当前位置: 仪器信息网 > 行业主题 > >

工频逆变器

仪器信息网工频逆变器专题为您提供2024年最新工频逆变器价格报价、厂家品牌的相关信息, 包括工频逆变器参数、型号等,不管是国产,还是进口品牌的工频逆变器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合工频逆变器相关的耗材配件、试剂标物,还有工频逆变器相关的最新资讯、资料,以及工频逆变器相关的解决方案。

工频逆变器相关的论坛

  • 光伏逆变器可靠性测试方法

    光伏逆变器可靠性测试方法

    目前光伏发电系统主要有两种类型:并网型和离网型。并网型系统提供的电力直接并入电网,离网型系统提供的电力则不会并入电网,通常是直接用来使用或者存储后使用。随着光伏行业的不断发展,对光伏逆变器的需求越来越多,技术要求也是越来越高。如何对光伏逆变器进行测试,也是一个迫切需要解决的问题。  以践行绿色生产管理,实现“碳中和”改善气候环境变化为背书,实现循环可持续发展战略,太阳能成为重点研究使用的选择,太阳能是21世纪环保也是容易取得的能源之一,相关的太阳能研究与应用产业也加紧脚步的发展进行。太阳能模组光伏逆变器在研究以及生产过程中,制订了相关的可靠度试验与环境试验的规范,以确保太阳能电池模组光伏逆变器可以耐用20~30年以上的时间;并且在户外环境的使用下,确保其发电转换率。  光伏逆变器可以将光伏(PV)太阳能板产生的可变直流电压转换为市电频率交流电(AC)的逆变器,可以反馈回商用输电系统,或是供离网的电网使用。光伏逆变器是光伏阵列系统中重要的系统平衡(BOS)之一,可以配合一般交流供电的设备使用。太阳能逆变器有配合光伏阵列的特殊功能,例如大功率点追踪及孤岛效应保护的机能。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/06/202206241625108727_9318_1385_3.jpg!w600x600.jpg[/img][/align]  试验要求:  a.标准测试条件下很大输出功率的衰减不超过实验前的5%  b.裂缝检查(面积不超过10%以上)  c.在元件的边框和电池之间不可形成连续通道的气泡或脱层  温度循环:-40±2°C(10min)←→85±2°C(10min)、温变率小于100°C/h、50cycle(试验后进行湿热试验)  湿热试验:85±2℃/85±5%/1000h  湿冷试验:进行50次温度循环试验

  • 低电压首次通过国网电科院穿越测试的光伏逆变器

    逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正弦波逆变器和组合式三相逆变器。对于用于并网系统的逆变器,根据有无变压器又可分为变压器型逆变器和无变压器型逆变器。 西门子是全球电子电气工程领域的领先企业,主要业务集中在工业、能源、医疗、基础设施与城市四大业务领域。工业业务领域能够提供全球独一无二的自动化技术、工业控制和驱动技术以及工业软件,能够满足生产企业的所有需求。同时,还能针对客户特有的市场和需求,提供专门的综合定制服务,以使客户获益最大化。 近日,由西门子研发的全新智能型Sinamics S120产品系列集成首次通过该光伏逆变器测试。目前西门子在中国国内采取与系统集成商合作的方式,由西门子提供光伏逆变器的核心元器件,集成商提供整体逆变器的模式推动中国市场的销售。这种商业模式可以大大降低产品价格,并更好地适应中国市场的需求。 根据国家能源局、国家电网公司对光伏电站并网发电的要求,并网发电的光伏逆变器必须具备低电压穿越功能。而国网电科院国家能源太阳能发电研发(实验)中心是在国内唯一具有低电压穿越技术认证资格的机构。因此,光伏逆变器具备低电压穿越能力成为“金太阳认证”后光伏项目招投标的又一道门槛。 两家系统集成商(北京辰源和北京昆兰)均采用了西门子大型传动部的Sinamics S120光伏逆变单元、控制单元及软件作为核心部件。这些核心部件出色的控制技术不仅可以提高系统效率,而且有效地抑制了网侧谐波,让变频器具备完美的低电压穿越能力,从而能够保障系统高效、可靠地并网运行。

  • 逆变器的替换场效应管型号:FHP740高压MOS管

    逆变器几乎能应用到我们生活中能接触到的一切电子设备中,因为它是将直流电转化为交流电的介体。电子工程设计师都知道,逆变器基本上是由MOS场效应管和电源逆变器构成的,因而场效应管的好坏也决定着逆变器是否能进行电流转换。而在300W/220V方波输出的逆变器电路中,现在使用较多的逆变器型号为10N40,但由于生产成本,产品质量原因等,不少电子厂家还是希望能有一些同质的替换产品。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/6cac7068b3e051325e13be9f636ba067-sz_179415.JPG?x-oss-process=style/xmorient[/img]逆变器的输出功率大小取决于MOS场效应管和电源逆变器的功率相结合,因而场效应管可通过的电流大小也是决定电子设备是否能正常使用的因素之一。为了避免电子产品因为电流电压的原因返修增加维修成本还不利于企业声誉,电子厂家在选择MOS场效应管的时候更应该多方比较其性能。飞虹自主研发的这个FHP740高压MOS管与10N40场效应管性能相差无几,可替换使用。飞虹的FHP740高压MOS管为N沟道增强型高压功率场效应管,除了可代替10N40场效应管使用,还可替换11N40、IRF740型号的场效应管。FHP740主要应用于300W/220V方波输出的逆变器电路,DC-AC电源转换器,DC-DC电源转换器,高压H桥PMW马达驱动。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/654f913f0bc5a09412decfc6553dafbf-sz_100392.png[/img]FHP740高压MOS管的封装形式为TO-220/TO-220F,脚位排列是GDS,10A, 400V, RDS(on) = 0.55Ω(max) @VGS = 10 V,这个FHP740最大的特点就是低电荷、低反向传输电容开关速度快,低内阻,大功率。广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHP740高压MOS管,不仅质优价廉,而且还能替代10N40场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • 【分享】在关闭汽车发动机的情况下可以使用车载逆变器吗?

    在关闭汽车发动机的情况下可以使用[b][url=http://www.027bl.com]车载逆变器[/url][/b]吗?在使用250瓦以下小功率电器时,一般的汽车电瓶可在关闭发动机的情况下提供60-120分钟的电力,如果仅使用一台耗电50-60瓦的笔记本电脑,使用时间则要长得多。我们的纯正弦波 [url=javascript:showhide('Product_List.aspx?ID=0404','0404')]车载逆变器[/url] 内设有欠压警示和欠压保护电路,当长时间使用电瓶导致电压下降至一定限度时,欠压保护电路启动,输出电压被切断并报警,以防止发生因为电瓶电压过低而无法启动发动机的事故。因此,用户可以放心地在发动机关闭的状态下使用 [url=javascript:showhide('Product_List.aspx?ID=0404','0404')]车载逆变器[/url] 。

  • 国产FHP3205低压场效应管可提升逆变器工作效率!

    逆变器的工作原理其实就是通过电压逆变,将直流电转化为交流电的过程。逆变器的工作效率几乎都会影响到电器的正常使用或者使用体验,而其中影响着逆变器工作效率的一个重要元器件就是场效应管。FQP55N10场效应管是目前逆变器元器件里使用得相对较多的场效应管型号之一,但由于成本,销量等原因,不少电器厂家还是希望能有更质优价廉的替换场效应管可供选择。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/3b551f61bc04cc88880d24ff48aff39a-sz_171568.JPG?x-oss-process=style/xmorient[/img]一般来说,逆变器前级电路所采用的场效应管的质量几乎都会影响到逆变器的转换效率、安全性能、物理性能、带负载适应性和稳定性等。因而为了保证产品质量,减少维修成本,避免因为产品质量引起一些不利于厂家经营生产的负面舆论。在采购元件之初,厂家就应该选择一款参数,性能,稳定性都匹配的场效应管。飞虹自主研发的这个FHP3205低压MOS管在转换效率、安全性能等方面都是可以替换FQP55N10场效应管使用的。飞虹的这个FHP3205低压MOS管是N沟道沟槽工艺MOS管,适用于300W/12V输入的逆变器的前级电路。FHP3205低压MOS管除了可以替换FQP55N10场效应管之外,还能替换行业上的SKT55N100AT、150N06、IRF3205、IRF1010E这几个型号的场效应管。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/bdc547069a6ff17c317f6cf8df1ad4d2-sz_144837.jpg?x-oss-process=style/xmorient[/img]FHP3205低压MOS管的封装形式主要为TO-220/TO-252/TO-263,脚位排列序为GDS,Vgs(±V)25,VTH(V)2-4,ID(A)130,BVdss(V)60,Rds(on)(typ)5.5,Rds(on)(max)8,且FHP3205场效应管最大的优势就是可做到低内阻,大电流。广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHP3205低压MOS管,不仅质优价廉,而且还能替代FQP55N10场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • N沟道增强型高压功率场效应管可提高逆变器工作效率

    不少电子产品的元器件都会有逆变器这么一个部件,而电子工程师都知道逆变器在电子产品中的重要性,而场效应管的质量将影响到逆变器的转换效率、启动速度、安全性能、物理性能、和带负载适应性和稳定性,所以电子厂家都希望采购的场效应管质量过硬。而现在市场上的7N40就是逆变器使用的场效应管之一,但由于成本的原因,厂家也会希望有可以替代的同类型场效应管。逆变器的直流转换是MOS开关管和储能电感组成电压变换电路,输入的脉冲经过推挽放大器放大后驱动MOS管做开关动作,使得直流电压对电感进行充放电,这样电感的另一端就能得到交流电压。所以如果MOS管质量不过关,无法进行电压变换,就换导致电器故障,电子产品批量出现问题的话会是企业出现负面形象的,所以选择优质的场效应管就很重要了。而飞虹的这个国产FHF730高压MOS管,在性能参数上都可以替代7N40场效应管。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/0a1980a77a3b8ee13893eaf183cb6384-sz_179372.JPG?x-oss-process=style/xmorient[/img]飞虹的FHF730高压MOS管为N沟道增强型高压功率场效应管,FHF730除了可以替代7N40场效应管,还可以替代6N40、IRF730B这两个型号的场效应管,主要应用于150W/220V方波输出的逆变器电路,DC-AC电源转换器,DC-DC电源转换器,高压H桥PMW马达驱动。FHF730高压MOS管的封装形式为TO-220/TO-220F,脚位排列方式为GDS,Vgs(±V)30,VTH(V)2-4,5.5A, 400V, RDS(on) = 1.2Ω(max) @VGS = 10 V,而且FHF730最大的特点就是低电荷、低反向传输电容开关速度快、低电阻。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/654f913f0bc5a09412decfc6553dafbf-sz_100392.png[/img]广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHF730高压MOS管,不仅质优价廉,而且还能替代7N40场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • FHP740高压MOS管替换11N40场效应管使用可保证逆变器稳定性

    逆变器其实和转化器一样,将直流电转变为交流电,是一种电压逆变的过程,而跟逆变器工作效率关联比较大的就是场效应管,所以电子产品生产厂家都知道场效应管的质量在一定程度上也决定着这个电子产品的使用寿命。11N40就是现今逆变器使用的型号之一,但由于质量,价格的等原因,不少厂家还是希望市场上能多一些同质可替换的产品的。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/6cac7068b3e051325e13be9f636ba067-sz_179415.JPG?x-oss-process=style/xmorient[/img]逆变器前级电路所采用的MOS管的质量将影响到逆变器的转换效率、安全性能、物理性能、带负载适应性和稳定性。因而为了保证产品质量,减少维修成本,厂家就更应该选择一款优质的场效应管,而飞虹自主研发的这个FHP740高压MOS管在转换效率、安全性能等方面都是可以替换11N40场效应管使用的。飞虹的FHP740高压MOS管为N沟道增强型高压功率场效应管,除了可代替11N40场效应管使用,还可替换10N40、IRF740型号的场效应管。这个FHP740主要应用于300W/220V方波输出的逆变器电路,DC-AC电源转换器,DC-DC电源转换器,高压H桥PMW马达驱动这些方面。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/654f913f0bc5a09412decfc6553dafbf-sz_100392.png[/img]FHP740高压MOS管的封装形式为TO-220/TO-220F,脚位排列是GDS,10A, 400V, RDS(on) = 0.55Ω(max) @VGS = 10 V,且FHP740具有低电荷、低反向传输电容、开关速度快,低内阻,大功率等特点。广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHP740高压MOS管,不仅质优价廉,而且还能替代11N40场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • SG3524N构成的逆变器是正弦波还是方波?

    [b][url=http://www.ic37.com/s/SG3524N.html]SG3524N[/url][/b]构成的逆变器是方波 SG3524是开关电源脉宽调制型控制器。[b]SG3524[/b]应用于开关稳压器,变压器耦合的直流变换器,电压倍增器,极性转换器等。[b]SG3524是怎么工作的:[/b]直流电源Vs从脚15接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5V基准电压。+5V再送到内部(或外部)电路的其他元器件作为电源。振荡器脚7须外接电容CT,脚6须外接电阻RT。振荡器频率f由外接电阻RT和电容CT决定,f=1.18/RTCT。按照SG3524的工作原理,要得到SPWM波,必须得有一个幅值在1~3.5V,按正弦规律变化的馒头波,将它加到SG35242内部,并与锯齿波比较,就可得到正弦脉宽调制波。SG3524集成电路多种应用电路[b]SG3524[/b]工作电源电压范围8V~35V,采用双列16脚装料封装,引脚功能如下:SG3524集成电路多种应用电路:[img]http://member.ic37.com/uploadfile/mynews/2018-12-11/1df1756c-b4a7-4038-ad5b-8771b4e84d8c.jpg[/img][b]SG3524[/b]集成电路多种应用电路:[img]http://member.ic37.com/uploadfile/mynews/2018-12-11/53a236a2-571f-47fe-b0a6-118d6ffefc3a.jpg[/img]

  • 【原创】怎样选择逆变器的蓄电池容量

    蓄电池是逆变器系统中非常重要的组成部分。用户在选购蓄电池时,应选择品质好、电量较大的品种,大容量的蓄电池使用时间长,同时能为大功率用电设备的瞬间启动提供足够的电流。对于一些大功率的用电设备,建议蓄电池应为200AH(1000W),功率再大时,最好使用400AH的蓄电池。如何根据使用的电器来确定蓄电池的容量,简单的方法就是将所有用电器的功率,乘以蓄电池每次充电间隔之间的使用时间。计算电器耗电量的单位不外是功率或伏安,下面按每天充一次电为例,具体计算结果如下:负 载 消耗的电量 使用时间(充电之间) 瓦时(功率×使用时间)电视与 115 瓦 3 小时(每天1小时) 345咖啡机 750 瓦 1 小时(每天20分钟) 750微波炉 800 瓦 半小时(每天10分钟) 400合 计 1665 瓦 4.5 小时 1495将瓦时除以10,就可将瓦时转换为安时(在30℃):1495瓦时÷10=149.5安时。对于上述负载,一个150安时的蓄电池就可满足需要。但在这种情况下,蓄电池就将电放尽,而一般蓄电池放电的理想状态为50%,故对于上述负载,用户就需要一个300安时的蓄电池。 蓄电池的电量(安时)越大,供电能力就越强,蓄电池过度放电的可能性就越小。蓄电池的寿命取决于其放电深度,放电深度越大,使用寿命就越短。当负载增加时,蓄电池的电量也应该增加。这样就可能需要使用多块蓄电池。两块蓄电池联接的方法为:将蓄电池的正极与正极、负极与负极联接。这样蓄电池的电量就会增加一倍,而电压与一块蓄电池的电压一样。将不同生产厂商或不同安时的蓄电池联接在一起的做法是不可取的,因为这样会减少蓄电池的使用寿命。

  • 【分享】变频器基本应用须知1

    变频器基本应用须知变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。一.变频器的选型:1.分析负载类型:如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。2. 变频器与负载的匹配问题:1).电压匹配:变频器的额定电压与负载的额定电压相符。   2). 电流匹配:普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。   3).转矩匹配:这种情况在恒转矩负载或有减速装置时有可能发生。  3. 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。  4 .变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。  5 .对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。

  • 【求购】哪种工频场强仪的性价比高?

    想购买工频场强仪,用来测试变电站等处的工频电场,仪器需符合[font='Times New Roman'] [b]GBZ /T 189.3 - 2007[/b]的标准不知道有没有大侠用过这种仪器,那种仪器的性价比比较高呢?最好把仪器的型号,参数,供应商,报价告知一下,非常感谢[/font]

  • 为什么变频器逆变输出模块损坏了?

    [b]一、由负载异常引起的损坏[/b]诚然,变频器的保护电路已经相当完善。对价值昂贵的逆变模块的保护,各个变频器厂家都在其保护电路上做足了功夫,从输出电流检测到驱动电路的IGBT管压降检测,并努力追求以最快的应变速度实施最快速的过载保护!从电压检测到电流检测,从模块温度检测到缺相输出检测等,还未见有哪种电器的保护电路,像变频器这样做得专注而投入。而变频器的销售人员,提到变频器的性能时,也必提及变频器的保护功能,常常不自觉地对用户许诺:用上变频器,其全面的保护功能,你的电机就不容易烧了。这位销售人员不知道,这句许诺,将给自己带来极大的被动!用上变频器,电机真的不会烧吗?我的答案是:相对于工频供电,用上变频器,电机倒是更容易烧了,而电机的容易烧,使得变频器逆变模块也容易一块“报销”掉。变频器的灵敏的过流保护电路,在此处偏偏手足无措,起不到丝毫作用。这是导致变频器模块损坏的一大外部原因。听我道出其中原委。一台电机,在工频状态下能够运行,虽然运行电流较之额定电流稍大,长时间的运行有一定的温升。这是一台带病的电机,在烧掉之前确实是能够运行的。但接入变频器后,会出现频繁过载,以至不能运行。这还不要紧。一台电机,在工频状态下能够运行,用户已经正常使用多年了,请注意“多年”两个字。用户想到要节约电费,或因工艺改造的原因,需要进行变频改造。但接入变频器后,会频跳OC故障,这是好的,保护停机了,模块没有坏掉。可怕的是,变频器并不马上跳OC故障,而是毫无来由地在运行中——运行了才三、两天的光景,模块炸掉了,电机烧毁了。用户赖了销售人员一把:你装的变频器质量差,烧了我的电机,你要赔我的电机!在此之前,电机好像是是真的没有问题,运行得好好的,测测运行电流,因为负荷较轻,才达到一半的额定电流;测测三相供电,380V,平衡和稳定得很。真像是变频器的损坏,连带着损坏了电机。我要是在场的话,就会这样主公道:不怨变频器,是你的电机已经“病入膏肓”,突然发作,捎带着损坏了变频器!运行多年的电机,因电机的运行温升和受潮等原因,绕组的绝缘程度已大大降低,甚至有了明显的绝缘缺陷,处于电压击穿的临界点上。工频供电情况下,电机绕组输入的是三相50Hz的正弦波电压,绕组产生的感生电压也较低,线路中的浪涌分量较小,电机绝缘程度的降低,也许只是带来了并不起眼的“漏电流”,但绕组的匝间和相间,还未能产生电压击穿现象,电机还在“正常运行”。应该说,随着绝缘老化程度的进一步加深,即使还是在工频供电情况下,相信在不远的将来,该台电机终会因绝缘老化造成相间或绕组间的电压击穿而烧毁。但问题是,现在并没有烧毁。接入变频器后,电机的供电条件由此变得“恶劣”了:变频器输出的PWM波形,实为数kHz乃至十几kHz的载波电压,在电机绕组供电回路中,还会产生各种分量的谐波电压。由电感特性可知,流过电感电流的变化速度越快,电感的感生电压也越高。电机绕组的感生电压比工频供电时升高了。在工频供电时暴露不出的绝缘缺陷,因不耐高频载波下感生电压的冲击,于是绕组匝间或相间的电压击穿产生了。电机绕组的由相间、匝间短路造成了电机绕组的突然短路,在运行中——模块炸掉了,电机烧毁了。变频器在起动初始阶段,因输出频率和电压均在较低的幅值内,负载电机存在故障时,虽造成较大的输出电流,但此电流往往在额定值以内,电流检测电路及时动作,变频器实施保护停机动作,模块无炸毁之虞。但若在全速(或近于全速)运行情况下,三相输出电压与频率均达较高的幅值,此时电机绕组若有电压击穿现象,会于瞬间形成极大的浪涌电流,则逆变模块在电流检测电路动作之前,已经无法承受而炸裂损坏了。由此看出,保护电路不是万能的,任何保护电路都有它的“软肋”所在。变频器对全速运行中,电机绕组的突发性电压击穿现象,是无能为力的,起不到有效保护作用的。而不唯变频器保护电路,任何电机保护器,对此类突发故障,都不能实施有效的保护。此类突发故障出现时,只能宣告:该台电机确实已经“寿终正寝”了。此类故障对变频器的逆变输出模块是致命的打击,无可逃避的。其它由供电或负载方面引起的原因,如过、欠压、负载重、甚至堵转引起的过流等故障,在变频器的保护电路正常的前提下,是能有效保护模块安全的,模块的损坏机率将大为减小。在此不多讨论。[b]二、由变频器本身电路不良造成的模块损坏[/b]1、由驱动电路不良对模块会造成一级危害由驱动电路的供电方式可知,一般由正、负两个电源供电。+15V电压提供IGBT管子的激励电压,使其开通。-5V提供IGBT管子的截止电压,使其可靠和快速的截止。当+15V电压不足或丢失时,相应的IGBT管子不能开通,若驱动电路的模块故障检测电路也能检测IGBT管子时,则变频器一投入运行信号,即可由模块故障检测电路报出OC信号,变频器实施保护停机动作,对模块几乎无危害性。而万一-5V截止负压不足或丢失时(如同三相整流桥一样,我们可先把逆变输出电路看成一个逆变桥,则由IGBT管子组成了三个上桥臂和三个下桥臂,如U相上桥臂和U相下桥臂的IGBT管子。),当任一相的上(下)桥臂受激励而开通时,相应的下(上)桥臂IGBT管子则因截止负压的丢失,形成由IGBT管子的集-栅结电容对栅-射结电容的充电,导致管子的误导通,两管共通对直流电源形成了短路!其后果是:模块都炸飞了!截止负压的丢失,一个是驱动IC损坏所造成;还有可能是驱动IC后级的功率推动级(通常由两级互补式电压跟随功率放大器组成)的下管损坏所造成;触发端子引线连接不良;再就是驱动电路的负供电支路不良或电源滤波电容失效。而一旦出现上述现象之一,必将对模块形成致命的打击!是无可挽回的。2、脉冲传递通路不良,也将对模块形成威胁由CPU输出的6路PWM逆变脉冲,常经六反相(同相)缓冲器,再送入驱动IC的输入脚,由CPU到驱动IC,再到逆变模块的触发端子,6路信号中只要有一路中断——(1)、变频器有可能报出OC故障。逆变桥的下三桥臂IGBT管子,导通时的管压降是经模块故障检测电路检测处理的,而上三桥臂的IGBT管子,在小部分变频器中,有管压降检测,大部分变频器中,是省去了管压降检测电路的。当丢失激励脉冲的IGBT管子,恰好是有管压降检测电路的,则丢失激励脉冲后,检测电路会报出OC故障,变频器停机保护;(2)、变频器有可能出现偏相运行。丢失激励脉冲的该路IGBT管子,正是没有管压降检测电路的管子,只有截止负压存在,能使其可靠截止。该相桥臂只有半波输出,导致变频器偏相运行,其后果是电机绕组中产生了直流成分,也形成较大的浪涌电流,从而造成模块的受冲击而损坏!但损坏机率较第一种原因为低。若此路脉冲传递通路一直是断的,即使模块故障电路不能起到作用,但互感器等电流检测电路能起到作用,也是能起到保护作用的,但就怕这种传递通路因接触不良等故障原因,时通时断,甚至有随机性开断现象,电流检测电路莫名所以,来不及反应,而使变频器造成“断续偏相”输出,形成较大冲击电流而损坏模块。而电机在此输出状态下会“跳动着”运行,发出“咯楞咯楞”的声音,发热量与损耗大幅度上升,也很容易损坏。3、电流检测电路和模块温度检测电路失效或故障,对模块起不到有效地过流和过热保护作用,因而造成了模块的损坏。4、主直流回路的储能电容容量容量下降或失容后,直流回路电压的脉动成分增加,在变频器启动后,在空载和空载时尚不明显,但在带载起动过程中,回路电压浪起涛涌,逆变模块炸裂损坏,保护电路对此也表现得无所适从。对已经多年运行的变频器,在模块损坏后,不能忽略对直流回路的储能电容容量的检查。电容的完全失容很少碰到,但一旦碰上,在带载启动过程中,将造成逆变模块的损坏,那也是确定无疑的![b]三、质量低劣、偷工减料的少部分国产变频器,模块极易损坏[/b]这是国民劣根性的一种体现,民族之痒啊。不错,近几年变频器市场的竞争日趋激烈,变频器的利润空间也是越来越狭窄,但可以通过技术进步,提高生产力等方式来提高自身产品的竞争力。而采用以旧充新、以次充好、并用减小模块容量偷工减料的方式,来增加自己的市场占有率,实是不明智之举呀,纯属一个目光短浅的短期行为呀。1、质量低劣、精制滥造,使得变频器故障保护电路的故障率上升,逆变模块因得不到保护电路的有效保护,从而使模块损坏的机率上升。2、逆变模块的容量选取,一般应达到额定电流的2.5倍以上,才有长期安全运行的保障。如30kW变频器,额定电流为60A,模块应选用150A至200A的。用100A的则偏小。但部分生产厂商,竟敢用100A模块安装!更有甚者,还有用旧模块和次品模块的。此类变频器不但在运行中容易损坏模块,而且在启动过程中,模块常常炸裂!现场安装此类变频器的工作人员都害了怕,远远地用一支木棍来按压操作面板的启动按键。容量偏小的模块,又要能勉强运行,模块超负荷工作,保护电路形成同虚设(按变频器的标注功率容量来保护而不是按模块的实际容量值来保护),模块不出现频繁炸毁,才真是不正常了。这类机器,因价格低廉,初上市好像很“火”,但用不了多长时间,厂家也只有倒闭一途了。这第三种模块损坏的原因本来不应该成为一种原因的,但愿不远的将来,模块损坏的原因,只剩下前两种原因。对国产变频器来说,有时候是一粒老鼠粪坏了一锅汤啊。好多变频器也还是不错的,与国外产品相比毫不逊色,且质优价廉的呀。

  • 工频磁场检测方法

    公司想扩工频电场和工频磁场,其中一个依据是《环境影响评价技术导则 输变电工程 》(HJ 24-2014),这是一个非检测方法,上报能力表可以把这个依据报上去吗?谢谢各位

  • 【求助】(还有2)求助有芯工频电炉的文献

    1.有心工频熔铜炉在起熔中熔沟断裂的处理,铸造及工艺 工业加热 1995年1期 2.浅谈水平连铸感应电炉熔沟断裂,发布单位:浙江海亮股份有限公司 发布人:周俊芳 发布时间:2009-2-23 3.提高工频有芯感应电炉使用寿命的方法与措施,《有色金属加工》2006年第1期摘录:第35卷第1期2006年2月有

  • 【转帖】如何理解工频磁场辐射:全面解读国际非电离辐射防护委员会(ICNIRP)导则

    如何理解工频磁场辐射:全面解读国际非电离辐射防护委员会(ICNIRP)导则    近一段时期以来,围绕xx变电站是否该建的问题,许多所谓的“专家”纷纷发表高论,言必称“ICNIRP导则”,叫嚣着国内的标准比“ICNIRP导则”定的还要严格,“变电站非常安全,不会对人体健康造成任何影响”。许多善良的人们被这些专家“忽悠”了,觉得既然符合“国际标准”,那么自然可以高枕无忧了。   但是,这些专家的“忽悠”公众时,却可以隐瞒了“ICNIRP导则”的前提条件,所以我们有必要在这里揭开“ICNIRP导则”的目前和前提假设。   1、ICNIRP《导则》的主要目的是防止“对健康的已知危害效应,即对被暴露个体或他/她的后代健康有可以检测到的损伤”(ICNIRP:Purpose and Scope),是仅限于对人体“可以检测到的已知损害”。   2、ICNIRP《导则》是建立在较高的电磁能量水平上,考虑对人体产生“短时间的、即刻的健康效应,如接触导体所致的周围神经和肌肉的刺激、触电和烧伤,以及吸收能量后引起组织温度的升高”( ICNIRP :Basis of Limiting Exposure)。   由此可见,ICNIRP《导则》是建立在已经确定、并且短期内可以检测得到的危险的基础上,但是,大家想想,我们要长久的生活在变电站的电磁暴露中,它所带来的危害可能要在几年甚至十几年后才能显露出来啊!尤其是对孩子的白血病潜在影响啊!专家们,你们可以隐瞒前提,居心何在?   在国内不能直接套用ICNIRP《导则》,主要基于以下理由:   1.目的和范围不同:《中华人民共和国环境保护法》第一条规定:“为保护和改善生活环境与生态环境,防治污染和其他公害,保障人体健康,促进社会主义现代化建设的发展,制定本法。”以此制定我国的电磁环境质量标准,包括人体健康、生态和生活环境质量。而ICNIRP《导则》的主要目的是防止“对健康的已知危害效应,即对被暴露个体或他/她的后代健康有可以检测到的损伤”(ICNIRP:Purpose and Scope),是仅限于对人体“可以检测到的损害”。因此,两者的目的和范围不同。ICNIRP《导则》没有充分考虑对生态环境的保护和对居民生活环境质量的影响,所以不能直接采用。   2.针对的电磁能量水平不同:ICNIRP《导则》是建立在较高的电磁能量水平上,考虑对人体产生“短时间的、即刻的健康效应,如接触导体所致的周围神经和肌肉的刺激、触电和烧伤,以及吸收能量后引起组织温度的升高”( ICNIRP :Basis of Limiting Exposure),防止“对健康的已知危害效应,即对被暴露个体或他/她的后代健康有可以检测到的损伤”(ICNIRP:Purpose and Scope)。而电磁环境质量标准要求环境中的电磁场强度维持在“防止电磁场暴露引起人体主要生理指标变化,从而导致生理功能异常,即使是离开该环境后可逐步恢复正常” 的水平,“同时要考虑对电磁场长期暴露的潜在影响采取预防性原则”。由此可见,两者的电磁能量水平相差较大。     正是因为ICNIRP《导则》这一局限性所在,世界卫生组织于2003年提出“预防原则”,建议各国应该出于审慎性和安全性原则,采取措施,预防各类未确证的环境风险。言必称“国际”的专家们,你们为什么不提“预防原则”这一国际原则呢?!   专家们的所作所为,让我想起了今年以来国内银行业轰轰烈烈的收费运动。许多“银行专家”们也言必称收费是国际惯例,但是却没有说“许多国家的银行服务不收费,不收费也是国际惯例”。反正专家就是利用我们不懂洋文,满地忽悠。但是,这次对我们xx居住区的居民,你们可大错算盘了。     xx35KV变电站对居民是一个长期的电磁暴露,必须要充分考虑对生态环境的保护和对居民生活环境质量的影响,我们拷问那些所谓的专家,“ICNIRP导则”难道适用吗?   居民同胞们,让我们用理性、科学的眼光,重新审视专家的言论,为了我们自身的长远利益,行动起来,坚决抵制变电站的建设吧。     µ T量级的工频磁场(变电站环境周围产生的磁场)对人体影响的最新实验研究综述       高压变电站运行在周围环境中产生的磁场强度为1µ T量级, 而中国环境标准HJ/T24-1998规定的上限值是100µ T,也正是基于此,很多所谓的专家声称"远远低于国家标准,非常安全,对人体没有任何影响"。尽管此前已经有很多流行病学的研究表明,儿童白血病等与这一量级(0.4µ T)的工频磁场有很大的关系,但是这些"专家"依然声称,"这只是流行性学研究,是偶然的,没有内在机理的证明"。    我们很多民众,也正是被这些专家所迷惑了,伤失了警惕。目前国际上对mT量级磁场对生物细胞影响的研究非常多,大量的研究结果已经表明,mT量级的工频磁场将对细胞、蛋白质的表达、基因等产生显著的影响,这从内在机理上揭示了工频磁场对人体的危害。对µ T量级的工频磁场研究才刚刚起步,文献不多。   但是,近日我看了许多世界卫生组织的国际会议文献,发现现在越来越多的最新研究表明,在µ T量级的工频磁场下,生物细胞的许多特性会发生改变,这种改变往往是使细胞产生癌变的主要原因。   下面,我把这些文献摘录出来,供大家参考,希望大家千万不要被那些利益集团的所谓"专家"所迷惑。   1、日本科学家的研究表明,无论是在100µ T还是1.2µ T的工频磁场,都将导致细胞的原癌基因的表达增加,这种表达增加是导致人体细胞癌变的重要原因。   通过"使用DNA 微阵列检测了磁场对磁场敏感细胞MCF7 基因表达的作用"后发现,"磁场暴露后,一些原癌基因的表达增加,其他的基因表达下降。暴露于1.2 μT 和 100 μT 的作用结果是相似的。"   --《50 Hz 1.2 μT 和100 μT 电磁场对磁场敏感细胞(MCF-7 )的基因表达的影响》,Masami Ishido and Michinori Kabuto,National Institute for Environmental Studies,16-2 Onogawa, Tsukuba 305-8506 JAPAN    2、μT 级工频磁场将对快速诱导某些蛋白的产生,这是导致人体产生病变的一个原因   研究发现μT 级60 Hz 磁场暴露可快速诱导热休克蛋白产生,这可能是磁场致某些生物学效应的机理。他们发现磁场诱导的热应激蛋白70 基因表达发生在转录水平并在3 个序列位点与C-myc 蛋白结合,这对其他的热应激反应不是必需的。   《电磁场作用内在机制研究Insights into electromagnetic interaction mechanisms》. Goodman R, Blank M (2002). J Cellular Physiology 192:16-22    3、工频磁场对细胞凋亡产生间接影响的实验证据   "虽然磁场本身不能诱导细胞凋亡和坏死,但磁场暴露对H2O2 诱导的细胞死亡具有促进作用,Capase-7 和PARP 参与了这一过程。"   --《极低频磁场促进H2O2 诱导的细胞凋亡和坏死及其分子机制》,丁桂荣,中原岳久等,弘前大学医学部保健学科放射技术专业,66-1,本町,弘前,036-8564,日本    名词解释:电磁场 electromagnetic field    有内在联系、相互依存的电场和磁场的统一体和总称 。随时间变化的电场产生磁场 , 随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。

  • 【原创】工频电磁场究竟对健康有没有危害?

    工频电磁场究竟对健康有没有危害?一说无害:辐射是以电磁波的形式向空间传递能量的一种方式,任何物体包括人只要有温度就会以电磁波的形式对外辐射能量。万物之源太阳向地球传输能源,就是通过电磁波的形式辐射到地球表面授予万物的,人和万物在沐浴着太阳的辐射下成长,这种以电磁波的形式时刻不停地向外传送能量的方式称为辐射。工频电场或磁场不可能以电磁波的形式辐射出去是个基本的物理学概念,学过高中物理的都能理解。无论是敞开式还是室内输变电设备所产生的电场或磁场随着距离增加而急剧减少,人体不会吸收磁力线,在变电站中只要电场或磁场的强度在国标的允许值内就是安全的!没有一个官方文件告诉过你,工频会产生电磁辐射危及人们健康。道听途说,混淆视听,转换概念把辐射安放到低频设备上去设一个假设敌来蛊众反对变电站建设,对己、对人都是不利的!

  • 【求购】手传振动仪、工频测试仪、照度计、WBGT等仪器

    本单位近期将采购一批仪器设备包括:手传振动仪、工频测试仪、照度计(包括紫外照度计)、WBGT仪、超声清洗器(实验室用)、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]等仪器设备。有意向的请将能提供的仪器设备资料、报价及联系方式发送到邮箱:[email]mountfish@126.com[/email] 。谢谢!

  • 【分享】电容器纸工频击穿电压测定法 GB 12656一90

    电容器纸工频击穿电压测定法 GB 12656一90满足GB1408.1-2006 GB1408.2-2006 要求.主要适用于固体绝缘材料如:塑料、薄膜、树脂、云母、陶瓷、玻璃、绝缘漆等介质在工频电压或直流电压下击穿强度和耐电压时间的测试;[url=http://www.huayangyq.cn/List_65836.html/]微机控制电压击穿试验仪[/url][~107582~]

  • 【求助】超高频辐射测量仪和工频场强仪量仪的选择

    在新标准GBZ/T189中对超高频辐射测量使用的仪器要求是“选择量程和频率适合于所检测对象的测量仪器”,对高频电磁场的测量仪器要求是“[font=宋体]量程范围能够覆盖[/font][font=']10V/m-1000V/m[/font][font=宋体]和[/font][font=']0.5A/m-50A/m[/font][font=宋体],频率能够覆盖[/font][font=']0.1MHz-30MHz[/font]”,对于工频电场的测量仪器要求是“[font=宋体]采用灵敏度球型(球直径为[/font][font=']12cm[/font][font=宋体])偶极子场强仪进行测量,场强仪测量范围为[/font][font=']0.003kV/m-100kV/m,其他类型的场强仪最低检测限应低于0.05kV/M[font=宋体]”,市场上仪器种类繁多,如何选择测量超高频辐射测量仪器和工频电场的测量仪器,不知大家有没有好的仪器推荐~期待高手答复。[/font][/font]

  • 【分享】JJG 440-2008 工频单相相位表检定规程

    JJG 440-2008 工频单相相位表检定规程2008-12-22发布,2009-06-22实施,代替JJG 440-1986,现行有效。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=164423]JJG 440-2008 工频单相相位表检定规程[/url]

  • 快温变试验箱PLC程序控制器安装注意事项

    快温变试验箱PLC程序控制器安装注意事项

    PLC程序控制器目前已广泛应用于各个领域之中,其中在[b]快温变试验箱[/b]中的的应用也是比较普遍。因其内部是由大量的电子元器件组成,很容易受到周围一些电气元件的干扰、强磁场电场以及振动幅度大等因素影响到PLC控制器的正常工作,这点往往被许多人忽略。即使程序编制再好,安装环节不注重,日后调试、运行会带来很多的故障。疲于奔命地维护。[align=center][img=,469,469]https://ng1.17img.cn/bbsfiles/images/2021/05/202105311519164835_6525_1037_3.jpg!w469x469.jpg[/img][/align]  以下是快温变试验箱PLC程序控制器安装时注意事项:  1、PLC安装环境  环境温度在0~55度,过高过低会导致内部电了元器件运行不稳定。必要时可采取降温或升温措施进行调节。  不能安装在振动频率50Hz、幅度为0.5mm以上,因振动幅度过大容易造成内部电路板的电子元器件脱焊以及脱落现象出现。  在电器箱内外应尽可能远离强磁场电场(如控制变压器、大容量的交直接触器、大容量的电容器等)电气元器件,还有易产生高次谐波(如变频器、伺服驱动器、逆变器、可控硅等)控制器件。  避免安装在金属粉尘多、腐蚀、可燃气体、潮湿等场所。  2、电源  要正确接入PLC电源,有交直之分。建议可使用隔离变压器提供给快温变试验箱PLC程序控制器电源。  3、接线布线及走向  接线时应使用冷压片压接后再接入PLC的输入输出端子上,并保证紧固牢靠。  当输入为直流信号时,如周围干扰源又多,应考虑带有屏蔽的电缆或采用双绞线为宜,在线的走向尽量不要与动力线平行且不能放置在同一线槽、线管内,以防造成干扰。  4、接地  有效地接地可以避免浪涌信号的冲击干扰,其接地电阻不应大于100欧,电气箱中如有接地铜排,应直接接到接地排上,不可与其他控制器(如变频器)的接地连接后再接入接地排上。

  • 串联谐振和并联谐振的区别

    串联谐振和并联谐振这两种现象是正弦交流电路的一种特定现象,它在电子和通讯工程中得到广泛的应用,但在电力系统中,发生谐振有可能破坏系统的正常工作。接下来分析一下串联谐振和并联谐振这两种谐振到底都有哪些区别。从负载谐振方式划分,可以为并联谐振逆变器和串联谐振逆变器两大类型,下面对这两种类型进行比较:串联谐振回路是用L、R和C串联,并联谐振回路是L、R和C并联。(1)串联谐振逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。当逆变失败时,浪涌电流大,保护困难。并联谐振逆变器的负载电路对电源呈现高阻抗,要求由电流源供电。在逆变失败时,冲击不大,较易保护。(2)串联谐振逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。并联谐振逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。(3)串联谐振逆变器是恒压源供电。并联谐振逆变器是恒流源供电。(4)串联谐振逆变器的工作频率必须低于负载电路的固有振荡频率。并联谐振逆变器的工作频率必须略高于负载电路的固有振荡频率。(5)串联谐振逆变器的功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率。并联谐振逆变器的功率调节方式,一般只能是改变直流电源电压Ud。(6)串联谐振逆变器在换流时,晶闸管是自然关断的,关断前其电流已逐渐减小到零,因而关断时间短,损耗小。并联谐振逆变器在换流时,晶闸管是在全电流运行中被强迫关断的,电流被迫降至零以后还需加一段反压时间,因而关断时间较长。(7)串联谐振逆变器的晶闸管所需承受的电压较低,用380V电网供电时,采用1200V的晶闸管就行。并联谐振逆变器的晶闸管所需承受的电压高,其值随功率因数角φ增大,而迅速增加。 (8)串联谐振逆变器可以自激工作,也可以他激工作。而并联谐振逆变器一般只能工作在自激状态。(9)在串联谐振逆变器中,晶闸管的触发脉冲不对称,不会引入直流成分电流而影响正常运行;而在并联谐振逆变器中,逆变晶闸管的触发脉冲不对称,则会引入直流成分电流而引起故障。(10)串联谐振逆变器起动容易,适用于频繁起动工作的场合;而并联谐振逆变器需附加起动电路,起动较为困难。(11)串联谐振逆变器的感应加热线圈与逆变电源(包括槽路电容器)的距离远时,对输出功率的影响较小。而对并联谐振逆变器来说,感应加热线圈应尽量靠近电源(特别是槽路电容器),否则功率输出和效率都会大幅度降低。并联谐振逆变器和串联谐振逆变器(通称并联或串联变频电源)各有其自己的技术特点和应用领域。从工业加热应用的角度,并联谐振逆变器广泛应用于熔炼、保温、透热、感应加热热处理等各种领域,其功率可以从几千瓦到上万千瓦。串联谐振逆变器广泛应用于熔炼—保温的一拖二炉组以及高Q值高频率的感应加热场合,其功率可以从几千瓦到几千千瓦。目前我国工业上采用的变频电源90%以上属并联谐振变频电源。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制