当前位置: 仪器信息网 > 行业主题 > >

双向逆变器

仪器信息网双向逆变器专题为您提供2024年最新双向逆变器价格报价、厂家品牌的相关信息, 包括双向逆变器参数、型号等,不管是国产,还是进口品牌的双向逆变器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双向逆变器相关的耗材配件、试剂标物,还有双向逆变器相关的最新资讯、资料,以及双向逆变器相关的解决方案。

双向逆变器相关的论坛

  • 光伏逆变器可靠性测试方法

    光伏逆变器可靠性测试方法

    目前光伏发电系统主要有两种类型:并网型和离网型。并网型系统提供的电力直接并入电网,离网型系统提供的电力则不会并入电网,通常是直接用来使用或者存储后使用。随着光伏行业的不断发展,对光伏逆变器的需求越来越多,技术要求也是越来越高。如何对光伏逆变器进行测试,也是一个迫切需要解决的问题。  以践行绿色生产管理,实现“碳中和”改善气候环境变化为背书,实现循环可持续发展战略,太阳能成为重点研究使用的选择,太阳能是21世纪环保也是容易取得的能源之一,相关的太阳能研究与应用产业也加紧脚步的发展进行。太阳能模组光伏逆变器在研究以及生产过程中,制订了相关的可靠度试验与环境试验的规范,以确保太阳能电池模组光伏逆变器可以耐用20~30年以上的时间;并且在户外环境的使用下,确保其发电转换率。  光伏逆变器可以将光伏(PV)太阳能板产生的可变直流电压转换为市电频率交流电(AC)的逆变器,可以反馈回商用输电系统,或是供离网的电网使用。光伏逆变器是光伏阵列系统中重要的系统平衡(BOS)之一,可以配合一般交流供电的设备使用。太阳能逆变器有配合光伏阵列的特殊功能,例如大功率点追踪及孤岛效应保护的机能。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/06/202206241625108727_9318_1385_3.jpg!w600x600.jpg[/img][/align]  试验要求:  a.标准测试条件下很大输出功率的衰减不超过实验前的5%  b.裂缝检查(面积不超过10%以上)  c.在元件的边框和电池之间不可形成连续通道的气泡或脱层  温度循环:-40±2°C(10min)←→85±2°C(10min)、温变率小于100°C/h、50cycle(试验后进行湿热试验)  湿热试验:85±2℃/85±5%/1000h  湿冷试验:进行50次温度循环试验

  • 低电压首次通过国网电科院穿越测试的光伏逆变器

    逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正弦波逆变器和组合式三相逆变器。对于用于并网系统的逆变器,根据有无变压器又可分为变压器型逆变器和无变压器型逆变器。 西门子是全球电子电气工程领域的领先企业,主要业务集中在工业、能源、医疗、基础设施与城市四大业务领域。工业业务领域能够提供全球独一无二的自动化技术、工业控制和驱动技术以及工业软件,能够满足生产企业的所有需求。同时,还能针对客户特有的市场和需求,提供专门的综合定制服务,以使客户获益最大化。 近日,由西门子研发的全新智能型Sinamics S120产品系列集成首次通过该光伏逆变器测试。目前西门子在中国国内采取与系统集成商合作的方式,由西门子提供光伏逆变器的核心元器件,集成商提供整体逆变器的模式推动中国市场的销售。这种商业模式可以大大降低产品价格,并更好地适应中国市场的需求。 根据国家能源局、国家电网公司对光伏电站并网发电的要求,并网发电的光伏逆变器必须具备低电压穿越功能。而国网电科院国家能源太阳能发电研发(实验)中心是在国内唯一具有低电压穿越技术认证资格的机构。因此,光伏逆变器具备低电压穿越能力成为“金太阳认证”后光伏项目招投标的又一道门槛。 两家系统集成商(北京辰源和北京昆兰)均采用了西门子大型传动部的Sinamics S120光伏逆变单元、控制单元及软件作为核心部件。这些核心部件出色的控制技术不仅可以提高系统效率,而且有效地抑制了网侧谐波,让变频器具备完美的低电压穿越能力,从而能够保障系统高效、可靠地并网运行。

  • 逆变器的替换场效应管型号:FHP740高压MOS管

    逆变器几乎能应用到我们生活中能接触到的一切电子设备中,因为它是将直流电转化为交流电的介体。电子工程设计师都知道,逆变器基本上是由MOS场效应管和电源逆变器构成的,因而场效应管的好坏也决定着逆变器是否能进行电流转换。而在300W/220V方波输出的逆变器电路中,现在使用较多的逆变器型号为10N40,但由于生产成本,产品质量原因等,不少电子厂家还是希望能有一些同质的替换产品。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/6cac7068b3e051325e13be9f636ba067-sz_179415.JPG?x-oss-process=style/xmorient[/img]逆变器的输出功率大小取决于MOS场效应管和电源逆变器的功率相结合,因而场效应管可通过的电流大小也是决定电子设备是否能正常使用的因素之一。为了避免电子产品因为电流电压的原因返修增加维修成本还不利于企业声誉,电子厂家在选择MOS场效应管的时候更应该多方比较其性能。飞虹自主研发的这个FHP740高压MOS管与10N40场效应管性能相差无几,可替换使用。飞虹的FHP740高压MOS管为N沟道增强型高压功率场效应管,除了可代替10N40场效应管使用,还可替换11N40、IRF740型号的场效应管。FHP740主要应用于300W/220V方波输出的逆变器电路,DC-AC电源转换器,DC-DC电源转换器,高压H桥PMW马达驱动。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/654f913f0bc5a09412decfc6553dafbf-sz_100392.png[/img]FHP740高压MOS管的封装形式为TO-220/TO-220F,脚位排列是GDS,10A, 400V, RDS(on) = 0.55Ω(max) @VGS = 10 V,这个FHP740最大的特点就是低电荷、低反向传输电容开关速度快,低内阻,大功率。广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHP740高压MOS管,不仅质优价廉,而且还能替代10N40场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • 【分享】在关闭汽车发动机的情况下可以使用车载逆变器吗?

    在关闭汽车发动机的情况下可以使用[b][url=http://www.027bl.com]车载逆变器[/url][/b]吗?在使用250瓦以下小功率电器时,一般的汽车电瓶可在关闭发动机的情况下提供60-120分钟的电力,如果仅使用一台耗电50-60瓦的笔记本电脑,使用时间则要长得多。我们的纯正弦波 [url=javascript:showhide('Product_List.aspx?ID=0404','0404')]车载逆变器[/url] 内设有欠压警示和欠压保护电路,当长时间使用电瓶导致电压下降至一定限度时,欠压保护电路启动,输出电压被切断并报警,以防止发生因为电瓶电压过低而无法启动发动机的事故。因此,用户可以放心地在发动机关闭的状态下使用 [url=javascript:showhide('Product_List.aspx?ID=0404','0404')]车载逆变器[/url] 。

  • 国产FHP3205低压场效应管可提升逆变器工作效率!

    逆变器的工作原理其实就是通过电压逆变,将直流电转化为交流电的过程。逆变器的工作效率几乎都会影响到电器的正常使用或者使用体验,而其中影响着逆变器工作效率的一个重要元器件就是场效应管。FQP55N10场效应管是目前逆变器元器件里使用得相对较多的场效应管型号之一,但由于成本,销量等原因,不少电器厂家还是希望能有更质优价廉的替换场效应管可供选择。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/3b551f61bc04cc88880d24ff48aff39a-sz_171568.JPG?x-oss-process=style/xmorient[/img]一般来说,逆变器前级电路所采用的场效应管的质量几乎都会影响到逆变器的转换效率、安全性能、物理性能、带负载适应性和稳定性等。因而为了保证产品质量,减少维修成本,避免因为产品质量引起一些不利于厂家经营生产的负面舆论。在采购元件之初,厂家就应该选择一款参数,性能,稳定性都匹配的场效应管。飞虹自主研发的这个FHP3205低压MOS管在转换效率、安全性能等方面都是可以替换FQP55N10场效应管使用的。飞虹的这个FHP3205低压MOS管是N沟道沟槽工艺MOS管,适用于300W/12V输入的逆变器的前级电路。FHP3205低压MOS管除了可以替换FQP55N10场效应管之外,还能替换行业上的SKT55N100AT、150N06、IRF3205、IRF1010E这几个型号的场效应管。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/bdc547069a6ff17c317f6cf8df1ad4d2-sz_144837.jpg?x-oss-process=style/xmorient[/img]FHP3205低压MOS管的封装形式主要为TO-220/TO-252/TO-263,脚位排列序为GDS,Vgs(±V)25,VTH(V)2-4,ID(A)130,BVdss(V)60,Rds(on)(typ)5.5,Rds(on)(max)8,且FHP3205场效应管最大的优势就是可做到低内阻,大电流。广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHP3205低压MOS管,不仅质优价廉,而且还能替代FQP55N10场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • N沟道增强型高压功率场效应管可提高逆变器工作效率

    不少电子产品的元器件都会有逆变器这么一个部件,而电子工程师都知道逆变器在电子产品中的重要性,而场效应管的质量将影响到逆变器的转换效率、启动速度、安全性能、物理性能、和带负载适应性和稳定性,所以电子厂家都希望采购的场效应管质量过硬。而现在市场上的7N40就是逆变器使用的场效应管之一,但由于成本的原因,厂家也会希望有可以替代的同类型场效应管。逆变器的直流转换是MOS开关管和储能电感组成电压变换电路,输入的脉冲经过推挽放大器放大后驱动MOS管做开关动作,使得直流电压对电感进行充放电,这样电感的另一端就能得到交流电压。所以如果MOS管质量不过关,无法进行电压变换,就换导致电器故障,电子产品批量出现问题的话会是企业出现负面形象的,所以选择优质的场效应管就很重要了。而飞虹的这个国产FHF730高压MOS管,在性能参数上都可以替代7N40场效应管。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/0a1980a77a3b8ee13893eaf183cb6384-sz_179372.JPG?x-oss-process=style/xmorient[/img]飞虹的FHF730高压MOS管为N沟道增强型高压功率场效应管,FHF730除了可以替代7N40场效应管,还可以替代6N40、IRF730B这两个型号的场效应管,主要应用于150W/220V方波输出的逆变器电路,DC-AC电源转换器,DC-DC电源转换器,高压H桥PMW马达驱动。FHF730高压MOS管的封装形式为TO-220/TO-220F,脚位排列方式为GDS,Vgs(±V)30,VTH(V)2-4,5.5A, 400V, RDS(on) = 1.2Ω(max) @VGS = 10 V,而且FHF730最大的特点就是低电荷、低反向传输电容开关速度快、低电阻。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/654f913f0bc5a09412decfc6553dafbf-sz_100392.png[/img]广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHF730高压MOS管,不仅质优价廉,而且还能替代7N40场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • FHP740高压MOS管替换11N40场效应管使用可保证逆变器稳定性

    逆变器其实和转化器一样,将直流电转变为交流电,是一种电压逆变的过程,而跟逆变器工作效率关联比较大的就是场效应管,所以电子产品生产厂家都知道场效应管的质量在一定程度上也决定着这个电子产品的使用寿命。11N40就是现今逆变器使用的型号之一,但由于质量,价格的等原因,不少厂家还是希望市场上能多一些同质可替换的产品的。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/6cac7068b3e051325e13be9f636ba067-sz_179415.JPG?x-oss-process=style/xmorient[/img]逆变器前级电路所采用的MOS管的质量将影响到逆变器的转换效率、安全性能、物理性能、带负载适应性和稳定性。因而为了保证产品质量,减少维修成本,厂家就更应该选择一款优质的场效应管,而飞虹自主研发的这个FHP740高压MOS管在转换效率、安全性能等方面都是可以替换11N40场效应管使用的。飞虹的FHP740高压MOS管为N沟道增强型高压功率场效应管,除了可代替11N40场效应管使用,还可替换10N40、IRF740型号的场效应管。这个FHP740主要应用于300W/220V方波输出的逆变器电路,DC-AC电源转换器,DC-DC电源转换器,高压H桥PMW马达驱动这些方面。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/654f913f0bc5a09412decfc6553dafbf-sz_100392.png[/img]FHP740高压MOS管的封装形式为TO-220/TO-220F,脚位排列是GDS,10A, 400V, RDS(on) = 0.55Ω(max) @VGS = 10 V,且FHP740具有低电荷、低反向传输电容、开关速度快,低内阻,大功率等特点。广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHP740高压MOS管,不仅质优价廉,而且还能替代11N40场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • SG3524N构成的逆变器是正弦波还是方波?

    [b][url=http://www.ic37.com/s/SG3524N.html]SG3524N[/url][/b]构成的逆变器是方波 SG3524是开关电源脉宽调制型控制器。[b]SG3524[/b]应用于开关稳压器,变压器耦合的直流变换器,电压倍增器,极性转换器等。[b]SG3524是怎么工作的:[/b]直流电源Vs从脚15接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5V基准电压。+5V再送到内部(或外部)电路的其他元器件作为电源。振荡器脚7须外接电容CT,脚6须外接电阻RT。振荡器频率f由外接电阻RT和电容CT决定,f=1.18/RTCT。按照SG3524的工作原理,要得到SPWM波,必须得有一个幅值在1~3.5V,按正弦规律变化的馒头波,将它加到SG35242内部,并与锯齿波比较,就可得到正弦脉宽调制波。SG3524集成电路多种应用电路[b]SG3524[/b]工作电源电压范围8V~35V,采用双列16脚装料封装,引脚功能如下:SG3524集成电路多种应用电路:[img]http://member.ic37.com/uploadfile/mynews/2018-12-11/1df1756c-b4a7-4038-ad5b-8771b4e84d8c.jpg[/img][b]SG3524[/b]集成电路多种应用电路:[img]http://member.ic37.com/uploadfile/mynews/2018-12-11/53a236a2-571f-47fe-b0a6-118d6ffefc3a.jpg[/img]

  • 【原创】怎样选择逆变器的蓄电池容量

    蓄电池是逆变器系统中非常重要的组成部分。用户在选购蓄电池时,应选择品质好、电量较大的品种,大容量的蓄电池使用时间长,同时能为大功率用电设备的瞬间启动提供足够的电流。对于一些大功率的用电设备,建议蓄电池应为200AH(1000W),功率再大时,最好使用400AH的蓄电池。如何根据使用的电器来确定蓄电池的容量,简单的方法就是将所有用电器的功率,乘以蓄电池每次充电间隔之间的使用时间。计算电器耗电量的单位不外是功率或伏安,下面按每天充一次电为例,具体计算结果如下:负 载 消耗的电量 使用时间(充电之间) 瓦时(功率×使用时间)电视与 115 瓦 3 小时(每天1小时) 345咖啡机 750 瓦 1 小时(每天20分钟) 750微波炉 800 瓦 半小时(每天10分钟) 400合 计 1665 瓦 4.5 小时 1495将瓦时除以10,就可将瓦时转换为安时(在30℃):1495瓦时÷10=149.5安时。对于上述负载,一个150安时的蓄电池就可满足需要。但在这种情况下,蓄电池就将电放尽,而一般蓄电池放电的理想状态为50%,故对于上述负载,用户就需要一个300安时的蓄电池。 蓄电池的电量(安时)越大,供电能力就越强,蓄电池过度放电的可能性就越小。蓄电池的寿命取决于其放电深度,放电深度越大,使用寿命就越短。当负载增加时,蓄电池的电量也应该增加。这样就可能需要使用多块蓄电池。两块蓄电池联接的方法为:将蓄电池的正极与正极、负极与负极联接。这样蓄电池的电量就会增加一倍,而电压与一块蓄电池的电压一样。将不同生产厂商或不同安时的蓄电池联接在一起的做法是不可取的,因为这样会减少蓄电池的使用寿命。

  • 双向磁力加热搅拌器的6点使用维护

    双向磁力加热搅拌器适合于医药卫生、环保、生化实验室、分析室、教育科研等单位,不仅操作简单、运转平稳而且能在较广的速度范围内对液体进行精密稳定的搅拌。    双向磁力加热搅拌器的使用维护,如下:    1、接通外电源,合上电源开关,指示灯亮。    2、将装有溶液和搅拌子的试瓶(或其它器皿)放在工作面顶板上。    3、双向磁力加热搅拌器选择加热,合上加热开关,,指示灯亮,即为加热状态。    4、调节调速旋钮,升至所需转速。如果需要双向搅拌,将方向选择开关拨向“双向“即可。顺时针搅拌时,指示灯具绿色。逆时针搅拌时,指示灯为红色。    5、将双向磁力加热搅拌器的工作面顶板擦拭干净,其上不允许有水滴、污物残留。特殊规格要求需签订合同,价格另定。    6、使用双向磁力加热搅拌器工作完毕后,将调速旋钮置于zui小位置,加热开关处于非工作状态,关电源开关,切断电源。分享:

  • 双向磁力搅拌器在实验中有什么特殊作用吗?

    双向磁力搅拌器在实验中有什么特殊作用吗?

    [align=left]公司有台小仪器名收双向磁力搅拌器,万能的论坛圈,哪些实验能用得上双向搅拌器呢?[/align][align=left][/align][align=left]请赐教![/align][align=left][/align][align=left][/align][align=center][img=,300,203]http://ng1.17img.cn/bbsfiles/images/2017/07/201707101643_01_676_3.jpg[/img][/align][align=center][/align][align=left][/align][align=center][img=,400,381]http://ng1.17img.cn/bbsfiles/images/2017/07/201707101628_01_676_3.jpg[/img][/align]

  • 【求助】双向观测问题

    请问双向观测是不是既可以垂直观测有可以水平观测,如果是的那在仪器软件里面是不是可以根据需要来选择垂直观测和水平观测。顺便问一下,垂直观测和水平观测是不是就是指竞相观测和轴向观测,它们都有哪些优点和缺点呢?问题有点多,就当给俺扫盲吧,哈哈。

  • ICP光谱观察方式比较:垂直观测、水平观测、双向观测

    在ICP光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观测(Radial)、水平观测(Axial)和双向观测(DUO),下面介绍他们的区别:ICP光谱仪垂直观测:又称为垂直观测或者测试观察,是采用垂直放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向垂直;从光谱仪能够接收整个分析区的所有信号。  对不同的元素不用进行炬管调节,是分析测试的常用观察方式。具有更小的基体效应和干扰,特别是对有机样品;对复杂基体也有好的检出限。可以测定任何基体的溶液,如高盐分样品测定、复杂样品的分析、有机物而积炭相对不严重的分析。较低的氩气消耗量。侧向观测方式的炬管是垂直炬,热量和分析废气自然向上进入排气系统。ICP光谱仪垂直观测示意图ICP光谱仪水平观测:又称为轴向观察或端视观测,是采用水平放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向呈水平重合;可使整个火焰个个部分的光都全部通过狭缝。  水平观测方式的优点是:由于整个“火焰”各个部分的光都可以被采集导致灵敏度高,对简单样品有较好的检出限;其缺点:基体效应和电离干扰大,线性范围小,炬管溶液积炭和积盐而沾污,需要及时清洗和维护,RF功率设置不能一般不超过1350W;使用于光谱仪水质分析中。ICP光谱仪水平观测示意图总体而言,ICP垂直观测检测的只是最佳分析区给出的发射信号,其特点就是干扰信号少,但分析元素的发射强度不如水平观测的效果好;水平观测检测的是整个分析通道的发射信号,其特点是分析元素的发射强度大,但缺点是干扰信号比较大。双向观测:  传统双向观测是在水平观测ICP光源的基础上,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误;同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。ICP光谱仪双向观测示意图  在有上述考虑之后,需要改变传统,尤其是改变光路使其简单,几家都推出了双向观测技术。安捷伦的双向观测  首先是安捷伦的5100,它采用ZL的智能光谱组合技术 (DSC),以及全新的仪器设计理念,推出区别于传统的、极具创新的、全新概念的双向观测 5100 SVDV ICP-OES,可实现同步的水平和垂直双向观测分析。安捷伦5100同步垂直双向观测技术的设计原理  传统的双向观测 ICP-OES 需要人为定义测量 元素、分析波长及观测模式,无法完成同 步的双向观测分析。 某些系统甚至采用多狭缝模式,分别应对不同波段、不同观测方式以及不同灵敏度样品的分析要求,极大地降低了样品分析通量和测量效率。5100 SVDV ICP-OES 凭借独特的智能光谱组合技术 (DSC) 一次测量完成水平和垂直信号的同步采集读取,实现高速高效的样品分析,确保复杂基质样品的分析准确度斯派克的双向观测  斯派克公司也推出了双向观测技术  首先,斯派克专门开发了不需经过很多的光路反射、折射,而是采用了无需反射镜的MultiView 等离子体接口,让等离子体切换方向,真正实现直接观测。比如在贵金属分析中,贵金属作为基体元素,其含量90%多,其他微量元素含量极低;而对于贵金属冶炼厂家,矿样中贵金属则变成了微量元素,伴生元素很多;那么采用这种观测方式可以兼顾高含量元素的分析,也可以兼顾低含量元素的分析,同时还能满足复杂基体的分析。MultiView 的切换示意图  此外,斯派克的产品还采用垂直同步双观测(DSOI)技术,一种全新的等离子体视图设计方法,采用垂直等离子体炬,通过新的直接径向视图技术进行观察。两个光学接口捕获从等离子体两侧发射的光,仅使用一个额外的反射,以增加灵敏度和消除困扰新的垂直火炬双视图模型的问题。因此,垂直同步双观测(DSOI)提供了传统径向系统的两倍灵敏度,但是避免了垂直双视图模型的复杂性、缺点和成本。垂直同步双观测(DSOI)示意图  采用同步双向观测应用于斯派克的多款ICP光谱上,包括ACRO,SPECTROGREEN等。  除了观测方面,斯派克的ICP光谱整体采用的光学器件少,包括其不用中阶梯光栅,而用帕邢—龙格结构。优点包括:首先在很宽的光谱范围内分辨率是一个恒定的常数,因此能轻松区分谱线富集区域内相邻谱线,最大限度减少光谱干扰。而中阶梯光栅正相反,只是在200nm处有最好的分辨率,而到了300nm或400nm处分辨率会有大幅度的下降。其次是线性范围宽,例如在做固体金属分析时,几乎所有光谱仪器都是采用的帕邢—龙格结构,因为一个固体样品里既有主量元素也有微量元素,高低含量元素都要兼顾到。帕邢—龙格结构线性范围很宽。第三点,帕邢—龙格结构系统采用的光学器件最少,只有反射镜和光栅,由于光路设计越简单,光量损失就越少,仪器灵敏度越高。帕邢—龙格结构的缺点是:仪器体积大。

  • 插件半导体放电管(DO-15)系列

    http://www.kte99.com/UploadFiles/FCK/半导体放电管%20DO-15.png  半导体放电管 经特别设计专为保护敏感的电信设备免受浪涌和其他瞬态过压器件,该系列产品能够处理非常高的浪涌电流,并稳定的电气特性,高可靠性,低电容及可编程等先进特性。  特点:  ·双向对称,D0-15封装形式  ·高浪涌能力  ·高断态阻抗,低漏电  ·低通态电压  典型应用:  ·中央办公室交换设备,模拟和数字线路等(xDSL, T1/E1, ISDN...)  ·客户端设备如电话,传真机,调制解调器,POS终端,PBX系统及来电显示盒。主要保护模块 配线架, 楼宇安全及中心保护模块。  ·接入网络设备,如远程终端,线路中继器,多路复用器,交叉连接,广域网设备,网络接口设备  ·数据线和安全系统。  ·有线电视线路放大器和逆变器。  ·自动喷水灭火系统。

  • ICP光源双向观测

    [url=http://www.huaketiancheng.com/][b]ICP光谱仪[/b][/url]在光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观察(Radial)、水平观察(Axial)和双向观察(DUO),今天我们就来了解一下双向观测。  双向观测:双向观测是在水平观测ICP光源的基础,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可 能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误 同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。

  • Mi-Wave波导型双向耦合器

    [url=http://www.leadwaytk.com/article/4778.html]Mi-Wave[/url][font=宋体][font=宋体]的[/font][font=Calibri]567[/font][font=宋体]系列双向耦合器具有多孔全局性的宽带、宽壁器件。[/font][font=Calibri]567[/font][font=宋体]系列波导型双向耦合器提供[/font][font=Calibri]3[/font][font=宋体]、[/font][font=Calibri]6[/font][font=宋体]、[/font][font=Calibri]10[/font][font=宋体]、[/font][font=Calibri]20[/font][font=宋体]、[/font][font=Calibri]30[/font][font=宋体]、[/font][font=Calibri]40[/font][font=宋体]和[/font][font=Calibri]50dB[/font][font=宋体]耦合值,应用于[/font][font=Calibri]18[/font][font=宋体]至[/font][font=Calibri]170.0GHz[/font][font=宋体]的要求波导频率段。[/font][/font][font=宋体][font=Calibri]567[/font][font=宋体]系列波导型双向耦合器适用于需要将入射和反射性能实现高精度采集的应用。[/font][font=Calibri]3dB[/font][font=宋体]耦合器在平衡混频器作业中尤其有效,其中需要将[/font][font=Calibri]RF[/font][font=宋体]和[/font][font=Calibri]LO[/font][font=宋体]信号实现宽带功率平衡,通过向平衡混频器模块的两边配电。[/font][font=Calibri]3dB[/font][font=宋体]双向耦合器能够提供全带宽功率平衡。[/font][/font][font=宋体]特征[/font][font=宋体]?全频段操控[/font][font=宋体]?规格紧凑[/font][font=宋体]?低驻波比[/font][font=宋体]?稳固的构造[/font][font=宋体]应用领域[/font][font=宋体]?检测系统[/font][font=宋体][font=宋体]?发射器应用[/font][font=Calibri]/[/font][font=宋体]假负载[/font][/font][font=宋体]?通讯卫星[/font][font=宋体]?微波功放器[/font][font=宋体]?源均衡化[/font][font=宋体][font=宋体]?[/font][font=Calibri]5G[/font][font=宋体]和[/font][font=Calibri]6G[/font][/font][font=Calibri]Mi-Wave[/font][font=宋体]是商用型和军工用毫米波产品全球领航者,可以提供毫米波器件和模块解决方案。产品线涵盖:放大器、混频器、衰减器、滤波器、开关、[/font][font=Calibri]T/R[/font][font=宋体]、天线、反射镜等,所包含频率高达[/font][font=Calibri]320GHz.[/font][font=宋体]深圳市立维创展科技有限公司授权代理销售[/font][font=Calibri]Mi-Wave[/font][font=宋体]毫米波产品,欢迎咨询。[/font][font=宋体]详情了解[/font][font=Calibri]Mi-Wave[/font][font=宋体]请点击:[/font][url=http://www.leadwaytk.com/brand/52.html][font=Calibri]http://www.leadwaytk.com/brand/52.html[/font][/url]

  • 快温变试验箱PLC程序控制器安装注意事项

    快温变试验箱PLC程序控制器安装注意事项

    PLC程序控制器目前已广泛应用于各个领域之中,其中在[b]快温变试验箱[/b]中的的应用也是比较普遍。因其内部是由大量的电子元器件组成,很容易受到周围一些电气元件的干扰、强磁场电场以及振动幅度大等因素影响到PLC控制器的正常工作,这点往往被许多人忽略。即使程序编制再好,安装环节不注重,日后调试、运行会带来很多的故障。疲于奔命地维护。[align=center][img=,469,469]https://ng1.17img.cn/bbsfiles/images/2021/05/202105311519164835_6525_1037_3.jpg!w469x469.jpg[/img][/align]  以下是快温变试验箱PLC程序控制器安装时注意事项:  1、PLC安装环境  环境温度在0~55度,过高过低会导致内部电了元器件运行不稳定。必要时可采取降温或升温措施进行调节。  不能安装在振动频率50Hz、幅度为0.5mm以上,因振动幅度过大容易造成内部电路板的电子元器件脱焊以及脱落现象出现。  在电器箱内外应尽可能远离强磁场电场(如控制变压器、大容量的交直接触器、大容量的电容器等)电气元器件,还有易产生高次谐波(如变频器、伺服驱动器、逆变器、可控硅等)控制器件。  避免安装在金属粉尘多、腐蚀、可燃气体、潮湿等场所。  2、电源  要正确接入PLC电源,有交直之分。建议可使用隔离变压器提供给快温变试验箱PLC程序控制器电源。  3、接线布线及走向  接线时应使用冷压片压接后再接入PLC的输入输出端子上,并保证紧固牢靠。  当输入为直流信号时,如周围干扰源又多,应考虑带有屏蔽的电缆或采用双绞线为宜,在线的走向尽量不要与动力线平行且不能放置在同一线槽、线管内,以防造成干扰。  4、接地  有效地接地可以避免浪涌信号的冲击干扰,其接地电阻不应大于100欧,电气箱中如有接地铜排,应直接接到接地排上,不可与其他控制器(如变频器)的接地连接后再接入接地排上。

  • RLC Electronics高功率单向和双向耦合器

    [font=宋体][font=Calibri]RLC Electronics[/font][font=宋体]高功率定向耦合器在紧凑型封装中提供精准的耦合、低插入损耗和高全局性。标准模块针对[/font][font=Calibri]2[/font][font=宋体]个频带宽度带宽进行优化,而且可以选取耦合值。[/font][font=Calibri]RLC Electronics[/font][font=宋体]高功率单向和双向耦合器特别适合对前向和反射功率进行检测,对传输线产生的影响可以忽略,并且相互转换产品极低。[/font][/font][font=宋体]特征[/font][font=宋体][font=宋体]特性阻抗:[/font][font=Calibri]50[/font][font=宋体]Ω[/font][/font][font=宋体][font=宋体]功率:均值[/font] [font=Calibri]500 [/font][font=宋体]瓦,最高值 [/font][font=Calibri]10 [/font][font=宋体]瓦,[/font][font=Calibri]*250 [/font][font=宋体]瓦[/font][/font][font=宋体][font=宋体]精密度(包含频率改变):[/font][font=Calibri]+/- 1.0dB[/font][/font][font=宋体][font=宋体]耦合(额定值):[/font][font=Calibri]30[/font][font=宋体]、[/font][font=Calibri]40 [/font][font=宋体]或 [/font][font=Calibri]50dB[/font][/font][font=宋体][font=宋体]连接器:主线[/font][font=宋体]“[/font][font=Calibri]N[/font][font=宋体]”型(公头或母头)辅助线 [/font][font=Calibri]-[/font][font=宋体]“[/font][font=Calibri]SMA[/font][font=宋体]”母头[/font][/font]

  • 串联谐振和并联谐振的区别

    串联谐振和并联谐振这两种现象是正弦交流电路的一种特定现象,它在电子和通讯工程中得到广泛的应用,但在电力系统中,发生谐振有可能破坏系统的正常工作。接下来分析一下串联谐振和并联谐振这两种谐振到底都有哪些区别。从负载谐振方式划分,可以为并联谐振逆变器和串联谐振逆变器两大类型,下面对这两种类型进行比较:串联谐振回路是用L、R和C串联,并联谐振回路是L、R和C并联。(1)串联谐振逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。当逆变失败时,浪涌电流大,保护困难。并联谐振逆变器的负载电路对电源呈现高阻抗,要求由电流源供电。在逆变失败时,冲击不大,较易保护。(2)串联谐振逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。并联谐振逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。(3)串联谐振逆变器是恒压源供电。并联谐振逆变器是恒流源供电。(4)串联谐振逆变器的工作频率必须低于负载电路的固有振荡频率。并联谐振逆变器的工作频率必须略高于负载电路的固有振荡频率。(5)串联谐振逆变器的功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率。并联谐振逆变器的功率调节方式,一般只能是改变直流电源电压Ud。(6)串联谐振逆变器在换流时,晶闸管是自然关断的,关断前其电流已逐渐减小到零,因而关断时间短,损耗小。并联谐振逆变器在换流时,晶闸管是在全电流运行中被强迫关断的,电流被迫降至零以后还需加一段反压时间,因而关断时间较长。(7)串联谐振逆变器的晶闸管所需承受的电压较低,用380V电网供电时,采用1200V的晶闸管就行。并联谐振逆变器的晶闸管所需承受的电压高,其值随功率因数角φ增大,而迅速增加。 (8)串联谐振逆变器可以自激工作,也可以他激工作。而并联谐振逆变器一般只能工作在自激状态。(9)在串联谐振逆变器中,晶闸管的触发脉冲不对称,不会引入直流成分电流而影响正常运行;而在并联谐振逆变器中,逆变晶闸管的触发脉冲不对称,则会引入直流成分电流而引起故障。(10)串联谐振逆变器起动容易,适用于频繁起动工作的场合;而并联谐振逆变器需附加起动电路,起动较为困难。(11)串联谐振逆变器的感应加热线圈与逆变电源(包括槽路电容器)的距离远时,对输出功率的影响较小。而对并联谐振逆变器来说,感应加热线圈应尽量靠近电源(特别是槽路电容器),否则功率输出和效率都会大幅度降低。并联谐振逆变器和串联谐振逆变器(通称并联或串联变频电源)各有其自己的技术特点和应用领域。从工业加热应用的角度,并联谐振逆变器广泛应用于熔炼、保温、透热、感应加热热处理等各种领域,其功率可以从几千瓦到上万千瓦。串联谐振逆变器广泛应用于熔炼—保温的一拖二炉组以及高Q值高频率的感应加热场合,其功率可以从几千瓦到几千千瓦。目前我国工业上采用的变频电源90%以上属并联谐振变频电源。

  • ICP光谱仪之双向观测

    在光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观察(Radial)、水平观察(Axial)和双向观察(DUO)。  双向观测:双向观测是在水平观测ICP光源的基础,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可 能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误 同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。

  • 【原创】关于热电的6000的双向观测疑问?

    技术参数当今世界体积最小的新型iCAP 6000系列等离子体发射光谱仪 更优异的仪器性能 更高的工作效率 更方便的操作 更低的运行成本 广泛应用于环境、石化、冶金、食品饮料、地球化学和水泥行业的普通和元素分析实验室 主要特点降低了气体消耗 改善了对于诸如砷(As)、锑(Sb)、硒(Se)和碲(Te)的元素分析性能全自动波长校正和补偿校正保证了长时间的优异稳定性 第四代电荷注入式(CID)检测器RACID86 快速、可靠和便捷性能的常规分析,既可采用单一的等离子体炬垂直观测,也可采用双向观测 是怎么实现的呢?有哪位高手了解或者使用过!可以介绍介绍!

  • 【每日10分】薄层色谱中的双向展开怎么做?

    [color=#00008B]活动规则:每天不定时、不定范围出个和仪器或者采购有关的问题,发布悬赏十分。谁先正面回答的,得十分。后来的板油你们就只好呐喊助威了,注意,首先要抢先,其次要正面回答,不能尽说废话空话套话啊。如果斑竹认为你回答得太简单了,有可能把十分拆成三分之一给你哦。[/color][color=#DC143C]今日话题:薄层色谱中的双向展开怎么做?你怎么认为的呢? [/color][em09505]

  • 【原创大赛】GC-FID基线双向毛刺故障的案例解析

    【原创大赛】GC-FID基线双向毛刺故障的案例解析

    GC-FID基线双向毛刺故障的案例解析 概述:基线出现双向毛刺,如何进行判断和解决。 (这个案例是年轻同事修好的,故障比较典型,值得解析一下。) 前几天接到用户报修,Shimadzu的GC-2014,用毛细管色谱柱分析苯类物质,FID出现负峰。具体负峰的情况和形态不详。 FID出负峰的常见原因是系统污染或者气源问题,但是在看到色谱图之后,发现情况颇有些不同。下面是色谱图:http://ng1.17img.cn/bbsfiles/images/2013/09/201309222033_466075_1604036_3.jpg 在色谱图中可以看到明显的干扰信号,即双向的毛刺信号,并非是用户认为的负峰。这些异常信号的特点是,宽度很窄,在强度轴上双向出现,间隔没有规律。 一般这样形态的信号——双向毛刺——往往与电气问题相关,例如电气干扰、电源不良等问题。 后来同事换掉了FID的收集极,故障即刻解决了。 GC2014的收集极外观如下图所示:http://ng1.17img.cn/bbsfiles/images/2013/09/201309222034_466076_1604036_3.jpg 但是故障原因是什么呢?于是检查了同事取回的旧收集极。 FID收集极内部结构如图所示:http://ng1.17img.cn/bbsfiles/images/2013/09/201309222034_466078_1604036_3.jpg 图中蓝色标示的部分是电气部分,收集极的核心部件是一个筒状的收集器,将其放大和概括如下图:http://ng1.17img.cn/bbsfiles/images/2013/09/201309222034_466079_1604036_3.jpg 收集极内部的陶瓷绝缘体将导线和收集筒压紧,使其实现电气接触。 仔细检查了一下导线和收集筒之间的接触情况,发现导线和收集筒不能良好的接触,看来这就是问题所在了。 怀疑收集极有组装不良的问题,造成导线接触问题。 为了验证一下推测,将收集极装在正常工作的仪器上,开启仪器系统,此时基线正常。用手轻轻的拉拽了一下导线,基线上又出现了双向的毛刺,故障重现了,确认问题。 小结:导线和收集器核心不能良好的接触,工作时,FID的信号时断时续,造成了双向毛刺的信号。

  • 电池试验模拟测试系统

    ESYS制造的能效为了能够可持续地开发和测试未来的移动性,能效、资源节约和低生态足迹在测试设施的规划和运行中发挥着至关重要的作用。ZF测试系统公司通过其ESYS提供了一个成熟且广泛使用的节能解决方案。INV+ESYS.DCU/ ESYS。CMT组合。埃斯一家。INV网侧逆变器通过一个公共DC链路为几个电气隔离的DC通道供电。在这种情况下,馈入功率可以设计成比总DC输出功率小得多。对于大型测试场,操作人员可从大约的同步系数中获益。30%.这意味着电源馈电必须设计为仅占DC输出通道总功率的30%!能量通过公共的DC链路在不同的DC输出信道之间移动,并且电源只需要补偿丢失的功率。主要优势:由于馈入功率较低,设计紧凑交流输入功率可以小于总DC输出功率媒体供应投资减少通过DC-Link配电实现节能SiC技术导致极低的开关损耗只有电力损耗必须包括在内减少反馈给电网供应商的能量通过ESYS降低功率流。投资,从而降低损失ESYS。INV逆变器可用于不同的功率等级,以获得最大的灵活性独立的电流隔离通道-每个逆变器可能有10个以上的电流隔离通道![img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303160752593346_7612_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303160752590164_4039_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303160752592936_5669_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303160752592638_8841_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303160753144298_1102_1602049_3.png[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制