当前位置: 仪器信息网 > 行业主题 > >

高压压汞仪

仪器信息网高压压汞仪专题为您提供2024年最新高压压汞仪价格报价、厂家品牌的相关信息, 包括高压压汞仪参数、型号等,不管是国产,还是进口品牌的高压压汞仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高压压汞仪相关的耗材配件、试剂标物,还有高压压汞仪相关的最新资讯、资料,以及高压压汞仪相关的解决方案。

高压压汞仪相关的论坛

  • 采用串级PID控制法实现注塑工艺高压压力精密控制的解决方案

    采用串级PID控制法实现注塑工艺高压压力精密控制的解决方案

    [color=#990000]摘要:针对高压电气比例阀压力控制精度较差的问题,特别是为了满足客户在超长管件注塑过程中提出的±1%压力控制稳定性要求,本文介绍了相应的解决方案,解决方案的核心技术是采用串级PID控制方法。方案一是基于现有精度较差的高压电气比例阀,通过外置高精度的压力传感器和压力调节器来提高压力控制稳定性;方案二是采用高精度的低压电气比例阀驱动背压阀来实现高压压力精密控制;方案三是在方案二基础上增加外置高精度的压力传感器和压力调节器来进一步提高压力控制稳定性。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~[/color][/align][size=18px][color=#990000][b]一、背景介绍[/b][/color][/size]作为一种先进的注塑成型方法,气体压力控制技术被逐步应用于塑料制品的成型,以解决常规注塑产品存在的尺寸精度差、表面凹痕及翘曲变形等缺陷,从而提高产品质量。在以往注塑成型工艺的气体压力控制中,普遍采用高压电气比例阀,但存在压力恒定控制稳定性较差的问题。最近有客户针对细管注塑成型提出了高精度气体压力控制要求,具体如下:(1)气体压力控制范围:1~3MPa。(2)控制方式:在任意设定压力点处进行长时间恒压控制。(3)长期压力稳定性:优于±1%。针对高压电气比例阀压力控制精度较差的问题,特别是为了满足客户在超长管件注塑过程中提出的±1%压力控制稳定性要求,本文将详细介绍相应的解决方案。[size=18px][color=#990000][b]二、高压压力精密控制解决方案[/b][/color][/size][size=18px][color=#990000]2.1 外置压力传感器和调节器的串级控制法[/color][/size]目前注塑工艺中所采用的高压电气比例阀为SMC ITVX2030,压力控制范围为0.01~3MPa,能够满足指标要求,但控制精度较差,为±3%FC。为了提高压力控制精度,方案之一是采用串级控制法,即通过外置高精度的压力传感器和压力控制器构成主控回路,由高压比例阀构成辅助回路。由此,通过这种两个串级PID控制回路,充分利用串级控制法具有高精度的特点,来实现高压压力的高精度稳定控制。此方案的结构布局如图1所示。[align=center][img=外置压力传感器和调节器的串级控制法示意图,500,308]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282250456396_1585_3221506_3.png!w690x426.jpg[/img][/align][align=center]图1 外置压力传感器和调节器的串级控制法示意图[/align][size=18px][color=#990000]2.2 低压电气比例阀驱动高压背压阀[/color][/size]高压压力控制常用的另外一种控制方式是压力放大技术,即采用工作压力较低但精度较高的电气比例阀作为先导阀,驱动一个可工作在高压条件下的背压阀(或气动减压阀),其整体结构如图2所示。[align=center][img=低压电气比例阀驱动高压背压阀示意图,550,202]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282248571168_9189_3221506_3.png!w690x254.jpg[/img][/align][align=center]图2 低压电气比例阀驱动高压背压阀示意图[/align]这里的背压阀相当于一个线性压力放大器,其放大倍数则是实际工艺压力除以比例阀工作压力。由此,可通过调节电气比例阀的驱动压力来控制背压阀的压力输出。如图2所示,这种背压阀高压压力控制方法是一种典型的开环控制,尽管背压阀是对比例阀的输出压力进行线性放大,但其线性度一般较差,这主要是受电气比例阀和背压阀的自身线性度影响。因此,为了实现高精度的压力控制,还需对此方案进行改进以形成闭环控制回路。[size=18px][color=#990000]2.3 高压背压阀串级控制法[/color][/size]为了解决上述比例阀作为先导阀驱动背压阀进行高压压力控制过程中存在的线性度和控制精度较差的问题,可以引入串级控制法,即在图2所示的控制系统中接入一个较高精度的压力传感器和PID控制器,如图3所示,由此对高压管件的压力控制形成一个闭环控制。[align=center][img=高压背压阀串级控制系统结构示意图,600,306]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282249303319_6557_3221506_3.png!w690x353.jpg[/img][/align][align=center]图3 高压背压阀串级控制系统结构示意图[/align]在图3所示的串级控制法高压压力控制装置中,安装了一个外接压力传感器用于直接监测背压阀的输出压力,压力传感器检测到的压力信号传输给外置的PID控制器,外置PID控制器根据设定值或设定程序采用PID算法进行计算后将控制信号传送给电气比例阀,比例阀根据此控制信号再经其内部PID控制器来调节先导压力输出,从而使得背压阀的输出压力快速接近压力设定值并始终保持一致。[size=18px][color=#990000][b]三、总结[/b][/color][/size]从上述的高压压力控制方案中可以看出,所采用的串级控制是一个双控制回路,具有两个独立的PID控制回路。串级控制法(也称级联控制法)是一种有效提升控制精度的传统方法,但在具体实施过程中,需要满足的条件是:主控回路的压力传感器和PID控制器(这里是外置压力传感器和PID控制器)精度一般要比辅助回路的传感器(这里是电气比例阀内置的压力传感器和PID控制器)要高。因此,为了实现±1%以上精度的高压压力控制,我们推荐的配套方案是采用0.1%精度的外置压力传感器和超高精度PID控制器(技术指标为24位ADC、16位DAC和双浮点运算的0.01%最小输出百分比)。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • Kulite HKM-312(M)微型高压压力传感器

    HKM-312是一款微型螺纹压力传感器。六角形头和O型圈密封件使其易于安装和应用。HKM-312 采用齐平金属膜片作为力收集器。固态压阻式传感元件位于该金属膜片的紧后方,该膜片由金属屏蔽层保护。力的传递是通过不可压缩的硅油完成的。该传感子组件焊接在不锈钢主体上。这种先进的结构造就了高度稳定、可靠和坚固的仪器,具有微电路的所有优点:显着的小型化、出色的可重复性、低功耗等。小型化过程还显著提高了传感器的固有频率,使其甚至适用于冲击压力测量。 [b]特征:[/b] 出色的稳定性 坚固的结构 硅对硅集成传感器 VIS® 高固有频率 5/16-24 UNF-2A 或 M8 x 1 螺纹 提供本质安全型应用(即IS-HKM-312) [font=微软雅黑, &][color=#333333]深圳市立维创展科技有限公司,授权代理销售Kulite产品,欢迎咨询。[/color][/font] 全焊接结构 [b]相关产品型号:[/b] [table=90%][tr][td=1,1,156][b]型号[/b][/td][td=1,1,278][b]描述[/b][/td][/tr][tr][td=1,1,156]APTE-DC-1100型[/td][td]5 Vdc 输出高精度数字校正工业应用压力传感器[/td][/tr][tr][td=1,1,156]BM-1100型[/td][td]高性能、5 Vdc 输出压力传感器[/td][/tr][tr][td=1,1,156]BM-750型[/td][td]齐平隔膜压力传感器[/td][/tr][tr][td=1,1,156]BMD-1100型[/td][td]差压传感器[/td][/tr][tr][td=1,1,156]BMDE-1100型[/td][td]差压传感器[/td][/tr][tr][td=1,1,156]BMDE-70-1000型[/td][td]电压输出数字校正差压传感器[/td][/tr][tr][td=1,1,156]BMDE-70I-1000型[/td][td]4-20mA输出数字校正差压变送器[/td][/tr][tr][td=1,1,156]BME-1100型[/td][td]高性能、5 Vdc 输出压力传感器[/td][/tr][tr][td=1,1,156]BME-76-1100型[/td][td]电压输出数字校正压力传感器[/td][/tr][tr][td=1,1,156]BME-76-1100 量具系列[/td][td]电压输出数字校正表压传感器[/td][/tr][tr][td=1,1,156]BME-76I-1100型[/td][td]4-20Ma输出数字校正压力变送器[/td][/tr][tr][td=1,1,156]BME-88-1000型[/td][td]电压输出数字校正压力传感器[/td][/tr][tr][td=1,1,156]BME-89-1000型[/td][td]4-20mA输出数字校正压力变送器[/td][/tr][tr][td=1,1,156]BME-90-1000 量具系列[/td][td]电压输出数字校正表压传感器[/td][/tr][tr][td=1,1,156]DCT-1000型[/td][td]工业OEM放大压力传感器[/td][/tr][tr][td=1,1,156]DWPP-040型[/td][td]极温遥感动态波导压力探头[/td][/tr][tr][td=1,1,156]EPS-1000型[/td][td]电子压力开关[/td][/tr][tr][td=1,1,156]EPTS-312(M)[/td][td]带集成温度传感器的微型压力传感器[/td][/tr][tr][td=1,1,156]ETL-11-250(M)[/td][td]高温 5 VDC 输出压力传感器[/td][/tr][tr][td=1,1,156]ETL-200-375(M)[/td][td]微型4-20Ma输出压力变送器[/td][/tr][tr][td=1,1,156]ETL-200-375(M)CO[/td][td]微型4-20mA输出压力变送器[/td][/tr][tr][td=1,1,156]ETL/T-312(M)[/td][td]超小型5V输出高温压力传感器,集成温度传感器[/td][/tr][tr][td=1,1,156]ETL/T-375(M)[/td][td]微型5V输出压力传感器,集成温度传感器[/td][/tr][tr][td=1,1,156]ETL/T-HT-375(M)[/td][td]微型5V输出高温压力传感器,集成温度传感器[/td][/tr][tr][td=1,1,156]ETLR-634(X)-312(M)[/td][td]超小型5V双输出压力传感器[/td][/tr][tr][td=1,1,156]ETLR/T-634-375(M)[/td][td]微型5V双通道输出压力传感器,集成温度传感器[/td][/tr][tr][td=1,1,156]ETM-200-375(M)[/td][td]微型4-20Ma输出压力变送器[/td][/tr][tr][td=1,1,156]ETM-200-375(M)CO[/td][td]微型4-20mA输出压力变送器[/td][/tr][tr][td=1,1,156]ETM-435-375-CO[/td][td]比例式输出压力传感器[/td][/tr][tr][td=1,1,156]ETM-435-375(M)[/td][td]比例式输出压力传感器[/td][/tr][tr][td=1,1,156]ETM/T-712-562[/td][td]5 VDC 输出压力传感器,带集成温度传感器[/td][/tr][tr][td=1,1,156]ETQ-12-375(M)[/td][td]微型 5 Vdc 输出压力传感器[/td][/tr][tr][td=1,1,156]ETQ-13-375(M)[/td][td]微型4-20Ma输出压力变送器[/td][/tr][tr][td=1,1,156]HKL/T-1-375(M)[/td][td]带集成温度传感器的微型压力传感器[/td][/tr][tr][td=1,1,156]HKL/T-312(M)[/td][td]带集成温度传感器的微型压力传感器[/td][/tr][tr][td=1,1,156]HKM-17-500型[/td][td]微型航空航天压力传感器[/td][/tr][tr][td=1,1,156]HKM-312(M)[/td][td]微型高压压力传感器[/td][/tr][tr][td=1,1,156]HKM-375(M)[/td][td]微型高压压力传感器[/td][/tr][tr][td=1,1,156]HKM-375(M)CO[/td][td]微型高压压力传感器[/td][/tr][tr][td=1,1,156]HKM/HKL-233(X)-375(M)[/td][td]微型高压压力传感器[/td][/tr][tr][td=1,1,156]IPT-1100型[/td][td]通用、5 Vdc 输出压力传感器[/td][/tr][tr][td=1,1,156]IPT-360-1000型[/td][td]加固型压力传感器[/td][/tr][tr][td=1,1,156]IPT-4N-750HT型[/td][td]井下压力传感器[/td][/tr][tr][td=1,1,156]IPT-6-750HT型[/td][td]井下压力传感器[/td][/tr][tr][td=1,1,156]IPT-750型[/td][td]齐平隔膜压力传感器[/td][/tr][tr][td=1,1,156]IPTE-1100型[/td][td]通用、5 Vdc 输出压力传感器[/td][/tr][tr][td=1,1,156]IPTE-230型[/td][td]通用船用压力变送器[/td][/tr][tr][td=1,1,156]IPTE-483-1000型[/td][td]电压输出数字校正压力传感器[/td][/tr][tr][td=1,1,156]IPTE-484-1000型[/td][td]电压输出数字校正压力传感器[/td][/tr][tr][td=1,1,156]KSIT-XXX-190型[/td][td]集成式半无限管测量系统[/td][/tr][tr][td=1,1,156]KZSM/T-400R型[/td][td]法兰安装超小型5V输出压力传感器,集成温度传感器[/td][/tr][tr][td=1,1,156]LPF[/td][td]低通机械滤波器[/td][/tr][/table]

  • 油炸工艺中的真空、正压和高压压力控制解决方案

    油炸工艺中的真空、正压和高压压力控制解决方案

    [size=16px][color=#339999]摘要:针对食品油炸过程中涉及到的真空、正压和高压三种压力场控制需求,本文提出了相应的解决方案。解决方案基于动态平衡法控制原理,采用真空压力控制器、电动针阀、电动球阀、电气比例阀、背压阀和真空泵的搭配组合,分别实现真空负压控制、正压控制和超高压控制,可有效保证油炸食物品质,更便于油炸参数和新技术的开发。依据解决方案所构成的真空压力控制系统即可单独构成油炸设备的控制单元,也可配套集成到中央控制系统。[/color][/size][align=center][size=16px][img=油炸设备中的真空、正压和高压三种压力场控制的解决方案,500,376]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291411304643_3469_3221506_3.jpg!w690x520.jpg[/img][/size][/align][size=16px][/size][b][size=18px][color=#339999]1. [/color][/size][size=18px][color=#339999]油炸过程中的压力场控制问题[/color][/size][/b][size=16px] 油炸是以油为传热介质的最流行的食品加工方法之一,是一个典型的高温传热传质过程。油炸食品由于美味而广受欢迎,但油炸食品往往对人体健康造成很大影响。为此,现有和今后的油炸技术都在基于物理场(温度场、压力场、电磁场和声场等)的单独或协同应用技术,以减少油炸食品对健康的负担以及提高油炸食品的生产效率和质量。[/size][size=16px] 油炸与其他加热烹饪方法一样,首先要能形成一定的温度场才能使食物致熟,但为了能提供更健康的油炸食物,往往会需要进行相应的压力等其他物理场的控制。尽管现在有很多其他油炸新技术,但健康油炸过程的两个核心指标还是温度和压力,这是因为压力往往会决定温度高低。众所周知,水的沸点与外界压力有关。当施加的压力降低(或增加)时,水的沸点降低(或增加),这就是基于压力场油炸技术和改变油炸温度的基本原理。[/size][size=16px] 随着科技的进不许,真空油炸(减压)或压力油炸(加压)正在取代常压油炸技术,提高油炸产品的效率和质量。另外,高压加工(HPP)作为预处理技术的应用已经显示出在油炸水果和蔬菜中具有巨大的商业利用潜力,具有更快的水分去除率和更少的质量退化。下面将分别介绍油炸技术中的这三种压力场控制方法以及需解决的技术问题。[/size][size=16px][color=#339999][b]1.1 真空油炸(低压或减压)[/b][/color][/size][size=16px] 真空油炸被定义为在低于大气压下进行的深度油炸过程,典型的真空油炸装置如图1所示[1]。由于真空下水的沸点降低,食物中的水分可以在相对较低的温度下除去,这使得真空油炸具有保留热敏性营养物的显著特征。同时,由于低温和真空下的低氧含量,脂肪氧化和美拉德反应也受到显著抑制。此外,真空油炸水果和蔬菜更好地保留了天然颜色,包含更高的亮度、更低的红色和更低的黄色,这可能与更少的非酶褐变反应有关。[/size][align=center][size=16px][color=#339999][b][img=01.典型真空油炸装置示意图,650,355]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291415539393_8671_3221506_3.jpg!w690x377.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 典型真空油炸装置示意图[1][/b][/color][/size][/align][size=16px] 此外,由于在最初的减压步骤中实现了更少的气泡和更均匀的微观表面结构,因此在油炸产品中实现了更好的保存纹理。[/size][size=16px] 真空油炸的另一个优势是油炸后的离心步骤,同时保持负压,这大大有助于减少最终产品的吸油量。在真空条件下,油炸材料的结构保持膨胀和松散的形状,孔隙中的压力随着热传递和水蒸发速率的降低而保持,这抑制了油被临时毛细压力吸收到外壳中。同时,在油炸篮从油中提起后立即进行离心,大部分附着在表面的油被离心力去除,从表面渗透到多孔结构的油最终减少,从而使最终产品具有较少的吸油量。因此,真空油炸的商业应用已经被许多具有低脂肪生产要求的食品工业所采用,特别是水果和蔬菜。[/size][size=16px] 然而,由于相对较低的温度,真空油炸延长了某些产品的油炸时间,因此较长的加工周期和较高的能耗成为其应用的明显障碍。因此近年来,人们尝试了创新的预处理方法和电磁加热技术,以降低油炸时间和能耗并提高真空油炸产品的整体质量属性。[/size][size=16px] 另外,尽管目前真空油炸技术和设备已经比较成熟,但有个关键技术问题则很少涉及,那就是如何准确控制真空度来满足不同食品的油炸需要,使得油炸食品具有更高的品质和重复性。[/size][size=16px][color=#339999][b]1.2 压力油炸[/b][/color][/size][size=16px] 压力油炸是通过食物自然释放的水分在油炸锅内产生足够压力的过程。水的沸点由于油炸锅中的高压(通常高于大气压)而升高,这导致食物中的水分更好地保留。大量研究表明,压力油炸主要应用于肉、鱼和家禽产品,以有效地减少加工时间并生产具有优良质地的油炸产品,在2bar压力下,压力油炸的传热系数几乎是常压油炸的两倍,与常压油炸相比,压力油炸鸡肉的油炸时间减少了近50%。就压力油炸过程中的结构变化而言,由于加剧的水分梯度,促进了外壳表面的形成,并增加了孔隙率,导致油炸产品的脆性质地和多孔外观。据报道,炸鸡的多汁性、嫩度和颜色得到了极大改善,并且与开放式油炸相比,还发现了更脆的外壳。此外,据报道,压力油炸产品的吸油率因水分保留而降低,同时压力油炸鸡肉中的中性脂肪含量减少了10.0%,碳水化合物含量增加了18.9%,而蛋白质含量没有发现显著差异,压力油炸鸡肉中游离脂肪酸和硫代巴比妥酸的含量分别降低了75.6%和26.2%,这意味着油炸鸡肉中的脂肪质量得到了极大改善。[/size][size=16px] 压力油炸在一些即食食品加工情况下有广泛的应用,如餐馆、超市、便利店、熟食店、学校、医院和其他商业餐饮经营。氮气被选择用作油炸锅中的压力产生源,以产生在保湿和质地方面质量更好的油炸产品。然而,由于繁琐的操作过程和较少的油炸食品量,其在工业生产中的应用受到限制,因此当用于大规模生产水平时,有必要探索合适的油炸条件或连续生产方法,以实现更高的加工效率。[/size][size=16px] 同样,在压力油炸中也同样很少涉及如何准确控制压力来满足不同食品的油炸需要。[/size][size=16px][color=#339999][b]1.3 高压加工预处理[/b][/color][/size][size=16px] 高压加工也称为高静水压或高静压(远高于100MPa),是食品加工中的一种新兴技术。这种最初用作非热保存的技术被发现有利于在油炸过程中获得高质量转移率,因为它对部分细胞渗透性的改变有影响。同时,油炸前的高压加工预处理被确定为通过抑制酶促和非酶促反应的发生而对油炸产品的颜色产生积极影响。[/size][size=16px] 值得注意的是,在100MPa较低压力下提交的油炸食品明显轻于200和300MPa较高压力下处理的油炸食品。压力造成的组织破坏增加了多酚氧化酶与其底物的接触,并没有完全使酶失活。有研究报道,高压加工预处理有助于减少油炸时间,增加油炸蔬菜和水果的硬度,这可能与细胞壁的物理损伤有关,导致细胞破裂和随后的水分渗出。此外,高压加工预处理能够保留水果和蔬菜的营养和感官特性,因为它对与其颜色和风味相关的化合物的共价键影响有限,同时能更好地保持最终油炸产品的酚类物质含量和抗氧化能力,而这种效应甚至可以在储存过程中有效维持。然而,据报道,高压加工预处理油炸会使得有些水果和蔬菜的吸油量增加,这可能与较高的渗透率有关,这有助于油炸物容纳更多的油。因此,适当的减油技术可以与高压加工预处理相结合,以保证其作为提高油炸产品效率和质量的有效策略。[/size][size=16px][color=#339999][b]1.4 问题的提出[/b][/color][/size][size=16px] 从上述三种不同压力形式的油炸方法介绍可以看出,压力场的控制会涉及到低压、正压和高压三个压力区间,但很少有报道涉及到详细的压力控制方法和相关仪器,而压力的准确控制会涉及到具体油炸产品品种和相应的油炸温度,为此本文将提出详细的真空压力控制解决方案。[/size][size=18px][color=#339999][b]2. 真空压力控制原理[/b][/color][/size][size=16px] 从上述油炸过程中所需的压力场可以看出,以绝对压力形式来描述,其相应的真空压力范围为0.005 ~ 300MPa。为了在如此宽泛的压力范围内实现压力控制,本文将采用动态平衡控制方法,其基本原理如图2所示。此原理的特点是既能进行全量程范围的真空压力控制,也可以进行某段区间内的单独控制。[/size][align=center][size=16px][color=#339999][b][img=02.油炸装置真空压力控制原理示意图,550,238]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291416216769_231_3221506_3.jpg!w690x299.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 油炸过程真空压力控制原理示意图[/b][/color][/size][/align][size=16px] 按照图2所示的动态平衡法真空压力控制原理,油炸过程中的真空压力控制主要分三部分:[/size][size=16px] (1)负压区间控制:在控制真空负压时,由进气排气阀门、真空泵、传感器和控制器组成闭环控制回路,高压气源提供压力不高的工作气体。在具体控制过程中,真空压力控制器根据传感器采集信号与设定值进行比较,控制器输出两路信号分别用于固定进气阀门开度和调节排气阀门开度,通过自动调节进出气流量达到动态平衡来实现负压区间全量程的真空度准确控制。[/size][size=16px] (2)正压区间控制:在低于7MPa范围内的正压控制时,由高压气源、进气阀、传感器和控制器组成闭环控制回路。进气阀门直接采用电气比例阀,比例阀对高于7MPa的高压气源进行减压控制,而真空压力控制器根据压力传感器与设定值比较后输出信号对比例阀进行自动调节。[/size][size=16px] (3)超高压区间控制:对于7~300MPa范围内的超高压控制,进气阀门需要采用电气比例阀和背压阀的组合形式。背压阀对超高压进气进行减压来控制控制油渣罐内的超高压力,电气比例阀作为先导阀来调节背压阀,真空压力控制器根据压力传感器与设定值比较后输出信号对比例阀进行自动调节。[/size][size=18px][color=#339999][b]3. 解决方案[/b][/color][/size][size=16px] 根据前述的油炸装置真空压力控制原理以及三个不同真空压力范围的控制方法,本文提出了三个相应的具体解决方案。[/size][size=16px][color=#339999][b]3.1 真空负压控制解决方案[/b][/color][/size][size=16px] 基于图1所示的油炸装置结构,真空负压控制的解决方案具体如图3所示。[/size][align=center][size=16px][color=#339999][b][img=03.油炸装置真空负压控制系统结构示意图,550,238]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291416416718_3794_3221506_3.jpg!w690x299.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 油炸装置真空负压控制系统结构示意图[/b][/color][/size][/align][size=16px] 方案中采用了电动针阀进行进气流量调节,采用电动球阀进行排列流量调节,真空计为1000Torr量程的薄膜电容规。在油炸装置中对选用的电动针阀和电动球阀有较高的要求,一方面是要有较好的真空密封性能,更重要的是还要具有较快的调节速度,以便能对油炸过程中温度变化以及水分蒸发造成的气压突变进行快速调节。[/size][size=16px] 另外,所用的电动针阀和球阀较适用于小尺寸的油炸罐体,对于较大规格的油炸罐体,可以考虑采用具有相同性能的进气电动球阀和排气电动蝶阀,以满足大尺寸腔体对大流量进气和排气的需要。[/size][size=16px] 解决方案中的另一个重要内容是真空压力控制器,这里的控制器是一个高精度通用型的双通道PID控制器,两个独立通道分别用于电动针阀和电动球阀开度的控制。另外,此真空压力控制器具有通讯接口和配套的计算机软件,可通过上位机编程进行控制,也可能用计算机直接运行软件进行控制操作。[/size][size=16px][color=#339999][b]3.2 正压控制解决方案[/b][/color][/size][size=16px] 同样基于图1所示的油炸装置结构,7MPa以下正压控制的解决方案具体如图4所示。[/size][align=center][size=16px][color=#339999][b][img=04.油炸装置7MPa以下压力控制系统结构示意图,500,246]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291417152373_4414_3221506_3.jpg!w690x340.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 油炸装置7MPa以下正压控制系统结构示意图[/b][/color][/size][/align][size=16px] 方案中采用了电气比例阀直接对油炸罐压力进行控制,即对高压气源的压力进行减压后输送到油炸罐。电气比例阀的控制则采用了真空压力控制器,同样,也可以采用上位机和计算机直接对电气比例阀进行控制。[/size][size=16px] 方案中需要注意的是,电气比例阀仅能满足小尺寸油炸罐内的压力控制,针对较大尺寸的油炸罐,则需要在电气比例阀后面增加流量放大器,以对大尺寸罐体内的压力快速响应和控制。[/size][size=16px][color=#339999][b]3.3 超高压控制解决方案[/b][/color][/size][size=16px] 同样基于图1所示的油炸装置结构,超高压控制的解决方案具体如图5所示。[/size][align=center][size=16px][color=#339999][b][img=05.油炸装置超高压300MPa压力控制系统结构示意图,500,317]https://ng1.17img.cn/bbsfiles/images/2023/03/202303291417342442_4888_3221506_3.jpg!w690x438.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图5 油炸装置超高压控制系统结构示意图[/b][/color][/size][/align][size=16px] 图5中的解决方案与图4所示的正压控制解决方案类似,这里的电气比例阀是作为先导阀来驱动背压阀,背压阀则对输入的超高压气源进行减压以实现油炸罐内的超高压控制。[/size][size=16px] 在此方案中需要采用两路气源,一路气源用于驱动电气比例阀,另一路气源作为油炸罐的工作气源。[/size][size=16px] 油炸罐的超高压力自动控制也采用了真空压力控制器,控制器根据压力传感器信号来控制电气比例阀,电气比例阀驱动背压阀,由此实现对背压阀的间接控制。同样,也可以采用上位机和计算机直接对背压阀进行控制操作。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 采用真空压力控制器、电动针阀、电动球阀、电气比例阀、背压阀和真空泵的自动化控制解决方案,可以实现食品油炸过程中的真空压力准确控制,提高油炸食品的质量和口感。[/size][size=16px] 解决方案的另外一个特点是可以采用灵活的组合,实现不同范围的真空压力控制,可满足不同压力场要求的油炸设备,也可满足不同尺寸大小的油炸罐真空压力控制需要。[/size][size=16px] 解决方案具有很强的可扩展性和灵活性,在实现真空压力控制的同时,真空压力控制器还可以拓展应用到油炸过程中的温度和其他参数的控制,控制器的小巧尺寸和通讯功能可方便的集成在油炸装置的控制系统中,也可单独构成中央控制单元。[/size][size=18px][color=#339999][b]5. 参考文献[/b][/color][/size][size=16px][1] Andrees-Bello, A., P. Garc?a-Segovia, and J. Mart?nez-Monzo. 2011. Vacuum frying: An alternative to obtain high-quality dried products. Food Engineering Reviews 3 (2):63–78.[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~[/align][size=16px][/size][size=16px][/size][size=16px][/size]

  • 【分享】高压气体钢瓶的正确使用

    1 高压气体钢瓶内装气体的分类 (1)压缩气体 临界温度低于-10℃的气体,经加高压压缩,仍处于气态者称压缩气体,如氧、氮、氢、空气、氩、氮等。这类气体钢瓶若设计压力大于或等于12MPa(125kg/cm2)称高压气瓶。 (2)液化气体 临界温度≥10℃的气体,经加高压压缩,转为液态并与其蒸气处于平衡状态者称为液化气体。临界温度在-10℃至70℃者称高压液化气体,如二氧化碳、氧化亚氮。临界温度高于70℃,且在60℃时饱和蒸气压大于0.1MPa者称低压液化气体,如氨、氯、硫化氢等即是。 (3)溶解气体 单纯加高压压缩,可产生分解、爆炸等危险性的气体,必须在加高压的同时,将其溶解于适当溶剂,并由多孔性固体物充盛。在15℃以下压力达0.2MPa以上,称为溶解气体(或称气体溶液),如乙炔。 从气体的性质分类可分为剧毒气体,如氟、氯等;易燃气体,如氢、一氧化碳等;助燃气体,如氧、氧化亚氮等;不然气体,如氮、二氧化碳等。

  • 超高温高压流变仪用艾默生TESCOM ER5000压力控制系统的国产化替代方案

    超高温高压流变仪用艾默生TESCOM ER5000压力控制系统的国产化替代方案

    [color=#ff0000]摘要:本文针对高温高压流变仪中的压力控制,特别是针对美国艾默生公司的全套压力控制系统TESCOM ER5000,提出相应的国产化解决方案。解决方案采用的也是电气比例阀驱动背压阀实现高压精密控制,整个压力控制系统为分体式结构,但采用了独立的精度更高的双通道PID控制器作为外部控制器,与电气比例阀一起构成双环控制模式。此方案除了实现国产替代之外,最大特点是可以驱动两个背压阀实现高压全量程的精密控制,且控制精度更高。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][b]一、问题的提出[/b][/size]高温高压流变仪是在特殊的高温高压条件下测量流体材料流变特性(如粘度等)的精密分析仪器,模拟材料的使用工况条件,研究流体材料的黏度与温度、压力的关系,对石油开采(如钻井液、压裂液、酸化液、原油)、石化生产(如润滑油)、煤化工(如油煤浆)、食品加工(如淀粉糊化)等行业有重要指导意义。国内外都非常重视流变仪的研发和使用,但是其核心技术以前一直由西方国家掌握,我国的流变仪一直依赖进口,迫切需要中国自主研发的设备。为此,科技部设立了重大科学仪器设备开发专项“超高温高压钻井液流变仪的研发及产业化”(项目编号:2012YQ050242)以期彻底解决核心技术卡脖子问题。此开发专项由北京探矿工程研究所牵头承担,于2018年取得了重大技术突破,开发完成了Super HTHP Rheometer 2018超高温高压流变仪,并编制了相应的企业标准“Q/HDTGS0006-2018 超高温高压流变仪”,可用于测试钻井液、压裂液等样品在高温高压(最高320℃、220MPa)及低温高压(最低-20℃、220MPa)条件下的流变性。尽管Super HTHP Rheometer 2018超高温高压流变仪在关键技术上取得了突破,但根据文献“王琪, 赵建刚, 韩天夫,等. 超高温高压流变仪中高精度压力控制系统的实现[J]. 地质装备, 2018, 19(2):3.”报道,高压流变仪中的压力控制采用的是美国艾默生公司的全套压力控制系统,其中包含了TESCOM ER5000压力控制器和相应的背压阀。本文将针对高温高压流变仪中的压力控制,特别是针对美国艾默生公司的全套压力控制系统,提出相应的国产化解决方案。本文将详细介绍国产化替代方案的具体内容和相应配套产品。[b][size=18px]二、国产化替代解决方案[/size][/b]在高温高压流变仪中使用的TESCOM ER5000压力控制系统是一种典型的双回路串级PID控制方式(双环模式),如图1所示,其工作原理是采用0.7MPa量程的低压电气比例阀来驱动200MPa量程的背压阀实现精密高压调节。[align=center][img=01.TESCOM压力控制系统结构示意图,690,301]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200941118441_5182_3221506_3.png!w690x301.jpg[/img][/align][align=center]图1 TESCOM ER5000压力控制系统结构示意图(内置和外置双压力传感器,双环模式控制)[/align]根据我们对高压压力控制的使用经验和具体实际应用的了解,特别是针对高温高压流变仪中的高压压力精密控制,应用TESCOM ER5000压力控制系统特别需要注意以下几方面的问题:(1)尽管TESCOM ER5000压力控制系统采用的是双回路PID串级控制模式,但由于采用的是16位AD转换器,所以在控制精度上还有潜力可挖,如采用更高精度的AD转换器。(2)在整个200MPa的高压范围内,采用一个艾默生TESCOM背压阀并不能准确覆盖整个高压范围的压力精密控制,在某些压力区间会出现失调现象。这也是所有背压阀都会出现的问题,解决方法是采用至少2个背压阀来覆盖整个高压范围的精密控制。由此,如果采用2个背压阀进行全量程的高压控制,这势必要采用两套ER5000压力控制器,会明显提升成本。目前国产的背压阀已经非常成熟,技术难度主要在于ER5000压力调节器的国产化替代。针对高精度的压力控制,我们分析了ER5000压力调节器的技术思路,特别基于ER5000压力调节器所采用的这种非常有效的双环模式高精度压力控制方法,我们提出了精度更高和更经济国产化替代方案。如图2所示,方案的技术核心为:[align=center][img=02.双阀高压压力精密控制系统结构示意图,690,497]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200941243661_3252_3221506_3.png!w690x497.jpg[/img][/align][align=center]图2 双阀结构高压压力精密控制系统结构示意图[/align](1)采用分体结构形式,与TESCOM ER5000系统的工作方式相同,同样采用电气比例阀驱动背压阀。根据高压压力控制范围,选择2个不同工作压力范围的背压阀来覆盖整个量程。(2)采用国产电气比例阀作为背压阀的驱动,自带PID控制功能的电气比例阀组成内部闭环控制回路,实现背压阀压力输出的精密调节。(3)外置压力传感器和双通道PID控制器构成外部闭环回路,控制器输出作为电气比例阀设定值,由此可实现ER5000压力控制器的双环工作模式。(4)国产化替代的技术核心是双通道PID控制器,每个通道都具有24位AD和16位DA,双精度浮点运算和最小输出百分比为0.01%,控制器具有RS 485通讯和标准的MODBUS协议,并配备了测控软件,可遥控操作和存储显示测试曲线。此PID控制器性能指标远优于ER5000控制器。我们经过大量试验,已经验证了这种国产比例阀和高精度PID控制器组成的串级控制模式可有效的实现和改善高压压力控制精度,完全可以实现对ER5000压力控制系统的国产化替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 压力校验仪液压压力不稳时的处理方法

    [color=#000000][b]压力校验仪液压压力不稳时的处理方法:[/b][/color][color=#000000]1.松开油箱帽或给油箱加油。[/color][color=#000000]2.拧紧管路接头。[/color][color=#000000]3.更换“○”型圈。[/color][color=#000000]4.反复抽动充油泵使系统内空气随油箱排出。[/color][color=#000000]处理方法:应根据当地实际大气压判断仪器是否正常气压打不上压,造压泵有空压的感觉。[/color]

  • 求助!高压消解,原子荧光法测血清、全血汞的一些问题

    各位前辈们好,我导师最近让我检测一批血清样本中的汞,但在检测的时候遇到一些问题故在此请教希望能得到帮助,谢谢![b]主要方法描述:[/b]取血清样本1ml,加入2ml硝酸放入高压消解罐中130度2小时,自然冷却,用5%盐酸每次2ml润洗转移定容至10ml上机,仪器为AFS-930原子荧光,电压260v,电流20mA,原子化器高度10mm,载流液5%盐酸,载气400ml/min,屏蔽气800ml/min,波长193.7nm,标曲范围为0-5ug/l,全血样本同上[b]主要问题:[/b]1.开盖有棕色气体,是不是硝酸过多需要赶酸,看论坛的前辈说NO2会导致测的值偏小,但血清中的汞着实很少,需要赶酸或者超声脱气吗?2.加标回收率低,只有75%-85%左右,尝试使用前用盐酸润洗,因为内衬罐有的混了不太紧,每次高压冷却完毕后都会很松(这点应该是正常的)3.血清样本汞浓度低于检出限4.老汞标液用水稀释储存在容量瓶里,每次配上机标曲是用15ml的corning管配的,放置一段时间有浓度下降,怀疑老汞标不准买了20ml新汞标,请问需要用重铬酸钾的硝酸溶液当固定液吗?配完应该存放在什么容器里面?5.之后尝试微波消解,体系同上,但微波消解罐为70ml容量的大罐,反应体系不到8ml高度,需要加酸或水到8ml然后赶酸吗?6.有仿照资料加过氧化氢促进消解降低酸度,但1ml过氧化氢与1ml全血产生剧烈反应产生了大量泡沫,而且之前炸过有阴影,,,请问过氧化氢可以不使用吗谢谢指教!

  • 压力校验仪液压压力不稳的原因

    [color=#0000ff][b]压力校验仪[/b][/color]液压压力不稳时的处理方法:[color=#0000ff][b]压力校验仪[/b][/color]采用数控压力源自动加压,通过高精度数字式压力传感器获取标准压力值,利用计算机摄像处理系统识别压力表读数,按照相应的压力仪表检定规程,计算各项误差值并作出检定结论,经常出现使用操作的小问题及处理方法。1.油箱油量不足。2.运输时管路接头处损坏有泄漏。3.快速接头“○”型圈密封损坏。4.系统内空气多或未排干净。

  • 压缩空气不锈钢高压过滤器-盛达丰工业技术

    压缩空气不锈钢高压过滤器-盛达丰工业技术

    随着技术的更新和进步,越来越多的场合需要使用到高压压缩气体,如:天然气、气体纯化、航空航天、船舶制造、挖掘业等。  本系列[b]高压过滤器[/b]适用于压缩空气和气体过滤,其中包括天然气过滤产品和氨气过滤产品。壳体制造材料包括316L,304不锈钢,碳钢以及锻铝,分别适用于不同压力等级,zui高压力可达50MPa。  [b]高压过滤器[/b]壳体:高压过滤器壳体是采用CAD设计,并采用数控加工中心加工。壳体经过1.3倍的压力测试实验。有四个压力系列供选择,5MPa、10MPa、25MPa、40MPa,流量可达17000Nm3/h。高压过滤器可采用螺纹连接,卡套连接和直接焊接的安装形式。为了能够获得良好的过滤效果,采用低流速尺寸设计,同时可以按照客户需求定制产品。  [b]高压过滤器[/b]滤芯:高压过滤器的滤芯是由walker过滤公司提供,可靠的材料,成熟的加工技术和检验技术。满足ISO8573-1压缩空气纯净度标准,适用于压缩空气过滤器试验的ISO12500系列国际标准。  [b]高压过滤器[/b]滤芯的材料和设计:适用于特殊气体,高效、耐腐蚀、耐高温。定制的硼硅纤维过滤材料,在达到要求的同时,提供高通过性。定制凝聚层,韧性好、耐腐蚀、液滴凝聚效率高。滤芯有不锈钢双层支撑,这样滤芯不会变形。滤芯上有产品系列码,全程品质跟踪。过滤精度,25μm、5μm、1μm、0.01μm、活性炭。  [b]高压过滤器[/b]型号:HPS50、HPS100、HPS200、HPS300、HPS400、HPS500、HPS600[img=不锈钢高压过滤器,690,690]https://ng1.17img.cn/bbsfiles/images/2019/09/201909271526497946_9176_3251553_3.jpg!w690x690.jpg[/img][img=不锈钢高压过滤器,690,690]https://ng1.17img.cn/bbsfiles/images/2019/09/201909271527005047_4067_3251553_3.jpg!w690x690.jpg[/img]

  • 【原创大赛】食品中总砷和总汞--高压消解法(GB5009.11新加方法)

    【原创大赛】食品中总砷和总汞--高压消解法(GB5009.11新加方法)

    本文主要介绍食品中总砷和总汞的检验原理及检测方法,以及原子荧光光度计的一般操作和日常维护。一、检验依据总砷依据GB/T5009.11-2003.本方法中包括氢化物原子荧光光度法,银盐法,砷斑法,硼氢化物还原比色法。氢化物原子荧光光度法是第一法,方法检出限是0.01mg/kg,线性范围是0-0.2ug/ml.总汞依据GB/T5009.17-2003,本方法中包括原子荧光光谱法,冷原子吸收光谱法,二硫腙比色法原子荧光光谱是第一法,检出限是0.15ug/kg,线性范围是0—60ug/L.二、原子荧光测总砷原理总砷分为有机砷和无机砷。样品经酸消解后,加入硫脲VC使五价砷还原为三价砷,加入硼氢化钠或者硼氢化钾使之变为砷化氢,由氩气载入电热石英原子化器中分解为原子态的砷,在特制空心阴极灯的发射光的激发下产生原子荧光,其荧光强度与浓度成正比,与标准系列比较定量。三、原子荧光测总汞原理试样经酸消解后,在酸性介质中,试样被硼氢化钠或者硼氢化钾还原为原子态的汞,由氩气载入石英原子化器中,在特制空心阴极灯的发射光的激发下产生原子荧光,其荧光强度与浓度成正比,与标准系列比较定量。http://ng1.17img.cn/bbsfiles/images/2015/07/201507301212_557999_2989334_3.jpghttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif四、几种前处理方法进行比较http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://ng1.17img.cn/bbsfiles/images/2015/07/201507301213_558000_2989334_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/07/201507301213_558001_2989334_3.jpg高压消解罐五、高压消解法1、高压消解法试剂要求1)硝酸,盐酸,30%双氧水(总汞用),等所有试剂均需在GR以上。2)硫脲-VC 100g/L(总砷用)硼氢化纳10g/L.(总砷用)氢氧化钠5g/L,硼氢化钠0.5g/L(总汞用)。3)砷汞1mg/l的标样直接购买具有国家标准物质证书的试剂。2、高压消解法内胆要求消解罐的规格和参数要求(允许最高温度,最大承受压力)。对高压消解罐的外套杯体,杯盖,分别编号对应。避免不对应密封性差和交叉污染,影响检测。http://ng1.17img.cn/bbsfiles/images/2015/07/201507301215_558002_2989334_3.jpghttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif3、高压消解法注意事项1)使用前检查内胆内外无变形,破裂,外盖是否翘曲变形。2)外盖和杯体的密闭性。3)内胆最大承受压力和温度。4、高压消解法检测步骤http://ng1.17img.cn/bbsfiles/images/2015/07/201507301216_558003_2989334_3.jpghttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif称样1、根据样品消解情况和内胆规格2、准确称量3、及时记录数据总砷注:1、100ml内胆液体样品称样量1.0g左右,奶粉样品不得超过0.5g。2、70ml内胆液体样品0.5g左右。避免样品称样量和内胆规格不符时,发生安全隐患。http://ng1.17img.cn/bbsfiles/images/2015/07/201507301224_558017_2989334_3.jpg加酸静止1、加10ml硝酸(总砷)加5ml(总汞),边加边摇。2、同时做2份试剂空白3、加盖浸泡过夜4、整个过程需在通风橱中进行。并带好防护用具.注:1、体积:根据不同实验的,加入量不得超过容积的1/4—1/52、溶剂:不允许加入高氯酸3、内胆:加双氧水,消解罐规格不得小于100mlhttp://ng1.17img.cn/bbsfiles/images/2015/07/201507301224_558018_2989334_3.jpg高压消解总汞——加7ml双氧水,120度4小时套入不锈钢外套中总砷——直接放入不锈钢外套中140-160度,6-7小时http://ng1.17img.cn/bbsfiles/images/2015/07/201507301225_558019_2989334_3.jpg注:1、温度升高后,开始计时。2、放入消解罐之前应打开盖放气3、检查消解罐是否有排气孔,排气孔是否通畅4、消解罐不可拧的过紧5、加热温度最高不得超过180度 http://ng1.17img.cn/bbsfiles/images/2015/07/201507301228_558022_2989334_3.jpg赶酸1、赶酸前用去离子水或者载液冲洗内胆,将洗液合并到内胆中赶酸2、赶酸温度130度3、整个过程需在通风橱中进行,并严格按照安全管理规定进行操作。4、测总汞时,赶酸可不必进行。注:1、赶酸时电热板缓慢升温。2、赶酸温度不易太高,以免损失,且使内胆变形。3、冲洗外盖时,小心操作,避免损失和交叉污染。4、整个过程应在通风橱中进行,避免消解液溢出烫伤。5[color

  • 麦克压汞仪高压测试压力只能到20mp

    如题,高压测试时,压力只能到20mp,油泵工作时进出口有油进出,增压器活塞有动作,油路没有泄漏点,高压传感器没有输出,高压传感器输出端单独给定0到5伏电压操作软件中压力有变化值,求大侠解惑。

  • 压汞法测试孔径参数分析报告

    本材料检测中心主要从事石墨及碳素材料等分析,孔径分析测试主要是使用麦克莫瑞提克的压汞仪,型号为9500.今天主要谈谈孔径测试及压汞仪的了解。[font=宋体]一、[/font][font=宋体]对孔径测试及压汞仪的了解[/font][font=宋体]孔径测试[/font][font=宋体] [/font][font=宋体]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔;[/font][font=宋体]二、[/font][font=宋体]孔径测试的常用方法:[/font][font=宋体]三、[/font][font=宋体][font=宋体]压汞法:加压向孔内充汞。适用于根据最大挤压压力[/font][font=Calibri]60000psi[/font][font=宋体],孔径范围[/font][font=Calibri]0.003um[/font][font=宋体]到[/font][font=Calibri]400um[/font][font=宋体]之间的大多数材料。(本公司设备最大挤压压力[/font][font=Calibri]33000psi [/font][font=宋体],测试孔径范围[/font][font=Calibri]0.0055um[/font][font=宋体]到[/font][font=Calibri]400um [/font][font=宋体])[/font][/font][font=宋体]四、[/font][font=宋体][font=宋体]气体吸附分析介孔[/font][font=Calibri]-[/font][font=宋体]大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.002um[/font][font=宋体]至[/font][font=Calibri]0.1um[/font][font=宋体]之间;[/font][/font][font=宋体]五、[/font][font=宋体][font=宋体]气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.4nm[/font][font=宋体]至[/font][font=Calibri]2.0nm[/font][font=宋体]之间;[/font][/font][font=宋体]孔径测试[/font][font=宋体]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔;[/font][font=宋体]孔径测试的常用方法:[/font][font=宋体] [font=宋体]压汞法:加压向孔内充汞。适用于根据最大挤压压力[/font][font=Calibri]60000psi[/font][font=宋体],孔径范围[/font][font=Calibri]0.003um[/font][font=宋体]到[/font][font=Calibri]400um[/font][font=宋体]之间的大多数材料。(本公司设备最大挤压压力[/font][font=Calibri]33000psi [/font][font=宋体],测试孔径范围[/font][font=Calibri]0.0055um[/font][font=宋体]到[/font][font=Calibri]400um [/font][font=宋体])[/font][/font][font=宋体] [font=宋体]气体吸附分析介孔[/font][font=Calibri]-[/font][font=宋体]大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.002um[/font][font=宋体]至[/font][font=Calibri]0.1um[/font][font=宋体]之间;[/font][/font][font=宋体] [font=宋体]气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.4nm[/font][font=宋体]至[/font][font=Calibri]2.0nm[/font][font=宋体]之间;[/font][/font][font=宋体]压汞仪了解[/font][font=宋体][font=宋体]压汞法原理:汞对大多数固体材料具有非润湿性,需外加压力才能进入固体孔中,对于圆柱型孔模型,汞能进入的孔的大小与压力符合[/font][font=Calibri]Washburn[/font][font=宋体]方程,控制不同的压力,即可测出压入孔中汞的体积,由此得到对应于不同压力的孔径大小的累积分布曲线或微分曲线。[/font][/font][font=宋体][font=Calibri]Washburn[/font][font=宋体]方程了解: [/font][/font][font=宋体] [/font][font=宋体] [font=宋体]方程的作用:将压力与孔径间建立了关系;[/font][/font][font=宋体] [font=宋体]方程的基础:将所有孔都假设成理想的圆柱形孔模型;[/font][/font][font=宋体] [font=宋体]方程的不足:实际上孔的结构多种多样,存在以偏概全的问题;[/font][/font][font=宋体]压汞法优势:压汞法能测试的孔径范围宽广,覆盖大孔和中孔范围,可通过测试结果推导出尽可能多的孔结构信息;[/font][font=宋体]压汞仪测试原理[/font][font=宋体][font=Calibri]Autopore IV9500[/font][font=宋体]压汞法原理:将已烘干样品放入合适的膨胀计,将膨胀计放入低压测试区间,先对膨胀计抽真空,然后压入汞,运用氮气压缩方式测试[/font][font=Calibri]0[/font][font=宋体]至[/font][font=Calibri]30psi[/font][font=宋体]的压汞量;测试完成后将膨胀剂放入高压测试区间,通过油压方式测试[/font][font=Calibri]30[/font][font=宋体]至[/font][font=Calibri]33000psi[/font][font=宋体]的压汞量,根据[/font][font=Calibri]Washburn[/font][font=宋体]方程得到对应于不同压力的孔径大小,并作出相应数据分析。[/font][/font][font=宋体][font=宋体]膨胀计的选择:[/font] [/font][font=宋体] [font=宋体]要求:样品孔体积应在[/font][font=Calibri]25%[/font][font=宋体]至[/font][font=Calibri]90%[/font][font=宋体]范围的毛细管体积;[/font][/font][font=宋体] [font=宋体]对不同孔隙率的样品在加工上及膨胀计选择上需合理。[/font][/font][font=宋体] [font=宋体]压汞仪低压测试原理[/font][/font][font=宋体] [/font][font=宋体]低压测试原理[/font][font=宋体] [font=宋体]一、使用真空泵将膨胀计抽真空至[/font][font=Calibri]20mg[/font][font=宋体]汞柱;[/font][/font][font=宋体] [font=宋体]二、通过真空效果,将汞压入膨胀计;[/font][/font][font=宋体] [font=宋体]三、通过外接的氮气压力进行压汞至[/font][font=Calibri]30psi[/font][font=宋体],过程中根据设定点位收集 压汞体积;[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]压汞仪高压测试原理[/font][font=宋体]高压测试原理[/font][font=宋体] [font=宋体]一、将做完低压已灌满汞的膨胀计装入高压装置;[/font][/font][font=宋体] [font=宋体]二、通过液压泵和倍增器进行加压至[/font][font=Calibri]33000psi[/font][font=宋体];[/font][/font][font=宋体] [font=宋体]三、过程中根据设定点位收集[/font] [font=宋体]压汞体积;[/font][/font][font=宋体] [/font][font=宋体]三、数据分析处理[/font][font=宋体] [/font][font=宋体] [font=宋体]常规参数分析[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]已知条件:样品质量[/font][font=Calibri]Ws[/font][font=宋体]:直接称量;[/font][/font][font=宋体] [font=宋体]空管体积[/font][font=Calibri]Vp[/font][font=宋体]:通过空管校准,系统内部计算得出;[/font][/font][font=宋体] [font=宋体]空管质量[/font][font=Calibri]Wp[/font][font=宋体]:直接称得;[/font][/font][font=宋体] [font=宋体]汞的密度[/font][font=宋体]ρ:根据控制室温直接给出;[/font][/font][font=宋体] [font=宋体]样品[/font][font=Calibri]+[/font][font=宋体]空管[/font][font=Calibri]+[/font][font=宋体]汞质量[/font][font=Calibri]Wpsm[/font][font=宋体]:直接称得;[/font][/font][font=宋体][font=宋体]累计压入体积:[/font][font=Calibri]Ii=Vi/Ws[/font][font=宋体],为了更好的进行物质间对比,这里的累计压入体 积是以单重量样品来计算的;[/font][/font][font=宋体][font=宋体]总压入体积:[/font][font=Calibri]Itot=Vtot/Ws[/font][font=宋体],通过不同物质对比,可以很直观的看出不同物质的孔体积差异;[/font][/font][font=宋体][font=宋体]样品体积:[/font][font=Calibri]Vb=Vp-Vm=Vp-(Wpsm-Ws-Wp)/ [/font][font=宋体]ρ[/font][font=Calibri],[/font][font=宋体]样品体积是根据空管体积减去压入的汞体积计算得出。[/font][/font][font=宋体][font=宋体]孔隙率[/font][font=Calibri]%[/font][font=宋体]:[/font][font=Calibri]Ppc=100*Vtot/Vb[/font][font=宋体],孔隙率能总体看出样品的孔量。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]体密[/font][font=Calibri](0.51psi[/font][font=宋体]下[/font][font=Calibri])[/font][font=宋体]:[/font][font=Calibri]Yb=Ws/Vb=Ws/(Vp-(Wpsm-Wp-Ws)/ [/font][font=宋体]ρ[/font][font=Calibri])[/font][font=宋体],该数据属于表观数据,将物质内的孔体积都算在密度内;[/font][/font][font=宋体][font=宋体]骨架密度([/font][font=Calibri]32983.86 psi[/font][font=宋体]):[/font][font=Calibri]Ys=Ws/Vs=Ws/(Vb-Vtot)[/font][font=宋体],该数据是扣除了孔体积后的样品体积计算得出的密度,更接近于样品的真实密度。当然,这里只代表在[/font][font=Calibri]32983.86 psi[/font][font=宋体]下所能测得的孔径。[/font][/font][font=宋体][font=宋体]中值孔径([/font][font=Calibri]V[/font][font=宋体]):先通过[/font][font=Calibri]Ik=Itot/2[/font][font=宋体],计算出中位累计进汞体积,再根据数据查出相应的孔径,即为中值孔径。[/font][/font][font=宋体][font=宋体]中值孔径([/font][font=Calibri]A[/font][font=宋体]):先通过[/font][font=Calibri]Ak=Atot/2[/font][font=宋体],计算出中位累计面积,再根据数据查出相应的孔径,即为中值孔径。[/font][/font][font=宋体][font=宋体]平均孔径([/font][font=Calibri]4V/A[/font][font=宋体])[/font][font=Calibri]:[/font][font=宋体]以理想型圆柱体模型为基础,[/font][font=Calibri]Dav=4*Itot/Atot,[/font][font=宋体]从而算出其平均直径。[/font][/font][font=宋体][font=宋体]累计孔面积:[/font][font=Calibri]Ai=Aij+Aij-1+[/font][font=宋体]…[/font][font=Calibri].+Ai1[/font][font=宋体];而单孔面积计算是[/font][font=Calibri]Aij=4*Iij/Dmi[/font][font=宋体],从这也看出,相同压汞体积下,孔径越小,孔面积越大。[/font][/font]END[font=宋体] [/font]

  • 【实战宝典】顶空分析的样品加压压力应当如何设定?

    [font=宋体]发帖人:[/font]Insp_9f1accc0[font=宋体]链接:[/font][url=https://bbs.instrument.com.cn/topic/7300695][color=windowtext]https://bbs.instrument.com.cn/topic/7300695[/color][/url][b][font=宋体]问题描述:[/font][/b][font=宋体]开发顶空分析方法时,样品的加压压力应当按照什么原则来设定。[/font]

  • 请问压汞仪用完的汞怎么回收利用

    压汞仪测试完后膨胀计里的汞在高压阶段会进入一些高压油,这些汞怎么回收利用?蒸馏回收因汞和油的沸点差不多,会一起蒸馏出来,怎么分离?

  • 【求助】荧光值最高才300, 仪器条件负高压270?

    我用的是830a系列 现在测化妆品中汞 标准曲线是0.1 0.2 0.4 0.8 1.0ug/l 可现在荧光值最高才300 仪器条件负高压270 灯电流30 高度10-11 标液也是新配的 找了好久原因了也找不到 之前(一年前)最高荧光值1600

  • 北京探矿工程研究所“一种高温高压和低温高压流变仪”获国家发明专利授权

    [color=#000000]近日,中国地质调查局北京探矿工程研究所研发的“一种高温高压和低温高压流变仪”获国家发明专利授权,专利号ZL201711364549.9。[/color][color=#000000]探矿工程所依托国家重大科学仪器设备开发专项“超高温高压钻井液流变仪的研发及产业化”项目,创新研发了耐酸碱盐腐蚀的高温高压测试腔、外环式强力磁耦合旋转驱动装置和非接触式高精度粘度测量装置,配套开发了高可靠性自动测控软件系统,攻克了高温高压动态密封和高精度粘度信号测试等多个难题,成功研发了该高温高压和低温高压流变仪,可测量钻井液、压裂液等样品在高温高压(320℃、220MPa)和低温高压(-10℃、220MPa)条件下的流变性能,并通过了异地测试和可靠性测试。[/color][color=#000000]该成果已取得多项转化应用成效。一是服务青海共和干热岩科技攻坚战GH-03井钻探工作,对200℃、50MPa环境下的高温钻井液流变性进行了现场测试,为优化超高温水基钻井液的配方和性能提供了依据,保障了工程的顺利实施。二是已有2台成套样机实现转化,用于支撑中石油等单位高温高压深井钻探现场。三是已为多所高校、研究机构提供了高温高压钻井液流变性测试服务。[/color][color=#000000]下一步,项目团队将开展小型化、系列化流变仪研发工作,为地球深部探测与矿产资源勘查、天然气水合物试采等钻探工程提供支撑。[/color][align=center][color=#000000][img=W020240311507880773505.jpg]https://img1.17img.cn/17img/images/202403/uepic/f58e1b84-02f8-412a-bbcb-2708c3e0ed49.jpg[/img][/color][/align][来源:地调局探矿工程所][align=right][/align]

  • 【原创】紫外线高压汞灯

    紫外线高压汞灯是气体放电灯的一种,利用两极弧光放电使汞蒸发,其原理是因为在灯管内部加入了一定量的汞而得名,汞灯内部是一种真空状况,UV 汞灯在电源的高压激发下,使灯管内部的汞雾化而发出紫外光,从而产生汞蒸气特征谱线。 其谱线主要是在紫外线部分,如253.7nm, 303nm, 334nm, 365nm, 366.3nm,其中365nm和366.3nm的波长占极大优势(紫外能量计测量紫外固化能量时,也主要针对此光谱段),这对UV固化过程很有价值,因为许多光引发剂在此波长区域有强烈的吸收,所以该灯又叫UV固化灯。 紫外线高压汞灯主要用于油墨固化、晒图、软包装彩印、纸张上光、竹木地板、油漆涂料、印铁制罐线路板,电子元件的固化及塑料和橡胶的老化实验及各种UV固化等。   同紫外线高压汞灯相关的几个概念:1. 光谱: 紫外线高压汞灯的波长,主要集中在 365mm 左右。2. 紫外光强度:主要指单位面积上的紫外线功率密度,单位是 mW/cm2。3. 光固化:光固化是指 UV 油墨或 UV 涂料等,在紫外线的有效照射下发生的一定的光化学反应,从而使固化物成液态,固化成膜,这个过程称为光固化。

  • 调整负高压,荧光值为什么不变?

    测样时汞、砷的标准空白突然变高了,同样的条件下原来都在200-300左右,现在变成了700左右。开始以为是管路污染了,就拆下来清洗了一遍,重新安装后还是高。后来试了调整灯、换了载流、还原剂也没解决。最后发现调整负高压时,荧光值几乎没变化,负高压从200调到300,空白荧光值一直在560左右。原来调整负高压时,荧光值可是与负高压成正比例变化的。请问为什么负高压对荧光值没有影响了呢?仪器是吉天的8220

  • 液压压缩机

    压缩机的英文叫:compressor,它是将低压气体提升为高压的一种从动的流体机械。是制冷系统的心脏,它从吸气管吸入低温低压的制冷剂气体,通过电机运转带动活塞对其进行压缩后,向排气管排出高温高压的制冷剂气体,为制冷 循环提供动力,从而实现压缩→冷凝→膨胀→蒸发→吸热制冷循环。压缩机是以流水线方式生产的。在机械加工车间制造出缸体。端盖等零部件;在电机车间组装出转子、定子;在冲压车间制造出壳体等。然后在总装车间进行装配、焊接、清洗烘干,最后经检验合格包装出厂。大多数压缩机制造厂不生产启动器和热保护器,而是根据需要从市场采购。压缩机的节能改造方法有:压缩机在启动时,电机的电流会比额定高5-6倍的,不但会影响电机的使用寿命而且消耗较多的电量.系统 在设计时在电机选型上会留有一定的余量,电机的速度是固定不变,但在实际使用过程中,有时要以较低或者较高的速度运行,因此进行变频改造是非常有必要的,压缩机按其原理可分为容积型压缩机与速度型压缩机。容积型又分为往复式压缩机回转式压缩机;速度型压缩机又可发为:轴流式压缩机、离心式压缩机。我们还要注意的就是:压缩机只有在使用时,才允许拔出密封橡胶堵头。如在储运中发现堵头脱落或松动,应及时检查处理后再行保存。

  • 【讨论】荧光测食品中的汞采用高压消解罐处理办法与酸度的影响!!!

    [em0715] 机器是北京瑞丽AF-610A,水稻样品粉碎后称0.5g 加HNO3 5ml,高压消解3小时,冷却同时做空白.标曲是(1+9)HNO3讨论(1)直接用(1+9)HNO3转移后发现测定值偏大几倍.     用水转移至50ml测定其值接近真值,而酸度也基本前后相近    问:酸度有没有影响???   (2)消解后的消解液可不可以取出在30度左右的加热板上排酸,再用(1+9)HNO3转移,测定后结果也接近真值.    问:哪一个处理方法好??

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制