当前位置: 仪器信息网 > 行业主题 > >

高效溶取仪

仪器信息网高效溶取仪专题为您提供2024年最新高效溶取仪价格报价、厂家品牌的相关信息, 包括高效溶取仪参数、型号等,不管是国产,还是进口品牌的高效溶取仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高效溶取仪相关的耗材配件、试剂标物,还有高效溶取仪相关的最新资讯、资料,以及高效溶取仪相关的解决方案。

高效溶取仪相关的论坛

  • 【第3季仪器心得】+莱伯泰科Flex-HPSE全自动高效快速溶剂萃取仪

    【第3季仪器心得】+莱伯泰科Flex-HPSE全自动高效快速溶剂萃取仪

    全自动高效快速溶剂萃取仪是一种先进的分析仪器,它可以在较短的时间内高效地从复杂的样品中提取目标化合物。全自动高效快速溶剂萃取仪的发展可以追溯到上世纪70年代,当时科学家们开始研究如何使用溶剂来分离样品中的化合物,从而发展出了液液萃取和固相萃取等技术。随着自动化技术和计算机技术的不断发展,全自动高效快速溶剂萃取仪逐渐成为了现代化分析实验室中不可或缺的仪器之一。当前,市面上的全自动高效快速溶剂萃取仪大多具有高效、精准、快速、自动化等特点,能够有效地提高实验效率和准确性。全自动高效快速溶剂萃取仪广泛应用于食品、药品、环境、农产品等领域的样品提取和分离等工作中。未来,随着科学技术的不断发展,全自动高效快速溶剂萃取仪的应用范围和性能将会不断提升,为实验室的科研工作和产业应用提供更为可靠和高效的技术支持。2020年公司采购了莱伯泰科 Flex-HPSE全自动高效快速溶剂萃取仪,经过不断的使用和摸索得到以下心得其优点[list=1][*]自动化程度高:该仪器采用自动化的方式进行样品制备、萃取和回收,大大减少了人工干预,提高了分析的准确性和可重复性。[*]提高了分析效率:采用高效快速的萃取方式,能够迅速地提取样品中的目标化合物,缩短了分析时间。[*]可适应多种样品类型:该仪器可以适应不同种类的样品,如水、土壤、食品、生物组织等,具有广泛的应用范围。[*]萃取效率高:该仪器的萃取效率高,能够有效地提高目标化合物的回收率和纯度。[*]节省溶剂用量:相比传统的溶剂萃取方法,全自动高效快速溶剂萃取仪采用小量的溶剂进行萃取,能够节省溶剂的使用量。[*]操作简便:该仪器采用图形化的操作界面,使操作者能够快速、方便地掌握仪器的使用方法。 其缺点[list=1][*]成本较高:由于该仪器采用了自动化技术,加之高性能和高精度要求,因此其价格相对较高。[*]维护和保养需要专业技术:全自动高效快速溶剂萃取仪的维护和保养需要专业技术人员进行,一旦出现故障需要及时修复,否则会影响到分析结果。[*]操作复杂:尽管该仪器采用了图形化的操作界面,但是操作者需要掌握一定的专业知识和技能,操作复杂度相对较高。[*]样品处理量受限:由于该仪器的处理能力受到样品量的限制,因此无法适用于大规模样品的处理 因此在使用前,我们应该做到以下几点[list=1][*]了解使用说明书:在使用全自动高效快速溶剂萃取仪之前,一定要仔细阅读使用说明书,了解每个操作步骤和注意事项,避免操作不当而导致损坏仪器或者样品的污染。[*]严格控制实验条件:全自动高效快速溶剂萃取仪的使用需要严格控制实验条件,包括样品的处理和加样量、溶剂的种类和用量、仪器的温度和压力等等,只有在条件控制得当的情况下,才能得到准确可靠的实验结果。[*]定期维护和保养:为了保证仪器的正常运行和延长其使用寿命,需要定期对全自动高效快速溶剂萃取仪进行维护和保养,如清洁仪器、更换易损件、调整仪器参数等等,减少因故障而影响实验进度和结果。[img=,300,300]https://ng1.17img.cn/bbsfiles/images/2023/04/202304121415135734_3129_3191395_3.jpg!w300x300.jpg[/img][/list][/list][/list]

  • 高效快速溶剂萃取仪在橡胶溶剂抽出物测定中的应用

    高效快速溶剂萃取仪在橡胶溶剂抽出物测定中的应用

    [color=black][b]高效快速溶剂萃取仪在橡胶溶剂抽出物测定中的应用[/b][/color][color=black]高效快速溶剂萃取是实验室常用的一种样品处理方式。在[/color][font=宋体][color=black]使用了[/color][/font][color=black]LabTech HPSE-6[/color][font=宋体][color=black]高效快速溶剂萃取仪,逐渐熟悉仪器使用之后在此分享仪器的使用测试过程:[/color][/font][color=black]1.[/color][font=宋体][color=black][b]样品检测[/b][/color][/font][color=black]对轮胎样品进行萃取。[img=,500,374]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271752541166_8740_6218522_3.png!w690x517.jpg[/img][/color][color=black]2[/color][font=宋体][color=black][b].检测项目[/b][/color][/font][color=black]对轮胎样品萃取测定参考标准《[/color][font=times new roman][color=black]GB/T 3516-2006[/color][/font][color=black] 橡胶溶剂抽出物的测定》。[/color][color=black][b]3[/b][/color][font=宋体][color=black][b].检测方法[/b][/color][/font][color=black]([/color][font=times new roman][color=black]1[/color][/font][color=black])提取轮胎样品,萃取完成后,对轮胎样品进行干燥称重。[/color][color=black]([/color][font=times new roman][color=black]2[/color][/font][color=black])样品剪成约[/color][font=times new roman][color=black]3mm[/color][/font][color=black]*[/color][font=times new roman][color=black]4mm[/color][/font][color=black]小块,称量[/color][font=times new roman][color=black]0[/color][/font][color=black].[/color][font=times new roman][color=black]49[/color][/font][color=black]±[/color][font=times new roman][color=black]0[/color][/font][color=black].[/color][font=times new roman][color=black]1g,[/color][/font][color=black]样品记为[/color][font=times new roman][color=black]m1[/color][/font][color=black],采用滤纸包裹。[/color][img=,500,666]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271754157965_8437_6218522_3.png!w690x920.jpg[/img]([font=times new roman][color=black]3[/color][/font][color=black])将包裹好的样品放入萃取罐中(上下填充石英砂),做两个平行样品。萃取条件如下:[/color] 表[font=&]1[/font] 萃取条件[table][tr][td][align=center][color=black][b]萃取条件[/b][/color][/align][/td][td][align=center][color=black][b]1[/b][/color][/align][/td][td][align=center][color=black][b]2[/b][/color][/align][/td][td][align=center][color=black][b]3[/b][/color][/align][/td][td][align=center][color=black][b]4[/b][/color][/align][/td][/tr][tr][td][align=center][color=black][b]萃取温度(℃)[/b][/color][/align][/td][td][align=center][color=black]100[/color][/align][/td][td][align=center][color=black]150[/color][/align][/td][td][align=center][color=black]130[/color][/align][/td][td][align=center][color=black]130[/color][/align][/td][/tr][tr][td][align=center][color=black][b]萃取时间([/b][/color][font=times new roman][color=black][b]min[/b][/color][/font][color=black][b])[/b][/color][/align][/td][td][align=center][color=black]6[/color][/align][/td][td][align=center][color=black]10[/color][/align][/td][td][align=center][color=black]10[/color][/align][/td][td][align=center][color=black]10[/color][/align][/td][/tr][tr][td][align=center][color=black][b]循环次数(次)[/b][/color][/align][/td][td][align=center][color=black]2[/color][/align][/td][td][align=center][color=black]5[/color][/align][/td][td][align=center][color=black]4[/color][/align][/td][td][align=center][color=black]2[/color][/align][/td][/tr][tr][td][align=center][color=black][b]萃取管体积([/b][/color][font=times new roman][color=black][b]mL[/b][/color][/font][color=black][b])[/b][/color][/align][/td][td][align=center][color=black]22[/color][/align][/td][td][align=center][color=black]34[/color][/align][/td][td][align=center][color=black]34[/color][/align][/td][td][align=center][color=black]34[/color][/align][/td][/tr][/table][color=black]([/color][font=times new roman][color=black]4[/color][/font][color=black])在溶剂管理界面选择要进行萃取的溶剂种类,仪器实时监控剩余溶剂。[img=,500,666]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271755288721_7973_6218522_3.png!w690x920.jpg[/img][/color][color=black]([/color][font=times new roman][color=black]5[/color][/font][color=black])在方法管理界面根据标准内设置各项参数,点击保存或另存为进行方法保存。[img=,500,666]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271755536906_5954_6218522_3.png!w690x920.jpg[/img][/color][color=black]在萃取过程中,主页可实时显示各项参数。[img=,500,666]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271756243800_9423_6218522_3.png!w690x920.jpg[/img][/color][color=black](6)根据萃取条件在萃取完成后,取出滤纸包裹的样品,放入烘箱中,[/color][font=times new roman][color=black]105[/color][/font][color=black]℃烘干[/color][font=times new roman][color=black]1[/color][/font][color=black]-[/color][font=times new roman][color=black]2h[/color][/font][color=black],冷却至室温,再次称重记为[/color][font=times new roman][color=black]m2[/color][/font][color=black]。[/color][color=black]([/color][font=times new roman][color=black]7[/color][/font][color=black])在实验完成后,可在日志界查看方法运行详情,结果可进行追溯,出错信息可查看。[img=,500,666]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271757125068_3776_6218522_3.png!w690x920.jpg[/img][/color][color=black][b]4[/b][/color][font=宋体][color=black][b].总结[/b][/color][/font][color=black](1)[/color][font=宋体][color=black]同时支持[/color][/font][color=black]6[/color][font=宋体][color=black]通道提取样品,能够在同一批条件下同时处理[/color][/font][color=black]6[/color][font=宋体][color=black]个样品,而且每个通道都可以独立控制,运行方法自由灵活,一天最多能完成[/color][/font][color=black]96[/color][font=宋体][color=black]个样品的萃取。传统萃取方法萃取一个样品需要花费大约[/color][/font][color=black]16h[/color][font=宋体][color=black]的时间,现在只需要大约[/color][/font][color=black]1h[/color][font=宋体][color=black]就能完成[/color][/font][color=black]6[/color][font=宋体][color=black]个样品的萃取,大大缩短了检测时间,相比于传统压力溶剂萃取,实验效率提高了两倍以上。[/color][/font][color=black](2)LabTech[/color][font=宋体][color=black] [/color][/font][color=black]HPSE[/color][font=宋体][color=black]-[/color][/font][color=black]6[/color][font=宋体][color=black]高效快速溶剂萃取仪也可单独使用任意通道进行萃取,萃取效果可以通过调整萃取条件满足需求。但是改变萃取条件会对抽提效果产生明显影响,所以在对大量样品进行萃取时,最好保持统一的萃取条件。[/color][/font][color=black]([/color][font=times new roman][color=black]3[/color][/font][color=black])仪器本身有独特的自动蓄力密封技术,仪器本身密闭性佳,不仅能够从根本上杜绝萃取罐的漏液现象,而且能够避免有毒有害溶剂挥发,不会对人体和环境产生危害,安全环保;其自带通风设计,在通风橱内外都可使用。[/color][color=black]([/color][font=times new roman][color=black]4[/color][/font][color=black])有多套高压泵设计,能够快速升压升温,溶剂流速快从而减少萃取时间,在节省时间成本的同时也能够节省溶剂成本。[/color][color=black]使用[/color][font=times new roman][color=black]LabTech[/color][/font][color=black] [/color][font=times new roman][color=black]HPSE[/color][/font][color=black]-[/color][font=times new roman][color=black]6[/color][/font][color=black]高效快速溶剂萃取仪,能在较短时间内检测轮胎样品的溶剂抽出物,节省人力和时间成本。[/color]

  • 新品上市!Gemini HPSE——独一无二的高效压力溶剂萃取系统

    新品上市!Gemini HPSE——独一无二的高效压力溶剂萃取系统

    晒图一张:Gemini HPSE闪亮登场http://ng1.17img.cn/bbsfiles/images/2014/08/201408041417_508994_2904170_3.png  经过多年的辛勤研究开发,Gemini HPSE高效压力溶剂萃取系统终于正式面世了。此款仪器集压力溶剂萃取与自动定量浓缩于一体,并可以加配固相萃取系统,真正意义上实现了从提取到净化的一站式操作,是一款在全球范围内独一无二的产品。在环境,农业,粮油,食品,检验检疫等部门具有良好的应用前景。http://ng1.17img.cn/bbsfiles/images/2014/08/201408041424_508996_2904170_3.gifGemini HPSE 特点:内嵌工控机,减少实验室占用面积。带有压力溶剂萃取、浓缩、固相萃取功能的多功能一体机,可根据不同的实验需求进行功能选用。配备SPE模块,可对萃取后的样品溶剂或浓缩后的样品溶剂进行固相萃取。八种溶剂接口,其中四种混合溶剂接口。配备有浓缩模块,可对萃取后的样品溶剂进行浓缩、置换。可选用八种萃取罐,满足不同用户对萃取罐体积需求。

  • 【讨论】加速溶剂萃取仪

    请问有人用加速溶剂萃取仪做农残吗?这种萃取好用吗?确实能节省溶剂,提高效率吗?多个萃取池能不能同时进行萃取?萃取池会不会导致残留?一次性滤膜单价是多少?用于做农残测试有没有什么局限性?

  • 【分享】液相微萃取——高效液相色谱法 测定水稻中的吡虫啉

    液相微萃取——高效液相色谱法 测定水稻中的吡虫啉 孙玉珍,罗明标,李建强,郭国龙,徐晶晶 (东华理工大学应用化学系,江西抚州344000)摘要:研究了基于中空纤维的动态三相液相微萃取(LPME),并首次将其应用到稻谷、稻叶、 田水和土壤中吡虫啉农药残留的快速分离富集。实验采用磷酸二氢钾作接受液,以高效液相色谱 (HPLC)为检测手段,系统地优化了LPME技术的有机溶剂、搅拌速率和萃取时间等条件。最佳 色谱条件为:SB-Phenyl C18(250 mm×4.6 mm,5μm)液相色谱柱,以甲醇–水–三乙胺 (80∶20∶1,v/v)为流动相,流速0.8 mL/min,270 nm波长下检测。得到方法的线性范围0.001~ 10μg/mL,最低检出限为1 ng/mL,加标回收率92.50%~110%,富集倍数19.2倍。结果表明该 方法是一种简单、快速、准确、环境友好的农药残留检测方法。关键词:吡虫啉;农药残留;中空纤维;前处理;液相微萃取中图分类号:TQ 450.2+63文献标识码:A文章编号:1671-5284(2008)06-0043-04吡虫啉(Imidacloprid)又名脒蚜胺,化学名称 1-(6-氯-3-吡啶基甲基)-N-硝基亚咪唑烷-2-基胺,系 具内吸、触杀、胃毒作用的硝基亚甲基类内吸杀虫 剂,是烟酸乙酰胆碱酯酶受体的作用体,干扰害虫 运动神经系统,使化学信号传递失灵,无交互抗性 问题,用于防治刺吸式口器害虫如蚜虫、飞虱、蓟 马、粉虱等 [1] 。吡虫啉的推荐用药量(有效成分)为 60~120 g/hm 2 ,易溶于乙腈和二氯甲烷中,化学结 构较稳定 [2] 。该农药会对人类和哺乳动物产生慢性 毒理效应 [3] 。本文采用三相液相微萃取技术,将水稻中吡虫啉的萃取、浓缩、净化简化于一步,极大 地缩短了吡虫啉测定的前处理步骤,并结合高效液 相色谱法检测了稻谷、稻叶、水和土壤中吡虫啉的 含量,方法简便、快速,净化效果很好。1实验部分1.1仪器设备Shimadzu LC–20AT岛津高效液相色谱仪,配 Shimadzu SPD–20A UV–VIS检测器和N2000色 谱工作站,SB–Phenyl C18(250 mm×4.6 mm,5μm) 安捷伦科技公司,Accurel Q 3/2聚丙烯中空纤维 (Membrana,Wuppertal,Germany;壁厚200μm, 孔径0.2μm,内径600μm)。抽滤器(津腾GM–0.33),配真空泵;紫外可 见分光光度计(UV–260);超声波清洗器(KQ 3200);电子分析天平(BS124S);离心机。1.2试剂三乙胺,分析纯,由上海国药集团化学试剂有 限公司生产;磷酸,分析纯;水,重蒸馏水;甲醇, 色谱纯,天津大茂化学试剂厂;0.05 mol/L氢氧化 钾溶液。吡虫啉标准溶液:准确称取吡虫啉标准品 0.050 0 g(纯度≥99%,德国拜耳公司),用甲醇 溶解定容至100 mL,得到吡虫啉0.50 g/L的标准 储备液。

  • 【原创大赛】检测成功关键,固相萃取富集高效液相检测法

    【原创大赛】检测成功关键,固相萃取富集高效液相检测法

    检测成功关键,固相萃取富集高效液相检测法 莠去津是一种广谱除草剂,可预防和除杀一年生禾本科杂草和阔叶杂草,对某些多年生杂草也有一定的抑制作用,在我国很多地区都有较多使用,尤其是在玉米、甘蔗产地用量更大。但该物却是一种潜在致癌和内分泌干扰物,目前已被列为国际环境优先控制污染物。 由于莠去津的大量使用,导致我国及国标某些地区的粮食中含有微量的该物质残留,该地区的土壤和水质也有不同程度的污染,严重的危害这我们的幸福生活和身体健康。 为了预防和控制这种污染,检测是很重要的一个环节。下面我们就着重介绍下高效液相色谱法检测饮用水中莠去津含量。实验部分原理 取适量饮用水水样萃取、浓缩,再固相萃取富集浓缩、定容、滤过,由进样系统进样,色谱柱分离,紫外检测器检测,保留时间定性,峰面积定量计算。仪器 液相色谱仪(等度+紫外检测器+柱温箱),氮吹装置,溶剂过滤器,超声波振动仪,KD浓缩器,固相浓缩装置及SPE柱(硅酸镁净化柱)试剂 石油醚、乙醚、甲醇(色谱纯)、二氯甲烷、无水硫酸钠、氯化钠、高纯氮气、正己烷样品制备 标准品制备:准确称取0.01g莠去津标准样品,用少量二氯甲烷溶解后,再用甲醇准确定容至100ml,该溶液为100μg/ml储备溶液,备用。 样品前处理:分两步走。 第一步样品预处理:准确量取100ml水样于250ml分液漏斗中,加入5g氯化钠,待氯化钠完全溶解后加入10ml二氯甲烷萃取1min,注意及时放气,静置分层后,转移出上层有机相,再加入10ml二氯甲烷萃取,分层,合并有机相,有机相经过无水硫酸钠脱水后转入浓缩瓶中。用KD浓缩器将萃取液浓缩至近干,取下浓缩瓶,备用。 第二步固相萃取富集(采用SPE柱净化):将浓缩至干的样品用10mL正己烷溶解;用适量石油醚预淋洗净化柱,弃去淋洗液。当硫酸钠刚好露出,将样品萃取液加入净化柱中,随即用20mL石油醚冲洗。将洗脱流量调至5mL/min,再用20mL的乙醚-石油醚(1+1)洗脱液洗脱;将洗脱液用KD浓缩器浓缩至近干后,用氮气刚好吹干,最后用甲醇定容至1mL,过0.45μm滤膜过滤,待测。色谱条件检测器:紫外检测器色谱柱:C18,(5μm,4.6×250mm)色谱柱波长:254nm流动相:甲醇:水=:80:20(V:V)流量:1.0mL/min柱温:40℃进样量:10μL标准品色谱图: http://ng1.17img.cn/bbsfiles/images/2014/10/201410202218_519227_2498430_3.png某水样样品色谱图: http://ng1.17img.cn/bbsfiles/images/2014/10/201410202218_519228_2498430_3.png 通过以上色谱图我们不难看出,该方法检测饮用水中莠去津准确、可靠、效果好。 该方法成功的关键在于样品前处理固相萃取富集过程,固相萃取有效的去除了目标物的干扰物,保证了检测结果的准确、可靠性;富集使样品浓缩程度更高,这样就大大的提高了方法检出限,是检测成功的另一关键因素。

  • 微波萃取-高效液相色谱法测定食品塑料包装材料中双酚A含量

    微波萃取-高效液相色谱法测定食品塑料包装材料中双酚A含量

    微波萃取-高效液相色谱法测定食品塑料包装材料中双酚A含量 作者:吴茵琪http://ng1.17img.cn/bbsfiles/images/2015/12/201512071032_576552_2904170_3.jpg摘要:建立了微波萃取-超高效液相色谱法(MAE-HPLC)检测塑料包装食品中双酚A的分析方法。选择甲醇为萃取溶剂,对微波萃取条件进行了优化,结果表明最佳的萃取条件为:萃取温度为80℃,萃取时间为20min。在试验选定的最佳条件下,方法线性范围0.10~20mg/L,相关系数为0.9998,方法检出限为0.1 mg/kg,样品加标回收率为88.9%~99.6%,相对标准偏差小于2.2%。关键词:微波萃取;高效液相色谱法;双酚A;食品塑料包装材料  随着人们生活水平不断的提高,食品安全问题越来越成为人们关注的热点。广义的食品安全问题并不仅仅是指食品本身的安全,还要包括食品包装材料的安全性,这些材料包括塑料、纸制品、不锈钢、铝制品等等。同时需要考虑食品与包装材料之间是否会发生化学反应,食品包装材料中有毒有害成分是否会迁移到食品中去等问题。材料科学达到迅速发展,使得高分子聚合物成为目前最广泛应用的食品包装材料,双酚A(bisphenol A,BPA)又名2,2-二(4-羟基苯基)丙烷,是最广泛使用的工业化合物之一,是制造环氧树脂和酚醛树脂等产品的重要原料,同时双酚A被广泛应用在食品包装材料等方面。双酚A属于低毒性化学物,但是动物试验发现双酚A具有某些雌激素特性,对淋巴细胞具有增殖的作用,有研究表明双酚A具有一定的致畸形和胚胎毒性。不同剂量的双酚A能够诱导淋巴细胞的增殖,从而有潜在的免疫毒性。欧盟从2011年6月1日起禁止进口含有化学物质双酚A的塑料婴儿奶瓶。目前美国、加拿大、日本和挪威等国家也严令限制双酚A这类化合物在食品包装材料中使用。目前,塑料包装材料中双酚A的潜在迁移性对人体健康的危害已引起了社会广泛的关注。大多数的研究报道基本上是研究塑料包装材料中双酚A的总含量:通过索氏提取、液-液萃取、加速溶剂萃取、微波辅助萃取、固相萃取及固相微萃取等处理方法,将塑料包装材料中的双酚A转移成合适溶剂中,然后通过紫外分光光度法、高效液相色谱法、气质联用法、气相色谱法、荧光检测法及传感器检测法等进行定性定量分析。1 实验部分 1.1 仪器和试剂  HP-1200液相色谱仪,配有荧光检测器(美国Agilent 公司);Ethos ONE微波消解/萃取仪(意大利Milestone 公司);EV321型旋转蒸发仪(北京莱伯泰科仪器有限公司);SM300型切割式粉碎机(德国RETSCH公司);21011V001R200型氮吹仪(瑞士BUCHI公司);TB215D型电子天平(美国丹佛公司)。双酚A标准品(纯度≥99.9 %,德国Supelco公司),甲醇(色谱纯,上海德正化工有限公司);正己烷、二氯甲烷 、乙酸乙酯、乙醇、乙腈均为分析纯,均由广州化工试剂厂提供。  双酚A标准贮备液的配制:精确称取双酚A标准品0. 0250 g, 用甲醇溶解并定容至250 mL,摇匀静置,并放置4℃冰箱保存,其质量浓度为100 mg/L,临用前采用流动相稀释成合适的浓度。1.2液相色谱分析条件  色谱柱: C18柱( 4.6 ×250mm, 5-Micron,(美国Agilent公司) , 柱温30℃ ; 样品室温度10℃;进样体积15μL。流动相:水和甲醇(体积比为35:65);流速:0.8 mL/min,激发波长:230nm,发射波长:315nm,整个分析流程用时13min。1.3 样品处理  选取有代表性的食品塑料包装材料样品,先剪成5cm×5cm以下,在液氮的保护下,采用切割式粉碎仪将样品切割成粒径小于2 mm,准确称取已制备好的样品1.0 g(精确到0.001g)于微波萃取罐中,加入15 mL甲醇,按照表2所示微波萃取条件进行萃取。萃取完成后,冷却至室温,将萃取液转移至150mL的鸡心瓶中,并再用20 mL甲醇分三次洗涤萃取残渣,合并萃取液及洗涤液,于旋转蒸发仪上旋转蒸发(温度约为42℃)至约0.5 mL。然后再用氮吹仪吹至近干,用2 mL流动相溶解残渣,然后用0.20 μm 有机滤膜过滤至样品瓶中,然后上高效液相色谱仪进行分析。若分析结果超过线性范围,可对萃取液进行稀释后再进行检测分析。2 结果与讨论2. 1 萃取条件的优化 分别采用超声萃取法和微波萃取法对含有双酚A的阳性样品进行提取分析,对两者萃取效果进行比较,试验结果表明,在相同的萃取时间内,微波萃取法的萃取效率明显优于超声萃取法。同时考虑到微波萃取法操作简便、快速、试剂消耗少、可批量萃取等优点。因此,本实验选用微波萃取法作为样品萃取方法。2.1.1 萃取剂的选择  振荡萃取和超声波萃取过程中的能量累积和渗透过程主要以无规则的方式发生,所以萃取的选择性差。微波萃取过程中,微波能穿透到物料内部,使物料表里同时产生热能,加热非常迅速,并且微波加热具有选择性,可通过选择合适的溶剂来提高萃取效率。双酚A属于极性化合物,根据相似相溶原理,分别实验了二氯甲烷、甲醇、乙酸乙酯、乙醇和乙腈等5种萃取溶剂,对种不同塑料食品包装材料(PC、PP和PE)进行萃取试验,实验结果见表1,由表1可见,在相同的萃取条件下,甲醇的萃取效率优于于其他萃取溶剂,同时流动相也是采用甲醇和水,因此,实验选择甲醇作为萃取溶剂。http://ng1.17img.cn/bbsfiles/images/2015/12/201512071034_576553_2904170_3.jpg2.1.2 微波萃取温度和时间的选择  在微波萃取过程中,温度是重要参数之一,选择合适的萃取温度不但可以提高萃取溶剂的溶解能力,而且可以降低萃取溶剂的表面张力,促使更好地破坏待分析物和基质活性部位之间的作用力,使待分析组分更易于从基质的活性部位脱附下来。同时,在进行微波萃取时,密闭的萃取罐内的压力也会随着温度的升高而增加,一般可达到几个甚至十几个大气压,压力的增加使得萃取溶剂的沸点也随之上升,所以采用微波萃取时,萃取的温度一般比萃取溶剂的沸点高10~20℃,甲醇的沸点是64.7℃,所以选择萃取温度为80℃。实验结果表明采用梯度升温程序能更有效快速萃取塑料食品包装材料中的双酚A。整个萃取时间约为20min,具体萃取升温程序见表2.http://ng1.17img.cn/bbsfiles/images/2015/12/201512071035_576554_2904170_3.jpg2. 2 色谱条件的优化 采用液相色谱法分析双酚A时,一般采用C18色谱柱,实验考察了甲醇-水不同比例作为流动相洗脱及分离效果,实验结果表明,当甲醇-水比例为65:35时,色谱峰响应值高并且峰形很好,所以实验选择流动相甲醇-水的比例为65:35,双酚A标准品的色谱峰见图1。http://ng1.17img.cn/bbsfiles/images/2015/12/201512071036_576555_2904170_3.jpg2.3线性范围和检出限   采用甲醇溶液逐级稀释双酚A贮备液(浓度为100 mg/L),配制成质量浓度分别为0.10、0.50、2.0、10、20 mg/L的标准工作溶液。按实验选定的高效液相色谱仪工作条件进行分析测定,以双酚A的质量浓度为横

  • 【原创大赛】防腐高效溶样罐法直击总砷的测定

    【原创大赛】防腐高效溶样罐法直击总砷的测定

    2013年6月我国食品安全国家标准《食品中污染物限量》正式实施。肉类中砷限量有了新变化,其测试要求项目从无机砷转化为总砷。总砷包括无机砷和有机砷,其中有机砷主要以有机物的形式存在,有机砷化合物在自然界并不多见。主要通过合成方法制备,包括胂酸,亚胂酸,偶胂化合物,伯胂、仲胂、叔胂与三价氯胂等,有机砷化合物广泛用作药物,有机砷应用广泛,但一定条件下有机砷可能会转化为无机砷近年来砷制剂争议较大。无机砷是砷的一种存在方式,短时间大量进食会引致急性中毒,长期过量摄入会损害皮肤以及慢性肝脏病变,其最主要的表现形式就是砒霜。长期以来无机砷一直作为检测的有害目标之一,但因为其方法复杂,获取准确可靠的数据较难,技术难度不好掌握,特别是不利于普及,只能在一些国家级单位实验室开展工作,不能满足生产和经济发展的需求,同时该方法需要配套离子色谱-电感耦合等离子体光谱、质谱,原子荧光等设备,就为了这一个目标物,投入大量的人力物力,该标准针对这无机砷测试及其作用,修改为总砷的测定,该方法简单,容易获取准确可靠的数据;本方法采用现有的试剂、耗材与仪器测试了生物体内总砷的含量。试剂与仪器:硝酸(MOS;双氧水(MOS;防腐高效溶样罐:中国科学院专利;电感耦合等离子体质谱(ICP-MS):PE公司。Elan DRC II标准溶液:PE公司标准物质:GBW08517(海带)、GBW08571(贻贝)、GBW10016(茶叶)、GBW07602(灌木枝叶)与GBW07603(灌木枝叶)步骤:①准确称取100mg样品到聚四氟消解内罐中,加入2ml硝酸与1 ml双氧水,密封静置2小时;②置于防腐高效溶样罐套内,于150℃防腐烘箱内,恒温消解12小时小时,冷却;③纯水准确定质量到40克,待上机测试;http://ng1.17img.cn/bbsfiles/images/2013/07/201307112334_450811_1638986_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307112334_450812_1638986_3.jpg标准曲线:本次实验用到标准溶液为0,1ppb,5 ppb,10ppb浓度的标准溶液制备标准曲线, PE标准溶液配制成100ppb标准溶液,再用2%HNO3溶液配制0,1ppb,5 ppb,10ppb浓度标准溶液(As),标准曲线相关系数均在0.999以上。采用在线内标法对信号加以校正,内标核素为187Re。结果  As(10-6)GBW08517(海带)平均值16.87 标准偏差0.68 RSD(%)4.06 标准值13.9±2.4GBW08571(贻贝)平均值6.71 标准偏差0.15 RSD(%)2.29 标准值[td=1,1,20%

  • 【求助】请教:取对照品溶液和供试品溶?

    请教:注射用水溶性维生素中关于烟酰胺、等5项的液相检测方法其标准为烟酰胺、盐酸吡哆辛、硝酸硫胺、泛酸钠、维生素C钠和核黄素磷酸钠 照高效液相色谱法(中国药典1995年版二部附录Ⅴ D)测定。  色谱条件与系统适用性试验 用氨基键合多孔硅胶为填料,以(0.02mol/L)磷酸二氢钾溶液-乙腈(27:73),用10%盐酸溶液调节pH为5.3的溶液为流动相,流速为1.5ml/min,检测波长:烟酰胺、盐酸吡哆辛、硝酸硫胺、泛酸钠、维生素C钠为214nm;核黄素磷酸钠用萤光检测λEX=445nm、λEM=520nm。各组分的分离度应符合要求。  对照品溶液的制备 (1)取烟酰胺对照品约150mg、硝酸硫胺对照品约12mg、盐酸吡哆辛对照品约18mg、泛酸钠对照品约62mg,分别精密称量置50ml量瓶中,加水溶解并稀释至刻度摇匀,精密量取2ml置50ml量瓶中,用流动相稀释至刻度,摇匀,即为对照品溶液(Ⅰ),此溶液置暗处充氮气于零下20℃可保存1个月。(2)取维生素C钠对照品约425mg、核黄素磷酸钠对照品约19mg,精密称定,置50ml量瓶中加水溶解并稀释至刻度摇匀,精密量取2ml置50ml量瓶中,用流动相稀释至刻度,摇匀即为对照品溶液(Ⅱ),此溶液必须临用新鲜配制,并于零下20℃保存,用前放置至室温。  等容混合对照品溶液(Ⅰ)和对照品溶液(Ⅱ)即为对照品溶液。  供试品溶液的制备 取装量差异项下的内容物约2瓶重量,精密称定,置100ml量瓶中,加水溶解并稀释至刻度,摇匀,精密量取15ml置200ml量瓶中,用流动相稀释至刻度。  测定法 取对照品溶液和供试品溶液各10μl,交替注入液相色谱仪,测定,用外标法计算各组分含量,即得。目前存在问题用紫外检测的分不开5种组分,大家有什么好办法,谢谢

  • 15.4 微波辅助萃取-高效液相色谱法测定鱼腥草药材中槲皮素的含量

    15.4 微波辅助萃取-高效液相色谱法测定鱼腥草药材中槲皮素的含量

    微波辅助萃取-高效液相色谱法测定鱼腥草药材中槲皮素的含量陈斌 郁颖佳 归靓 周涛 段更利(复旦大学药学院药物分析教研室上海200032)【摘要】目的 建立微波辅助萃取一高效液相色谱法(MAE—HPLC)分析鱼腥草药材中槲皮素含量的方法。方法采用Diamonsil C18柱(5um,150 mm x 4.6 mm),以甲醇一0.2%三氟乙酸(50:50)为流动相,350 nm处波长检测,流速1.0 mL/min。微波辅助萃取条件的溶剂是10 mL甲醇,提取功率为400 w,提取时间为4 min。结果 槲皮素在0.01nO.2扯g的范围内线性关系关系良好(r=0.999 1),高、中、低3个浓度的平均加样回收率为98.32%~103.22%,RSD为1.21%~2.92%(行=3);样品的天内和天间RSD为0.42%和2.99%。结论 该方法简便、准确,适用于分析测定鱼腥草中槲皮素的含量。【关键词】微波辅助萃取; 高效液相色谱法; 鱼腥草; 槲皮素; 含量测定http://ng1.17img.cn/bbsfiles/images/2012/07/201207232320_379309_2355529_3.jpg

  • 16.3 快速溶剂萃取反相高效液相色谱法测定青蒿中的青蒿素

    16.3 快速溶剂萃取反相高效液相色谱法测定青蒿中的青蒿素

    快速溶剂萃取反相高效液相色谱法测定青蒿中的青蒿素喻凌寒¨’2⋯,宋之光1,陈江韩2,牟德海2,苏流坤2,腾久委2(1.中国科学院广州地球化学研究所有机地球化学国家重点实验室,广州510640;2.广东省化学危害应急检测技术重点实验室中国广州分析测试中心,广州510070;3.中国科学院研究生院,北京100039)摘要:报道了一种应用快速溶剂萃取、经衍生化处理后用RP—HPLc测定青蒿药材中青蒿素的方法。青蒿样品用无水乙醇萃取剂在90℃,12.6 MPa压力下萃取10 Illin,用碱衍生化后,色谱测定,回收率在95.3%~101.2%。色谱分析条件采用Diamonsil c18色谱柱(250 mm×4.6 mm,5肛m),甲醇一0.02 mol/L乙酸铵为流动相,梯度:甲醇体积分数20%~35%,5 rnin;35%~98%,5 min;98%,6 IIlin.检测波长260 nm;流速:1.0 mL/111in;柱温:25℃。结果表明该法准确、重现性好,可以为青蒿质量标准的制订提供科学依据。关键词:青蒿素;快速溶剂萃取;反相一高效液相色谱http://ng1.17img.cn/bbsfiles/images/2012/07/201207241241_379360_2355529_3.jpg

  • 固相萃取 - 反相高效液相色谱法检测水产品中孔雀石绿和结晶紫及其代谢物

    孔雀石绿(MG)和结晶紫(CV)具有高毒素、高残留和致癌、致畸、致突变等特点,当其进入生物体内,就会产生具有更强危害的隐性孔雀石绿(LMG)和隐性结晶紫(LCV)。鉴于孔雀石绿和结晶紫的危害性,包括我国在内的许多国家都将它们列为水产养殖中的禁用药物。是进出口水产品必检项目之一。 《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留量的测定》和《SN/T 1479-2004 进出口水产品中孔雀石绿残留量检验方法》中均采用有机溶剂提取后经固相萃取柱净化,然后采用高效液相色谱法或液相色谱-串联质谱法测定。 迪马科技在参考上述两个标准的基础上开发出中性氧化铝和阳离子交换固相萃取柱串联净化后,反相高效液相色谱柱检测。该方法准确可靠,重复性好,回收率高,可作为水产品中孔雀石绿和结晶紫及代谢物的检测方法。水产品中孔雀石绿和结晶紫及其代谢物的检测 (参考《SN/T 1479-2004进出口水产品中孔雀石绿残留量检验方法》和 《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留量的测定》)1 适用范围 本方法适用于水产品中孔雀石绿和结晶紫及其代谢物的检测。2 样品准备 / 提取 1、称取已粉碎(已均质)的样品1 g于15 mL离心管中,加入1 mL 0.05 mol/L苯磺酸溶液、1 mL0.25 g/mL盐酸羟铵溶液、0.4 mL0.1 mol/L乙酸铵溶液(pH4.5)和8 mL乙腈,涡旋混合2 min,4000 rpm离心1 min;2、将上清液转移至50 mL离心管中,残渣按照步骤1重复提取一次;3、合并两次提取液,并加入6 mL三氯甲烷和7 mL水,涡旋混合1 min,4000 rpm离心1 min;4、取下层清液于旋蒸瓶中,向上层清液加入6 mL三氯甲烷,重复提取一次;5、合并两次下层三氯甲烷溶液,40℃减压蒸至近干,加入5 mL乙腈待净化。3 SPE 柱净化—— ProElut Al-N ( 1 g /6 mL )( Cat.# : 65306 )上层ProElut SCX ( 500 mg/3 mL )( Cat.# : 63604 )下层(1)活 化:加入10 mL乙腈,流出液弃去;(2)上 样:将待净化液加入小柱,流出液弃去;(3)淋 洗:加入5 mL乙腈淋洗小柱,流出液弃去,并去掉上层Al-N小柱;(4)洗 脱:加入5 mL5%氨水乙腈,收集洗脱液;(5)重新溶解:将洗脱液在40 ℃下减压蒸干,1 mL定容液*溶解残渣,过微孔滤膜供HPLC分析。*定容液:乙酸铵缓冲液:盐酸羟铵溶液=2:1乙酸铵缓冲液:乙腈:0.05 mol/L乙酸铵溶液(pH4.5)=75:25;盐酸羟铵溶液:取1 mL0.25 g/mL盐酸羟铵溶液用水定容至100mL。4 分析条件 色谱柱:Platisil ODS , 250 x 4.6 mm , 5 μm ( Cat.# 99503 ) 流 速:1.0 mL/min 检测器:UV 591 nm和UV 266 nm柱 温:30 ℃进样量:20 μL 流动相:A:乙腈 B:0.05 mol/L乙酸铵溶液(pH4.5)梯度:时间/ min05.511.011.0120B%28882828

  • 62.1 高效液相色谱法测定祛痹舒肩丸中延胡索乙素含量

    62.1 高效液相色谱法测定祛痹舒肩丸中延胡索乙素含量

    作者:申强; 陈燕忠; 吕竹芬; 庄义修;(广东省药物新剂型重点实验室·广东药学院药物研究所; 长治医学院; 广东食品药品职业学院;)摘要:目的建立测定祛痹舒肩丸中延胡索乙素含量的高效液相色谱(H PLC)法。方法色谱柱为Dikm a Diam onsilC18柱(250m m×4.6m m,5μm),流动相为0.1%磷酸溶液(用三乙胺调pH至4.0)-乙腈(80∶20),检测波长为280nm,流速为1.0m L/m in,柱温为室温。结果延胡索乙素进样量在0.0800~0.8000μg范围内与峰面积线性关系良好(r=0.9998,n=8),平均加样回收率为98.74%,RSD为1.94%(n=6)。结论H PLC法简便、灵敏、准确,可用于祛痹舒肩丸的质量控制。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208271024_386300_1606903_3.jpg

  • 【原创大赛】固相萃取,高效液相色谱法直接测定饮料中改性胭脂虫红

    固相萃取,高效液相色谱法直接测定饮料中的改性胭脂虫红胭脂虫红是提取于雌性胭脂虫的一种蒽醌类天然动物色素,我国食品添加剂使用卫生标准GB2760-2011规定:胭脂虫红(以胭脂虫红酸计)可用于碳酸饮料,最大使用量为0.6g/Kg,配制酒最大使用量0.25g/Kg,冷冻饮品最大使用量0.15g/Kg。对胭脂虫红酸的测定研究,国内有福建省产品质量检验研究院的林钦,陈永煊等(1) ,广州分析测试中心的喻凌寒等(2),北京联合大学应用文理学院的丁靖等(3),上海市质量监督检验技术研究院的虞成华(4)等,中国林业科学研究院资源昆虫研究所的郭元亨(5)等。而作为商品应用的胭脂虫红,通常是经过改性的,是一种水溶性钙铝色淀。本文对此种钙铝色淀进行检测研究,并与胭脂虫红酸检测进行比较。 1 实验部分1.1仪器与材料Agilent Technologies 1260 高效液相色谱仪,色谱柱:ZORBAX SB-C18 StableBondAnalytical 4.6*150mm 5-Micron Agilent Technologies 6530Accurate-mass Q-TOF LC/MS,色谱柱:CNW.Athena UHPLC C18 2.1mm×100mm.1.8um.ANPEL,P/N LAEO-2110uA 固相萃取柱:用100-200目聚酰胺粉自制,迪马ProElut PLS 500mg 6ml。改性胭脂虫红液体样品:广州市威伦食品有限公司提供,自制改性胭脂虫红标准品:经低温(50度)减压干燥制备。 1.2实验过程1. 固相萃取适用范围适用于水性饮料中胭脂虫红色素的测定。2. 提取吸取5mL饮料,200uL甲酸于试管中摇匀,作上样液待净化。3. 净化聚酰胺固相萃取小柱制作:取3mL的固相萃取用空柱,下端放些脱酯棉,将75-150um的聚酰胺粉加入甲醇成浆状,湿法装填,上用玻璃棒压实后聚酰胺填料厚度约为2cm。a活化:2mL酸化甲醇(500mL甲醇+10mL甲酸)和2mL水淋洗活化。流出液弃去;b上样:将待净化液加入小柱,流出液弃去;c淋洗:5mL水溶液,流出液弃去,将小柱抽干;d洗脱:5-10mL1%氨水/甲醇(1:1)溶液洗脱至无色,收集流出液,2%甲酸/甲醇溶液调至中性e重新溶解:40度下将洗脱液减压蒸馏(或氮吹)至近干,用50%甲醇水溶液溶解并定容至1mL,用0.2umPTFE滤膜过滤后HPLC分析 4. 色谱条件流速:[font=Times New Roma

  • 【资料】熊猫分享--固相萃取-高效液相色谱法测定钙强化食品中的维生素D

    赵榕 薛颖 吴国华 赵海燕 罗仁才   以含有体积分数为20%的0.95mol/L柠檬酸水溶液的二甲基亚砜作为维生素D的破壁溶液,利用Chroma-bond XTR固相萃取柱(14 500mg,70mL)对样品进行提取和净化,建立了测定钙强化食品中维生素D的固相萃取-高效液相色谱方法。方法的线性范围为0.1~100.0μg/mL,线性相关系数为0.999。方法的定性检出限为0.01μg/g,定量检出限为0.03μg/g。低(0.1μg/g)、中(0.5μg/g)、高(1.0μg/g)三个浓度水平的加标回收率分别为106.2%,99.5%和100.1%,相对标准偏差小于10%。【作者单位】:北京市疾病预防控制中心 北京100013【关键词】:高效液相色谱法 固相萃取 维生素D 钙强化食品【分类号】:TS207.3【DOI】:CNKI:SUN:SPZZ.0.2008-01-022【正文快照】:  维生素D(VD)是甾醇衍生物,在自然界中以多种形式存在,如VD2,VD3,VD4,VD5,VD6,VD7等,其中以VD2和VD3最为重要,人们平时所说的VD主要指VD2和VD3。目前市场上复合型的钙强化食品很多。随着科学技术的进步,添加到钙强化食品中的VD已不再是普通型的原料,多数是经过包被的VD。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=107357]固相萃取-高效液相色谱法测定钙强化食品中的维生素D[/url]

  • 【我们不一YOUNG】固相萃取-高效液相色谱法测定水中氢氯噻嗪

    [font=&][color=#666666]为准确测定水体中的痕量氢氯噻嗪含量,建立了固相萃取(SPE)-高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法(HPLC)联用的测定方法。首先,将采集的水样(1 000 mL)进行过滤并调节pH值后,通过活化后的HLB固相萃取柱进行净化;然后,用10 mL纯甲醇进行洗脱提取,氮吹至近干,用1 mL甲醇定容;最后,采用HPLC检测所得溶液。检测条件:色谱柱为ZORBAX Eclipse Plus C[/color][/font][font=&][size=12px][color=#666666]18[/color][/size][/font][font=&][color=#666666](4.6 mm×250 mm, 5μm),流动相为甲醇∶水(二者体积比为70∶30),流速为1 mL/min,等度洗脱,检测波长为270 nm,采用外标法定量。结果表明:氢氯噻嗪质量浓度为0.1~50.0μg/L时,待测物的质量浓度和色谱峰面积成正比例线性关系,线性方程为A=221.49c+3 915,R[/color][/font][font=&][size=12px][color=#666666]2[/color][/size][/font][font=&][color=#666666]=0.999 7 供试品在24 h内放置稳定,平均回收率为99.90%(RSD值为1.8%,n=5),精密度为1.1%。所建立的方法操作简便,具有较高的精密度,检出浓度低,采用的流动相配制简单,对环境污染小,可用于水环境中痕量氢氯噻嗪的检测、分析及风险评估。[/color][/font]

  • 【分享】高效液相色谱法测定片剂中的盐酸舍曲林及有关物质的含量

    目的:建立盐酸舍曲林片含量及有关物质测定的高效液相色谱方法。方法:色谱柱为Diamonsil C18(4.6mm×200mm,5μm);流动相为甲醇-0.2%三乙胺溶液(用磷酸调到pH4.0)(60∶40),流速1.5mL/min;检测波长225nm。结果:进样量在2.49~19.94μg范围内,与峰面积线性关系良好,平均回收率为99.55%,RSD为0.60%(n=9)。结论:该方法简单、快速、准确,重现性及专属性好,可用于盐酸舍曲林片的质量控制。

  • 高效液相色谱分析样品的溶解度选择

    通常进行高效液相色谱分析是优先考虑的是样品不必进行预处理,就可经溶样来进行分析,因此样品在有机溶剂和水溶液中的相对溶解性是样品最重要的性质。由于样品在有机溶剂中溶解度的大小,初步判断样品是非极性化合物还是极性化合物,进而推断用非极性溶解剂戊烷、己烷、庚烷等,还是极性溶解剂二氯甲烷、氯仿、乙酸乙酯、甲醇、乙腈等来溶解样品,并通过实验判断。若样品溶于非极性溶剂,表明样品为非极性化合物,通常可选用吸附色谱法或正相分配色谱法、正相键合色谱法进行分析。若样品溶于极性溶剂或相混溶的极性溶剂,表明样品为极性化合物,通常可选用反相分配色谱法或更为广泛应用的反相键合相色谱法进行分析。若样品溶于水相,可首先检查水溶液的pH值,若呈中性为非离子型组分,常可用反相(或正相)键合色谱法进行分析。若pH值呈弱酸性,可采用抑制样品电离的方法,在流动相中加入硫酸、磷酸调节pH=2~3,再用反相键合相色谱法进行分析。若pH值呈弱碱性,则可向流动相中加入阳离子型反离子,再用离子对色谱法进行分析。若pH呈强酸性或强碱性,则可用离子色谱法进行分析。对呈强离子型水溶性生物大分子的分析仍是高效液相色谱的特殊难题之一,近年随凝胶过滤色谱和高效亲和色谱的迅速发展,对解决像蛋白质、核酸等生物大分子的分析提供了有效的途径。来源:互联网

  • 【原创大赛】固相萃取高效液相色谱法直接测定改性胭脂虫红

    【原创大赛】固相萃取高效液相色谱法直接测定改性胭脂虫红

    固相萃取,高效液相色谱法直接测定饮料中的改性胭脂虫红【生活中的仪器分析】食品安全——饮品卫生大检测胭脂虫红是提取于雌性胭脂虫的一种蒽醌类天然动物色素,我国食品添加剂使用卫生标准GB2760-2011规定:胭脂虫红(以胭脂虫红酸计)可用于碳酸饮料,最大使用量为0.6g/Kg,配制酒最大使用量0.25g/Kg,冷冻饮品最大使用量0.15g/Kg。对胭脂虫红酸的测定研究,国内有福建省产品质量检验研究院的林钦,陈永煊等(1) ,广州分析测试中心的喻凌寒等(2),北京联合大学应用文理学院的丁靖等(3),上海市质量监督检验技术研究院的虞成华(4)等,中国林业科学研究院资源昆虫研究所的郭元亨(5)等。而作为商品应用的胭脂虫红,通常是经过改性的,是一种水溶性钙铝色淀。本文对此种钙铝色淀进行检测研究,并与胭脂虫红酸检测进行比较。1 实验部分1.1仪器与材料Agilent Technologies 1260 高效液相色谱仪,色谱柱:ZORBAX SB-C18 StableBond Analytical 4.6*150mm 5-MicronAgilent Technologies 6530 Accurate-mass Q-TOF LC/MS,色谱柱:CNW.Athena UHPLC C18 2.1mm×100mm.1.8um. ANPEL,P/N LAEO-2110uA固相萃取柱:用100-200目聚酰胺粉自制,迪马ProElut PLS 500mg 6ml。改性胭脂虫红液体样品:广州市威伦食品有限公司提供,自制改性胭脂虫红标准品:经低温(50度)减压干燥制备。1.2实验过程1.2.1 固相萃取适用范围适用于水性饮料中胭脂虫红色素的测定。1.2.2提取吸取5mL饮料,200uL甲酸于试管中摇匀,作上样液待净化。1.2.3净化聚酰胺固相萃取小柱制作:取3mL的固相萃取用空柱,下端放些脱酯棉,将75-150um的聚酰胺粉加入甲醇成浆状,湿法装填,上用玻璃棒压实后聚酰胺填料厚度约为2cm。a活化:2mL酸化甲醇(500mL甲醇+10mL甲酸)和2mL水淋洗活化。流出液弃去;b上样:将待净化液加入小柱,流出液弃去;c淋洗:5mL水溶液,流出液弃去,将小柱抽干;d洗脱:5-10mL1%氨水/甲醇(1:1)溶液洗脱至无色,收集流出液,2%甲酸/甲醇溶液调至中性e重新溶解:40度下将洗脱液减压蒸馏(或氮吹)至近干,用50%甲醇水溶液溶解并定容至1mL,用0.2umPTFE滤膜过滤后HPLC分析1.2.4色谱条件流速:1.0mL/min进样量:10uL柱温:30度检测器:UV510nm流动相:A:0.05mmol/L乙酸铵,B:甲醇梯度设置时间/min02[size=1

  • 固相萃取-超高效液相色谱法-串联质谱法测定蜂蜜中甲硝唑

    固相萃取-超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法-串联质谱法测定蜂蜜中甲硝唑[color=black] [/color][font=宋体][color=black]甲硝唑(MNZ)属于硝基咪唑类广谱抗生素,广泛用于预防和治疗组织滴虫病、球虫病等疾病,甲硝唑因疗效明显,价格低廉,被蜂农广泛使用,造成了甲硝唑药物在蜂蜜中残留[/color][/font][font=宋体][sup][size=13px][1,2][/size][/sup][/font][font=宋体][color=black],研究发现甲硝唑对人体具有潜在的致癌和致畸作用[/color][/font][font=宋体][sup][size=13px][3,4][/size][/sup][/font][font=宋体][color=black]。1998年欧盟禁止甲硝唑使用于食品动物,2002年美国食品与药物监督管理局禁止在进口动物源性食品中使用甲硝唑[/color][/font][font=宋体][sup][size=13px][5,6][/size][/sup][/font][font=宋体][color=black]。我国农业部和国家药品监督管理局2002年规定甲硝唑及其盐、酯及制剂不准以促进动物生长为目的在所有食品动物饲养过程中使用,且不得在动物源食品中检出[/color][/font][font=宋体][sup][size=13px][7,8][/size][/sup][/font][font=宋体][color=black]。目前甲硝唑的测定方法主要有[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法[/color][/font][font=宋体][sup][size=13px][9][/size][/sup][/font][font=宋体][color=black]。其中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法-串联质谱法因选择性强、灵敏度高、检出限低而成为测定甲硝唑的优势方法[/color][/font][font=宋体][sup][size=13px][10][/size][/sup][/font][font=宋体][color=black]。本文将蜂蜜用乙酸乙酯萃取,提取液浓缩后经 [/color][/font][color=black]MCS [/color][font=宋体][color=black]固相萃取柱快速富集净化样品的前处理方法,减少前处理的操作步骤,同时降低基质干扰,利用超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法—串联质谱法测定蜂蜜中甲硝唑的方法,内标法定量,提高了检测效率,适合大批量样品检测。 [/color][/font][color=black]1.材料与方法[/color][size=16px][color=black] [/color][/size][color=black]1.1 仪器与试剂[/color][color=black]Waters Xevo TQ-S三重四极杆质谱仪(美国Waters),配有电喷雾离子源(ESI) Heidolph Multi Reax全能型振荡器(德国海道夫) 氮吹仪(美国Organomation);高速低温离心机(湘仪) 乙腈、甲醇(色谱纯,德国Merck);甲酸(色谱纯,上海麦克林);乙酸乙酯(色谱纯,美国Fisher);氨水(分析纯,天津科密欧);盐酸(优级纯,北京化工厂);MCS固相萃取小柱(天津,艾杰尔):500ml/6ml;甲硝唑标准品、D4-甲硝唑(纯度均大于99.0%)。实验用水为超纯水(电阻率为18.2mΩ.厘米)。[/color][color=black]1.2 样品前处理[/color][color=black]1.2.1 样品提取 称取蜂蜜5g(精确到 0.01 g)于50ml离心管中,加入100μlD4-甲硝唑内标应用液(20.0ng/ml),加水10ml,混合溶解,再加入10mL乙酸乙酯,涡旋1min,震荡提取 10min,1000rpm 离心 2min,吸取上层乙酸乙酯相 5mL 于10mL 试管,50℃氮气吹干后,加入 0.1mL 甲醇溶解,再加入 1.9mL 40mmol/L盐酸溶液,超声溶解 1min,转入 2mL 离心管,12000rpm 离心 2min,上清液待净化。[/color][color=black]1.2.2 样品净化 依次用 5mL 甲醇、5mL 水、5mL 40mmol/L 的盐酸溶液活化平衡MCS 固相萃取柱,然后转移上述上清液至 MCS 柱内,待样品过柱后,用 5mL水淋洗除杂,真空抽干柱内液体后加入 5mL 乙酸乙酯洗脱,再用 5mL 甲醇淋洗除杂,真空抽干后用 5mL 5%氨化甲醇洗脱,收集于 10mL 具塞试管内,得甲硝唑洗脱液;洗脱液在 50℃下用氮气吹干,分别先加入 0.1mL 甲醇超声溶解残留物,再加入0.9mL 10%甲醇/水溶液混匀,过 0.22μm 滤膜后待 [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS 分析。[/color][color=black]1.3 仪器条件[/color][color=black]1.3.1 [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]条件 色谱柱:Waters ACQUITY UPLC BEH C18(100 mm×2.1 mm,1.7 μm),流动相A为0.05% 氨水溶液,B为乙腈,流速为 0.3 mL/min,柱温:40 ℃,进样量 5.0 μl。[/color][color=black]1.3.2 质谱条件 电喷雾离子源:ESI;质谱多重反应监测方式:MRM;正离子模式(ESI+);毛细管电压:0.5 kV;离子源温度150 ℃;脱溶剂气温度400 ℃;脱溶剂气流量800 L/h。其它质谱参数见表1。[/color][align=center][color=black]表1 [/color]甲硝唑的质谱参数与保留时间[/align][table][tr][td][align=center]化合物名称[/align][/td][td][align=center]母离子[/align][/td][td][align=center]子离子[/align][/td][td][align=center]碰撞能量(eV)[/align][/td][td][align=center]锥孔电压(V)[/align][/td][td][align=center]保留时间(min)[/align][/td][/tr][tr][td][align=center]甲硝唑[/align][/td][td][align=center]172.2[/align][/td][td][align=center]128.1*[/align][align=center]82.1[/align][/td][td][align=center]18[/align][align=center]20[/align][/td][td][align=center]54[/align][/td][td][align=center]1.40[/align][/td][/tr][tr][td][align=center]D4-甲硝唑[/align][/td][td][align=center]176.2[/align][/td][td][align=center]128.1*[/align][align=center]49.0[/align][/td][td][align=center]22[/align][align=center]22[/align][/td][td][align=center]2[/align][/td][td][align=center]1.39[/align][/td][/tr][/table]注:*为定量离子[color=black]结果与讨论[/color][color=black] 前处理方法优化 针对蜂蜜样品和目标物的性质,比较了3种不同的前处理方式,包括:(1)采用水直接溶解蜂蜜,再将蜂蜜水溶液进行固相萃取净化;(2)加水溶解蜂蜜后,加入乙酸乙酯萃取目标物,取乙酸乙酯层并将溶剂吹干后加入超纯水溶解残渣,再进行固相萃取净化;(3)采用pH=8.8的磷酸缓冲液溶解蜂蜜,再将样品溶液进行固相萃取净化.通过加标回收实验比较回收率表明,本实验采用方法(2)的回收率明显高于其他2种方式,故对蜂蜜试样采用方法(2)前处理方式。[/color][color=black] 基质效应的影响 基质和干扰组分的存在影响待测物的离子化效率,从而影响定量结果的准确性,常表现为基质增强或基质抑制效应[/color][sup][size=13px][11][/size][/sup][color=black]。分别采用空白蜂蜜,按照实验方法提取与净化后的定容液和初始流动相作为标准溶液的稀释溶剂,通过测定标准溶液的峰面积的比值考察基质效应的强弱。结果表明:两者的峰面积比值为0.757,即蜂蜜基质对甲硝唑的测定具有一定的抑制效应,本实验选择同位素内标法定量,从而有效地降低样品的基质效应的对测定结果的影响。[/color][color=black]2.3 质谱条件的优化 将甲硝唑标准工作液注入质谱,启用质谱智能方法开发程序,优化碰撞能量,碰撞池电压等参数,进一步优化其他质谱参数使灵敏度和离子化效率达到最优时保存为质谱方法。离子对、碰撞能量、锥孔电压、电离方式见表1。[/color][color=black]2.4 方法的线性关系和检出限 以甲硝唑与相应同位素内标的色谱峰面积比(y)为纵坐标,以甲硝唑的质量浓度(x)为横坐标,绘制工作曲线,线性回归方程为Y=1.004X+0.1243,相关系数r:0.9996,线性关系良好。以信噪比S/N=3时对应的浓度为方法检出限为0.05[/color]μg/kg[color=black],S/N=10时对应的浓度为方法定量限为0.15[/color]μg/kg。标准工作曲线见图1。[align=center][color=black]图1 甲硝唑工作曲线[/color][/align][color=black]2.5 方法的精密度和回收率 [/color]以5g空白蜂蜜样品作为本底,分别加入高、中、低3种不同浓度标准应用液,得到浓度为1[color=black]μg/kg[/color]、5μg/kg、20μg/kg的加标样品,充分混匀后按样品处理方法进行处理,平行测定6次,计算其加标回收率和相对标准偏差(RSD),加标回收率分别为87%~96.3%,RSD在2.23~6.17%之间,结果表明,此方法具有良好的准确性和精密度。[color=black]2.6 样品检测[/color][font=calibri][size=13px] [/size][/font][color=black]采用本方法对市售30份不同蜂蜜样品进行检测,其中1份检出甲硝唑残留,含量是0.27 [/color]μg/kg,检出率为3.3%。3 结论本研究建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法—串联质谱法测定蜂蜜中甲硝唑的含量的方法,样品前处理采用乙酸乙酯提取,固相萃取柱富集和净化,净化效果好,提取效率高。不同蜂蜜样品基质效应使甲硝唑在质谱中存在不同程度的基质抑制效应,实际测定中蜂蜜的种类繁多,若使用外标法定量应尽量使用与待测样品基质相同的样品作基质匹配工作曲线,基质不同需要配置不同的曲线系列,大大增加了工作量。本研究采用同位素内标法定量,降低了样品的基质效应的影响,只需配置一套工作曲线,提高了工作效率。本方法快速、准确、灵敏,能够满足日常蜂蜜样品中甲硝唑残留的大批量检测。参考文献[1]梁明.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法对蜂蜜中氯霉素和甲硝唑残留的测定分析[J].中国高新科技,2019(17):72-73.[2]张晓艺,张秀尧,蔡欣欣,李瑞芬.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]联用三重四极杆质谱法同时测定蜂蜜中氯霉素、甲硝唑和林可霉素[J].预防医学,2019,31(02):212-216.[3]周贻兵,吴坤,李磊,林野,刘利亚.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定蜂蜜中甲硝唑[J].理化检验(化学分册),2017,53(08):946-949.[4]丁燕玲,陈彤,黄婷,钟名琴,吴雯娟,罗燕.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定鸡肉中甲硝唑、二甲硝唑及其代谢物的方法研究[J].广东化工,2018,45(13):245-248+252.[5]王春民,张秋萍,吴春霞.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法检测蜂蜜中的甲硝唑含量[J].食品安全质量检测学报,2016,7(05):1813-1817.[6]章剑,李昌安,李建伟,董骏,张克才.固相萃取-超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法同时测定蜂蜜样品中氯霉素和甲硝唑[J].安徽预防医学杂志,2018,24(01):16-20.[7]刘伟,张楠,李兵,范赛,屠瑞莹,吴国华,薛颖,赵榕.固相萃取-超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-同位素稀释串联质谱法测定蜂蜜中的甲硝唑和氯霉素[J].分析科学学报,2017,33(01):145-148.[8]肖国军,蔡超海,王生,覃玲.固相萃取高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法同时测定蜂蜜中甲硝唑、氯霉素、甲砜霉素和氟甲砜霉素残留[J].中国卫生检验杂志,2018,28(01):22-25.[9]高何刚,杜赛,王瑞,陈理.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定蜂蜜中氯霉素和甲硝唑残留[J].预防医学,2017,29(09):969-972.[10]高何刚.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]一串联质谱法测定蜂蜜中氯霉素和甲硝唑残留[J].广东化工,2017,44(15):255-256.[11]图雅,崔建平,赵宏.同位素内标-超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定蜂蜜中氯霉素及甲硝唑[J].中国食品卫生杂志,2017,29(04):450-453.

  • Diamonsil Plus 色谱柱 目前有吗?可以兼容沃特世 ACQUITY UPLC 超高效液相色谱吗?

    Diamonsil Plus 色谱柱 目前有吗?可以兼容沃特世  ACQUITY UPLC 超高效液相色谱吗?

    前些日子使用了Dikma Diamonsil Plus C18 色谱柱,主要针对水环境保护项目中水中苯系物来进行验证试验,采用HPLC和UPLC 两款安捷伦1100和沃特世 ACQUITY H-CLASS 仪器来进行,目前,进展比较顺利,Dikma Diamonsil Plus C18 色谱柱在A 1100上表现比较优异,分离度比较好,待进一步优化后,可以很好地应用在日常的分析过程中,节省人力物力,而且可以尽量避免接触有毒溶剂。(见图)http://ng1.17img.cn/bbsfiles/images/2015/04/201504211312_542824_2328678_3.jpg但是,目前遇到一个问题,就是在W UPLC -H-CLASS中,不知道迪马科技有没有相匹配的超高效液相色谱柱,有使用的朋友劳烦告知?另外,通过HPLC到UPLC的方法计算后发现,分离效果明显下降,希望有匹配的色谱柱出现,已完成此次验证试验。 求教大家!

  • 【原创】浅谈加压溶剂萃取技术-2

    [em09511]萃取压力(Pressure)“萃取压力”也是加压溶剂萃取技术区别于其传统的溶剂萃取技术的一个主要参数。在一台加压溶剂萃取仪中,萃取压力的首要作用是保证萃取溶剂在设定萃取温度下(室温~200℃)保持液态。足够的萃取压力使采用高于溶剂沸点的萃取温度成为可能,如在10~15Mpa(1500~3000psi)压力下,采用丙酮作为萃取溶剂,萃取温度设定可高达200℃。另外,升高的萃取压力还有一个对萃取非常有利的作用,那就是在较高的萃取压力下,萃取溶剂可以更快速而且更容易进入样品基质(包括基质中的水封孔隙或更小的气孔)中,很好的加快了样品基质和萃取溶剂之间的质量传输过程。因此,萃取压力和萃取温度相辅相成,从而达到快速高效的萃取。这里需要说明一点,萃取压力在10Mpa以上对萃取效率的影响就表现的很微小了,因此,在优化方法时不要一味追求高压力,正常使用中一般10~15Mpa就足够了,高则无益,反而会影响萃取仪的稳定性和使用寿命。萃取时间(Extraction Time)和循环次数(Cycle)设置一定的萃取时间,主要是提供待萃物从样品基质的微观结构扩散到萃取溶剂中的过程时间段。不同的样品基质以及不同的待萃物所要求的萃取时间均不同,以往的经验表明一般的商用萃取仪的萃取时间(静态时间)一般选择3~5min为宜。在优化萃取参数的过程中设定萃取时间往往与循环次数综合考虑。通常情况下,单次萃取时间最好不要过长(超过了吸附-解吸平衡所需的时间),一般选择5min以内为宜,如果实验结果不理想,可以考虑增加循环次数,这样可以利用干净的萃取溶剂进行多次萃取,从而更好的提高萃取效率。正常使用过程中一般的萃取次数多采用2~3次,个别特别难处理的样品的可以考虑增加循环次数至4~5次。如果萃取时间为5min,循环次数为4~5次,萃取结果还不理想,则要考虑优化其它萃取参数:更换萃取溶剂、升高萃取温度等。冲洗体积(Flush Volume)冲洗体积是指萃取时间结束后,萃取仪自动使用一定体积的干净萃取溶剂淋洗样品的过程。冲洗操作可以在循环次数之间用干净萃取溶剂置换萃取池中的萃取液,因此增加淋洗体积会有助于改善萃取的效果。商用的加压溶剂萃取仪的冲洗体积一般设定为萃取池体积的百分比数%,即如果选用33(100)ml的萃取池,冲洗体积设置为60%,那么淋洗的溶剂体积数即为33(100)×60%=19.8(60)ml。实验结果表明一般情况下,淋洗体积的选择在40~60%间即可,过多会造成萃取溶剂的浪费,同时也给后续浓缩净化等操作造成不必要的麻烦,当然最终的参数设置还是要以实验结果为准。这里需要说明一点,仪器中设定的冲洗体积为样品萃取实验中用来淋洗的总体积数,与循环次数设置的多少(n次)没有关系,如果实验中循环次数为n,那么每个循环结束后的淋洗体积则为冲洗体积设定值/n,因为在不同的循环切换中已经有溶剂置换发生,不需要很多的溶剂冲洗,同时这样设定也可以避免过多的溶剂浪费,以及防止收集瓶中萃取液溢出。加热时间和预热时间(Heating time and Preheating time)这里要解释一下在加压溶剂萃取仪上一个样品萃取流程中,“加热”和“预热”这两个萃取参数的区别。加热时间的主要目的是保证样品萃取池(包括内装样品以及萃取溶剂)与加热炉之间达到热平衡。商用的加压溶剂萃取仪感温探头检测的是加热炉的实时温度,而不是萃取池以及样品被加热的温度,因此在萃取流程里利用加热时间来保证萃取池的温度达到炉温,这一步骤在加载液体(压力达到设定值后)后计时,与之相对应的预热步骤则是在加载液体之前,预热的主要目的是在加入萃取溶剂以前加热萃取池(内含样品但没有萃取溶剂),以提高萃取效率。通常情况下,加热时间不需要设定(0S),只有在有特殊要求时再对样品进行预热处理,如在作生物样品时为了增加酸的溶解性可对样品提前加热。这里要注意一点,在使用预热功能时要注意考虑待萃物(处于样品基质中,周围没有萃取溶剂)在加热过程中可能发生的热降解或形态转化。吹扫时间(Purge Time)这个氮吹与我们实验室经常使用的氮吹浓缩仪的氮吹并不是一个概念。一台加压溶剂萃取仪中的氮吹主要目的是在萃取操作执行完成后,用氮气把流路中(包括萃取池)所有的萃取溶剂吹扫到收集瓶中,从而保证高的萃取回收率。通常情况下,一般的易挥发的萃取溶剂(有机),最后的氮吹时间60S足够了,对于水相溶剂或醇类或乙腈,最好设定100S左右,已确保吹扫完全。在线净化(On-line purification)应用加压溶剂萃取技术的全自动快速溶剂萃取仪,不仅可以实现高效萃取和在线过滤,而且还可以实现在线净化功能,此在线净化功能也可被称作“选择性萃取(Selective extraction)”。这一部分功能的实现主要是依托加压溶剂萃取实验方法的开发而取得的。目前市场上的加压溶剂萃取仪的样品萃取池多采用垂直定位方式,因此可以利用样品萃取池很方便的实现固相萃取(Solid Phase Extraction SPE)在线净化功能。具体的做法是将各种吸附材料直接放到萃取池中,然后在吸附剂上面填装样品,这样利用设置好的萃取以及淋洗条件,在萃取过程中同时实现萃取液的在线净化(SPE的原理)。另外,也可以采用基质固相分散(Matrix Solid Phase Dispersion MSPD)技术实现在线净化功能,即将吸附材料与我们的实验样品混合均匀填装到萃取池中进行萃取操作,我们的方法实验表明,在蔬菜中有机磷的萃取实验中,MSPD的在线净化效果以及加标回收率结果均要比SPE方式要好。当然,在净化实验中选择合适的萃取溶剂也是至关重要的,否则会影响净化效果或引起回收率的损失。目前,该方法中推荐的吸附剂有Florisil(食品中有机磷、氨基甲酸酯、有机氯等农残)、氧化铝(鱼肉类PCB)、硅胶(农残)、石墨化炭(农残中的色素去除)等等。加压溶剂萃取用户可能比较有疑问的几个问题!交叉污染(Cross contamination)众所周知,任何仪器设备,不论其样品处理模式是串联(顺序)处理或并联并行处理模式,在重复性的样品处理过程中,都有可能引起样品间的“交叉污染”。在使用加压溶剂萃取仪时用户自然也会考虑到在样品间切换时,是否会有残留(包括管路以及阀体上)不能冲洗干净(尤其是在农残实验中),进而造成样品间的交叉污染。现在商用的加压溶剂萃取仪都考虑到这一问题,我们开展了有机磷农残实验,故意将样品加标与样品空白交叉萃取,结果表明样品空白中没有任何异常的目标分析物(与之前的样品空白比较),同时样品加标90~110%的回收率也说明了加标样品的萃取非常完全。另外,加压溶剂萃取仪一般在流路设计上都具有较低的死体积(管路和阀体),而且在萃取过程中样品之间可以自动进行清洗操作,因此可以很好的避免样品间交叉污染的发生。热降解(Thermal degradation)加压溶剂萃取技术是在高温条件下的快速萃取,因此在优化方法时,目标化合物可能发生的热降解是一个必须考虑的问题。二异丙苯过氧化物常用来作为自由基的供体,热不稳定,在125℃即可发生热降解。实验表明,100℃时二异丙苯过氧化物有非常好的回收率~100%,然而等温度升高至150℃,二异丙苯过氧化物的回收率明显降低~77%。因此,在优化实验方法时要关注目标化合物可能发生的热降解问题。同时,二异丙苯过氧化物实验还表明如果将萃取溶剂脱气,即使在150℃的高温下,依然可以获得较好的回收率~91%,说明二异丙苯过氧化物在有氧条件下更容易降解。这一点也提示加压溶剂萃取仪的密闭式设计可以有助于较好的萃取那些容易被氧化的样品(如深海底泥、蔬菜水果保健品的提取、DDT的监测等),这是传统的萃取技术不能实现的一个优点。挥发性物质的萃取(Volatile compounds)如前所述,加压溶剂萃取伴随着萃取操作的是比较高的萃取温度(为了提高萃取效率,应适当选择在不影响待萃物回收率的前提下较高的温度,即优化萃取温度),这样对于我们研究环境挥发性有机污染物的用户来说,就比较担心在样品萃取过程中回收率是否能保证的问题。针对这样的问题,对土壤中BTEX(苯、甲苯、乙苯、二甲苯)的加标回收率做了萃取实验,实验的萃取温度采用200℃的高温,结果表明四种化合物的回收率在93~97%之间,多次测量的RSD%~3%。另外,国外也有同行利用60℃的萃取温度进行同样的实验,实验获得了很好的回收率~99%以及实验精密度~3%。对挥发性物质具有很好的回收率要归功于加压溶剂萃取仪本身高萃取压力的设计,在10Mpa以上挥发性待萃物的沸点大大提高,同时密闭性的萃取流路设计也很好的减少了待萃物的挥发损失。

  • 【原创大赛】高效液相色谱法-不同比例溶剂萃取钠钾钙镁注射液里硫、抗氧剂及降解产物回收率变化

    【原创大赛】高效液相色谱法-不同比例溶剂萃取钠钾钙镁注射液里硫、抗氧剂及降解产物回收率变化

    高效液相色谱法-不同比例溶剂萃取钠钾钙镁注射液里硫、抗氧剂及降解产物回收率变化 张永梅 (重庆市计量质量研究院)前言:现在我们实验室在做硫及抗氧剂的时候主要涉及到的前处理方法乙腈盐析、乙醇稀释,盐析的比例为1:1、乙醇稀释的比例为1:5,有的药液基质需要达到的检测限会比较小,为了找到能够达到要求合适的检测限,涉及不同梯度的比例,看其对回收率的影响。1. 实验材料1.1 标准样品:TNPP、抗氧剂1310、对特辛基酚、抗氧剂BHT、硫、抗氧剂3114、抗氧剂1010、抗氧剂330、抗氧剂1076、等9种组分。1.2 试剂:乙腈(默克股份两合公司)、乙醇(Fisher Chemical)、甲醇(KnowlES)、磷酸和氯化钠(重庆川东化工有限公司)1.3 药液:钠钾钙镁注射液1.4 仪器:LC-20AD 高效液相色谱仪( 日本岛津公司)、SPD-M20A 检测器1.5 色谱柱:C18柱子2.实验方法2.1 色谱条件:0.10 泵 B.Conc 7010.00 泵 B.Conc 3025.00 泵 B.Conc 526.00 泵 B.Conc 038.00 泵 B.Conc 040.00 泵 B.Conc 7044.00 泵 B.Conc 7045.00 控制器 Stop 流动相A:甲醇 流动相B:0.1%磷酸 流速:0.4ml/min 进样体积:6ul2.2 前处理方法2.2.1 乙腈盐析:准确加入2ml、3ml、4ml、5ml、6ml药液,加入相同体积的标准溶液,加入2ml乙腈,加入一定体积的氯化钠,旋涡震荡使其盐析分层,过0.45um滤膜后上机测试。2.2.2 乙醇稀释:准确加入1ml药液,加入一定体积的标准溶液(使其每个样品加标浓度相等),加入1ml、2ml、3ml、4ml乙腈,旋涡震荡使其混匀,过0.45um滤膜后上机测试。3. 实验结果及分析3.1 不同比例乙腈盐析回收率结果:[img=,658,421]https://ng1.17img.cn/bbsfiles/images/2020/06/202006181654319989_2326_3399404_3.png!w658x421.jpg[/img]随着药液体积的增加(水相的体积增加),加入一定量的氯化钠,乙腈在水相的比例增加,导致待测物质回收率偏大。乙腈盐析在该基质为了提高方法的检测限,药液与乙腈的最适比例(1.5:1)。3.2 不同比例乙醇稀释回收率结果:[img=,658,421]https://ng1.17img.cn/bbsfiles/images/2020/06/202006181655181146_4256_3399404_3.png!w658x421.jpg[/img]随着乙醇体积的增加(有机相的体积增加),有机相比例低的时候,回收率不能达到要求,但随着有机相的比例增加,方法检测限增大,达不到要求,该基质为了降低方法的检测限,药液与乙醇的最适比例(1:3)。

  • 【原创大赛】血清中纳曲酮及其代谢物6-β-纳曲酮醇的高效液相色谱分析

    【原创大赛】血清中纳曲酮及其代谢物6-β-纳曲酮醇的高效液相色谱分析

    血清中纳曲酮及其代谢物6-β-纳曲酮醇的高效液相色谱分析 纳曲酮是一种阿片受体拮抗剂,其用于酒精中毒治疗及阿片类药物依赖已有几十年的历史,一些临床试验已证明纳曲酮是一种有效的酒精中毒辅助用药。临床已经证明纳曲酮相比安慰剂能够减少嗜酒复发率和对酒精的渴望。服用纳曲酮后经过快速和广泛的肝脏代谢由酶将酮还原为主要代谢物6-β-纳曲酮醇及其他代谢产物:(如下图)http://ng1.17img.cn/bbsfiles/images/2014/12/201412302127_530344_2184412_3.jpg 与纳曲酮相比6-β-naltrexol阿片受体拮抗剂作用较弱,但其仍对于疗效有贡献,因为其在体内浓度甚至高于纳曲酮。纳曲酮及其代谢物大多是以共轭形式存在。在肝硬化及其他严重的肝脏疾病中这种纳曲酮到6-β-naltrexol的代谢会有减少。随着药物治疗临床检测的发展,本次试验意于开发一种纳曲酮到6-β-naltrexol在人体血清中的同时检测手段。材料与方法:纳曲酮、6-β-纳曲酮醇、色谱甲醇纳曲酮和6-β-纳曲酮醇储备溶液制备成含1 mg/ml的甲醇溶液。储备溶液用于制备标准曲线溶液,浓度范围0-1ug/ml, 所有的校准标准,空白和质量控制样品, 均配置在空白血清中;所有缓冲液,制备用去离子水。临床采样:样品来自87个酗酒后的受试者,酗酒者采用双盲实验,设安慰剂对照组和药物治疗组,来评估对酒精依赖的作用。入选标准为18-65岁酒精依赖者。纳曲酮(盐酸纳曲酮)是每天早上50毫克口服,为期三个月。血液样品收集于服药后约2-4小时,空白血清样品采集于第一周、第二周和第八周,并使其凝固,离心(4000转[font=Times New Rom

  • 如何高效有效地取田螺肉、螃蟹肉来测定

    要测定花螺中的氯霉素等药残,用牙签一个一个挑螺肉实在是效率低啊;至于取螃蟹肉就更无语了。求教各位老师,有没有好的经验、方法或者器具可以减轻劳动量提高效率啊?

  • 【原创大赛】横空出世—防腐高效溶样罐,溶解技术的终结产品!

    【原创大赛】横空出世—防腐高效溶样罐,溶解技术的终结产品!

    近年来,随着测试分析技术的发展,特别是AAS、ICP-OES与ICP-MS的广泛应用,促进了样品消解技术的快速进步。目前消解的方法很多,应用比较广的有四种消解方法:1.敞口溶样消解法,2.普通溶样罐消解法,3.微波消解法,4.压力反应消解法。本论文就这些方法进行综合评述,研究这些方法的优缺点,加以综合,并采用力学设计优化,根据实际实验需要,最终设计防腐高效溶样罐,一款代表国内乃至世界顶尖设计水平的溶样罐,其减少人力、物力与财力,提高效率,使得无机消解水平在国际领域占有一席之地,成为一代消解容器的终结产品。 本文详细论述了开口溶样、PFA普通溶样、微波消解溶样、高压釜溶样等溶样方法的优缺点,并对这些方法进行评述,结合优缺点,最终设计防腐高效溶样罐,防腐、高效、简单、秒扣等特点成为溶样设备的终结产品,也将成为取代国际主流产品,占据世界消解前处理的舞台,让我们拭目以待吧!http://ng1.17img.cn/bbsfiles/images/2013/07/201307051056_449538_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051057_449539_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051057_449540_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051057_449541_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051057_449542_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051057_449544_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051058_449546_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051058_449549_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051058_449550_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051058_449551_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051058_449552_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051058_449553_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051059_449554_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051059_449555_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051059_449556_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051059_449557_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051059_449558_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051100_449559_2329805_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307051100_449560_2329805_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制