当前位置: 仪器信息网 > 行业主题 > >

水质溶定仪

仪器信息网水质溶定仪专题为您提供2024年最新水质溶定仪价格报价、厂家品牌的相关信息, 包括水质溶定仪参数、型号等,不管是国产,还是进口品牌的水质溶定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水质溶定仪相关的耗材配件、试剂标物,还有水质溶定仪相关的最新资讯、资料,以及水质溶定仪相关的解决方案。

水质溶定仪相关的资讯

  • 水质49种全氟和多氟化合物,一针进样全搞定
    导读全氟和多氟烷基化合物(per-and polyfluoroalkyl substances, PFAS)是一类新型持久性有机污染物(POPs),广泛应用于日常生活和工业用品中。研究表明这些化合物易于生物累积,且可能导致肝毒性、致癌性、生殖毒性以及干扰内分泌等特性。如今,天然环境中化学抗性PFAS的排放量不断增加,同时这些人为污染物在天然和处理水域、人类和动物生物体中的存在都构成了巨大的环境挑战。 全氟辛酸小档案中文名:全氟辛酸英文名:Perfluorooctanoic AcidCAS号:335-67-1分子式:C8HF15O2分子量:414.07 PFAS法规要求及分析特点PFAS含有几乎无法被破坏的C-F键,被称为“永生的分子”,由于其没有显示出任何被生物降解的迹象,因此也被称为“永久性化学品”。 斯德哥尔摩公约于2009年通过了全氟辛烷磺酸及其盐类和全氟辛烷磺酰氟成为持久性有机污染物(POPs)的一个重要检测项目。2010年3月17日,欧盟委员会发布2010/161/EU号议案,建议对食品中全氟烷基化合物进行监控。 PFAS的检测面临诸多挑战,一是来源于玻璃器皿和实验器材的本底污染,这对前处理耗材、检测仪器纯净的要求极高,简单的前处理步骤也更有利于降低干扰;二是浓度低,美国EPA于2016年发布的水质安全建议中,要求水质中PFOA和PFOS的限量是70 ppt,因此要求仪器具备较高灵敏度。 岛津解决方案岛津超高效液相色谱-质谱联用仪LCMS-8050 参考美国ASTM D7979标准水质PFAS的分析方法,采用岛津超高速LC-MS/MS(UFMSTM)技术,建立了快速、稳定、高灵敏度的49种PFAS(30种目标物和19种内标)分析方法,为客户提供环境中PFAS痕量分析的全方位解决方案。 表 1 PFAS检测标准比较 样品前处理分析条件 表2 梯度条件干扰的消除PFAS可能存在于溶剂、玻璃器皿、移液管、导管、脱气机和LC-MS/MS仪器的其它部件中。为了避免来自系统的干扰,在溶剂和样品阀之间放置一个延迟柱,延迟来自系统的PFAS出峰时间,从而消除系统的干扰。图1 PFOA色谱图:(a)无延迟柱(b)使用延迟柱 绘制9点校准曲线对PFAS目标物进行校准,线性范围5 ppt-200 ppt,所有化合物线性回归系数R20.99。各标准品校准误差均在±30%以内。 图2 49种混标溶液(100 ppt)TIC图(黑色)和MRM图(其它颜色) 表3 保留时间、检出限、线性范围、准确度、精密度*FHEA, FOEA ,FDEA使用400 ng/L计算准确度和精密度 结语 随着PFAS的不断向全球扩散,或许我们已经找不到一片极净之境。在你所不知道的隐秘角落,这种 “永生的分子”正在威胁着人类赖以生存的水源安全。淘汰有害PFAS制品的活动正在一步一步推进,在这个过程中,岛津公司愿与所有致力于地球和人类健康的人们一道,利用科学、高效、灵敏的分析手段共同守护我们的生命之泉。 *数据来源于岛津科学仪器-美国 参考资料: 1.U.S. Environmental Protection Agency, "US EPA Method 537: Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography / Tandem Mass Spectrometry (LC/MS/MS)," Washington D.C., 2009.2.ASTM International, "ASTM D7979-17: Standard Test Method for Determination of Perfluorinated Compounds in Water, Sludge, Influent, Effluent and Wastewater by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.3.ASTM International, "ASTM D7968-17a: Standard Test Method for Determination of Perfluorinated Compounds in Soil by LIquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.United States Environmental Protection Agency, "US EPA - PFAS Research and Development," 14 August 2018.
  • 保护水质安全,共建绿色地球 ——水质监测中溶解氧测量的应用
    当今世界,环保与可持续发展问题越来越受到关注。当前,我国一些地区水环境质量差、水生态受损重、环境隐患多等问题十分突出。国务院刚刚印发了关于印发水污染防治行动计划的通知-国发〔2015〕17号,主要目标是到2030年前七大重点流域水质优良比例总体达到75%以上,城市建成区黑臭水体总体得到消除,城市集中式饮用水水源水质达到或优于Ⅲ类比例总体为95%左右。对于环境水质监测,常规五参数包括了温度、pH、溶解氧(DO)、电导率和浊度。溶解氧(DO)是指溶解于水中的分子态氧,是水体与大气平衡或经化学、生物化学反应后存在于水体中的氧。天然水中溶解氧的含量是评价水体、水质和水体自净能力的重要指标,是水产养殖业、自来水厂、污水处理厂和水质监测部门必不可少的测定项目。目前市场最主流的测量方法为电化学方法,但是有以下几个缺点:1. 样品需要流动,且要达到一定流速;2. 电化学方法本身消耗氧气,造成测量值容易漂移,重复性不好;3. 因为很多样品会干扰电化学反应,适用样品范围不广,比如很多污水不能测量;4. 电化学电极有膜,容易损坏;更换膜和溶液也比较麻烦;维护工作多;5. 因为电化学电极容易干扰漂移,每次测量前都需要校准操作;操作繁琐。现在奥豪斯公司隆重推出了最新光学科技的 ST400D便携溶氧仪,具备了光学科技的诸多优点:1. 样品不需流动;2. 测量不需要消耗氧气,重复性好;3. 适用样品范围广,可测量污水;4. 电极没有易损坏的膜,基本不需维护;5. 光学信号稳定性好,几个月校准一次即可。 另外,为了提高客户的使用体验,ST400D采用了彩色点阵液晶屏,显示更清晰;大气压自动检测并进行气压补偿,测量更准确;IP54防水防尘,配备腕带防止意外跌落。更为关键的是,市场上的光学溶解氧仪一般价格在2万元左右或以上,奥豪斯为了推广更好的光学科技产品,ST400D光学溶解氧仪的定价在1万元以内。更好的性价比是奥豪斯公司的不懈追求。
  • 号外!坛墨质检新品-水质色度标准溶液 问世了!
    产品名称:水质色度标准溶液产品编号:BW20030-500-C-20技术指标:500度包装规格:20mL(安瓿瓶)应用领域:水质检测中色度指标监测相关国标:GB 11903-89及《水和废水监测分析方法》一 概念普及 水的颜色定义为“改变透射可见光光谱组成的光学性质”,可区分为“表观颜色”和“真实颜色”。水的表观颜色,指由溶解物质及不溶解性悬浮物产生的颜色,用未经过滤或离心分离的原始样品测定。而水的真实颜色,是指仅由溶解物质产生的颜色,用经0.45μm滤膜过滤器过滤的样品测定。没听过的,自行脑补。 色度的标准单位是度:在每升溶液中含有2mg六水合氯化钴(Ⅱ)和1mg铂[以六氯铂(Ⅳ)酸的形式]时产生的颜色为1度。二 产品介绍1.名称及配制 本产品《色度标准溶液》,依据国标GB 11903-89及《水和废水监测分析方法》相关指标,购买昂贵的含铂原料,配制成Pt-Co标准溶液,以供水质监测市场需求。2.应用范围 适用于黄色色调的天然水、饮用水、受工业废水污染的地表水以及纺织、印刷、造纸、食品、有机合成工业的废水等的测定,以满足水质监测领域的需求。不适用于非黄色的其他颜色种类的测定。3.产品特点 本产品为深黄色液体,用20mL安瓿瓶包装,推荐避光冷藏储存,配制所用原料均为溶解性物质,故溶液颜色稳定,透明,为均相体系,均匀性可靠,用户可放心使用。三 测试结果1.仪器与材料 哈希DR3900分光光度计;20mL比色皿;2.测试结果 采用分光光度法测定,使用计量院的色度标准溶液(GBW(E)080345)为参考基准,测试结果相对偏差均在2%以下或1度以下,表明此产品的色度值准确可靠。四 探讨延伸 分光光度法测水质色度准确度高,灵敏度、精密度好,最低适宜测试度数为2.2度,最高测试度数可达70度以上,可以避免因分析人员的视觉差异而带来的误差。用户也可根据情况借鉴引用。 传统的铂钴标准比色法和稀释倍数法,肉眼凡胎直接观察,易造成较大误差,而且不同人员不同环境下观察,误差大小也会有所不同。相对而言,使用仪器比色可以大幅度提高色度测定的灵敏度准确度。 但是,分光光度法测定色度值毕竟只测试单点波长的吸光度,从而计算出色度值,万不能代替人眼的可见光范围,所以国标方法适用范围会更广。如果水样浑浊,或者水样显现其他颜色种类,则不能使用此种方法定值。 此外,笔者查阅大量资料发现,某些学者老师采用紫外可见分光光度计,在350~600nm的波长范围内求出峰面积,然后以峰面积对色度绘制标准曲线,从而得出色度值。据文献介绍,此种方法比最大吸收波长法更为准确,有兴趣的用户也可以试验对比。在分析检测方法中,可使用重铬酸钾来代替氯铂酸钾配制标准色列,但此溶液不宜久存,具体见《水和废水监测分析方法》。故在此寻求讨论学习,望有志之士、有识之师留言交流。请赐教!
  • 水质铜超标?我们如何判定?
    一、背景介绍在自然水体、废水和工业废水中都有铜的存在,微量的铜对人体是有益的,可补充人类食物中铜的不足,同时,铜能起到杀灭自来水中某些细菌的作用。但是铜含量过高的饮用水会对人体有危害,且含铜废水灌溉农田,使铜在土壤和农作物中累积,会造成农作物生长不良。《生活饮用水卫生标准》、GB/T 14848-2017《地下水质量标准》、GB 3838-2002《地表水环境质量标准》、GB 8978-2002《污水综合排放标准》等水质标准对铜含量均有限值要求,故我们需要对水质中铜含量进行检测。下面我们将具体介绍铜含量检测的标准要求、测试方法、具体测试过程及结果。 二、方法及限值水中铜的测定方法主要有分光光度法、原子吸收分光光度法、电感耦合等离子体质谱法和电感耦合等离子发射光谱法等。AAS法、ICP-AES法、ICP-MS法所需仪器体积庞大,需要专业的实验室,而且价格昂贵,而分光光度法不仅体积小巧,测试性价比高,易于携带保管,比较适合于在农村或县级实验室推广使用。对于铜的现场测量,双乙醛草酰二腙分光光度法不仅适用范围广,而且测量准确。双乙醛草酰二腙分光光度法:在pH 8.4-9.8的氨性介质中,以柠檬酸铵为配位剂,铜与双环己酮草酰二腙生产蓝色配合物,在特定波长下测定其吸光度。表1铜的检测标准及限值标准编号标准名称限值GB 5749-2006GB5749-XXXX征求意见稿生活饮用水卫生标准1.0mg/LGB/T 14848-2017地下水质量标准≤1.50mg/L(Ⅳ类)GB 3838-2002地表水环境质量标准≤1.0mg/L(Ⅳ类)GB 8978-2002污水综合排放标准≤2.0mg/L(三级标准) 三、铜含量测定1、检测仪器:DGB-480型多参数水质分析仪2、检测试剂:铜试剂包:铜缓冲液、铜显色剂溶剂、铜显色剂粉剂 铜标准溶液:ρ=1000.0mg/L3、检测流程及结果:参数方法号方法检出限mg/L测量范围mg/L重复性测量误差铜24双乙醛草酰二腙法0.0250.025-10.002.00%±5%或±0.05mg/L 图 1 铜含量测定流程 图2 铜含量测定显色图(从左到右依次为0mg/L、2mg/L、5mg/L、8 mg/L、10mg/L) 图3 铜含量测定曲线图4、结果总结:● 对0mg/L、2mg/L、5mg/L、8 mg/L、10mg/L的铜标准溶液进行检测,重复性≤0.6%,测量误差≤2.8%,结果良好。● 采用DGB-480型多参数水质分析仪测定水中铜含量,测量方法为国家标准方法。测试仪器体积小巧,配套有铜检测试剂和校准试剂,测试方便,测试性价比高。 四、检测仪器介绍DGB-480型多参数水质分析仪,采用8波长光学测量系统和90度光散射浊度检测光路,内置浊度、色度、臭氧、亚硝酸盐氮、尿素、六价铬、总铬、锰、总氮、 硝酸盐氮、硝酸盐、甲醛、水硬度、锌、亚硝酸盐、余氯、总氯、 二氧化氯、高锰酸盐指数、低浓度 CODCr、高浓度 CODCr、镉、 氨氮、铵离子、总磷、总磷酸盐、镍、亚铁离子、铁、亚硫酸盐、 过氧化氢、铝、铅、铜、钙、汞、硼、砷、氟、阴离子洗涤剂、 银、溴酸盐、硫酸盐、钼、铍、钴、钡、氯化物等40多种检测项目和方法,直接调用,测量快速、简便。既可以配套雷磁专用试剂盒检测也可以自制试剂检测,使用灵活。主要应用于生活饮用水、地表水、自来水、污水、游泳池水等水质的现场测定或者实验室分析。
  • “仪器小联合国”紧盯太湖水质
    仪器精 站里监测仪器来自英、美、德、日等国,代表目前世界最先进水平。   指标全  每天要检测的指标有32项,包括pH值、溶解氧、叶绿素、藻密度、电导率等。   更新勤 部分数据每5分钟更新一次,密切监控太湖水质。   “我们这个水质自动监测站里的监测仪器来自英、美、德、日等国,就像一个‘小联合国’,代表了目前世界最先进的水质监测水平,能监控太湖水里32种物质。”苏州市环境监测中心站自动监控室副主任吕清说。   近日,记者来到位于太湖边的金墅港水源地。在这里,市环境监测中心站设置了一个水质自动监测站,由吕清所在的自动监控室负责管理。每星期,自动监控室工作人员都要来到这里取水样,进行人工检测,得出的水质数据将与自动监控室仪器监测到的水质进行对比,以检验仪器是否精确和正常运行。   据了解,目前市环境监测中心站直接监控管理的水源地水质自动监测站有三个,包括位于太湖的金墅港、渔洋山和位于阳澄湖 (论坛)的湾里。在这三个站中,金墅港水源地由于靠近无锡,地理位置比较特殊,因此太湖水在这里受到了最严格的监控和监测。吕清告诉记者,按照常规,金墅港水源地的湖水,一年一次检测的指标达108项,一个月一次检测的指标有64项。另外,每天要检测的指标有32项,“主要的监测指标包括pH值、溶解氧、叶绿素、藻密度、电导率等。”去年,这个站又添加了四台仪器,用于监测藻毒素、挥发性有机物、挥发酚等项目。   近年来,蓝藻监测是非常重要的一项内容。昨天上午10点,藻密度监测仪显示的数据是每升水内为242万个细胞。“这个数据每5分钟更新一次。”吕清解释说,“舀起杯太湖水,这个数据如果低于300万,这杯水将非常清澈透明 如果这个数据超过500万,水杯里将会看到蓝藻颗粒物 如果数据超过3000万,那就超过了警戒线。在去年监测期间,苏州的太湖水面藻密度最高时达6000万,并出现了二三次。”   与藻密度联系在一起的是藻毒素,为蓝藻死亡后释放的一种毒素,也是造成水污染的罪魁祸首之一。从去年开始,金墅港水质自动监测站特别增加了一台藻毒素在线分析仪,这也是一台针对蓝藻的深层次监测仪器。当天10点,记者看到,该监测点藻毒素的数据是0.51微克/升,远低于1微克/升的标准值。   随后,吕清和工程师顾俊强从车里拿出一台“多指标在线监测仪”,对湖水进行实地检测。“这个仪器可以根据检测项目的不同,增加不同的检测探头。”吕清说。当天检测的指标是溶解氧、叶绿素、藻密度、水温和电导率。顾俊强将仪器探头伸入水面下0.5米深处,几分钟后,吕清手上的显示屏出现了上述几个项目的指标。“1米的水深和0.5米的水深,藻密度测出来的数据完全不同,并且光线的影响也相当大。因此,我们人工测藻密度的时候,经常会分层测,以便得出更加科学的数据。”吕清说。    吕清(右)和顾俊强对太湖水进行检测,监测仪器显示屏上即刻显示了水质实时数据
  • 禾工电位滴定仪水质检测专题培训—山东站
    2018年3月中旬,上海禾工在山东省安排进行两场电位滴定仪专题技术交流培训会。第一站:山东省水环境检测中心山东省水环境监测中心负责全省地表水、地下水的水质监测;参与水功能区的划分、审定水域纳污能力和编制水资源保护规划;承担全省河流、湖泊、水库、入河排污口、取水许可、重点水功能区及主要供水水源地的水质监测;承担水资源论证的水质调查、监测及评价等工作。单位于2018年3月在我司购买了两台CT-1plus多功能全自动电位滴定仪,用来进行日常工作中的水质检测。现场培训中用户与禾工技术员互动频繁,学习氛围非常浓烈。 用户上机实践操作 认真学习CT-1plus多功能全自动电位滴定仪检测技术 第二站:青岛华世洁环保有限公司青岛华世洁环保科技有限公司是国内较早从事工业有机废气(VOCs)治理的专业厂家,公司产品广泛应用于汽车涂装、石油化工、包装印刷、医药制造、涂布涂料等VOCs治理行业;近期,在我司销售与青岛华世洁环保采购、技术的洽谈和仪器选型后,很快达成了合作共识。仪器于3月中旬安调培训结束。 CT-1plus全自动电位滴定仪安调培训现场 仪器验收成功,用户非常认可禾工CT-1plus全自动电位滴定检测技术,并对本次安调培训服务表示满意!
  • 天瑞仪器在线水质监测系列再添新丁
    继WAOL 2000-Cr6+水质在线分析仪-六价铬之后,天瑞仪器推出WAOL2000-TCu水质在线分析仪-总铜、WAOL2000-TNi水质在线分析仪-总镍两款系列产品。 研发背景:立足&ldquo 十二五&rdquo 重金属规划 &ldquo WAOL 2000水质重金属在线监测系列&rdquo 的陆续推出,是立足对国家相关政策及市场需求的认真研读。 2011年2月,国家通过了《重金属污染综合防治&ldquo 十二五&rdquo 规划》,计划5年内投入750亿元、建成比较完善的重金属污染防治体系。重点防控的重金属污染物分为两类:第一类:铅、汞、镉、铬、砷;第二类:铊、锰、铋、镍、锌、锡、铜、钼等。 同时,&ldquo 十二五&rdquo 规划还将饮用水安全建设列入了重点工作,计划通过加大资金投入、改善基建设施、提高监管力度等措施,解决饮用水安全问题。 WAOL 2000系列能有效满足污染源(造纸、钢铁、制药、石油化工、电镀、皮革、冶金、印染等国家要求监控的重点污染排放行业)及市政污水的重金属在线监测需求,且检测结果完全能满足相关政策及标准要求。 WAOL2000-TCu水质在线分析仪-总铜的检测结果完全能达到GB/T1.1-2008、GB/T1.2-2008、HJ486-2009《水质铜的测定2,9-二甲基-1,10菲啰啉分光光度法》等国标及行标要求;WAOL2000-Tni水质在线分析仪-总镍检测结果则完全能满足GB/T1.1-2008、GB/T1.2-2008、HJ11910-89《水质镍的测定 丁二酮肟分光光度法》等国标及行标要求。 技术攻克:有效解决当前用户困扰 稳定性低、维护量大、故障率高,是当前市场&ldquo 在线监测系列产品&rdquo 困扰用户的几大问题。天瑞仪器&ldquo WAOL2000系列水质在线重金属分析仪&rdquo ,则采用先进的软件与硬件设计,通过长达10个月的调查研发,有效克服了上述难点。 WAOL2000-TCu、WAOL2000-TNi测试水平处于国内领先,精度可达2%。仪器基于比色法检测原理,采用天瑞自主研发的交流调制检测电路与滤波算法,并引入高精度注射泵,有效提高了仪器准确度及稳定性。 WAOL2000-TCu、WAOL2000-TNi还配备全自动高精度稀释装置,极大的扩充仪器的线性范围。仪器有效测量范围为0.05~5mg/L。可存储一年以上的运行数据。 人性化、智能化的系统设计,是仪器的另一大特点。仪器的所有功能,均能在触摸屏界面操作完成,还可远程遥控。可自动水泵采样,自动校准、自动报警、自动存储等功能使仪器颇具亮点。 客户试用:连续720小时稳定运行 为进一步确保WAOL2000-TCu、WAOL2000-TNi两款产品的整理检测性能,天瑞仪器对产品反复自检。并邀请重金属水质监测单位试用。目前,实验室检测及客户试用反馈效果良好。 天瑞对研制成功的WAOL2000-TCu、WAOL2000-TNi进行了严格反馈检测。检测项目包括:精密度、准确度、直线性、零点漂移、量程漂移、检出限、长期稳定性、平均无故障运行时间、电压稳定性、分析时间、仪器异常测试等。各项指标检测结果良好。 实际水样比对试验进一步验证了仪器准确度。研发团队专门从市电镀管理中心实地采集水样,带回实验室采用多款仪器比对测试。重复测试结果表明:WAOL2000-TNi对水样中总镍的测试结果,与AAS6000原子吸收分光光度计基本一致;WAOL2000-TCu对水样中总铜含量的测试结果,与分光光度计保持一致。 市电镀管理中心试用结果则进一步证实了WAOL2000系列的整机性能。仪器连续运行720小时无故障。测试过程真实反映昆山某金属制造公司排放污水中的重金属含量,每日测试数据与现场手工对比数据一致性好。 WAOL2000系列更多详情: http://www.skyray-instrument.com/cn/product/cplb.aspx?typeid=124 WAOL2000系列产品 了解天瑞仪器:www.skyray-instrument.com
  • 上海禾工自动电位滴定仪助力“现代化水厂”水质检测项目
    太湖水厂成立于2008年9月,是集自来水生产及输配业务、污水收集处理及配方业务、水务投资及运营、水务设施设计及建设等业务为一体的供水服务企业。现总设计供水能力为56万m3/日,污水设计总处理能力为13万m3/日。 在5月22日召开的浙江省城市水业协会第七届理事会第五次(扩大)会议上,太湖水厂被授予“浙江省现代化水厂”称号,成为湖州市首个省级现代化水厂。 饮用水安全直接关系到千家万户,作为市内第一座拥有深度处理工艺的大型水厂,太湖水厂不断提高生产技术和运行管理水平,通过信息化手段强化水质管理,确保饮用水水质安全。 近日,太湖水厂经过多方对比,技术负责人选购了禾工CT-1Plus型多功能全自动电位滴定仪,仪器在7个工作日内安装调试、验收成功。CT-1Plus自动电位滴定仪运行稳定、检测精度高等特点得到用户的赞扬;同时,禾工也为能在水质行业检测项目中尽一份锦薄之力而感到自豪! 自动电位滴定仪水质分析检测项目:碱度、总硬度、PH值、铁、铜、锰、硫酸盐、硝酸盐等。
  • 国鼎环科和天津师范大学水质实验室达成合作协议
    国鼎环科和天津师范大学水质实验室达成合作协议:由国鼎提供了全套的水质分析仪器,主要是热电旗下奥利龙Orion的实验室PH,溶氧,ORP,CO2离子测定仪,以及浊度和COD测定仪。我们将努力为客户提供卓越的仪器和完善的售后,履行&ldquo 让科研更精确,更轻松&rdquo 的理念。
  • 北京市计量院推进在线水质仪器国家规范的制定工作
    根据国家市场监督管理总局文件通知,北京市计量检测科学研究院(以下简称“北京市计量院”)承担了《硫化物水质在线自动监测仪校准规范》制定工作。近期,北京市计量院化医所规范起草小组先后前往多个仪器研发生产单位进行调研交流和实验工作。   水中硫化物超标会严重危及人体生命安全、导致水生生物死亡、腐蚀下水道造成巨大经济损失。2021年,生态环境部发布新版硫化物测定方法行业标准,直接推动了硫化物水质在线自动监测仪在环境监测领域的广泛应用。为确保该类仪器的量值准确和科学溯源,为国家保护绿水青山提供专业快速精准计量支持,北京市计量院化医所规范起草小组分别与生态环境部环境发展中心、北京吉天仪器有限公司、福建省吉龙德环保科技有限公司等单位及研发生产厂家进行探讨交流,确定技术方案,开展对比实验及方法验证,拟定规范征求意见稿。   北京市计量院化医所自2022年来发布国家及地方技术规范6项,报批技术规范11项,正在制定中技术规范8项。这些标准规范的制定既是化医所技术人员丰富计量经验的总结,又体现了北京计量院在国内化学医学计量专业的领先水平。化医所将不断探索未来新兴技术与在线分析仪器的计量需求,持续推进水质分析仪器及各类理化生物医学仪器的计量技术标准制定工作,为国家生物医药和环境监测产业化计量作出积极贡献!
  • 中铁一局污水厂使用格雷斯普品牌固定冷藏式自动水质采样器
    2015-08-22中铁一局污水厂使用格雷斯普品牌固定冷藏式自动水质采样器 中铁一局下属污水厂,2013年9月采购了一批北京市格雷斯普科技开发公司生产的固定冷藏式全自动水质采样器,(也称之为:等比例采样器)用于中铁威特水务经开区污水厂以及马沟污水厂的进出水口采样,一天24小时,每两个小时采集140ml水样,至今在良好运行。 北京市格雷斯普科技开发公司总经理赵亚旗先生对用户进行了现场走访,了解用户的使用情况,以及对水质采样器进一步的使用需求。同行的有一位卖过多个公司水质采样器的经销商说:“一般固定冷藏式的采样器用半年之后,都会出现管路堵塞,压缩机不制冷,仪器下半部分腐蚀生锈,我专门趴下面看了看,格雷斯普生产的采样器统统没有这些问题,在每天都使用,并连续用了2年,能保持这个状态,不简单“。以下是使用现场:出水口采样现场进水口采样现场进水口采样管安装位置实验室用便携式水质采样器--BC-2300型 做为国内第一台全自动水质采样器的生产厂家,至今格雷斯普公司专注水质采样器系列产品的研发、生产、销售已有23年的时间,时间让格雷斯普公司在产品的技术,质量以及售后上有很多的成长和沉淀。因为专注,所以专业。选水质采样器,请指定“格雷斯普”公司,一定让您用的顺心,放心,安心。做世界精品 以精品强国北京市格雷斯普科技开发公司1992年始创国内首台全自动水质采样器
  • 现代水质分析三大处理方法的探索——溶解氧测定方法应用下篇
    随着水质分析技术的不断发展与更新,电化学溶氧测量技术已成为目前应用最为广泛的溶氧测量技术,此项技术是由Dr. Leland Clark于1956年最先发明。电化学分为原电池法和极谱法。其中,极谱法应用最广。电化学(极谱法)溶氧分析仪基于传感器的结构又可以分为扩散型和平衡型两种,相对而言,扩散型的电化学溶氧传感器应用更为普及。 电化学(极谱法)溶氧传感器结构如下图所示。 图1:极谱法测定原理图该传感器由阴极、阳极、电解液以及半透膜等主要部件构成,在直流极化电压作用下,溶解在水中的氧气穿过半透膜到达阴极发生还原反应:O2 + 2H2O + 4e- = 4OH- 同时阳极发生氧化反应: 4Ag + 4Cl- = 4AgCl + 4e- 原电池法溶解氧测定原理同样是电化学方法,但是它少了极化电压,而是自发进行的反应。传感器由阴阳极、电解液以及半透膜构成。当溶解在水中的氧分子穿过氧半透膜达到阴极发生还原反应:O2 + 2H2O + 4e- = 4OH- 而阳极发生氧化反应:2Zn = 2Zn2+ + 42e- 图2:原电池法测定原理图 当反应达到平衡稳定的条件下,该电化学反应形成的电流和氧气的分压(浓度)呈一定关系:I=n ? F ? A ? D ? S ? pO2 / d I: 传感器电流 [nA] n: 电子迁移的数量 (n = 4) F: 法拉第常数 (F = 96485 C/mol) A: 阴极表面积大小 [cm2] D: 氧分子在膜上的扩散系数 [cm2/s] S: 膜的氧溶解度 [mol/(cm3*bar)] pO2: 氧气分压 [bar] d: 膜厚度 [cm]因此,根据上述电化学过程产生的电流强度就可以计算出水中的溶解氧分压,然后再根据亨利定律就可得出水中的溶解氧浓度。和其他溶解氧测量技术相比较,极谱法溶氧测量技术具备应用量程广,精度高(特别在ppb痕量级溶氧测量应用场合),技术成熟等特点,目前在水处理工业各种溶氧测量场合应用最为普及和广泛。而原电池法少了极化预热的过程,使用则要方便些。 光学法测量溶解氧基于荧光淬灭的原理:传感器中的蓝色LED光源发出一束蓝色光,照射在荧光物质上,该涂层的荧光物质随即被这束蓝光激发,此激发态并不稳定,遇到氧以后会迅速释放出红色的光线并回复至原始状态。此红光和先前LED发射的蓝光存在一个时间滞后,光电检测器可以监测到蓝光和红光之间的这个相位滞后,即测量荧光物质从被蓝光激发到发射红光后恢复原态的时间,根据这个来计算水中溶解氧的含量。该相位滞后与发光体附近的溶解氧浓度成反比。当氧气与荧光物质接触后,则其产生的红色光的强度会降低,同时其产生红光的时间也会缩短,水样中溶解的氧气的浓度越高,则传感器产生的红光的强度就会越低。 图3:荧光法测定原理图*荧光淬灭法测量溶氧技术具有测量便捷、稳定性高、维护量低等优点。除较高浓度的二氧化氯外,光学法测溶解氧不易受到其它干扰物质的影响。 奥豪斯作为一家百年的天平和衡器研发制造公司,仪器产品具有悠久的历史,我们同样以高质量的水质分析实验设备服务于客户。目前,奥豪斯的溶解氧测定仪涵盖光学、极谱和原电池法三种原理,产品线能够满足不同应用领域和客户群的需求。其中,ST20D是基于极谱法的溶解氧测定仪,ST300D是原电池法的溶解氧测定仪,而ST400D是基于光学法的溶解氧测定仪。未来我们公司将对更高精度、测量要求更高的领域开发仪表。
  • 中科天融展出系列水质在线重金属分析仪新品
    中节能六合天融环保科技有限公司(中科天融)于2013年7月23日-7月26日举行的第十三届中国国际环保展览会(CIEPEC 2013)上,展出系列水质在线自动重金属分析仪新品等环境监测仪器。   中科天融TR2341-A总铬水质全自动在线分析仪
  • 制定更适合中国现状的水质烷基汞监测标准 ——访生态环境部华南环境科学研究所陈来国研究员
    p   作为世界上最大的汞生产、使用及排放国,中国的汞生产及排放情况一直受到世界的关注。2013年10月,包括中国在内的87个国家和地区共同签署《关于汞的水俣公约》,随后我国实施了一系列致力于减少汞污染的措施,并推动涉汞相关标准的制修订工作。2017年《关于汞的水俣公约》正式对我国生效。2018年11月,国家生态环境部发布水质烷基汞分析新标准—《水质 烷基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)。近日,仪器信息网对主持该标准制定工作的生态环境部华南环境科学研究所陈来国老师进行了采访,听他为我们讲述标准背后的故事。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/6a3d04ca-bfc7-48df-9b54-b9801fa45c5c.jpg" title=" 陈来国(仪真)800.jpg" alt=" 陈来国(仪真)800.jpg" / /p p style=" text-align: center "    strong 生态环境部华南环境科学研究所 陈来国 /strong /p p    strong 甲基汞的毒性远大于无机汞 /strong /p p   关于汞,陈老师说可以分为有机汞、无机汞两类。在生活中民众认知度更高的是无机汞,如水银温度计里的汞。但有机汞的毒性远超无机汞,而烷基汞是主要的有机汞形态。烷基汞是烷基与汞结合的有机金属化合物的统称,包括甲基汞、乙基汞、二甲基汞、二乙基汞等多种有机形态,其中甲基汞为目前国内外最受关注的有机汞形态,这是由于甲基汞的生理毒性、生物富集性、环境中的浓度水平相比其他类烷基汞更为突出。甲基汞就是1956年轰动世界的日本水俣病的罪魁祸首,具有神经毒性,对人体危害极大,它在环境特别是水体中即使浓度很低就可能对生物造成巨大危害。乙基汞虽然也可以在自然环境中产生,但人工合成的硫柳汞才是最大的乙基汞来源。硫柳汞被广泛用于生物制品及药物制剂,包括许多疫苗的防腐剂都会用到硫柳汞。不像甲基汞容易在人体内富集,乙基汞可以通过肠道排出体外,且低剂量乙基汞的毒性目前还存在争议,世界卫生组织也支持继续将硫柳汞作为灭活剂和疫苗防腐剂使用,但也需要关注。而其他类有机汞由于在环境中含量都比较低且不稳定,所以现在受到的关注还比较少。 /p p   甲基汞主要来源于生物/非生物的甲基化作用以及人类生产活动。除了可以通过食物摄入,甲基汞还可通过呼吸道、肠胃及皮肤吸收进入人体,其主要损害人体的心血管系统、免疫系统、神经系统等。甲基汞中毒可导致肾脏损害,重者可致急性肾功能衰竭。此外甲基汞也可侵入胎儿脑组织,对胎儿的记忆力及语言能力造成损伤。 /p p   水体是甲基汞产生和生物富集的最主要场所,因此,对环境中尤其是水中包括甲基汞在内的烷基汞的检测十分重要,陈老师有感而发。 /p p    strong 4年时间建立中国水质烷基汞检测标准 /strong /p p   在我国部分涉汞行业废水和生活污水排放标准中,烷基汞都是重要的监测指标。比如污水排放标准中的《污水综合排放标准》、《城镇污水处理厂污染物排放标准》和工业废水排放标准中的《化学合成类制药工业水污染物排放标准》、《油墨工业水污染物排放标准》、《石油炼制工业污染物排放标准》、《石油化学工业污染物排放标准》、《合成树脂工业污染物排放标准》皆限定烷基汞不得检出(检出限为10 ng/L)。此外,部分省市如上海市制定的《污水排入城镇下水道水质标准》和《上海市污水综合排放标准》、广东省制定的《水污染物排放限值》、江苏省制定的《化学工业主要污水排放标准》、北京市制定《水污染物排放标准》和山东省制定的《山东省海河流域水污染物综合排放标准》也要求排放的污水/废水中的烷基汞浓度为不得检出。 /p p   目前我国涉及烷基汞的水质分析方法有《水质 烷基汞的测定气相色谱法》(GB/T 14204-93)和《环境 甲基汞的测定 气相色谱法》(GB/T 17132-1997)两个国家标准。但这些国家标准方法距今已有20年以上的时间,存在取样量大、前处理复杂、需使用有机溶剂、基质干扰较强、检出限高和重现性较差等问题,不利于我国对烷基汞的环境监管。“目前国内也正在对这两个国家标准进行修订。而且,随着水俣公约的正式生效,我们也需要拥有和国际主流方法一致的烷基汞检测标准,这样无论是我们自己做基础研究还是未来进行相关公约的国际谈判,数据都能更有说服力。”在提到中国烷基汞国家标准时,陈老师补充说。 /p p   面对这种情况,2014年4月,原国家环境保护部办公厅发布了《关于开展2014年度国家环境保护标准项目实施工作的通知》,由生态环境部华南环境科学研究所承担《水质 烷基汞的测定 吹扫捕集/冷原子荧光光谱法》国家环保标准的制订工作。历经4年,该国家标准于2018年11月13日正式发布,并于2019年3月1日正式实施。 /p p   作为该标准编制的主要责任人,4年时间中,陈老师带领团队在一次次的实验中不断寻找并改进烷基汞的检测方法。在一次次的开题汇报、专家评审及意见征求中对标准进行修改和完善。当标准正式发布的时候,他觉得四年中为此付出的一切努力与汗水都是值得的。 /p p   提起《水质 烷基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》这个标准,陈老师说该标准与国标烷基汞和甲基汞分析标准在方法原理和前处理上完全不同。国标方法为巯基棉富集、洗脱、苯或者甲苯萃取,而新方法为水样蒸馏及衍生化,简单高效。除衍生化试剂外,不涉及其他有机溶剂的使用,降低了对实验人员的健康危害,方法也更加环保。该标准方法原理虽与美国EPA Method 1630方法类似,但也有明显区别。“相比美国EPA Method 1630方法,我们的方法有较多的优化改进与扩充,比如将分析指标扩展到甲基汞和乙基汞,这不是简单的分析对象增加,主要的技术障碍和难点就在于分析甲基汞的同时对乙基汞进行准确定量。应用范围也扩展至地表水、生活污水、工业废水、海水、固废浸出液和地下水等。说起新标准的改进,陈老师滔滔不绝的为我们列举。“我们对样品前处理作了简化,与国内外其他烷基汞分析方法相比具有更低的检出限,能适应多种环境水质中烷基汞的分析要求。所以新标准更适合中国目前的环境监测现状,而且在操作上更为简单和高效。”陈来国老师最后为我们总结道。 /p p    strong 扩展标准适用范围 推动中国烷基汞检测行业发展 /strong /p p   如今,随着水质烷基汞检测标准的发布实施,陈老师认为相关烷基汞检测分析仪器市场势必将迎来更多的需求。“目前,烷基汞检测仪器市场还比较小,未来随着市场需求的扩大,怎么满足不同客户的需求,让更多用户可以方便高效的进行烷基汞检测将是烷基汞厂商需要思考的问题,同时仪器的准确性、可靠性、耐用性和低成本对于标准的顺利实施也至关重要”。 /p p   在本次标准制定的过程中,仪真独家代理的美国布鲁克兰MERX全自动烷基汞分析系统作为内部验证及其他五家外部验证单位所使用仪器,确保了标准能够获得准确、稳定的数据支持。说起这台仪器,陈老师和他可是有着深厚的渊源,作为国内开展烷基汞相关研究的科研团队之一,陈老师在十多年前就知道布鲁克兰开发推出了全球第一台全自动烷基汞分析系统,在他的推荐下,2007年他所在单位购买了当时中国内地第一台布鲁克兰MERX全自动烷基汞分析系统,这台仪器采用异位吹扫的水样进样模式,使吹扫过程可视,进样量小,自动化程度和方法灵敏度高。而且MERX烷基汞分析系统还可以通过升级实现烷基汞/总汞二位一体分析,从而扩展仪器系统的适用范围。正是MERX烷基汞分析系统的良好品质和多年便捷的使用体验,在2014年再次需要采购烷基汞分析系统用于开展标准相关研究时,陈老师再次选择了MERX烷基汞分析系统。 /p p   虽然此次制定的标准和国内外同类标准相比已有较大的进步和一定提高,但陈来国老师觉得标准仍有完善的空间。“对于一些非常特殊的水样我们将对样品前处理方法进行进一步的验证,为标准使用者提供更精准的指导,以确保标准的覆盖范围更为齐全。” /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   后记: /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   在采访中,陈来国老师拒绝了笔者将其称为资深专家,说自己只是一名开展汞相关研究的科研人员。怀着这种谦虚的心态,十年来陈老师在涉汞科研领域孜孜以求,为中国汞环境检测和相关研究默默贡献着自己的力量。如今标准虽已正式实施,但对于陈来国老师来说,这并不意味着之前工作的结束,而是新的征程的开始& #8230 & #8230 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p
  • 国鼎环科和北京化工大学环境学院共建水质实验室
    国鼎环科(北京)技术有限公司近期和北京化工大学达成合作协议,共建水质实验室,我们为其提供了全套的水质设备:奥利龙浊度分析仪,HACH的悬浮物分析仪,奥利龙的溶解氧,奥利龙的COD分析系统等一系列设备。我们正在认真履行&ldquo 让科研更精确,更轻松&rdquo 的发展理念。
  • 顶层设计加速国家水网建设 水质监测市场迎来新增需求
    为加快构建国家水网,建设现代化高质量水利基础设施网络,统筹解决水资源、水生态、水环境、水灾害问题,中共中央 国务院于 2023 年 5 月 25 日印发《国家水网建设规划纲要》。本规划纲要是当前和今后一个时期国家水网建设的重要指导性文件,规划期为 2021 年至 2035 年。《规划纲要》勾勒了国家水网总体布局,并提出完善水资源配置和供水保障体系、完善流域防洪减灾体系、完善河湖生态系统保护治理体系、推动国家水网高质量发展等具体要求。《规划纲要》中提出要加快智慧发展:加强水网数字化建设。深化国家水网工程和新型基础设施建设融合,推动水网工程数字化智能化建设。以自然地理、干支流水系、水利工程、经济社会信息为主要内容,建设数字孪生水网,加快构建映射物理水流过程及其响应过程的数字化场景,提升水网工程数字化水平,实现物理水网与数字水网间动态实时信息交互和深度融合。推进水网工程与相关行业数字化平台衔接,实现信息共享。提升水网调度管理智能化水平。加快推进国家水网调度中心、大数据中心及流域分中心建设,构建国家水网调度指挥体系。通过智慧化模拟,支撑水网全要素预报、预警、预演、预案的模拟分析,提供智慧化决策支持,提高水网防洪、供水、生态等综合调度管理水平。完善水网监测体系。充分利用已有监测站网,加快重要江河干流及主要支流、中小河流监测站网优化与建设,加强水文水资源、取排水、河湖空间、水生态环境、水土保持、水工程安全等监测,全面提升水网监测感知能力。推动新一代通信技术、高分遥感卫星、人工智能等新技术新手段应用,提高监测设备自动化、智能化水平,打造全覆盖、高精度、多维度、保安全的水网监测体系。仪器信息网《国家环境专用水质分析仪市场调研报告》显示,水质监测体系涉及众多产品,根据仪器类型不同,可以分为在线式、实验室型和便携式;根据检测项目不同,可以分为COD分析仪、氨氮分析仪、总磷总氮分析仪以及多参数水质分析仪等等。在线式仪器的体量是实验室仪器的5倍之多,相比于水质在线自动监测仪,实验室/便携环境专用水质分析仪总体市场规模较小,但其应用范围较广。随着检测项目的不同,相应仪器的市场规模也有较大差异。水质监测市场准入门槛相对较低,在巨大的市场商机下,众多小体量的技术型公司纷纷进入市场,同时,对于环境监测外的行业公司也产生了极大的吸引力,外部企业依据自身的行业特点,跨界进入环境监测领域。如IT司、治理公司,甚至是房地产公司,跨界进入监测行业,并结合自身的优势,打造不同侧重点的监测竞争力,如IT公司从智慧环保平台切入,打造整体监测解决方案;房地产公司依靠其物业管理的强势,将物业管理思维引人环境监测领域。典型的公司有万科、华为、平安集团等。国家水网的建设明确提出对水网监测体系的建设需求,将成为水质监测行业新的增长点,及时了解市场格局,将有助于把握市场机会。更多关于水质监测行业的市场信息,欢迎订阅《国家环境专用水质分析仪市场调研报告》(2021版)。【服务热线】: 400-637-7886【电子信箱】: survey@instrument.com.cn报告目录:第一章 环境专用水质分析仪概述 11.1在线环境专用水质分析仪概述 11.2实验室/便携环境专用水质分析仪概述 3第二章 国内环境专用水质分析仪市场综合分析 52.1国内环境专用水质分析仪市场竞争格局 52.2国内细分品类环境专用水质分析仪年销售额 62.3国内细分品类环境专用水质分析仪主流品牌 72.4十三五国内环境专用水质分析仪市场规模及十四五预测 92.5国内环境专用水质分析仪市场发展机遇与挑战 10第三章 国内环境专用水质分析仪招标采购市场分析 133.1 2020年环境专用水质分析仪招标采购省份分布 133.2 2020年环境专用水质分析仪招标采购单位分布 153.3 2020年环境专用水质分析仪招标采购时间分布 173.4 2020环境专用水质分析仪招标采购设备类型分布 183.5 2020环境专用水质分析仪招标采购设备价格分析 20第四章 水质分析市场重大政策及相关标准 224.1近四年水质分析市场重大政策 224.2环境专用水质分析仪相关技术要求 35第五章 总结 38附录:国内水质监测行业主流品牌经营状况分析 40扫二维码加好友,即可获得《国家水网建设规划纲要》word文件
  • 环保部征求固定污染源废气、水质相关国标意见
    关于征求《固定污染源废气 二氧化硫的测定 非分散红外吸收法》等三项国家环境保护标准意见的函   各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制订《固定污染源废气 二氧化硫的测定 非分散红外吸收法》等3项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究提出书面意见,并于2010年7月30日前反馈我部。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   附件:1.征求意见单位名单   2.《固定污染源废气 二氧化硫的测定 非分散红外吸收法》(征求意见稿)   3.《固定污染源废气 二氧化硫的测定 非分散红外法》(征求意见稿)编制说明   4.《固定污染源废气 挥发性有机物的测定 气相色谱—质谱法》(征求意见稿)   5.《固定污染源废气 挥发性有机物的测定 气相色谱—质谱法》(征求意见稿)编制说明   6.《水质 苯胺类化合物的测定 气相色谱—质谱法》(征求意见稿)   7.《水质 苯胺类化合物的测定 气相色谱—质谱法》(征求意见稿)编制说明   二○一○年六月二十一日
  • 国家环保标准《海水水质标准》征集修订意见
    关于征集对修订国家环境保护标准《海水水质标准》意见的函   各有关单位:   为贯彻落实《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,加强生态文明建设,适应国家经济社会发展和环境保护工作的需要,保护生态环境和人体健康,完善国家环境质量标准体系,我部决定对国家环境保护标准《海水水质标准》(GB3097-1997)进行修订。   鉴于该标准对于环境保护和环境质量评价工作有重大影响,与社会公众利益密切相关,为做好标准修订工作,充分了解各有关方面的意见,根据《国家环境保护标准制修订工作管理办法》的有关规定,现就修订该标准公开征集意见。请各单位参照附件一所列问题或就其他问题,对修订标准工作提出意见和建议,并反馈我部。征集意见截至为2010年12月10日。   联系人:环境保护部科技标准司 滕云 冯波   通信地址:北京市西直门内南小街115号   邮政编码:100035   传真:(010)66556213   附件:1.修订《海水水质标准》相关问题   2.海水水质标准   附件一:   修订《海水水质标准》相关问题   一、现行《海水水质标准》(GB 3097-1997)在实施过程中主要存在哪些不适应国家经济社会发展和环境保护工作需要的问题?   二、对于协调《海水水质标准》和《渔业水质标准》中关于渔业水体的水质要求有何建议?   三、现行《海水水质标准》(GB 3097-1997)中的海水水质分类方案是否有必要进行调整?如有必要,应如何调整?   四、是否有必要调整现行《海水水质标准》(GB 3097-1997)中的水质评价项目数量及要求(限值等)?   五、对修订《海水水质标准》(GB 3097-1997)的其他建议。   二○一○年十一月二日
  • 雪迪龙水质监测仪器实现订单 或成业绩支撑点
    雪迪龙证券代表魏鹏娜周一表示,预计明后年水质监测仪器市场将快速增长,有望接替烟气产品成为业绩主要增长点之一。   2013年1月14日,公司与韩国Korbi公司合资成立北京科迪威环保设备有限公司,从事水质监测仪器仪表及有 关产品的制造及进出口、销售、安装、调试等业务。公司占有40%的股权。截至目前,该合资公司项目已经启动,今年可为公司带来相对可观的收益。   魏鹏娜对大智慧通讯社表示,今年上半年水质监测仪器已经实现部分订单,较去年同期有较快增长。   她指出,公司方面预计明后年水质监测市场可能会快速增长,水质监测有望接替烟气产品成为支撑业绩快速增长的一大动力。   魏鹏娜称,目前公司正在积极推广水质监测产品,但今年能够完成多少销售业绩很难预计。   根据一季报,雪迪龙预计今年上半年净利润同比增长50%-80%。
  • 水质与水质分析仪器——在线水质分析仪器篇
    p class=" F24 Fw L40 G2"    a href=" http://www.instrument.com.cn/news/20171220/236150.shtml" target=" _blank" title=" " style=" font-size: 16px text-decoration: underline " span style=" font-size: 16px " 水质与水质分析仪器之水质指标篇 /span /a /p p   上回讲到了水质指标,现在来说说获取水质指标数据的工具:水质分析仪器。 /p p   目前,有三种形式的水质分析仪器,分别是:实验室分析仪器、便携式分析仪器以及在线水质分析仪器 /p p   在线水质分析仪器,出现的时间最晚,但是成长迅速,特别是最近几年,备受关注,曝光率远超其他两种,成了炙手可热的网红-传说中的“后发优势”? /p p   一起来看看:最近,在电视、报纸、网络、微博、微信等传统和非传统媒体上,凡是涉及到环境保护和水安全的场合,“自动监测”、“在线监测”这类字眼几乎都会现身。前段时间环保部召开关于国家地表水环境质量监测的会议,也明确提出来了“要加快推进水质自动站建设。逐步建立起以自动监测为主,手动监测为辅的监测模式?”(据说,这次会议的成果之一就是在2018年,政府会投资在全国范围内建设1200个地表水水质自动监测站,惊不惊喜?) /p p   即将在2018年1月1日正式实施的“中华人民共和国环境保护税法”,在第十条的条文中更是明确规定: /p p    i “应税大气污染物、水污染物、固体废物的排放量和噪声的分贝数,按照下列方法和顺序计算: /i /p p i   (一) 纳税人安装使用符合国家规定和监测规范的污染物自动监测设备的,按照污染物自动监测数据计算 /i /p p i   (二) 纳税人未安装使用污染物自动监测设备的,按照监测机构出具的符合国家有关规定和监测规范的监测数据计算 ” /i /p p   解释一下:目前中国水污染物的自动监测设备分为流量监测设备和浓度监测设备两种(浓度与流量的乘积就是污染物总量),浓度监测设备就是通常所说的在线水质分析仪器。 /p p   更重要的是:根据这部法律,环境税应税污染物排放量数据的取得,首先采用自动监测设备的数据,其次才是“监测机构出具的数据”-目前监测机构采用的分析仪器多是实验室或者少数便携式分析仪器(针对必须在现场测试的个别指标)。 /p p   可以说,这部环境税法正式以法律条文的形式确立了在线分析仪器的地位。 /p p   那么,这么“高端大气上档次”的在线水质分析仪器到底是何方神圣?为什么这样受追捧呢? /p p   权威的定义是:按照国际标准化组织(ISO)代号为ISO15839《水质-在线传感器/分析设备的规范及性能检验》标准中的定义:在线分析传感器/设备(on-linesensor/analyzingequipment) ,是一种自动测量设备,可以连续(或以给定频率)输出与溶液中测量到的一种或多种被测物的数值成比例的信号。 /p p   听起来很高深的样子(权威总是这样的?),有没有通俗点的说法呢? /p p   有问题,找百度。 /p p   万万没想到,这一次度娘居然让我失望了,寻了半天,没找到一个比较令人信服的说法。 /p p   “求之不得,辗转反侧”。想来想去,似乎自己十年前在2007年“第二届在线分析仪器应用与发展国际论坛”大会发言时的非权威说法还比较容易理解: /p p   “在线水质分析仪器是一类专门的自动化在线分析仪表,仪器通过实时、现场操作,实现从水样采集到(水质指标)数据输出的快速分析 在线水质分析仪器一般具有自动诊断、自动校准、自动清洗、故障报警等功能,在保证分析结果准确度的同时,可以实现无人值守自动运行。” /p p   结合权威和非权威的说法,可以发现在线水质分析仪器最重要的特征有三个:自动、连续、实时 /p p   手段是为目的服务的。作为获取水质指标数据的工具,对照上回讲到的获取水质指标的四种目的: span style=" text-decoration: underline " 了解杂质浓度 预测水质变化 控制和优化水处理工艺 评估水质安全 以及六大类水质指标:物理指标、成分指标、评估性综合指标、水质转化潜能指标、工艺指标、替代指标 /span 我们来看看作为一种新技术出现的在线水质分析仪器,当年最先的应用突破点选择了哪里? /p p   毋容置疑, 在“控制和优化水处理工艺”方面,凭借“实时、连续”的特点,在线水质分析仪器有着不可替代的作用。首先实现在线测量的是pH、浊度、溶解氧、ORP等重要的工艺指标 遇到有些工艺指标分析方法复杂或者测量周期长,不能满足流程工业自动控制要求的挑战,就轮到了替代指标的闪亮登场。 /p p   (现在很难考证第一台在线水质分析仪器具体出现在哪个年代、哪种场合了,个人猜测,第一台很可能是在线Ph计,用于酸碱调节的工艺控制) /p p   从全球范围来看,目前在线水质分析仪器应用最多的细分领域还是水处理工艺过程控制。 /p p   在线水质分析仪器“自动、连续、实时”的特点,,除了应用于控制和优化水处理工艺过程,在了解特定污染物浓度和评估水质安全方面,相对于实验室和便携式分析仪器,也有着很大的优势。 /p p   自动化对于减少分析人员人力劳动的好处不言自明,更重要的是,由于仪器分析过程不用人工干预,人为误差也减少了。(这些年中国政府和环境管理部门一直都在努力消除各种人为因素对污染物排放数据的干扰(参见《环境监测数据弄虚作假行为判定及处理办法》等法规文件,以及环境数据造假入刑的各种新闻)。中国目前是全球采用在线水质分析仪器对污水排放进行自动监测最为普遍的市场,在线水质分析仪器又将成为环境保护税法规定的污染物(主要是氨氮、重金属、总磷/总氮等成分指标和COD等评估性综合指标)排放量计税工具之一, /p p   估计很大一个原因就有作为自动化仪表的在线水质分析仪器在分析过程中无需人工干预这个特点) /p p   同时,“连续、实时”的特点也使得在线水质分析仪器不仅可以连续提供水质指标的即时数据,还常常作为报警设备,水质指标一旦超过某个给定的安全值,仪器就会输出报警信号(在评估水质安全方面,实时报警的作用是非常重要的)。 /p p   优点还不止于此,再啰嗦两句关于操作人员健康安全的好处: /p p   有些水样,比如含有较多有毒挥发性化学物质,人工分析时可能危害到分析人员的身体健康 又有些工作场所,在生产装置运行时,分析人员无法进入现场采取水样。最极端的例子是:在核电厂的一回路,由于较强的辐射,即使是穿戴有重型防护设备的操作人员,也只能短暂停留 但是核电厂运行过程中有些重要的水质指标数据(如溶解氧、溶解氢、电导率等)又必须及时获取。 /p p   这时,作为自动化设备的在线水质分析仪器的优势就更能体现出来了。 /p p   不过,虽然有着这样多的优点,无论从技术进步还是市场发展来看,在线水质分析仪器还是和其他任何新技术的发展历程一样,并不是一帆风顺的。 /p p   在初期,受制于相对过低的水资源费、水价以及废水排放需要支付的费用,当时在线分析仪器的投资和运行成本都比较高 而且那时在线水质分析仪器的稳定性、可靠性等还不一定能完全满足实际工作的要求 可以实现在线分析的水质指标也不是很多。 /p p   这两种因素造成了当时水工业行业的运行管理者和水处理工程师对采用在线水质分析仪器持有一种谨慎的态度,从而严重制约了在线水质分析仪器的发展和应用。(1973年,在英国伦敦召开的第一届水处理行业ICA(Instrumentation(仪表)、Control(控制)、Automation(自动化))专家会议上,当时与会专家达成的第一个共识就是:仪器数量不足是自动控制的主要障碍。大家认为根据当时仪器的发展程度,仅有浊度、溶解氧和电导率三种指标的测量较为可靠)。 /p p   “天生我才必有用”。随着人们对水质安全的重视、环保法规的更加严格,水资源费的不断上升,特别是在线水质分析技术和计算机信息技术的发展,在线水质分析仪器逐渐表现出成本性能优势(举例:相对于最初的模拟电路,数字电路技术在水质分析仪器中的采用,使得仪器的可靠性有了很大的提升,仪器设计和批量生产的成本得以大幅下降),在水环境监测、水处理工艺过程过程控制、饮用水水质安全预警等诸多领域都得到越来越广泛的应用,也迅速在废水污染物排放的浓度监测与超标报警领域得到了应用。 /p p   前面谈了市场和应用,让我们回到在线水质分析仪器,扒一扒这种技术自身的发展与面临的挑战: /p p   根据前文ISO标准的定义,有两种形式的在线水质分析仪器:在线分析传感器和比较复杂的自动化分析设备或者装置。 /p p   先来说说 span style=" color: rgb(0, 112, 192) " strong 在线水质分析传感器 /strong /span : /p p   国家标准GB/T7665《传感器通用术语》对传感器的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。在线水质分析传感器通常结构比较简单,通过直接和被测水样接触获得水质指标的数据。 /p p   在线分析传感器,最初可以测量的水质指标,主要是一些简单的物理指标和成分指标,如电导率、Ph、ORP、溶解氧等 接着是浊度、悬浮物浓度等光学原理的传感器 后来,出现了UV254等替代性指标的传感器 最近几年,随着仪器计算能力的提高、新材料的应用,离子选择电极法(测量污水中的氨氮、硝氮等重要工艺指标)、紫外荧光(测量水中油等)以及全光谱扫描原理(传感器一次可间接测量COD、BOD、TOC等多种有机物指标、浊度、硝氮、亚硝氮等多种水质指标)的传感器开始大量应用。 /p p   在线水质分析传感器在实际使用中主要面临两个方面的挑战: /p p   传感器直接同水样接触,缺少了实验室人工分析时样品预处理及去除样品中干扰物质的过程,水质不同的水(含油、硫化物、重金属、悬浮物、高盐度、腐蚀性气体等各种杂质),对传感器材质和结构的要求也是千差万别的,在仪器设计制造时必须充分考虑这些因素,才能保证获取准确的测量数据和保证仪器长时间的正常工作,所有这些,都会增加仪器的成本。 /p p   其次,由于传感器长时间同各种水质情况的水接触,仪器需要一定的维护量,特别是应用于各种工业废水等水质条件恶劣的样品时,仪器需要的维护量和维护费用会比较高。 /p p   个人看法:随着新的分析原理、方法的出现和应用,以及各种新材料的采用(几年前荧光化学法在溶解氧分析仪的应用就是非常好的一个例子),传感器对复杂水质的适应性会得到提高 同时,物联网技术的应用,可以对传感器自身寿命及运行状态进行远程实时监测、管理以提高维护效率、降低维护成本。 /p p   还有,根据所检测水样的不同水质情况,进行差异化设计、制造也是一个有效的办法 比如:饮用水和海水、工业废水,即使是测量同一个水质指标,也选用不同材质、结构和制造工艺来生产传感器,以满足不同水质条件的要求。 /p p   更重要的是,和所有电子产品一样,传感器的成本必然会随着物联网时代大规模的应用出现超出想象力的下降。这时,免维护的一次性在线水质传感器将不再只是梦想。 /p p   接下来看看比较复杂的 span style=" color: rgb(0, 112, 192) " strong 水质自动化分析设备或者装置 /strong /span : /p p   许多水质指标数据的获得,都需要有一整套的装置来自动实现原来实验室人工分析的流程,比如:过滤、加热、加显色剂、混合、测量等等 另外,为了保证长时间连续运行的准确度,还需要定时对仪器进行校准(当然,也是自动的),以及定期的人工维护。当下,在中国,可能在线COD分析仪是这种仪器中名气最大的一款。 /p p   这一类在线水质分析仪器结构复杂,多用于成分指标(TOC、SiO2、总磷、总氮、重金属等)和评估性综合指标(COD、碱度、硬度、生物毒性等)。这类仪器的发展也非常迅速,最近,市场出现了三维荧光原理的仪器,可以间接测量水中油、BOD、CDOM等等一系列的水质指标 流式细胞原理的在线水质分析仪也开始被用于连续监测饮用水中的细菌总数以及水源地、海水中的藻类分类及计数 还有包括X射线荧光、激光诱导击穿光谱(LIBS)等新原理的仪器,也开始在水中重金属的在线监测方面崭露头角。 /p p   一般来说,这类仪器的成本和价格要高于在线分析传感器(还记得以前做销售,向客户推荐在线COD分析仪时,客户说的话:买你这么小一台仪器,我一辆“帕萨特”就没有了)。 /p p    strong 发展到今天,先进的在线水质分析仪器早已是“硬件+材料+软件+算法”四位一体的强大组合了。 /strong /p p   和传感器一样,这类仪器的成本问题也将会随着大规模的应用得到降低 而维护问题也可以通过设计的优化、新材料以及耐用元器件的采用得到改进,特别是,工业物联网技术的进步,可以实现这种精密设备的远程管理和诊断,通过有针对性的预维护等手段降低维护量及维护费用。 /p p   同样,再来说说面临的挑战: /p p   今天的中国市场,大量的在线水质分析仪器被用于企业废水污染物排放自动监测,明年还将成为环境税的计税工具。这类在线水质分析仪器在实际应用中面临的主要挑战是数据的可靠性和准确度问题,造成问题的主要原因是: /p p   在线水质分析仪器采用的测量原理和测量方法和实验室标准分析方法不太可能完全一致,存在方法误差 表现出来的现象是:仪器可以准确测量标准溶液(常常是单一化合物的水溶液)的浓度 但是对于实际水样,衡量是否准确的标准是和实验室人工方法的测量值比对,除了方法误差,还有可能存在人为误差的影响。 /p p   以COD(化学需氧量)为例,COD本来是一个条件参数,其定义是:在一定的条件下,水中的各种有机物质与外加的强氧化剂(如K2Cr2O7、KMnO4等)作用时所消耗的氧量 按照HJ828-2017《水质化学需氧量的测定重铬酸钾法》(标准取代了国标GB11914-1989),标准的测量条件是:“水样加入试剂后,保持微沸2小时”等等 采用在线COD分析仪器,测量条件很难完全和标准要求的条件一致,这样,就有可能影响COD这个条件参数的在线分析仪器的准确度。 /p p   其次,对样品预处理的方法与流程和实验室标准方法不一致:受仪器连续运行及安装环境等一系列条件的限制,在线分析仪器采用的样品预处理系统很可能和相应水质参数对应的标准分析方法要求的预处理条件不一致,这样,也有可能对最终的测试结果带来影响。 /p p   针对这些问题,环境管理部门的技术人员开展了大量的“在线水质分析仪器适用性”研究和比对测试工作,并根据不同水质指标,制定了有十分严格而有针对性的比对测试流程和规范,希望可以找到一个好的解决办法。 /p p   需要说明的是:不是所有的在线分析仪器都需要面临如此严格的测量准确度要求。不同的使用目的,对仪器性能的要求也不尽相同。 /p p   根据应用目的的不同,在线水质分析仪器又可以分为监测型和过程型两类,监测型分析仪器用于单纯的水质监测,以测量成分指标和评估性综合指标为主,用来判断水质是否达到法规的要求,以及环境水质(地表水,地下水)和饮用水水质的报警和预警性监测,不参与水处理工艺过程控制 这类仪器对测量数据的准确度(精度、误差)要求较高,数据可以作为有关部门进行执法管理的依据 /p p   过程型分析仪器主要用于水处理工艺过程监测,以测量工艺指标、替代指标为主,所测量的水质指标参与过程控制,以优化水处理工艺,提升水处理效率,实现水处理过程节能降耗 过程型仪器对仪器的可靠性和稳定性(具体的仪器指标是漂移和线性度、重复性)要求较高,要求仪器能够可靠地反应水质变化的趋势,以便为水处理过程控制提供依据。 /p p   除开法规执行带来的挑战,更大的挑战来自公众的需求:“人民群众日益增长的美好生活需要” /p p   一般公众的想法是:既然有了在线水质分析仪器这种先进、“高大上”的自动化设备,特别是有了生物毒性分析仪这类评价性综合指标的分析仪器,了解我们身边的水质状况,回答诸如饮用水是否安全(能直接饮用)?工厂排出的废水是否对环境无害?门外那条小河、还有游泳池是否适合孩子们去玩耍?等等,应该是分分钟的事儿,再容易不过了吧? /p p   “理想是丰满的,而现实是骨感的” /p p   能实时回答这些问题场景也许会发生在不太久的将来,但是在现实的今天,许多都还做不到。 /p p   上面这些问题通通都涉及到了人们了解水质指标的终极目标-“评估水质安全”,非常复杂,复杂问题的讨论总是需要太多时间,这次留下悬念,如果有缘,这个问题我们下次再聊。 /p p style=" text-align: right " strong (供稿:重庆昕晟环保科技有限公司& nbsp 总经理程立) /strong /p
  • 水质与水质分析仪器之水质指标篇
    p   按照维基百科的定义, “水质是指水的化学、物理、生物和放射性特性,它是和一种或多种生物物种的需求或任何人类的需要或目的有关的水的状况的衡量。” /p p   ( 抱歉,第二句是直接从英文“It& #39 s a measure of the condition of water relative to the requirements of one or more biotic species and or to any human need or purpose”. 翻译的,有点拗口。) /p p   个人认为: 这个定义反映了人类自古以来对待自然资源的态度,那就是“对人有什么用?” (在今天,相信没有人会对 “水是地球上最宝贵的资源” 这个说法有异议了) /p p   就目前的认知而言,水是地球生物生长、繁衍的源泉 也是满足人类生活、生产、游戏等活动,乃至精神层面的高级需求(脑中闪过“逝者如斯乎”等等若干歌咏水的诗词)的要素 当然,还是这个星球生态环境安全的基础。 /p p   (不好意思,不小心似乎成了白话版的“水是生命之源、生产之要、生态之基”) /p p   水的优劣是依据不同的水质指标来进行衡量的。 /p p   不同用途的水有着不同的水质指标要求。 /p p   自然界中的水,是由水分子和其他物质(杂质)组成的混合物质。(重点来了:人们常说的水,其实并不只是化学课本里的那个分子式是H sub 2 /sub O,被称作水分子的物质。) /p p   完全不含杂质的水,在地球的自然状态下是不存在的。而且,就算费了九牛二虎之力生产出杂质含量极低的纯水,除了昂贵,也是不适合地球生物直接饮用的。( span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " 有一则网上流传的故事:美国IBM公司伯灵顿水厂的环保部门经理埃里克· 伯利纳,忍不住尝试喝了一小口IBM半导体工厂中经过18道工序制备的,去除了杂质的“超纯水”,评价是:“根本不好喝。味道很冲、很苦,太难喝了” /span ) /p p   正是由于水中杂质的存在,才使得人们日常接触到的水表现出各种不同的物理、化学、生物学特性。 /p p   水质指标就是表征水的这些不同特性的参数,又或者是水中除水分子之外的其他物质(杂质)浓度的量 /p p   水质指标的种类和数量是伴随着人类社会的发展,尤其是人口增加带来的水使用范围的扩大、水处理工业的发展以及分析技术的进步不断增加的。 /p p   在农耕时代,水的用途主要是饮用、灌溉、洗涤等 那时候的饮用水,基本都是直接取自河流、湖泊或者居住地附近的井水、泉水。基本不用处理或者只需要简单的沉淀、过滤就能满足人们使用的要求。先民们用来判断水是否可以喝(书面语是“直接饮用”)的那些水质指标,都是诸如嗅味、颜色、透明度、肉眼可见杂质等少数几个物理指标 /p p   PS:古人已经会根据水质的差异来决定水的不同用途,有诗为证:“沧浪之水清兮,可以濯吾缨 沧浪之水浊兮、可以濯吾足。”白话就是:“河水清清洗帽缨 河水浑浊可洗脚” /p p   特别要感谢我们聪明的祖先,不知从什么时候开始让中国人养成了喝白开水的好习惯。虽然可能那时候的人们还没有一丁点儿水源性疾病的概念,但是烧开水确实能杀死水中的致病微生物。这个习惯保持至今,让不少中国人免受了由喝生水带来的疾病折磨。(热水是好的,那些让生病的女友多喝热水的男朋友们,就算你们常常被吐槽,对的事情,还是要坚持的) /p p   科学技术的进步,带动了各种分析设备的发明,从而发现了许多原来一直在水中存在,但是却不为人知的其他物质(不管你知不知道,它都一直在那儿),水质指标的数量开始有了增加。最著名的例子有:直到17世纪,荷兰人列文虎克才用自己发明的显微镜第一次观察到雨水中存在的大量微生物。 /p p   进入工业化时代以来,现代城市也开始出现,城市里的场景是:随着越来越多的人们聚居在城市中,不能再像以前住在乡下那样能随便打水了,就出现了自来水厂( span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " 小时候听我爷爷讲,我老家在嘉陵江边,在没有自来水以前,城里人除了用井水,还要靠买江水。我太爷爷年轻时就做过挑水工人,每天清早都会去到江边,用水桶打上江水,然后担着水爬好几百级台阶,到城里叫卖 /span ) 后来,人们日常生活产生的污水也不能随意乱排了,建起了污水处理厂 在大型工厂里,也必须对水进行处理,才能用于生产 用过的水,也必须处理以后才能排放到环境中。 /p p   这个时期,一方面由于化学工业等重工业的飞速发展,新的化学物质不断产生,最终都会经过各种不同的途径进入到水中。另一方面由于伴随着发达国家城镇化、工业化发展起来的饮用水、污水处理、工业水处理工业的快速成长(大型工厂,像采用蒸汽发电的火电厂,必须对水进行处理、净化,才能进入锅炉,防止造成水在锅炉里结垢),出现了大批水处理工艺参数、综合指标等新型水质指标 同时,各种水处理化学品被普遍应用于水处理过程,最终都会有残留在水中。所有这些因素,导致水质指标的数量出现了爆炸式的增长。 /p p   第二句话信息量有点大,举个例子: /p p   在现代饮用水厂,在除藻、絮凝、消毒等工艺,会有各种不同的水处理化学品被加入水中,以保证到达居民家中的自来水达到可饮用的卫生标准,其中最著名的就是用来杀灭细菌、病毒等微生物的液氯。 /p p   氯进入水中以后,会和水分子以及水中其他的杂质发生一系列的化学反应,除了生成具有杀菌功能的次氯酸以外,还会和水中的有机物反应生成一系列新的被称作消毒副产物的含氯有机化合物(据说有致癌风险,消毒副产物在当今的饮用水界不小心就成了网红)。 /p p   自来水中溶解的氯气以及次氯酸等具有杀菌功能的化学物质,被统称为余氯 由于余氯的量关系到水中微生物的滋生情况,有时也被作为微生物指标。 /p p   那些死去的细菌和藻类,还会释放内毒素或藻毒素等物质到水中。 /p p   上面提到这些化学物质,几乎都成为了重要的饮用水水质指标。 /p p   另外,在紫外消毒工艺出现以前,氯消毒也是城市污水(包括医院废水)主要的消毒工艺。消毒过程产生的副产物自然也会随着经过处理的污水进入到环境水体中 城市污水的排放标准中也有了对相应水质指标,如三氯甲烷和可吸附卤素(AOX)浓度的最高值要求。 /p p   随着水的利用日益增加,人类对水的认知也不断深入,作为一门应用科学的水质学应运而生,其研究的主要目的就是为了解决水环境保护和水利用过程中诸多涉及水质的实际问题(当然,相信也有某些科学家只是单纯的为了满足好奇心而从事水质研究的)。 /p p   从实用角度来看,可以从四个维度来分析人们获取水质指标数据的目的: /p p   了解杂质浓度 预测水质变化 控制和优化水处理工艺 评估水质安全。 /p p   分别说明一下: /p p    strong 了解杂质(污染物)浓度 /strong ,很容易理解,主要就是获得水中杂质(尤其是有害成分)的浓度数据,根据这些数据进行管理,现在各国的污染物排放监管法规越来越严格(例如:中国将在2018年1月1日正式实施的“环境保护税法“明确了以排放水中的污染物当量来征收环境税) 或者指导水的分级使用(灌溉、游戏、作为饮用水水源、景观、各种工业用途等等) 或者诸如水中污染物浓度超过标准值报警等等作用。 /p p    strong 预测水质变化 /strong :环境中天然状态下水,会随着外部环境条件的改变而发生变化 而人工处理的水,在处理、储存、输送、使用过程中也会发生变化,需要基于水质指标数据,对水质变化做出预测,降低水质安全风险。 /p p    strong 控制和优化水处理工艺 /strong :控制和优化水处理工艺的目的是保证处理后的水质达到标准要求,节约处理过程的能耗,节省水处理化学药品的消耗。所有的控制和优化都离不开水质数据的支持。 /p p    strong 评估水质安全 /strong : 重要的内容最后讲。其实前面所做的一切都是为了水安全(水安全包括充足的水量和水质安全两个方面的内容,这里我们只讨论水质安全问题)。 /p p   狭义的水质安全是主要指饮用水以及和人体直接接触的各种水(泳池、医疗用水等)-这是人们最关心的 现在还加上了生态安全的问题,人们已经认识到了,环境水质的恶化将会严重影响生态安全。 /p p   广义的水质安全还包括生产安全,对工业生产来说,水质会影响到工业企业生产装置和设备的运行安全(如锅炉、汽轮机、加热管线等等) 以及最终产品的品质(前面说过的IBM半导体工厂的用水必须是经过若干工序严格处理的超纯水,否则,根本做不出合格的芯片-(按照电子工业的术语叫“良品率”低)。污染水体对种植、水产养殖等农业生产的危害更是众人皆知,这里不再啰嗦。 /p p   目的清楚了,接下来让我们看看目前具体有哪些水质指标: /p p    span style=" color: rgb(0, 176, 240) " 1、 先说简单的物理指标 /span ,最早的物理指标大多是通过人的感官就能观察到的一些性质,如:透明度、嗅味,浑浊度、颜色(色度)、温度等等。古人的经验已经告诉我们,这些指标在评估水质安全方面的价值了 发展到今天,浊度、透明度、色度等好些水质指标已经得以量化,可以通过分析仪器准确测量了。 /p p    span style=" color: rgb(0, 176, 240) " 2、 成分指标 /span : 天然水体中包括重金属离子、无机阴离子(氯离子、硫酸根等)、溶解气体(氧、二氧化碳等)、溶解性有机物等在内的各种天然杂质 微生物、藻类及其代谢产物,以及经过各种途径(雨水、土壤流失、人和动物的排泄物等等)进入水体的人工合成化合物,乃至这些物质在自然界的反应产物或者通过生物体代谢的产物。这些物质随着分析技术的发展而逐渐被发现,就像前面提到的列文虎克发现水中微生物的故事,许多水质指标都是这样出现的。 /p p   成分指标也包括在饮用水、工业用水,净化后的污水以及再生水等经过人工处理的水中,人为添加的水处理化学品及其反应产物,如饮用水中的余氯和消毒副产物等。(饮用水中最具代表性的一类消毒副产物是三卤甲烷 由于三卤甲烷的含量很低,直到20世纪六十年代一种叫做“电子捕获器(ECD)“的分析设备的出现,才被人们所知) /p p   成分指标分为单一成分指标和综合成分指标。综合指标是指具有相同或者相似化学、生物学特性的一类物质的量。比如:总有机碳、总磷、总氮、PH值、细菌总数等等。 /p p   成分指标是数量最为庞大的一类水质指标,目前各种水质标准中提到的化学指标、重金属指标、微生物指标等一般都属于成分指标范畴,由于新的化学物质的研制、生产和使用,一直都不断在出现新的成分指标。 /p p    span style=" color: rgb(0, 176, 240) " 3、 评估性综合指标 /span :这类指标不是指水中某种已知杂质的浓度,而是表征在水中的化学生物成分和物理特性的共同作用下,水会表现出某些特定的化学或生物学属性或能力。评估及综合性指标往往通过人为设定实验条件得到结果,这类指标中最有代表性就是大家耳熟能详的COD(化学耗氧量),表示在特定条件下,水中能被强氧化剂氧化的物质需要的氧的量 /p p   COD现在是评估水有机污染程度最重要的指标。其他常用的评估性综合指标还有硬度(最初表示水中离子沉淀肥皂的能力)、碱度、BOD(生化需氧量)等等。 /p p   生物毒性指标,生物毒性表示水中的化学杂质整体所表现出来的对某种生物的毒性效应。主要分为急性毒性指标和遗传毒性指标,是快速评价未知成分的水是否安全的非常有价值的指标(现实中,受制于技术水平、分析成本等诸多因素,现在的分析技术无法做到分析穷尽水中所有的成分)。 /p p   在实际应用中,“生物毒性“作为一类特殊的评价性指标,常用来直接评估饮用水水质安全性。具体方法是选用某种生物(如发光细菌或者大型蚤、藻类等等)作为标准样品生物,用仪器检测这些生物接触待测水样后的反应。 /p p    span style=" color: rgb(0, 176, 240) " 4、 水质转化潜能指标 /span ,反应水质在诸如处理、储存、输配过程中随时间发生变化的趋势或者评估加入某种化学物质以后水质的变化潜能 主要分为水质稳定性(生物稳定性和化学稳定性)和水处理特性两类 /p p   例如,“消毒副产物生成势“这个指标就是在水处理过程中,用来衡量水源加入氯气(或其他消毒剂)消毒以后消毒副产物的生成潜力的。 /p p   “同化有机碳(AOC)”,则用来评估饮用水在输配管网中微生物的最大生长潜力(在输配管网中,水中的余氯、钙镁离子、硫酸盐等化学物质、微生物,以及管道自身的材质、管壁附着的微生物、水垢以及水流速等的相互作用,形成了一个十分复杂的系统,AOC作为生物稳定性指标,和其他的生物和化学稳定性指标是评估和预测饮用水经过管网输配,到达居民家中时水质状况的重要指标 例如:打开水龙头,出现“黄水”,往往是因为水的化学稳定性出了状况,输水管道被腐蚀,铁溶解到了水中。 /p p   广义上讲,水质评价常常用到的BOD也是衡量废水可生化性能的一个非常有用的指标(BOD本身还是评价水有机污染的水质指标和废水生物处理工艺中重要的工艺指标)。 /p p   另外,现在常常出现某地湖泊水库藻类爆发的新闻,主要就是因为水体中的氮磷等物质浓度超过一定水平(常说的“富营养化”),在适宜的环境条件下(温度、日照、水流速度等)发生的。藻类爆发的危害很大(蓝绿藻中释放的微囊藻毒素是迄今发现的最强的肝肿瘤促进剂),如果能根据获得的水质数据(中国用于水体富营养化评估的水质指标分别是:叶绿素、总磷、总氮、高锰酸盐指数(CODMn)和透明度)和环境、气象数据提前预测,提早介入,可以有效降低爆发的风险。现在,对于环境水体中由于水质变化引起的藻类生长潜力变化也属于广义的水质转化潜能研究范畴。 /p p    span style=" color: rgb(0, 176, 240) " 5、 工艺指标, /span 是指在水处理工艺中用来调整或者控制后续工艺的水质指标。这些工艺指标的变化是水中多种物理、化学、生物特性综合作用的结果。 /p p   例如,污水生物处理工艺常用的污泥体积指数(SVI),就是衡量活性污泥法工艺中污泥沉降性能的指标 /p p   流动电流是原水净化过程中的絮凝沉淀工艺时常用的工艺指标 /p p   而最近十分红火的膜处理工艺中,最受关注的一个指标就是污染指数(SDI),SDI代表了水中胶体、固体颗粒等能造成膜堵塞的物质的量 其大小关系到膜的运行寿命和维护费用 /p p   有一些物理指标和成分指标,也是工艺指标 比如:浊度和余氯是饮用水处理的关键性工艺指标。而BOD和COD则是污水处理的重要工艺指标 /p p   随着水处理新工艺的不断出现,还会产生更多的工艺指标。 /p p    span style=" color: rgb(0, 176, 240) " 6、 替代指标 /span :对于某些测量起来很困难,或耗时间太长,或成本太高 或者没有办法实现连续测量的水质指标,选择和该指标相关,而且能够反应该指标变化的其他参数进行测量。 /p p   应用最为广泛的替代指标是UV254(水样在254nm波长的吸光度)。UV254的数值和水中的腐殖质等有机物浓度具有很高的关联性,实践中,常常用UV254的值来衡量水中有机污染物的情况。 /p p   再举一个例子,饮用水中两虫(隐孢子虫和甲第鞭毛虫)的去除和浊度或者水中颗粒物数量的降低具有相关性,通过浊度值或者颗粒物数量的监测,就可以间接确认两虫去除率。 /p p   关于替代指标,多说两句: /p p   不同于直接测量,通过间接测量方式。替代指标的出现为实现水质在线监测提供了广泛的应用空间。 /p p   当下,各种新的分析技术(如全光谱扫描、三维荧光、流式细胞术等等)都开始应用到了水行业,提供了数量巨大的水质信息,同时,随着计算能力的指数级增长,许多以前无法处理的信息得以数字化,得到分析和处理,带动了更多的替代指标出现。 /p p   举例,荷兰科学家最近开发了基于马赫-曾德(Mach-Zehnder)干涉原理的饮用水水质安全预警仪器,其原理是:污染物进入水体以后,会改变水的折射率,通过干涉光可以测量到这种变化,可以实现连续在线监测,其能够响应的污染物浓度可以低至百万分之一(ppm)水平 /p p   需要说明的是,上面几种水质指标的划分并非基于严格科学的方法,有些指标的界限也比较模糊,彼此之间还有许多重叠的部分 不过,这样可以帮助我们从不同角度来了解水质指标的来源,用途等等。 /p p   今天,地球上已知的化学物质已经超过700万种 而且,人类的化学工业和实验室每天都还在制造出新的化学物质,其中的大部分通过各种渠道最终都会进入到水中。(由于样品富集和质谱等微量污染物分析技术的快速发展,近来,水中的抗生素和环境激素等低浓度化合物引起了很多关注) /p p   可以预见:随着分析技术、数据挖掘和处理技术,以及新型水处理工艺的应用,在三种技术的共同推动下,未来水质指标的数量还将不断增加。 /p p   最后,送福利,回答一个热门问题: span style=" color: rgb(0, 176, 240) " strong 面对数量越来越多的水质指标,在评估水质安全时,如何选择哪些有用的指标呢? /strong /span /p p   答案很简单: 根据水的用途来确定需要的水质指标。 /p p   具体做法是:针对不同用途的水,选择不同的水质指标,提出不同的水质指标限定值要求。一般而言,对于涉及人体健康和环境安全的水,水质指标的数量就比较多 而对于生产或者实验用水,就主要是几个为数不多的关键性成分指标。 /p p   举例:大家都很关心的中国《生活饮用水卫生标准》(GB5749-2006),由于涉及到公众健康,规定了包括感官指标、微生物指标、一般性化学指标、毒理指标和放射性指标等几大类水质指标下的总计106项具体指标。 /p p   GB3838-2002《地表水环境质量标准》中也有109项水质指标。 /p p   而去年刚发布的分析仪器用水质标准GB/T 33087-2016《仪器分析用高纯水规格及试验方法》才只有区区6项指标。(重点是:即使只有6项,这些指标也涵盖了物理指标和成分指标这两类最基础的水质指标:成分指标中的无机阴离子(氯离子)、无机阳离子(钠离子)、弱电解质(硅酸根)、有机物(总有机碳或COD)和微生物(细菌总数)、以及物理指标的电阻率),基本上能够对实验室用水水质进行全面评估了。 /p p   近来,政策和媒体都十分关注的“黑臭水体”(这可是网红一枚),由于主要涉及景观方面的用途,更只是仅用4项水质指标就能完成评估和分级,它们分别是:溶解氧、ORP(氧化还原电位)、氨氮以及透明度。 /p p style=" text-align: right " strong (供稿:重庆昕晟环保科技有限公司& nbsp 总经理程立) /strong br/ /p
  • 瑞士万通强大阵容“给力”锅炉水质检测系统培训会
    锅炉水质检系统热载体培训会议分别于9月和11月在北京及江苏举办,总计350余人。瑞士万通公司以强大阵容助力此次培训,为培训会提供了905型电位滴定仪、831和852型卡尔费休水份仪等多种仪器进行现场实验培训,多名工程师积极参并详细讲解了各种仪器及实验操作。针对此次会议,瑞士万通公司还特别制作了仪器的简明操作规程,特检行业应用专辑,滴定、水份应用手册以及礼品,被与会用户誉为&ldquo 这是一个有准备的公司&rdquo 。 瑞士万通公司自动电位滴定仪主要应用于热载体酸值的测定,使用非水复合酸碱电极,避免了手工滴定颜色判断带来的误差。卡尔费休库伦法水分测定仪主要应用于热载体水分含量的测定。全自动多指标水质分析系统(pH值,电导率,硬度,氯离子,亚硫酸根)更是为锅炉水的检测带来了极大的方便,不仅简化了实验步骤,还解放劳动力,使您有更多的时间去处理实验室其他事物。 关于瑞士万通: 1950年,瑞士万通发明了第一支复合pH电极。 1954年,瑞士万通设计出第一台用于痕量分析的实用自动极谱仪。 1956年,瑞士万通开发出第一支活塞型滴定管。 1968年,在瑞士万通诞生世界首台数字化滴定仪,第一台数字化电子滴定管。 &hellip &hellip 2007年,瑞士万通研发出首台智能型离子色谱仪。 2010年,瑞士万通研制出世界首台紫外离子色谱。 Metrohm - 瑞士万通,是当今世界唯一全方位涵盖各类不同离子分析技术的国际化分析仪器公司。
  • 养殖水质检测仪(养殖水质检测仪实时检测水质参数 )
    前言:在水产养殖产业中,水质的优良直接影响到水生生物的生长状况、繁殖能力以及最终产品的质量与安全性。养殖水质检测仪作为一种先进的监测工具,为养殖户提供了科学化、精细化管理水质的有效手段,对于提升养殖效益和保障食品安全具有重要意义。 产品链接https://www.instrument.com.cn/netshow/SH104275/C510819.htm 一、实时检测水质参数 养殖水质检测仪可以实时监测并记录水体中的多项关键指标,如溶解氧含量、pH值、氨氮、亚硝酸盐、硫化物、温度、浊度等。这些参数直接关系到养殖环境的健康程度和养殖动物的生活习性,通过仪器的持续监测,能够及时发现并调整水体环境的异常情况,确保养殖水质始终处于适宜状态。 二、优化养殖决策与管理 基于养殖水质检测仪提供的准确数据,养殖户可以根据实际情况调整饲料投放量、换水频率、增氧措施及疾病防控策略。这种基于实证的数据驱动管理模式,有助于减少因水质问题导致的经济损失,提高养殖生产效率,并有效预防潜在的生态风险。 三、强化环保意识与可持续发展 养殖水质检测仪的应用不仅推动了养殖行业的精细化与现代化进程,还促进了环保意识的增强。通过严格控制养殖过程中的污染物排放,养殖者可以遵循“绿色发展”理念,实现经济效益与环境保护的双重目标。同时,政府监管部门也可以利用此类设备进行常态化的抽检工作,落实严格的养殖业环保法规标准,共同推进水产养殖业的可持续健康发展。 总结:养殖水质检测仪在水产养殖领域的应用,实现了对水质的准确把控与科学管理,有力地提升了养殖生产的科学化水平和产品质量安全。它不仅是现代水产养殖技术的重要组成部分,也是促进养殖行业向绿色、快速、可持续方向发展的关键技术支撑。通过实时监测、智能分析与合理调控,养殖水质检测仪提高了养殖企业的管理水平和经济效益,也维护了生态环境的安全稳定。
  • 美国哈希公司连续第三年荣膺水质分析仪器领域“卓越品牌奖”
    2011年05月 05日,由gongkong® 中国水工业网(www.shuigongye.com)举办的第二届中国水质分析仪器发展论坛在上海新国际博览中心胜利召开。本次论坛吸引了100多位业内人士参加,其中包含一线技术工程师、科研人员、仪器厂商代表等。 美国哈希公司凭借在2010年18.3%的市场份额(注1)牢牢占据了市场第一名的位置,同时在2011年中国水质分析仪器调查(注2)中以用户较高的满意度获得了水质分析仪器领域最高的奖项&ldquo 卓越品牌奖&rdquo ,这也是美国哈希公司连续三年获得此殊荣。 哈希市场经理邓晓玲和获奖证书 注1:具体可以参阅gongkong® 《2011年在线水质分析仪表市场研究报告》 注2:本次调查共有1200多人参与,具体可以参阅《2011年中国水质分析仪器调查报告》 Hach公司旗下拥有许多知名的专业品牌,包括GLI、American Sigma、Hydrolab、OTT、Radiometer、Lachat、Polymetron、Orbisphere、ELE等,工厂分别位于美国、德国、瑞士、法国和英国,并也在中国建立了生产基地。. 作为水质分析仪器领域的旗舰品牌,哈希公司始终秉承客户需求至上,社会责任为重的宗旨,热心公益助学活动,致力于将最先进的水质检测技术用于教学及科研;积极从事环保科技推广工作,参编多部专业书籍。在2010年世博园区和广州亚运会饮用水安全保障中,在松花江污染事件以及地震灾区震后水源水监测中,处处都能看到哈希的身影。 Hach公司的全系列产品包括实验室分析仪、便携式分析仪以及在线分析仪、水质自动采样器、流量计等,我们致力于为纯水/超纯水、饮用水、市政污水、工业废水、工业循环水、环境监测以及高校科研等各个领域的用户提供最优的水质监测解决方案。我们非常注重技术革新,致力于为用户提供高精度的仪器和专家级的服务,目前公司在美洲、欧洲和亚洲都有强大的研发团队。我们已获得的专利多达527项,覆盖了130多个专利家族,同时还拥有超过100种的哈希测试方法被美国EPA所认可。我们的LDO荧光法溶解氧测定技术是水质分析领域内的一项重大突破。Guardian Blue管网水质监测系统也曾经获得R&D杂志评选的100个最重要的技术研发新产品之一的大奖。
  • 梅特勒托利多荣获“2010年度中国水质分析仪器卓越品牌奖”
    2010年6月3日,在由中国水工业网主办的&ldquo 中国水质分析仪器研讨会&rdquo 上,梅特勒托利多凭借高品质的产品、细致的服务赢得了&ldquo 2010年度中国水质分析仪器卓越品牌奖&rdquo 。本次研讨会吸引了众多国内外代表企业参加,包括环境工程科研院、市政工程院和水质分析企业等。在广大用户和专家的投票评选下,梅特勒托利多以出色的品牌实力获得了业内的认可。 梅特勒托利多过程检测部经理虞亮先生领取&ldquo 卓越品牌奖&ldquo 梅特勒托利多过程检测产品由 Ingold 和Thornton两大品牌组成,提供液体分析测量一流的解决方案。Ingold专注于pH、溶解氧、电导率、浊度和CO2等参数的测量,拥有高质量的传感器、护套、变送器和清洗系统等产品,帮助制药、食品/饮料和化工行业实现精确测量。Thornton品牌在电导/电阻率、pH/氧化还原、溶氧、总有机碳等测量领域占据领先技术,致力于为制药、半导体、电厂等行业提供高纯水分析。 梅特勒托利多过程检测部将继续努力,为中国水质分析仪器技术和设备的发展做出更大贡献! 如您希望了解更多过程检测产品信息,欢迎访问:www.mt.com/pro 中国水质分析仪器研讨会新闻详情,请点击: http://www.shuigongye.com/News/20106/2010060813303300001.html
  • 莱伯泰科全自动固相萃取和溶剂蒸发系统广泛进入环境和水质实验室
    莱伯泰科有限公司销售的Horizon全自动固相萃取系统(ASPE)和全自动快速溶剂蒸发浓缩系统(DryVap)已广泛地进入中国的环境保护和水质分析实验室。近来,深圳环保、桂林环保、石家庄环保、扬州环保、北师大环境学院、西南大学环境学院、东江水务、河北水产等环保和水质分析领域实验室,先后同时采购了这两种产品,大大提高了样品前处理的工作效率,减少了样品处理消耗的时间。 Horizon全自动固相萃取系统是目前世界上**使用萃取盘的全自动固相萃取系统,与传统的萃取柱的方式不同,采用盘式萃取的Horizon固相萃取系统,能全自动地、快速地萃取大量的液体样品,在环保分析、农业分析、各种水质分析的应用上具有**的优势,是目前世界上最快速、萃取样品量最多、样品通道最多的固相萃取系统。此萃取方法已被美国EPA列为标准方法。Horizon的全自动快速溶剂蒸发浓缩系统(DryVap)为目前世界上**的可实现全自动在线干燥和多溶剂快速蒸发系统,与传统的蒸发手段比较,这一系统具备了全自动、快速、自动干燥、多溶剂非批处理方式的蒸发等优点,赢得了广大用户的认可。 除在环境和水质领域的大量应用外,Horizon全自动固相萃取系统还被广泛地用于化工、石化、饮料、食品、农业等中间或最终液体产品的萃取浓缩。而全自动快速溶剂蒸发浓缩系统已被广泛地用于各种溶剂的快速浓缩和蒸发应用上。 莱伯泰科有限公司(LabTech.Ltd, www.labtechgroup.com)销售各种无机和有机样品前处理产品,是目前中国市场上能够提供完整样品处理仪器和设备的企业,产品包括微波消解、微波萃取、固相萃取、溶剂蒸发、凝胶净化、制备和半制备色谱、激光固体进样、电热消解仪、膜去溶系统等各种产品。 全自动固相萃取系统 screen.width-300)this.width=screen.width-300" 全自动快速溶剂蒸发浓缩系统 screen.width-300)this.width=screen.width-300"
  • 漯河污水厂采购我司FC-9624YL型固定冷藏式自动水质采样器(分采型)
    2013-09-28漯河污水厂采购我司FC-9624YL型固定冷藏式自动水质采样器(分采型) 漯河污水厂在这次项目中,使用的是格雷斯普品牌FC-9624YL型固定冷藏式自动水质采样器,本采样器的采样垂直高度是:8m,并且是使用了目前国际上非常先进的ARM嵌入式系统,高速、稳定、多功能,采用的是2.8TFT的真彩液晶显示屏,海尔特别定制的黑色、中空玻璃出口型冷柜。 本仪器采样速度快,操作简单,对用户的需求更加有针对性,功能强大。FC-9624YL型固定冷藏式自动水质采样器非常适合污水处理厂水质监测采样,以及环监站需要的对水质时时监测采样的需求。 格雷斯普FC-9624YL型固定冷藏式自动水质采样器,用户可选择远程控制,也可跟在线COD,氨氮等水质分析仪器连接,实现水质超标留样。更多仪器详情,您可拨打我司全国统一服务热线:40000-52198,我们会有专业的团队为您服务。做世界精品 以精品强国北京市格雷斯普科技开发公司1992年始创国内首台全自动水质采样器
  • HYDROLAB 多参数水质分析仪在无人船水质监测上的应用
    hydrolab 多参数水质分析仪在无人船水质监测上的应用背景介绍固定式水质监测方式包括以浮标或浮船为载体和固定站等单点监测,这种方式存在测量代表性相对较差的局限性。而人工采样监测受水的流动性、天气状况多变和地形条件的影响,工作人员无法对目标 区域进行现场采样。针对这些问题,为实现全区域全覆盖式的面状水质监测功能,同时节省观测 人员取样耗时耗力等问题, 无人船水质监测移动系统成为先进的解决手段。该系统可以用于处理突发的水质污染事件,实时移动追踪污染源,监测可饮用水源的日常水质,可实现目标水域的多点、分层连续水质数据测量及取样,能为水体的保护,水质监测和治理提供重要依据。本项目采用无人船作为载体,用于移动监测河湖库区水质综合情况的系统,利用无人船的自主航行到达目标水位进行检测,通过路径规划技术实现监测水体水质参数浓度变化和污染物排放,预警污染事件,防止水华发生,掌握水质基本信息数据。 技术方案hydrolab hl7 多参数水质分析被安装于无人船的仪器仓内,专门为分析仪的探头部 分设计的流通池与主机一起放置,流通池连接无人船的取样装置可以完成多点多层混合水样分析。无人船内部集成供电和通讯设备,主要包括:供电模块、数据采集器、通讯模块、定位装置等, 可以提供每个水样的的监测时间和位置,数据通过移动网络上传至客户数据中心查看下载。测量参数包括:ph、orp、温度、电导率、溶解氧、浊度、氨氮、蓝绿藻、叶绿素等。每次测量前进行一次设备维护和校准,以提供精确数据。与 北斗或gps 定位数据结合的水质数据可以很好地反映测量区域之内的整体水质状况和水质情况分布,对于污染事件中污染源确认和人员无法到达的地点监测尤为重要。本项目中 hydrolab hl7多参数水质分析仪全部使用电极法探头实现原位在线测量功能,无需试剂消耗,不产生二次污染。数据变化规律稳定可靠,可以很好的反馈监测区域内的水质情况,对于区域的水质监测起到了重要作用。 优势特点多参数一体化,安装方便自动清洗,维护量小无需化学试剂,无二次污染系统体积小,便于携带多点分层采水,取水方式多样无线数据传播,远程控制模块化设计,水质监测与采样同时执行 项目总结本项目中的 hydrolab hl7 多参数水质分析仪安装于无人船水质监测系统内,除测量常规参数外,还可以测量蓝绿藻、叶绿素、氨氮、硝氮和氯离子等。无人船的水质监测系统体积小可被放入车辆携带,具备低成本、高精度和高速度检测等优点;搭载多点、分层自动采水取样装置;系统采用模块化设计,水质监测模块和采样模块可同时执行在线监测和采样两种任务。用于湖泊和河道监测的系统,工作状态稳定快捷,为客户监测水质情况提供了极大帮助。搭载hydrolab hl7多参数水质分析仪的无人船检测系统可实现人工遥控,自动航行,自主避障。可以最大限度地规避人员安全隐患,得到精准数据,提高工作效率。
  • HYDROLAB 多参数水质分析仪在无人船水质监测上的应用
    背景介绍固定式水质监测方式包括浮标、固定站等单点监测,存在测量代表性相对较差的局限性,而人工采样监测由于水的流动性和天气状况多变,许多复杂地形和条件下工作人员无法对目标区域进行现场采样。针对这些问题,为实现全区域全覆盖式的面状水质监测功能同时节省观测人员取样耗时耗力等问题, 无人船水质监测移动系统成为先进的解决手段,该系统可以用于处理突发的水质污染事件,实时移动追踪污染源,监测可饮用水源的日常水质。可实现目标水域的多点、分层连续水质数据测量及取样,能为水体的保护,水质监测和治理提供重要依据。 本案例为某无人船公司开发的用于移动监测河湖库区水质综合情况的系统,利用无人船的自主航行到达目标水位进行检测,通过路径规划技术实现监测水体水质参数浓度变化和污染物排放,预警污染事件,防止水华发生,掌握水质基本信息数据。应用情况HYDROLAB DS5X 多参数水质分析被安装于无人船的仪器仓内,专门为分析仪的探头部分设计的流通池与主机一起放置,流通池连接无人船的取样装置可以完成多点多层混合水样分析。无人船内部集成供电和通讯设备主要包括供电模块、数据采集器、通讯模块、定位装置等,可以提供每个水样的的监测位置,数据通过移动网络上传至客户数据中心查看下载。 测量参数包括 PH、ORP、温度、电导率、溶解氧、浊度、氨氮、蓝绿藻、叶绿素等。每次测量前进行一次设备维护和校准,以提供精确数据。与 GPS 定位数据结合的水质数据可以很好地反映测量区域之内的整体水质状况和水质情况分布,对于污染事件中污染源确认和人员无法到达的地点监测尤为重要。本案例中HYDROLAB DS5X多参数水质分析仪全部使用电极法探头实现原位在线测量功能,无需试剂消耗,不产生二次污染。数据变化规律稳定可靠,可以很好的反馈监测区域内的水质情况,对于区域的水质监测起到了重要作用。 总结本案例中的 HYDROLAB DS5X 多参数水质分析仪进行安装于无人船水质监测系统内,除常规测量参数外还进行蓝绿藻和叶绿素、氨氮、硝氮、氯离子的测量。无人船的水质监测系统体积小可被放入车辆携带、低成本、高精度和高速度检测等优点,搭载多点、分层自动采水取样装置,统采用模块化设计,水质监测模块和采样模块可同时执行在线监测和采样两种任务。已经有多套系统用于湖泊和河道监测,工作状态稳定快捷,为客户监测水质情况提供了极大帮助。 搭载HYDROLAB DS5X多参数水质分析仪的无人船检测系统可实现人工遥控,自动航 行,自主避障。可以最大限度地规避人员安全隐患,得到精准数据,提高工作效率。
  • 41项在研/拟制订!新污染物生态环境监测分析方法标准水质篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与水质相关的分析方法标准56项,按编制状态分类,已发布15项、在研7项、拟制订34项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1抗生素水质 抗生素的测定 大体积进样/液相色谱-三重四极杆质谱法A在研2水质 磺胺类抗生素的测定 液相色谱-三重四极杆质谱法A在研3水质 氟喹诺酮类抗生素的测定 液相色谱-三重四极杆质谱法A在研4水质 大环内酯类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订5水质 氯霉素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订6水质 四环素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订7水质 氨基糖苷类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订8水质 林可酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订9水质 β-内酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订10三氯杀螨醇水质 三氯杀螨醇的测定 气相色谱-质谱法A拟制订11水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法(HJ 699-2014)A已发布12微塑料水质 微塑料的测定 傅里叶变换显微红外光谱法A拟制订13水质 聚乙烯等5种树脂类微塑料的测定 热裂解-热脱附/气相色谱-质谱法A拟制订14多氯萘水质 多氯萘的测定 气相色谱-三重四极杆质谱法B拟制订15六溴联苯水质 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订16毒杀芬水质 指示性毒杀芬的测定 气相色谱-三重四极杆质谱法B拟制订17有机磷酸酯类水质 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订18水质 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订19麝香类水质 麝香类化合物的测定 气相色谱-质谱法C拟制订20N,N'-二甲苯基-对苯二胺水质 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订21甲醛和乙醛水质 丙烯腈和丙烯醛的测定 吹扫捕集/气相色谱法(修订HJ 806-2016)C拟制订增加乙醛指标22水质 甲醛的测定 乙酰丙酮分光光度法(HJ 601-2011)C已发布23苯胺类(邻甲苯胺)水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法(HJ 1048-2019)C已发布24多环芳烃水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法(HJ 478-2009)C已发布25烷基汞水质 烷基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(HJ 977-2018)C已发布26硝基苯水质 硝基苯类化合物的测定 气相色谱法(HJ 592-2010)C已发布27水质 硝基苯类化合物的测定 气相色谱-质谱法(HJ 716-2014)C已发布28邻苯二甲酸酯类水质 6 种邻苯二甲酸酯类化合物的测定 液相色谱-三重四极杆质谱法 (HJ 1242-2022)D已发布29水质 邻苯二甲酸二异丁酯、邻苯二甲酸二异壬酯和邻苯二甲酸二异癸酯的测定液相色谱-三重四极杆质谱法D拟制订30水质 邻苯二甲酸酯类化合物的测定 气相色谱-质谱法D拟制订31紫外吸收剂水质 8 种紫外吸收剂的测定 气相色谱-质谱法D拟制订32水质 8 种紫外吸收剂的测定 液相色谱-三重四极杆质谱法D拟制订33卡拉花醛水质 卡拉花醛的测定 气相色谱-质谱法D拟制订34有机锡化合物(三丁基锡)水质 三丁基锡等 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法(HJ 1074-2019)D已发布35得克隆水质 得克隆的测定 气相色谱-质谱法A B拟制订36多氯联苯水质 多氯联苯的测定 气相色谱-质谱法(HJ 715-2014)A B已发布37水质 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订38有机氯农药水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法(修订 HJ 699-2014)A B拟制订39二噁英类水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订HJ 77.1-2008)B C在研40多溴二苯醚水质 多溴二苯醚的测定 气相色谱-质谱法(HJ 909-2017)A B C已发布41水质 多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法A B C拟制订42中链氯化石蜡水质 中链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订43短链 氯化石蜡水质 短链氯化石蜡的测定 气相色谱-高分辨质谱法A B C拟制订44水质 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订45五氯苯酚水质 2,4-二氯酚、2,4,6-三氯酚、五氯酚和双酚 A 的测定高效液相色谱-三重四极杆质谱法A B C在研46水质 酚类化合物的测定 气相色谱-质谱法(HJ 744-2015)A B C已发布47水质 五氯苯酚及其盐类酯类的测定 气相色谱-三重四极杆质谱法A B C拟制订48挥发性有机物水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法(修订 HJ 639-2012)A C D拟制订增加 1,3-丁二烯和 1-溴丙烷指标49壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚水质 9 种烷基酚类化合物和双酚 A 的测定 固相萃取/高效液相色谱法(HJ 1192-2021)A C D已发布50水质 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订51水质 烷基酚和双酚 A 的测定 气相色谱-质谱法A C D在研52六溴环十二烷双酚 A水质 六溴环十二烷和四溴双酚 A 的测定 液相色谱-质谱法A B C D在研53全氟化合物类水质 21 种全氟烷基磺酸和全氟烷基羧酸及其盐类和相关化合物的测定 液相色谱-三重四极杆质谱法A B C D拟制订54水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1333-2023)A B C D已发布55水质 全氟辛基磺酰氟的测定 液相色谱-三重四极杆质谱法A B C D拟制订56氯苯类水质 氯苯类化合物的测定 气相色谱法(HJ 621-2011)A B C D已发布*:A:管控清单;B:履约;C:优控名录;D:优评计划。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制