按键式人机介面温度控制器,原装进口全封闭式压缩机,整机性能稳定,操作简便,易于安装,控制技术达到目前国际先进水平、性价比明显优于同类进口设备,采用bthc平衡调温方式,是进行高低温交变的理想设备。 泰州LED恒定湿热试验机新品上市!的基本参数: 容积(l):225 内尺寸(h*w*d)mm :750*500*600 加热器:镍铬合金电热丝式加热器 鼓风机:离心风机 温传感器:pt100干球传感器 泰州LED恒定湿热试验机新品上市!的主要技术参数: 温度:-40 ~ +150度 温度波动度:± 0.5度 升温时间:-40 ~ +150度小于70分钟 降温时间:+20 ~ -40度小于60分钟 泰州湿热试验机_泰州恒定湿热试验机_泰州交变湿热试验机结构及部件 内外箱材质 :内箱-镜面不锈钢板 外箱-不锈钢或钢板喷涂 保温材质:硬质聚胺脂发泡+玻璃棉 控制器:原装进口单点式控制器或商议 冷冻系统:法国泰康全封闭式压缩机/环保冷媒 泰州LED恒定湿热试验机新品上市!保护装置 压缩机过热,过流,超压,加热空焚,箱内起温 电源:2ф3w220vac± 10% 高低温试验箱的标准配置:观察窗(箱内照明)、ф50mm电缆孔(位于左侧)一个、试样架二套(高度可调)、移动工作轮. www.oven.cc
  • 品牌咖啡馆的秘密 | 品质恒定,才是吸引顾客的原因
    咖啡文化发展至今,已造就了许多知名餐饮品牌,譬如以咖啡店文化制胜的星巴克。今天小奥要为大家介绍的,则是一家以咖啡口味赢得客户喜爱的咖啡馆Sensory Lab。Sensory Lab位于世界十大咖啡城市之一的墨尔本,是很多咖啡爱好者们的心头所爱。这家店装修简洁明快,咖啡口味浓郁醇厚,奶泡绵密。对顾客而言,他们在现磨咖啡馆的消费体验最直观的来自于咖啡口味和等候时间。咖啡师告诉我们,作为咖啡店的核心产品——咖啡,其口感取决于以下三点:咖啡豆的品质 1不同产地的咖啡豆,受生产地自然环境、温度、附近生长植被的影响,以及后期烘焙的方式和程度,决定了咖啡的口味。除此以外,咖啡研磨的程度也会影响咖啡的口感,咖啡粉研磨的越细,冲煮出来的咖啡口味越醇厚。 水温 2水温会影响咖啡粉里可萃取到的可溶解物质,萃取到的可溶解物质层次不同,对咖啡的口感也会有一定程度的影响。 咖啡粉和水的比例 3(下文简称:粉水比例)在任何咖啡冲煮的参数方案里面,咖啡的粉量都是一个十分基础的变量,决定了咖啡的口感。对于一家品牌咖啡店来说,其咖啡不但需要满足个人化的口味,还必须要满足绝大部分顾客们对咖啡口味的恒定期待。一般来说,咖啡粉量有0.5g的变化,咖啡口味就会有比较明显的不同。故此,固定粉量是非常重要的——这是为了让每一杯萃取的咖啡浓度都一致。所以,要想保持同款咖啡品质如一的口感,每杯咖啡的咖啡粉含量需精准到0.1g;不同款式的咖啡,咖啡粉重各有不同。现今,咖啡的制作流程已非常成熟,一杯咖啡的制作时间,不超过一分钟。怎样才能尽可能减少每杯咖啡的制作时间,以减少客顾客的等待时间、提升其消费感受呢?Sensory Lab的咖啡师道出秘诀:配置方便使用、快捷稳定的咖啡制作设备。检测设备的品质,就看其在高强度作业下的表现是否稳定。每位咖啡师都有自己中意的工具:压粉锤和称量咖啡粉的电子天平,擦拭压粉器的清洁布̷̷每个工具都经过了高强度的工作检验,为了优化工作流程,其根据咖啡师的习惯放在固定的位置。咖啡师介绍说,他们很喜欢用Navigator便携式电子天平。这款电子天平的优势就是好用到感觉不到它存在!Sensory Lab的咖啡师反馈道:制作一杯咖啡,有非常多的环节,而称重是咖啡制作中必不可少的一环,但如果在称重上耗费太多时间,势必影响我们的工作效率;但如果称重做不到位,又会影响我们的咖啡品质。对于我们咖啡师来说,最好用的机器,就是让我们感受不到它的存在——称量结果可靠稳定、能为每杯咖啡提供同样品质的服务。奥豪斯Navigator便携式电子天平就是这样——快速、精确,稳定可靠,常常让我们忽略它,却又离不开它,完全满足了我们咖啡店的要求。自从购买Navigator电子天平以来,称量咖啡粉已简化成三个动作。给无底手柄去皮,加咖啡粉、减咖啡粉——称量结果随着咖啡粉的增减,显示在带背光功能的液晶显示屏上,读数非常清楚。Navigator电子天平日称量上百次,配合着咖啡师熟练的动作,每次称量得心应手。最最重要的是——Navigator电子天平读数非常快,1秒就可以稳定准确读数,也无需花时间等待读数稳定。这一灵敏稳定的读数功能完全适应得了咖啡店高强度快节奏的工作要求。品牌咖啡馆之所以能吸引顾客为他们的咖啡买单,因为他们可以保持每款咖啡的口味基本一致,任何时候点一杯咖啡,绝不会令人失望。奥豪斯Navigator电子天平正是这样——精确可靠、1秒快速稳定读数,持续的为咖啡师们提供每日重复百次的称量工作。在Instagram上搜“OHAUS”,会看到很多咖啡师们晒出Navigator电子天平称量咖啡粉的照片,就可以知道Navigator电子天平在咖啡馆等餐饮企业有多受欢迎了!奥豪斯,不仅为追求高品质的餐饮企业提供优质的仪器设备,也为其上游企业——食品原料企业提供食品安全检测方案。如果您想了解更多关于奥豪斯Navigator™ 电子天平的信息,请联系奥豪斯或者进入「阅读原文」,留下您的信息,我们的专业工程师将竭诚为您服务! ▼
  • WIGGENS发布WIGGENS D-500D 数显均质乳化器新品
    数显均质乳化器D-500D详细信息: *D-500D均质器采用最新的快速拆卸清洗技术及数字化的智能反馈控制技术,保证最佳的破碎乳化效果。 *500W 电机功率运转平稳,低噪音,启动平稳柔和不会突然加速变速,具有更高的剪切力。*LED 数字式速度显示与控制,转速可以在 500-30000RPM 间任意设定 *智能转速控制系统,输出功率会随样品粘度变化而变化,保证均质过程在恒定转速下进行*驱动器外壳采用减噪材料设计,噪音强度:大约 66dB(A) at 25000 rpm ;大约 72dB(A) at 30000rpm*D-500D均质器采用快速分散头安装设计,可以单手在几秒种内完成安装或者拆卸,分散头的定子-转子易于拆卸分散清洗,可以3步完成定子-转子的拆卸*分散头采用"锯齿"形设计,剪切力高,可以快速有效地分散破碎样品*适合样品容积:0.05-2000mL*材质:316L不锈钢,外加电镀层,坚固耐用防腐蚀,特制的Teflon轴承,具有绝佳的机械性能和化学稳定性,可高温高压消毒*保护等级 : IP20*D-500D 驱动单元 *订货号 : 1710500D 数显均质乳化器D-500D可选分散头产品型号2503250525072509251225202520F订货号250300042503001225030031250300302503006225200069252F0091分散头长度50mm85 mm107 mm82mm123 mm192mm170mm定子/ 转子直径3 mm / 1.8 mm5.6 mm / 3 mm7.8 mm / 5 mm7.8mm/5mm12 mm / 9 mm20 mm / 15 mm20 mm / 15 mm线速度4.0 m/s4.7 m/s7.8 m/s7.8mm14.1 m/s22 m/s22 m/s工作容积0.05 - 2 ml0.1 - 5 ml0.3 - 10 ml0.3-10ml100 - 2000 ml应用少量植物、动物和人体组织的分散,适合圆底Eppendorf管少量植物、动物和人体组织分散;固体溶解;细胞破碎动物组织的分散;固体溶解
  • XPS小课堂丨XPS仪器通能的选择和谱线的灵敏度(一)
    XPS小课堂 光电子能谱图由一系列谱线(通常称为宽谱图)或一个至几个为数不多的谱线(通常称为窄谱图或高分辨谱图)所构成。谱线信息包含三要素:峰位(结合能)、峰强(以峰高计数强度或计数率表示,但在定量分析中以峰面积表达更加准确)、峰宽(以峰位强度一半处的宽度,即Full width at Half Maximum,简写为FWHM)。而在考察XPS的性能时,峰强(灵敏度)和半高宽(能量分辨率)是不可以、也是无法分割开来的。 01 XPS的能量分辨率 XPS的能量分辨率是仪器将两个相邻的谱峰分开的能力,通常能量分辨率越高,所采集到的光电子的越少,而能量分辨率越低,则采集到的光电子越多——不能离开能量分辨率来片面强调灵敏度的高低,同样也不能片面强调灵敏度的高低而忽略能量分辨率,因此要正确评估XPS的性能,需要在给定的能量分辨率下的去比较灵敏度的高低,或者可以在给定的灵敏度下来比较能量分辨率的高低。图1. Ag 3d5/2能量分辨率为0.422eV时,灵敏度300kcps 02 XPS谱线半高宽XPS的能量分辨率通常由Ag 3d5/2的半高宽来进行比较。谱线的半高宽从根本上讲,是所测谱线的发射谱线与两个展宽函数(X射线源和检测系统响应)的卷积结果。发射谱线的线型是洛仑兹型的,用来激发光电子的X射线也是洛仑兹型的,而检测系统的响应则是高斯型的,换言之我们看到的XPS的谱线的宽度是由三部分构成的,即发射谱线的宽度、X射线源的展宽和检测系统的展宽。 粗略来说测量到的XPS的谱线宽度大致是这样的: wA是样品原子能级的自然线宽——发射谱线的宽度是本征的,由其电子能级本身决定——电子能级寿命越长则谱线宽度越窄,电子能级寿命越长则谱线越窄,无法通过仪器的参数来改变; wx是X射线源的线宽——X射线源的展宽对特定的X射线源也是固定的,但是可以通过仪器的硬件设置改变,例如是否使用单色化的X射线源——500mm罗兰圆的单色化的Al Ka线宽0.25eV,非单色化则为0.85eV,所以使用单色化光源的分辨率就好于非单色化的X射线源; wD是检测系统的展宽;仪器的半球能量分析器半径和通能共同决定了检测系统的展宽——能量分析器半径越大,本征的能量分辨就越好;而通能越小能量分辨也就越好,但是信号强度也会下降——能量分辨(通能)和信号强度近似呈对数曲线关系。 03 通能(Pass energy)我们通常可以选择不同的通能来实现不同的能量分辨率。 XPS的能量分析器通常采用固定分析器传输(Fixed Analyzer Transmission,FAT)或称恒分析器能量(Constant Analyzer Energy,CAE)模式,待分析的光电子被减速到选定的通能而通过能量分析器,这是光电子在分析器的两个半球之间移动时的平均动能。FAT(CAE)模式的优点是能量分辨率在整个测量的动能范围内保持恒定。图2. XPS通能原理示意图 选择较低的通能时,可以获得了较好的能量分辨率,但同时灵敏度会降低,反之选择较高的通能时,可以获得更好的灵敏度,但同时分辨率会降低。图3. 在相同的X射线源功率下,以不同的通能(20eV和10eV)测试Al 2p 图3清晰地显示了较小的通能(10eV)时,能看到单质态Al 2p出现明显的双峰劈裂,但是灵敏度相对较低(大致在7×103cps),而在较大的通能(20eV)时,单质态Al 2p的双峰劈裂几乎消失了,但是灵敏度显著提高(大致在2×104cps)。 本期介绍了XPS的重要参数能量分辨率与灵敏度之间的联系,以及在实际操作中需要调节的参数——通能的基本概念,下期XPS小课堂将分享在具体的应用中我们应该如何选择通能大小,以及如何在分析灵敏度和能量分辨率之间寻求更好的平衡。 本文内容非商业广告,仅供专业人士参考。
  • 赛默飞世尔科技K-Alpha X射线光电子能谱仪(XPS)获殊荣
    赛默飞世尔科技K-Alpha X射线光电子能谱仪(XPS)获殊荣 2007年 7月20日,Thermo Scientific 最新推出的K-Alpha被杂志提名为在去年进入全球市场的100项最具尖端技术的重要产品之一。 “R&D100”奖项设立于1963年,目的是在特定的一年之中,选出在市场上技术最突出的100件新产品。历经数年,“R&D100”奖项评选出了许多家喻户晓的获奖产品,例如:1975年的传真机,1986年的打印机,1991年的Kodak Photo CD,1993年的Taxol抗癌药物,以及1998年的HDTV。 得益于快速发展的X射线光电子能谱(XPS)技术,K-Alpha实现了对表面化学组成的快速、准确以及有效的定量化监测,同时提供了在无机、有机、生物、合金、半导体以及磁性固体等诸多材料的表层几个纳米厚度的化学性质表征。为大量的样品分析而设计的具有革命性的系统,使提供全程直至测试结果整理分析和报告的全自动数据采集过程成为现实。 传统的XPS是需要大型、昂贵仪器以及专业操作人员的一项技术,即使用于常规的分析也是如此。占地面积小和独一无二的Thermo Scientific K-Alpha能够在没有或者几乎无须使用者介入的情况下完成大多数的常规操作,使得操作者能够从平淡、重复的工作中解脱出来。最大化的样品分析通量以及增加报告自动产生这样的高效专业化功能对于当今实验室是十分重要的。独特的是K-Alpha在样品进入仪器后就无需手工操作,所有的仪器及数据处理都由基于Microsoft Windows的数据系统Avantage所操控。Thermo Scientific K-Alpha展现了高传输灵敏度的新型电子光学系统,这使得对传统材料和新兴的生物技术、纳米技术与药物应用方面中最复杂的表面化学的认识成为可能。新型一体化的离子源提供的深度剖析能力使三维分析真正变得容易,这种高通量、低能量散射模式结合轴向旋转产生具有极佳深度分辨率的深度剖析。K-Alpha还具有在仪器中设入恒定校正标准的特点,软件程序指令与标准样品的结合使得K-Alpha能够实现仅按一键即能自动校正,保证在任何时间仪器都处于最佳性能状态。仪器自动校正功能对分析、质量保证和过程控制等应用是必不可少的。 Thermo Fisher Scientific表面分析部的产品经理Richard G White博士说:“对于K-Alpha的新颖技术特点为R&D100评奖组所承认,我们感到非常自豪。这一奖项肯定了Thermo Fisher Scientific作为表面表征的领导者地位,同时也证明了我们整个团队在提供有力的分析手段上的奉献精神与卓越的专业技术水平,并使我们的客户在众多表面分析仪器的应用中体会到了真正的不同和方便。”
  • 文献分享丨最新研究发现土壤有机碳分解热适应的调控机制
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展,相关文章发表已达18篇。 今天与大家分享的文章是东北林业大学林学院周旭辉教授团队首次从底物消耗与微生物适应角度,揭示了土壤有机碳分解热适应的调控机制的研究论文。在该研究中,采用了PRI-8800作为关键设备之一,我们来具体了解一下吧~ 长期以来,学界普遍认为气候变暖加速土壤有机碳分解,进而使得地球平均温度上升,形成正反馈效应。而近期的一些长期增温实验发现土壤有机碳分解速率可能会随着增温时间呈逐渐下降趋势,表现出热适应现象。当前,针对土壤有机碳分解的热适应调控机制,国内外生态学家仍存在较大争议,其根本难点在于无法有效区分底物消耗与微生物适应在土壤碳分解中的相对贡献。为了解决这一难题,何杨辉等研究人员依托长期野外增温实验平台,巧妙地使用土壤微生物灭菌-接种方法区分底物与微生物的调控作用,研究结果表明土壤底物可利用性是调控土壤有机碳分解热适应的主要因素。这一重要发现将增进人们对土壤有机碳分解热适应性的理解,为准确预测陆地土壤碳-气候反馈提供重要的科学依据。 土壤有机碳分解热适应潜在调控机制 值得注意的是,在实验过程中,研究团队通过PRI-8800连续变温培养和高频土壤呼吸在线测量的优势,克服了恒温培养模式土壤微生物对特定培养温度的适应性和底物消化不均的难题,加速研究进程并获得可靠的研究结果。 研究成果“Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability”为题,在线发表于国际顶级生态学期刊Global Change Biology(IF=13.211),何杨辉教授为论文的第一作者,周旭辉教授为论文通讯作者。相关论文信息:He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2022.全文链接:https://doi.org/10.1111/gcb.16523 UPGRADED! 土壤有机质是陆地生态系统最大的碳库,在全球变暖背景下,土壤有机质分解对温度变化的响应很大程度影响着陆地生态系统对全球气候变化反馈效应。气候变暖如何影响土壤有机质分解,以及陆地生态系统碳排放如何响应气候变暖已成为目前科学家主要关注的内容之一。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。 01 主要特点可进行恒温或变温培养设定;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶适配25位样品盘;具有CO2预降低的双回路设计;一体化设计,内置CO2 H2O模块;可以外接浓度和同位素分析仪等。02PRI-8800 实验设计1)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。PRI-8800全自动变温培养土壤CO2 H2O在线测量系统主要包含自动进样器、水槽、压缩机、CO2 H2O 分析仪、内部计算机、25位样品盘等,25个样品瓶。PRI-8800除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。2)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800可以通过手动调整土壤含水量的做法,并在PRI-8800快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。3)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。4)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。03 PRI-8800相关文献信息1.Li, C., Xiao, C.W., Guenet, B., Li, M.X., Xu, L., He, N.P. 2022. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe. Soil Biology and Biochemistry 167, 108589. https://doi.org/10.1016/j.soilbio.2022.108589.2.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.3.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.4.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matterdecomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.5.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.6.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.7.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.8.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.9.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.10.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.11.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.12.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.13.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.14.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.15.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.16.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.17.Mao X1, Zheng J1, Yu W, Guo X, Xu K, Zhao R, Xiao L, Wang M, Jiang Y, Zhang S, Luo L, Chang J, Shi Z, Luo Z* 2022. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry 172, 108743.18.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2022. 如果您对我们的产品或本期内容有任何问题,欢迎致电垂询:地址:北京市海淀区瀚河园路自在香山98-1号楼电话:010-51651246 88121891邮箱:support@pri-eco.com
  • D6 PHASER台式衍射仪即将“入驻”束蕴仪器旗下伦琴实验室!
    布鲁克D6 PHASER台式衍射仪,不仅大大拓展了衍射仪除粉末衍射以外的分析潜能,还填补了传统台式衍射仪与落地式衍射仪之间的功能性差距。束蕴仪器(上海)有限公司(以下简称“束蕴仪器”),位于上海市G60科创云廊,凭借与德国布鲁克(BRUKER)、国际衍射数据中心(ICDD)、德国Freiberg等国际知名实验室分析仪器品牌的战略合作,迅速成为业界知名仪器供应商。成交的客户数量超过500个,销售额1亿+。伦琴实验室则是束蕴仪器旗下的第三方实验室,是国内一家专业从事X射线相关分析与开发的机构。伦琴实验室致力于更深入的X射线应用和输出专业性更强的解决方案。下周,布鲁克D6 PHASER台式衍射仪将抵达束蕴仪器,并安装在伦琴实验室。欢迎各位参观讨论、学习交流! 仪器介绍 众所周知,X射线衍射仪是材料学相关领域基础且不可或缺的分析手段,具备无损、样品制备简单等优势。X射线衍射仪一般由X射线光源部分、测角仪、样品台、光路系统、探测器五大部分组成。布鲁克在已有的D2 PHASER的基础上,结合具备优异性能的LYNXEYE系列能量色散阵列探测器的优势,在桌面衍射仪这个平台上大胆的尝试了新的结构和运动逻辑,强势推出了一款跨界的桌面衍射系统——D6 PHASER。产品亮点总结:Ⅰ. 功率可选的X射线光源D6 Phaser提供了两种可选的X射线光源功率, 600W/1200W,测试强度可媲美大型落地式机型,满足不同应用需求。Ⅱ. 高精度的测角仪D6 Phaser保证在刚玉标样全谱范围内(20-140°),任何一个衍射峰的测量误差不超过±0.01°,与大型落地式机型旗鼓相当。Ⅲ. 多功能平台拓展D6 Phaser同时还可以实现以前只有在大型落地式机型上的多功能测试,如:◇ 薄膜掠入射测试(GID)◇ 薄膜反射率测试(XRR)残余应力测试◇ 织构测试◇ 毛细管透射测试 产品优势 1、从功能性的角度出发,上一代桌面式衍射仪D2 PHASER由于空间大小的限制,只能完成粉末、块体、常规薄膜等样品的分析测试,无法实现更多功能的拓展;而D6 PHASER完全打破了桌面式衍射仪功能上的限制,如:① 薄膜掠入射(GID)测试:利用平行光路和可以调整样品高度的Z轴样品台的配合;② 应力&织构测试:采用点焦斑和具备Chi和Phi方向运动的样品台的配合;③ 原位变温测试:利用原位变温的样品仓来实现;④ 毛细管透射:需毛细管样品台和透射光学的配合等,这些应用的拓展将在薄膜材料、金属材料、药物、陶瓷材料等领域实现重要的功能延升,实现桌面式衍射仪的多功能平台。2、从基本配置选择上,D6 PHASER也提供更多的适用性:①光管功率:提供了三种选择,用户可根据应用来选择更适用的匹配;②自动进样装置:D6 PHASER提供的12位的自动进样装置供用户选择,很大程度上节省了人工成本;③水冷的选择:D6 PHASER除了自身的内部水冷以外,用户亦可选择外接等等,更加追求并支持不同用户不同需求的定制化方案。3、此外,D6 PHASER也是完美的秉承了布鲁克的传统优势。θ/θ扫描方式的高精度测角仪,给您准确的角度位置,为您的物相定性打下基础;同样可搭载LYNXEYE全系的能量色散阵列探测器,相比传统的阵列探测器多了能量分辨的功能,很大程度上免除了噪音和背景对数据的干扰,提升了信噪比和峰背比,为您的全谱拟合、结构精修、无标定量等保驾护航。 应用实例 D6 PHASER二维衍射实现方法D6 PHASER提供了反射几何下的两种二维衍射实现方法,Bragg-2D和Phi-1D扫描方法:Bragg-2D方法中不需要移动样品,相反地,通过选择较大的入射光路发散度,将样品大面积暴露在X射线束下,并在Δ&piv vs. 2Theta空间中可视化展现来自不同晶粒的衍射信号。Phi-1D方法则需要使用旋转样品台,使用较窄的X射线束照射样品,探测器定位在特定的2Theta峰位置,通过旋转样品同时连续探测器快照拍摄来对晶粒进行成像。相应的X射线衍射仪样品台配置如图1所示。图1. D6 PHASER固定样品台(左)用于Bragg2D衍射,旋转样品台(右)用于Bragg2D和Phi-1D二维衍射例1:图2显示了粗晶粒粉末样品的二维衍射图,包含大量的不连续斑点。在常规的一维粉末衍射测量中,衍射信号将沿着衍射线进行积分,用户不会意识到样品粒度是不均匀的。而现在得益于快速的二维衍射测量,用户认识到在进行定量的一维XRD测量之前,样品应该被更细的粉碎。图2. DIFFRAC.COMMANDER界面展示粗糖样品的Phi-1D扫描图像的水平轴对应于Phi旋转,而垂直轴显示探测器快照。数据采集使用D6 PHASER 600W, Co靶,K-beta滤波器,2.5°Soller准直器,可变发散狭缝(恒定开口,0.25 mm),无空气散射屏。使用LYNXEYE-2探测器进行连续phi扫描,步长0.9度,曝光时间1秒,总扫描时间401秒,探测器达到 2Theta开口4.97°。例2:第二个例子(图3)展示了小晶粒的优先取向情况。垂直线显示了较宽的强度调制,然而对于完全随机取向的材料来说,强度应该是恒定的。此外,衍射信号具有不同的宽度,表明存在微观应变。对于该测试铝箔,只有通过样品的不同取向测试才能获得更好的平均信号。相对应地,在测量粉末样品时,在样品制备过程中应尽量重新定向晶体使其更加取向随机,或者用较小的接触压力将粉末压实。图3. DIFFRAC.EVA软件二维展示使用Co特征X射线测量的轧制铝板样品的Phi-1D扫描图谱
  • illumina Q3狂揽5.5亿美元 测序耗材贡献最大
    p   基因测序巨头illumina在第三财季的收入为5.5亿美元,相比2014年同期的4.81亿美元增长了14%。保持汇率恒定不变,其收入增长则为18%。 /p p   该公司在财报中称,Q3业绩增长主要得益于测序耗材及相关服务的强势表现。 /p p   报告期内illumina耗材收入贡献了全部收入的58%,其中测序耗材销售业绩约为2.7亿美元,同比增长36%。基因芯片(含耗材、仪器等)收入则占不到全部收入的15%。 /p p   本季度illumina的研发费用占16.4%,比2014年同期增长了180个基点。 /p p   尽管遭遇货币汇率不利影响,illumina仍预计其Q4及2015财年收入增长强劲。 /p p   对于Q4收入,illumina预计在5.7亿美元,按非会计公认准则,每股收益预计在0.78-0.80美元。 /p p   对于2015全年,illumina预计收入将增长18%,保持汇率恒定不变,收入增长则为21%。非会计准则每股收益预计在3.29-3.31美元之间。 /p
  • 【综述】红外热像仪工作原理及电子器件分析
    疫情期间使得红外热像仪的市场大大增加,在商场、机场、火车站等人流密集的地方随处可见,无需接触即可准确测量人体温度。那么红外热像仪是怎样工作的呢?本文对有关知识做简要介绍,以飨读者。红外热像仪,是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的红外光转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。使用红外热像仪,安全——可测量移动中或位于高处的高温表面;高效——快速扫描较大的表面或发现温差,高效发现潜在问题或故障;高回报——执行一个预测性维护程序可以显著降低维护和生产成本。但在疫情爆发之前,红外热像仪在工业测温场景使用得更广泛,需求也更稳定。在汽车研究发展领域——射出成型、引擎活塞、模温控制、刹车盘、电子电路设计、烤漆;在电机、电子业——电子零组件温度测试、印制电路板热分布设计、产品可靠性测试、笔记本电脑散热测试;在安防领域的隐蔽探测,目标物特征分析;在电气自动化领域,各种电气装置的接头松动或接触不良、不平衡负荷、过载、过热等隐患,变压器中有接头松动套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅等,都可以被红外热像仪及时发现,避免进一步损失。对于电动机、发电机:可以发现轴承温度过高,不平衡负载,绕组短路或开路,碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。红外热像仪通过探测目标物体的红外辐射,然后经过光电转换、电信号处理及数字图像处理等手段,将目标物体的温度分布图像转换成视频图像。分为以下步骤:第一步:利用对红外辐射敏感的红外探测器把红外辐射转变为微弱电信号,该信号的大小可以反映出红外辐射的强弱。第二步:利用后续电路将微弱的电信号进行放大和处理,从而清晰地采集到目标物体温度分布情况。第三步:通过图像处理软件处理放大后的电信号,得到电子视频信号,电视显像系统将反映目标红外辐射分布的电子视频信号在屏幕上显示出来,得到可见图像。在不同的应用领域,对于红外热像仪的选择有不同的要求,主要考虑因素有热灵敏度——热像仪可分辨出的最小温差(噪音等效温差)、测量精度。反应到电路上,最应注意的既是第二步电信号的放大和采样。实际上,从信号处理,到数据通信,到温度控制反馈,都有较大的精度影响因素。红外热像仪的电路框图如图所示,基本工作步骤为:FPA探测器——信号放大——信号优化——信号ADC采样——SOC/FPGA整形与预处理——信号图形及数据显示,其间伴随TEC(热电制冷器)对探测器焦平面温度的反馈控制。热像仪中需要采集的信号为面阵红外光电信号,来源于红外探测器,通过将红外光学系统采集的红外信号FPA转换为微弱电信号输出,选择OP AMP时需要注意与FPA供电类型匹配及小信号放大。根据红外热像仪的使用场合,去选择适合的运放,达到最优的放大效果和损耗最小的放大信号。运放的多项直流指标都会直接影响到总的误差值。比如,VOS、MRR、PSRR、增益误差、检测电阻容差,输入静态电流,噪声等等。需要根据实际应用的特点,择取主要误差项目评估和优化。比如 CMRR 误差可以通过减小 Bus 电压纹波优化。PSRR 误差,可以通过选用 LDO 给 OPA 供电优化。提供一个好的电源,LDO 的低噪声和纹波更利于设计,选用供电LDO。在图三中的光电信号放大处,使用了TPH250X系列的OP AMP,特点是高带宽、高转换速率、低功耗和低宽带噪声,这使得该系列运放在具有相似电源电流的轨对轨 输入/输出运放中独树一帜,是低电源电压高速信号放大的理想选择。高带宽保证了原始信号完整性,高转换速率保证了整机运算的第一步速度,低宽带噪声保证了FPGA/SOC处理的原始信号的真实性。对于制冷型红外探测器,热电制冷器必不可少,它保障了FPA探测器的焦平面工作温度温度的稳定和灵敏,对于制冷补偿的范围精度要求较高。用电压值表示外界设定的FPA工作温度,输入高精度误差运放,得出差值电压,经过放大器运算后,对FPA进行补偿,从而使FPA温度稳定。在该系统中,AD转换芯片的性能决定了FPA的相位补偿量,决定了后端红外成像的质量。根据放大后输出信号的电压范围和噪声等效温差及响应率,可以计算AD转换芯片的分辨率,此处使用了16 bit高分辨率的单通道低功耗DAC,电源电压范围为2.7V至5.5V。5v时功耗为0.45 mW,断电时功耗为1 μW。使用通用3线串行接口,操作在时钟率高达30mhz,兼容标准SPI®、QSPI™和DSP接口标准。同时满足了动态范围宽、速度快、功耗低的要求。对于一般的工业红外热像仪的补偿来说,TPC116S1已经足够。此外,对于整体的供电而言,FPGA/SOC的分级供电,电源管理芯片的选择要适当。对于运放和ADC的供电,为减小误差,需要低噪声的LDO,以保证电源电压恒定和实现有源噪声滤波。LDO输出电压小于输入电压,稳定性好,负载响应快,输出纹波小。具有最低的成本,最低的噪声和最低的静态电流,外围器件也很少,通常只有一两个旁路电容。而在总体的供电转换中,使用了DCDC——TPP2020,它的宽范围,保证了电源设计的简洁。内置省电模式,轻载时高效,具有内部软启动,热关断功能。DC-DC一般包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、宽范围、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容,但是输出纹波大,开关噪声较大、成本相对较高,故在电源设计中,用量少且尽量避开灵敏原件,以避免对灵敏原件的干扰。红外热像仪既可以走入民用,成为各个家庭的健康小帮手,也可以是精密工业电子的好伙伴。面对不同的市场,组成它的电子元器件也有不同的选择。而不变的是,精密的设计对于真实的反映,特别是模拟器件。
  • 新品发布丨新一代自动注射器试验系统
    随着医疗技术的发展,自动注射笔在临床治疗中的应用越来越广泛。为了确保其安全性和有效性,国际标准化组织发布了 ISO 11608-5:2022 标准,对自动注射笔的性能进行了严格规定。Instron 和制药与医疗器械制造商密切合作开发的最新一代自动注射器试验系统,可以对各种给药装置进行全面的功能测试。自动注射笔试验系统Instron 自动注射笔试验系统能够测量一系列关键性能要求,包括护帽拔出力、剂量准确性、激发力、注射时间、进针深度、针头防护装置锁定力和“咔哒”声检测,确保自动注射笔的性能稳定可靠。通过系统的测试和评估,可以确保 NIS-AUTO (针基注射系统)在不同患者身上的剂量准确,从而提高治疗效果和患者满意度。01护帽拔出力护帽拔出力为在使用针基注射系统时,护帽从针头上拔出的所需力。适当的护帽拔出力可以确保用户在正常操作过程中能够轻松地拔出护帽,同时防止在使用、运输和储存过程中护帽意外脱落,减少意外伤害或感染风险。02剂量准确性测量剂量准确性对于确保药物的有效性、降低副作用风险、提高患者安全、符合标准和法规、促进设备改进以及提高治疗依从性至关重要。03激发力良好的激发力可以提升操作的顺畅性和舒适度,从而减少使用过程中的不便和疼痛感。04注射时间精确测量注射时间可以确保药物能够在预定的时间内完全注入,避免因时间不当导致的剂量偏差,同时确保在合适的人体痛感时间范围内。05进针深度测量进针深度可以判断药物是否准确地注入到预定的身体部位,从而确保药物的有效性、减少并发症、提高患者安全。06针头防护装置锁定力测量针头防护装置锁定力可以确保注射笔在使用后不会被意外激活,最大限度地降低意外锐器伤害的风险,从而提高使用安全性。07“咔哒”声检测“咔哒”声提示音是一种重要的操作反馈机制,通过检测“咔哒”声,用户可以知道药物是否开始或完成注射,有效提高设备的安全性和用户满意度。试验系统特征01试验系统灵活性Instron 自动注射器试验系统适用于行业内常见的各种注射装置类型,工装切换方便,灵活性高。Instron 的 Bluehill Universal 软件增加了简便的自动注射器测试方法,使用户能够轻松开发和更改测试方法。用户只需选择要运行的测试,并设置所需参数。系统将自动运行整个测试序列,并提供测试结果。02合规性Bluehill 全新的适用性测试(SST)功能集成至整个工作流程,提示用户执行测试,并在审计追踪中自动追踪结果,以降低审计风险,进一步提高了对良好生产规范(GMP)的合规性。强大的审计追踪功能,确保符合 FDA 21 CFR 第 11 部分。为了简化技术转移,用户可添加 Instron 的 Bluehill Central 软件中的实验室管理模块,从而简化设备和 SST 测试方法在同一实验室及全球其他实验室之间的管理和技术转移。Instron 还可提供售后服务,包括现场设备校准和IQOQ 服务,以帮助您的实验室加快验证过程。03可靠性采用天平和设备视觉摄像头测量注射时间,可交叉验证,确保数据可靠性。采用气动夹具,确保夹持力恒定可靠。专业的下工装设计在最大限度上减少护帽拔出过程中的侧向力,提高护帽拔出力结果的准确性和一致性。Instron 自动注射笔试验系统,凭借高精度、高稳定性和优秀的用户体验,是满足 ISO 11608-5:2022 标准要求的理想选择。我们始终助力医疗行业发展,共同提升医疗产品的质量和安全性,向所有医者致敬!
  • 新品上市丨四温区智能多参数消解仪,LH-20S抢先看!
    多创新四温区设计 超级加倍人无我有,人有我精,单温区、双温区统统后退,LH-20S智能多参数消解仪独立四温区隆重登场,一、二、三、四温区全部拿捏,每个温区各有5个消解孔,可满足20支水样同时消解。易预设10种消解模式 智能简单预制COD、总磷、总氮(紫外)、总氮(变色酸)、高锰酸盐、硝酸盐、甲醛、自定义1/2/3共计10种消解模式,一键选择消解模式,可满足4种模式同时进行,搭配5.6吋彩色电容屏,界面交互简单智能,无经验也能轻松上手。快10分钟升至165℃ 无需久等消解温度45℃-185℃,以消解COD水样为例,10分钟内可达到指定消解温度165℃,4个温区独立加温互不干扰,开启加温后主界面有醒目提示,同时仪器灯带可给予操作人员视觉提示。恒高科技隔热材料 温度恒定采用全新隔热材料设计,降低各温区的温差影响,保障低温消解单元不受高温消解单元的影响,即使三个温区165℃,一个温区120℃可以保证温度示值误差。新材料能有效降低能量外溢,增加热效率,让温度更加恒定。准温度时间自由设定 准确可靠消解温度与时间可根据水样进行设定,支持温度设置、定时设置、延时设置,当温度升至设点消解温度后自动计时,消解完成还支持空冷计时、水冷计时、静置计时、智能计时,温度示值误差<±2℃,定时精度2秒/10分钟。
  • 上海应物所等发表核酸等温扩增技术研究综述论文
    近期,中国科学院上海应用物理研究所研究员樊春海与西安交通大学生命学院教授赵永席应邀在《化学评论》(Chemical Reviews)发表了关于核酸等温扩增技术的综述论文:Isothermal Amplification of Nucleic Acids(Chem. Rev., 2015, 115, 12491)。  核酸等温扩增技术是继PCR技术之后发展起来的一类新型核酸体外扩增技术,能在恒定温度下快速、高效地扩增靶标核酸序列。该技术操作简便、无需依赖专用仪器设备,反应条件温和,可应用于细胞表面甚至活细胞内部,在生物传感(核酸、蛋白质、多糖、细胞、小分子及离子检测)、疾病诊断及便携式医疗、细胞内成像和测序等多个学科领域都具有广泛的应用。  结合研究团队在核酸等温扩增领域的系列研究成果,该论文全面系统地总结了相关技术的发展现状,综述了此类方法在生化分析、生物医学、纳米技术等领域的多方面应用。作为在相关领域首篇全面系统的综述,该论文深入讨论了这一研究领域现存的关键问题和解决方案,并对其未来发展趋势和前景进行了展望,预期将对相关研究领域的发展起到积极的促进作用。上海应物所等发表核酸等温扩增技术研究综述论文
  • 简述电子点天平的组成部分
    电子天平构造原理基本构造是相同的。主要由以下几个部分组成:      (1)秤盘      秤盘多为金属材料制成,安装在天平的传感器上,是天平进行称量的承受装置。它具有一定的几何形状和厚度,以圆形和方形的居多。使用中应注意卫生清洁,更不要随意掉换秤盘。      (2)传感器      传感器是的关键部件之一,由外壳、磁钢、极靴和线圈等组成,装在秤盘的下方。它的精度很高也很灵敏。应保持天平称量室的清洁,切忌称样时撒落物品而影响传感器的正常工作。      (3)位置检测器位置检测器是由高灵敏度的远红外发光管和对称式光敏电池组成的。它的作用是将秤盘上的载荷转变成电信号输出。      (4)PID调节器      PID(比例、积分、微分)调节器的作用,就是保证传感器快速而稳定地工作。      (5)功率放大器      其作用是将微弱的信号进行放大,以保证天平的精度和工作要求。      (6)低通滤波器      它的作用是排除外界和某些电器元件产生的高频信号的干扰,以保证传感器的输出为一恒定的直流电压。      (7)模数(A/D)转换器      它的优点在于转换精度高,易于自动调零能有效地排除干扰,将输入信号转换成数字信号。      (8)微计算机      此部件可说是电子天平的关键部件了o它是电子天平的数据处理部件,它具有记忆、计算和查表等功能      (9)显示器      现在的显示器基本上有两种:一种是数码管的显示器 另一种是液晶显示器。它们的作用是将输出的数字信号显示在显示屏幕上。      (10)机壳      其作用是保护电子天平免受到灰尘等物质的侵害,同时也是电子元件的基座等。      (11)底脚      电子天平的支撑部件,同时也是电子天平水平的调节部件,一般均靠后面两个调整脚来调节天平的水平。 下面为欧洲瑞德威电子天平的图片:
  • 【瑞士步琦】如何利用喷雾干燥艺术定制您杰出的颗粒作品
    如何利用喷雾干燥艺术定制您杰出的颗粒作品1了解相关历史喷雾干燥技术首次发表于 1860 年,第一台喷雾干燥设备由 Samuel Percy于1872 年获得专利。随着时间推移,喷雾干燥方法越来越受到推崇。20 世纪 20 年代和第二次世界大战期间,最初喷雾干燥技术主要用来生产牛奶,以及其他需要减轻重量和体积的食品或材料。在 20 世纪下半叶,喷雾干燥设备的商业化程度增加,其应用范畴也逐渐扩大。2了解基本原理雾化:将液体进料转化为小液滴。这步处理会影响粉体颗粒的性质和粒度大小。喷雾空气接触:液滴与加热的干燥介质接触,液滴表面的水分快速均匀地蒸发。在这个步骤中,颗粒形态、产品质量和干燥室内壁的沉积物都会受到影响。溶剂蒸发:水分以恒定速率从液滴表面蒸发。随着干燥的进行,表面会干燥形成壳体,之后水分的取出成为扩散控制过程,直至取出所有剩余水分。溶剂蒸发是颗粒形成和塑造最终产品形态中最重要的步骤。颗粒收集:干燥后的产品与干燥气流分离之后,在干燥室底部收集。通过旋风分离器、袋式除尘器、静电除尘器或湿法除尘器回收较细粉体颗粒。3设计您预想的颗粒形状4优化您的参数该表显示当其中一个输入参数(横坐标)增加时输出参数(纵坐标)的变化关系。表中图片大小表示改变影响程度,箭头表示影响方向。▲ 图片大小表示改变影响关系,箭头表示方向5小贴士
  • 迷你数显折射仪 日本ATAGO(爱拓)的应用
    迷你数显折射仪(又名折光仪)的应用与刻度式手持折射仪/折光仪类似,其数显折射仪(又名折光仪)特性可以有效消除人为读数误差,同时减轻操作者视力疲劳度。 ATAGO(爱拓)的PAL系列迷你数显折射仪/折光仪是手持式折射仪/折光仪的创新与代表,完全颠覆了过去用户对于手持式折射仪/折光仪的传统认知,数字显示,仅手掌大小,重100g。 PAL迷你数显折射仪/折光仪拥有让您惊奇的快速测量能力。只要将一滴样本溶液置于棱镜上,然后按「开始」键,糖度值会在3秒之内显示。具有数字LCD显示面版,可以避免主观错误的数值判读。PAL迷你数显折射计/折光仪可流水冲洗,具自动温度补偿,能测量高温样品,您将会对它的尺寸、设计、功能与性能感到惊奇!(日本ATAGO爱拓 折射仪&mdash 折射仪/折光仪&mdash 折光仪/旋光仪&mdash 旋光仪) ATAGO(爱拓)的AP-300旋光仪旋光仪是一款具有旋光度和国际标准糖度(ISS)双标度的全自动旋光仪旋光仪,AP-300全自动旋光仪/旋光仪专为需要测定旋光度和糖度的制糖行业而设计的一款旋光仪旋光仪。 ATAGO(爱拓)是专业的折光仪/折射仪与旋光仪旋光仪生产厂商,生产多种类型的折光仪/折射仪及旋光仪 旋光仪。提供生产原料及成品的Brix值、折射率、盐度、糖度、物质浓度 、旋光度的测量方案!更多折光仪/折射仪/旋光仪旋光仪详情请点击 www.atago-china.com 或致电020-38108256 ATAGO(爱拓)中国分公司咨询。
  • 精准测量,可靠稳定 | 舒茨助力推进碳达峰碳中和战略
    《碳排放权交易管理暂行条例》已于2024年1月5日国务院第23次常务会议通过,自2024年5月1日起施行。碳排放权交易是利用市场机制控制和减少温室气体排放的重大制度创新,是实现碳达峰碳中和目标的重要举措。《条例》的出台是对《中共中央、国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》提出的“加快建设完善全国碳排放权交易市场”要求的立法回应,同时也为落实党的二十大报告“积极稳妥推进碳达峰碳中和”的战略部署提供了重要制度保障。 与《条例》相呼应联动,生态环境部、市场监管总局于2023年10月23日联合发布《温室气体自愿减排交易管理办法(试行)》。全国温室气体自愿减排交易市场与全国碳排放权交易市场共同组成我国碳交易体系。 自愿减排交易市场启动后,各类社会主体可以按照相关规定,自主自愿开发温室气体减排项目,项目减排效果经过科学方法量化核证并申请完成登记后,可在市场出售,以获取相应的减排贡献收益。这将有利于激励更广泛的行业、企业和社会各界参与温室气体减排行动,对推动经济社会绿色低碳转型,实现高质量发展具有积极意义。 舒茨股份始终致力于高端工业级气体分析解决方案的研发、生产与销售;针对市场关于温室气体(主要是CO2, CH4, N2O等气体)的检测精度、稳定性与可靠性等方面要求不断提高的情况,公司早已储备了从气体模块,分析仪,再到定制化成套系统一系列针对性的匹配解决方案与适用产品,帮助客户解决实际应用中的痛点和难点。 舒茨高端气体传感器FLOWEVO PLUS 是基于分析型 NDIR(非色散红外技术)气体传感器升级演变后的加强版本,特别适应严苛多变的复杂环境,其在稳定性、LDL(最低检测限)、T90 响应时间和读出频率等方面的卓越表现,使其成为业内新标杆。 产品特点 SIGAS的 PLUS 传感器将 NDIR 检测技术与数据分析能力相结合,在传感器模的块层面实现了更精准可靠的结果输出,而以往这些通常需要依靠高质量的分析仪器才能实现。为此,SIGAS在硬件和软件上开发了先进的分析模块,将FLOWEVO传感器升级成FLOWEVO PLUS。 FLOWEVO PLUS产品特点:温度恒定:FLOWEVO PLUS 集成了温度控制器,可调节吸收池加热系统,精度为 ±0.3 K自动压力补偿:通过压力传感器测量吸收池内部压力,测量误差由内部气体流量自动补偿噪音极低:通过适用于传感器和光学测量部分的高度集成的数字滤波器,将噪声降低至FLOWEVOFLOWEVO PLUS检测原理NDIR 非分散式红外(双光束)供气方式泵吸式读取噪声ABS±0.1%FS@ T90 Max 10Hz响应时间(T90)T90 1 ppm ...0.1 Vol.%最低检测下限 (3sigma)≤ 1 % FS(典型值)重复性≤ ±1 % FS线性误差≤ ±1 % FS ( 根据传感器类型而定)稳定性(零点)≤ ±2 % FS /12月稳定性(量程点)≤ ±2 % FS /12月温度漂移 (零点)≤ ±0,1 % FS 每°C温度漂移 (量程点)≤ ±0,15 % FS 每°C压力漂移0.1 % up to 0.2 % 读取值每mbar 应用场景舒茨FLOWEVO系列传感器具备高精度、高可靠性和低维护的特点,适用于多种专业应用场景。工业过程监控:在化工、石油、天然气行业中,可以用来监测生产流程中的特定气体浓度,确保工艺安全和效率,例如监测SF6气体泄漏,这对于电力设备的绝缘状态监测至关重要。环境监测:由于其高灵敏度和稳定性,FLOWEVO系列传感器适用于大气环境监测,比如监测温室气体排放,帮助企业和环保机构遵守环境法规,减少环境污染。室内空气质量控制:在商业楼宇、医院、学校等场所,传感器可以监测室内空气质量,包括二氧化碳、VOCs等气体浓度,保障人员健康。农业熏蒸监控:在农业领域,用于监控熏蒸过程中使用的气体浓度,确保作物保护效果同时减少对环境的影响。汽车尾气排放检测:在汽车制造业和车辆排放检测站,FLOWEVO传感器能准确测量尾气中的特定气体成分,支持排放标准的合规性检查。安全监控:在矿井、仓库等易燃易爆环境中,实时监测有害气体浓度,预防安全事故。医疗设备:在医疗领域,特定气体浓度的监测对于维持特定治疗环境(如麻醉气体监测)的安全和有效性至关重要。
  • 北京理工大学方岱宁院士、董浩文副教授课题组《Natl. Sci. Rev.》:面向超宽带声束工程的色散定制化消色差超构表面
    近年来,作为一种可调控波相位、极化方式、传播模式的超薄声学人工表面结构,声学超构表面(Acoustic metasurfaces)可以实现许多新奇的波控功能,在吸声降噪、医学超声、声波器件、探测、通信等领域展现了广阔的应用前景。然而,绝大多数声学超构表面都面临突出的窄带和功能色散问题,且主动调控的手段也存在功能色散、低可靠性、高系统复杂度和高制造成本等诸多挑战。更重要的是,可重构超构表面虽可保证离散频率下波动功能,但不太可能适用于含多个频率的宽带入射波包。因此,从工程应用的角度来看,声学超构表面亟需实现被动式超宽带、非频变特性,也需更多新的结构形式与调控机理。近期,北京理工大学方岱宁院士和董浩文副教授、香港理工大学成利院士、天津大学汪越胜教授、美国罗文大学沈宸助理教授、青岛大学赵胜东副教授密切合作,并联合德国锡根大学张传增院士、美国杜克大学Steven A. Cummer教授、中科院深圳先进技术研究院郑海荣教授和邱维宝研究员等国内外学者,在超构材料领域取得重要进展。该团队提出了定制化色散的逆向设计方法,利用面投影微立体光刻技术(nanoArch S140,摩方精密)实现了声学超构表面的高精度3D打印,成功构造了消色差声学超构表面,实现了高效、相对带宽为93.3%的声波定向传输、相对带宽为120%的能量聚焦、相对带宽为118.9%的超声粒子悬浮等超宽带声学波束工程,并揭示了超宽带消色差特性的力学机理,为超宽带、高效、多功能超构材料器件提供了新的设计范式,可为先进结构技术与完美波动调控的结合提供系统的理论与方法。该研究以“Achromatic metasurfaces by dispersion customization for ultra-broadband acoustic beam engineering”为题发表于《国家科学评论》(National Science Review, NSR, https://doi.org/10.1093/nsr/nwac030, 2022)。为获得超构表面的定制化色散特性,该研究提出了系统的超宽带消色差 “至下而上”逆向设计框架(图1)。为实现声波异常折射、聚焦和超声悬浮功能,超构表面需分别产生具备线性非色散、非线性非色散、非线性色散特性的三类波束,即:定向传输波束、聚焦束和局域空心束(图1b)。事实上,为实现特定的色散、严苛的相位分布与传输效率,所有超构表面单元必须同时满足特定的等效折射率、相对群延迟以及相对群延迟色散。因此,本研究建立了超构表面单元的“相位-效率-色散”的拓扑优化模型,利用遗传算法完成了超宽带、消色差、高效声学超构表面的逆向设计。图1:超宽带消色差超构表面的逆向设计方法 为证实逆向设计方法的正确性与有效性,本研究首先针对声波异常折射功能,设计出具有非对称局部腔体、弯曲空气通道的超构表面单元(图2a)。在低频宽带范围内(1600-4400 Hz),优化单元具备恒定的等效折射率与高传输率(图2b, 2c)以及线性非色散特性。值得注意的是,这种拓扑特征与传统的Helmholtz共振腔和迷宫结构非常不同。这种区别意味着超宽带非色散特性无法由单一构型所决定,而需要多种拓扑特征的组合来实现。仿真和实验结果也进一步验证了具有恒定折射角的高效、异常透射功能(图2d,2e)。图2:逆向设计的声学超构表面与其超宽带高效异常波束折射 本研究进一步设计出更复杂的非对称超构表面单元(图3a),其具备超宽带恒定的等效折射率(图3b),且折射率增加的程度逐渐降低;大部分超构表面单元均可保持高于80%的传输效率(图3c)。有趣的是,#4、#5、#6和#7单元具有非常相似的拓扑特征,但#3、#2单元却呈现完全不同的特征,这意味着单一的拓扑构型无法实现超宽带非色散功能。结果表明,优化的超构表面可实现具有恒定焦距、高效、声波聚焦功能(图3d,3e),证实了其超宽带[1000 Hz, 4000 Hz]、消色差特性。图3:逆向设计的声学超构表面与其超宽带高效聚焦 为更进一步展示所发展优化模型与方法的优势,本研究还针对宽低频、高度复杂的色散特性,设计出一系列具有非色散、非线性色散特性的高效超构表面单元(图4a)。通过特定的单元集成方式,构建了含13×13个微米尺度单元(4.2 mm×4.2 mm×1.2 cm,S140,摩方精密,10 μm打印精度)、轻质、超薄的3D声波超表面(5.46 cm×5.46 cm×1.2 cm)。结果表明,超构表面可在[16.5 kHz, 66 kHz]内产生具有恒定悬浮位置的局域空心束(图4e),从而实现了单边、稳定、超宽带的超声悬浮现象(图4f),显著优于目前已知的超声悬浮技术。此外,超构表面的波动功能对热粘滞损耗也具有很强的鲁棒性。图4:逆向设计的声学超构表面与超宽带、单边、稳定的超声粒子悬浮 为揭示超宽带消色差特性的机理,本研究详细地考察了具有线性非色散、线性非色散、非线性色散特性的3个代表性超构表面单元,分析了其相位响应(图5a-5c)、等效阻抗矩阵(图5d-5f)和散射性质(图5g-5i)。结果显示,优化的非对称单元均存在明显的内部共振(internal resonance),从而有效地补偿了由单个结构块体色散而产生的复杂相移。此外,3种单元也存在一定程度的双各向异性(bi-anisotropy)。更有趣的是,这种优化的超构表面单元还存在显著的多散射效应,可被视为一种新的超构表面设计自由度。 图5:超宽带消色差特性的协同作用机理 针对声波超宽带声束工程,本研究发展了融合相位、幅值、色散、功能的声学超构表面通用逆向设计框架,设计出一系列新型非对称超表面,实现了超宽带、消色差声波负折射、聚焦和超声悬浮三类功能,揭示了超宽带消色差特性的协同作用机理,即:集成的内部共振、双各向异性以及多散射效应。研究可为超宽带、被动式、多功能超构材料的构造提供系统性逆向设计方法,可为2D/3D弹性波/声波超构材料的大规模、集成设计提供重要的理论指导与结构基础。近年来,本团队已提出了多种弹性波/声波超构材料的逆向设计模型,揭示了宽带力学机理,实现了一系列高性能弹性波、声波、水声功能及器件,为超构材料宽低频响应的系统性创新设计提供了解决方案。作者:董浩文
  • 综述l芳香化合物连续硝化应用进展(二)
    综述l芳香化合物连续硝化应用进展(二)康宁反应器技术收录于话题#危化反应-硝化18个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度编前语上文我们通过多个案例,介绍了应用微通道反应器实现一取代和二取代苯型芳香烃为底物的硝化反应的研究进展。在进入本文正文(即本篇综述第二部分内容)前,小编需要补充的是:在硝化等危化工艺连续化研究成果越来越多的现阶段,如何将研究成果应用于实际,实现硝化工艺的工业化放大生产更是行业关注的焦点。康宁反应器技术经过13年的工业化应用研究与推广,在微通道反应器工业化生产领域的应用实现了突破性进展,在全球已经拥有上百家工业化用户,累计安装的年通量已超过80万吨。康宁AFR多套工业化硝化装置始终保持24/7连续稳定安全运行。江苏中丹化工成功采用康宁反应器连续硝化,显著提升了关键中间体生产的本质安全水平,装置稳定运行一年多,得到了客户和地方政府的高度认可。康宁反应器技术和益丰生化环保股份有限公司合作,打造了年通量万吨级全自动全连续微反应硝化生产装置。与传统工厂相比,其亩均产出提升了10倍,运行费用减低20%以上。… … 还有更多硝化、重氮化、氧化、加氢等工业化项目成功实现并稳定运行,帮助客户实现了巨大的经济效益和社会效益。如果您想要了解更多,欢迎您直接留言或电话联系我们!电话:021-22152888-1469您也可以扫描右二维码了解更多康宁AFR应用案例。接下来让我们进入正文——以多取代苯型芳香烃及其它苯型芳香烃为底物的硝化反应二硝基萘的连续化合成倪伟等[9]以萘和95%硝酸为原料,在微通道反应器中研究了二硝基萘的连续化合成工艺(图9),考察了硝酸浓度、反应温度、反应物料比对反应的影响并进一步优化了反应条件。结果:在最佳条件下单硝化产物n(对硝基氯苯)∶n(邻硝基氯苯)=1:0.56,与釜式反应器相比,副产物明显减少,转化率明显提高,生产能力提高了4个数量级,并且可以实现工艺的连续化操作。1-甲基-4,5-二硝基咪唑硝化合成1-甲基-4,5-二硝基咪唑(4,5-MDN1)是一种性能良好的高能钝感炸药和极具应用价值的熔铸炸药载体。在传统釜式反应器中进行N-甲基咪唑硝化反应时剧烈放热,为控制反应温度需缓慢逐滴加料,反应时间长,产物收率低。刘阳艺红等[10]在微通道反应器为核心的反应体系中进行了4,5-MDN1的合成研究(图12),利用微通道反应器的高传热特性快速提高4,5-MDN1的收率。工业生产中,可通过增加微通道反应器数量来热量,维持恒定的反应温度,在减少混合酸用量的同时,显著提高了提高产量,具有广阔的发展前景。1-甲基-3-丙基-1H-吡唑-5-羧酸硝化反应Panke等[11]采用微通道反应器对1-甲基-3-丙基-1H-吡唑-5-羧酸进行了硝化反应研究(图13)。微通道反应器优秀的传热性能性使反应温度稳定在90℃,避免了100℃脱羧副反应的发生,硝化产物是合成西地那非的重要中间体。结语微通道反应器在芳香化合物的硝化反应中表现出了极大的优势:选择性高、安全性高、转化率高、反应时间短、数增放大、可建立动力学模型等,使得芳香化合物的硝化由传统的间歇式生产转为连续化生产成为可能。尽管微通道反应器还存在一定的局限性,但随着微化工技术的发展,微通道反应器会更加安全化、智能化和连续化,其在芳香化合物的硝化反应中的应用会越来越广泛,硝化反应这类具有污染大、放热强、选择性差的反应也将随之得到优化。参考文献:[1] 化学与生物工程. 2021,38(02).[9] 南京工业大学学报 (自 然 科 学 版),2016,38(3):120-125[10] 现代化工,2018,38(6):140-143.[11] Synthesis, 2003(18): 2827-2830.
  • ATAGO(爱拓)PAL数显折射仪在制糖行业中的应用
    甘蔗作为制糖的主要原料,甘蔗蔗糖分是衡量甘蔗成熟和品种材料优劣的最重要指标,因此甘蔗蔗糖分检测成为甘蔗品种培育和种植工作中不能缺少的重要环节。一般情况下,当甘蔗的蔗茎田间蔗糖分13.00%以上时即可砍收,削去叶、梢和根等杂质,送到糖厂加工。 目前我国蔗糖生产和科研单位普遍采用的甘蔗糖分检测方法是二次旋光法。但二次旋光法测定步骤繁琐、耗时、费力,因而导致检测效率低,无法进行大批量样品的检测,迫切需要建立一种可简便快速的甘蔗糖分测定方法。 PAL系列迷你数显折射计操作方法: ATAGO(爱拓)的PAL系列迷你数显折射计是手持式折射计的创新与代表,完全颠覆了过去用户对于手持式折射计的传统认知,数字显示,仅手掌大小,重100g,具有使用快速简便、测定准确(测量精度Brix± 0.2%)、重量轻、体积小等优点。用与传统的刻度式手持折射计相比,其数显特性可以有效消除人为读数误差,同时减轻操作者视力疲劳度。而且PAL迷你数显折射计拥有让您惊奇的快速测量能力。只需用取样锥,取2~3滴甘蔗汁溶液置于棱镜上,然后按「开始」键,糖度值会在3秒之内显示。具有数字LCD显示面版,可以避免主观错误的数值判读。可流水冲洗,具自动温度补偿。其革命性的E.L.I(外部光线阻止)功能,在野外测量受到外部强光干扰测量时,仪器会自动提示,确保得到准确的测量值。 糖厂投入使用的检测仪器: 手持式折射计主要是糖厂农业部在野外检测用,工厂压榨时检测都是用全自动台式折光仪; 广西是中国最大的糖业产地和集散地。广西地处华南,北回归线横贯其中,属亚热带气候区,发展糖业生产的气候条件得天独厚。 目前广西有糖厂98间,日榨甘蔗能力36万吨,分别属于10大糖业集团和部分国有控股企业。2003/2004年榨季原料甘蔗产量在4800万吨左右,产成品糖588万吨左右,产糖量占全国总产量的60%以上,2004/05年榨季由于播种面积减少和旱灾、霜冻等自然灾害影响,产糖有所减少,产糖量在530万吨左右,05/06年榨季甘蔗种植面积有所回生,预计甘蔗种植面积达到1030万亩,甘蔗产量将出现恢复性增产,甘蔗产量预计达到4850万吨左右,产糖600万吨左右。 广州市爱宕科学仪器有限公司的ATAGO(爱拓)的PAL系列迷你数显折射计和工厂压榨时检测工具全自动台式折光仪:在广西地区更是得到广大企业的认可和应用以下主要介绍广西博庆食品有限公司和广西洋浦南华糖业集团股份有限公司对本产品的应用中的成效: 广西博庆食品有限公司 广西博庆食品有限公司与ATAGO(爱拓)合作以来以来,使用PAL系列迷你数显折射计在甘蔗的砍收过程中取得了显著的成效,使得对甘蔗的砍收更准确,对整个制作工序达到了时间上的节约,人工上的节约,从而降低成本,使得企业旗下的石别、怀远两家制糖企业,现在现生产能分别为9000吨/日和6000吨/日得到了更大的保障且与ATAGO(爱拓)合作以来,旗下的石别、怀远两家制糖企业的日产平均增长达到0.4%,ATAGO(爱拓)优质的售后服务以及强大的技术团队使得我们的合作方的效益最大化,更使得我们双方共赢。 广西洋浦南华糖业集团股份有限公司 据悉,2012年崇左全市甘蔗生产的目标任务是:完成甘蔗种植面积430万亩以上,其中新植蔗要达到190.9万亩、新扩种面积20万亩以上;力争2012/2013年榨季原料蔗和产糖量创历史新高,原料蔗达2300万吨以上、产糖287万吨以上,田间平均蔗糖分14.7%以上。 当然在这样浩大的工程中理所当然会有我们的作为强有力的技术支持后盾,PAL系列迷你数显折射计将发挥其最大的优势,ATAGO(爱拓)最为洋浦南华的合作方,会在仪器应用技术上保障博庆在使用过程中最大化的体现出PAL系列迷你数显折射计的简介准确性,更加希望洋浦南华在2012年取得辉煌,ATAGO(爱拓)将不计余力提供最好的售后服务保障。 以下是ATAGO(爱拓)和广西糖厂建立良好的合作关系: 广西南华糖业有限责任公司 广西崇左东亚糖业有限公司 广西博宣食品有限公司 广西博华食品有限公司 南宁糖业股份有限公司   结束语 蔗糖是人类基本的食品添加剂之一也是食品中有营养的甜味剂。是光合作用的主要产物,广泛分布于植物体内。ATAGO(爱拓)食品检测工具,给广西糖厂带来了制糖生产过程中间制品快速分析检测 ,糖料品质检测 ,ATAGO(爱拓)PAL系列迷你数显折射计可以非常方便的用于田间或基层,简单快速的测量样品中糖分以判断其成熟度;或在附近没有实验室的条件下快速进行浓度测量以得到分析结果。通过以上分析,ATAGO(爱拓)的工厂压榨时检测工具全自动台式折光仪在制糖行业的应用得到了糖厂广泛认可。 本文来之:广州市爱宕科学仪器有限公司
  • 痕量分析中的一个偶然发现不经意拯救了100%全人类
    有人在不经意间或是在世界上绝大部分人都毫不知情的情况下拯救了世界吗? 有。而今天,就是要给你说这样一个人的故事。 他花了一生的时间在做一件看似毫无意义的研究,却在不经意间拯救了我们无数人的生命,如果没有他,我们可能没有机会在这里玩微信了。 故事的主人公,只是一个长相平凡,毫无任何存在感,丢在人群中马上找不到的苦逼理工科的研究生,他虽然拯救了全世界,但是他太低调,不仅99.9999999%的人都没听说过他的名字,据说在他本学科的教科书上,也几乎没有占到多大的篇幅。 但,这不妨碍他成为一个拯救世界的英雄! 故事有点长,但写得高潮跌宕,绝对绝对值得你花上10分钟,仔细品读。 20 世纪40年代,刚结束二战,芝加哥大学的地质教授哈里森-布朗突发一个设想,觉得十分有趣,但是也仅仅停留在有趣上,这个问题并不能有足够的诱惑力去亲自 探寻,花费他自己的宝贵研究时间,所以他选择了一个两全其美的方法,抓了学校的一个研究生当小苦力,让他去研究这个问题:研究生名叫克莱尔-帕特森,爱荷 华州一位邮递员的儿子,天性叛逆,学校表现一般,人长得也又土又挫,丢人群里也马上会看不见。 (动画里帕特森长的是这样) 当时哈里森布朗&ldquo 哄骗&rdquo 克莱尔-帕特森去做他这个项目时这么说:&ldquo 小帕,唉,你不介意我叫你小帕不。&rdquo 帕特森呆萌木讷的点点头。 &ldquo 你结婚没有?&rdquo &ldquo 我结婚了,我妻子劳拉是一个化学家,我们曾经一起给曼哈顿计划打过工&rdquo 哈里森满意的笑了:&ldquo 很好很好,小帕~嘿嘿,我知道你不是地质学家,很可能还分不清长石和花岗岩,但是我听说你使用质谱仪很在行?小帕?&rdquo 帕特森再次呆萌的点点头。 &ldquo 小帕,这些是锆石,比针尖还小,里面有很少量的铅,我希望你能测量出这些锆石里面铅同位素的丰度&rdquo 帕特森呆呆的看着老师,因为他不是这个专业的,不知道要不要接受做这个小作业。 哈里森一看他的迟疑,马上拿出他的招牌本领,胡萝卜蜜糖一样的口盾术,他一本正经语重心长的说:&ldquo 小帕!!这可不是一个简单的作业啊!&rdquo 帕特森看着老师,很好奇。 哈里森继续说:&ldquo 如果成功测量出在锆石中的的铅同位素丰度,你就能用相同方法测量陨石中的铅同位素丰度。&rdquo 哈里森顿了顿,压低了声音深邃的说:&ldquo 你如果这个Thesis成功了,You Will Be Famous!!!&rdquo 哈里森把Famous加了重音,&ldquo 因为你将会是测量出地球年龄的那个人!!!狂霸酷帅屌有木有!!!!小帕同学是不是把持不住很有兴趣!!!!&rdquo (哈里森老师历史上肯定不是这么对帕特森说的,不过为了喜剧效果,读起来不累,先这么写了,大意差不多) 如何推测地球的年龄? 《庄子· 内篇· 养生主第三》里有曰:&ldquo 生也有涯,而知也无涯。以有涯随无涯,殆已。&rdquo 用 人类有限的几十年的生命去推算地球的年龄?多么可笑荒诞!!人类以为自己是谁!?这种宇宙尺度的对比让人类无比卑微渺小,但是人是一种伟大的生物,虽然人 的生命是比瞬间还要短暂,但是人类的大脑可以借助成倍于自己的力量去了解亿兆于自己的这个世界,这也是为什么物理和科学的永恒迷人的魅力,令人无数人朝闻 道夕可死。 最后人类的确找到了以有涯求无涯的方法:20 世纪有个伟大的发现,在几十年里,测量每种放射性元素转变成另一种元素所用的时间,物理学家发现每个不稳定元素的原子,衰变比率是恒定的,就是说无论周围 的环境的改变,这个衰变比率都不会改变,用锤子砸,用油炸,甚至气化,原子钟依旧按照这个定律走的不紧不慢,哪怕你斗转星移沧海桑田物是人非,从地球诞生 到恐龙灭绝,原子时钟精准无比,客观到冷酷,所以要了解我们的地球母亲的年龄,没有比测量铀原子更好的方法了。 例 如只要知道了岩石中铀衰变成铅的比率,就可以知道这块岩石存在了多久。石头里面某些原子具有放射性,它们自然而然发生衰变从而变成其他元素,铀原子首先变 成 (Db)原子,平均来说要耗费十几亿年时间, (Db)原子很不稳定,大概1个月左右会变成镤(Pa)原子,然后1小时候后又变成其他原子,大概经过10次的核转变,来到衰变链的最后一环,一个稳定的 铅原子,铅将不再会发生变化。 看似完美的解决方法,但是有个问题:你如何才能得到一块在地球形成之初就存在的岩石?你走在路边撞到脚的那些的石头可不是地球诞生之初就形成的唉。应该说地球上基本不存在这些岩石了,要不被压碎了,或者被融化了,要不就重塑了,哪里去找和地球母亲同岁的石头呢? 有一个地方能找到,那就是天降礼物:陨石。 只要测量一块几乎和地球同龄的陨石样本里面的铅原子,就能得出地球的年龄了。 芝加哥大学的哈里森-布朗1947年首次提出了这个假设,于是就把这个小作业交给了帕特森。 帕特森这个淳朴天真的研究生被老师口盾后,虽然不明白他在说什么,但是他觉得他挺有道理,好厉害!就羞涩的说:&ldquo 那我试试看吧。&rdquo 然后哈里森开心的说了所有老师抓学生干活都会说的那句甜蜜的话:&ldquo 哎哟,小帕,我相信以你的能力那不是小菜一碟?加油哈!爱你么么哒。&rdquo 这是一句很轻描淡写的客套话。但是就因为这句轻描淡写的话,帕特森同学打死都想不到的,这个小小的作业,他的人生发生了重大的改变,世界发生了重大的改变,人类的命运也将要发生巨大的改变。 哈里森老师如果知道接下来三十年后发生的事情,他一定会把&ldquo 给我一句话,我将要撬动整个人类的历史!&rdquo 作为他的座右铭。 当然这个小作业对帕特森的人生来说,第一个至关重要的影响是:这个小作业最后不得不成为了他的研究生毕业论文课题,然后坑害了他七年才找到答案完成这个课题,拿到他的博士学位。 为什么这个哈里森认为极其简单的小作业会耗费那么长时间? 是因为帕特森对锆石铅含量做等精度测量时候发现,相同微粒的铅含量的结果数值,每次都偏差很大。也就是说,帕特森每次测量,锆石里的铅数值都不一样,这可愁坏了帕特森,就像没有了一把标准的尺子,连一个恒定的参照物的数值都没有,如何去测量陨石和地球的年龄?! 帕特森穷尽脑汁,最后发现,影响实验结果的最重要因素,可能是实验室或者空气里存在铅,影响了实验结果(那个时候可是没过滤设备的),更何况帕特森所在的实 验楼是全学校最烂最年久失修的,锆石里只有几百万个铀原子,空气里的铅数量远远大于这个数值,在这种和空气和环境直接接触样本的情况下显然是没办法测量出 正确的结果的。 帕特森随后变成了一个清洁工,拖地擦洗,反复打扫他破旧的实验室,尽量让他的实验室变得无铅,但是最后的结果还是偏差百倍。 帕特森想到了他必须用酸来煮容器和工具,并提纯化学原料,进一步降低实验室中的铅含量,这个过程像我们小时候用搭积木一样,一不小心触碰就倒下重来,譬如万一有个熊孩子或者二货学生打开他实验室的门,问厕所在哪里,那他经常几个月的清洁实验室心血毁于一旦。 无论帕特森如何清洗消毒,都没解决问题。 &ldquo 易如反掌你妹啊!!!&rdquo 帕特森心里奔跑着无数个草泥马问候哈里森。 帕特森想开始设计一种全新的实验室-超级洁净室,但你想他的实验室都如此破旧,哪有人会给他这个经费和机会呢。 这个机会直到他的坑货老师哈里森调任加州理工时候才得以实现,哈里森不知道是不是良心发现觉得坑帕特森坑的有点厉害了,于是邀请他一起去加州理工 帕特森这个&ldquo 易如反掌&rdquo 的课题的研究,已经过去了六年,这六年的岁月他没有能够有机会调查到锆石中的铅数值,大部分的时间在坚持不懈寻找,并消灭了许多对仪器造成铅数值影响的源头。 帕特森在真理的大门外,像一个苦行僧,或者说更像是一个劳碌中日的清洁工,洗衣服、扫地、拖地板,把真理大门外的瓷砖清洁了了一圈又一圈,始终无法触碰到真理的大门,一个人六年的时光就在做这种看似没有意义的事情,重复着实验的第一步,第一步,还是第一步。 在 第七年,帕特森终于能完成它的心愿:在加州理工制造出第一个超级洁净室(实验的超洁净室无尘环境概念起源自他),他终于能有机会碰到真理大门的门把手了, 他终于能有机会测量出锆石的铅含量,也终于能测出当时老师给他的陨石中铅的含量了,他也终于有机会去找到那个易如反掌&rdquo 的真理的答案:找出地球的年龄。 在 一个夜深人静的晚上,带着加州理工超级洁净室里得到的数据,帕特森来到伊利诺伊州的阿拉贡国家实验室,轻轻的按下了真理的门把手,真理的的光芒从门缝中透 出,帕特森瘦弱的身躯终于进入到了真理的大门,他即将以一个人类的肉身,用对宇宙来说转瞬即逝的光阴,探知到行星、宇宙、地球,和整个太阳系的秘密&mdash &mdash 地球的年龄。 帕特森郑重的穿戴防护服,按下了按钮&ldquo 嘿,小家伙,我们要开始气化你(陨石)了&rdquo 质谱仪利用磁场将要样本中的元素分离,从而使各种元素可以被量化,这就是解开地球真实年龄之谜的最后一环。 (这段影片中动画和音乐处理的极其感人,当时我就QAQ) 边做着数据,帕特森边喃喃自语到: &ldquo 感谢所有做出过贡献的科学家们&rdquo &ldquo 感谢地质学家们&rdquo &ldquo 感谢查尔斯-莱尔&rdquo &ldquo 感谢迈克尔-法拉第&rdquo &ldquo JJ-汤姆森(发现电子)&rdquo &ldquo 欧内斯特-卢瑟福(核物理之父)&rdquo 帕特森眉毛一扬: &ldquo 也感谢哈里森-布朗(他的&rdquo 坑货&ldquo 老师,研究如何分开环和铀)&rdquo 帕特森飞快的做着计算 当他画下最后一根线时候,他轻轻的说: &ldquo 地球的年龄是45亿年&rdquo 我们成功了&rdquo 当知道地球年龄后,帕特森像个孩子一样奔向爱华达州母亲的家,他想把他七年获得的成果和他母亲分享&mdash &mdash 地球的真实年龄。当然,由于太过激动,心跳的如此的剧烈,被送到了医院进行抢救。帕特森打开了真理的大门,这项发现为他带来什么奖励么?你说诺贝尔奖? 当时诺贝尔物理和化学奖都没有兴趣投给新兴的交叉地质学领域,物理的评委不认为他的研究属于物理,化学的评委也不认为属于化学。45亿年这个数字,直到十几年后才放进地质教科书中,即便如此,在过去30年中超过50本教科书中,只有4本在提到地球年龄这个数字时候提到帕特森这个名字,据说有的书还拼错了他的名字。 他只是个贫穷的小讲师,更要命的是,为了全身心投入研究,无暇参与终身教授的职称申请,这却严重影响到了他的后面的人生。 真理的价值从来不是用金钱来衡量的,也不是任何东西能够奖励的,真理的价值可以说等于零,万物之始,通往终极,人类从来不拥有真理,只有少数人能窥探真理的一角。 但是真理还是恩赐给了帕特森一个东西作为天大天大的奖励,是什么奖励呢:一个超级超级天大的麻烦,他当时并不知道,自己的这项耗费7年,看似对99.999999%的人来说完全没用的研究成果,妨碍了某些世界上最有权势的人。 当然帕特森更不知道,在他还是那个研究生,答应哈里森那个&ldquo 易如反掌&rdquo 的作业时候,已经手握那个红色的按钮,将要选择是否拯救人类。当然,对帕特森来说,他 在无意识中拿到红色按钮的瞬间,早就毫不迟疑按下了那个&ldquo YES&rdquo ,因为帕特森就是这样的人,一分钟一秒一瞬间都不用怀疑,帕特森就是这样的人。 帕特森发现的&ldquo 地球的年龄&rdquo 包含着什么样的秘密,以至于妨碍了某些世界上最有权势的人?毕竟对你和我来说,地球的年龄有45亿年似乎并不影响我们的生活,所以,我们也不是有权势的人,我们是被有权势的人迷惑和遮蔽真相的普罗大众,所以有权势的人能统治无知的我们。 听起来好像是一个超级宏伟的科幻小说和阴谋论,似乎故事应该是:帕特森像逻辑那样,不小心揭示出了宇宙文明的终极奥秘,将要遭到地球和宇宙人致命追杀。当然小说终归是小说。 &ldquo 最有权势的人&rdquo 是谁呢?有的人会猜是不是宗教势力?得知地球的年龄虽然的确让帕特森收到许多神创论者的抨击,不过现在20世纪毕竟不是布鲁诺的时代,何况帕特森那么没存在感,所以答案不是宗教。在美国,最有权势的人不是政客和总统,而是那些财阀和巨头。 帕特森得罪的&ldquo 最有权势的人&rdquo ,就是美国的整个铅工业和石油工业的巨头。他们自然对地球的年龄有45亿年这种废话没有一丝一毫的兴趣,让他们惶恐的是帕特森的研究过程以及所使用的研究工具&mdash &mdash 铅,帕特森知道了一个他不该知道的东西。 土星,Saturnus,这个单词在古罗马是农神、;萨图尔努斯,罗马最古老的神祇。农神之外还有一个含义:&ldquo GOD OF LEAD,铅神&rdquo 。(有兴趣可以查炼金术与天文学相关的文章,很有趣) 古 罗马人对铅有极为狂热的追捧,这种奇妙的金属萌萌哒,它制作的器皿,光亮闪烁,不像铜器那样产生令人讨厌的绿锈,贵族们爱喝的葡萄汁中若加上这种金属粉, 可以除掉酸味,还可使酒醇香而甜,人们发现饮用用铅容器喝水,水有一种&ldquo 迷人的甜味&rdquo (很好奇这个形容词&hellip &hellip 都忍不住想喝一口试试看&hellip &hellip ),铅还有止泻的 效果,当然对爱美的人来说,这种金属粉制成的化妆品,可让贵族夫人们的皮肤更白&hellip &hellip 简直是神恩赐的最棒的东西!! 当我们现在阅读到这些文字,脑海里浮现出这几个字:古罗马人集体选择奔向脑残。脑残不是一个形容词,而是确确实实,铅中毒带来的全身性致命神经毒害。当然罗马人在铅上干的最脑残的一件事是:&ldquo 水管&rdquo 这个单词Plumb,来源自拉丁文的铅。罗马人居然脑残到了拿铅去造引以为豪的罗马地下管道!!!现在想想,如果放到现在,这是多么宏大壮观又富有深谋远虑的慢性集体杀人方法。 我们吐槽罗马人疯了!用铅做餐具和水管!其实更可怕的是,在帕特森所在的20世纪中叶,公众对铅的理解和古罗马人没啥两样,当然我这里说到是&ldquo 公众&rdquo ,铅对人体巨大的毒害的认识,人类早就已经开始了解,但是为什么明知铅有毒还要使用? 是 因为铅便宜、好用、延展性好、制造简单,而铅中毒是需要一个累积过程的,而能接触到这些计量的,往往是矿工和处理铅的工人,这些人的性命?WHO CARE?他们是社会最低贱的人,铅的好处我来享用,铅的危险让他们来承担!即便是现在,我们还是这样的&ldquo 公众&rdquo ,我们对皮革处理化学中毒的工人毫不在 意,对吸入粉尘得了矽肺无药可医活活闷死的矿工选择视而不见,他们的性命毫不重要! 进入20世纪,有一个重要的产业发展了,那就是广告业,含铅油漆厂商们雇佣刚萌芽的广告业者向消费者灌输铅对儿童是无害的。 当 然这看起来影响不是很大,但是资本的逐利可以泯灭良心,科学家也不例外,后来成为美国化学会主席和拥有&ldquo 地球史上对大气影响最大的生物个体&rdquo 和&ldquo 历史上杀 戮最多的个体&rdquo 这两个华丽丽闪瞎人头衔的氟利昂的发明者:托马斯-米基利,伙同通用汽车老板查尔斯-凯特灵,将四乙基铅,作为抗爆剂为噱头添加到汽油中。 (发动机有爆震现象,93号和97号汽油的差别不在于纯度,而是辛烷值的差别,这个问题其他知乎答案有提到) 四 乙基铅和普通的铅不同,它更具致命性,皮肤接触半杯就会致命,虽然现在公众对神经毒素爆发发狂而死的乙基公司工人毫不在意,但是为了利益,宣传的作用就体 现了,这时候,不再是广告报纸和儿童画,他们动用了至今屡试不爽的方法:他们需要一个懂科学的权威,安抚民众,提升铅的形象。 他们找到了一个合适人选,罗伯特-基欧博士,这也是人类第一次,利用科学权威来掩盖对环境和公共健康的威胁。 基欧博士说:&ldquo 铅本身就存在自然环境中!当然,虽然对一线工人有影响,但是对公众绝对没任何影响!并且没有任何证据表示铅对公众的影响对不对!?这种程度铅就如同12月的雪一样的自然,不会污染环境!&rdquo 几十年来,没有人反驳过他们一句。直到那个傻傻的克莱尔-帕特森开始研究,地球的年龄。 当时帕特森也和普通科学家一样,认为铅是自然普遍存在的,然而作为像他那样的科学家,比别人多走了一步,在对实验室铅干扰排除的过程中,他开始研究铅是如何传播的,依靠美国石油组织的科研拨款,他仔细研究了海水中深层和浅层中铅的含量(真是个巨大的讽刺) 帕特森又一次发现他的原始数据无法解释了:深海中铅只有少部分,但是在浅水和水面上,铅的含量高出几百倍,帕特森发现了一个惊人的事实:浅层海水中这些铅是近年才出现的。那什么能给全球的海洋带来那么多的铅? 帕特森和他的坑货老师哈里森在偶然中谈起这个问题,帕特森提出了他的假设:哈里森,我了解这些铅是哪里来的,它来自含铅汽油。 哈里森听完沉默了许久,然后说:Well,小帕,这个有点麻烦了,因为我们所有的研究资金都是从他们(石油组织)那里来哒。
  • 环凯正式推出LAMP(环介导恒温扩增技术)微生物快速检测试剂盒 ——快速、灵敏度高、特异性强、不需要特殊仪器
    环凯于2016年底正式推出基于lamp(环介导恒温扩增技术)荧光检测技术的微生物快速试剂盒,可用于食源性致病菌:沙门氏菌,金黄色葡萄球菌,志贺氏菌,单核增生李斯特菌,副溶血性弧菌,大肠杆菌o157:h7,阪崎肠杆菌,产气荚膜梭菌等 水源性微生物:铜绿假单胞菌,粪肠球菌,产气荚膜梭菌的快速检测。   环凯lamp荧光检测试剂盒基于环介导恒温扩增技术(loop-mediated isothermal amplification,lamp)荧光法检测,利 用两对特殊引物和具有链置换活性的bst dna聚合酶,使模板两端引物结合处循环出现环状单链结构, 引物顺利与模板结合并进行链置换扩增反应,实现在恒温条件下(60-65℃)进行连续快速扩增。反应体系中加入了显色指示剂,阴阳性结果显色差异显著,扩增结束后可以通过观察荧光显色剂的颜色变化判读结果,无需开盖避免了扩增产物交叉感染性的可能性。  lamp技术是一种新型的恒温核酸扩增技术,该技术无需常规pcr中变性、退火、延伸等步骤不同温度设计要求,只需提供一个适宜的恒定温度即可。 因此,与常规pcr相比,lamp技术更适合现场高通量快速检测。  采用环凯lamp试剂盒,可在快速增菌的基础上,40-60分钟即可完成检测,判读结果。而且特异性强,灵敏度高,比传统pcr灵敏度高10-100倍。是食品快速检测的福音。  环凯lamp试剂盒的6大优势:  1、快速判读:40-60分钟内完成检测,肉眼观察颜色变化即可判读结果。  2、特异性强:针对靶基因的6个区段设计引物,保证扩增特异性。  3、灵敏度高:比传统pcr灵敏度高10-100倍, 可检测5-20个拷贝。  4、操作简单:几步加样后,60 -65℃温度范围内恒温条件下即可完成扩增。  5、使用便捷:一管式冻干,免去繁琐的配置溶液步骤。  6、仪器简单:扩增条件简单,能提供恒温的装置即可进行快速检测。   环凯lamp试剂盒产品列表:   需要了解更多关于lamp试剂盒的技术细节,可关注环凯公司微信公众号(扫以下二维码关注),在“环凯服务--技术支持栏目”咨询。或者拨打环凯技术支持电话:020-32078333-8877咨询。 关注健康 为食品药品安全保驾护航 微生物控制整体解决方案的提供者  扫描或长按二维码关注环凯公众号
  • 【综述】qPlus型非接触原子力显微技术及应用
    p style=" text-indent: 2em " 本文主要介绍了qPlus型非接触原子力显微镜(NC-AFM)的基本工作原理,qPlus NC-AFM的两种工作模式的应用:高分辨成像获得分子内和分子间原子结构和力谱测量获得表面元素及成键力信息,以及NC-AFM在表面在位化学反应、低维材料、三维成像探测、开尔文探针力显微镜(KPFM)等方面的应用。 /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 1 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " NC-AFM工作原理 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " NC-AFM分为振幅调制和频率调制两种工作模式,超高真空体系中基于qPlus传感器的NC-AFM一般使用频率调制模式。频率调制AFM的基本工作原理是针尖悬臂在外力的驱动下以自由共振频率f sub 0 /sub 简谐振动,振幅(A)保持恒定,当针尖逼近样品时,针尖-样品之间的相互作用力梯度发生变化,引起悬臂共振频率的偏移(Δf),利用Δf和针尖高度的关联进行成像。 /p p style=" text-align: justify text-indent: 2em " NC-AFM的信号检测电路(图1A)主要由振幅控制模块和频率测量模块两部分组成。针尖悬臂振动信号经过带通滤波器后分成三路:一路信号进入交流直流转换器,将悬臂振幅转化为直流信号,并与振幅设定值比较(两者的差为能量耗散),通过比例-积分-微分控制器(PID)控制,调整激励信号,使得AFM悬臂保持恒定振幅振动;一路信号输入到相位调节器,经过π/2的相位移后返回激励陶瓷,与交流直流转换器共同组成振幅控制模块(灰色虚线框标记部分);另一路信号经过基于锁相环(PLL)的频率调制解调器后得到频率偏移信号,与控制针尖高度的模块相结合进行不同模式的成像。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/a2bacf3f-6fd9-4827-86ff-9a0eda9e5d52.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong 图1 非接触原子力显微镜的工作原理 /strong /p p style=" text-align: justify text-indent: 2em " 类比于STM工作模式有恒电流和恒高度两种模式,NC-AFM也具有恒频率偏移和恒高度两种主要成像模式。在恒频率偏移成像模式下,通过振幅反馈回路使音叉悬臂保持恒定振幅,通过频率反馈回路调整针尖和样品间的距离保持频率偏移恒定(Δf),所获得图像为恒定力梯度下的样品表面形貌高度图。在恒高度成像模式下,断开频率偏移控制的反馈回路保持针尖高度恒定,探测扫描过程中的频率偏移变化,所获图像为恒定高度下的样品表面力梯度图。 /p p style=" text-align: justify text-indent: 2em " NC-AFM之所以能够达到亚分子级分辨,甚至亚原子级分辨率,主要原因是qPlus传感器(如图1所示)的引入。qPlus传感器使用高弹性常数(~1800& nbsp N· m sup -1 /sup )的石英音叉作为悬臂代替传统AFM使用的硅悬臂,石英音叉在针尖-样品的作用力可以以非常小的振幅(& lt 100 pm)稳定成像。此外,qPlus传感器还具有以下优势:qPlus传感器使用导电的金属针尖,可以同时获得STM和AFM信号,可以给出更丰富的样品信息;qPlus音叉使用的石英晶体是压电晶体,振动时会产生和振幅成比例的压电信号,属于自检测传感器,不需要激光检测,适用于极低温工作环境;相比于传统硅悬臂,qPlus传感器体积较大,属于宏观物体,易于集成功能化的针尖。 /p p style=" text-align: justify text-indent: 2em " 针尖-样品之间的总作用力是吸引力和排斥力加和,如图1C所示。从作用范围的不同可以分为长程力和短程力:其中长程力包括范德华力、静电力、磁力;短程力包括化学成键力和泡利排斥力。范德华力产生的原因是原子与原子之间的局域瞬时偶极作用;针尖和样品间的电势差,或功函数差可以产生长程的静电力;在微观上长程的静电力的加和可以产生短程的静电力,其大小随距离指数衰减。短程化学力可分为短程化学成键力和短程泡利排斥力:短程化学成键力衰减长度在化学键长度的量级,由于化学键力很大又相对局域,所以在理想的体系中可以获得很高的分辨;短程泡利排斥力来源于量子力学中电子的量子数不能全同导致的短程排斥力,具有最高的空间局域性。相比于长程力,短程力有更大的力梯度,对Δf的贡献也更大,所以降低针尖的振幅可以一方面大大提高短程力的敏感性,另一方面降低振幅还可以大大降低长程力的贡献,消除长程力的背景。目前认为,在单分子内的原子分辨上 起主要贡献的是泡利排斥力。 /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 2 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " qPlus NC-AFM的工作模式 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " strong 2.1 高分辨成像 /strong /p p style=" text-align: justify text-indent: 2em " 实现分子内部单原子的识别是表面显微技术的重要目标。STM可获得原子级的图像,但由于隧穿电流主要探测的是费米面附近的局域电子态密度,因此对于分辨吸附分子内部的原子结构有一定的难度。NC-AFM探测的是针尖与样品原子间的相互作用力,在成像区域起主要贡献的是短程泡利排斥力,其探测的实质为分子内部总电子密度的分布,这使得AFM在理论上具有比STM更高的空间分辨能力。 /p p style=" text-align: justify text-indent: 2em " 为了达到NC-AFM的超高分辨率,针尖需要满足两个条件:一是化学惰性,保证针尖与样品分子之间的弱相互作用力,避免分子被针尖操纵;二是针尖尖端必须尖锐,针尖半径足够小(亚纳米尺度)从而确保可以获得原子级别的分辨,这两个条件保证了针尖可以逼近表面吸附的分子从而达到成像所需的泡利排斥力区域。 /p p style=" text-align: justify text-indent: 2em " 除了能够分辨分子内部的原子结构,NC-AFM技术还被用于化学键键级研究。利用NC-AFM技术识别键级的机制有两种:一是电子密度随键级的增大而增大,在相同高度下高键级区域与针尖之间具有更大的泡利排斥力,因此在AFM图像中呈现更亮的衬度;二是由于化学键长随着键级的增大而减小,结合针尖上修饰的CO分子的偏转作用可以判断其键级大小。由于CO针尖的偏转作用,AFM图像中所有化学键长都被放大,无法利用测量值与理论键长直接进行比较,但可以利用不同位置化学键的测量值进行对比获得其键级信息。 /p p style=" text-align: justify text-indent: 2em " 为了保证针尖及样品的稳定性,大多NC-AFM图像的采集需要在液氦温度,极少数结果在液氮温度下获得。随着技术的进一步发展,德国雷根斯堡大学Giessibl团队于2015年首次在室温下利用qPlus传感器及W针尖获得了苝四甲酸二酐分子的AFM图像。这一成果对于将qPlus NC-AFM技术应用于常温化学反应及分子结构识别等领域具有突破性的意义。 /p p style=" text-align: justify text-indent: 2em " 除了分子内部原子结构和化学键的识别,qPlus NC-AFM也可以识别分子间相互作用。2013年,裘晓辉团队以Cu(111)单晶表面吸附的8-羟基喹啉分子为研究体系,首次利用qPlus NC-AFM技术实现了实空间对分子间氢键的成像。卤键是一种类似氢键的分子间的相互作用,是由卤素原子的亲电位点(称为σ-hole)和另一原子的亲核位点之间形成的非共价相互作用。Cl、Br、I等卤素原子形成卤键的键能逐渐增大,F原子由于难以形成σ- hole,因此F原子之间认为没有卤键存在。 /p p style=" text-align: justify text-indent: 2em " 分子间氢键和卤键被实空间观测对于研究分子间弱相互作用力具有重要意义。氢键之所以能够被NC-AFM观测到,最初的解释是由于氢键的形成增大了该处的电子密度,因此针尖可以探测到增强的泡利排斥力,故而可以获得氢键成像。之后,捷克科学院Hapala团队利用CO针尖建立模型模拟发现,单纯利用针尖尖端CO分子所受范德华力引起的偏转,也可以实现上述结果显示的分子间氢键衬度特征。由于在图像模拟中未考虑分子间电子密度的作用,因此他们认为NC-AFM图像中针尖偏转对分子间作用力成像起了主要作用。随后,芬兰阿尔托大学Liljeroth和荷兰乌特勒支大学Swart等利用二对吡啶基乙炔(BPPA)分子自组装体系对该问题进行了进一步的研究。BPPA分子利用分子间氢键形成四聚体结构(如图3 (G, H)所示),示意图显示上下两个BPPA分子之间未直接形成化学键,但相对的两个N原子之间在NC-AFM图像中出现亮线。利用CO软性针尖进行Lennard-Jones势模拟图像与实验结果相似。因此他们认为针尖偏转在AFM成像上具有重要的影响:一方面使化学键的AFM衬度锐化,易于得到分子内部原子结构,另一方面在相邻非常近但未成键的两原子之间,偏转效应会使图像中出现成键的假象。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/1885fe3a-f255-4b08-972e-86fe121a072d.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " strong 图3 分子间化学键高分辨成像 /strong /p p style=" text-align: justify text-indent: 2em " 虽然NC-AFM已经实现了亚原子级别的高分辨成像,但其成像机制在国际上仍具有一定的争议,针尖偏转和电子密度在分子间成像上的贡献孰多孰少,亦或是某一因素起单独作用,目前并没有定论。解决这一问题也是现在NC-AFM技术最重要的目标之一,也是该技术应用于研究分子间成键和弱键相互作用体系的基本前提。 /p p style=" text-align: justify text-indent: 2em " strong 2.2 针尖-样品作用力谱测量 /strong /p p style=" text-align: justify text-indent: 2em " NC-AFM的力谱功能可以定量测量针尖-表面之间的相互作用力和能量,是研究高分辨成像和原子/分子操纵机理的关键。力谱是在特定的位置上记录针尖-样品相互作用力梯度(即Δf)与针尖-表面间距(d)的关系,即Δf(d)曲线,利用Sader和Jarvis提出的转换关系可以将Δf(d)曲线转化为F(d)曲线。当针尖与样品之间距离较远时,其作用力包括宏观尺度的范德华力、针尖尖端与样品的局域范德华力、偶极或带电样品引起的静电力,短程的泡利排斥力在此时可以忽略。针尖与样品之间距离较近进行成像扫描时,泡力排斥力对成像起主导作用,但长程的范德华力和静电力仍有作用(图4A)。因此,定量研究针尖与样品间的短程泡利排斥力时需要在总力谱的基础上扣除长程力背景(图4B)。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/e4d6a009-363d-4afe-92ca-e5ff9242a84a.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " strong 图4 针尖-样品间作用力测量 /strong /p p style=" text-align: justify text-indent: 2em " 2001年,瑞士巴塞尔大学Lantz团队首次在低温下利用力谱技术测量了Si针尖与 Si(111)-(7× 7)表面Si原子悬挂键间形成的共价键力的大小为2.1 nN,如图4(C,D)所示。这一结果是化学成键力测量上的突破性进展。2007年,日本大阪大学Morita团队在室温下利用不同结构的针尖测量了Si基底上沉积Sn分子后针尖与Si原子和Sn原子间的力谱,将每种针尖测得的短程力谱根据Si原子力谱的最大吸引力进行归一化后得到Sn原子和Si原子力谱的最大吸引力比值为0.77 : 1 (图4(E, F))。同样的方法可得到Pb原子和Si原子力谱的最大吸 引力比值为0.59 : 1。基于以上结果,在Si(111)基底上Si、Sn、Pb合金材料上通过区别不同原子与针尖之间吸引力最大值的差别,可以实现Si、Sn、Pb化学元素的识别(图4(G,H))。NC-AFM的成像技术和力谱测量相结合,有利地推进了扫描探针技术对尺度空间和能量空间分辨率的提高,为研究原子或分子间相互作用及化学键的形成具有重要意义。值得注意的是,以上提到的研究结果都早于qPlus传感器的发明,是利用悬臂梁针尖测量所得。 /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 3 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " qPlus NC-AFM的应用 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " strong 3.1 针尖修饰对成像的影响 /strong /p p style=" text-align: justify text-indent: 2em " 在AFM成像研究中,针尖的原子组成和几何结构对成像结果具有重要影响。通常实验中可以通过针尖脉冲,降低扫描高度或撞针的方法进行针尖处理,但这些处理方法获得的针尖重复性不高且难以确定针尖的具体原子结构。而纵向原子/分子操控技术可以高效地将特定的分子或原子从样品表面提取,修饰到针尖尖端,提高AFM成像的分辨率。已经实现可以进行针尖修饰的原子/分子包括H原子、卤素原子(Cl,Br)、惰性气体分子(Ar,Kr,Xe)及小分子如CO、NO、CH4等。 /p p style=" text-align: justify text-indent: 2em " 目前,对于表面吸附分子的结构识别和化学反应研究一般选择CO分子修饰的针尖。修饰步骤如下:首先将CO分子沉积在基底表面,将NC-AFM针尖置于CO分子上方,在针尖方向施加-2.8 V的恒定电压激发CO分子跳到针尖端,若重复扫描图像发现CO分子消失且分辨率得到极大地提高则认为CO分子已修饰到针尖尖端。尖端修饰的CO分子的偏转极大地提高了分子内部原子结构的AFM分辨率,但同时也带来了图像扭曲的问题(图5A)。惰性气体如Xe原子可以在金属基底、NaCl基底或分子自组装网格上吸附并修饰针尖,将针尖置于Xe原子上方,下压0.3 nm,继续扫描发现该处Xe原子消失,且图像分辨率显著提高, /p p style=" text-align: justify text-indent: 2em " 证明Xe原子被修饰在针尖尖端。对同一个分子的成像结果显示Xe针尖的分辨率低于CO针尖,但分子成像的扭曲程度比CO针尖小(图5B)。与CO修饰针尖相比,Xe针尖的一个优点是在STM成像实验中避免CO中O原子p波函数态对分子轨道成像的贡献。Kr针尖的制备方法类似Xe针尖,但稳定性比Xe针尖弱。卤素原子的提取方法与Xe原子类似,Cl原子通常来源于NaCl晶体,Br原子通常来源于从有机分子上断键后的游离Br原子。卤素原子修饰的针尖分辨率比CO针尖低,但是图像扭曲程度也较低,这主要是由于卤素原子的偏转效应比CO分子弱(图5(C, D))。Br原子虽然比Cl原子半径大,但成像分辨率相近。Br针尖的优势在于易于制备,并且可以对NaCl上的DBA单分子进行“pulling”模式的横向操纵,这对于其他修饰针尖来说是比较困难的。 /p p style=" text-align: justify text-indent: 2em " 除了以上提到的可与针尖尖端形成较弱成键的分子和原子外,利用O原子与Cu针尖形成CuO针尖,O原子的存在可减弱Cu针尖与样品之间的作用力,同时具有稳定的原子结构,减少针尖偏转对图像成像的影响。如图5(E, F)所示,利用O针尖获得的二蒄(DCLN)分子的AFM图显示分子外围的C原子呈现比分子内部C原子更亮的AFM衬度,这是由于分子外围C原子上具有更高的电荷密度以及与针尖具有更小的范德华吸引力导致,两种原因所占的比例约为30% : 70%。此外,CO针尖进入排斥力成像区域后具有严重的偏转效应,导致对化学键的成像有30%的放大,而O针尖所引起的成像放大效应几乎可以忽略。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/3234dc8f-eb23-4348-a559-cd7e82fa60e7.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " strong 图5 不同针尖修饰对成像的影响 /strong /p p style=" text-align: justify text-indent: 2em " strong 3.2 对低维纳米材料的研究 /strong /p p style=" text-align: justify text-indent: 2em " 低维材料是材料学科和物理化学研究中的重要研究方向,其中以石墨烯为代表的一维/二维材料的表面原位合成研究至关重要。对于表面低维材料的结构研究多以STM为主,但是对于石墨烯以及石墨烯纳米带(GNRs)这类具有较强电子离域性质的材料来说,STM图像呈现的是材料整体的电子态信息,难以直观地确定材料的原子结构、缺陷和边界结构等。NC-AFM 技术有效地解决了这些问题。由于石墨烯具有化学惰性,且尺寸较大不易被针尖操纵,所以可以直接用金属针尖对石墨烯进行NC-AFM成像。 /p p style=" text-align: justify text-indent: 2em " 图6(A,B)是分别用W针尖和CO针尖对Ir(111)基底上的石墨烯进行成像,可以识别长程的摩尔条纹(周期~2.5 nm)。活性金属针尖扫描时,石墨烯晶格呈现六方对称的点状,在该状态下降低针尖高度,图像会发生反转呈现蜂窝状晶格。而电学非活性的CO针尖扫描时,石墨烯在所有高度下只呈现蜂窝状晶格。对于GNRs、NC-AFM的成像能够提供更为精细的结构信息,图6C左下角是GNRs的STM图像,条带区域呈现均一的电子态。而相对应的利用CO针尖扫描获得的 AFM 图像中可以清晰的观测 GNRs的原子结构。该GNRs是由六排碳原子组成的具有锯齿型边界的纳米带,简称6-ZGNRs (6-zigzag graphene nanoribbons),边界C由H原子终止。对6- ZGNRs进行边界修饰可以得到图6D所示的原子结构,在 6-ZGNRs 的两个锯齿型边界上分别修饰了周期性的荧蒽基团,边界的C原子仍由H原子终止,而不以自由基形式存在。NC-AFM图像还可以分辨GNRs中的掺杂原子,如图6E所示,GNRs span style=" text-indent: 2em " 中衬度较暗的区域是对位的两个B原子掺杂(标记为红点),呈现与C原子差别较大的AFM衬度不仅是由于B原子的缺电子特性导致该位点的电子密度较低,更主要的原因是由于在该结构中B原子在高度上比C原子低30 pm53。此外,NC-AFM还可以研究其他类型的缺陷态,例如图6F所示的两GNRs交界处形成的非完美融合中的五七元环结构等。以上这些结构信息对研究GNRs的物理性质和边界态结构具有重要意义。除了石墨烯、石墨烯纳米带等导电材料,NC-AFM对于氧化物、氮化物等绝缘材料的结构研究也具有一定的优势。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/08f77a2e-f030-4be2-8c18-5fefb84c84d2.jpg" title=" 6.jpg" alt=" 6.jpg" / /span /p p style=" text-align: center " strong 图6 q Plus NC-AFM在低维纳米材料中的应用 /strong /p p style=" text-align: justify text-indent: 2em " 利用qPlus NC-AFM研究绝缘材料表面原子结构的工作,大多是基于金属单晶表面的超薄层样品,只有少数研究是基于严格意义上的体相绝缘体材料。从基本原理上分析,qPlus NC-AFM用于研究体相绝缘材料是可行的,但在实际应用中存在一定的困难。首先,体相绝缘材料与针尖之间具有电势差,由于qPlus针尖弹性常数大,工作振幅极小(& lt 100 pm),需要在较小的针尖-样品距离下才能得到成像,而在此状态下,针尖-样品间电势差引起的静电力无法估量;第二,针尖形状和尖端修饰的分子对AFM成像分辨率具有极大的影响,纯绝缘体表面很难对针尖进行原位处理或修饰。因此目前研究的体相绝缘体材料大多是平整度较高的晶体,例如NaCl等。如何克服以上难点将qPlus NC-AFM更广泛地应用于体相绝缘体材料对于一些催化体系的活性位点、燃料电池材料的工作机制的研究具有重要意义。 /p p style=" text-align: justify text-indent: 2em " strong 3.3 表面化学反应研究 /strong /p p style=" text-align: justify text-indent: 2em " 观测化学反应过程中分子和原子的重组对催化机理研究具有重要意义,也是表面物理化学研究中的巨大挑战。2013年,加州大学伯克利分校的Crommie和Fischer等利用NC-AFM首次观测了Ag(100)基底上oligo-(phenylene-1,2-ethynylenes)单分子的内部原子结构以及在该表面的单分子环化反应过程。反应物和产物分子的STM图无法直观解析分子结构(图7A-C),但相对应的NC-AFM图像(图7D-F)可以提供分子内部的原子排列的结构信息。除了分子中原子位置和共价化学键之外,反应物分子中两苯环之间的C≡C键也可以清晰地分辨,这是由于三键区域具有较高的电子密度导致。而分子外围AFM衬度的增强则是由与该处具有较小的范德华吸引力背景,离域π电子体系边缘处的电子密度增强和分子平面的扭曲等因素造成的。产物分子中可以清晰地分辨分子环化反应后形成的四元、五元、六元环以及分子边缘C原子连接的氢原子。通过AFM高分辨图像确定的原子结构证实反应物和多种产物具有同样的分子式,因此该表面环化反应是反应物分子的异构化过程。随后,他们用同样的方法研究了oligo-(E)-1,1′-bi(indenylidene)分子在Au(111)表面的环化和双自由基聚合反应和 1,2- bis(2- ethynyl phenyl) ethyne分子的二聚体偶联和环化过程(图7G-I),并通过反应中间产物确定了该反应的复杂路径,并提出该反应路径不仅决定于表面能量耗散,也取决于反应熵增加。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/1e218ed1-ae02-4059-addd-aad91a26105a.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center " strong 图7 q Plus NC-AFM在表面化学反应中的应用 /strong /p p style=" text-align: justify text-indent: 2em " 目前,NC-AFM技术被越来越多的应用到表面化学反应领域,在原子、分子的层次研究化学反应的机制。 /p p style=" text-align: justify text-indent: 2em " strong 3.4 三维成像技术 /strong /p p style=" text-align: justify text-indent: 2em " 由于qPlus NC-AFM成像的主要贡献来源于针尖与样品之间的短程泡利排斥力,因此针尖与样品间工作距离非常近,通常在1 nm以内,这导致qPlus NC-AFM的应用主要局限在平面分子或二维结构表面等起伏较小的材料样品体系。近年来,人们致力于发展qPlus NC-AFM在三维成像上的应用,并拓展了多种不同的方法。 /p p style=" text-align: justify text-indent: 2em " 2015年,德国雷根斯堡大学Albrecht团队利用CO针尖研究了非平面分子二菲并[9,10-b:9′,10′- d]噻吩(DPAT)的表面吸附和环化反应。DPAT分子的两个分支由于空间位阻的作用无法存在于同一平面内,当分子吸附在Cu(111)表面时,一个分支与表面平行,另一分支的两个苯环与表面分别形成10° 和23° 的夹角,如图8B左图。为了能够准确地表征与平面具有一定夹角的分子结构,将扫描平面进行一定的旋转,直至获得非平面区域清晰的原子结构图像。利用这一方法一方面可以有效地得到立体分子原子结构,另一方面可以根据旋转角度确认分子立体部分与平面部分之间的夹角。但对于夹角太大的立体分子不能单纯利用该方法确认分子内部夹角,因为针尖CO的偏转会对成像分析具有一定的影响。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/4f8a208b-efb0-4fd2-aa9c-f3c858367d6e.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " strong 图8 q Plus NC-AFM的三维成像 /strong /p p style=" text-align: justify text-indent: 2em " 对于表面催化或表面在位化学反应,分子在基底上的吸附位点和角度等对催化或反应活性具有重要的影响。由于高度的差异,通常AFM只能够分别分辨吸附分子或基底的原子结构,2015年,日本国家材料科学研究所Moreno团队提出了一种利用多通道AFM同时分辨分子结构和基底结构的方法。首先接通恒Δf反馈回路,对样品表面形貌进行一次AFM扫描(图8D,F),然后断开反馈回路,将针尖沿一次扫描的形貌路径进行二次扫描,但二次扫描需要在针尖上施加高度补偿将针尖置于更靠近样品的位置以保证获得清晰的原子分辨图像(图8E,G),他们利用这一方法同时获得基底锐钛矿(101)和其表面吸附的并五苯分子和C60分子的原子结构。这种方法有望被应用于非平面纳米结构的研究,例如纳米管、纳米颗粒、聚合物和生物分子等。 /p p style=" text-align: justify text-indent: 2em " strong 3.5 表面电荷分布的测量 /strong /p p style=" text-align: justify text-indent: 2em " 通过测量不同电荷状态下针尖与样品的接触势差,即KPFM中的局域功函数差,可以实现对表面分子或原子/离子电荷分布或带电性质的测量。2012年,Mohn团队采用qPlus-AFM的KP-FM成像模式,通过测量萘酞菁分子内部的局域功函数差,获得了分子内的电荷分布的亚分子分辨图像(图9A-C)。具体测量模式为将萘酞菁分子所在的区域分为64 × 64个像素点,在恒高模式下,在每个像素点处做Δf(V)谱(在保持针尖-样品间距离恒定下,频率偏移随针尖和样品间偏压变化曲线),得到分子内不同位点的局域接触势差。这对应于分子内不同位点的带电状态或电荷分布,这种方法可以实现对由于氢原子位置改变引起的分子内电荷分布的识别。通过利用CO分子修饰针尖,可以进一步提高分辨率。 /p p style=" text-align: justify text-indent: 2em " 2009年,Gross团队通过针尖施加电压脉冲,让吸附在NaCl薄层上的金属Au和Ag原子分别得到和失去一个电子,得到Au-和Ag+离子。通过比较在中性原子和带电离子上获得的Δf(V)谱,发现中性原子与带电离子的局域功函数差有约30 mV,且正离子和负离子具有相反的局域功函数差,实现了原子不同带电状态的识别和测量。通过针尖操控,可以实现Au sup - /sup 离子、Au原子和Au sup + /sup 离子的三态电荷调控(图9(D, E))。对于TTF-PYZ2这类自身带有电子给体和受体的双极性分子,利用局域功函数差的测量可以判定分子内电荷转移方向(图9(F-H))。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/685f29b1-7ffe-4236-adcf-e38f614dbfeb.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center " strong 图9 表面电荷分布测量 /strong /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 4 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " 总结 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " 应用qPlus传感器的NC-AFM使得扫描探针技术在空间分辨率上得到了提升,自从2009年Gross团队首次利用NC-AFM技术得到单分子内部原子结构成像后,该技术进一步应用在化学键键级、分子间氢键、卤键、表面纳米结构的研究中,通过3D NC-AFM技术还可以获得非平面分子的内部结构以及同时获得吸附分子和吸附基底的原子结构。NC-AFM技术对于研究表面原位化学反应、表面催化、低维材料等具有极大的优势。根据NC-AFM技术发展的谱学测量可以根据针尖与不同原子之间作用力的差异,实现对样品表面的原子操纵、元素识别、电荷分布测量等,对表面异质结和界面研究具有重要意义。 /p p style=" text-align: justify text-indent: 2em " 尽管基于qPlus传感器的NC-AFM技术已经获得了相当的发展,但在技术以及应用体系上仍面临以下问题和局限:为了保证图片的信噪比和分辨率,扫描速度相对较慢,由此连带产生热漂移问题,热漂移等问题的存在使仪器需要在液氦温度下工作,成本较高,虽然目前在液氮和室温也得到了分子内部结构的图像,但分辨率与液氦温度下的图像相差甚远;由于STM和NC-AFM电极都集成在qPlus传感器上,工作时电流信号会对力信号产生串扰,与此同时电流的存在会在针尖和样品之间引入静电势,影响力信号的测量;对于力谱测量,针尖形状对针尖-样品间作用力影响极大,如何合理地扣除背景力,保留化学成键力成分,建立一套有效的力谱测量和分析标准也是亟待解决的重要问题。此外,对于qPlus NC-AFM的成像机制,尤其是考虑CO针尖偏转效应的前提下,仍具有一定的争议,需要更多的实验探索和发展相应的理论进行分析。 /p p style=" text-align: justify text-indent: 2em " 为解决这些问题,科学家们致力于开发更高频的力传感器,优化传感器电路,发展详尽的NC-AFM力谱测量的理论和成像模拟理论,联合NC-AFM与其它技术(如STM、光谱等),在提高空间分辨率的同时进一步提高时间分辨率。NC-AFM的快速发展为物理、化学、材料等研究领域带来了众多突破性的进展。目前,NC-AFM已能够达到亚原子级分辨率,这对在分子/原子尺度研究催化反应机理、化学成键机制等具有绝对优势,可以应用在分子筛、金属纳米颗粒、金属氧化物表面等催化体系的基础研究。 /p p style=" text-align: justify text-indent: 2em " 在未来发展中,NC-AFM与其它表面分析技术的联用将进一步拓宽其研究领域,例如,NC-AFM与STM模式的联用可以研究样品不同的结构和物理化学特性,是全面而深入地研究原子尺度接触问题不可或缺的工具;NC-AFM与光谱技术联用可以研究分子或材料内部原子结构与能带结构关系、光催化或反应过程的基元步骤;基于NC-AFM技术的KPFM也已经成为一种具有高空间分辨和能量分辨的表征手段,可以在表面构造功能纳米结构,并研究分子内电荷分布、电荷传输路径和化学反应活性等问题,为材料、物理、化学和生命科学研究提供了新的思路。 /p p br/ /p p strong 本文来自: /strong 刘梦溪,李世超,查泽奇,裘晓辉.qPlus型非接触原子力显微技术进展及前沿应用[J].物理化学学报,2017,33(01):183-197. /p
  • Mirrorcle MEMS扫描镜技术概述(1)
    Mirrorcle MEMS扫描镜技术概述(1)高速的点到点以及倾斜性能 大多数的Mirrorcle MEMS Mirror设备类型都是为点对点光束扫描而设计和优化的。稳态模拟驱动电压会产生MEMS镜像的稳态模拟转角。该设备有一个一对一的对应的驱动电压和角度:它是高度可重复的,没有检测到随时间而发生变化。这在很大程度上是由于静电驱动方法和单晶硅材料的选择。镜面运行机构开环驱动的机械倾斜位置精度在每轴上至少14位(16384点)。对于大多数设备,每个轴上的机械倾斜范围为-5°到+5°,这种倾斜分辨率在0.6毫米或10微弧度内。一系列的驱动电压对应点对点扫描的一系列角度。Mirrorcle技术公司(MTI)的设备可以在非常宽的带宽内工作,从直流(它们在恒定电压下保持位置,设备功耗几乎为零)到几千赫兹。这种快速和宽带能力允许几乎任意的波形,如矢量图形,匀速线扫描,点对点步进扫描,目标跟踪等。图1 Mirrorcle专利的无框架两轴扫描驱动器的示例示意图(该驱动器基于四个静电双向旋转器,通过特殊的硅支架连接)多个授予的专利描述了专有的无平衡环设计方法和独特的专有多级光束制造方法,用于从单晶硅单片创建一个完整的驱动器。无框架设计的一个主要优点是能够在两个轴上以相同的速度控制光束或图像。一个具有0.8 mm直径镜的典型装置的倾斜角从-6°到+6°,非谐振光束转向超过1000 rad/s,在两个轴上的第yi谐振频率都在3.6 kHz以上。当开环驱动专用输入整形滤波器时,c) 第三种模式为共振模式。在这种情况下,两个轴都利用窄的高增益共振来获得大的偏转角和相对低的电压。运动被限制在窄带宽的正弦轨迹中,其相位滞后于外加电压。由于谐振模式可以在蕞高增益点的几个百分点以内获得,因此没有必要在准确的谐振峰值处驱动装置。由此产生的二维运动描述了圆、椭圆和各种高阶李萨如模式,并且可以以某种速率调制。当设计为点对点模式的器件在共振附近或共振处被驱动时,它们可能会超过安全工作角度。因此,在共振附近或共振处进行操作时,电压要明显降低,而且要格外小心。图2.使用Mirrorcle MEMS镜的三种例子((a)点对点扫描模式(准静态)两轴上激光在每个角度都停下,然后走到下一个角度,(b)共振扫描模式在x轴上(正弦运动光束)和准静态轴,(c)两轴共振扫描模式,为二维共振李萨如模式。所有的图像都是用连续波激光使用同一个Mirrorcle MEMS镜拍摄的)模块化设计MIRRORCLE驱动器有固定的模块化设计方法。每个运行机构都可以使用任意长度的静电转子、任意刚性连杆和任意位置的机械旋转变压器。此外,该装置由较多种镜面直径。无二维框架设计的概念示意图如图1所示。由于这种模块化,设备很容易根据特定的应用程序需求进行定制。根据硅模具的可用面积/尺寸(在一些应用中,如生物医学成像的尺寸受成像设备规格的限制),可以设计适当尺寸的驱动器,在允许的参数空间内获得蕞大的性能。由于这种设计的灵活性和广泛的应用需要波束转向,具有广泛不同的规格,MIRRORCLE提供多种类型的无框架两轴执行器设计。拥有超过20代主要的设计和制造产品,多个子代的设计调整为特定的客户或一套规格,完整的工作设计清单有超过100种设备类型。这些设备类型中的大多数在研发数量上都是可用的,为我们的客户提供了快速找到应用程序开发的蕞佳参数。设备运行速度与镜片大小的关系由于惯性增加,镜片直径较大的设备速度也相应较慢。圆形镜片的惯量与半径的四次方成正比,因此,随着反射镜尺寸的增加,速度会再次降低。这是一个非常粗略的估计,但许多其他参数影响实际性能,特别是模具尺寸和角度摆动。例如,将直径0.8mm的集成镜片与直径2.0mm的集成镜片进行比较,两者都具有相同的硅模具尺寸,并且都具有非常相似的机械端面/倾斜角(-5°到+5°)。0.8mm器件的第yi共振频率为~6kHz,而2.0mm器件的第yi共振频率为~1.3kHz。图3.两个器件的电压与角度(静态响应)和小信号(频率)响应图(上面为集成0.8mm镜的A7M8.1设备,以下为集成2.0mm镜的A7M20.1设备)蕞优的驱动器尺寸MIRRORCLE已经设计和制造了超过100种不同的设备类型。对关键性能规格有很大影响的一个非常重要的设计参数是驱动器(硅芯片)的尺寸。更大的驱动器可以提供更高的力和扭矩,以更快的速度驱动更大的镜子,但也需要更多的生产成本和更大的包装。小的驱动器适合小尺寸的镜子,因为驱动器本身也有较小的惯性。目前设计分为3种尺寸:1) 4.23mm x 4.23mm 2) 5.20mm x 5.20mm3) 7.25mm x 7.25mm重要的是查看每个特定的设计,以确定与特定应用程序的适配。一般来说,直径等于或大于3mm的镜子,应与尺寸#2或#3一起使用,以获得蕞佳性能,而直径等于或小于2.0mm的镜子应与尺寸#1或#2一起使用。关于昊量光电昊量光电 您的光电超市!昊量光电作为Mirrorcle在中国区的总代理,可给客户提供更全的产品、更低的价格、更短的货期以及优良的服务。上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 专家约稿|压电力显微术的基本技术原理与使用注意事项
    原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1. 压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜 ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2. PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。 图1 压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3. PFM的测量模式图2 压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonance PFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM 信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonance PFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得 PFM 压电响应信号比常规FPM测量的响应信号幅值放大了 Q 倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。 4. PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3 BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用Vector PFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线的获取需要施加大于±10V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4 SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线。 图5 二维异质材料MoS2/WS2的材料特性曲线[2]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6 Si掺杂HfO2样品的回字形写畴区域[3]5. 注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在 PFM 测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1] HERMES I M, STOMP R. Stabilizing the piezoresponse for accurate and crosstalk-free ferroelectric domain characterization via dual frequency resonance tracking, F, 2020 [C].[2] LV JIN W. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science (New York, NY), 2022, 376: 973-8.[3] MARTIN D, MüLLER J, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric [J]. Adv Mater, 2014, 26(48): 8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。
  • 喜讯 | 春来科技荣获中国计量科学研究院首批计量器具计量评价(NIM-CS)证书
    权 威 认 证近日,杭州春来科技有限公司(以下简称"春来科技")获得中国计量科学研究院(中国OIML证书发证机构)颁发的首批计量评价(NIM-CS)证书(证书编号:NIMCS-202146C08001烟气分析仪类1号证书)。标志着春来科技的FT-3000型烟气分析仪计量溯源性和测试技术能力直接对标国家最高计量科学研究机构,具备持续提供准确、可靠和稳定的烟气测量技术能力。计量评价证书烟气分析仪计量评价本次烟气分析仪计量评价依据国家计量技术规范JJF1362-2012《烟气分析仪型式评价大纲》开展,通过对仪器示值误差、重复性、响应时间、稳定性、绝缘电阻、绝缘强度、电源电压适应性、高低温试验、恒定湿热试验、高低温贮存试验、碰撞试验、跌落试验等参数开展全方位计量测试评价,最终得到评价结果。结果显示,春来科技的FT-3000型烟气分析仪各指标均符合计量评价实施规则(NIMCS-46C08:2021)的要求,体现了国家最高计量技术机构对春来科技的烟气分析仪测量能力的充分认可。NIM-CS是企业有力的“信用证”和“通信证”中国计量科学研究院是国家最高计量科学研究机构和国家级法定计量技术机构,也是目前国内唯一获国际法制计量组织(OIML)批准的OIML-CS(OIML CERTIFICATTION SYSTEM)证书制度发证机构。中国计量科学研究院依托OIML-CS质量框架体系,面向先进测量领域提供科学权威、高效优质的计量评价服务,为获证单位传递品牌价值和质量信任。2021年,计量器具计量评价证书体系(NIM-CS)工作将在国内各行业全面展开,对高端测量仪器、测量设备、测量装置和测量系统等进行全方位多参数系统性权威性计量测试评价,为计量器具和仪器仪表生产企业提供内部质量控制的“体检证”、外部品牌提升和市场推广的“信用证”和“通行证”,不断提升计量器具供给体系对客户使用需求的适配性,畅通国内计量器具生产消费大循环。助力行业发展引领质量成长春来科技是一家技术底蕴深厚的环境监测一站式解决方案服务商,从创业之初,就把创新研发作为公司核心竞争力写进企业成长基因里。与时代同频,坚持自主研发,深耕科技创新。目前公司已拥有5大研发中心,研发人员总数达300人,硕博占比高达20%,建立了完善的产品研发体系。多年来,春来科技牢记“创新传感检测技术,聚焦环境监测、过程及实验室分析”的企业使命,持续推出高性能的环境监测仪器,始终走在行业的前列。本次获得中国计量科学研究院颁发的计量评价(NIM-CS)证书,肯定了春来科技在研发体系维护、测量技术、检测能力提升等方面的努力,也代表了春来科技不断践行助力行业发展、引领质量成长的使命。
  • 文献解读丨通过M–N键长和配位调节提高质子交换膜燃料电池非贵金属M–N–C催化剂的稳定性
    质子交换膜燃料电池(PEMFC)被认为是一种有前途的可持续电化学能量转换装置,尤其是在交通应用中。目前,只有铂族金属(PGM)才能有效催化阴极上动力学缓慢的氧还原反应(ORR),但其高昂的成本和Pt的稀缺严重阻碍了PEMFC的大规模应用。因此,开发不含PGM的催化剂来部分或完全取代PGM催化剂是非常可取的。具有M-Nx/C活性位点的金属-氮-碳(M-N-C,M=Fe、Co、Mn等)催化剂,特别是Fe-N-C催化剂,在半电池和PEMFC测试中都表现出出色的初始ORR活性,可与商业Pt/C催化剂相媲美。然而,在M-N-C催化剂能够实际应用于PEMFC之前,必须克服许多艰巨的障碍,其中稳定性是最严峻的挑战。总的来说,由于对膜电极组件(MEA)的降解机制和复杂的多场(质/电/热)耦合环境了解不足,提供有效的解决方案来提高PEMFC中M-N-C催化剂的稳定性仍然极具挑战性。因此,开发具有显著增强稳定性的高性能M-N-C催化剂对于PEMFC的商业应用来说十分紧迫。方法与结果PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂的制备流程如图1所示。最简单的不饱和一元羧酸丙烯酸(AA)作为单体聚合成PAA,并与Fe3+螯合形成交联水凝胶。马来酸(MA)是一种二羧酸单体,用于与AA共聚合,以增加共聚物P(AA-MA)的羧酸含量。通过在共聚过程中调节AA/MA的摩尔比(5/1,3/1,1/1),可以轻易地调控共聚物中羧基的浓度和相应的与金属离子的结合常数。通过亲水性羧基和金属离子之间的螯合作用形成的交联水凝胶,可以通过随后在800°C下用氮前体进行高温处理,使所得的M–Nx/C位点原子分布在分级3D结构中。所得催化剂分别表示为PAA-Fe-N和P(AA-MA)-Fe-N。MA-Fe-N催化剂也被合成作为对照样品。图1 PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂制备示意图为了分析催化剂表面上C和N的价态,使用岛津的X射线光电子能谱仪(XPS)对其进行了分析表征。高分辨率C1s光谱中C-N键的形成表明N已经成功地掺杂在C骨架中。与PAA-Fe-N相比,P(AA-MA)(5-1)-Fe-N样品C-N键的位置发生了正向的位移,表明P(AA-MA)(5-1)-Fe-N样品具有更强的Fe-N相互作用。高分辨率N1s光谱表明,P(AA-MA)(5-1)-Fe-N样品具有比PAA-Fe-N更高的表面N含量(8.99 at%)和吡啶N/石墨N比例。P(AA-MA)(5-1)-Fe-N样品的表面Fe含量是PAA-Fe-N的3.5倍(0.44 vs 0.13 at%),ICP-MS分析也证实了这一趋势。可以推断,在引入MA后,P(AA-MA)(5-1)-Fe-N具有更高的Fe–Nx/C活性位点密度。57Fe Mö ssbauer(穆斯堡尔谱仪)被用来进一步探究样品中的Fe–N结构(图2c)。结果表明,具有可观QS值的D3位点(≈15%)说明PAA-Fe-N拥有比P(AA-MA)(5-1)-Fe-N更短的Fe-N键。采用X射线吸收光谱法(XAS)检测了样品的局部Fe-N配位结构。测量了P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的X射线近边结构(XANES)的Fe K边。结果表明,P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂中的Fe都可以实现原子级分散,并且单个Fe原子与N(O)元素配位,而不是以Fe-Fe键的形式存在。P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的Fe-N(O)键的平均键长分别为2.035 and 2.006 &angst ,与57Fe Mö ssbauer(穆斯堡尔谱仪)结果一致。根据文献,PAA-Fe-N样品中可能存在一些Fe-N2或Fe-N3物种(尽管Fe-N的拟合配位数仍然接近4),导致Fe-N(O)键长减少。相反,P(AA-MA)(5-1)-Fe-N中Fe-N位点的配位结构应以Fe-N4为主。图2 高分辨率C1s(a)和N1s(b)XPS光谱;以及(c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N样品的室温57Fe Mö ssbauer图谱;(d)P(AA-MA)(5-1)-Fe-N、PAA-Fe-N和Fe箔样品的k3加权FT-EXAFS光谱电化学测试表明(图3a-3c),与PAA-Fe-N以及其他催化剂相比,P(AA-MA)(5-1)-Fe-N具有更好的性能和稳定性。将Fe置换为Co或者Mn等金属后,该催化剂依然具有良好的性能,证实该策略具有有效性和普适性。通过物理和结构研究了催化剂在60℃下半电池性能退化的详细机制。AST测试后的催化剂的XRD图谱和TEM图像表明测试后具有与初始时相似的衍射峰和片状结构。图3e和3f为测试前后相应的FTEXAFS光谱。对于P(AA-MA)(5-1)-Fe-N,AST测试后没有明显的Fe-Fe键形成,证实了Fe-N键的稳定性以及随后催化剂Fe去金属化的耐受性。相反,循环5000次后,PAA-Fe-N中Fe-Fe键急剧增加。该结果明确确定,在60℃的稳定性测试过程中,PAA-Fe-N催化剂中确实发生了Fe-Nx/C位点的去金属化,并且部分分离的Fe原子可能迁移并形成微量的Fe2O3团簇,这些团簇在XRD中无法识别。利用岛津的X射线光电子能谱仪(XPS),证实在AST测试后,PAA-Fe-N中的表面Fe含量从0.13%增加到8.48%,而P(AA-MA)(5-1)-Fe-N表面Fe含量明显更少(从0.44%到2.89%)。更糟糕的是,Fe-Nx/C位点的破坏会促进Fenton反应的进行,进一步加速临近Fe-N的分解,结果与之前报道的电子能量损失谱(EELS)结果一致。请注意,其他降解机制,如碳腐蚀,可能同时发生在PAA-Fe-N上,因为AST后C含量从83.62%显著降低到58.07%。图3 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在25°C(a)和60°C(b)的O2饱和0.5 m H2SO4溶液中进行5000循环AST前后的ORR极化曲线,催化剂负载量:0.6 mg非PGM cm&minus 2,圆盘转速:900 rpm。c)先前报道的M–N–C催化剂在O2饱和0.5 M H2SO4中从0.6–1.0 V的AST的不同循环次数后的E1/2损失。d)P(AA-MA)-Co-N和PAA-Co-N催化剂在AST前后的ORR极化曲线。e、 f)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N(AST前后)、Fe箔和Fe2O3样品的k3加权FT-EXAFS光谱。燃料电池性能测试(图4)结果表明,P(AA-MA)(5-1)-Fe-N催化剂表现出极高的活性和稳定性,在0.55 V下电流密度37 h几乎保持不变。图4 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在H2–O2(a)和H2–空气(b)条件下的燃料电池性能,阴极负载:3.0 mg cm&minus 2;c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在PEMFC中0.55 V恒定电压下的稳定性测试期间的电流密度保持率;d)在H2–空气燃料电池中测试的各种M–N–C催化剂前20小时的电流密度保持率密度泛函理论(DFT)计算被用于进一步探究催化剂稳定性差异巨大的根源。研究了铁原子在载体上的吸附能(Ead)和Ead与整体粘性能量(Ecoh)之间的差异。计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差异。图5 a)吸附能(Ead)和b)在没有(红色)和(蓝色)溶剂化校正的情况下计算的Fe–Nx/C系统的吸附能和内聚能(Ecoh)之间的差(负值越大意味着载体中嵌入的Fe原子对金属浸出或聚集更稳定);c)Fe–N2/C、d)Fe–N3/C和e)Fe–N4/C的结构和差分电荷密度等值面(青色和黄色等值面对应于&minus 0.02和+0.02 e&angst 的电荷密度轮廓。棕色、灰色、浅灰色和白色小球分别代表Fe、C、N和H原子)总之,通过调节金属离子和催化剂前体中聚合物之间的相互作用,开发了一种提高M-N-C催化剂稳定性的通用有效策略,从而可以微调M-N键长和最终催化剂中的配位。57Fe Mö ssbauer光谱和XAS证明,与具有15%低配位Fe-N2/N3部分的PAA-Fe-N相比,具有独有的Fe-N4/C位点和更长的Fe-N键的共聚P(AA-MA)(5-1)-Fe-N催化剂性能明显更好。性能最好的P(AA-MA)(5-1)-Fe-N催化剂在半电池和H2—空气燃料电池中都表现出极高的活性和稳定性,在AST 60℃后E1/2损失仅为6 mV,在0.55 V下电流密度37 h几乎保持不变,是迄今为止报道的同类催化剂中整体性能最好的。DFT计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差,这说明了其优异的结构稳定性和对脱金属的耐受性的原因。文献题目《lmproving the Stability of Non-Noble-Metal M-N-C Catalysts for Proton-Exchange-Membrane Fuel Cellsthrough M-N Bond Length and Coordination Regulation》使用仪器岛津X射线光电子能谱仪(XPS)作者苗正培等 华中科技大学Zhengpei Miao, Xiaoming Wang, Zhonglong Zhao, Wenbin Zuo, Shaoqing Chen,Zhigiang Li, Yanghua He, Jiashun Liang, Feng Ma, HsingLin Wang Gang Lu,Yunhui Huang, Gang Wu, and Oing Li
  • 赛多利斯2017上半年持续增长,亚太地区表现优异
    p   2017上半年财报:赛多利斯持续增长 /p p   销售额和利润均实现两位数增长 /p p   实验室产品和服务业务通过有机增长及收购实现了快速发展 /p p   生物工艺部门在预期的正常化市场环境中稳步增长 /p p   2017年全年预期确认。 /p p   2017年7月21日,赛多利斯集团公布其2017年上半年财报,稳固的业务发展以及两次收购使其销售收入明显增长。 /p p   首席执行官兼执行董事会主席Joachim Kreuzburg博士在评论该公司上半年表现时说:“赛多利斯继续保持了高速的、盈利的发展。尤其具,两个业务部门在北美具有挑战性的环境中实现了稳定的有机增长,并且在收购的业务整合方面取得了快速进展。在实验室产品和服务业务中,我们通过收购所新创建的生物分析部门已经有了明显的收入和收益。生物工艺业务通过收购进入了生物过程数据分析领域,我们看到了这一业务进一步的增长潜力。下半年,预计北美市场环境将有所改善,因此我们确认了两个部门及本集团的销售和盈利预测。& quot /p p    strong span style=" color: rgb(0, 112, 192) " 赛多利斯集团业务发展 /span /strong /p p   2017年上半年,销售收入从6.254亿欧元增长到7.041亿欧元,上涨了11.5%(报告:12.6%)。其中亚太地区涨幅最大,销售额增长34.8%,至1.722亿欧元。在EMEA和美洲地区,在收入基数高于上年同期的情况下,赛多利斯的销售额分别增长了5.9%,达到3.029亿欧元 以及增长了4.8%,达到2.29亿欧元,(所有地区的增长均以恒定汇率计算)。报告期的收益相对于销售额再次超额增长。因此,EBITDA从1.534亿欧元增加到1.47亿欧元,增长13.8%。相应的,相对于去年同期的24.5%,保证金达到24.8%。集团净利润由6,240万欧元增长13.6%,至7,090万欧元。 /p p   这相当于每股普通股1.03欧元(2016年上半年:0.91欧元)和每股优先股1.04欧元(2016年上半年:0.92欧元)。即使在2017年3月最新收购Essen BioScience以及2017年4月的Umetrics之后,集团的主要财务指标仍然保持强劲。 报告期末,公司股权比例为32.6%,净债务与潜在EBITDA的比例为2.7(2016年12月31日:分别为42.0%和1.5)。上半年资本开支率在预期范围内,为12.9%。投资活动的重点是扩大位于波多黎各Yauco制造一次性袋子和过滤器的工厂,以及德国戈廷根集团总部的组合和扩建。截至2017年6月30日的报告日,Sartorius共雇用了7,364名员工,比2016年12月31日多453人(约增长7%)。 /p p    strong span style=" color: rgb(0, 112, 192) " 各部门业务发展 /span /strong /p p   正如预期,生物工艺业务的市场在两年的强劲扩张之后,在2015年和2016年之后增长呈正常化。生物工艺部门的业务以制药生产中一次性使用设备为主,尽管上一年的可比基数较高,以恒定汇率计算,其销售收入达5.190亿欧元(报告值:+ 8.8%)。其中,美洲的发展受到了客户需求相对疲软和细胞培养基运输能力有限的影响,而亚洲的业务则明显增长,主要是由于项目都相对较大。2016年7月收购的kSep以及2017年4月份收购的Umetrics对增长贡献了近一个百分点。生物工艺部门的EBITDA的涨幅度超过了10.0%,至1.480亿欧元。相应的,该部门利润率为27.6%,而上年同期为27.3%。其中也有其收购细胞分析专家Essen BioScience的原因。 其销售额则上升了22.1%(报道24.1%),至1.93亿欧元。而有机增长约为7%,收购为约占该部门贡献15%的收入增长。 /p p   实验室产品与服务业务收入增长33.1%,其基础EBITDA从2530万欧元大幅增加至3370万欧元。其相应利润率为17.5%,上年同期为16.3%。 /p p    strong span style=" color: rgb(0, 112, 192) " 全年预期确认 /span /strong /p p   根据公司上半年的业绩,管理层确认了四月初作出的全年上涨的预测。因此,管理层预计,全年集团销售收入将增长约12%至16%,潜在EBITDA利润率将比上年同期增长25.0%,略高于上年同期半个百分点。本财政年度的资本支出比率预计将维持在12%至15%左右。 /p p   关于两个部门,管理层预计,生物工艺业务的销售额将增长约9%至13%,其中包括公司所收购的kSep和Umetrics所提供的一个百分点的有机增长。关于细胞培养基的运输能力,管理层认为这一情况将在今年第三季度正常化。该部门的潜在EBITDA利润率预计将比上年的28.0%上升约半个百分点。 /p p   对于实验室产品与服务部门,集团管理层预测,如经济环境整体稳定,其销售额将增长约20%至24%。这个收入包括公司所收购的IntelliCyt,ViroCyt和Essen BioScience等公司带来的约为17个百分点的非有机增长。该部门的潜在EBITDA利润率预计将比上年的16.0%上升近两个百分点。 /p p   所有预测均以恒定货币计算。 /p p br/ /p
  • 航煤润滑性测试不过关有多危险?
    4月6日,空客和中国航空业达成多个协议:批量采购160架空客飞机、提升可持续航空燃料产量及使用等。空客预计我国航空市场将以年均5.3%的速度保持增长,对于航空燃料的产量需求也将随之上升。[1] (来源:《财经》空客企业供图)01 什么是航煤?先来了解一个概念,什么是航煤?目前,世界各航空公司所使用的航空燃料主要有两大类:航空汽油和喷气燃料,分别适用不同类型的飞机发动机。航空汽油用在活塞式航空发动机的燃料,喷气燃料用于涡轮喷气发动机。但由于国内外普遍生产和广泛使用的喷气燃料多属于煤油型,通常称之为航空煤油,简称航煤。02 为什么要检测喷气燃料的润滑性?国际航空协会明确要求,需要对于喷气燃料的润滑性进行检测,那么为什么要检测?喷气燃料的润滑性也称为抗磨性,抗磨性的好坏对发动机燃油供应的灵敏调节、油泵使用寿命乃至飞行安全均极为重要。飞机发动机燃料供给系统部件和燃料控制单元的运动部件依靠喷气燃料自身来润滑,其中对燃料润滑性最敏感的是柱塞泵,柱塞与斜盘运转于高负荷和高温条件,燃料系统设计和材料差别将会导致设备对燃料润滑性灵敏度各有区别,实际使用中因喷气燃料润滑性而导致的问题其轻重程度不同。喷气燃料润滑性差会造成油泵分油活门磨损和深度划伤,引起燃料输油压力间歇上升,可能造成离心式油泵调节器的针阀球面和球座磨损,轻者发动机转速降低,稍微严重则机型故障,最严重的是发动机空中停车。 03 世界各国喷气燃料润滑性测试标准实验方法航空涡轮发动机燃料的润滑性问题由来已久,世界各国都对该燃料的润滑性进行了研究,制定了相应的评价方法和试验仪器,并经过不断修正和完善,*在燃料质量规范中明确了润滑性指标要求和标准试验方法。西方普遍采用球柱润滑评定试验法ASTM D5001考察喷气燃料的润滑性,要求磨斑直径小于0.85 mm;国内目前等效采用 SH/T 0687,并要求民用磨斑直径不大于 0.85 mm,军用磨斑直径不大于 0.65 mm。04 国际互认的喷气燃料润滑性评价方法国际航运协会标准采用:ASTM D5001《球柱润滑性评定仪测定航空涡轮燃料润滑性的标准试验方法 ( Ball on Cylinder Lubricity Evaluator,简称 BOCLE法)》(简称球柱法)评定燃料的润滑性。球柱润滑评定试验法 该方法是将不能转动的钢球固定在垂直安装的卡盘中并浸入待测油样,钢环柱体以一定的转速旋转,与钢球之间产生摩擦,测量磨斑直径WSD值来表示喷气燃料的润滑性。 ABS-SL型球柱润滑性评定仪试验钢球为ANSI标准钢号E-52100铬合金钢(洛氏硬度HRC为64~66),试验环为SAE 8720钢(HRC为58~62)。试验方法选用ASTM D5001《球柱润滑性评定仪测定航空涡轮燃料润滑性的标准试验方法(BOCLE)法》,摩擦上试件为钢球,下试件为圆环,在1000g压力载荷下,钢球固定,圆环以(240±1)r/min速度转动,圆环下部位完全浸没于(25±1)℃的(50±1.0)mL试验油样中,试验前对油样预处理15 min (0.5 L/min 和3.3L/min 的流速空气分别从油样的底部和上表面通入),相对湿度为(10±0.2)%的空气以流速3.8 L/min 流过油样上表面,试验时间为(30±0.1)min,具体试验条件如下:(点击查看大图)试验结束后在显微镜下测量钢球的磨斑直径,即WSD值(单位为mm)。如下图所示:(点击查看大图)05 德国PILODIST航煤润滑性测试仪 BOCLE D5001航煤润滑性测试仪BOCLE D5001是一款全自动仪器,测试航空煤油的润滑性能,完全按照ASTM D5001标准,采用球柱润滑性评定仪法进行设计。全自动的测试过程不需要任何操作者的干预,只需要将测试球及测试环放置在指定位置,并按下开始按钮就可以进行测试。无需其它额外工具。磨痕是通过旋转的测试环摩擦固定的测试球产生的。一部分的测试环浸入在涡轮油槽中(50毫升),并填满涡轮燃料。油槽的温度,测试流体上面的循环空气的相对湿度(一般保持在10%),以及空气流量均可控。测试球在实验期间的30分钟内用一个恒定的重量(1000±1g)压住。同时试验环以240±1RPM/min的固定速度旋转。实验结束后,用显微镜观测产生的磨损痕的长轴和短轴。磨损痕迹决定了航空涡轮燃料的润滑性。仪器优势1 PILODIST BOCLE D5001不需要安装环和球的工具!!!2 PILODIST BOCLE D5001配备了独特的负载臂定位系统,其结构中有精确的千分尺,只需操作员转动旋钮,环的位置就会改变。不再需要安装不同尺寸的垫片来定位环!3 利用聚光显微镜和数字自动对焦相机进行WSD计算。操作员通过专用软件在显示屏上测量长轴和短轴。数码相机通过标准可追溯厚度标准样品进行校准。无需测微计,无需每年重新认证!06 关于德国PILODIST德国PILODIST公司源自于全球知名的蒸馏及精馏设备供应商。公司传承原Fischer公司专业的蒸馏及精馏设备制造技术,为全球石油化工、精细化工行业及科研院所客户提供高品质的原油蒸馏系统、精馏系统、溶剂回收系统、汽液相平衡和分子蒸馏等。如果您对上述提到的产品或检测方法感兴趣,欢迎随时拨打热线400-006-9696咨询德祥科技。参考:[1] 凤凰网资讯《拿下160架飞机订单,空客CEO谈扩产线、中国市场和中国产大飞机》
  • 抽丝剥茧探案三:难以捉摸的保留时间漂移
    小伙伴们大家好,前面我们分别对鬼峰和肩峰离奇事件进行了分析,找出了根源。最近接到实验室小jie姐报案称实验过程保留时间有规律的漂移,小伙伴描述的着实诡异,跟本探长继续来探案吧,揭开谜底。先来看看备案笔录:User:老师,发现主峰每一针都向后移动半分钟。Engineer:只有保留时间移动?峰型和柱效有变化吗?User:没有,用了一个星期,峰已经从5分钟漂到10分钟了。Engineer:手动混匀走单泵还是双泵用的混合器走样?User:单泵… … 案情陈述客户做某单糖衍生成盐的物质A,色谱条件:色谱柱:氨基柱,4.6×250mm,5μm。柱温:35℃;流动相A:乙腈,流动相B:硫酸缓冲溶液(取磷酸氢二钾7.0g,用2000mL水溶解,加氨水0.5mL,用磷酸调节pH至7.5);流动相比例:流动相A:流动相B=75:25;流速:1.5mL/min;紫外检测波长:195nm;进样体积:20μL。样品由1:1乙腈水溶解制得。案情细节披露客户小jie姐在实验过程中发现在一个序列中保留时间有规律的后延,客户讲述峰形没有太大变化,峰面积RSD也还好,换过不同的实验人员多次重新配置了流动相,均存在这个问题,色谱图如下:漂移色谱图漂移重叠的色谱图这里要特别指出,用户小jie姐用的色谱柱和色谱仪不是月旭品牌的,仅仅是基于用户小jie姐对我们月旭工程师的信任,向我们的销售工程师寻求指导帮助,我们都是做好事不留名的月旭人。案情分析我们先来罗列一些导致保留时间漂移的原因,再结合用户的色谱图来分析一下。导致保留时间漂移的可能原因及解决办法:1、色谱柱原因:1)柱子没有达到平衡解决办法:延长平衡时间。2)色谱柱污染或键合相流失解决办法:更换新柱。2、仪器原因:1)柱温箱温度变化解决办法:保持室温恒定,柱温设定正确且恒定。2)仪器原因导致的流动相比例变化,如混合器,比例阀出现故障。解决办法:排查仪器流速恒定,检查比例阀及混合器是否正常。3、流动相配置原因解决办法:重新配置流动相,确保配置比例准确,对于易挥发的正相体系可使用安全瓶盖防止挥发;在使用缓冲盐的体系保证缓冲盐没有沉淀或析出,pH恒定。 4、系统漏液解决办法:排查系统的各接口处是否漏液,观察压力波动情况以及压力线。如有漏液应重新连接管路拧紧。 5、样品自身原因,如样品降解,保留时间发生变化解决办法:研究更利于样品稳定的流动相及溶剂体系。根据用户的情况给出建议1、重配流动相2、排查仪器3、排查柱子如此有规律的变化,考虑仪器的原因比较大。我们依据用户的陈述来判断一下:首先用户说柱温箱温度设定没问题而且温度恒定,我们排除这个原因。其次小jie姐说他们是等度而且是预混合之后才上机的,并且多人多次配置,这样基本可以排除流动相的问题。第三,针对色谱柱的问题客户强调他们延长了平衡时间,而且分不同工作日跑了几次序列均存在这个问题,故可以排除色谱柱的问题,最后只剩下仪器的问题了,由于用户没有时间慢慢排查,换了一台仪器,保留时间漂移的问题没有再出现,至此谜底解开了。Engineer: 老师您好,换了仪器之后,问题有改善吗?User: 昨天换了两台仪器,有一台仪器跑出来的时间漂移不明显,可以接受!Engineer: 这根柱子比较特殊,现在漂移情况如何?User: 嗯嗯,做了一天下来,漂移不到1分钟。Engineer: 太好了!征求用户同意我们编辑了本文,分享给更多的用户小伙伴,当实验过程中遇到保留时间漂移的情况时莫慌,我们可以逐一排查仪器、色谱柱、流动相、样品等因素,色谱图是以上各部分综合作用产生的结果,我们只要耐心一一排查就可以找出问题所在。
  • IKA 艾卡故事--氧弹量热仪之前世今生
    1770年,Josef Black (英国化学家、物理学家)首次提出“量热仪”一词,1780年,拉瓦锡(法国化学家)和拉普拉斯(法国天文学家、数学家)最早将量热仪技术用于物理和化学实验,他们将一只几内亚小鼠放到一个冰桶内,通入空气,小老鼠呼入空气中的氧气排出二氧化碳,其自身产生的热量将一部分冰融化成了水,通过测定下部烧杯中收集到的水可以推算出老鼠释放的热量。为了防止热量向外界散失,冰桶的外部包裹一层冰和水的混合物,由于冰及冰水混合物的温度均为摄氏零度,所以天然构成了一个绝热体系,现在后人也称拉瓦锡等设计的系统为冰量热仪或相变量热仪。氧弹量热仪是用于测量固体或液体样品在一个密闭的容器中(氧弹),充满氧气的环境里,燃烧所产生的热值。“氧弹量热仪”是经常使用的名称。测量的结果称燃烧值、热值、BUT值等。热值测量结果可帮助对产品相关要素进行总结,如得出品质、生理、物理、化学以及成本方面的结论。譬如说,煤炭的发热量是其定价的主要依据,饲料的能量是配方师在做配方设计时首先需要确定下来的重要指标。测定时将1g的固体或液体样品称量后放入坩锅中,将坩锅置于不锈钢的容器(氧弹)中。往燃烧容器/氧弹中充满30bar压力的氧气,氧气的纯度最好为99.95%,样品在氧弹内通过点火丝和绵线引燃,燃烧过程中坩锅的中心温度可达1200°C,同时氧弹内的压力上升。在此条件下,所有的有机物燃烧并氧化。氢生成水,碳生成二氧化碳,样品中的硫将氧化成SO2,SO3,并溶于水,释放出一定的热量(硫酸生成热),空气中的氮气在高压富氧的条件下,会有少量被氧化生产NO2,溶于水释放出一定热量(硝酸生成热)。氧弹量热仪的内筒使用的传热介质为水,氧弹浸没在水中,燃烧时产生的热量通过水扩散出去,为确保燃烧产生的热量不会从系统传到外界和外界的热量不会传进系统里,使用另一个充满水的容器(外桶OV)作为隔热的装置,依据不同的测定原理和外筒温度控制,氧弹量热仪可以分为绝热式量热仪和周边等温量热仪。绝热量热仪在实验中,外桶的温度(TOV)全程跟踪内桶温度(TIV)变化而变化。这种绝热几乎完全隔绝热传递。在保持空调环境温度恒定的条件下,测量几乎不受任何的外界影响。样品燃烧所释放出的热量都将聚集在内筒,并通过内筒的温度传感器进行测量。实验过程中没有热损失,无需像等温量热仪一样做修正计算其温升曲线的典型特征为:实验前期,实验末期可以很快达到“稳态”,即内、外筒的温度达到平衡,不会随着时间的推移而变化。 绝热模式的原理简单,测定结果可靠,但由于其结构复杂,内外桶均需要有独立的冷却加热控制系统,能实现内外桶温度的精准跟踪及控制,所需的技术难度较高,所以后人提出了一种理想化的模型,两个理想的牛顿流体在一端温度恒定时,另一端的温度发生渐进性变化时,两者间的热量交换符合牛顿冷却定律,可以通过瑞方公式、罗-李方程等公式对两者间的热量交换做出模拟计算,其结果就是我们常说的冷却校正系数。等温测量模式,实验过程中外桶的温度(TOV)需要保持恒定。保持外桶温度恒定不要求内外桶的完全绝热,内外桶有少量的热交换。在空调环境温度保持恒定的情况下,需要对内外桶间的少量热交换进行修正计算, 其温升曲线的典型特征是:实验前期,实验末期温度存在“拐点”,对温升终点的判断较为关键,为了准确判断温度变化的趋势,即严格按照瑞方公式进行测定时,所需的测试时间较长,通过“温升趋势”预断来缩短测定时间的方法中,即“快速模式”,温升趋势的预判往往成为实验成败的关键。早期的量热仪产品外筒没有独立的冷却加热系统,为了在实验的前期和末期之间尽量保持外筒水温的基本一致,外筒的水箱容量通常为内筒的的5-10倍,通常为10-20L,但由于外筒没有冷却设备,测定结束后内筒的水也循环进入外筒,所以经过数次测定后外筒温度容易出现缓慢升高的现象,影响了测定的准确性。现在的氧弹量热仪技术日新月异,从结构到功能上均发生了许多的变化,测定时间较早期的手工操作的量热仪而言已极大地缩短,测定精度对于一些进口品牌而言,其5次苯甲酸标定过程中的相对标准偏差已可以达到0.05%,如德国IKA公司,对于国产仪器而言,一些好的品牌其相对标准偏差也可以控制在0.1-0.15%之间。从结构而言,由于恒温水浴等技术的使用,量热仪已抛弃了传统的大肚子外筒,内筒的水量也控制在标准要求的下限,这样其热容量(水当量)将相应减少,温度的平衡时间也将缩短。氧弹的结构发生了明显的变化,充氧接口与放气接口合并,点火电极与氧弹弹体构成点火电路,其主要目的是尽量减少在氧弹上的开口,因为每一个开口对氧弹都意味着增加了额外安全隐患,都意味着需要额外增加密封圈等配件和更多的操作者维护,氧弹的外形设计也发生着明显的变化,氧弹一般由弹筒,弹盖和螺纹环三个部件组成,传统的氧弹其接口放在了上部,相互间用密封环密封,我们知道在点火燃烧时热量集中在中上部,并通过上部对外扩散,由于密封环的阻隔其导热速率将明显下降,德国IKA公司最新推出的C6000系列氧弹,采用了独特的倒扣式设计,接口放在了氧弹的下部,氧弹顶端是一体的圆形弧顶,实验过程中的热量将更易向内筒扩散,也更容易达到温度的平衡,而且在保证其最高330bar的耐压测试标准的同时,将氧弹重量降低了30%,这样实验末期的温度平衡时间将大大缩短,所以其绝热模式的测定时间从原来的15分钟降到了8分钟,周边等温模式的测定时间从22分钟降低到了12分钟。从功能而言,氧弹量热仪已经高度自动化,自动充水,自动排水,有独立的冷却循环水浴和加热系统构成了自动量热仪的水循环系统,自动充氧,自动排废气,可以根据不同标准的要求对氧弹数次充氧放气已完成氧弹内部空气的净化,氧弹自动识别,自动点火,像一些先进的仪器如德国IKA公司的C6000等,甚至可以每次测定点火的能量,自动扣除并自动计算热值,测定结果更为准确。如上所述,下一代的氧弹量热仪产品必将是在满足标准精密度,安全性等基础上,逐步趋向于小型化,自动化,快速测定等优化操作减少劳动量的设计,而且仪器的工作表现需要更为稳定。 关于 IKA ( www.ika.cn ) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板,恒温循环系统, 量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 巴西, 韩国等国家都设有分公司. IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制