当前位置: 仪器信息网 > 行业主题 > >

数显液位仪

仪器信息网数显液位仪专题为您提供2024年最新数显液位仪价格报价、厂家品牌的相关信息, 包括数显液位仪参数、型号等,不管是国产,还是进口品牌的数显液位仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数显液位仪相关的耗材配件、试剂标物,还有数显液位仪相关的最新资讯、资料,以及数显液位仪相关的解决方案。

数显液位仪相关的资讯

  • 西安光机所研发出颜色迁移傅里叶叠层显微术方法
    论文首页。CFFPM方法的恢复流程及结果对比。 论文作者供图使用光学显微镜进行病理切片检查是癌症诊断的“金标准”。然而传统的数字病理学常常使用高倍物镜和扫描拼接的方法来获得大视场、高分辨率图像,高精密电动位移台、高倍物镜、脉冲光源等组件价格昂贵,提高了仪器设备的成本,大量的机械运动也会减缓成像的时间效率。同时,高倍物镜带来的景深狭小和机械扫描拼接带来的伪影、重影、失败问题等也降低了成像的质量。2013年发明的傅里叶叠层显微术(Fourier ptychographic microscopy, FPM)使用低倍物镜获得天然的大视场,可通过多角度扫描方式采集一组低分辨率图像,在频域中迭代重构获得高分辨率的结果。这一成果无需机械扫描就能获得高分辨率、大视场图像,而有效地解决了传统扫描成像的质量问题,突破了传统显微成像中分辨率与视场之间的矛盾关系,使得在数字病理学中实现高通量成像成为可能。全彩色FPM成像对于分析标记的组织切片至关重要。传统扫描拼接依托彩色相机速度很快,尽管FPM技术在单通道下有高通量优势,但是彩色化下使用传统的RGB序列照明合成则会缩小3倍通量,因此如何在保持精度的同时提高彩色化效率,保持高通量的优势,突破精度与效率的矛盾关系成为了主要的科学问题。2021年,中国科学院西安光学精密机械研究所潘安、马彩文、姚保利团队提出了一种称为颜色迁移傅里叶叠层显微术(CFPM)的方法,在几乎无精度损失的情况下将效率提高了3倍,相关工作以封面文章形式发表于《中国物理、力学与天文学》 (Science China Physics, Mechanics & Astronomy )。但是,由于缺乏对颜色传递过程中空域信息约束,该方法无法恢复多色染料染色的复杂样品,且极大依赖GPU的并行计算。为此,该团队又进一步提出了一种改进的FPM全彩色成像算法,称为颜色迁移滤波傅里叶叠层显微术(CFFPM)。该方法将交叠分块、三边滤波与全彩色FPM迁移学习模型相结合,前者降低了解空间的搜寻范围,后者引入了空域的先验信息,有效地匹配了最合适的颜色传递像素和滤除了杂色,也进一步通过迭代在两个色彩空间的颜色精炼,从而彻底克服了CFPM的重要缺陷。据了解,他们通过实验对比了26个样本的统计结果,精度方面,CFPM和CFFPM与RGB序列照明方法相比均方误差分别高4.76%和1.26%;视觉效果方面,CFFPM能够有效分辨多色染料染色的复杂样本,结果与RGB序列照明方法难以分出差别;时间效率方面,与RGB序列照明方法相比,CFPM和CFFPM都具有更高的效率,与在CPU上运行的CFPM相比,CFFPM方法的运行时间从几小时减少到几分钟;临床应用方面,因颜色精度对于病理判断至关重要,同时,简单地加快成像速度会导致彩色成像的精度损失。而CFFPM在两者之间做到了较好的取舍,在快速成像的同时保持了高精度彩色成像的优势,使得结果能够被病理学家可用可接受,特别是对时间敏感的术中病理,具有重要的应用前景。此外,CFFPM无需GPU加速,由于其低成本硬件要求,可广泛推广到实际应用中,为计算光学成像在数字病理学中的临床应用提供了新思路。其相关成果于2022年9月30日在线发表于 《光子学研究》(Photonics Research) 。该领域的相关专家认为,此项工作将先验的空域信息和颜色空间迭代精炼思想引入到了快速全彩色FPM研究中,对于促进FPM在数字病理学中的发展具有重要意义。据悉,潘安、马彩文、姚保利团队在计算光学显微成像方面开展了长期系列创新型研究工作,积累了大量研究成果。该项目前期所开展的基础性研究得到了国家自然科学基金重大科研仪器研制项目、面上项目、青年项目等项目的支持,为该论文实现关键技术攻关及预期研究目标奠定了良好的基础。
  • GB 30871-2022《危险化学品企业特殊作业安全规范》新旧对比
    3月15日国家市场监督管理总局(国家标准化管理委员会)发布2022年第3号公告,批准发布《危险化学品企业特殊作业安全规范》(GB 30871-2022)(文末有正式版下载) 。作为国家强制性标准, 新规范将于2022年10月1日起正式实施 ,代替当前现行的《化学品生产单位特殊作业安全规范》(GB 30871-2014)。特殊作业环节一直是危险化学品企业安全管理的难点和事故高发环节。《化学品生产单位特殊作业安全规范》(GB 30871-2014)自2015年实施以来,有效防范和遏制了企业在特殊作业环节发生的事故,但在标准执行过程中也暴露出部分现行标准条款约束力度不强,企业对标准的认知存在一些偏差和误区,对作业风险的管控措施仍需完善等问题。修订后的标准技术要求由原来的部分条款强制调整为全文条款强制,适用范围调整为生产、经营(带储存)危险化学品的企业和化工及医药企业,明确了上述企业在其生产区域内进行特殊作业应执行标准的相关要求。主要修改内容:一.扩大了界定范围——由原来仅适用于化学品生产单位设备检修中动火、进入受限空间、盲板抽堵、高处作业、吊装、临时用电、动土、断路的安全要求。扩大到化学品生产单位生产过程中。——明确增加了化学品生产单位储罐切水、液化烃充装以及风险较大的设备检维修作业参照执行。其他行业的相似作业可参照执行二.在规范性引用文件中增加了技术标准增加的技术标准如下:GB 16483 化学品安全技术说明书 内容和项目顺序GB 26557 吊笼有垂直导向的人货两用施工升降机GB/T 29510 个体防护装备配备基本要求GB 50484 石油化工建设工程施工安全技术规范GB 50493 石油化工可燃气体和有毒气体检测报警设计规范GB 51210 建筑施工脚手架安全技术统一标准GB 6441 企业职工伤亡事故分类JJG693可燃气体检测报警器JJG915一氧化碳检测报警器检定规程JJG551二氧化硫气体检测仪检定规程JJG695硫化氢气体检测仪检定规程三.增加了术语定义——引入了 “能量隔离”的概念。——增加了 “固定动火区”的定义及管理要求。四.细化整合了管理内容——突出了监护人的职责,规定了监护人需佩戴明显标识,持培训合格证上岗要求。——调整了动火作业分级的叫法,将原文件中的动火作业分级由“特殊、一级、二级”修正为“特级、一级、二级”,以保持分类统一。——为避免重复,整合了八大作业的通用性要求至基本要求中。——细化了交叉作业定总协调人,统一管理、协调作业、可靠的隔离等具体内容。——修正了特级动火的划分范围,将“在运行状态下的火灾爆炸危险场所生产装置设备、管道、 储 罐、容器等部位上进行的动火作业(包括带压不置换动火作业);运行中的重大危险源罐区防火堤内 动火作业”划为特级动火,进一步明确了动火作业中应采取的隔离易燃、可燃介质的安全措施。——规定了动火作业中断30分钟要重新检测的要求。——提出了特级作业和受限空间内作业需连续检测气体浓度的要求。——扩大受限空间作业范围,只要是“封闭、半封闭、通风不良”均为受限空间作业。——调整了受限空间作业氧气浓度氧含量为 19.5%~21%的要求。——增加了当一处受限空间内存在动火作业时,该处受限空间内严禁安排涂刷等其他作业活动。——规定了在化工危险场所动土时,遇有埋设的易燃易爆、有毒有害介质管线、窨井等可能散发易爆、中毒、窒息危险时,执行受限空间作业相关规定。——调整了挖出的泥土应堆放在距坑、槽、井、沟边沿至少 1m 处,堆土高度不得大于 1.5m。——增加了在运行的生产装置、罐区和具有火灾爆炸危险场所内接临时电源,临时用电时间严禁超过所提供服务的特殊作业的有效时间。——增加了在可燃、易爆粉尘环境下进行特殊作业的安全要求。新旧版条款对照正式扫描版本:GB 30871-2022《危险化学品企业特殊作业安全规范》(正式标准版)正式可编辑版本:GB 30871-2022 危险化学品企业特殊作业安全规范
  • GB 30871-2022《危险化学品企业特殊作业安全规范》正式发布
    近日,国家市场监督管理总局(国家标准化管理委员会)发布2022年第3号公告,批准发布《危险化学品企业特殊作业安全规范》(GB 30871-2022)(文末可下载)。作为国家强制性标准,新规范将于2022年10月1日起正式实施,代替当前现行的《化学品生产单位特殊作业安全规范》(GB 30871-2014)。新标准部分视图第一时间阅读:GB 30871-2022《危险化学品企业特殊作业安全规范》
  • 超小角X射线散射仪丨让微粒测量不是问题
    近几十年来最伟大的技术成就离不开纳米材料。它们为医学、可再生能源、化妆品、建筑材料、电子设备等领域的突破性改进奠定了基础。纳米材料具有形成新材料的潜力,因此人们对它们的性能和相互作用有很大的研究兴趣。各种纳米结构材料在现代材料中起着至关重要的作用。然而,这种体系通常与较大的结构共存,仅分析纳米级或微米级并不能完全表征样品。小角X射线散射 (SAXS)是表征纳米结构材料的标准方法之一,因为其广泛的适用性和原位测试的可能性。“经典”小角散射被限制在大约300 nm的最大尺寸范围内,当涉及到大尺寸范围的体系时,限制了SAXS的使用。USAXS (ultra-small angle X-ray scattering) 可以通过测量极小的散射角,将X射线散射实验的可探测尺度范围扩展到微米范围。通过这种方式,可以在单个装置中测量微米和纳米尺度,使得SAXS成为纳米颗粒分析中最通用的表征方法之一。本文我们展示了USAXS测量二氧化硅微球,作为该方法概念的证明。使用Anton Paar SAXSpoint 5.0小角X射线散射仪配备了可选的USAXS模块。安装这个USAXS模块后,X射线散射实验的最小q值 (qmin) 可达0.0012 nm-1(0.00012 Å)。这对应的实空间颗粒尺寸可达2.6 µm。SAXSpoint 5.0这种扩展的超小q范围可通过使用所谓的Bonse-Hart设置来实现,其中两块对齐和精确切割出Si 220通道切割组件。在测量中,主通道切口(位于样品前)用于进一步准直光束并进一步减小光束发散。次级CC用作分析晶体,以极小的角度增量扫描散射光子,以记录USAXS曲线。图 1: 安装在SAXSpoint 5.0系统内的 Anton Paar USAXS 模块在实验中,通道切割组件可以移入和移出光束。这允许测量大q范围内连续散射曲线(高达四十多),涵盖USAXS、SAXS和WAXS区域。SAXSpoint的USAXS模块是集成到SAXSdrive数据采集软件中并可实现自动测量实验为了证明Anton Paar USAXS模块的潜力,购买了一种经验证直径为 (1.53 ± 0.02) µm颗粒的水溶液。对该实验,系统配备了Primux 100 Cu Kα( λ = 0.154 nm)的微焦斑X射线管,Anton Paar USAXS 模块,和Dectris的EIGER2R 1M探测器。USAXS数据是在透射模式下采集q范围从0.0012 nm-1到0.04 nm-1。 为了防止测量过程中出现沉淀Primux 100 Cu Kα( λ = 0.154 nm),测量是在连续流动的情况下进行的,同时不断搅拌储液罐中的溶液。图 2: USAXS测量数据和1.53 µm特定直径的二氧化硅颗粒分散体的拟合数据。使用简单的IFT(反傅里叶变换)拟合来分析数据。图2显示了IFT拟合曲线与数据点。可以看出,拟合完美的与测量数据吻合。图 3: 拟合的 p(r) 曲线。根据对称的 p(r) 曲线,计算出球的直径为1.515 µm。图3显示通过拟合得到的相应的对距离分布函数(PDDF或p(r)),用于拟合的最大尺寸为1600 nm。PDDF的对称形状证实了是球形颗粒 ,通过p(r) 计算均匀球体的直径,得出Dmax 为1.515 µm。这与标称粒径1.530 µm 完全一致。由于不需要多分散性来模拟数据,因此也就证明了样品的单分散性。结论这个研究可以证明,在带有微焦斑X射线管的SAXSpoint 5.0 系统上,qmin 为0.0012 nm-1 的超小角X射线散射是可行的。这使得USAXS也可以在实验室使用,减少了对同步加速器线站实验的需求。成功测量和评估了标称直径为1.53 µm的SiO2球体的数据。散射数据的评估结果是颗粒直径为1.515 µm,与标称粒径非常一致。此外,还证明了样品的单分散性。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 微束X射线荧光谱仪研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 113" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " 微束X射线荧光谱仪 /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " 北京师范大学 /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 联系人 /p /td td width=" 183" p style=" line-height: 1.75em " 程 琳 /p /td td width=" 159" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 192" p style=" line-height: 1.75em " Chenglin@bnu.edu.cn /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " □正在研发 √已有样机 □通过小试 □通过中试 & nbsp & nbsp □可以量产 /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " □技术转让 & nbsp & nbsp √技术入股 & nbsp & nbsp √合作开发& nbsp & nbsp √其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp & nbsp 利用毛细管X光透镜会聚X射线的特点,研发出毛细管X光透镜的微束X射线荧光谱仪。在计算机软件的控制下,实现样品微区的点、线和面扫描分析。根据实验的需求,可配备聚焦光斑直径从10-200微米的毛细管X光透镜。基本参数法的定量分析软件,可实现不同形状、不同基体的多种类样品的定量分析。在工业生产、科学研究和文物保护等领域有广泛的应用前景。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 微区的X射线荧光分析,微区的光斑根据实验的需要从10微米-200微米之间选择,实现样品微区的点、线扫描和面扫描分析。适用于工业生产、科学研究、贵金属检测和文物保护等多领域,有广泛的市场前景。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 拥有自己核心的技术和专利。 /p /td /tr /tbody /table p br/ /p
  • 果蔬呼吸测定仪,为农产品保鲜研究提供数据支持
    在农产品储藏与保鲜研究中,果蔬的呼吸强度是决定其新鲜度和质量的关键因素。果蔬呼吸测定仪正是为此类研究量身定制的工具,能够测量果品和蔬菜在不同储藏条件下的呼吸强度,为研究人员提供科学、可靠的数据支持,从而延长果蔬的保鲜期,确保其品质。了解更多果蔬呼吸测定仪产品详情→https://www.instrument.com.cn/show/C542220.html果蔬呼吸作用的重要性在储藏期间,果蔬仍然会进行呼吸作用,消耗氧气并释放二氧化碳。如果这一过程不加以控制,会加速果蔬的老化和腐败,进而影响其营养价值和口感。因此,精确测量并掌握果蔬的呼吸强度,对于制定科学的储藏策略至关重要。有效测量多项关键参数果蔬呼吸测定仪能够有效测量二氧化碳浓度、氧气浓度、温度和湿度等多项关键参数,帮助研究人员实时掌握果蔬的呼吸动态。这些实时数据不仅有助于优化储藏条件,还能显著提高保鲜效果,延长果蔬的货架期。灵活设计,适应多种果蔬该测定仪的设计充分考虑了各种果蔬的不同大小,提供了多种体积的呼吸室选择。研究人员可以根据果蔬的具体类型和大小,选择合适的呼吸室,从而缩短实验的平衡时间并大大提高测量效率。这种灵活性使果蔬呼吸测定仪在食品、园艺、果蔬外贸等多个领域中广泛应用。简便有效的操作流程使用果蔬呼吸测定仪进行研究,过程简便而高效。将待测果蔬放入呼吸室后,研究人员只需设定采集时间间隔,便可以通过主机显示屏实时监测CO2和O2浓度的变化。仪器不仅能测量多个参数,还可以同步显示温度和湿度信息,确保实验数据的全面性和可靠性。数据导出与分析支持数据采集完成后,果蔬呼吸测定仪支持快速导出数据,方便研究人员进行后续的分析处理。通过专门的软件,研究人员可以对数据进行计算和分析,准确掌握果蔬在不同储藏条件下的呼吸强度变化。这些数据不仅对优化储藏环境非常重要,还能为果蔬的市场销售提供科学依据,确保消费者享受到更为新鲜和高品质的果蔬产品。果蔬呼吸测定仪的应用价值总的来说,果蔬呼吸测定仪是农产品保鲜研究中的一项重要工具。它帮助研究人员深入理解果蔬在储藏过程中的生理变化,从而制定出更为有效的保鲜策略。无论是在科研院所、学校,还是在食品企业中,果蔬呼吸测定仪都展现出了良好的应用价值,推动农产品保鲜研究取得新的突破。
  • 迷你数显折射仪 日本ATAGO(爱拓)的应用
    迷你数显折射仪(又名折光仪)的应用与刻度式手持折射仪/折光仪类似,其数显折射仪(又名折光仪)特性可以有效消除人为读数误差,同时减轻操作者视力疲劳度。 ATAGO(爱拓)的PAL系列迷你数显折射仪/折光仪是手持式折射仪/折光仪的创新与代表,完全颠覆了过去用户对于手持式折射仪/折光仪的传统认知,数字显示,仅手掌大小,重100g。 PAL迷你数显折射仪/折光仪拥有让您惊奇的快速测量能力。只要将一滴样本溶液置于棱镜上,然后按「开始」键,糖度值会在3秒之内显示。具有数字LCD显示面版,可以避免主观错误的数值判读。PAL迷你数显折射计/折光仪可流水冲洗,具自动温度补偿,能测量高温样品,您将会对它的尺寸、设计、功能与性能感到惊奇!(日本ATAGO爱拓 折射仪&mdash 折射仪/折光仪&mdash 折光仪/旋光仪&mdash 旋光仪) ATAGO(爱拓)的AP-300旋光仪旋光仪是一款具有旋光度和国际标准糖度(ISS)双标度的全自动旋光仪旋光仪,AP-300全自动旋光仪/旋光仪专为需要测定旋光度和糖度的制糖行业而设计的一款旋光仪旋光仪。 ATAGO(爱拓)是专业的折光仪/折射仪与旋光仪旋光仪生产厂商,生产多种类型的折光仪/折射仪及旋光仪 旋光仪。提供生产原料及成品的Brix值、折射率、盐度、糖度、物质浓度 、旋光度的测量方案!更多折光仪/折射仪/旋光仪旋光仪详情请点击 www.atago-china.com 或致电020-38108256 ATAGO(爱拓)中国分公司咨询。
  • 帮扶中小微企业纾困解难若干措施出台 利好仪器仪表企业
    近期,受外部环境复杂性不确定性加剧、国内疫情多发等影响,市场主体特别是中小微企业困难明显增加,生产经营形势不容乐观,迫切需要进一步采取有力措施帮扶中小微企业纾困解难,实现平稳健康发展。为此,国务院促进中小企业发展工作领导小组办公室印发《加力帮扶中小微企业纾困解难若干措施》。   一、各地要积极安排中小微企业和个体工商户纾困专项资金,优化支出结构,加大对受疫情影响暂时出现生产经营困难的中小微企业和个体工商户的支持,结合本地实际向困难企业和个体工商户提供房屋租金、水电费、担保费、防疫支出等补助并给予贷款贴息、社保补贴等。(各地方负责)   二、2022年国有大型商业银行力争新增普惠型小微企业贷款1.6万亿元。对受疫情影响暂时出现生产经营困难但发展前景良好的中小微企业和个体工商户,银行根据自身风险管理能力和借款人实际情况,合理采用续贷、贷款展期、调整还款安排等方式予以支持,避免出现抽贷、断贷;其中,对2022年被列为中高风险地区所在地市级行政区域内餐饮、零售、文化、旅游、交通运输、制造业等困难行业,在2022年底前到期的普惠型小微企业贷款,银行如办理贷款展期和调整还款安排,应坚持实质性风险判断,不单独因疫情因素下调贷款风险分类,不影响征信记录,并免收罚息。进一步落实好小微企业不良贷款容忍度和尽职免责要求,支持银行按规定加大不良贷款转让、处置、核销力度。构建全国一体化融资信用服务平台网络,加强涉企信用信息共享应用,扩大中小微企业信用贷款规模。(人民银行、银保监会、财政部、发展改革委按职责分工负责)   三、发挥政府性融资担保机构作用,扩大对中小微企业和个体工商户的服务覆盖面,对受疫情影响较大行业的中小微企业和个体工商户加大服务力度。进一步落实银担分险机制,扩大国家融资担保基金、省级融资再担保机构对中小微企业和个体工商户的再担保业务覆盖面;对于确无还款能力的中小微企业和个体工商户,依法依约及时履行代偿义务。(财政部、银保监会、工业和信息化部会同各地方按职责分工负责)   四、支持银行为中小微企业提供汇率避险服务,支持期货公司为中小微企业提供风险管理服务。进一步扩大政策性出口信用保险覆盖面,针对性降低短期险费率,优化理赔条件,加大对中小微外贸企业的支持力度。鼓励保险机构针对中小微企业的风险特征和保险需求,丰富保险产品供给。(银保监会、证监会、外汇局、中国出口信用保险公司按职责分工负责)   五、开展防范和化解拖欠中小企业账款专项行动,集中化解存量拖欠,实现无分歧欠款应清尽清,确有支付困难的应明确还款计划,对于有分歧欠款要加快协商解决或运用法律手段解决。加大对恶意拖欠中小微企业账款、在合同中设置明显不合理付款条件和付款期限等行为的整治力度。开展涉企违规收费专项整治行动,建立协同治理和联合惩戒机制,规范收费主体收费行为,加强社会和舆论监督,坚决查处乱收费、乱罚款、乱摊派。(工业和信息化部、财政部、国资委、发展改革委、市场监管总局会同各地方按职责分工负责)   六、做好大宗原材料保供稳价,运用储备等多种手段,加强供需调节,促进价格平稳运行。加强大宗商品现货和期货市场监管,严厉打击串通涨价、哄抬价格等违法违规行为,维护市场价格秩序。鼓励有条件的地方对小微企业和个体工商户用电实行阶段性优惠,对受疫情影响暂时出现生产经营困难的小微企业和个体工商户用水、用电、用气“欠费不停供”,允许在6个月内补缴。制定出台减并港口收费项目、定向降低沿海港口引航费等政策措施。(发展改革委、工业和信息化部、市场监管总局、证监会、海关总署、交通运输部会同各地方按职责分工负责)   七、加强生产要素保障,将处于产业链关键节点的中小微企业纳入重点产业链供应链“白名单”,重点加强对企业人员到厂难、物料运输难等阻碍复工达产突出问题的协调解决力度。深入实施促进大中小企业融通创新“携手行动”,推动大中小企业加强创新合作,发挥龙头企业带动作用和中小微企业配套能力,助力产业链上下游中小微企业协同复工达产。各地方要综合施策保持中小微企业产业链供应链安全稳定,建立中小微企业人员、物流保障协调机制,引导企业在防疫措施落实到位的情况下采取闭环管理、封闭作业等方式稳定生产经营。(工业和信息化部、发展改革委、交通运输部会同各地方按职责分工负责)   八、2022年中小微企业宽带和专线平均资费再降10%。加强制造业中小微企业数字化转型培训,开展中小微企业数字化转型“把脉问诊”。鼓励大企业建云建平台,中小微企业用云用平台,云上获取资源和应用服务。鼓励数字化服务商为受疫情影响的中小微企业减免用云用平台的费用。通过培育具有较强服务能力的数字化服务平台,加大帮扶力度。(工业和信息化部、财政部会同各地方按职责分工负责)   九、鼓励开展绿色智能家电、绿色建材下乡活动和农产品产地市场建设,大力支持开展公共领域车辆电动化城市试点示范,努力扩大市场需求。(市场监管总局、发展改革委、农业农村部、商务部、工业和信息化部、交通运输部会同各地方按职责分工负责)   十、深入开展“一起益企”中小企业服务行动和中小企业服务月活动,组织和汇聚各类优质服务资源进企业、进园区、进集群,加强政策服务,了解中小微企业困难和诉求,帮助中小微企业降本增效。鼓励地方采取“企业管家”“企业服务联络员”等举措,深入企业走访摸排,主动靠前服务,实行“一企一策”“一厂一案”差异化举措,帮助企业解决问题。发挥各级中小企业公共服务示范平台和小型微型企业创业创新示范基地作用,健全完善“中小企助查”APP等政策服务数字化平台,为企业提供权威政策解读和个性化政策匹配服务,打通政策落地“最后一公里”。开展全国减轻企业负担和促进中小企业发展综合督查,压实责任、打通堵点,推动政策落地生效。(工业和信息化部会同各部门、各地方按职责分工负责)   国务院要求,各地、各有关部门要切实把思想和行动统一到党中央、国务院决策部署上来,充分发挥各级促进中小企业发展工作机制作用,结合实际进一步细化纾困举措,推动助企纾困政策落地见效;加强运行监测和分析研判,密切关注中小微企业运行态势,推动企业家参与制定涉企政策;建立横向协同、纵向联动的工作机制,强化组织领导和统筹协调,形成助企纾困支持合力。
  • 天瑞仪器献爱心 为玉树灾区募捐
    我们牵挂玉树,因为我们同是中华民族大家庭的成员 我们心系玉树,因为我们相信,生命至上。   青海玉树地震发生以来,数着废墟下诸多生灵正经历生死磨难的分分秒秒,救灾者在与时间竞跑,无数人为玉树心悬心忧心急,从国家主席、总理到普通百姓。自4月14日玉树发生7.1级强震,全国上下,四面八方,一股强大的抗震救灾力量源源不断向玉树集结。   还记得5.12时你我手捧着烛光,说着“汶川,坚强” 还记得那三分钟车船鸣笛,驻足默哀时,内心坚定的信念“中国,坚强”!   4月20日,作为汶川地震后率先为灾区捐款的爱心企业,天瑞仪器又一次快速反应为玉树地震灾区举行募捐活动,向全体员工发出捐款倡议。   天瑞仪器捐款现场热情涌动   中午12点,自愿捐款现场,天瑞仪器全体员工、经理及董事长齐聚一堂,参加“天瑞仪器情系玉树”捐款活动,利用午餐前的时间,将一份份爱心,汇集,短短的25分钟时间就募得数万元,这里面汇聚了天瑞员工对玉树灾区的一份份牵挂!   天瑞仪器员工积极献爱心   小爱动人,大爱无疆!我们不能阻止灾难,但我们众志成城可以尽量减少灾难造成的伤害,我们可以用温暖的爱去抚平那些劫后余生者心中的伤痕。灾难,触动大家人性中最美的情感 爱心,将华厦儿女五千年的美德传递。天瑞员工纷纷排队走向捐款箱,一双双伸出的手,一份份纯洁的情,汇聚成爱的暖流。    天瑞员工慷慨解囊   天瑞仪器作为分析检测行业的领导者,一直将社会责任放在企业理念的首位,关注社会,关注民生。在天瑞高速发展,在市场中逐浪搏击的同时,我们始终立足民众,在手足有难的时刻伸出我们的手,共同为需要帮助的地区和人群贡献一份绵力。
  • 国内首单“共享保”签署 为大型科研仪器上保险
    签约仪式现场。 陈盼 摄  大型科研仪器“共享保”签约仪式暨开放共享工作经验交流会在浙江杭州举行。现场,浙江理工大学为113台共计价值8794万元的大型科研仪器投保,这也是国内首单“共享保”的签署。  “共享保”是在浙江省科技厅指导下,由浙江省科技项目管理中心为推进大型科研仪器开放共享,联合太平科技保险进行“政府+平台+保险”的服务模式创新,从而打造的全国首款保障大型科研仪器设备共享的保险产品。  据介绍,该产品旨在降低科研仪器在开展开放共享工作中的发生损毁风险造成的经济损失,打消各创新载体的顾虑,让科技资源共享的“一江春水”真正为创新浙江注入动力,也开创了大型科研仪器设备与科技保险合作的先河。  首批投保的是浙江理工大学的113台大型科研仪器,保费近10万元。这批大型科研仪器的选择标准是:入网浙江省大型科研仪器开放共享平台,单台仪器价值大于30万元,安装物联网传感器且运行状况较好。投保对象分为80万以上和80万以下两类,保费分别为1000元/台/年和800元/台/年,最高保额8万元。保险期间,这些大型科研仪器因开放共享使用中意外事故,及突发性、不可抗拒等因素造成的损失,最高赔偿额8万元。  “此次保险合同的签订,是浙江理工大学大型科研仪器设备管理的一项创新举措,旨在通过校企联手,借助保险杠杆作用,加强大型科研仪器的管理,提升该校大型科研仪器使用效率,引导科研仪器所有人积极参与开放共享工作,为创造良好的科研仪器开放共享机制提供风险保障,减轻仪器设备维修负担搭建坚实的风险屏障。”浙江理工大学资产与实验室管理处相关负责人说。  浙江省科技厅基础处相关负责人表示:“浙江理工大学作为第一个‘吃螃蟹’的创新载体,为推动这一创新举措提供了‘过河石’。但各个创新载体的实际情况千差万别,要探索出可复制推广的成熟模式,还需要我们做很多努力和尝试。”  据悉,下一步,浙江省科技厅将以数字化改革为牵引,聚焦大型科研仪器开放共享“一指办”等创新服务,发挥“共享保”等金融工具赋能,提高大型科研仪器资源利用率,为充分释放服务潜能提供源头活水,为服务科技创新和社会需求提供丰厚土壤,为实施创新驱动发展战略提供有效支撑。
  • ATAGO(爱拓)PAL数显折射仪在制糖行业中的应用
    甘蔗作为制糖的主要原料,甘蔗蔗糖分是衡量甘蔗成熟和品种材料优劣的最重要指标,因此甘蔗蔗糖分检测成为甘蔗品种培育和种植工作中不能缺少的重要环节。一般情况下,当甘蔗的蔗茎田间蔗糖分13.00%以上时即可砍收,削去叶、梢和根等杂质,送到糖厂加工。 目前我国蔗糖生产和科研单位普遍采用的甘蔗糖分检测方法是二次旋光法。但二次旋光法测定步骤繁琐、耗时、费力,因而导致检测效率低,无法进行大批量样品的检测,迫切需要建立一种可简便快速的甘蔗糖分测定方法。 PAL系列迷你数显折射计操作方法: ATAGO(爱拓)的PAL系列迷你数显折射计是手持式折射计的创新与代表,完全颠覆了过去用户对于手持式折射计的传统认知,数字显示,仅手掌大小,重100g,具有使用快速简便、测定准确(测量精度Brix± 0.2%)、重量轻、体积小等优点。用与传统的刻度式手持折射计相比,其数显特性可以有效消除人为读数误差,同时减轻操作者视力疲劳度。而且PAL迷你数显折射计拥有让您惊奇的快速测量能力。只需用取样锥,取2~3滴甘蔗汁溶液置于棱镜上,然后按「开始」键,糖度值会在3秒之内显示。具有数字LCD显示面版,可以避免主观错误的数值判读。可流水冲洗,具自动温度补偿。其革命性的E.L.I(外部光线阻止)功能,在野外测量受到外部强光干扰测量时,仪器会自动提示,确保得到准确的测量值。 糖厂投入使用的检测仪器: 手持式折射计主要是糖厂农业部在野外检测用,工厂压榨时检测都是用全自动台式折光仪; 广西是中国最大的糖业产地和集散地。广西地处华南,北回归线横贯其中,属亚热带气候区,发展糖业生产的气候条件得天独厚。 目前广西有糖厂98间,日榨甘蔗能力36万吨,分别属于10大糖业集团和部分国有控股企业。2003/2004年榨季原料甘蔗产量在4800万吨左右,产成品糖588万吨左右,产糖量占全国总产量的60%以上,2004/05年榨季由于播种面积减少和旱灾、霜冻等自然灾害影响,产糖有所减少,产糖量在530万吨左右,05/06年榨季甘蔗种植面积有所回生,预计甘蔗种植面积达到1030万亩,甘蔗产量将出现恢复性增产,甘蔗产量预计达到4850万吨左右,产糖600万吨左右。 广州市爱宕科学仪器有限公司的ATAGO(爱拓)的PAL系列迷你数显折射计和工厂压榨时检测工具全自动台式折光仪:在广西地区更是得到广大企业的认可和应用以下主要介绍广西博庆食品有限公司和广西洋浦南华糖业集团股份有限公司对本产品的应用中的成效: 广西博庆食品有限公司 广西博庆食品有限公司与ATAGO(爱拓)合作以来以来,使用PAL系列迷你数显折射计在甘蔗的砍收过程中取得了显著的成效,使得对甘蔗的砍收更准确,对整个制作工序达到了时间上的节约,人工上的节约,从而降低成本,使得企业旗下的石别、怀远两家制糖企业,现在现生产能分别为9000吨/日和6000吨/日得到了更大的保障且与ATAGO(爱拓)合作以来,旗下的石别、怀远两家制糖企业的日产平均增长达到0.4%,ATAGO(爱拓)优质的售后服务以及强大的技术团队使得我们的合作方的效益最大化,更使得我们双方共赢。 广西洋浦南华糖业集团股份有限公司 据悉,2012年崇左全市甘蔗生产的目标任务是:完成甘蔗种植面积430万亩以上,其中新植蔗要达到190.9万亩、新扩种面积20万亩以上;力争2012/2013年榨季原料蔗和产糖量创历史新高,原料蔗达2300万吨以上、产糖287万吨以上,田间平均蔗糖分14.7%以上。 当然在这样浩大的工程中理所当然会有我们的作为强有力的技术支持后盾,PAL系列迷你数显折射计将发挥其最大的优势,ATAGO(爱拓)最为洋浦南华的合作方,会在仪器应用技术上保障博庆在使用过程中最大化的体现出PAL系列迷你数显折射计的简介准确性,更加希望洋浦南华在2012年取得辉煌,ATAGO(爱拓)将不计余力提供最好的售后服务保障。 以下是ATAGO(爱拓)和广西糖厂建立良好的合作关系: 广西南华糖业有限责任公司 广西崇左东亚糖业有限公司 广西博宣食品有限公司 广西博华食品有限公司 南宁糖业股份有限公司   结束语 蔗糖是人类基本的食品添加剂之一也是食品中有营养的甜味剂。是光合作用的主要产物,广泛分布于植物体内。ATAGO(爱拓)食品检测工具,给广西糖厂带来了制糖生产过程中间制品快速分析检测 ,糖料品质检测 ,ATAGO(爱拓)PAL系列迷你数显折射计可以非常方便的用于田间或基层,简单快速的测量样品中糖分以判断其成熟度;或在附近没有实验室的条件下快速进行浓度测量以得到分析结果。通过以上分析,ATAGO(爱拓)的工厂压榨时检测工具全自动台式折光仪在制糖行业的应用得到了糖厂广泛认可。 本文来之:广州市爱宕科学仪器有限公司
  • 程琳教授团队:毛细管聚焦的微束X射线衍射仪及其应用研究
    毛细管聚焦的微束X射线衍射仪及其应用研究邵金发,程琳*(北京师范大学核科学与技术学院,射线束技术教育部重点实验室 100875)摘要随着自然科学的不断进步,诸多领域都朝着微观层面发展,人们对物质的分析随之深入到微区范畴。微束X射线衍射分析技术是一种无损分析微小样品或样品微区物相结构的有利工具,凭借着无损、微区、空间分辨率高等特点被应用于诸多领域中。本实验室将毛细管X射线聚焦技术与X射线衍射分析技术相结合,自行设计研发了一种新型毛细管聚焦的微束X射线衍射仪。它利用毛细管X光透镜的特点,将X射线源发出的X射线束会聚到微米量级,从而实现对小样品或者样品微区的物相分析,为解决金属文物、陶瓷文物等的无损微区物相分析提供了解决方案。1. 引言微束X射线衍射(micro-X-ray diffraction,µ-XRD)是一种可靠的、无损的物相结构分析技术,已被广泛应用于生物化学、材料科学、地球科学、应力分析等领域[1-6]。目前获得微束入射X射线的方法主要有准直器限束和X射线光学器件聚焦两种。通过准直器限束获得微束入射X射线是最早在微束X射线衍射仪中使用的方法,具体为采用准直狭缝或小孔作为光阑放置在入射光路上,用以减小入射X射线的发散度。但是与此同时,入射光束的强度会因为物理阻挡而降低,导致获得的衍射信息变弱,难以达到理想的分析效果[3,4]。而多毛细管X光透镜利用X射线全反射原理,可将在空心毛细管内表面上的多次全反射的X射线会聚于一焦点。因此可以以较大的角度收集从X射线源产生的X射线,且会聚后X射线的束斑大小可低至几十微米。同时,毛细管X光透镜对Cu-Kα的能量有高达2-3个数量级的放大倍数[7],且具有低的发散度,非常适合微小样品和样品微区物相结构无损分析的研究。目前德国Bruker公司生产的D8系列X射线衍射仪通过添加一个由微焦点X射线源和多毛细管X光透镜集成的附加模块实现μ-XRD分析的功能[8];意大利LANDIS实验室开发了一个集成多毛细管半透镜的μ-XRD衍射[9,10]仪。但由于仪器均缺乏二维、三维自动控制平台,难以实现样品微小测量点的准确定位,更无法实现样品微区的二维μ-XRD分析。面向微小样品和样品微区µ-XRD分析的需求,本实验室自行设计和开发一种新型的微束X射线衍射仪以及相应的计算机控制程序,并且开展了相关分析方法学的研究。2. 仪器组成本实验室设计的毛细管聚焦的微束X射线衍射仪外观如图1所示,其主要由微焦斑X射线管(Cu靶,焦斑大小50 μm×50 μm)、毛细管X光透镜(Cu-Kα能量处束斑大小为100 µm)、接收狭缝、SDD X射线探测器(5.9keV时能量分辨率为145eV,铍窗有效面积25 mm2)、具有20倍放大功能的1400万像素固定焦距CCD摄像头、测角仪,XYZφ四维样品台,以及在LabVIEW语言环境下开发的仪器控制程序等部分组成。图1 微束X射线衍射仪的外观图控制程序的主界面具有微区X射线衍射分析和微区能量色散X射线荧光(micro energy dispersive X-ray fluorescence,μ-EDXRF)分析两种模式,如图2所示。谱图显示区域在探测过程中实时显示X射线探测器探测到的谱图。此外,该仪器使用的高精度自动化三维运动平台可以满足微区的二维μ-XRD分析的需求,以便实现对感兴趣区域内物相分布的分析等相关问题。图2 微束X射线衍射仪控制程序的主界面与Si (4 0 0)的X射线衍射图3. 实验分析3.1 氮化钛薄膜的分析薄膜具有强大的性能,但同时也会因为各种内部或者外部因素而发生失效。因此,薄膜微观区域特征的变化对宏观尺度特征的研究具有重要的作用。本文选择TiN薄膜作为研究对象,以期了解薄膜中TiN晶相生长的择优取向并对其进行快速评估。该TiN薄膜的是利用金属真空蒸汽电弧离子源(MEVVA)先进行离子注入,再经磁过滤真空阴极电弧沉积系统(FCVA)气相沉积而成。被测样品如图3所示,A部分和B部分是TiN薄膜,C部分为304不锈钢衬底,其中A部分更靠近整个样品的边缘,感兴趣的区域标识在中间的矩形条框中(0.5 mm×5.0 mm)。由于图中各部分形状不规则,易被常规X射线仪器的射线束无差别的覆盖,因此在这里进行微区分析十分必要。图3 TiN薄膜与304不锈钢衬底以及被测位置图片在μ-EDXRF分析模式下,X射线管电压为30 kV,管电流为0.5 mA,X射线束与样品表面的夹角θ1和X射线探测器铍窗的中心线与样品表面的夹角θ2均为45°,探测器探测活时间为60 s,测量得到的μ-EDXRF光谱见图4。同时,选择如图3中所示的感兴趣区域,使用微束X射线衍射仪进行µ-EDXRF二维扫描分析。扫描步距为50 μm,每个点的测量条件与μ-EDXRF分析保持一致,每步的探测活时间为500 ms。经过数据处理,得到扫描区域内各元素的分布如图5所示。在µ-XRD分析模式下,X射线管的设置与µ-EDXRF分析模式下相同,测角仪2θ范围为10°~120°,步距角为0.1°,每步的探测活时间为1 s,测量得到的X射线衍射图谱如图6所示。图4 TiN薄膜测量点的μ-EDXRF光谱图5 TiN薄膜扫描区域中Fe和Ti元素的分布图6 TiN薄膜测量点的μ-XRD图从图4可以看出,TiN薄膜测量点a和b的主要荧光峰来自Ti元素,同时,测得的304不锈钢衬底的主要合金元素为Fe、Ni和Cr。通过荧光峰的强度可知,a点Fe与Cr的相对含量较b点高,而b点Ti的相对含量较a点高,即b点处沉积了更多的Ti。从图5中可以看出,从中部到边缘位置Ti的含量发生了明显的改变,这主要受沉积束流在304不锈钢衬底上的覆盖面积所影响,而这种含量的改变与薄膜物相的变化有一定的联系。图6的测量结果表明,在该TiN薄膜中TiN所呈现的取向分别为(1 1 1)、(2 0 0)、(2 2 0)和(3 1 1)。在a点中最强的衍射峰来自于TiN的(2 2 0)晶面;在b点中TiN的(1 1 1)晶面呈现为最强,而(2 2 0)晶面消失了。结合图5中的元素分布可知,Ti的含量在物相变化的过程中起到了重要作用,随着沉积Ti的增加,膜内积聚的内压力促进了相变。因此,使用本微束X射线衍射仪可以实现对TiN薄膜,尤其是镀在微小零件上的薄膜的定点性能监测。同时,借助本微束X射线衍射仪,可从元素组成、元素分布、物相组成几方面对薄膜的微区进行表征。可以帮助认识了薄膜微区的性质,并为宏观的薄膜失效或者薄膜强化提供了研究数据。3.2 清代红绿彩瓷的分析为了评估本仪器对样品微区进行物相二维μ-XRD分析的能力,选取一片清代红绿彩瓷的残片作为研究对象。调节样品台使样品表面感兴趣区域清晰呈现在CCD图像中,并通过鼠标在控制界面的CCD视野中选择具体的目标扫描区域(图7)。选择图7中A(白釉),B(红彩)和C(绿彩)进行μ-XRD分析。µ-XRD分析的测量条件与上文保持一致,所得μ-XRD图如图8所示。从图8中可以看出,A点白釉XRD谱图在15 °~35 °之间出现一个驼峰,这是白釉在高温烧制过程中形成的非晶相所致;同时,经过对比ICCD PDF卡,A点白釉中主要存在的晶相为钾长石KAlSi3O8 (PDF 25-0618)、石英SiO2 (PDF 46-1045)和莫来石3Al2O32SiO2 (PDF 15-0776)等;B点红彩中主要存在的晶相为Fe2O3 (PDF 47-1409)和石英SiO2(PDF 46-1045)等;C点绿彩中主要存在的晶相为Pb8Cu(Si2O7)3 (PDF 31-0464)等。图7 清代红绿彩瓷残片与感兴趣区域图片图8 红绿彩中白釉、红彩和绿彩的μ-XRD图此外,选择如图7中2 mm×2 mm的感兴趣区域,使用微束X射线衍射仪进行µ-XRD二维扫描分析。该区域被划分为21×21个被测试点,扫描步距为100 µm,每个点的测量条件为:X射线管电压为30 kV,电流为0.5 mA,2θ探测范围为24.5°到30.5°,步距角为0.3°,每步探测活时间为0.8 s。由此得到的扫描总谱经数据处理得到的晶相分布图如图9所示。图9 扫描区域中Pb8Cu(Si2O7)3、3Al2O32SiO2、KAlSi3O8和Fe2O3的晶相分布4. 结论本实验室将毛细管X光透镜技术与X射线衍射分析技术相结合,设计和研发成一种新型微束X射线衍射仪。该微束X射线衍射仪具备无损分析微小样品和样品微区的物相结构的能力,且能实现样品微区中感兴趣区域的μ-XRD二维扫描。同时,该仪器还可实现样品的μ-EDXRF分析和μ-EDXRF二维元素分析,可为物相结构的研究提供了元素种类的参考信息,扩展了微束X射线衍射仪的功能。因此,其在材料科学、地球科学和文物保护等领域有着广泛的应用前景。 参考文献[1] Lin C , Li M , Youshi K , et al. The study of chemical composition and elemental mappings of coloredover-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence[J]. Nuclear Inst & Methods in Physics Research B, 2011, 269(3):239-243.[2] Laclavetine K, Ager F J, Arquillo J, et al. Characterization of the new mobile confocal micro X-ray fluorescence (CXRF) system for in situ non-destructive cultural heritage analysis at the CNA: μXRF-CONCHA[J]. Microchemical Journal, 2016, 125: 62-68.[3] Figueiredo E, Pereira M, Lopes F, et al. Investigating Early/Middle Bronze Age copper and bronze axes by micro X-ray fluorescence spectrometry and neutron imaging techniques[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016, 122:15-22.[4] Brai M, Gennaro G, Schillaci T, et al. Double pulse laser induced breakdown spectroscopy applied to natural and artificial materials from cultural heritages[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2009, 64(10):1119-1127.[5] HložEk M, Trojek T, B Komoróczy, et al. Enamel paint techniques in archaeology and their identification using XRF and micro-XRF[J]. Radiation Physics & Chemistry, 2016: S0969806X16300573.[6] Scrivano S, Ruberto C, B Gómez-Tubío, et al. In-situ non-destructive analysis of Etruscan gold jewels with the micro-XRF transportable spectrometer from CNA[J]. Journal of Archaeological Science: Reports, 2017, 16: 185-193.[7] Bonfigli, Francesca, Hampai, et al. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy[J]. Optical Materials, 2016, 58: 398-405. .[8] Berthold, C. , Bjeoumikhov, A. , & Lutz Brügemann. (2009). Fast XRD2 micro diffraction with focusing X-ray microlenses. Particle & Particle Systems Characterization, 26(3), 107-111.[9] Rotondo, G. G. , Romano, F. P. , Pappalardo, G. , Pappalardo, L. , & Rizzo, F. . (2010). Non-destructive characterization of fifty various species of pigments of archaeological and artistic interest by using the portable X-ray diffraction system of the Landis laboratory of catania. Microchemical Journal, 96(2), 252-258.[10] Padeletti, G. , Fermo, P. , Bouquillon, A. , Aucouturier, M. , & Barbe, F. . (2010). A new light on a first example of lustred majolica in Italy. Applied Physics A, 100(3), 747-761.*通讯作者程琳,工学博士,美国加州大学尔湾分校访问学者。现任职于北京师范大学核科学与技术学院,教授,博导。长期从事毛细管聚焦的微束X射线分析技术的研究及相关设备的研发;目前已经成功研发出国内首台毛细管聚焦的微束X射线荧光谱仪和毛细管聚焦的X射线衍射仪等设备并开展相关的分析技术及应用研究;作为项目负责人已经承担多项国家自然科学基金、北京市自然科学基金和北京市科技计划项目等,国家自然科学基金评审专家、北京市高新技术企业评审专家和X-ray spectrometry等国际刊物审稿人。e-mail: chenglin@bnu.edu.cn
  • 程琳教授团队:毛细管聚焦的微束X射线荧光谱仪及其应用研究
    毛细管聚焦的微束X射线荧光谱仪及其应用研究邵金发,侯禹存,程琳*(北京师范大学核科学与技术学院,射线束技术教育部重点实验室 100875)摘要随着科技的发展,人们对物质的分析慢慢深入到微区领域。而微束能量色散X射线荧光作为一种高灵敏、高精度的元素分析技术,已然成为物质微区分析的有利工具。本实验室将毛细管X射线聚焦技术与能量色散X射线荧光分析技术相结合,自行设计研发了一种新型毛细管聚焦的微束X射线荧光谱仪。该谱仪在利用毛细管X光透镜的特点将X射线源发出的X射线束会聚到微米量级的同时,基于激光位移传感器开发了自动调整样品测量点到透镜出口端距离的闭环控制系统,有效的减少由于样品表面不平整或弧度带来的测量误差,弥补了现有微束X射线荧光谱仪在此方面的不足。因此,该微束X射线荧光谱仪为表面不平整文物样品的无损微区元素分析提供了解决方案。1. 引言微束能量色散X射线荧光光谱(Micro-energy dispersive X-ray fluorescence, µ-EDXRF)分析技术因其快速、准确、无损分析等优点,被广泛应用在考古、地质、环境、材料、生物等科学领域[1-8]。目前,基于实验室光源以获得微束入射X射线的方法主要有准直器限束和X射线光学器件聚焦两种。通过准直器限束获得微束入射X射线是最早在微束X射线荧光谱仪中使用的方法,具体为采用准直狭缝或小孔作为光阑放置在入射光路上,用以减小入射X射线的发散度。但与此同时,入射光束的强度会因为物理阻挡而降低,从而导致获得的特征X射线信息减弱。而多毛细管X光透镜利用X射线全反射原理,可将在空心毛细管内表面上的多次全反射的X射线会聚于焦点。因此可以实现以较大的角度收集从X射线源产生的X射线,且会聚后X射线的束斑大小可低至几十微米。同时,毛细管X光透镜对Cu-Kα的能量有高达2-3个数量级的放大倍数[9],且具有低的发散度。同时,可以将基于毛细管聚焦的微束能量色散X射线荧光分析技术与大面积扫描相结合,实现微米级表面结构和元素分布的分析测定。目前国内外存在部分商业化的微束X射线荧光谱仪,其中美国EDAX公司生产的Orbis系列微束X射线荧光谱仪,适用于部分地质和考古样品测试的[10];德国Bruker公司生产的M4 Tornado可移动式微束X射线荧光谱仪,适用于实验室或博物馆内各类样品的研究[11]。但由于部分文物样品表面并不平整或存在较大的弧度,若不对相对位置进行修正,这将使得样品测量点与毛细管X光透镜出口端的距离在测量过程中发生改变,从而影响测量结果的准确性和元素区域扫描的分辨率[12]。为解决上述问题,本实验室自行设计和开发一种新型的微束X射线荧光谱仪以及相应的计算机控制程序,并且开展了相关分析方法学的研究。2. 仪器组成本实验室设计的毛细管聚焦的微束X射线荧光谱仪结构示意图如图1所示,其主要由微焦斑X射线管(Mo靶,焦斑大小50μm×50μm,德国Röntgen公司)、毛细管X光透镜(Mo-Kα能量处束斑大小为31µm)、SDD X射线探测器(5.9keV时能量分辨率为145eV,铍窗有效面积25mm2)和PX5多道分析器、精度为20µm的激光位移传感器、激光笔、具有20倍放大功能的1400万像素固定焦距CCD摄像头、高精度XYZ三维样品台,以及在LabVIEW语言环境下开发的仪器控制程序等部分组成。仪器控制软件主要包括探测系统控制界面、X射线源高压控制界面、机械运动系统控制界面、CCD图像采集控制界面和氦气控制界面构成。其中主界面包含了各个控制功能系统的一些主要控制命令及输出,如图2所示。谱图显示区域在探测过程中实时显示X射线探测器探测到的谱图。此外,该仪器使用的高精度自动化三维运动平台可以满足微区的二维μ-EDXRFF分析的需求,以便实现对感兴趣区域内元素分布的分析。图1 微束X射线荧光谱仪的结构示意图图2 微束X射线荧光谱仪控制程序主界面3. 实验分析3.1 清代红绿彩瓷的分析为了评估本仪器对样品微区进行元素二维扫描分析的能力,选取一片清代红绿彩瓷的残片作为研究对象(图3)。选取图3中A(白釉)、B(红彩)、C(绿彩)进行微区的元素组成分析。实验测量时,X射线管电压40 kV,电流0.6 mA,探测活时间300 s。样品A(白釉)、B(红彩)、C(绿彩)三点的微束X射线荧光分析的能谱如图4所示,彩料中各元素化学成分采用基本参数法进行定量分析,所得的数据如表1所示。图3 清代红绿彩瓷残片与感兴趣区域图片图4 红绿彩中白釉、红彩和绿彩的μ-EDXRF光谱表1 白釉、红彩和绿彩的化学成分(质量分数,%)此外,选择如图3中2mm×2mm的感兴趣区域,使用微束X射线荧光谱仪进行µ-EDXRF二维扫描分析。进行µ-EDXRF二维扫描分析时,X射线管电压为40 kV,电流为0.6 mA,扫描步距为30 µm,每个点探测时间为1.5 s,扫描数据经软件处理得到如图5所示的元素分布图。图5 扫描区域内Pb、K、Fe、Ca、Cu、Al、Mn、Si元素的分布3.2 吉州窑古陶瓷的分析为评估本仪器对表面存在大弧度的样品进行微区元素二维扫描分析的能力,选取一片吉州窑古陶瓷的残片作为研究对象(图6)。实验开始前调节平移台使样品表面感兴趣区域清晰呈现在CCD图像中,并通过鼠标在控制界面的CCD视野中选择具体的目标扫描区域。选取图6中大小为10mm×10mm的区域进行元素二维扫描分析。µ-EDXRF二维扫描分析的测量条件与上文相同。同时,为验证本仪器“源-样”距离自动控制系统对测量结果的影响,分别在开启和关闭“源-样”距离自动控制系统的条件下进行元素二维扫描分析,扫描数据经软件处理得到如图7所示的元素分布图。图6 吉州窑古陶瓷样品与扫描区域图片图7 扫描区域内K、Ca、Zn、Fe元素分布图。a)关闭“源-样”距离自动控制系统,b)开启“源-样”距离自动控制系统通过图7与图6的比较可知,在关闭“源-样”距离自动控制系统的情况下进行µ-EDXRF二维扫描时,由于样品表面的弯曲,样品测量点与毛细管X光透镜出口端之间的距离发生变化,使得X射线光束的焦点无法与样品测量点重合。这导致测得元素分布图空间分辨率变差,同时生成的图像发生了扭曲。相反,当打开“源-样”距离自动控制系统进行测量时,由于该系统可实时调整平移台使X射线束准确照射在样品测量点上,显著降低由于样品表面弯曲带来的偏差。极大的改善了测量结果,表明该仪器在不平整样品的µ-EDXRF二维扫描中具有重要的应用价值。4. 结论本实验室将毛细管X射线聚焦技术与能量色散X射线荧光分析技术相结合,设计和研发了一种新型毛细管聚焦的微束X射线荧光谱仪。该微束X射线荧光谱仪在具备无损分析微小样品和样品微区的元素分布能力的同时,其基于激光位移传感器开发的“源-样”距离自动控制系统可实时调整样品测量点到透镜出口端距离,显著降低了由样品表面不平整或弧度带来的测量偏差,弥补了现有微束X射线荧光谱仪在此方面的不足。因此,其在材料科学、地球科学和文物保护等领域有着广泛的应用前景。参考文献[1] 戴珏,吴奕阳,张元璋,等.能量色散X射线荧光光谱法在检测仿真饰品中有害元素的应用[J].上海计量测试,2018,45(04):34-35.[2] 陈吉文,倪子月,程大伟,等.基于EDXRF的土壤中痕量镉的快速检测方法研究[J].光谱学与光谱分析,2018,38(08):2600-2605.[3] 陈曦,周明慧,伍燕湘,等.能量色散X射线荧光光谱仪在稻米中镉含量测定的应用研究[J].食品安全质量检测学报,2018,9(10):2331-2338.[4] 蒯丽君. 化学前处理—能量色散X射线荧光光谱法应用于矿石及水体现场分析[D].中国地质科学院,2013.[5] Rathod T, Tiwari M, Maity S , et al. Multi-element detection in sea water using preconcentration procedure and EDXRF technique [J]. Applied Radiation & Isotopes, 2018, 135.[6] Figueiredo E, M F, Araújo, Silva R J C, et al. Characterisation of Late Bronze Age large size shield nails by EDXRF, micro-EDXRF and X-ray digital radiography [J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2011, 69(9):1205-1211.[7] Natarajan V, Porwal N K, Babu Y, et al. Direct determination of metallic impurities in graphite by EDXRF. [J]. Appl Radiat Isot, 2010, 68(6):1128-1131.[8] Li L, Huang Y, Sun H Y, et al. Study on the property of the production for Fengdongyan kiln in Early Ming dynasty by INAA and EDXRF [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 381:52-57.[9] Bonfigli, Francesca, Hampai, et al. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy[J]. Optical Materials, 2016, 58: 398-405.[10] Moradllo M K, Sudbrink B, Hu Q, et al. Using micro X-ray fluorescence to image chloride profiles in concrete[J]. Cement & Concrete Research, 2016:S0008884615300636.[11] Ramos I. Pataco I M, Mourinho M P, et al. Elemental mapping of biofortified wheat grains using micro X-ray fluorescence[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016.[12] Ricciardi P,Legrand S,Bertolotti G, et al. Macro X-ray fluorescence (MA-XRF) scanning of illuminated manuscript fragments: potentialities and challenges[J]. Microchemical Journal, 2016, 124:785-791.*通讯作者程琳,工学博士,美国加州大学尔湾分校访问学者。现任职于北京师范大学核科学与技术学院,教授,博导。长期从事毛细管聚焦的微束X射线分析技术的研究及相关设备的研发;目前已经成功研发出国内首台毛细管聚焦的微束X射线荧光谱仪和毛细管聚焦的X射线衍射仪等设备并开展相关的分析技术及应用研究;作为项目负责人已经承担多项国家自然科学基金、北京市自然科学基金和北京市科技计划项目等,国家自然科学基金评审专家、北京市高新技术企业评审专家和X-ray spectrometry等国际刊物审稿人。e-mail: chenglin@bnu.edu.cn
  • 要责任,多做公益多种树——彰显企业环保责任,PerkinElmer参加2017上海根与芽环保嘉年华
    珀金埃尔默与上海根与芽“百万植树”项目合作已经有6个年头了。自2012年以来,珀金埃尔默的员工累计已捐赠22000多棵树,每年珀金埃尔默还会组织志愿者小分队,奔赴内蒙古库伦旗,冒着严寒和风沙亲手将一部分树苗栽种在沙漠边缘,为阻止沙漠侵袭我们的绿洲筑起一道绿色屏障。珀金埃尔默员工代表走进内蒙植树点滴涓流,汇成海洋。一直以守护人类和环境健康为企业责任的默默,深深明白将“百万植树”的理念推广给越多的人,我们的生活环境就会越好。所以,我们不断通过各种途径,利用以公众名义捐赠树苗的形式,为“百万植树”项目打Call。11月18日,是一年一度的根与芽日,在这一天,上海根与芽全国各地的志愿者,以及上海市内的大中小学生,都将汇聚一堂,以嘉年华的方式宣传环保理念。今年,珀金埃尔默携手上海根与芽,在上海市第八中学摆摊,吸引人们参加丰富多彩的活动,并为活动胜出者捐赠树苗。捐赠证书今年11月18日,上海大风降温。但凛冽的寒风没有吹熄大家的热情,整个下午活动期间,珀金埃尔默的小摊前人头攒动气氛热烈,志愿者和师生们踊跃参与“小知识有奖问答”、“小小化学家”等趣味活动,珀金埃尔默准备的50棵树苗成为现场爆款,几乎秒光。通过参与活动,大家不仅对PerkinElmer悠久的历史、辉煌的成就有所了解,更可以为环保事业尽一份力。无论是活动组织者还是参加的志愿者和师生,都表示活动非常有意义,希望明年还能够参与。活动现场留念集锦企业责任,不是口若悬河的空谈,也不是远在天边的浮云。它需要我们去做,去参与到公益事业中,才能够得以践行。默默不仅有八十年的光辉历史可以让我们自豪,更有不变的企业文化和社会责任让我们追随——For the better, and for a healthier world!有关上海根与芽根与芽是由著名动物学家、环保领袖、联合国和平使者珍.古道尔博士创立于1991年的世界性环保非营利性组织,旨在促进全社会对环境的关注和对他人的关爱。它主要的活动形式是开展社区公益活动和环保教育项目,尤其是对青少年进行环保意识培养。目前,在全球130个国家分布着9000多个根与芽小组。上海根与芽成立于1999年,是国内第一个涉外的非营利组织。 有关百万植树计划始于2007年的上海根与芽百万植树计划致力于唤起大众环保意识,号召个人参与行动,以减少对自然环境的负面影响。该项目通过在内蒙古通辽市库伦旗地区开展植树造林活动,兼顾了生态与人道主义救助的双重使命。一方面,为个人和组织提供了参与抵御全球气候变化的机会;另一方面,项目的各个环节都能够帮助当地居民从中获益。欢迎社会各界关注PerkinElmer百万植树募捐计划,参与相关活动,您也有机会获得一颗树苗,我们会亲手将它种植在内蒙古。关于珀金埃尔默:作为全球领先的科学仪器和服务提供商,珀金埃尔默公司致力于为创建更为健康的世界而不懈努力。我们的业务涉及环境健康、食品安全、生命科学、实验室服务和大数据信息化等领域。我们在全球拥有9000名专业技术人员,时刻准备着为客户提供最优质的服务,帮助客户解决各项科学难题。我们在分析检测、医学成像、信息技术和一站式服务方面的专业知识,以及深入的市场洞察力,可协助客户为改善我们的生活环境而不懈探索。2016年,珀金埃尔默年应收达21亿美元,为超过150个国家和地区提供服务,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。 了解更多有关珀金埃尔默公司的信息,请访问全新上线的珀金埃尔默中文官方网站。珀金埃尔默中国:珀金埃尔默进入中国近40年,拥有员工约1200多人。公司亚太区总部位于上海,并在北京、成都、广州、沈阳、武汉、青岛、南京、西安、乌鲁木齐、昆明设有分公司,维修网点遍布全国各个省市。主要产品与服务包括环境健康、食品药品安全检测等所使用的分析仪器及学术机构或新药开发所需要的生命科学仪器。结合国内市场需求和国外先进技术,为中国客户提供服务。了解更多有关珀金埃尔默中国的信息,可访问全新上线的珀金埃尔默中文官方网站。
  • 增长达3位数!多家核酸检测企业应收账款超净利润
    据第一财经统计A股中8家核酸检测企业三季报业绩情况发现,多数企业盈利继续两位数甚至三位数增长,但伴随着收入增加,不少企业的应收账款继续仍居高不下,应收账款甚至超过同期净利润。其中今年前三季度,兰卫医学、凯普生物、迪安诊断、达安基因、谱尼测试、金域医学这6家企业,归属于上市公司股东的净利润分别同比增长240.73%、130.04%、96.94%、94.52%、94.10%、46.41%。同时应收帐款相应也在增加。企查查数据显示,截至今年5月中旬,我国现存医学检测相关企业1702家。从近十年来注册量变化来看,我国医学检测相关企业注册量整体呈现逐年增加趋势,其中2021年新增301家,同比增长20.4%。从地域分布来看,我国医学检测企业集中分布广东省、北京市和江苏省;从城市分布来看,北京和深圳断层位列前二,分别现存159家、153家医学检测相关企业。
  • 岛津液质联用技术丨揭开白酒回甘的“甜蜜”陷阱
    风吹腊梅香,年味日渐浓。新年的脚步越来越近了,然而不和谐的音符又出现了。 1月25日,山东省市场监督管理局发布关于食品不合格情况的通告,其中某酿酒企业生产的浓香型白酒被检出甜蜜素。事实上,近一个月以来,全国已有多家酒企都曾涉及“甜蜜素”事件。佳节将至,“舌尖上的安全”再度成为公众舆论焦点。 关于甜蜜素的三问 1问:甜蜜素对人体有危害吗?2问:有危害,为什么还要添加?据悉,一是为增加甜味,酒中的甜味主要来源于粮食发酵产生的醇类,甜蜜素的甜味大概是蔗糖的30倍,而价格却仅为其三分之一。二是为掩盖生产工艺的缺陷,利用甜蜜素盖住酒中苦味,使消费者喝起来有回甘。也就是说:白酒回甘,也许是“甜蜜”陷阱 3问:国家明令禁止吗?GB2760-2014《食品安全国家标准 食品添加剂使用标准》明确规定,甜蜜素:配制酒中应≤0.65g/kg,其他酒类中均不得使用。重要的事情说三遍白酒中禁止添加!禁止添加!禁止添加! 甜蜜素怎么测? 样品前处理参照《GB 5009.97-2016 食品中环己基氨基磺酸钠的测定》标准中“第三法 液相色谱-质谱/质谱法”中试样溶液制备方法。 分析仪器岛津三重四极杆液质联用仪LCMS-8050 方法学结果 定量离子对MRM谱图(0.005 μg/mL) 采用外标法绘制环己基氨基磺酸钠标准曲线,在0.005~2 μg/mL浓度范围内,线性相关系数r大于0.999,各标准点准确度在96.6~103.7%之间。 实际样品 取某市售白酒样品(未检出甜蜜素)作为空白酒样,添加环己基氨基磺酸钠标准品溶液,制备成浓度为100μg/kg的加标样品,按照上述检测方法测定,白酒样品加标回收率在98.7~105.3%之间。除了甜蜜素,还有其它非法添加甜味剂 岛津公司已推出了《食品中非法添加物和滥用物质检测方案》,其中包括使用三重四极杆液质联用仪测定白酒中甜蜜素、糖精钠、阿斯巴甜等6种甜味剂的检测方法。 新春共饮团圆酒,举杯同祝全家福。新春佳节将至,岛津为您守护幸福年味! 请识别二维码下载《食品中非法添加物和滥用物质检测方案》。
  • 德祥:英国B+S 新款OPTi数显手持式折光仪全新发布
    专业的光学仪器制造商,百年品牌 &mdash &mdash 英国Bellingham + Stanley (简称B+S) 全新推出数显手持式折光仪 OPTi 系列。 相比原有的手持/便携式折光仪,新OPTi系列拥有更精巧迷你的外观,更坚固耐用的外壳。浅底易清洁的棱镜盘、超大明亮的显示屏、操作简单的双按键、大幅提升的测量精度&hellip &hellip 无论您是为了监测食品、化工、制药工厂流水线上的产品质量,还是为了野外采样的鉴定,OPTi都将带给您更加舒适、可靠的操作体验! 全新OPTi手持式折光仪单标度和双标度两大主系列机型,广泛应用于与我们生活息息相关的各个行业: 食品、饮料、中西快餐联锁行业中Brix白利度检测; 葡萄酒、啤酒行业中酒精度、波美度、Oechsle等检测; 汽车行业中DEF/ AdBlue溶液尿素检测、防冻液冰点检测; 石化行业中冷却液Brix或折光率检测; 生命科学行业中原料折光率、尿液蛋白浓度检测; &hellip &hellip 更多产品请登陆德祥官网:www.tegent.com.cn 渠道合作: 南区(华南,西南与中南)地区请联系: 周先生 Tel:020-22273381 东区(华东, 江,浙,沪)地区请联系: 黄小姐 Tel:021-52610159 北区(华北,东北,西北)地区请联系: 李先生 Tel:010-82326330 德祥热线:4008 822 822 邮箱:info@tegent.com.cn
  • 德祥:英国B+S最新 Brix 54 数显手持式折光仪年末推广促销!
    英国B+S最新 Brix 54 数显手持式折光仪年末推广促销现在开始!!! 型号:Brix 54(0 ~ 54 ° Brix x 0.1);货号:38-02;年末推广特价:RMB 1600 ★ 她的量程宽至 0 ~ 54 ° Brix★ 她的读数分辨率可达 0.1 ° Brix ★ 她的准确度更高达 ± 0.2 ° Brix ★ 她与生俱来温度补偿(ATC)的能力 ★ 特别是食品、饮料相关车间、实验室,可少不了她飞舞忙碌的身影 尤其适用于食品、饮料、制糖、酿酒及其他需要测定白利糖度(Brix)的工厂QC、实验室。数量有限,先到先得。 相比原有的手持/便携式折光仪,新OPTi系列拥有更精巧迷你的外观,更坚固耐用的外壳。浅底易清洁的棱镜盘、超大明亮的显示屏、操作简单的双按键、大幅提升的测量精度&hellip &hellip 无论您是为了监测食品、化工、制药工厂流水线上的产品质量,还是为了野外采样的鉴定,OPTi都将带给您更加舒适、可靠的操作体验! 全新OPTi手持式折光仪单标度和双标度两大主系列机型,广泛应用于与我们生活息息相关的各个行业: 食品、饮料、中西快餐连锁行业中Brix白利度检测; 葡萄酒、啤酒行业中酒精度、波美度、Oechsle等检测; 汽车行业中DEF/ AdBlue溶液尿素检测、防冻液冰点检测; 石化行业中冷却液Brix或折光率检测; 生命科学行业中原料折光率、尿液蛋白浓度检测; &hellip &hellip 更多产品请登陆德祥官网:http://www.tegent.com.cn/ 德祥热线:4008 822 822 联系我们(直接用户) 联系我们(经销商) 邮箱:info@tegent.com.cn
  • 民盟宝山区委领导深入企业一线,推动 “环上大” 高校与企业创新合作!
    民盟宝山区委领导深入企业一线,推动 “环上大” 高校与企业创新合作! 为了贯彻落实中国民主同盟上海市第十六次代表大会精神,结合宝山区“北转型”规划发展蓝图,民盟宝山区委以高度的政治责任感积极履行职责、认真完成各项任务,展现了良好的精神风貌。 近日,作为民盟上海市第十六届委员会常务委员,宝山区政协副主席、民盟区委主委、上海大学环境和化学工程学院常务副院长王勇,积极落实大会要求,立足科创宝山、助企纾困,深入区盟员企业北裕仪器进行走访调研,为宝山高质量发展、书写好宝山“北转型”新篇章贡献民盟的智慧和力量。 公司总经理陈凡介绍了北裕仪器的发展历程、新一轮发展战略、企业文化等,并陪同参观了生产车间、研发部门等。 民盟区委主委王勇携上海大学环境和化学工程学院技术人员就校企合作的专业技术、应用领域以及人工智能开发进行深入的探讨和交流,双方关于技术创新和科研攻关、成果转化及人才队伍建设等方面战略合作达成一致意见,充分发挥校企合作助力企业创新体系优化作用,在“环上大”绽放创新合作之花。
  • 光明乳业再陷质量危机 上下游控制风险浮现
    近日,广州市工商局公布了2012年第二季度第二次流通环节乳制品及含乳食品抽样检验结果,光明减脂芝士片、奶油两批次产品被检出菌落总数超标,这是光明乳业6月以来第三次被曝光质量问题。   记者昨日(7月23日)走访了沪上多家超市发现,光明乳业生产的奶油和减脂芝士片仍在出售,但没有发现问题批次产品。   光明乳业新闻发言人龚研奇在接受《每日经济新闻(微博)》记者采访时表示,此次检测出的问题只局限于广州市场,光明已将这一批次的产品全部进行下架处理,不影响全国其他地区该产品的正常销售。菌落总数超标的原因为长途运输过程中挤压受损、加上销售环境的温度不稳定所致。 问题批次产品已经下架   据广州市工商局抽检结果显示,由上海光明奶酪黄油有限公司梵古易乳制品分公司生产的50%减脂芝士片   (200g/包,生产日期为2012年2月23日)及奥德华乳品(北京)有限公司生产的光明牌奶油(125g/盒,生产日期为2012年4月23日)均被检出菌落总数超标。   记者昨日在上海中山公园家乐福超市看到了上述两种光明乳业生产的产品,其中芝士片的生产日期为5月26日,并且在进行买二赠一的促销活动 而奶油的生产日期为3月28日,与问题批次生产日期不同。   光明乳业新闻发言人龚研奇昨日(7月23日)接受记者采访时表示,此次检测出的问题产品只局限于广州市场,并不影响全国其他地区该产品的正常销售。“接到抽查结果后我们非常重视,立刻对广州市场上销售的同批次产品进行了下架回收。并马上进行了过程原因分析,菌落总数超标的原因为长途运输过程中挤压受损、加上销售环境的温度不稳定所致。我们已经采取相应的措施,进一步加强运输过程中的监控管理,以防止类似情况的发生。同时,对市场上的同批次产品进行第三方送检,结果均为合格。”   记者了解到,这是光明乳业今年6月以来第三次出现产品质量问题。   今年6月15日,安徽颍上县两所小学部分学生在食用光明乳业配送的牛奶后出现呕吐等不适症状。6月25日生产、26日上市的批号为I17:15(E)的光明优倍奶混入了烧碱成分,随后光明乳业对该批次牛奶进行下架召回处理。   一位不愿具名的乳业分析师向记者表示,光明出的问题多多少少都与管理有关系,此次的问题出在了流通环节,在包装、长途运输当中出现泄漏等都可能产品变质,也不排除生产环节出现问题,比如管理上的疏忽,或者是质检员个人失误等,但是这种可能性比较小。   “乳业产品通过经销商进行分销,一旦企业将产品发给了经销商,企业对于产品的监管就出现了盲区。产品由经销商管理,就容易出现质量问题。”上述分析师向记者表示。   该分析师指出,近几年,光明乳业快速增长,平均增幅在20%左右。年报显示,公司2011年营业总收入117.89亿元,同比增长23.16%,2010年营业收入同比增长20.51%。   然而,近期连续出现的质量问题,让光明乳业安全可靠的品牌形象产生了影响。“但是具体究竟有多大,不太好说。”上述分析师表示。 乳产品的上下游控制   针对今年以来乳业频频曝出各种质量安全问题,乳业分析师陈连芳在接受《每日经济新闻》采访时表示,乳品行业产业链很长,每一个环节都相互依存,这中间任何一个环节出现差错都会导致产品出现质量问题。   “现在企业整顿的重点可能在上游的奶源和中游的生产环节,可能下游的力度差一点。产品销售后的有些环节做得不到位,企业要改善加强管理,将漏洞补上。”陈连芳表示。   乳业分析师王丁棉此前在接受记者采访时表示,解决中国奶业问题更重要的是在奶源方面进行合理规划和布局。“奶产品是快速消费品,应该在短时间内快速加工快速消费,而要做到这点只能在当地生产,做到近距离运输,保证产品的营养、降低生产成本。”   记者了解到,工信部正在推进食品安全追溯体系建设,由乳制品行业协会牵头。工信部希望建立“覆盖原奶生产、流通、乳制品加工、市场流通和销售等各个环节的全面的乳品质量安全监控体系”。   “如若将上述体系应用到乳产品中去,可以强化企业和政府的合作,有助于加强对乳产品质量的监管和管理。”上述不愿具名的分析师告诉记者。   陈连芳认为,上述方案虽然动机很好,但可能落实起来有一定困难。“毕竟不是法律,但是约束企业的行为必须通过立法,只是倡议没有多大用处,很难落实。”   2012年6月15日   安徽颍上县两所小学部分学生在食用光明乳业配送的牛奶后出现呕吐等不适症状。光明乳业公告称,涉及产品目前正在送检过程中,出事产品的同批次产品均有出厂合格检验报告。   2012年6月27日   有消费者爆料称其购买的光明乳业产品“优倍”出现质量问题。光明乳业声明称,6月25日生产、26日上市的批号为I17:15(E)的光明优倍奶混入了烧碱成分。已在第一时间将相关产品全部召回。   2012年7月20日   广州市工商局网站公布了2012年第二季度第二次流通环节乳制品及含乳食品抽样检验情况,光明乳业产品上了黑榜。光明方面称,菌落总数超标的原因为长途运输过程中挤压受损、加上销售环境的温度不稳定所致。 国产乳品信任危机助推洋奶粉涨价 此次光明、南山乳产品的质量问题,又将国产乳业食品安全问题推到了风口浪尖。国内乳产品市场正处于“冰火两重天”的状态,一方面国产乳产品频繁被曝产品质量问题,另一方面洋品牌产品纷纷涨价。   洋品牌涨价的底气来自哪里?《每日经济新闻》记者对此调查后发现,洋品牌产品频繁 “更新换代”是直接原因,更深层原因是消费者对国产品牌信心不足,转而购买洋品牌奶粉。   记者在上海市中山公园家乐福超市,达能旗下品牌多美滋适合1~3岁儿童配方奶粉400克价格,由之前的老包装68元变成了配方升级的75元,而其相对应的桶装900克奶粉价格由177元变成198元。照这样算来,升级的新一代产品比之前的价格上升了11%左右。   对此,多美滋中国区相关负责人此前在接受《每日经济新闻》记者采访时表示,公司在7月中旬推出了新一代产品,因为相关成本的增加,新产品价格比原产品有一定增长,平均涨幅为10%,但配方进行了全面升级。   记者发现,从去年以来,洋奶粉频繁“更新换代”,产品的价格也随之有不同程度的上涨。去年6月份,惠氏公司推出新的产品线,价格比老产品高10% 而在年底,其高端品牌进行配方调整,价格也随后上涨。今年3月份美赞臣以推出新品为由,部分产品价格提升10%。4月份,雀巢奶粉提价,涨幅在5%左右。   事实上,从去年下半年开始,在全球原料奶普遍增产及国际需求下滑的双重作用下,国际牛奶价格开始下滑。公开数据显示,在三聚氰胺事件爆发前的2008年1月,进口脱脂奶粉价格为4281美元/吨,而至2011年12月,进口脱脂奶粉的价格却降至3750美元/吨以下,相较2008年初的价格下降近10%。乳业分析师宋亮曾向记者表示,最近进口脱脂最近已将降至在3000~3500美元/吨。   一方面国际原料奶价格下跌,另一方面洋奶粉价格却不降反涨,洋品牌涨价的底气何在?   乳业分析师陈连芳表示,一方面是因为奶粉是刚性需求,价格弹性不足 另一方面多个国产品牌奶粉都曾出现问题,让消费者对国产奶粉的信任度降低,纷纷选购洋品牌奶粉。中国婴幼儿奶粉市场的龙头位置全被洋品牌揽去,高端奶粉市场几乎九成被外资占据,因此洋奶粉再怎么涨价也不愁销量。   陈连芳说:“这事对于有些国产品牌也不是坏事,因为国产品牌的价格可以跟着洋奶粉走。贝因美、伊利等高端品牌也有300元左右一桶。”   AC尼尔森数据显示, 2008年 “三聚氰胺”事件发生前,国产品牌奶粉的市场占有率是44%,而现在,中国国产奶粉的市场份额已下降到1/3,外资品牌的市场份额迅猛增长到2/3的市场份额。   上海大学教授顾骏曾公开表示,中国的乳制品企业需要潜下心来重建信心体系,同时通过透明化生产过程等手段向国人证明自己的品质,增强高端消费市场竞争力,加大对进口奶粉的替代力度
  • 赛默飞世尔科技移液器维修活动日及宣讲在西安成功举办
    2010年11月3-4日赛默飞世尔科技移液器维修活动分别在陕西师范大学和第四军医大学举办。在活动中专业的维修工程师对客户使用的Thermo Scientific移液器进行了免费的清洗、校准及维修并对客户在使用过程中所出现的问题进行了详细及耐心的解答。在对移液器进行维护的同时,我们也在陕西师范大学进行了移液技术培训和细胞培养技术方面的宣讲活动,向参加此次维修活动的客户以及学校的同学们展示了赛默飞世尔的系列产品,使得客户对公司产品有了进一步的了解。     F系列移液器在宣讲会上受到了很大的关注,超强的吹出能力保证了微量移液的稳定可靠,以人为本的设计理念降低了实验室操作人员的疲劳度及不适,这些杰出完美的设计,可靠的性能吸引了非常多客户的眼球 而与传统的手动移液器完全不同的、具有强大的预置移液功能的Novus全新中文版电动移液器也在本次产品展示中非常抢眼。另外,我们也同时进行了细胞培养新技术和新产品的介绍。总的来说,本次维修活动中展出的移液器以及细胞培养新产品都因各自卓越的性能受到了客户的极大关注。此次活动非常成功,在此感谢西安赛亚科技有限公司的大力支持。     本着以人为本的理念,Thermo Scientific移液器以“健康、舒适、精准、耐用”的金牌标准要求自己,坚持不断创新,并提供优质的售后服务,在代理商和客户间赢得很好的口碑。Thermo Scientific移液器产品“三重服务,终身保障”的一部分,是Thermo Scientific移液器独特质保体系的重要一环。维修活动日期间,我们将免费为新老客户提供所有移液器的清洁清洗、校准以及维修服务,以感谢用户对赛默飞世尔移液器的关注和支持。同时,我们根据客户的要求,提供移液技术的规范化培训、移液新技术和新产品咨询等。赛默飞世尔科技维修活动日将会定期在全国巡回举办,请向当地Thermo Scientific移液器代理商问询当地维修活动日的具体安排。更多Thermo Scientific移液器及耗材产品请查看:Thermo Scientific移液器及耗材产品
  • 2015年上半年环境应急管理工作综述——防控环境风险 维护群众权益
    落实党中央、国务院领导同志重要批示31件,落实环境保护部领导重要批示57件,调度处置45起突发环境事件,受理群众电话及网上举报696件,办结622件,按期办结率100%…… 今年上半年,环境保护部以维护国家环境安全、保障群众环境权益为己任,按照“出事抓应对、日常抓管理”的工作思路,扎实推进环境应急管理工作不断向前发展。 处置突发环境事件 切实保障环境安全 当前,我国突发环境事件仍然处于高发期,环境安全面临严峻挑战。按照党中央、国务院的要求,环境保护部始终高度重视环境应急管理工作,力求最大限度减少突发环境事件的发生和降低突发环境事件所造成的危害,保障环境安全和人民群众生命财产安全。 今年上半年,环境保护部共调度处置突发环境事件45起,其中重大、较大事件各1起,一般事件43起。事件总数同比减少18起,重大事件同比减少1起。 从事件起因看,安全生产事故引发的占42%,同比下降16%;交通运输事故引发的占13%,同比下降9%;企业排污引发的占7%;自然灾害引发的占18%;其他因素引发的占20%。 从近年的统计数据来看,我国突发环境事件总量总体呈缓慢下降的态势,安全生产事故仍是引起突发环境事件的主要因素。 在每一起突发环境事件处置过程中,环境保护部始终坚持“五个第一”,即第一时间报告、第一时间赶赴现场、第一时间展开监测、第一时间向社会公布信息、第一时间组织开展调查。 兰州自来水异味事件、阳城县瑞兴化工有限公司二硫化碳泄漏事故、腾龙芳烃(漳州)有限公司PX装置发生爆炸燃烧事故、安徽省东至县经济技术开发区有关环境问题、新河县城区供水管网末端水污染事件等5起事件发生后,环境保护部派出5个前方工作组共15人赶赴现场指导协调,累计达300多天。 目前,在应对重特大及敏感突发环境事件过程中,环境保护部已经完全做到在接报后1小时内调度信息,随后立即派出工作人员赶赴现场指导协调。上半年,共向国办、中办报送34期突发环境事件值班信息、两期季报和一期2014年度总结评估报告,供决策参考。 在处理突发环境事件中,加强信息公开,有助于做好信息发布和舆论引导工作,确保社会秩序稳定。 2015年4月,国务院办公厅印发《2015年政府信息公开工作要点》,对包括环境保护在内的重点领域信息公开作出明确部署。 根据要求,环境保护部加强突发环境事件信息公开,及时公布应对情况及调查结果。目前,上海、安徽、重庆等地都开始通过门户网站等渠道公开突发环境事件相关信息。 此外,环境保护部定期对全国突发环境事件进行汇总分析,两次通报全国突发环境事件季度信息报告情况,主动公开2014年全国突发环境事件基本情况和3起重大突发环境事件案例,累计公开624起突发环境事件应急处置情况。 按照《突发环境事件调查处理办法》有关规定,上半年,环境保护部对阳城县瑞兴化工有限公司二硫化碳泄漏事故、新河县城区供水管网末端水污染事件、兰州市自来水异味事件3起事件启动立案调查程序。 下半年,环境保护部将继续加强对突发环境事件的应急值守、指导协调、现场处置和事件调查,重点防范和处置涉及石油管道等突发环境事件,统筹做好今冬明春的重污染天气应对工作,切实做到事件原因没有查清不放过、事件责任人没有严肃处理不放过、整改措施没有落实不放过。 加强日常应急管理 主动防控环境风险 过去,我国的环境应急管理重事后处置,轻事前预防;现在,环境应急管理正在变被动为主动,从事后处置为主向全过程管理转变。 为完善环境应急管理政策法规体系,今年上半年,环境保护部制定印发实施了《突发环境事件应急管理办法》、《企业事业单位突发环境事件应急预案备案管理办法(试行)》,配合国务院应急办修订印发了《国家突发环境事件应急预案》。 上述规章制度连同去年印发的《突发环境事件调查处理办法》等,使我国初步形成了突发环境事件事前、事中、事后管理的制度框架体系,完成了环境应急管理从理论探索到制度设计的实践。 为推动上述制度落到实处、落到基层,上半年,环境保护部开展了应急管理岗位培训,共培训151名省级、副省级城市环保部门的应急管理业务骨干,培养了20多名环境应急培训师。 在预案管理方面,上半年,环境保护部总结了广东省惠州市大亚湾经济技术开发区及石化园区内好的企业预案管理方法及模式,将在全国推广。同时,要求每省推荐1~2个企业预案进行分析和评估研究,提出问题清单、评估要点等技术方法,以指导地方开展突发环境事件应急预案修编试点工作。 此外,在对兰州市自来水异味事件等重大、敏感性事件的调查处理中,依法依规处理了一批责任人。 针对今年上半年陕北地区连续发生十多起输油管道漏油事件,环境保护部向陕西省政府发布了预警信息,要求做好隐患排查和应急准备工作。 他山之石,可以攻玉。上半年,环境保护部总结分析了近五年来国内39起、国外11起典型突发环境事件,编辑出版了《突发环境事件典型选编(第二辑)》,汇编《突发环境事件应急管理制度学习读本》,通过分析研判典型案例做到以案说法,增强各级环保部门应对突发环境事件的能力与水平。 在重污染天气应对方面,环境保护部认真贯彻落实“大气十条”,督促各地加快编制重污染天气应急预案。 上半年,环境保护部调度分析了328个地级以上城市预案编修情况,督促空气质量不达标的243个城市及时编修预案。截至目前,空气质量不达标的城市重污染天气应急预案编制率达到82%,较去年年底提高30%。来源:中国环境报
  • 上海今森发布氧指数测定仪数显智能型KS-653BH新品
    一、设备概述KS-653BH氧指数测定仪智能款是依据国家标准: GB/T5454—1997《纺织批品燃烧性能测定 氧指数测定法》、GB/T2406.2—2009《塑料 用氧指数指数法测定燃烧行为 第2部分室温试验》设计生产,用于测定各种纺织品包括机织、针织、无纺织物等的燃烧性能,KS-653BH氧指数测定仪智能款也可用于塑料、橡胶、纸张等的燃烧性能测定。遵循标准:GB/T2406.2-2009.用氧指数法测定燃烧行为第二部分:室温试验GB/T5454-1997《纺织品燃烧性能测定-氧指数测定法》GB/T10707-2008橡胶燃烧性能的测定GB/T8924-2005纤维增强塑料燃烧性能试验方法氧指数法GB/T2406-93《塑料燃烧性能试验方法-氧指数法》GB/T10707-2008《橡胶燃烧性能的测定氧指数法》GB/T8924-2005《纤维增强塑料燃烧性能试验方法氧指数法》GB/T23864《防火封堵材料》TB/T3237-2010动车组用内装材料阻燃技术条件二、设备特点智能氧指数测定仪机箱及部分结构: 1. 控制箱:采用数控机床加工成型,冷板喷涂,美观、防锈防腐。 2. 燃烧筒:耐高温优质石英玻璃管(内径¢100mm,长470mm) 3. 出口内径:φ100mm 4. 温度控制:具有加热及控温功能,含加热底座和石英加热保温玻璃筒,准确控温。 5. 试样夹具:自撑式夹具,并能竖直地夹住试样;(可选配非自撑式式样架) 6.主机尺寸:长*宽*高 1120mm × 深 520mm × 高 1250mm 三、智能氧指数测定仪系统组成: 智能氧指数测定仪由氧气、氮气调节系统、试样上端点火自动控制系统、PC 端操作软件及运算系统和信号处理系统组成。 1. 氧气、氮气调节系统 采用气体质量流量控制器配合PLC 逻辑控制器,实现氧气流量、氮气流量的全自动控制,流量调整精度高、速度快、稳定性好。气体质量流量控制器集成了流量控制、执行和反馈单元,真正的模块化结构,组态灵活、功能强大、调节精度高、速度快。PLC 逻辑控制器具有数模转换和模数转换功能,通过对气体质量流量控制器模拟量信号的控制,具有较高的精度,工作稳定性也有很高的提升,同时还具备RS485 通讯端口,可以直接与PC 端操作软件实现通讯。质量流量控制器的调节电压为0V~ +5V ,对应量程0L/min ~ 12 /min ,PLC 控制器的模拟量输出-10 V ~ +10 V ,对应控制值-2000 ~+ 2000。根据GB/T5454-1997 中附录B 氧浓度与氧气、氮气流量的关系,查表可知氧浓度对应的氧气、氮气流量值,通过计算流量对应的电压值,电压值对应的控制值,即可实现对氧浓度的调节。例如:所需氧浓度为30.0% ,经查表对应氧气流量为3.42 L/min ,氮气流量为7.98 L/min ,操作软件利用通讯将氧气控制值285 和氮气控制值665 发送至PLC ,PLC 控制质量流量控制器实现对氧浓度的调节。调节换算机制:所需氧浓度为30.0% ,氧气调节流量3.42L/min,调节电压1.425 V ,控制值285 ;氮气调节流量7.98 L/min ,调节电压3.325 V ,控制值665 。 2、试样上端点火自动控制系统 实现试样上端点火自动控制,针对标准要求的点火时间,做到准确控制,避免人工点火造成的误差,配合上下运动装置和左右运动装置实现试样上边沿均匀点燃。在保证点火时间的同时,点火器部分能够实现旋转,以便测量火焰长度,点火上下运动过程平稳。 3、PC 端操作软件及运算系统 使用WEINVIEW触摸屏PC 端操作软件,软件界面简洁明了,操作功能强大,易上手,以引 导试验过程的思想设计。对氧气氮气流量的计算方法科学合理,保证氧浓度数值的准确性。 通过对采集信号的运算得出实际的氧浓度数值,研究开发一套合理高效的运算规则,直接决定了试验结果的准确性。通过反复试验研究,总结气体流量和反馈信号之间的基本规律,有效缩小或规避仪表本身的测量误差,通过合理的算法确定准确的氧浓度数值。根据仪器自动化运行的特点,设计PLC 专用梯形图程序。4、信号处理系统 模拟量信号处理的合理与否直接决定了信号采集的准确性。气体质量流量控制器和PLC 之间的通讯模拟量信号为0V~5 VDC ,由于电压信号的抗干扰能力较差,所以采用必要、合理的抗干扰措施必不可少。PLC 控制应用系统中的干扰是一个十分复杂的问题,因此在系统的抗干扰设计中应综合考虑各方面的因素,根据实际应用中分析出干扰产生的原因,从而合理有效地采取抑制干扰措施,使PLC 应用系统可靠地工作。信号滤波是测量系统不可或缺的环节,从传感器拾取的信号中,不可避免地混杂有噪声和干扰,为了保证测量的正确性,必须采取抗干扰和抑制噪声的措施,信号滤波是抑制噪声的主要方法,在保证有用信号正常传递的情况下,将噪声对测量的影响减小到所允许的范围。本设计采用LC无源滤波器,特点是损耗小、噪声低、灵敏度低。 创新点:根据市场现有产品存在的问题,我司结合标准要求,重新规划设计思路,通过自动调节氧气和氮气的压力流量,达到要求的混合气体氧浓度,同时配合自动点燃装置,均匀点燃布样上边缘,利用操作软件实现试验过程自动化。通讯将上位机的流量设定值发送给流量控制器和执行器,用模拟量信号完成对氧气、氮气流量的设定,同时将执行器的信号反馈给上位机进行优化运算,保证了数据的准确性。自动点燃装置应用步进电机实现精准控制,点燃过程平稳准确。这种调节方法完全超越了手动调节的方式,弥补了手动调节氧指数测定仪的不足,实现流量调节准确度高、测试结果数据准确、稳定性高、调节过程快速,节省氧气和氮气消耗,缩短了整体试验的过程,大大提升了试验工作效率。 氧指数测定仪数显智能型KS-653BH
  • 植树节献礼丨重大突破,朗石重金属监测仪电极终身免维护!
    时逢植树节,朗石来献礼!礼是什么?问就是,电极终身免维护的重金属监测仪!NanoTek 9000 多参数重金属在线分析仪是朗石创新研发的,专门用于水中痕量重金属自动监测的仪器。它采用阳极溶出伏安法原理,可稳定、准确监测水中镉、铅、铜、锌等重金属的含量,测定下限达μg/L级别。阳极溶出伏安法阳极溶出伏安法是指在一定的电位下,使待测金属离子部分还原成金属并溶入微电极或析出于电极的表面,然后向电极施加反向电压,使微电极上的金属氧化而产生氧化电流,根据氧化过程的电流一电压曲线进行分析的电化学分析法。阳极溶出伏安法的优势在于在合适的工作电极、合适的分析环境条件下,可以对水质中μg/L数量级的重金属进行精确的定量分析。基于聚合物修饰电极技术,朗石成功破局,创新研发了电极终身免维护的NanoTek 9000多参数重金属监测仪。电极终身免维护创新地解决了电极需打磨维护的问题,行业内首次实现了工作电极终身免维护。 测量周期短、废液量低独特的流程及反应体系,极大缩短多参数一次的测量周期同时节省了废液量,废液量低至40mL。定量下限低测量算法的优化,大大提升了仪器低浓度监测的准确性,定量下限得以突破,定量下限低至0.5ppb。朗石成立初期,自主研发的多参数重金属监测仪在云南省环境监测站的重大建设采购项目中,与来自美国、英国、澳大利亚的进口设备进行技术比对,凭借良好的准确性和稳定性成为了云南省环境监测站的最终选择,成就了“国产品牌击败洋品牌”的佳话。项目验收现场朗石人践行“绿水青山就是金山银山”,在实现多参数重金属准确监测的基础上不断突破创新,坚定地“守护水安全,创新水智慧”,为客户持续创造更大价值!
  • 数显双功能水浴振荡器促销中......
    数显双功能水浴,原价6200元,先只要6折就可以买到!速速订购!!! 概述: 数显水浴恒温振荡器,也叫:恒温水浴箱,或者:水浴摇床,是一种温度可控的恒温水浴槽和振荡器相结合的生化仪器,主要适用于各大中院校、医疗、石油化工、卫生防疫、环境监测等科研部门作生物、生化、细胞、菌种等各种液态、固态化合物的振荡培养。 其主要特点: A:温控精确数字显示。 B:振荡时又小浪花,但无浪花飞溅。 C:设有机械定时。 D:万能弹簧试瓶架特别适合作多种对比试验的生物样品的培养制备。 E:无级调速,运转平稳,操作简便安全。 F:内腔采用不锈钢制作,抗腐蚀性能良好。 主要技术性能: 1. 使用电源: 220V 50Hz 2. 加热功率: 1800w 3. 定时范围: 0~120分(或常开) 4. 振荡频率: 起动&mdash 300转/分,连续可调 5. 振荡幅度: 20mm 6. 恒温范围: 室温&mdash 100℃ 7. 振荡方法: 往复、回旋。双功能 8. 温控分辨率: +0.01℃ 9. 温度均匀度:± 0.5℃; 10. 水箱容积: 30L 11. 外形尺寸: 700× 550× 490 仪器配置:  主机     一台           电源线          一根 使用说明书   一份           合格证          一份 *万能弹簧夹具内置仪器中
  • 这家企业已研制出数款专用设备,为不过早树敌未点明对标企业
    有投资者在投资者互动平台提问:贵公司说自己公司的半导体设备对标的是国外一流企业,能具体说几个国外一流半导体公司的名字吗?劲拓股份(300400.SZ)4月9日在投资者互动平台表示,公司依托于自身电子热工方面的技术积累,将应用领域拓展至半导体热工领域,致力于实现相关产业链的国产化,目前已经研制出数款半导体专用设备,主要对标美国、日本、德国和新加坡的部分芯片封装设备生产厂商,为保证公司半导体专用设备业务长期发展,不过早树敌,公司认为目前不宜公开点明对标企业名称。
  • 2020年狄拉克奖公布,三位弦理论先驱获此殊荣
    p style=" text-align: justify text-indent: 2em " 2020年8月10日,国际理论物理中心(ICTP)在意大利Trieste揭晓了被视为理论和数学物理领域的最高荣誉之一——2020年狄拉克奖,授予三位杰出的物理学家——蒙彼利埃大学的André Neveu,佛罗里达大学的Pierre Ramond,以及罗马第一大学的Miguel Virasoro,以表彰他们“创立和提出弦理论的先驱性贡献,将新的玻色和费米对称性引入了物理学” span style=" text-indent: 2em " 。 /span /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/42edbc53-6064-49e6-9908-96e21817be43.jpg" title=" ictp-dirac-medal-2020.png" alt=" ictp-dirac-medal-2020.png" / /p p style=" text-align: justify text-indent: 2em " 弦理论是基础物理的一种理论框架,其将物质描述为由一维的微观客体(称为“弦”)所组成。这些弦可以被视为微小的能量丝,它们以不同的模式振动。就像小提琴弦的不同振动模式产生不同音符一样,弦的不同振动状态通过确定其性质(如质量或电荷)会产生不同的基本粒子(如电子或中微子)。 /p p style=" text-align: justify text-indent: 2em " 弦理论是物理学家们新提出的统一物理学理论,试图将描述引力的爱因斯坦广义相对论和描述物质基本组成的量子力学结合起来。弦理论在解决基础物理中的一些问题上发挥了非常重要的作用,并已应用于黑洞、早期宇宙、凝聚态物理等各种领域,且由于其复杂和严谨的公式,促进了纯数学的重大发展。 /p p style=" text-align: justify text-indent: 2em " 弦理论的最初发展出现在20世纪60年代末,当时,它立即成为引力量子理论的一个有前途的候选者。其最早的版本是玻色弦理论,也就是说,只描述了一类叫作“玻色子”的粒子。玻色子是自旋为整数(0,1,2,& #8230 & #8230 ,以普朗克常量为单位)的粒子,如光子、引力子和希格斯玻色子;另一方面,费米子是自旋为半整数(1/2,3/2,5/2,& #8230 & #8230 ,以普朗克常量为单位)的粒子,比如电子、质子和夸克。 /p p style=" text-align: justify text-indent: 2em " 20世纪60年代末,Miguel Virasoro开始在理论物理学领域进行一项雄心勃勃的工作,最初是和Gabriele Veneziano合作,后来是独自一人。这项工作主要集中在所谓的“Veneziano模型”的开发上,这是一种具有一些特性的数学模型,后来成为了第一个被认可的弦模型。受Veneziano“开放弦”的启发,Virasoro发展了自己的模型,后来被公认为“封闭弦”模型。在进行这些研究的时候,弦的理论还没有完全、清晰地发展起来,这些模型是在几年后才被认为完美地描述了弦的物理学。 /p p style=" text-align: justify text-indent: 2em " Miguel Virasoro通过研究这些模型的数学特性,继续为该领域作出重要贡献,并注意到这些模型具有的一些对称性特征。他确定并形式化表述了这些对称性,现在被称为“Virasoro代数”,这是一种被广泛应用于二维共形场论和弦论的复李代数。在纯数学家看来,这项工作也很有意义,因为它是一个无限维李代数,而在此之前李代数通常都是有限维的。 /p p style=" text-align: justify text-indent: 2em " “这项工作非常重要,因为它让我们可以完成之前无法完成的计算,” strong 意大利猞猁之眼国家科学院(Accademia dei Lincei)主席、狄拉克奖评选委员会成员Giorgio Parisi教授 /strong strong 说 /strong :“有了一个模型却不知道其对称性是一种漫无目的的研究,就像在黑暗中行走。这就是为什么发现这些对称性是一个真正的转折点。” /p p style=" text-align: justify text-indent: 2em " 另一方面,André Neveu和Pierre Ramond把费米子自由度引入了理论模型。事实上,Virasoro所做的大部分工作都致力于研究玻色弦,这是弦理论领域中最早被研究的弦。Neveu和Ramond扩展了这些工作,将计算扩展到包括由费米子组成物质的另外部分。 /p p style=" text-align: justify text-indent: 2em " “这些工作的共同之处在于,它们都是弦理论中至关重要的工作,在科学家们意识到这些公式可以真正描述弦之前,这些工作就已经开始进行了”, strong Giorgio /strong & nbsp strong Parisi说 /strong ,“只有在几年后,由于Leonard Susskind、Yōichirō Nambu和其他人的工作,科学家们才真正开始谈论弦。” /p p style=" text-align: justify text-indent: 2em " Andrè Neveu与John Schwarz在20世纪70年代早期合作完成的这项工作,也由Pierre Ramond独立完成,现在被称为“RNS形式”,以三位创始人的姓氏首字母命名。这是超弦理论的最初进展,将描述玻色弦的对称代数——Virasoro代数,推广到同样可以描述费米子的代数。这一构想可以将宇宙中所有的粒子和基本力都表述为微小的超对称弦的振动,因此得名“超弦”理论,它同时解释了费米子和玻色子。 /p p style=" text-align: justify text-indent: 2em " “作为ICTP的新主任,宣布2020年狄拉克奖让我倍感荣幸和开心。” strong ICTP主任Atish Dabholkar说 /strong ,“狄拉克一直是理论物理学领域一个鼓舞人心的人物,对于ICTP更是如此。今年,一个非常杰出的评选委员会将这一奖项颁发给弦理论领域的三位先驱,他们在某种程度上继承了狄拉克的思想和做物理的方式。” /p section style=" box-sizing: border-box text-align: justify " section style=" margin-top: 10px margin-bottom: 10px text-align: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top box-sizing: border-box " section style=" width: 43px margin-left: auto box-sizing: border-box " section style=" width: 5px height: 5px margin-left: auto margin-bottom: 3px background-color: rgb(58, 181, 75) box-sizing: border-box line-height: 0 " /section section style=" width: 40px height: 1px margin-right: 3px margin-bottom: -6px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 " /section section style=" width: 1px height: 25px margin-left: 34px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 " /section /section section style=" padding-left: 15px padding-right: 15px margin-top: -18px margin-bottom: -18px box-sizing: border-box " p style=" margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" font-size: 18px color: rgb(0, 0, 0) " 获奖者介绍 /span /strong /p /section section style=" width: 43px box-sizing: border-box " section style=" width: 1px height: 25px margin-bottom: -6px margin-left: 8px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 " /section section style=" width: 40px height: 1px margin-left: 3px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 " /section section style=" width: 5px height: 5px margin-top: 3px background-color: rgb(58, 181, 75) box-sizing: border-box line-height: 0 " /section /section /section /section /section section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% 0px position: static box-sizing: border-box " section style=" display: inline-block vertical-align: bottom width: 18px flex: 0 0 auto height: auto align-self: flex-end border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) line-height: 0 border-right-color: rgb(82, 175, 255) box-sizing: border-box " section style=" text-align: right justify-content: flex-end transform: translate3d(-2px, 0px, 0px) -webkit-transform: translate3d(-2px, 0px, 0px) -moz-transform: translate3d(-2px, 0px, 0px) -o-transform: translate3d(-2px, 0px, 0px) margin: 0px 0% 2px position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 10px height: 16px vertical-align: top overflow: hidden background-image: linear-gradient(45deg, rgb(49, 67, 244) 0%, rgb(166, 172, 251) 100%) border-width: 0px border-radius: 2px border-style: none border-color: rgb(62, 62, 62) box-sizing: border-box line-height: 0 " /section /section /section section style=" display: inline-block vertical-align: bottom width: auto align-self: flex-end flex: 0 0 0% height: auto background-image: linear-gradient(0deg, rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) line-height: 0 letter-spacing: 0px box-sizing: border-box " section style=" text-align: center position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 1px height: 20px vertical-align: top overflow: hidden box-sizing: border-box line-height: 0 " /section /section /section section style=" display: inline-block vertical-align: bottom width: auto flex: 100 100 0% align-self: flex-end height: auto border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) box-sizing: border-box " section style=" color: rgb(36, 154, 255) text-shadow: rgb(255, 255, 255) 1px 1px, rgb(180, 221, 255) 2.3px 2.3px letter-spacing: 2px line-height: 1.4 padding: 0px 6px box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " André Neveu /p /section /section /section /section section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" background-image: linear-gradient(90deg, rgba(128, 218, 253, 0) 0%, rgb(128, 218, 253) 20px, rgb(123, 154, 255) 70%, rgba(123, 154, 255, 0) 100%) height: 1px box-sizing: border-box line-height: 0 " /section /section section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 0px 0% 10px position: static box-sizing: border-box " section class=" group-empty" style=" display: inline-block vertical-align: top width: 6px align-self: stretch flex: 0 0 auto height: auto background-image: linear-gradient(rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) margin: 0px 0px 0px 13px line-height: 0 box-sizing: border-box " section style=" line-height: 0 width:0 " svg viewbox=" 0 0 1 1" style=" vertical-align:top" /svg /section /section section style=" display: inline-block vertical-align: top width: auto align-self: stretch flex: 100 100 0% box-sizing: border-box " section style=" margin: 5px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 14px color: rgb(55, 55, 74) line-height: 1.8 letter-spacing: 1.8px padding: 0px 6px box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " André Neveu出生于法国巴黎,理论物理学家,研究领域包括弦理论和量子场论。他发展了第一个可以描述玻色子和费米子的弦理论,从而开启了超对称的想法(当时由几个研究小组独立发展),被认为是弦理论的先驱。 /p p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " André Neveu曾就读于巴黎巴黎高等师范学院,自1989年起工作于蒙彼利埃大学理论物理研究所(现在的L2C,即查尔斯· 库仑实验室)。他曾任加州大学伯克利分校客座教授。因对理论物理的贡献,他荣获多个奖项,包括Paul Langevin奖(1973年)和Gentner-Kastler奖(1988年)。 /p /section /section /section /section /section /section section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% 0px position: static box-sizing: border-box " section style=" display: inline-block vertical-align: bottom width: 18px flex: 0 0 auto height: auto align-self: flex-end border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) line-height: 0 border-right-color: rgb(82, 175, 255) box-sizing: border-box " section style=" text-align: right justify-content: flex-end transform: translate3d(-2px, 0px, 0px) -webkit-transform: translate3d(-2px, 0px, 0px) -moz-transform: translate3d(-2px, 0px, 0px) -o-transform: translate3d(-2px, 0px, 0px) margin: 0px 0% 2px position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 10px height: 16px vertical-align: top overflow: hidden background-image: linear-gradient(45deg, rgb(49, 67, 244) 0%, rgb(166, 172, 251) 100%) border-width: 0px border-radius: 2px border-style: none border-color: rgb(62, 62, 62) box-sizing: border-box line-height: 0 " /section /section /section section style=" display: inline-block vertical-align: bottom width: auto align-self: flex-end flex: 0 0 0% height: auto background-image: linear-gradient(0deg, rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) line-height: 0 letter-spacing: 0px box-sizing: border-box " section style=" text-align: center position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 1px height: 20px vertical-align: top overflow: hidden box-sizing: border-box line-height: 0 " /section /section /section section style=" display: inline-block vertical-align: bottom width: auto flex: 100 100 0% align-self: flex-end height: auto border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) box-sizing: border-box " section style=" color: rgb(36, 154, 255) text-shadow: rgb(255, 255, 255) 1px 1px, rgb(180, 221, 255) 2.3px 2.3px letter-spacing: 2px line-height: 1.4 padding: 0px 6px box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " Pierre Ramond /p /section /section /section /section section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" background-image: linear-gradient(90deg, rgba(128, 218, 253, 0) 0%, rgb(128, 218, 253) 20px, rgb(123, 154, 255) 70%, rgba(123, 154, 255, 0) 100%) height: 1px box-sizing: border-box line-height: 0 " /section /section section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 0px 0% 10px position: static box-sizing: border-box " section class=" group-empty" style=" display: inline-block vertical-align: top width: 6px align-self: stretch flex: 0 0 auto height: auto background-image: linear-gradient(rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) margin: 0px 0px 0px 13px line-height: 0 box-sizing: border-box " section style=" line-height: 0 width:0 " svg viewbox=" 0 0 1 1" style=" vertical-align:top" /svg /section /section section style=" display: inline-block vertical-align: top width: auto align-self: stretch flex: 100 100 0% box-sizing: border-box " section style=" margin: 5px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 14px color: rgb(55, 55, 74) line-height: 1.8 letter-spacing: 1.8px padding: 0px 6px box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " Pierre Ramond出生于法国塞纳河畔纳伊市,被认为是超弦理论发展的发起人。1970年代初,通过将Virasoro 代数推广为一种超共形代数(被称为超Virasoro代数),他完成了玻色弦理论的推广,使其同样适用于费米弦。他是佛罗里达大学杰出物理学教授。 /p p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " Pierre Ramond曾是费米实验室的博士后,之后成为耶鲁大学的讲师和助理教授。他曾在加州理工学院担任R. A. Millikan高级研究员。因对理论物理的贡献,他获得了多项奖项,包括Boris Pregel奖(1992年)和享有盛誉的Dannie Heineman数学物理学奖(2015年)。他是美国物理学会会员。 /p /section /section /section /section /section /section section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% 0px position: static box-sizing: border-box " section style=" display: inline-block vertical-align: bottom width: 18px flex: 0 0 auto height: auto align-self: flex-end border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) line-height: 0 border-right-color: rgb(82, 175, 255) box-sizing: border-box " section style=" text-align: right justify-content: flex-end transform: translate3d(-2px, 0px, 0px) -webkit-transform: translate3d(-2px, 0px, 0px) -moz-transform: translate3d(-2px, 0px, 0px) -o-transform: translate3d(-2px, 0px, 0px) margin: 0px 0% 2px position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 10px height: 16px vertical-align: top overflow: hidden background-image: linear-gradient(45deg, rgb(49, 67, 244) 0%, rgb(166, 172, 251) 100%) border-width: 0px border-radius: 2px border-style: none border-color: rgb(62, 62, 62) box-sizing: border-box line-height: 0 " /section /section /section section style=" display: inline-block vertical-align: bottom width: auto align-self: flex-end flex: 0 0 0% height: auto background-image: linear-gradient(0deg, rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) line-height: 0 letter-spacing: 0px box-sizing: border-box " section style=" text-align: center position: static box-sizing: border-box " powered-by=" xiumi.us" section class=" group-empty" style=" display: inline-block width: 1px height: 20px vertical-align: top overflow: hidden box-sizing: border-box line-height: 0 " /section /section /section section style=" display: inline-block vertical-align: bottom width: auto flex: 100 100 0% align-self: flex-end height: auto border-style: none border-width: 0px border-radius: 0px border-bottom-color: rgb(132, 198, 255) box-sizing: border-box " section style=" color: rgb(36, 154, 255) text-shadow: rgb(255, 255, 255) 1px 1px, rgb(180, 221, 255) 2.3px 2.3px letter-spacing: 2px line-height: 1.4 padding: 0px 6px box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " Miguel Virasoro /p /section /section /section /section section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" background-image: linear-gradient(90deg, rgba(128, 218, 253, 0) 0%, rgb(128, 218, 253) 20px, rgb(123, 154, 255) 70%, rgba(123, 154, 255, 0) 100%) height: 1px box-sizing: border-box line-height: 0 " /section /section section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 0px 0% 10px position: static box-sizing: border-box " section class=" group-empty" style=" display: inline-block vertical-align: top width: 6px align-self: stretch flex: 0 0 auto height: auto background-image: linear-gradient(rgb(128, 218, 253) 0%, rgba(189, 232, 255, 0) 100%) margin: 0px 0px 0px 13px line-height: 0 box-sizing: border-box " section style=" line-height: 0 width:0 " svg viewbox=" 0 0 1 1" style=" vertical-align:top" /svg /section /section section style=" display: inline-block vertical-align: top width: auto align-self: stretch flex: 100 100 0% box-sizing: border-box " section style=" margin: 5px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 14px color: rgb(55, 55, 74) line-height: 1.8 letter-spacing: 1.8px padding: 0px 6px box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " Miguel Virasoro出生于阿根廷布宜诺斯艾利斯,因其在理论物理和数学物理领域的研究而闻名。他于1962年毕业于布宜诺斯艾利斯大学,并在1966年离开了阿根廷(当时阿根廷联邦警察强制学生和教师从布宜诺斯艾利斯大学的五个学院撤离)。他在以色列雷霍沃特的魏茨曼科学研究所的获得了博士后职位,之后在威斯康星大学、加州大学伯克利分校、普林斯顿高等研究院、法国巴黎高等师范学院等一些国际机构工作了几年,其间还去阿根廷做了两次短期访问。1977年,他移居意大利,先是去了都灵,然后在1981年去了罗马第一大学,在那里做了30年的教授,讲经济和电磁学的物理数学模型。 /p p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " Miguel Virasoro因发现了Virasoro模型(一种闭弦模型)以及对无限维李代数的发展做出了巨大贡献而闻名,即引入了弦理论中的关键工具——Virasoro代数。与Giorgio Parisi和Marc Mezard合作,他在统计力学领域,特别是在无限维自旋玻璃态的研究方面做出了巨大贡献。 /p p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " 1995年至2002年,他担任里雅斯特的ICTP主任。 span style=" text-align: center font-size: 16px " & nbsp /span /p /section /section /section /section /section /section section style=" box-sizing: border-box text-align: justify " section style=" margin-top: 10px margin-bottom: 10px text-align: center position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block vertical-align: top box-sizing: border-box " section style=" width: 43px margin-left: auto box-sizing: border-box " section style=" width: 5px height: 5px margin-left: auto margin-bottom: 3px background-color: rgb(58, 181, 75) box-sizing: border-box line-height: 0 " /section section style=" width: 40px height: 1px margin-right: 3px margin-bottom: -6px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 " /section section style=" width: 1px height: 25px margin-left: 34px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 " /section /section section style=" padding-left: 15px padding-right: 15px margin-top: -18px margin-bottom: -18px box-sizing: border-box " p style=" margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" font-size: 18px " 关于 ICTP 狄拉克奖 /span /strong /p /section section style=" width: 43px box-sizing: border-box " section style=" width: 1px height: 25px margin-bottom: -6px margin-left: 8px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 " /section section style=" width: 40px height: 1px margin-left: 3px background-color: rgb(114, 114, 114) box-sizing: border-box line-height: 0 " /section section style=" width: 5px height: 5px margin-top: 3px background-color: rgb(58, 181, 75) box-sizing: border-box line-height: 0 " /section /section /section /section /section p style=" text-align: justify text-indent: 2em " ICTP狄拉克奖是为纪念P.A.M.狄拉克而设立的,于1985年第一次颁发。狄拉克是20世纪最伟大的物理学家之一,也是ICTP坚定的朋友。每年的8月8日(狄拉克的生日),该奖项被授予对理论物理学作出重大贡献的科学家。狄拉克奖获得者都是世界顶级物理学家,其中很多人也获得了诺贝尔奖、菲尔兹奖和沃尔夫奖。由杰出科学家组成的国际委员会从提名候选人名单中选出获奖者。本次颁奖典礼将于2021年举行,三位获奖者将就他们的工作发表演讲。 /p p br/ /p
  • 720万!武汉大学离子减薄仪、微束定点离子减薄仪、显微激光拉曼光谱仪、X射线衍射仪采购项目
    项目编号:WHCSIMC2022-1602807ZF(H)项目名称:武汉大学离子减薄仪、微束定点离子减薄仪、显微激光拉曼光谱仪、X射线衍射仪采购项目预算金额:720.0000000 万元(人民币)最高限价(如有):720.0000000 万元(人民币)采购需求:1.本次公开招标共分4个项目包,具体需求如下。详细技术规格、参数及要求见本项目招标文件第(三)章内容。第一包:(1) 项目包名称:离子减薄仪(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:140万元人民币(6)其他:本项目包接受进口设备投标第二包:(1) 项目包名称:微束定点离子减薄仪(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:350万元人民币(6)其他:本项目包接受进口设备投标第三包:(2) 项目包名称:显微激光拉曼光谱仪(3) 类别:货物(4) 数量:一套(5) 简要技术要求:详见招标文件第三章(6) 采购预算:100万元人民币(7)其他:本项目包接受进口设备投标第四包:(2) 项目包名称:X射线衍射仪(3) 类别:货物(4) 数量:一套(5) 简要技术要求:详见招标文件第三章(6) 采购预算:130万元人民币(7)其他:本项目包接受进口设备投标合同履行期限:第一包:交货期 :合同签订后150日内;质保期 :本项目免费质量保证期要求不低于5年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第二包:交货期 :合同签订后150日内;质保期 :本项目免费质量保证期要求不低于5年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第三包:交货期 :合同签订后180日内;质保期:本项目免费质量保证期要求不低于1年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第四包:交货期 :合同签订后10个月内;质保期 :本项目免费质量保证期要求不低于1年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。本项目( 不接受 )联合体投标。
  • 海关总署关于进一步加强进口危险化学品检验监管的公告
    为深入贯彻落实习近平总书记关于安全生产的重要指示批示精神,进一步加强进口危险化学品检验监管,现将有关事项公告如下:一、检验模式对进口危险化学品实施批批“审单验证+口岸检验或者目的地检验”模式,根据进口危险化学品属性和危险货物包装类型设定检验作业环节(地点)和比例。二、申报要求进口危险化学品的收货人或者代理人报关时,应在“中国国际贸易单一窗口”如实填报货物属性、检验检疫名称、危险类别、包装类别、联合国危险货物编号(UN编号)、危险货物包装标记(包装UN标记)和目的地检验检疫机关等,并按照申报货物项分别上传海关总署公告2020年第129号(关于进出口危险化学品及其包装检验监管有关问题的公告)要求提交的相关材料。进口危险化学品的收货人或者代理人报关后,应及时通过“中国国际贸易单一窗口”查询检查通知。本公告自2023年4月13日起实施。特此公告。海关总署2023年4月7日公告下载链接: 海关总署关于进一步加强进口危险化学品检验监管的公告.doc 海关总署关于进一步加强进口危险化学品检验监管的公告.pdf
  • 核酸出现假阳性?样本保存液过期?国家卫健委:加大监督检查力度
    此前,有媒体报道居民在社交平台上反映,上海多位居民核酸检测结果为阳性,复核后均为阴性,后经调查发现假阳性均出自同一家机构。近日,北京市市场监督管理局网站显示,一核酸检测点正在使用的样本保存液超过保质期,丰台区市场监督管理局对其依法予以处罚。核酸检测是诊断新冠病毒感染的“金标准”,在疫情防控工作中起到了“前哨”的关键作用,其规范、准确至关重要。核酸检测如何在控制成本、批量检测的同时,还要确保结果准确、快速?在5月23日的国务院联防联控机制新闻发布会上,国家卫生健康委相关负责人给出详解。假阳性的可能原因“尽管核酸检测理论上的特异性是100%,但在实际工作中,实验室可能会因试验过程以及操作造成的一些污染而导致假阳性。”国家卫健委医政医管局监察专员郭燕红解释,假阳性的污染源包括遗留污染、交叉污染。郭燕红进一步解释,在大规模核酸检测的过程中,检测流程采取“停人不停机”的连续工作方式,可能出现扩增产物的遗留污染,这是由于每轮扩增检测之间的清洁不到位造成的。另外,由于无法保证每个扩增管都处于绝对密闭,检测过程中样本之间可能会发生交叉污染,比如说阳性样本或者质控品污染了本来是阴性的样本,这样的交叉污染也可能造成假阳性。此外,个别实验室、个别技术人员没有严格按照规定的工作程序进行操作,也会造成假阳性的结果。如何避免假阳性郭燕红强调,由于污染和操作不当造成的假阳性出现不意味着核酸检测对奥密克戎毒株的敏感性有所下降。为最大限度避免出现“假阳性”,国家卫健委要求各检测机构进一步落实核酸检测的技术指南和工作规程的要求,特别是要做好质控管理,包括室内的质控和质间的质评。“针对一些容易发生问题的环节,要强化工作要求和措施落实,特别是要严格落实实验室环境的清洁消毒,降低实验室污染的可能。”郭燕红表示,当实验室出现阳性结果异常增高的情况时,实验室必须要认真梳理工作流程、分析可能原因,特别是要排除因为操作或者是实验室污染所造成的假阳性的可能,加强环境仪器设备和工作台面消毒、清洁的频次,最大限度减少实验室污染。郭燕红提醒,要合理安排好工作人员的班次,避免过度疲劳导致的工作疏漏,最大限度保证核酸检测质量。加大监督力度目前,国内有多个城市和地区都已经陆续探索实施常态化的核酸检测工作。多个城市开展了15分钟步行核酸采样圈的工作部署,主要是集中在输入风险较高的省会城市以及人口千万级的城市,这些城市根据本地实际情况合理布局核酸采样点,不仅让市民就近就便进行核酸检测,而且不挤占医疗机构的核酸检测服务。据介绍,有些地方通过联合采购核酸检测试剂等耗材,进一步压低了检测成本,降低了检测价格,促进了常态化检测工作的有序开展。郭燕红强调,核酸检测对实施“四早”,落实好“外防输入,内防反弹”和“动态清零”的总方针,具有非常重要的作用。在加强做好室间质评工作的基础上,相关部门应进一步加大对核酸检测机构的监督检查力度,特别强调要依法执业,要严格检测质量。对违法违规行为,要坚决进行严肃查处,并在全国进行通报。近期,相关部门对核酸检测单位加强了监督检查。例如,此前北京某医学检验公司被发现原始检测数据明显少于样本检测数量,被卫健部门吊销相关实验室《医疗机构执业许可证》,市场监管部门亦立案查处,相关责任人被依法采取刑事强制措施。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制