当前位置: 仪器信息网 > 行业主题 > >

聚乙烯泵

仪器信息网聚乙烯泵专题为您提供2024年最新聚乙烯泵价格报价、厂家品牌的相关信息, 包括聚乙烯泵参数、型号等,不管是国产,还是进口品牌的聚乙烯泵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合聚乙烯泵相关的耗材配件、试剂标物,还有聚乙烯泵相关的最新资讯、资料,以及聚乙烯泵相关的解决方案。

聚乙烯泵相关的资讯

  • 聚乙烯中炭黑含量不同测试方法的探讨
    摘要采用GB13021《聚乙烯管材和管体炭黑含量测定(热失重法)》和热重分析仪两种方法测定聚乙烯中炭黑含量。对两种方法的测定结果进行了比较,结果表面,两种方法均有良好的重复性和准确度,测定结果基本一致,采用不同方法得到的测定结果间可以互相参考  关键词 GB13021,热重分析依法,炭黑含量  Carbon black content in polyethylene was determined by two methods of GB13021, polyethylene pipe and tube carbon black content determination (thermal gravimetric method) and thermo gravimetric analyzer. Compared with the measurement results of the two methods of the surface, the two methods have good repeatability and accuracy. The measurement results are basically the same, the determination results obtained by different methods can reference each other  Key wordsGB13021, thermal gravimetric analysis, carbon black content  近年来,聚乙烯管材已成为继PVC之后,世界消费量第二大的塑料管道品种,广泛应用于给水、农业灌溉、燃气输送、排污、油田、化工、通讯等领域。无添加剂的聚乙烯耐气候老化和日光曝晒性能很差,因而实际使用时都会添加炭黑[1]。炭黑能使材料具有足够的抗紫外老化能力,当炭黑含量为2.0%~3.0%时可确保有效地防止紫外线的影响[2]。由于炭黑含量大小对聚乙烯管材具有重要的影响,许多标准都对聚乙烯中的炭黑含量作了规定,为了研发生产和销售的目的,炭黑含量是聚乙烯管材必须进行检测的指标。目前管道用塑料中炭黑含量的测试方法主要执行GB13021–1991[3]。使用热重分析仪是现在常用的热分析手段,用来测量高聚物的成分极为方便,常用标准是ASTME1131–2008[4],热重分析仪也可以用于测定聚乙烯中的炭黑含量。目前这两种方法并存,不同实验室间经常采用不同的方法测试,存在炭黑含量分析结果无法直接比较的问题。笔者用以上两种方法测定同批聚乙烯粒料中的炭黑含量,对不同测试方法的优缺点、测量重复性以及两种方法测试结果的一致性进行了探讨,对炭黑含量测试方法的选择提供了参考。1实验部分  1.1主要仪器与材料  炭黑含量分析仪:HS-TH-3500型,上海和晟仪器科技有限公司;机械分析天平:精度0.0001g,上海天平仪器厂;热重分析仪:STA449C型;德国耐驰公司;电子天平:M2P型,德国赛多利斯公司;聚乙烯:市售。  1.2实验方法  1.2.1GB13021法  称取试样质量m1(1±0.05)g置于样品舟中,将样品舟放入炭黑含量分析仪中,调氮气流量130mL/min,在氮气保护下升温至600℃,恒温裂解30min,取出后放入干燥器冷却至室温,称量质量m2,再放入马弗炉中950℃灼烧10min,取出放入干燥器冷却至室温,称量质量m3。炭黑含量c(%)  按式(1)计算。  1.2.2热重分析仪法  称取试样质量(10±0.05)mg放入样品架上,合上加热炉,设置升温程序,氮气气氛下室温升至550℃,转换成氧气,在氧气气氛下升温至750℃,计算机自动采集升温过程中样品质量变化。  2结果与讨论  2.1测量结果比较  按照1.2.1测定聚乙烯中炭黑的含量,测定结果见表1。 按照1.2.2测定聚乙烯样品的热重曲线(见图1)。根据曲线上各步失重的百分数可以判断样品分解机理及各组分的含量。随着温度升高,聚乙烯发生裂解,持续到550℃质量恒定,因为炭黑在高纯氮气中不发生反应,此时切换气体,通入氧气,使炭黑反应至完全,试样质量再次恒定。从550℃切换氧气到650℃质量稳定时发生的质量减少就是聚乙烯中的炭黑含量。650℃质量稳定后剩余物质为聚乙烯中的灰分。聚乙烯样品中碳黑含量的测定结果列于表1。从测试结果看,两种测试方法的相对标准偏差均小于3%,说明两种方法均具有较好的重复性,其中热重分析仪法的相对标准偏差比GB13021的相对标准偏差略大,这跟热重分析仪法样品量少、样品不均匀有关。两种方法测试结果的一致性可以采用以下方法进行[5]:假设两种测试方法的测试结果分别为x11,x12…x1n,平均值为x1,标准偏差为S1;x21,x22…x2n,平均值为x2,标准偏差为S2。若把xx12-看作随机变量,则根据方差的基本法则有:  故若xx2S12(x1x2)-G-则认为两组数据是一致的。将表1中的数据代入公式可以计算出:xx0.8212-=,2S(x1-x2)=0.83,计算结果表明两组数据一致。两种方法测试的结果具有一致性,可以用来相互比对。  2.2热重分析仪法准确度  热重分析仪在分析过程中自动记录样品实时质量,人为因素小,热失重量的准确度可以用标准CaC2O4来验证。CaC2O4H2O随着温度升高会发生以下3步化学反应:CaC2O4H2O(固)=CaC2O4(固)+H2O(气)(3)CaC2O4(固)=CaCO3(固)+CO(气)(4)CaCO3(固)=CaO(固)+CO2(气)(5)在每步反应中都有气体放出,从而固体出现失重现象,根据化学反应方程和分子量就可以计算出每步化学反应的理论失重量。CaC2O4H2O的每步化学反应都可以反映在热失重曲线上,用热重分析仪得到的CaC2O4H2O失重量和理论值列于表2。 从表2可以看出热重分析仪在550~750℃内的测量相对偏差为1.3%,测量准确度高。热重分析仪法和GB13021方法测量炭黑含量的结果可靠。热重分析仪法快捷方便,但是测量相对标准偏差比GB13021测试方法的要大,原因是进行热重分析时所用样品量只有10mg,如果样品中的炭黑分布不均匀,用热重分析仪测聚乙烯中的炭黑含量时就会增大测试标准偏差。建议用热重分析法分析炭黑含量时尽量从多个聚乙烯颗粒上取样并且适当增加样品量。  3结语  从实验过程及分析结果可以看出炭黑含量分析的两种不同方法具有以下特点:(1)两种测试方法均可用来测定聚乙烯中的炭黑含量,测定结果基本一致,具有可比性。(2)GB13021法测炭黑含量试验重复性好,但是用到炭黑分析仪和马弗炉两种设备,实验过程中需要冷却和3次称量,操作较热重分析仪复杂。(3)热重分析法操作方便、快捷,结果直观,但是由于所用样品量小,测试结果标准偏差较大,测试中容易出现异常值,应该从多个颗粒上取样,尽可能增加样品量,测试次数至少2次,当出现两次偏差较大时,增加测试次数。
  • 全球聚乙烯市场现状与展望
    据美国《化学周刊》近期报道 由于中国、印度、拉美、中欧等新兴经济体的驱动,预计2011年至2014年聚合物需求快于全球GDP增速,年增长率超过5%。   CMAI(休斯顿)统计数据显示,2009年全球聚合物消费量约为1.76亿吨,其中聚乙烯消费量占38%,接近6700万吨。按年增长率超过5%推算,2014年,聚乙烯需求将超过8700万吨。高密度聚乙烯(HDPE)占全球聚合物需求总量的17%,约为3000万吨 线性低密度聚乙烯(LLDPE)和低密度聚乙烯(LDPE)分别占11%和10%。LLDPE和HDPE需求的强劲增长归因于包装用品和非耐用品的用量增加,全球新投产的LDPE产能中,大多数产品为LLDPE和HDPE。2010年经济触底反弹,需求增长较快。目前美国市场聚乙烯供应趋紧,开工率达到90%。欧洲市场情况与美国相近,德国国内市场将继续增长,出口市场也将逐渐走强,土耳其市场年增长超过10%,全球所有地区都将高于2009年水平。预计2011年聚乙烯需求增长不会与今年一样显著,更接近GDP增长水平,将增长4.5%至5.5%。   2009年,美国的聚乙烯产品大部分出口到正在进行大规模基础设施建设的中国。今年,多出口到加拿大和墨西哥。美国出口中国产品减少是因为中国经济增速放缓,同时更多新增产能进入中国市场参与竞争。中东新增产能的冲击比预期要弱,因为一些中东生产能力没有按期投产,产能增长步伐比预期要慢。明年,随着新增产能投产,新产品投入市场,全球市场将需更长时间达到供需平衡。北美生产商不会与以中国、拉美、欧洲为主要目标市场的中东生产商展开竞争。一些生产商已宣布关闭部分亏损产能以应对激烈的市场竞争。利安德巴塞尔关闭位于英国Carrington的18.5万吨/年LDPE装置,去年道达尔石化关闭位于法国Carling和Gonfreville的2套LDPE装置,今年北欧化工将关闭位于Stenungsund的15万吨/年LDPE产能,最近沙特基础工业公司关闭了位于荷兰Geleen的12万吨/年LDPE装置。   埃克森美孚扩大丁基橡胶产能据美国今日下游网近期报道 埃克森美孚化工子公司日本埃克森美孚有限会社宣布,旗下的日本丁基橡胶有限公司已完成川崎丁基橡胶装置扩能,产能增加1.8万吨/年,使其丁基橡胶总产能达到9.8万吨/年,以满足亚太市场日益增长的丁基橡胶需求。公司此次扩能采用埃克森美孚化工最近开发的新工艺技术。例如,其中一项新专利技术可使丁基聚合物的聚合反应温度达到-75摄氏度,而常规技术的反应温度为-95摄氏度,该新技术可大幅降低能耗并节省投资。埃克森美孚化工在高端丁基橡胶聚合物的开发和应用方面处于业内领先地位,其产品具有更长的寿命、可节约能源、减少温室气体排放,从而带来更高的附加值。为了满足丁基橡胶行业需求的不断增长,日本丁基橡胶有限公司近期内已有过多次扩能,本次扩能也是进一步服务日益增长的丁基橡胶市场。2008年,埃克森美孚化工将其得克萨斯州贝城丁基橡胶装置的产能提高了60%。在此之前,日本丁基橡胶有限公司已在2006年将其鹿岛卤化丁基橡胶装置产能增加1.7万吨/年。
  • 未来五年全球聚乙烯需求将快速增长
    据美国析迈(CMAI)称,2009年全球聚合物消费量达到1.76亿吨,其中聚乙烯(PE)占到消费总量的约38%。2009年全球PE需求接近6700万吨,预计未来五年将以年均逾5%的速度增长,到2014年的需求量将超过8700万吨。2009年高密度聚乙烯(HDPE)需求量约占到聚合物总需求量的17%,或约3000万吨,而线性低密度聚乙烯(LLDPE)和低密度聚乙烯(LDPE)的需求量分别占到约11%和10%。
  • 自动粘度仪用毛细管法测定聚乙烯(PE)的分子量
    聚乙烯(polyethylene ,简称PE)是乙烯经聚合制得的一种热塑性树脂。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70°C),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。常温下不溶于一般溶剂,吸水性小,电绝缘性优良。产品用途:高压聚乙烯:一半以上用于薄膜制品,其次是管材、注射成型制品、电线包裹层等。中低、压聚乙烯:以注射成型制品及中空制品为主。超高压聚乙烯:由于超高分子聚乙烯优异的综合性能,可作为工程塑料使用。 目前毛细管法测定聚乙烯分子量是行业内作为控制产品质量重要的指标之一实验方法如下实验所需仪器:卓祥全自动超高温粘度仪、多位溶样块、自动配液器、万分之一电子天平。实验所需试剂1:十氢萘、抗氧剂溶剂的配置:在十氢萘中加入一定比例(质量比)的抗氧剂,并搅拌致抗氧剂完全溶解溶剂粘度的测定:卓祥全自动超高温粘度仪将实验温度设置成135度并且稳定后,加入溶剂,软件中启动测试任务待结束。连续测三次时间之差在0.2秒内粘度管的清洗:启动卓祥全自动超高温粘度仪干燥程序,仪器自动将粘度管清洗干燥后待用。PE样品溶液的制备:在万分之一天平上精准称量精确到O.0055g,通过卓祥自动配液器将溶液浓度精准配制到0.0002g/ml,具体可参考GBT1632.3中7.31表格,放在卓祥多位溶样块中溶解。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。连续测三次时间之差与其平均值在0.2秒内。粘度管的清洗:再次启动卓祥超高温全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照公式(1)计算样品的粘数(比浓粘度)I: 式中:t/t0-----分别代表的是样品流经平均时间/溶剂流经平均时间,单位为秒(S);C ----135度时溶液质量浓度的数值,单位为克每毫升(g/ml);公式(2): γ——20度和135度下溶剂的膨胀系数,等于相对应的密度之比,约等与1.107公式(3)特性粘度 [n]的计算 K —— 同聚合物浓度和结构有关的计算,可用K=0.27计算公式(4)分子量M的计算 以上内容未经过原作者或者现发布者的同意,任何个人或者单位都不可以转载和使用上述内容
  • 国家级聚乙烯检测实验室落户中山
    为全国第三家,将进一步规范行业   火炬开发区港华辉信聚乙烯检测认证实验室,近日获中国合格评定国家认可委员认可,成为全国第三个具备国家聚乙烯检测资格的实验室。   获评国家认证的聚乙烯检测实验室建立于2002年,经过认证后的实验室,具备为国内相关企业作标准检测、校准、检查服务方面认证的能力,检测结果可获国家与部分国家认可。港华辉信执行董事梁志刚表示,此前国内只有两个聚乙烯检测认证实验室,分别位于河北和山东,落户中山的实验室将对整个聚乙烯行业的产品质量提升与规范有重大意义。
  • 阿美特克SCP新品—具有模塑功能的发泡聚乙烯
    p   位于罗德岛州韦斯特利的高可靠、严苛环境解决方案供应商阿美特克SCP,发布了新的已订立合约的具有模塑性能的聚乙烯,它将用于追求美国政府多个奖项、多年不定期交付/不确定数量(ID/IQ)合同。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/3e508488-0064-4c69-8b67-0dca1825b5af.jpg" title=" Expanded Polyethylene Molding Capabilities.jpg" width=" 300" height=" 226" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 226px " / /p p    span style=" color: rgb(255, 0, 0) " 由于具有更低的海水渗透率,聚乙烯长期以来被公认为海底电缆及终端的首选材料。 /span 阿美特克SCP为其客户提供了聚乙烯模塑,因其在全深度额定海底以嵌入式传感器和有效载荷应用时,具有长寿命和高可靠度。 /p p   阿美特克SCP与客户合作塑造 span style=" color: rgb(255, 0, 0) " 聚乙烯电缆接头、断路器和连接器终端。 /span 这些功能可在工厂或现场实现。客户被建议与阿美特克SCP协商来最好地利用其专业知识合适地挑选聚乙烯材料应用,来保证最低的寿命周期成本。 /p p    span style=" color: rgb(31, 73, 125) " i “我们非常乐意见到我们在聚乙烯资源的投资获得了盈利。我们已创立一个由固定设备、流程和人才组成的坚实基础来支持我们的客户,” /i /span 工程互联与包装业务部门副总裁Liam Shanahan评论道。 /p
  • 全自动高温乌氏粘度计在聚乙烯PE、聚丙烯PP行业的应用
    聚乙烯(polyethylene ,简称PE)是乙烯经聚合制得的一种热塑性树脂。化学式为:(C2H4)n,在工业上,也包括乙烯与少量α-烯烃的共聚物。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70°C),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。常温下不溶于一般溶剂,吸水性小,电绝缘性优良。聚丙烯,(简称PP)是丙烯通过加聚反应而成的聚合物。化学式为(C3H6)n,密度为0.89~0.91g/cm3, 易燃,熔点189℃,在155℃左右软化,使用温度范围为-30~140℃ 。聚丙烯是一种性能优良的热塑性合成树脂,为无色半透明的热塑性轻质通用塑料。在80℃以下能耐酸、碱、盐液及多种有机溶剂的腐蚀,能在高温和氧化作用下分解。聚丙烯具有耐化学性、耐热性、电绝缘性、高强度机械性能和良好的高耐磨加工性能等。主要应用于应用在食品包装、家用物品、汽车、光纤等领域。聚乙烯和聚丙烯的应用面非常广泛,近年来发展也很迅速,许多企业也在不断增加对新技术研发的投入,其中粘度测试是一项非常重要的检测项目。国标GB/T 1632.3-2010规定聚乙烯和聚丙烯使用毛细管黏度计测定聚合物稀溶液黏度。关于PP/PP粘度标准的解读:使用毛细管乌氏粘度计,在135℃下测定溶剂以及规定浓度的聚合物溶液的流出时间,根据这些测定的流出时间和聚合物溶液的已知浓度计算比浓黏度和特性黏度。在室温下,聚乙烯和等规聚丙烯不溶于任何目前所知的溶剂。因此在试验中必须采取措施以防止因聚合物析出而导致溶液浓度发生改变。中旺全自动高温乌氏粘度计IVS800H在PP/PE中的解决方案许多企业一般使用半自动或手动的粘度仪,在135℃的油槽上进行粘度的测试,对人员以及环境都存在着安全隐患。IVS800H它是一款全自动的高温乌氏粘度计,实现自动恒温、自动进样、自动测试、自动清洗、自动干燥的操作流程,有效地避免了高温操作下引起的意外。另外它还能规避样品的析出,确保了数据的准确性。那么我们来详细的介绍下一个完整的PP/PE的粘度流程:仪器的配置:中旺DP25自动配液器、中旺聚合物溶样器、中旺全自动高温乌氏粘度计IVS800H。测试流程:配液:用万分之一天平称取聚丙烯PP样品,放入到溶样瓶中,用DP25自动配液器(移液精度≤0.1%)移取定量剂到溶样瓶中;溶样:中旺聚合物溶样器溶解PP/PE样品,采用金属浴,多孔位,转速、溶样时间、溶样温度可按要求设定。温度最高可达185℃。黏度测试:将彻底溶解好的PP/PE样品置入全自动高温乌氏粘度计IVS800H样品仓中,启动仪器,实现自动进样,采用进口不锈钢光纤可自动测试,计时精度可达0.001S,确保了数据的准确性,全程无需人员值守,并且系统自带软件,自动得出测试结果;测试结果IVS800H全自动高温乌氏粘度计连接电脑端,可自动得出测试结果并进行数据储存,便于多样化粘度数据分析;并且出分析报告。清洗黏度管乌氏粘度管固定在IVS800H高温乌氏粘度仪中,客户无需拆装取出,可自动清洗、自动排废、自动干燥。告别了乌氏粘度管耗材的时代。
  • 我国学者在聚乙烯废塑料降解研究方面取得重大进展
    p   近日,中国科学院上海有机化学研究所的黄正课题组和加州大学尔湾分校管治斌课题组合作,在聚乙烯废塑料降解研究方面取得重大进展,相关成果于6月17日以“Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions”(温和条件下高效选择性降解聚乙烯制备液体燃料和石蜡)为题在Science Advances杂志上在线发表(Sci. Adv., 2016, 2, e1501591)。该研究工作得到优秀青年科学基金(21422209)和重点项目(21432011)等的支持。 /p p   烃类物质(烷烃、烯烃、芳烃等)是化石能源的重要组成体,也是重要的基础化工原料。为应对绿色、可持续发展的挑战,一方面需要从自然界丰富的烃类物质出发,发展高效、原子经济性的合成技术,直接制备高价值化学品,实现“分子价值的增量” 另一方面也需要发展温和、实用的催化降解技术,将废弃的高分子量、稳定的烃类化学化工产品转化成可再次利用的小分子物质,避免对环境造成污染,实现“污染物质的减量”。黄正课题组发展了高效的金属有机催化方法和技术,在这两方面取得了重要突破。 /p p   烷烃由高键能、非极性C-C单键和Csp sup 3 /sup -H键组成,是最惰性的有机分子之一,其在合成化学中的应用价值较低。黄正课题组一直致力于烷烃催化转化方面的研究。该课题组先前发展了一类新型的PSCOP螯钳型铱金属有机配合物,其在烷烃脱氢反应中表现出非常高的催化活性,但是在直链烷烃脱氢过程中,由于催化剂具有烯烃异构活性,在反应后期阶段不可避免地生成内烯烃混合物作为主要产物。为解决该问题,他们巧妙地利用双金属催化一锅两步法进行烷烃末端高区域选择性硅基化,实现烷烃至直链烷基硅的高效催化转化(图1a)。催化体系包括由该课题组发展的PSCOP螯钳型铱金属有机络合物作为烷烃脱氢催化剂,将烷烃脱氢生成内烯烃混合物,吡啶二亚胺铁络合物作为串联烯烃异构和端烯烃硅氢化催化剂。该转化的关键在于:烷烃脱氢所生成的烯烃中间体快速异构,并通过铁催化剂对端烯烃选择性硅氢化促使内烯烃向端烯烃转化。该工作为烷烃选择性官能团化提供了新思路,相关成果发表在Nature Chemistry上(Nat. Chem.,2016, 8, 157 Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation 利用铑-铁催化的脱氢-异构化-硅氢化串联反应实现烷烃到直链烷基硅的转化)。 /p p   聚乙烯和烷烃结构单元相似,均由C-C单键和Csp sup 3 /sup -H键组成。聚乙烯是年产量 大的塑料产品(年产超过上亿吨),由于其化学惰性,被弃置后难以降解构成“白色垃圾”主要成分。研究人员利用双金属催化交叉烷烃复分解策略,使用价廉量大的低碳烷烃作为反应试剂和溶剂,与聚乙烯发生重组反应,可有效降低聚乙烯的分子量。由于在反应体系中低碳烷烃过量存在,可多次参与和聚乙烯的重组反应,直至把分子量高至上百万的聚乙烯降解为适用于运输系统燃油的烷烃产品。该反应适用于 HDPE、 LDPE和 LLDPE的降解,且催化剂可以兼容商业级聚乙烯中包含的各类添加剂,并进一步被证明可应用于实际生活中所产生的聚乙烯废塑料瓶、废塑料膜和废塑料袋的降解(图1b)。相比较传统高温裂解方法,该方法具有反应条件相对温和,产物选择性高的优点。高温裂解方法往往需要超过400度反应温度,产生包括气、油、蜡、焦等非常复杂的混合物 产物包括直链烷烃、支链烷烃、烯烃、芳烃等,产品利用价值低。而且黄正等发展的降解方法温度较低(150-200度),生成的产物以直链烷烃为主,且可以通过催化剂结构调控或反应时间控制,选择性生成可作为柴油的C9-C22烷烃或者聚乙烯蜡。这项研究成果得到了Nature、Science、Chemical & amp Engineering News等学术杂志的正面评论,并被《洛杉矶时报》、《华盛顿邮报》和新华网等国内外新闻媒体报道。 /p p style=" TEXT-ALIGN: center" img title=" tpxw2016-06-27-01.jpg" src=" http://img1.17img.cn/17img/images/201606/insimg/0b7ccaeb-e75f-4906-95ec-5a09ef3bc04a.jpg" / /p p style=" TEXT-ALIGN: center" strong 图1. a) 烷烃选择性硅基化 b) 聚乙烯降解。 /strong /p p /p
  • 全自动乌氏粘度计在PVP(聚乙烯吡咯烷酮)材料中的应用
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone),简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中独具特色的精细化学品。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其独特的性能获得广泛应用。PVP(聚乙烯吡咯烷酮)材料作为一种合成水溶性高分子化合物,具有水溶性高分子化合物的一般性质,胶体保护作用、成膜性、粘结性、吸湿性、增溶或凝聚作用,其受到人们重视的独特性质是其优异的溶解性能及生理相容性。在合成高分子中像PVP(聚乙烯吡咯万通)材料这样既溶于水,又溶于大部分有机溶剂、毒性很低、生理相溶性好的并不多见,特别是在医药、食品、化妆品这些与人们健康密切相关的领域中,随着其原料丁内酯价格的降低,展示出发展的良好前景。PVP(聚乙烯吡咯烷酮)材料按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应PVP(聚乙烯吡咯烷酮)材料的平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。在PVP(聚乙烯吡咯烷酮)材料的生产和研发中,K值通常使用乌氏毛细管法进行测量,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌式粘度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间的精度可到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列全自动乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 新品上市|低密度聚乙烯拉伸流变性能新技术--VADER 1000
    摘要在单轴拉伸流动中测量了三种选定的商用低密度聚乙烯(LDPE)的非线性流变性能。使用三种不同的设备进行测量,包括拉伸粘度装置(EVF),自制长丝拉伸流变仪(DTU-FSR)和商用长丝拉伸流变仪(VADER-1000)。通过测试显示,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪能够在达到稳态的更大Hencky应变值下探测非线性行为。利用长丝拉伸流变仪的能力,我们表明具有明显差异的线性粘弹性的低密度聚乙烯可以具有非常相似的稳定拉伸粘度。这表明有可能在一定的速率范围内独立控制剪切和拉伸流变。关键词拉伸流变;聚乙烯;聚合物熔体;非线性粘弹性正文多年来,控制聚合物流体的流变行为作为分子化学的一个性能,引起了学术界和工业界的极大兴趣。最成功和最多产的理论预测的流变行为的纠缠聚合物系统是De Gennes(1971)和Doi和Edwards(1986)提出的 "管模型"。然而,尽管三十年来人们一直在努力改进管模型,但即使对于最简单的情况,即单分散线性聚合物体系,缠结聚合物在拉伸流动中的非线性流变行为仍然没有得到充分理解(Huang等人,2013a;Huang等人,2013b)。低密度聚乙烯等工业聚合物是最复杂的缠结聚合物系统,它们不仅具有高度的多分散性,而且还含有不同的支化分子结构。预测低密度聚乙烯的流变行为,特别是拉伸流动中的非线性行为,是非常具有挑战性的。在明确定义的模型系统上,已经进行了探索延伸流中支化聚合物动力学的实验工作(Nielsen等人,2006;Van Ruymbeke等人,2010;Lentzakis等人,2013)以及商业聚合物系统,如低密度聚乙烯LDPEs。有几个小组观察到低密度聚乙烯LDPE的瞬时拉伸应力的最大值(Raible等人,1979;Meissner等人,1981;M¨unstedt和Laun,1981)。Rasmussen等人(2005年)首次报告了应力过冲后的稳定应力,并通过比较长丝拉伸流变仪和十字槽拉伸流变仪的测量结果(Hoyle等人,2013年)以及比较恒定拉伸速率和恒定应力(蠕变)实验(Alvarez等人,2013年)进行了实验验证。已经开发了几个模型(Hoyle等人,2013;Wagner等人,1979;Hawke等人,2015),试图了解应力过冲背后的物理学。然而,这些模型都不能实际用于预测工业中低密度聚乙烯LDPE的流变行为,因为这些模型包含许多与分子结构没有直接关系的拟合参数。最近,Read等人(2011)提出了一个预测方案,能够计算随机长链支化聚合物熔体的线性和非线性粘弹性,作为其形成的化学动力学的函数。这些预测似乎与剪切流和拉伸流中三个低密度聚乙烯的测量结果非常一致。然而,测得的拉伸数据受到最大Hencky应变约为3.5的限制,并且没有显示出稳定状态的迹象,而模拟结果则达到了更大的 Hencky应变值,并预测了每个应变速率的稳定应力。在更大的Hencky应变值下预测非线性行为的质量仍然是未知的。此外,在Read等人(2011)的模拟中,没有预测到应力过冲。在这项工作中,我们介绍了三种不同的商用低密度聚乙烯的拉伸测量。这三种低密度聚乙烯是根据Read等人(2011)的模型预测而专门设计的。预计它们具有不同的零剪切速率粘度,但在非线性拉伸流动的大变形中具有相似的应力-应变反应。测量是在三个不同的设备上进行的,包括两个长丝拉伸流变仪和一个拉伸粘度夹具。我们表明,长丝拉伸流变仪的测量结果可以达到5以上的大Hencky应变值,在那里达到非线性稳定状态。我们还表明,低密度聚乙烯LDPE样品在拉伸流动中的大Hencky应变值具有相似的非线性行为,包括相同的应力过冲幅度和过冲后的相同稳定应力,尽管Read模型预测没有应力过冲现象。这些结果表明,低密度聚乙烯LDPE熔体的非线性粘弹性可以通过选择性聚合方案来控制。实验材料陶氏化学公司提供了三种类型的商用低密度聚乙烯树脂,分别为PE-A、PE-B和PE-C。所有样品都是颗粒状的。表1总结了样品的特性,包括密度、熔体流动指数(I2)、重量-平均摩尔质量(Mw)、数量-平均摩尔质量(Mn)和熔体强度。重量-平均摩尔质量是由多角度激光散射法确定的,而数量-平均摩尔质量是由微分折射率确定的。摩尔质量值是若干次重复的平均数。熔体强度是用通用流变仪结合通用ALR-MBR 71.92挤出机测量的。测量是在150℃下进行的,产量为600g/h。模具的长度为30毫米,直径为2.5毫米。表1实验是在24mm/s2的加速度下进行的。纺丝线的长度被设定为100毫米。流变仪测试在膜生物反应器挤出机系统清扫30分钟后进行,并一直运行到纺丝线失效。通过力-拉速数据拟合出一个四参数交叉函数,根据拟合的破坏速度曲线确定破坏时的力。表中的数据是五次连续测量的平均数。力学谱三种低密度聚乙烯样品的线性粘弹性(LVE)特性是通过小振幅振荡剪切(SAOS)测量得到的。TA仪器公司的ARES-G2流变仪采用25毫米的板-板几何形状。图1所有样品的时间-温度偏移因子αT作为温度的函数,参考温度为Tr= 150℃测量是在氮气中,在130℃和190℃之间的不同温度下进行的。对于每个样品,使用时间-温度叠加(TTS)程序,在参考温度Tr= 150℃时,数据被移动到单个主曲线。所有样品的时间-温度偏移系数(αT)与单一的阿伦尼乌斯公式一致,其形式为其中活化能∆H = 65 kJ/mol。R是气体常数,T是以开尔文表示的温度。在图1中,偏移因子αT被绘制为温度的函数。拉伸应力测量拉伸应力测量使用三种不同的设备:TA仪器的延伸粘度夹具(EVF)、自制的长丝拉伸流变仪(DTU-FSR)(Bach等人,2003a)和Rheo Filament的商用长丝拉伸流变仪(VADER-1000)。将不同设备的结果进行相互比较。用于EVF测量的样品在150℃下压缩成型,在低压10bar下3分钟,在高压150bar下1分钟,然后用淬火冷却盒在150bar下淬火冷却到室温。在短时间内,当冷却盒插入时,样品会出现压力损失。在相对较低的温度下进行短时间的压缩成型是为了防止样品的任何潜在氧化或降解。样品模具为特氟隆涂层,尺寸为100×100 0.5mm。从约20mm长的铭牌上冲压出12.7mm-12.8mm宽的样品。最终样品的厚度约为0.6mm。在EVF测量中,样品被插入设备中,在150℃下180s的平衡时间后,样品以0.005s-1的应变速率被预拉伸15.44s,然后松弛80s,然后样品被拉伸。报告的Hencky应变是由圆柱体的旋转计算出来的。通常情况下,使用EVF的拉伸测量仅限于样品保持均匀的情况。EVF一次旋转所能达到的Hencky应变值通常低于4,与EVF相比,长丝拉伸仪器并不依赖于沿拉伸方向的均匀变形的假设。事实上,由于板材上的无滑移条件,变形在轴向上是不均匀的。这些设备只是探测了通常在中间细丝平面发现的最小直径平面内的变形和应力之间的关系。在这个平面外的剩余材料只需要固定在研究的薄片上,就像在固体力学测试中用狗骨形状来固定材料一样。长丝拉伸装置确实依赖于最小直径平面内的径向均匀变形的假设。Kolte等人(1997年)的模拟表明,在长丝中间平面几乎没有任何径向应力变化。用激光测微计来测量中丝薄片的直径。为了探索更高的应变,在DTU-FSR和VADER 1000流变仪都采用了在线控制方案,该方案首先由Bach等人(2003b)使用,后来由Mar´ın等人(2013)发表,用于在拉伸过程中控制长丝中平面的直径,以便在样品断裂前确保恒定的应变速率。根据样品的类型,DTU-FSR和VADER-1000都可以达到最大Hencky应变值7。在长丝拉伸流变仪上进行测量之前,样品被热压成半径为R0、长度为L0的圆柱形试样。长宽比定义为∆0= L0/R0。样品在150℃下压制,并在相同温度下退火10分钟,然后冷却至室温。在测量中,所有样品被加热到150℃,在180s的平衡时间后,样品在拉伸实验之前被预拉伸到Rp的半径。对于DTU-FSR,R0= 4.5mm,L0= 2.5mm,Rp在3到4.5mm之间,而对于VADER-1000,R0 = 3.0mm,L0= 1.5mm,Rp = 2.5mm。在拉伸测量过程中,力F(t)由称重传感器测量,中间灯丝平面的直径2R(t)由激光测微计测量。在拉伸流动开始的小变形时,由于变形场中的剪切分量,部分应力差来自于压力的径向变化。这种影响可以通过Rasmussen等人(2010)描述的校正因子来补偿。 对于大应变,校正消失,对称平面中应力的径向变化变得可以忽略不计(Kolte等人,1997)。对于本工作中的所有样本,当Hencky应变值大于2时,校正值小于4 %,Hencky应变和中丝平面上应力差的平均值计算如下其中mf是灯丝的重量,g是重力加速度。应变率定义为ϵ• =dϵ/dt,拉伸应力增长系数定义为η-+=〈σzz-σrr 〉/ϵ• 结果和讨论线性粘弹性图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。(b)表示在150°C相应的复数粘度η*。图中的两个星号来自稳定剪切测量,在 150°C下剪切速率为0.005 s-1图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。相应的复数粘度η*绘制在图2(b)中。图中实线是多模麦克斯韦(multimode Maxwell fitting)拟合的结果。Maxwell relaxation modulus多模麦克斯韦弛豫模量G(t)由下式给出 其中gi和τi列于表2。表中的零剪切速率粘度η0通过下式计算 在图2(b)中,很明显三个样品具有不同的零剪切速率粘度。然而,在图2(a)、(b)中,似乎PE-C的线性行为在较低频率下接近PE-A,在较高频率下与PE-B重叠。而且在ω 1 rad/s时,PE-C的G′和G″曲线几乎与PE-A平行,垂直位移因子约为0.6。表2 LDPE 在 150°C 熔体的线性粘弹性启动和稳定状态下的拉伸流变图3(a)显示了PE-A在150℃时的拉伸应力增长系数与时间的关系。图中比较了EVF、DTU-FSR和VADER-1000的测量值。图中的虚线是根据表2中列出的麦克斯韦弛豫谱计算的LVE包络线。EVF的测量值受到最大Hencky应变4的限制,在图3(b)中可以清楚地看到。其中测量的应力是作为Hencky应变的函数绘制的。两个长丝拉伸流变仪的测量值能够达到大于5的较大Hencky应变值,在该值下观察到稳定的应力。图3我们注意到EVF和长丝拉伸测量之间存在明显的偏差。我们认为EVF测量的应力太低,特别是在低应变率下,Hoyle等人(2013)也观察到这一点,他们将长丝拉伸测量值与Sentmanat拉伸流变仪测量值进行了比较。因此,对于图3(b)中的ϵ• =0.01 s-1,已经与ϵ• =0.5有偏差,而对于ϵ• =2.5 s-1,EVF测量与DTU-FSR测量一致,最高ϵ• 为3.5。请记住,在EVF中,只有横截面的初始面积是已知的;在拉伸过程中横截面面积的变化不是测量的,而是由一个假设均匀单轴拉伸速率不变的方程计算出来的。此外,在EVF测量中,样品宽度为12.8mm略微超过了Yu等人(2010)建议的12.7mm的上限,这导致在更大的Hencky应变值下的平面延伸而不是单轴延伸。相比之下在DTU-FSR和VADER-1000中,中间直径一直被测量,因此在拉伸过程中横截面的实际面积是已知的,由此计算出中间细丝平面中的真实Hencky应变。借助于在线控制方案,在整个测量过程中保证了单轴拉伸过程中恒定的Hencky应变率。来自DTU-FSR和VADER-1000的大Hencky应变值的数据由于力小而有些分散。此外,在拉伸速率超过0.4s-1时,使用DTU-FSR和VADER-1000进行的测量观察到了应力过冲的现象。由于仪器中采用的控制方案的限制,使用两个长丝拉伸流变仪进行测量的拉伸速率不超过2.5s-1。在长丝拉伸中,表面张力可能对测量的应力有影响,尤其是在长丝中间平面的半径非常小,大的亨基应变值的时候。在所有的测量中,最小的半径是R = 0.12mm。如果我们把低密度聚乙烯LDPE的表面张力γ = 0.03 J/m2,表面张力效应产生的最大应力是σsur =γ/R = 250Pa。在图3(b)中,很明显,对于所有达到Hencky应变大于4的测量,测量的应力高于104Pa。因此可以忽略表面张力效应。图4图4显示了PE-C在150℃时拉伸应力增长系数与时间的函数关系。DTU-FSR和VADER-1000的测量结果非常一致。在0.15和2.5s-1之间的中间拉伸速率下,EVF的测量值与DTUFSR一致。拉伸速率低于0.1s-1时,偏差越来越大。根据DTU-FSR和VADER-1000的测量,在拉伸速率快于0.4s-1时,再次观察到应力过冲。图5图5比较了DTU-FSR测量的拉伸流动中PE-A和PE-C的非线性行为。如图2所示,PE-A和PE-C具有不同的线性粘弹性,这也由图5(a)中不同的LVE包络表示。在拉伸流的启动过程中,PE-A和PE-C也有不同的非线性反应。从图5a中可以清楚地看出,在所有拉伸速率下,PE-C 比 PE-A 有更明显的应变硬化。然而,在图5(a)、(b)中,有趣的是,尽管PE-A和PE-C最初有不同的非线性行为,但是它们在更大的Hencky应变值下具有相同的反应,并且在每个应变速率达到相同的拉伸稳态粘度,如图6所示。图6还显示在快速应变率下,拉伸稳态粘度表现出幂律行为,粘度比例约为ε• -0.6,这与Rasmussen等人(2005)和Alvarez等人(2013)的观察结果一致。应该注意的是,如图5(b)所示,相同的非线性行为仅在Hencky应变值大于4时观察到,这一点无法通过EVF测量。图6图7(a)比较了PE-B与PE-C在150℃时的拉伸应力增长系数。在所提出的速率下,PE-B没有显示任何应力过冲。尽管PE-B和PE-C在线性和非线性流变学方面的表现不同,但在每种拉伸速率下,它们的相对应变硬化量似乎是相似的。在图7(b)中可以更清楚地看到这一点。图7(b)中比较了Trouton比率。Trouton 比值定义为Tr = η-+ /η0,其中η0是零剪切率粘度,其数值列于表2。可以看出,在每个拉伸速率下,PE-B达到与PE-C相同的最大Trouton比率,证实它们具有相同的相对应变硬化量。图7结论我们使用三种不同的设备测量了三种商用低密度聚乙烯样品的拉伸流变性能。这三种设备在拉伸流变的启动方面给出了一致的结果。然而,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪达到了更大的Hencky应变值,在这里可以观察到应力过冲和稳态粘度。此外,EVF的测量仅在取决于应变速率的应变范围内跟随长丝拉伸测量。尽管三种低密度聚乙烯样品具有不同的线性粘弹性能,但已经表明,PE-A和PE-C在Hencky应变值大于4时具有非常相似的非线性rhelogical行为,而PE-B和PE-C具有相同的相对应变硬化量。上述结果表明,工业低密度聚乙烯的非线性流变性可以通过聚合来调整。特别是,有可能合成一种聚合物(PE-C),其具有比参考聚合物(PE-A)低得多的粘弹性模量,但仍具有与参考聚合物相同的拉伸粘度。
  • 全自动乌氏粘度计在超高分子量聚乙烯(UHMWPE)中的应用
    超高分子量聚乙烯英文名ultra high molecular weight polyethylene简称为UHMWPE,是一种线性结构的具有优异综合性能的热塑性工程塑料。普通高密度聚乙烯的分子量约为2-30万,而超高分子量聚乙烯则具有至少150万的分子量,因此它具有一般工程塑料难以比拟的一些优异性质,例如超高的耐磨性、抗低温冲击性、耐环境应力开裂性以及自润滑性,它在高性能纤维市场上,包括从海上油田的系泊绳到高性能轻质复合材料方面均显示出极大的优势,在现代化军工和航空、航天、海域防御装备等领域发挥着举足轻重的作用。超高分子量聚乙烯(UHMWPE)材料的分子量是其核心指标,分子量的高低影响材料的强度、韧性和耐磨度。在超高分子量聚乙烯(UHMWPE)材料的生产和研发中,乌氏毛细管法因简单、方便、快捷且经济成为首选测定方法,其中ASTM D4020-2011及GB/T1632.3-2010标准中也对乌氏毛细管法测聚乙烯的黏均分子量作出了相关规定。乌氏毛细管法实验操作简便、效率高、数据精准,在大多数高分子材料检测及相关质量控制中都起到关键作用,尤其是目前在很多行业中使用的自动乌式黏度计,以自动化的精确高效替代人工及数据误差,节省人力的同时进一步提高了实验数据的准确性。以杭州卓祥科技有限公司的IV3000X系列超高温全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV3000X系列超高温全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可到毫秒级,控温精度可达±0.001℃,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000X系列全自动超高温乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器可自动排废液,自动清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000X系列全自动超高温乌式黏度计可实现自动测试、自动排废液、自动清洗,自动干燥,告别了粘度管是耗材的时代。
  • 德可納利推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质
    美国SPEX-中国独家总代理德可纳利科技集团(TKI),推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质,用於美國消費者和玩具安全改進法規,相关参数请参考卖场,欢迎来电询价选购。 电话:021-64665918 021-64665971 传真:021-51079676 联系人:王小姐 邮箱:info@tkichina.com 地址:襄阳南路500号巴黎时韵大厦2509室 邮编:200031 公司网站:www.tkichina.com www.spexcsp.com
  • 北京市地方标准《聚乙烯管道热熔对接接头微波无损检测质量控制要求》预审会召开
    近日,北京市检验检测认证中心所属市特种设备检验检测研究院组织召开了北京市地方标准《聚乙烯管道热熔对接接头微波无损检测质量控制要求》预审会。会议邀请了来自中国标准化研究院、中国特种设备检测研究院、北京化工大学、国家化学建筑材料测试中心、北京顺义燃气有限责任公司、北京航星机器制造有限公司、北京工业大学等单位共计16名专家组成审查专家组进行评议。会上,标准编制组人员就标准的目的意义、制定原则和依据、适用范围、主要条款等向专家组作了详细汇报,与会专家对标准的有关技术内容进行了质询,并对标准的完善提出了宝贵意见。最后,会议对标准征求意见稿进行了审查,专家组一致同意该标准通过预审查。《聚乙烯管道热熔对接接头微波无损检测质量控制要求》针对北京市城市燃气聚乙烯管道热熔对接接头的实际情况,首次提出了聚乙烯管道热熔对接接头的微波无损检测质量控制规范,并为聚乙烯管道热熔对接接头的质量检测与评判提供了方法与准则。本次会议为该地方标准的顺利发布奠定了基础。
  • 全自动乌氏粘度计-用毛细管法测定聚乙烯基吡咯烷酮的k值
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone)简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中最具特色,且被研究得最深、广泛的精细化学品品种。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其优异独特的性能获得广泛应用。PVP按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应的PVP平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。测定K值最常用的方法是用毛细管粘度计测的PVP水溶液的相对粘度n,再根据公式计算出K值。 实验方法如下实验所需仪器:卓祥全自动粘度仪、自动配液器、万分之一电子天平。实验所需试剂1:溶剂:纯水,无水乙醇为清洗剂。溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入纯水,软件中启动测试任务待结束,测的溶剂时间T0。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品溶液的制备:在万分之一天平上精准称量精确到*g,溶解在**ml溶剂中,通过自动配液器将溶液浓度精准配制到**g/ml,溶解条件:常温搅拌。样品粘度的测定:加入**ml样品,测量样品时间**,计算粘度结果粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 蓝菲光学专业定制生产激光泵浦腔(聚光腔)
    激光泵浦腔又称为聚光腔,市场上常见的有: 镀金腔、镀银腔、陶瓷(原料:非金属矿物)腔、真空镀制的介质膜、氧化镁与硫酸钡等无机粉末。有些反射材料或涂料需要喷涂在基板或者保护玻璃板上使用。图1 激光但上述反射材料做成的泵浦腔在结构上存在以下问题: 长时间使用,其反射表面很容易被氧化或者被污染; 易受紫外光和外部环境影响,导致材料表面变质; 此外针对高功率激光或者过于冷却或加热环境下保护玻璃易于破裂;这些因素都会降低泵浦腔的反射率,导致激光器性能的下降与丧失。图2 蓝菲光学Spectralon漫反射材料蓝菲光学(Labsphere)的Spectralon® 反射材料是一种可被加工成各种不同形状从而用作光学元器件的热塑性树脂。该材料的硬度与高密度聚乙烯大致相等,并在高于400℃的温度下仍具有热稳定性。图3 蓝菲光学为激光供应商定制生产的激光泵浦腔蓝菲光学为激光制造商提供定制款Spectralon® 激光泵浦腔,该Spectralon® 激光泵浦腔工作时以漫反射为主。使用过程中具有非常好的热稳定性、耐久性、化学惰性和朗伯特性。围绕在激光棒周围的Spectralon® 反射器通过反射泵浦辐射(该辐射在首次通过时不会被激光棒吸收)来再次提高泵浦效率。与其他材料相比,使用Spectralon漫反射材料的好处包括: 如果遵循Spectralon的设计准则,则易于机械加工 极其均匀的泵浦可产生完美的光束轮廓 超长的使用寿命。
  • 扬子石化实现乙烯在线色谱分析
    日前,扬子石化塑料厂攻克了在线色谱的技术难题,其第二套聚乙烯装置成功生产出DGDA-6098新产品。目前,该装置在线分析仪运行稳定。   据了解,该牌号产品工艺复杂,对在线色谱实时分析依赖性强、条件严苛,使其开发受到制约。为此,技术人员根据参数要求做了大量细致的检测、调试工作,并用纯氮中含微量CO标气进行定性、定量检测,排除各类干扰。与此同时,他们还调整氢气、氮气、空气配比和自动点火设置,并及时排除故障点。随着开发进程的推进、原料的增加,技术人员又重新调整配比,修改程序,使在线色谱仪实现了安全稳定运行,确保了新产品的产量和质量。
  • 蠕动泵软管:揭秘细节,掌握蠕动泵的重要组成部分
    蠕动泵是一种以软管为核心的泵商品,具有显著的流体输送效果。软管做为蠕动泵的重要组成部分,其质量和性能直接影响全部泵的运行效果。本文将从软管的材料、构造与应用细节等方面进行深入探讨,给您表述蠕动泵软管的奥秘。  软管材料是软管特征的基本,也是决定软管使用寿命的关键因素。市场上常见的软管材料有:塑胶、塑胶、PVC、氯丁胶等。其中,橡胶管具有强度高、耐磨等特点,主要适用于腐蚀性介质的运输 聚乙烯软管具备抗压、抗氧化等优点,适用一般物质运送。挑选软管材料时,应根据实际需要进行系统合理的选择。  软管结构是软管特征的重要,也是保证软管正常运行的重要因素。常见的软管构造包含:里胆、提高层和外皮。里胆是软管的内衬,与物质接触,其耐腐蚀性和耐磨性直接关系软管的使用期 提高层是软管的支撑层,其材料和结构在于软管的抗压性和抗拉性 外皮是软管的保护层,能保护软管免遭外力和环境腐蚀的伤害。  除开软管的材料和结构外,还应特别注意软管的使用细节。最先,软管应保持直线运行,不要过分弯折,以免导致泵的正常运行。同时,务必维护保养软管连接部分是否牢固或泄露,以确保系统的密闭性。此外,软管还应注意介质温度、浓度等因素,避免高温、高浓度或其他原因造成软管衰老、腐蚀等难题。  一般来说,软管做为蠕动泵的重要组成部分,其质量和性能对整个泵的运行效果是至关重要的。选择合适的软管材料,把握软管构造,留意软管运用细节是保证蠕动泵正常运行的重要因素。我希望本文能为您解决蠕动泵软管细节的疑团,使您更聪明地选择与使用软管。
  • PerkinElmer大庆石化大乙烯扩建项目合作一周年记
    技术领先服务专业,助力攻克检测难题 &mdash &mdash PerkinElmer大庆石化大乙烯扩建项目合作一周年记 1、项目重大,意义深远 2007年12月28日奠基的大庆石化120万吨/年乙烯改扩建工程是中国石油炼化业务&ldquo 十一五&rdquo 发展的重点工程,也是国家科技部863计划重点攻关项目。2012年120万吨/年乙烯改扩建工程建成投产,宣告我国首个国产化大型乙烯成套技术工业化获得成功,彻底改变了半个多世纪以来乙烯技术依赖进口的被动局面,极大地提升了中国石油化工行业在国际炼化领域的话语权。 奠基仪式 2、技术领先是攻克检测难题的保障 2012年8月,PerkinElmer公司作为该项目色谱产品供应商,出色地完成了分布在原材料、化一、化二、塑料、化纤等生产控制单位及产品检测中心的31套最新型号气相色谱仪的安装、调试和运行工作。 难点多、干扰大、分析任务繁重,这些都成为了摆在大庆石化和PerkinElmer面前的难题。凭借高超的技术实力和过硬的产品质量,PerkinElmer设计并提供了最为完善的解决方案。在此期间,PerkinElmer公司的技术、维修工程师们与大庆石化的检测团队一起进行现场实验、验证并改进技术方案,最终开发出了更适合该项目实施的新方法,成功攻克了这些高难度的技术障碍,取得了比预期更快的安装运行完成速度。这些努力和成绩也让大庆石化的工作者更加相信PerkinElmer的技术实力。 永久性气体专用色谱分析仪,因工艺需求是丁辛醇项目中使用频率较高的一台专用分析设备。考虑到用户的高频率分析需求,同时为保证该台设备长期稳定的运行,分析方案采用了多阀切换,一次进样完成对氢、氧、氮、甲烷、一氧化碳、二氧化碳及部分碳二组分的分析。据用户反映,自2012年8月至今,仪器硬件运行稳定没有出现过任何问题,并且检出数据可靠。 永久气分析谱图 另外,作为用户分析的重点,丙烯中的绿油由于组成复杂而导致分析方案较为繁琐,因此,提供一台能对其进行分析的高质量色谱仪是对色谱供应厂商的极大挑战。PerkinElmer独特的流路设计配合稳定可靠的硬件,使色谱仪在稳定运行的同时也为用户提供了精准的数据。 C1-C5,绿油分析谱图 聚乙烯中残留挥发性烃类含量的测定是全密度车间(塑料)检验的重点,产品中的残留挥发性烃类也是粉料料仓闪爆的三要素之一。在粉料的生产中,因粉尘及粉尘摩擦的不易控制性,唯一可以控制的残留挥发性烃类的浓度检测就显得尤为重要。料仓中的可燃性气体的量有积累的效应,所以准确测定聚氯乙烯粉料料仓中挥发性烃的类型及含量,对正确调整聚氯乙烯的生产工艺和保障粉料料仓的安全提供了重要依据。对此,作为整体化色谱解决方案的PerkinElmer公司采用了具有压力平衡的TurboMatix 16型顶空进样器配合Clarus 580型气相色谱仪进行检测,该方案得到了令用户满意的分析效果。 全密度车间分析室 聚乙烯中残留挥发烃类分析谱图 3、持续的现场服务是PerkinElmer赢得用户信任的关键 时光飞逝,在项目开工近一年之际,PerkinElmer公司主动深入用户现场,不仅由资深维修工程师对所有仪器进行全面检查,更积极开展一周年总结活动,在总结前期经验的基础上讨论和解决新出现的问题。这让用户惊喜的同时,也对PerkinElmer公司的售后服务赞不绝口。2013年7月22日至2013年7月25日,PerkinElmer公司在黑龙江省大庆市举办了为期4天的色谱用户回访活动。活动期间,由地域销售经理、资深色谱服务专家、色谱应用技术人员组成的回访团队对黑龙江省大庆地区的石化用户逐一进行了走访。PerkinElmer公司本着对用户负责的精神,此次活动采取一对一模式对大庆石化及其周边客户的现有仪器使用情况、仪器保养及实际应用进行了针对性的交流与培训。 大庆石化厂区 大庆石化厂区 化二GC分析室 塑料GC分析室 PekinElmer资深色谱服务专家张沛然经理 PekinElmer色谱技术支持工程师与化二车 对用户2009年采购的Clarus 500型GC进行间技术人员对仪器日常使用、维护注意事 维护检查与经验交流 项和使用心得进行交流 回访期间,结合当前石油石化领域热点分析方案,PerkinElmer技术支持人员还与大庆石化质检中心、大庆石化研究院等单位开展了面对面的技术沟通。 质检中心经验交流会 面对面技术沟通活动 通过此次回访活动,不仅提高了用户的操作水平和相关知识、维护了仪器的状态,更解决了困扰用户多时的日常工作中的样品处理问题。同时此次服务团队的专业技术、服务理念以及PerkinElmer气相色谱仪的优异性能和长期的稳定性得到了用户的广泛认可。此次回访活动不但为客户解决了问题,更节约了数万元的维修费用,受到大庆石化领导和使用者的一致好评。 4、领先的技术,专业的服务,是PerkinElmer公司不变的承诺 作为分析仪器行业的领导者,PerkinElmer公司自1937年成立至今,不断为用户提供着最先进的仪器、技术与服务。在色谱领域,PerkinElmer公司于1955年5月推出了世界上第一台商用154型气相色谱仪,自此开创了PerkinElmer公司在气相色谱近60年的发展历程。在这期间,发明第一个气体进样阀、第一台电子积分仪、第一根毛细管色谱柱、第一台整合在一起的GC/MS、第一台带重叠加热功能的顶空进样器&hellip &hellip ,这一代又一代具有里程碑式意义的色谱产品标志着PerkinElmer公司一直从不间断地引导着GC产品的发展方向。 PerkinElmer是石化检测的全球领先者,与所有主要方法制定委员会(ASTM、EI、CGSB等)合作,以确保其解决方案符合或优于所有石化检测要求。PerkinElmer具有成熟的石化分析解决方案,包括炼厂气分析仪(RGA)、天然气分析仪(NGA)、痕量硫分析仪系统等标准模型的应用,用于轻质气体、氯气、变压器油气、液化石油气的其它标准型号分析仪以及模拟蒸馏分析仪均符合ASTM标准,这些典型的石化解决方案如下: 炼厂气分析仪 天然气分析仪 MERGE软件和SIMDIST软件 轻质气体分析仪 煤层气体分析仪 氩气和氧气分析仪 痕量一氧化碳/二氧化碳分析仪 痕量硫分析仪 全范围氢气、氦气、氧气和氮气分析仪 痕量烃分析仪 变压器油分析仪 痕量永久气体分析仪 汽油中含氧化合物分析仪 汽油中含氧化合物和总芳烃分析仪 含氧化合物和苯分析仪 精细烃分析仪 上世纪70年代,PerkinElmer公司色谱产品进入中国,一代又一代坚实可靠的色谱产品及服务为其在中国赢得了使用者的一致好评,特别是对仪器要求极高的石油化工系统。作为石油化工之都的大庆市聚集了PerkinElmer公司众多的色谱产品新老用户,中石化大庆石化公司就是其中之一。 在此次120万吨/年乙烯改扩建工程检测项目成功实施一周年之际,中石化大庆的工作人员们由衷地赞叹道&ldquo 领先的技术,专业的服务,是我们选择PerkinElmer公司最主要的原因&rdquo 。是的,这正是我们PerkinElmer公司对客户&ldquo 不变的承诺&rdquo 。
  • 聚苯乙烯磁性微球正式上架
    产品特点:功能化聚苯乙烯磁性微球是指通过化学修饰结合不同的官能团及具有特异性的抗体、核酸和蛋白,应用于核酸纯化、细胞筛选、免疫分析等多个领域。其表面可以修饰不同的功能基团,如氨基、羧基、羟基等,用于结合不同的生物分子,实现靶向检测和诊断等应用。此外,聚苯乙烯磁性微球还具有以下三大特点:1、单分散性好:粒径均一,可制备出单分散性良好的磁性微球。比表面积大,吸附性好:高比表面积有利于提高与生物分子结合的密度和效率。2、稳定性好:不易发生聚集和沉淀,可长时间保持稳定。材料亲和性好、生物相容性好:具有良好的生物相容性和生物安全性,可应用于生物医学和药物制剂等领域。3、磁响应性强:在外加磁场的作用下,可以方便地实现磁分离和定向操控。应用背景:氨基、羧基化聚苯乙烯磁性微球的应用背景主要基于其独特的物理和化学性质。通过氨基和羧基化修饰,这种材料可以在表面引入多种功能基团,从而实现对生物分子的特异性结合。由于其具有粒径均一、稳定性好、磁响应性强等特点,氨基、羧基化聚苯乙烯磁性微球在生物医学、化学、材料科学等领域具有广泛的应用前景。在生物医学领域,氨基、羧基化聚苯乙烯磁性微球可以用于药物载体、靶向药物、免疫分析、生物传感器等领域。通过其表面的氨基和羧基功能化,这种材料可以与生物分子(如蛋白质、酶和DNA等)相互作用,实现生物分子的分离、纯化和检测。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于制备组织工程支架、细胞培养基质等领域,为组织再生和细胞培养提供良好的微环境。在化学和材料科学领域,氨基、羧基化聚苯乙烯磁性微球可以用于制备高分子复合材料、催化剂载体、过滤材料等。由于其大孔容积和高比表面积等特点,这种材料可以作为添加剂改善材料的性能和特性。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于色谱填料和分离技术领域,实现高纯度、高回收率和高分离效率的分离效果。海岸鸿蒙颗粒标准物质的研发已经达到国内领先、国际前沿水平,其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。其颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、金属、二氧化硅、胶体金和多元琼脂糖等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。此外,海岸鸿蒙还可根据用户需可根据客户需求,提供多种材质,不同粒径,不同功能,单分散、窄分布,近乎于标准球体的微粒定制服务。产品特点: match 产品特点:产品特 啊啊特点:啊大
  • 应用解读|光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜的热分析标准解读
    1. 技术背景图1. 晶体硅太阳能电池结构晶体硅太阳能电池结构由钢化玻璃板/EVA膜/太阳能电池板/EVA膜/背板构成,如图1所示。其中,太阳能电池封装用EVA是以乙烯/醋酸乙烯共聚物(醋酸乙烯含量为30%-33%)为基料,辅以数种改性剂,经成膜设备热轧成薄膜型产品,厚度约0.4 mm。封装过程中EVA受热,交联剂(通常为过氧化物)分解产生自由基,引发EVA分子之间的结合,形成三维网状结构,导致EVA胶层交联固化,交联机理如图2 所示。固化后的胶膜具有相当高的透光率、粘接强度、热稳定性、气密性及耐老化性能。图2. EVA加热过程中在交联剂过氧化物下的交联机理EVA固化不足可直接导致光伏组件在其近20年的使用中性能恶化,这将意味着重大的经济风险。因此为实现经济有效的层压,快速可靠的EVA交联度分析方法至关重要。以往的化学法测交联度耗时长(30小时左右),结果重复性差,并且使用有毒的溶剂(甲苯或二甲苯),无法准确测试较低交联度和较高交联度的EVA。根据国家标准:1)GB/T 29848-2018:光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜2)GB/T 36965-2018:光伏组件用乙烯-醋酸乙烯共聚物交联度测试方法--差示扫描量热法(DSC)采用差示扫描量热法(DSC)是目前较为可靠的分析方法,应用DSC测定光伏组件在层压过程中已交联的EVA的交联度,仅需1小时时间即可获得重复性良好的结果,是一种快速简便的产品质量控制方法。2.方法设计1)DSC:称取未交联和交联EVA样品5~10mg至40μL铝坩埚内,以10 K/min从−60℃加热到250°C,后以20 K/min的速度从250℃冷却至-60℃,再以10 K/min进行第二次升温,全程惰性氩气氛围。交联EVA的交联度可由以下方程计算获得:梅特勒-托利多差示扫描量热仪 DSC2)此外,醋酸乙烯组分的分解机理如下所示:根据上述计算公式,可通过热重法(TGA)分析计算得到EVA中VA的百分含量,从而帮助对EVA来料进行质检,以判定EVA的优劣。TGA/DSC:称取优质和劣质的交联EVA样品至陶瓷坩埚内,以10 K/min从30℃加热到600°C,全程惰性氩气氛围。3.数据分析1)DSC分析计算EVA的交联度图3为未交联EVA样品的升降升循环DSC测试曲线。在第一次升温曲线上可观察到明显的三个热效应,从低温至高温,依次是未交联EVA的玻璃化转变、结晶部分的熔融以及高温处的固化交联放热峰,所呈现的固化放热焓值为ΔH1(17.49 J/g)。由第二次升温曲线在高温处所表现处的平直基线可以得出结论,ΔH1为未交联EVA完全固化所释放出的热焓。图3. 未交联EVA样品的DSC测试曲线图4为交联EVA样品的DSC第一次升温曲线,第二次升温在高温处同样为平直的基线,故未呈现。温度从室温开始,可观察到结晶部分的熔融以及高温处的后固化交联放热峰,所呈现的后固化放热焓值为ΔH2(8.47 J/g)。因此,该交联EVA样品的交联度根据上述计算公式为51.55%。图4. 交联EVA样品的DSC第一次升温曲线1)TGA分析计算EVA中VA的百分含量图5为优质与劣质EVA的TGA/DSC测试曲线。根据EVA的分解机理,TGA曲线上的第一个失重台阶为醋酸乙烯分解产生醋酸的过程,因此失重量为醋酸的质量。第二个失重台阶为EVA中原有的乙烯组分和醋酸乙烯分解产生的乙烯的分解。因此,EVA中醋酸乙烯的含量可由第一个失重台阶即醋酸的失重百分含量的1.43倍计算而得。如图所示,优质EVA的VA含量为29.5%(太阳能电池封装用EVA的醋酸乙烯含量为30-33%),劣质EVA的VA含量仅为16.6%。与此同时,同步的DSC曲线上亦可找到相关判断依据。由于劣质EVA含有更高含量的乙烯组分,因此其结晶能力更强,所呈现的结晶熔融过程表现在更高的温度范围。图5. 优质与劣质EVA的TGA/DSC测试曲线4.小结由此可见,光伏组件封装用EVA胶膜的相关热性能的鉴定可由DSC、TGA或同步热分析TGA/DSC快速给出判断依据。此外,工艺上EVA固化通常采用层压实现,而层压的温度和时间作如何优化可由DSC动力学模块给出科学且精准的预测,为层压工艺提供数据和理论指导。
  • 全自动粘度测量仪测聚苯乙烯的特性粘度及分子量
    聚苯乙烯(Polystyrene,缩写PS)是指由苯乙烯单体经自由基加聚反应合成的聚合物。苯乙烯侧基的苯环加强了分子的刚性,也使聚苯乙烯相较于其他聚合物拥有更优良的性能和更广泛的用途,是四大通用塑料之一。聚苯乙烯(PS)在外观上呈无色透明状,可以自由着色,并具有优良的绝热和绝缘性能。它的玻璃态转变温度高于100℃,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。鉴于聚苯乙烯(PS)材料优良的性能和使用的广泛性,选用合理精准的产品质量检测手段就显得十分重要。乌氏粘度法是一种操作简便、精准度高且应用广泛的高分子材料检测方法,在聚苯乙烯(PS)材料研发和质量控制中用黏均分子量来表征相关数据准确性。以杭州卓祥科技有限公司的IV6000系列全自动乌氏粘度仪、MSB系列多位溶样块、 ZPQ智能配液器一整套黏度测试设备为例。 实验流程:1. 称取所需克数的样品,并使用ZPQ智能配液器进行智能配液,点击配液按键,直接输入需求浓度和样品称取质量即可完成配液。也可以连接天平直接获取样品质量,智能计算出所需移取溶剂的目标体积,减少样品精确称量的繁琐步骤,移液精度可达0.1%。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 将移取好的溶液放入MSB系列多位溶样块之中。MSB多位溶样块采用金属浴的方式进行加热并具有自动搅拌功能,最多同时可溶解15个样品,转速、温度、溶样时间可在屏幕上自行设置,溶样温度最高可达180℃3. 测试过程IV6000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 三思纵横在2023长三角先进高分子材料产业发展大会占一席之地
    近日,2023长三角先进高分子材料产业发展大会暨工程塑料产业创新大会在南京国际青年会议酒店隆重召开。本次大会旨在推动长三角地区先进高分子材料产业的可持续发展,加强产业内企业、科研院所、政府部门之间的交流与合作,促进工程塑料产业的创新与升级。高分子材料是一类由相对分子质量较高的化合物构成的材料,通常包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料等。这些材料具有较高的强度、良好的塑性、较强的耐腐蚀性能,以及很好的绝缘性和重量轻等优良性能。高分子材料可以分为天然、半合成(改性天然高分子材料)和合成高分子材料三大类。天然高分子如淀粉、纤维素、天然橡胶等;半合成高分子材料包括改性天然橡胶、聚乙烯醇、聚乳酸等;合成高分子材料则包括聚乙烯、聚丙烯、聚氯乙烯、聚氨酯、聚酰胺等。高分子材料在工业、农业、医药、日常生活等领域具有广泛的应用。力学测试是评价高分子材料性能的重要手段,对高分子材料的发展具有重要的意义和影响。通过力学测试,可以了解高分子材料的强度、韧性、硬度、耐磨性等力学性能,为材料的优化设计提供依据。可以帮助高分子材料在各个领域中的应用得到验证和推广。是制定高分子材料标准的重要依据。通过测试,可以为材料的生产、加工、检验等环节提供统一的评价标准,有利于提高材料的质量和稳定性。可以推动高分子材料科学的发展和创新。通过对新材料的力学性能进行测试和分析,可以发现新材料的优点和不足,为新材料的研发提供指导。 三思纵横试验机广泛应用于高分子材料行业的研发、生产、质量控制等领域。通过使用三思纵横试验机进行材料力学性能测试,如拉伸、压缩、弯曲、冲击等试验,可以帮助高分子材料生产企业了解材料的强度、韧性、硬度等性能,为材料性能的优化提供依据。还可以帮助高分子材料生产企业对产品进行严格的质量控制,确保产品符合相关标准要求。通过测试,可以发现潜在的质量问题,降低产品在实际应用中的安全风险。为高分子材料研发人员提供丰富的试验数据,帮助研究人员了解新材料的力学性能,为新材料的研发提供指导。对高分子材料的力学性能进行测试,可以帮助材料在不同行业领域的应用得到验证和推广,如建筑、交通运输、电气电子等。三思纵横的电子万能试验机、动态疲劳试验机、溶体流动速率试验机、热变形维卡软化点试验机、落锤冲击试验机等力学试验机在高分子材料行业内的广泛应用,提高整个高分子材料产业的研发水平和技术水平,推动产业的健康发展。为材料的性能优化、质量控制、创新研发等提供了有力支持,对整个高分子材料产业的发展起到了积极的推动作用。三思纵横此次受邀参加长三角先进高分子材料产业发展大会,不仅了解了先进高分子材料产业的发展现状和未来趋势,还拓展了人脉和资源。三思纵横将继续加大研发投入,瞄准市场需求,持续推出更多具有竞争力的先进高分子材料试验设备。
  • 渤天化工聚氯乙烯厂内发生爆炸
    10月28日凌晨1点半左右,位于汉沽的天津渤天化工有限公司聚氯乙烯厂内发生爆炸。   消防队员立即出动赶赴现场,通过侦查发现是厂内合成机后冷却器出口管路发生爆燃。消防队员中队立即展开扑救,出动水枪,采取堵截冷却措施,防止火势向其他部位蔓延。同时要求企业技术人员采取关阀断料等措施防止火势蔓延。 经过一个小时的扑救,火势得到控制, 3点半左右管道内残留气体燃尽,着火点明火熄灭。   经初步分析,起火原因为乙炔孔板流量计失灵,造成乙炔过量,反应压力升高,造成管路泄漏引起爆炸。   所幸事故并没有造成人员伤亡,详细原因正在调查之中。
  • “十四五”指导意见:炼化+乙烯+高端聚烯烃+新材料成为当下“潮流”!
    近日,工业和信息化部等六部门联合印发《关于“十四五”推动石化化工行业高质量发展的指导意见》(工信部联原〔2022〕34号)发布。《指导意见》中指出,到2025年,大宗化工产品生产集中度进一步提高,产能利用率达到80%以上;乙烯当量保障水平大幅提升,化工新材料保障水平达到75%以上。引导烯烃原料轻质化,加快原油直接裂解制乙烯、合成气一步法制烯烃的技术开发应用,增强高端聚合物供给能力,加快发展高端聚烯烃,创建高端聚烯烃创新中心。从中国石化、中国石油,万华化学、再到浙江石化、恒力石化、盛虹炼化、卫星化学、宝丰能源等民营企业在全产业链布局中,都在着力发展大乙烯+高端聚烯烃或者大乙烯+化工新材料路线。1、加快原油直接裂解制乙烯技术开发应用通过技术变革,原油制化学品的比例已从10%提高到76%,有望达到80%。原油最大化生产化工原料总体上分为芳烃和低碳烯烃两条路线。对于以生产低碳烯烃为主的工艺路线,催化裂解是核心技术。原油最大化生产低碳烯烃主要有三个方向,即最大量乙烯、最大量丙烯、最大量兼产丙烯和乙烯。催化裂解是原油最大化生产低碳烯烃的核心技术,催化裂解原料来源广泛,可以是常规催化裂化(FCC)的各种重质原料,包括减压蜡油(VGO)、脱沥青油(DAO)、焦化蜡油(CGO)、加氢减压蜡油(HT-VGO)、加氢裂化尾油等重质馏分油,以及常压渣油(AR)和掺入减压渣油(VTB)的减压蜡油混合油(Blending of VGO and VTB),也可以是石脑油馏分、C4/C5轻烃等,较蒸汽裂解操作条件苛刻度低,产物分布可灵活调节。2、大乙烯发展国内新建大乙烯规模集中在100-150万吨/年之间,浙江石化、独山子石化、兰州石化等企业领衔国内大乙烯规模发展。民营炼化遵循“减油增化”原则,乙烯收率提升到50%左右。浙江石化仍有2.5期规划,古雷石化(二期)、中科炼化(二期)、中沙古雷、埃克森美孚(惠州)、巴斯夫(湛江)、广东石化、海南炼化、洛阳石化、岳阳石化、广西石化等均有大乙烯一体化项目建设。3、高端聚烯烃发展从全球的生产布局来看,高端聚烯烃生产主要集中在西欧、东南亚和北美地区,中东以大宗通用料为主,其中日本是东南亚高端聚烯烃主要生产国。相关企业包括ExxonMobil、Dow化学、BASF、 LyondellBasell、Total、三井化学、住友化学、旭化成等。国内以中国石化、中国石油等为龙头代表的聚烯烃生产企业正在加速突破高端聚烯烃的技术壁垒,包括a-烯烃、茂金属催化剂、非茂金属催化剂等的研发与生产。高端聚烯烃产品应用领域非常广泛,主要应用在高端管材、汽车零部件、医疗设备、工业管道、高端电子电气等领域。4、化工新材料发展化工新材料产业发展离不开市场的引领作用,新能源汽车、生物、高端装备、新能源、环保节能、轨道交通等产业的发展迫切需要品种众多的功能性化工新材料支撑。
  • 全自动乌式黏度计在PVDC(聚偏二氯乙烯中的应用)
    聚偏二氯乙烯(Polyvinylidene Chloride,简称PVDC)是由偏二氯乙烯(VDC)单体聚合而成的聚合物,结构单元以头尾形式键接,结构对称,极性大,易形成氢键,具有显著的阻水、阻气、阻氧性能,同时还具有优异的耐燃、耐腐蚀、耐化学品性能。PVDC(聚偏二氯乙烯)材料可制成片材、管材、模塑件、薄膜和纤维。其中主要的应用领域是食物和药品的包装。PVDC(聚偏二氯乙烯)材料良好的阻气性能,能够延缓食品氧化变质现象的发生,避免内装物的香味散失和防止外部不良气味的侵入,同时PVDC(聚偏二氯乙烯)材料还具有优异的阻水性,避免了食品因失水而导致的口感降低,是公认的在阻隔性方面综合性能极佳的塑料包装材料。应用于食品包装领域的PVDC(聚偏二氯乙烯)相较于其他工业领域有更严格的质量要求,要求厂家在生产时应具备相对粘度、水分等项目的检测仪器和设备,进行原材料的管控和产品出厂的检测,相对粘度是其核心指标之一。全自动乌式粘度计具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为PVDC(聚偏二氯乙烯)等高分子材料化验分析中的常用实验仪器,为PVDC(聚偏二氯乙烯)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV8000X系列全自动在线稀释型乌式粘度计为例: IV8000X系列全自动在线稀释型乌式粘度计相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗、自动干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 全自动乌氏黏度计在聚偏二氯乙烯PVDC材料中的应用
    聚偏二氯乙烯(Polyvinylidene chloride)简称PVDC,是以偏二氯乙烯(VDC)单体为主要成分的共聚物。一种软化温度在160-200℃的热塑性聚合物,具有头尾相连的线性聚合链结构。PVDC是一种阻湿、阻氧皆优的高阻隔性能包装材料,由于其对称的分子结构和疏水基氯的存在,是一种高结晶性聚合物,阻隔性能好且不会随湿度而改变。PVDC最大优点是对众多的气体或水汽有很高的阻隔性,是当今世界上塑料包装中综合阻隔性能较好的包装材料。基于PVDC的优良特性,其应用领域十分广泛。所以在生产质量控制方面的要求也非常严格。不管是PVDC材料的黏度、水分等项目的检测上,其检测数据的重复性,准确性要求甚高。乌氏黏度计一直以来都是测试黏度的最常用的经典测试工具。现在的全自动乌氏黏度计不仅在操作流程上实现全自动化的模式,其在测试数据上也更加精确。IVS800全自动黏度测量系统测试流程称样用万分之一天平称取聚偏二氯乙烯(PVDC)样品,放入到溶样瓶中,用DP25自动配液器(移液精度≤0.1%)移取定量四氢呋喃溶液到溶样瓶中;融样将溶样瓶放入P12中旺聚合物溶样器中(可多个溶样同时进行溶解),采用磁力搅拌的方式,按照规定的温度、时间溶样;黏度测试将装置聚偏二氯乙烯(PVDC)试样的溶样瓶放入已设置好所需水槽温度(25±0.01℃)的IVS800全自动乌氏黏度计样品盘中,启动测试功能,自动得出测试结果; 测试结果IVS800全自动乌氏黏度计连接电脑端,可自动得出测试结果并进行数据储存,便于多样化黏度数据分析; 清洗黏度管黏度管固定在IVS800全自动乌氏黏度计恒温水槽中,无需拆装取出,可自动清洗、自动排废、自动干燥。
  • 全自动乌氏粘度计在PVF(聚氟乙烯)材料中的应用
    PVF又名聚氟乙烯( polyvinyl fluoride )是一种热塑性高强度树脂,是含氟聚合物同系物中所含氟原子较少的聚合物,通常情况下呈无臭、无毒的白色粉末。密度为1.38,在240℃以上分解,具有晶体结构、高透明度(可透过紫外线)、高电绝缘性能、高坚韧性、优良耐化学品、抗老化和耐腐蚀性能。PVF(聚氟乙烯)通常作为薄膜和涂料应用于建筑装饰、电子电路、太阳能等领域。PVF(聚氟乙烯)材料独特的结构使他对日照、化学溶剂、酸碱腐蚀、湿气和氧化作用的有优秀抵抗力和耐久性,在室外阳关暴晒25年以上仍能保持良好的外貌和物理性能,制成的薄膜,既可用作农用薄膜、材料的保护膜、包装油脂和腐蚀性物质,也可用作电绝缘材料等。乌氏毛细管法是PVF(聚氟乙烯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性黏度也是PVF(聚氟乙烯)材料的核心指标之一。乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌式粘度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以ZVISCO IV6000H系列全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV6000H系列全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间的精度可到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000H系列全自动乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:IV6000H系列仪器可自动排废液,自动加清洗液干燥液、自动清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000H系列全自动乌式黏度计可实现自动测试、自动排废液、自动加清洗液和干燥液、自动清洗,自动干燥,告别了粘度管是耗材的时代。
  • 旋转蒸发仪JULABO泵及配套设备 夏季促销
    IKA&RENHE数显旋转蒸发仪 电动升降 转速范围:20-270 RPM 控温范围:RT-180℃ 水浴锅体积:3L 冷凝管类型:竖型(斜型可选) 冷凝面积:1200cm2 蒸发瓶容积:1L 收集瓶容积:1L RV10 数显型旋转蒸发仪 夏季促销价优惠 真空泵 所有与气体接触部分,均为聚四氟乙烯(PTFE)材料, 双级泵最低真空度13mbar 抽气速度23L/min 功率95W 独特的结构设计,噪音小于50dB Chemvak 防腐蚀真空泵C410 促销价¥8500 德国JULABO 温度范围: -20-40℃ 显示分辨率:0.1℃ 温度稳定性:± 0.5℃ 制冷功率: 300W(20℃) 体积(W× L× H): 25× 50× 60(cm) 重量: 41Kg 泵流量:15L/min FL300循环冷却器 促销价:¥22800.00 冷却循环器,无加热功能 温度调节方式:数字 工作温度:-20~+40℃ 温度稳定性:± 1℃ 制冷功率:500W 泵流量12L/min, 泵压0.2bar 充液体积:4L 冷却循环系统 KV600 促销价¥51850.00 最终压力:-0.098MPa 抽吸速度:10L/min× 2 郑州长城 SHZ-D(Ⅲ)循环水真空泵 促销价 ¥1780
  • 中旺全自动乌氏黏度仪在聚偏氟乙烯PVDF行业中的应用
    前言聚偏氟乙烯PVDF,是一种高度非反应性热塑性含氟聚合物,溶于二甲基乙酰胺等强极性溶剂。相对分子质量为40~60万,PVDF生产工艺主要包括乳液聚合法、悬浮聚合法、溶液聚合法以及超临界聚合法等。它除了具有良好的耐化学腐蚀性、耐高温性、耐氧化性、耐气候性、耐紫外线、耐辐射性能,还有压电性、热电性等特殊性能,其广泛应用于涂料、注塑、锂电池、水处理、光伏等领域。其中PVDF的特性黏度是其非常重要的一项技术指标,是企业鉴别PVDF合格与否的手段之一。就目前PVDF产能情况而言,随着下游需求的增长,尤其是新能源汽车带来锂电池的爆发式增长,国内企业纷纷扩产,开工率保持高位。鉴于这样的背景和企业需求,杭州中旺科技生产的全自动乌氏黏度仪有效地应用了聚偏氟乙烯PVDF特性黏度的检测。某PVDF厂家的IVS400-6全自动黏度仪全自动IVS400全自动黏度仪以乌氏黏度计为核心,依据ISO/GB/DIN相关标准,实现自动测试、自动计算、自动排废、自动干燥等功能,乌氏黏度管固定无需拆装,有效地减少了配件损耗。主要组成部分:▂高精密恒温水槽(控温25.00±0.01℃);▂自动黏度测量单元(自动计时:精度0.001S,自动清洗,自动排废等);▂主控制器(最多可同时控制6个测试单元);▂乌氏黏度计(符合ISO3105规定);▂流经式制冷器(连续不间断工作);▂Viscobee软件:覆盖大部分测试结果(特性黏度、分子量、黏数、聚合度等),并且可免费添加其他特殊公式。某企业PVDF特性黏度检测:测试流程▂称样用万分之一天平称取PVDF样品,放入到溶样瓶中,用DP25自动配液器移取溶剂到溶样瓶中;▂溶样将溶样瓶放入P12中旺聚合物溶样器中,按照规定的温度、时间溶样;▂黏度测试打开IVS400黏度仪,水槽温度设定为25℃±0.01℃,将溶液经过滤后加入乌氏黏度计中,打开软件,自动测试、计算;▂测试结果特性黏度:某一厂家PVDF黏度测量数据▂清洗乌氏黏度管自动清洗、自动排废、自动干燥。
  • 美环保局撤销对亚乙烯基酯的进口限制建议
    美国环保局(EPA)近日撤销了根据《有毒物质控制法案》对亚乙烯基酯(vinylidene esters)发布一项重要新用途规则的提案,该物质也是两个&ldquo 制造前通知(pre-manufacture notices)&rdquo 的目标物质。EPA指出,采取该行动是对拟议规则收到的公众评议的回应。具体来说,提交的信息表明,氰基丙烯酸酯(cyanoacrylates)比拟议规则中的亚乙烯基酯更适合作为评估水生生物潜在毒性的结构类似物,这是拟议的重要新用途规则的通知要求的依据。   决定一种新的化学品作为新用途使用必须考虑以下相关因素,包括(一)该化学物质的预计制造和加工量 (二)该使用方法改变人类或环境暴露于该化学物质的类型或形式的程度 (三)该使用方法增加人类或环境暴露于该化学物质的强度和持续时间的程度 (四)制造、加工、分销,以及处理该化学物质的合理预期方式和方法 和(五)任何其他相关因素。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制