当前位置: 仪器信息网 > 行业主题 > >

双向变换器

仪器信息网双向变换器专题为您提供2024年最新双向变换器价格报价、厂家品牌的相关信息, 包括双向变换器参数、型号等,不管是国产,还是进口品牌的双向变换器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双向变换器相关的耗材配件、试剂标物,还有双向变换器相关的最新资讯、资料,以及双向变换器相关的解决方案。

双向变换器相关的论坛

  • 电涡流位移振动传感器的安装及注意事项

    电涡流位移传感器是基于高频磁场在金属表面的“涡流效应”而成,是对金属物体的位移、振动、转速等机械量进行检测和控制的理想传感器。电涡流位移传感器具有非接触测量、线性范围宽、灵敏度高、抗干扰能力强、无介质影响、稳定可靠、易于处理等明显优点。电涡流位移传感器广泛用于冶金、化工、航天等行业中,也可用于科研和学校实验中的位移、振动、转速、长度、厚度、表面不平度等机械量的检测。 安装的过程中,首先要在确定电涡流位移传感器已经标定完成后。卸下传感器,连同万用表和电源一起,安装到实际被测体处。调整传感器与被测体之间的距离,使变换器的输出读数符合检测要求。一般来说,(以“0―5V”输出为例)测振动,应使输出指示为“2.5V”即线性段的中点。测位移,如果被测体的位移是双向的也应使输出指示为“2.5V”即线性段的中点。如果是单向的,应使输出指示为“0V”,或者“5V”.即线性段的下限或者上限。安装无误后,固定电涡流位移传感器即可。 电涡流位移传感器在连接无误,接通电源后,请预热10分钟,探头周围一倍于探头直径的地方,不能有其它金属材料。工作时,电涡流位移传感器应避免强磁场和强电场的干扰。传感器和前置变换器之间的插头、插座工作时,不应有抖动,以免引起输出变化。高频电缆的长度不能随意增减。无温度补赏的电涡流位移传感器,测量环境不可出现温度急剧变化,以提高测量精度。

  • 双向磁力加热搅拌器的6点使用维护

    双向磁力加热搅拌器适合于医药卫生、环保、生化实验室、分析室、教育科研等单位,不仅操作简单、运转平稳而且能在较广的速度范围内对液体进行精密稳定的搅拌。    双向磁力加热搅拌器的使用维护,如下:    1、接通外电源,合上电源开关,指示灯亮。    2、将装有溶液和搅拌子的试瓶(或其它器皿)放在工作面顶板上。    3、双向磁力加热搅拌器选择加热,合上加热开关,,指示灯亮,即为加热状态。    4、调节调速旋钮,升至所需转速。如果需要双向搅拌,将方向选择开关拨向“双向“即可。顺时针搅拌时,指示灯具绿色。逆时针搅拌时,指示灯为红色。    5、将双向磁力加热搅拌器的工作面顶板擦拭干净,其上不允许有水滴、污物残留。特殊规格要求需签订合同,价格另定。    6、使用双向磁力加热搅拌器工作完毕后,将调速旋钮置于zui小位置,加热开关处于非工作状态,关电源开关,切断电源。分享:

  • 采用压力串级控制系统实现气动马达的精密调节

    采用压力串级控制系统实现气动马达的精密调节

    [color=#ff0000]摘要:气动马达作为一种将压缩空气的压力能转换为旋转机械能的装置,其运行的关键是要进行驱动气体压力的控制。本文介绍了目前气动马达压力控制装置的技术现状,特别指出了现有技术中使用电空变换器存在的不足,介绍了电空变换器的更新换代产品——电气比例阀。本文对这两种新旧技术进行了详细比较,新一代的电气比例阀技术更能满足今后气动马达对小型化、集成化、智能化、精细化、高寿命和高可靠性等方面的需求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align] 气动马达也称为风动马达,是指将压缩空气的压力能转换为旋转的机械能的装置。气动马达一般作为更复杂装置或机器的旋转动力源,它的作用相当于电动机或液压马达,即输出转矩以驱动机构作旋转运动。气动马达的主要特点有: (1)使用空气作为介质,无供应上的困难,用过的空气不需处理,放到大气中无污染 压缩空气可以集中供应,远距离输送。操纵方便,维护检修较容易。 (2)气马达具有结构简单,体积小,重量轻,马力大,操纵容易,维修方便。 (3)可以无级调速,只要控制进气阀或排气阀的开度,即控制压缩空气的流量,就能调节马达的输出功率和转速。即通过调节气源压力或者改变气流量,也可通过同时调节两者来实现。 (4)能够正转也能反转。大多数气马达只要简单地用操纵阀来改变马达进、排气方向,即能实现气马达输出轴的正转和反转,并且可以瞬时换向。在正反向转换时,冲击很小,而且不需卸负荷。 (5)工作安全,不受振动、高温、电磁、辐射等影响,适用于恶劣的工作环境,在易燃、易爆、高温、振动、潮湿、粉尘等不利条件下均能正常工作。 从上述气动马达的特点可以看出,气动马达运行的关键是压力控制。目前气动马达常用的压力控制装置如图1所,其中主要包括电空变换器(E/P或V/P转换器)和增压器,由此构成压力的开环控制,通过电流或电压信号输入就可以进行气动马达的调节。[align=center][color=#ff0000][img=气动马达常用压力控制装置结构示意图,500,359]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301217044251_5561_3221506_3.jpg!w690x496.jpg[/img][/color][/align][align=center][color=#ff0000]图1 气动马达常用压力控制装置结构[/color][/align] 如果增加传感器(如旋转编码器)和PLC控制器,由此可构成闭环控制回路,传感器检测气动马达的转速等参量,PLC控制器通过检测传感器信号并与设定值比较可进行气动马达高精度的自动控制。另外,整个控制装置还可以通过增加双向阀来实现气动马达的正反转自动控制。 在图1所示的气动马达压力控制装置中,所用的电控变换器(电气转换器)是一种比较传统的压力调节装置,目前正逐渐被电气比例阀所代替。图2所示为这两种压力调节装置的对比。[align=center][color=#ff0000][img=电气比例阀和电气转换器比较表,690,520]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301217340426_2793_3221506_3.jpg!w690x520.jpg[/img][/color][/align][align=center][color=#ff0000]图2 电气比例阀和电气转换器特性对比表[/color][/align] 从上述对比可以看出,电气比例阀采用了更新的技术,与传统的电气转换器相比具有更优异的性能,电气比例阀正在快速对电气转换器形成升级替换,特别是随着电气比例阀的价格逐渐降低,已逐渐成为电气压力控制领域内主要产品。 另外,由于电气比例阀内置了压力传感器和PID控制器,为很多压力和流量控制应用场合提供了极其丰富的拓展应用,即采用电气比例阀可很方便的与其他物理量(如温度、位移、出力等)的探测和控制组成更复杂的串级控制回路,实现更多工业应用领域中的精密控制功能。 特别是采用电气比例阀与超高精度PID控制器结合形成的串级控制回路,可实现超高精度定位、超低速度运转和细小载荷的控制。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • ICP光源双向观测

    [url=http://www.huaketiancheng.com/][b]ICP光谱仪[/b][/url]在光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观察(Radial)、水平观察(Axial)和双向观察(DUO),今天我们就来了解一下双向观测。  双向观测:双向观测是在水平观测ICP光源的基础,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可 能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误 同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。

  • 双向磁力搅拌器在实验中有什么特殊作用吗?

    双向磁力搅拌器在实验中有什么特殊作用吗?

    [align=left]公司有台小仪器名收双向磁力搅拌器,万能的论坛圈,哪些实验能用得上双向搅拌器呢?[/align][align=left][/align][align=left]请赐教![/align][align=left][/align][align=left][/align][align=center][img=,300,203]http://ng1.17img.cn/bbsfiles/images/2017/07/201707101643_01_676_3.jpg[/img][/align][align=center][/align][align=left][/align][align=center][img=,400,381]http://ng1.17img.cn/bbsfiles/images/2017/07/201707101628_01_676_3.jpg[/img][/align]

  • 【原创】燃油计价方法有待改进!

    我近日学习了JJG443-2006《燃油加油机》,从规程中式(1)得知:它就是要将标准量器量得的体积换算到加油机内流量测量变换器处油温时的体积,当然这样对于此温度下加油机的体积计量正确性是得到了检定。但是对于消费者这种计价方法并不合理,按理消费者注重的是在当前的价格情况下,发同样的钱应该买到同样的使用价值。而在现有计价方法下,加油机内流量测量变换器处油温高时,消费者明显吃亏了;加油机内流量测量变换器处油温低时,而经营者明显吃亏了。所以我建议应该明确计价的体积是何温度下的体积才合理,比如说规定是20摄氏度时的体积。

  • 【求助】双向观测问题

    请问双向观测是不是既可以垂直观测有可以水平观测,如果是的那在仪器软件里面是不是可以根据需要来选择垂直观测和水平观测。顺便问一下,垂直观测和水平观测是不是就是指竞相观测和轴向观测,它们都有哪些优点和缺点呢?问题有点多,就当给俺扫盲吧,哈哈。

  • ICP光谱仪之双向观测

    在光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观察(Radial)、水平观察(Axial)和双向观察(DUO)。  双向观测:双向观测是在水平观测ICP光源的基础,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可 能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误 同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。

  • ICP光谱观察方式比较:垂直观测、水平观测、双向观测

    在ICP光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观测(Radial)、水平观测(Axial)和双向观测(DUO),下面介绍他们的区别:ICP光谱仪垂直观测:又称为垂直观测或者测试观察,是采用垂直放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向垂直;从光谱仪能够接收整个分析区的所有信号。  对不同的元素不用进行炬管调节,是分析测试的常用观察方式。具有更小的基体效应和干扰,特别是对有机样品;对复杂基体也有好的检出限。可以测定任何基体的溶液,如高盐分样品测定、复杂样品的分析、有机物而积炭相对不严重的分析。较低的氩气消耗量。侧向观测方式的炬管是垂直炬,热量和分析废气自然向上进入排气系统。ICP光谱仪垂直观测示意图ICP光谱仪水平观测:又称为轴向观察或端视观测,是采用水平放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向呈水平重合;可使整个火焰个个部分的光都全部通过狭缝。  水平观测方式的优点是:由于整个“火焰”各个部分的光都可以被采集导致灵敏度高,对简单样品有较好的检出限;其缺点:基体效应和电离干扰大,线性范围小,炬管溶液积炭和积盐而沾污,需要及时清洗和维护,RF功率设置不能一般不超过1350W;使用于光谱仪水质分析中。ICP光谱仪水平观测示意图总体而言,ICP垂直观测检测的只是最佳分析区给出的发射信号,其特点就是干扰信号少,但分析元素的发射强度不如水平观测的效果好;水平观测检测的是整个分析通道的发射信号,其特点是分析元素的发射强度大,但缺点是干扰信号比较大。双向观测:  传统双向观测是在水平观测ICP光源的基础上,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误;同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。ICP光谱仪双向观测示意图  在有上述考虑之后,需要改变传统,尤其是改变光路使其简单,几家都推出了双向观测技术。安捷伦的双向观测  首先是安捷伦的5100,它采用ZL的智能光谱组合技术 (DSC),以及全新的仪器设计理念,推出区别于传统的、极具创新的、全新概念的双向观测 5100 SVDV ICP-OES,可实现同步的水平和垂直双向观测分析。安捷伦5100同步垂直双向观测技术的设计原理  传统的双向观测 ICP-OES 需要人为定义测量 元素、分析波长及观测模式,无法完成同 步的双向观测分析。 某些系统甚至采用多狭缝模式,分别应对不同波段、不同观测方式以及不同灵敏度样品的分析要求,极大地降低了样品分析通量和测量效率。5100 SVDV ICP-OES 凭借独特的智能光谱组合技术 (DSC) 一次测量完成水平和垂直信号的同步采集读取,实现高速高效的样品分析,确保复杂基质样品的分析准确度斯派克的双向观测  斯派克公司也推出了双向观测技术  首先,斯派克专门开发了不需经过很多的光路反射、折射,而是采用了无需反射镜的MultiView 等离子体接口,让等离子体切换方向,真正实现直接观测。比如在贵金属分析中,贵金属作为基体元素,其含量90%多,其他微量元素含量极低;而对于贵金属冶炼厂家,矿样中贵金属则变成了微量元素,伴生元素很多;那么采用这种观测方式可以兼顾高含量元素的分析,也可以兼顾低含量元素的分析,同时还能满足复杂基体的分析。MultiView 的切换示意图  此外,斯派克的产品还采用垂直同步双观测(DSOI)技术,一种全新的等离子体视图设计方法,采用垂直等离子体炬,通过新的直接径向视图技术进行观察。两个光学接口捕获从等离子体两侧发射的光,仅使用一个额外的反射,以增加灵敏度和消除困扰新的垂直火炬双视图模型的问题。因此,垂直同步双观测(DSOI)提供了传统径向系统的两倍灵敏度,但是避免了垂直双视图模型的复杂性、缺点和成本。垂直同步双观测(DSOI)示意图  采用同步双向观测应用于斯派克的多款ICP光谱上,包括ACRO,SPECTROGREEN等。  除了观测方面,斯派克的ICP光谱整体采用的光学器件少,包括其不用中阶梯光栅,而用帕邢—龙格结构。优点包括:首先在很宽的光谱范围内分辨率是一个恒定的常数,因此能轻松区分谱线富集区域内相邻谱线,最大限度减少光谱干扰。而中阶梯光栅正相反,只是在200nm处有最好的分辨率,而到了300nm或400nm处分辨率会有大幅度的下降。其次是线性范围宽,例如在做固体金属分析时,几乎所有光谱仪器都是采用的帕邢—龙格结构,因为一个固体样品里既有主量元素也有微量元素,高低含量元素都要兼顾到。帕邢—龙格结构线性范围很宽。第三点,帕邢—龙格结构系统采用的光学器件最少,只有反射镜和光栅,由于光路设计越简单,光量损失就越少,仪器灵敏度越高。帕邢—龙格结构的缺点是:仪器体积大。

  • Mi-Wave波导型双向耦合器

    [url=http://www.leadwaytk.com/article/4778.html]Mi-Wave[/url][font=宋体][font=宋体]的[/font][font=Calibri]567[/font][font=宋体]系列双向耦合器具有多孔全局性的宽带、宽壁器件。[/font][font=Calibri]567[/font][font=宋体]系列波导型双向耦合器提供[/font][font=Calibri]3[/font][font=宋体]、[/font][font=Calibri]6[/font][font=宋体]、[/font][font=Calibri]10[/font][font=宋体]、[/font][font=Calibri]20[/font][font=宋体]、[/font][font=Calibri]30[/font][font=宋体]、[/font][font=Calibri]40[/font][font=宋体]和[/font][font=Calibri]50dB[/font][font=宋体]耦合值,应用于[/font][font=Calibri]18[/font][font=宋体]至[/font][font=Calibri]170.0GHz[/font][font=宋体]的要求波导频率段。[/font][/font][font=宋体][font=Calibri]567[/font][font=宋体]系列波导型双向耦合器适用于需要将入射和反射性能实现高精度采集的应用。[/font][font=Calibri]3dB[/font][font=宋体]耦合器在平衡混频器作业中尤其有效,其中需要将[/font][font=Calibri]RF[/font][font=宋体]和[/font][font=Calibri]LO[/font][font=宋体]信号实现宽带功率平衡,通过向平衡混频器模块的两边配电。[/font][font=Calibri]3dB[/font][font=宋体]双向耦合器能够提供全带宽功率平衡。[/font][/font][font=宋体]特征[/font][font=宋体]?全频段操控[/font][font=宋体]?规格紧凑[/font][font=宋体]?低驻波比[/font][font=宋体]?稳固的构造[/font][font=宋体]应用领域[/font][font=宋体]?检测系统[/font][font=宋体][font=宋体]?发射器应用[/font][font=Calibri]/[/font][font=宋体]假负载[/font][/font][font=宋体]?通讯卫星[/font][font=宋体]?微波功放器[/font][font=宋体]?源均衡化[/font][font=宋体][font=宋体]?[/font][font=Calibri]5G[/font][font=宋体]和[/font][font=Calibri]6G[/font][/font][font=Calibri]Mi-Wave[/font][font=宋体]是商用型和军工用毫米波产品全球领航者,可以提供毫米波器件和模块解决方案。产品线涵盖:放大器、混频器、衰减器、滤波器、开关、[/font][font=Calibri]T/R[/font][font=宋体]、天线、反射镜等,所包含频率高达[/font][font=Calibri]320GHz.[/font][font=宋体]深圳市立维创展科技有限公司授权代理销售[/font][font=Calibri]Mi-Wave[/font][font=宋体]毫米波产品,欢迎咨询。[/font][font=宋体]详情了解[/font][font=Calibri]Mi-Wave[/font][font=宋体]请点击:[/font][url=http://www.leadwaytk.com/brand/52.html][font=Calibri]http://www.leadwaytk.com/brand/52.html[/font][/url]

  • JJG443-2006 燃油加油机检定规程

    JJG443-2006 燃油加油机检定规程燃 油 加 油 机 检 定 规 程 本规程参照了国际法制计量组织(OIML)的《非水液体测量系统》R117和《机动车燃油加油机型式评价的试验程序和试验报告的格式》R118。 1 范围 本规程适用于燃油加油机(以下简称加油机)的型式评价、首次检定、后续检定和使用中检验。 2 引用文献本规程引用下列文献 OIML R117-1995 非水液体的测量系统 OIML R118-1995 机动车燃油加油机型式评价的试验程序和试验报告格式 GB/T 2423.1-2001 电工电子产品环境试验 第2部分:试验方法 试验A:低温 GB/T 2423.2-2001 电工电子产品环境试验 第2部分:试验方法 试验B:高温 GB/T 2423.4-1993 电工电子产品基本环境试验规程 试验Db:交变湿热试验方法GB4943-2001 信息技术设备的安全GB/T 9081-2001 机动车燃油加油机GB 10543-2003 飞机地面加油和排油用橡胶软管及软管组合件GB/T 17626.2-1998 静电放电抗扰度试验GB/T 17626.3-1998 射频电磁场辐射抗扰度试验GB/T 17626.4-1998 电快速瞬变脉冲群抗扰度试验GB/T 17626.5-1998 浪涌(冲击)抗扰度试验GB/T 17626.11-1998 电压暂降、短时中断和电压变化抗扰度试验 注:使用本规程时,应注意使用上述引用文献的现行有效版本。 3 术语和计量单位 3.1 加油机 本规程所指加油机是为机动车添加燃油的一种液体体积测量系统,它可以具有IC卡加油、油气回收等功能。用于国内油品贸易结算的加油机应具有税控功能和防作弊功能。 3.2 税控功能 加油机中的编码器应能正确生成脉冲信号,经计量微处理器将计量数据真实、可靠、安全地传输到监控微处理器,该数据经监控微处理器处理后存入税控存储器并同时送显。当不能完成上述功能时,加油机应能被自动锁定,即不能进行加油工作。 3.3 作弊 作弊是指以少给油或偷税为目的的行为,作弊方式有增加脉冲数、更换计数器(更换电脑主板)、更改脉冲当量等。 3.4 流量测量变换器 将油品的流动量转换为机械转动信号送给编码器。 3.5 编码器 位于流量测量变换器的附近,将流量测量变换器的机械转动信号转换为脉冲信号送给计数器。 3.6 计数器(电脑主板) 接收编码器送来的脉冲信号,由计量微处理器生成加油量,经监控微处理器处理后送指示装置显示。3.7 其他名词术语 其他名词术语参照GB/T9081-2001《机动车燃油加油机》中3.6~3.21的规定。 4 概述 4.1 构造 加油机一般是由油泵、油气分离器、流量测量变换器、编码器、计数器、指示装置、视油器、油枪等主要部件组成的一个完整的液体体积测量系统。 4.2 工作原理 电动机驱动油泵将储油罐中的燃油经输油管及过滤器泵入油气分离器进行油气分离,在泵压下燃油经流量测量变换器、视油器、油枪输至机动车。工作原理见

  • 热电6300 双向观测

    大家好:你们的热电6300 双向观测是多少钱买的?什么配置?分享分享吧,这里面水分很大啊

  • 需求双向拉伸试验!

    最近需要进行双向拉伸试验,也就是十字形的试验,载荷100kn,谁可以进行试验?麻烦联系我!!

  • 【分享】隔离变送器中信号隔离器原理

    目前,信号隔离(变换)器从隔离方式上主要分为:变压器隔离方式,光电隔离方式和变压器与光电联合隔离方式等几种。 信号隔离器至今已有40多年的历史,早期的信号隔离器(如美国MOORE,日本M-SYSTEM等)都是采用变压器隔离方式,它的特点是:性能稳定,寿命长(比如:日本M-SYSTEM公司的M2系列隔离变换器标称的使用寿命长达70年!),带负载能力强,隔离强度高,但电路复杂,制作工艺要求更高。随着电子技术的发展,近些年来逐渐出现了利用光耦合器(optical coupler)生产的光电式隔离器,它的特点是:性能稳定,抗干扰能力强,而且线路简单,成本低廉,但相对于变压器隔离方式寿命略短。在一些现场干扰较大,工艺要求较高场合出现了变压器与光电联合方式的信号隔离器,它的隔离能力、抗无限射频和电磁干扰能力更强。隔离器实现了输入对输出对电源对地的四端三重隔离电路设计,因此无需系统接地线路,给设计及现场施工带来极大方便。也正是由于这种信号线路无需共地的设计,使得检测和控制回路信号的稳定性和抗干扰能力大大增强,从而提高了整个系统的可靠性。另外,这种隔离器产品除具备极强的滤波能力外,还有更强的信号处理能力,能够接受并处理热电偶、热电阻、频率等各种信号。

  • 【原创】关于热电的6000的双向观测疑问?

    技术参数当今世界体积最小的新型iCAP 6000系列等离子体发射光谱仪 更优异的仪器性能 更高的工作效率 更方便的操作 更低的运行成本 广泛应用于环境、石化、冶金、食品饮料、地球化学和水泥行业的普通和元素分析实验室 主要特点降低了气体消耗 改善了对于诸如砷(As)、锑(Sb)、硒(Se)和碲(Te)的元素分析性能全自动波长校正和补偿校正保证了长时间的优异稳定性 第四代电荷注入式(CID)检测器RACID86 快速、可靠和便捷性能的常规分析,既可采用单一的等离子体炬垂直观测,也可采用双向观测 是怎么实现的呢?有哪位高手了解或者使用过!可以介绍介绍!

  • 哪位大侠用双向观测中的侧向观测?效果怎么样?

    咨询个小问题,观测分为三种,垂直炬管侧向观测,水平炬管轴向观测,水平炬管双向观测。水平炬管中的双向观测,首先是构建于水平炬管基础上,轴向观测,应该没有太大问题,但利用双向观测中的侧向观测,不知效果怎么样?哪位大侠使用过,说说实际应用情况。包括检出限,基体干扰情况,信背比等等情况。谢谢!

  • 关于安捷伦5100,垂直炬管双向观测的一些了解,给有兴趣的朋友。

    最近单位采购ICP,考虑了四个厂家,PE、热电、安捷伦、斯派克。暂时选定了斯派克的arcos。里面了解一些信息,分享一下。先说安捷伦的新技术,5100的垂直矩管双向观测吧。可以通俗的理解为,水平炬管双向观测的90°调整,在垂直位置放置镜面,达到水平观测的效果,就是垂直为主,水平为辅,因为水平的光强度高,即便损失一部分光通量,还是能够达到可以接受的程度。既拥有了垂直的抗干扰能力,又拥有了水平的高灵敏度。虽然这种说法稍有偏颇,基本上,还是这个意思吧。PE真心贵,贵,贵,贵……贵啊!热电,呵呵,热电的7000真心在6000系列提升不多,不过7600是不错,但一般行业也用不到那么多功能了。斯派克头一次接触,各种设计理念跟其他三家都不一样,尤其是检测器线性排布,arcos有32个检测器……虽然每个检测器像素都不高,不过,乍一听确实唬人。

  • 【原创大赛】GC-FID基线双向毛刺故障的案例解析

    【原创大赛】GC-FID基线双向毛刺故障的案例解析

    GC-FID基线双向毛刺故障的案例解析 概述:基线出现双向毛刺,如何进行判断和解决。 (这个案例是年轻同事修好的,故障比较典型,值得解析一下。) 前几天接到用户报修,Shimadzu的GC-2014,用毛细管色谱柱分析苯类物质,FID出现负峰。具体负峰的情况和形态不详。 FID出负峰的常见原因是系统污染或者气源问题,但是在看到色谱图之后,发现情况颇有些不同。下面是色谱图:http://ng1.17img.cn/bbsfiles/images/2013/09/201309222033_466075_1604036_3.jpg 在色谱图中可以看到明显的干扰信号,即双向的毛刺信号,并非是用户认为的负峰。这些异常信号的特点是,宽度很窄,在强度轴上双向出现,间隔没有规律。 一般这样形态的信号——双向毛刺——往往与电气问题相关,例如电气干扰、电源不良等问题。 后来同事换掉了FID的收集极,故障即刻解决了。 GC2014的收集极外观如下图所示:http://ng1.17img.cn/bbsfiles/images/2013/09/201309222034_466076_1604036_3.jpg 但是故障原因是什么呢?于是检查了同事取回的旧收集极。 FID收集极内部结构如图所示:http://ng1.17img.cn/bbsfiles/images/2013/09/201309222034_466078_1604036_3.jpg 图中蓝色标示的部分是电气部分,收集极的核心部件是一个筒状的收集器,将其放大和概括如下图:http://ng1.17img.cn/bbsfiles/images/2013/09/201309222034_466079_1604036_3.jpg 收集极内部的陶瓷绝缘体将导线和收集筒压紧,使其实现电气接触。 仔细检查了一下导线和收集筒之间的接触情况,发现导线和收集筒不能良好的接触,看来这就是问题所在了。 怀疑收集极有组装不良的问题,造成导线接触问题。 为了验证一下推测,将收集极装在正常工作的仪器上,开启仪器系统,此时基线正常。用手轻轻的拉拽了一下导线,基线上又出现了双向的毛刺,故障重现了,确认问题。 小结:导线和收集器核心不能良好的接触,工作时,FID的信号时断时续,造成了双向毛刺的信号。

  • 【资料】双向电泳操作手册

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=164458]双向电泳操作手册[/url]

  • [推荐]双向电泳实验培训资料zz

    目  录第一章   实验材料1.1 IPG预制胶条及载体两性电解质1.2 蛋白质定量试剂盒及其试剂1.3 试剂盒及其试剂1.4 化学试剂1.5 蛋白质Marker1.6 染色试剂1.7 注意事项第二章  SDS-PAGE聚丙烯酰胺凝胶电泳2. 1 溶液的配制2. 2 SDS-PAGE凝胶的配制2. 3 操作方法2. 4 注意事项第三章  双向电泳3. 1 溶液配制3. 2 操作步骤3. 3 注意事项附录1 双向电泳完整的操作步骤附录2  聚丙烯酰胺凝胶电泳凝胶的配置附录3  细胞样品的一般处理步骤附录4  组织样品的一般处理步骤附录5  我方主要工作人员通讯录[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=18952]双向电泳实验培训资料[/url]

  • Agilent 5100的同步的垂直和水平双向观测对使用者来说能够带来什么?

    Agilent推出 5100 ICP-OES,技术上采用同步的垂直和水平双向观测,说是与传统双向观测 ICP-OES 的概念不同,通过智能光谱组合技术(DSC)实现。对我们仪器使用者来说,这个新的双向观测技术能够给我们用户带来什么实惠的东东哪?具体产品信息:http://www.instrument.com.cn/netshow/C209504.htm

  • 一体化气象站气象参数集成装置

    一体化气象站气象参数集成装置

    一体化气象站气象参数集成装置一体化气象站是自动进行气象观测和资料收集和传输的气象站,一般由传感器、变换器、数据处理装置、资料发送装置、电源等部分组成。变换器是将传感器感应的气象参数转换成电信号(如电压、电如电压、电流、频率等流、频率等);数据处理装置则将对这些电信号进行处理,再转换成对应的气象要素值。经过处理的气象要素数据按规定的传输协议打包,经数据传输通道传到气象中心。一体化气象站观测项目通常为气压、气温、相对湿度、风向、风速、雨量等基本气象要素,经扩充后还可测量其它要素。一体化气象站使气象数据的采集和管理实现了高度的自动化、信息化、网络化,并且不受区域限制,传输费用低,实时在线,数据无丢失,是当前的信息传输方式。方案采用CDMA无线传输模块,结合工业级高性能嵌入式软硬件系统,引进视频服务器,使一体化气象站达到了较高的效用。[img=一体化气象站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205250918593783_612_4136176_3.jpg!w690x690.jpg[/img]对气象环境进行实时监测,采取一体化气象站监测方式,依靠可靠、科学、有效的自动监测系统,进行全天24小时实时监测,加强安全管理,保证居民的安全出行。直观显示当前环境质量,提高环境安全系数,实时掌握环境质量参数变化,减轻工作人员的劳动力。一体化气象站是一种能自动观测和存储气象观测数据的设备,主要由传感器、采集器、通讯接口、系统电源等组成,随着气象要素值的变化,各传感器的感应元件输出的电量产生变化,这种变化量被CPU实时控制的数据采集器所采集,经过线性化和定量化处理,实现工程量到要素量的转换,再对数据进行筛选,得出各个气象要素值。[img=一体化气象站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205250919233091_5428_4136176_3.jpg!w690x690.jpg[/img]

  • 【求助】水汽变换反应应该用什么色谱柱好?

    实验室可能要搭一套水汽变换的反应装置,所以我在这里向大家请教一下,如果用色谱检测产物,用什么样的柱子比较好呢?另外,做这个反应有什么要注意的吗?谢谢大家! 主要反应是 CO + H2O = CO2 + H2

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制