当前位置: 仪器信息网 > 行业主题 > >

水中颗粒计

仪器信息网水中颗粒计专题为您提供2024年最新水中颗粒计价格报价、厂家品牌的相关信息, 包括水中颗粒计参数、型号等,不管是国产,还是进口品牌的水中颗粒计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水中颗粒计相关的耗材配件、试剂标物,还有水中颗粒计相关的最新资讯、资料,以及水中颗粒计相关的解决方案。

水中颗粒计相关的资讯

  • 海水中的纳米颗粒
    纳米科技在为现代生活提供各种高性能产品的同时,也对环境造成了严重的负担。之前的文章中,我们一起学习了饮用水、湖泊水、废水等水体中的纳米颗粒的单颗粒ICP-MS的测定过程,了解到纳米颗粒的无处不在。那么“大海啊,全是水”的海水中,是不是也一定存在着纳米颗粒呢但是,海水和其他水体不一样,含有更多的“盐分”,也就是基体不同。通常,在ICP-MS 分析中,分析之前需要稀释具有较高基体的样品,以免对仪器产生影响。然而,纳米颗粒在环境样品中的溶解和聚合取决于基体,且样品基体组成和浓度(例如溶解有机质(DOM)和离子强度)对其具有极大影响。因此在处理纳米颗粒时,稀释可能触发转化,这意味着获得的结果可能无法准确反映样品中纳米颗粒的初始状态。为降低环境样品或其他高溶解固体含量样品在分析前稀释的必要性,PerkenElmer提供了适用于NexION系列ICP-MS(5000/2000/1000/350/300)的全基体进样系统(AMS)。这套系统包含一个耐高盐雾化器和一个带有氩气稀释气接口的雾室。稀释气的流速由独立的氩气通道控制,气流方向与雾化气流向垂直,以获得最佳的混合效果。可获得高达200倍的稀释比,避免了离线手工稀释的繁琐操作和随之而来的污染和误差。对于不需稀释的样品,只需将稀释气关掉,无需取下稀释气管路。借助AMS系统,对无需稀释的样品和需要稀释200倍以内的样品分别进行分析之间,无需对仪器再次进行参数优化。本文中,我们将探索模拟海水样品中金纳米颗粒的分析,并利用AMS 功能避免人为稀释,并讨论仪器配置条件对单颗粒ICP-MS进行精确和准确颗粒分析的影响。样品在超高纯(UHP)水中以1,2 和3 ppb 浓度制备离子金(Au+)标准品,并且在超高纯水中按60000 颗/mL制备60 nm 的金纳米颗粒标准品(NIST 8013)。使用标准参考物质(CASS-6,加拿大国家研究委员会)制备海水样品,并掺入60000 颗/mL的60 nm NIST 金纳米颗粒。在分析之前不进行进一步的样品稀释。实验所有分析均在NexION 2000 ICP-MS 上进行,并使用表1 中所示的进样附件和参数。全基体进样系统(AMS)的气流量设定为0.4 L/ 分钟,即10 倍稀释,可在未经任何人为稀释的情况下分析未稀释的海水,从而简化样品制备,并确保样品基体中纳米颗粒的完整性。实验结果如下图所示,在几种不同的AMS 气流量下精确确定NIST 60 nm 金颗粒的粒径,证明如果使用相应的离子校准,AMS 不会影响粒径测量的准确度。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响将金纳米颗粒分别添加到海水和去离子水样品中并进行测量。下图显示了添加到海水和去离子水中的60 nm纳米颗粒的粒径分布,两者基本没有差异。结果表明,适当的仪器参数设置和AMS降低了基体效应,从而能够在复杂的环境基体(如海水)中进行准确精准的纳米颗粒测量,而无需与离子校准标液进行基体匹配。这种能力简化了流程,增加了可用性,最重要的是,由于消除了液体稀释的需要,可在分析样品中获得纳米颗粒的准确结果。未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布结论使用配备了全基体进样系统(AMS)的PerkinElmer的NexION 2000 ICP-MS,可以无需考虑用水稀释导致的纳米颗粒状态的转化对于测量结果的影响,精确测量海水(典型的复杂基体)中纳米颗粒粒径大小和浓度,无需手工稀释样品。想要了解更多详情请扫描二维码《使用全基体进样系统和单颗粒ICP-MS快速测定海水中纳米颗粒》
  • 单颗粒ICP-MS应用:水中银纳米颗粒的归宿
    过去二十年中,随着工程纳米材料产量和使用量迅速增加, 它们向环境中释放带来了潜在危害。因此,研究他们对环境影响至关重要。对环境中工程纳米材料进行合适的生态危害评价和管理,需要对工程纳米材料准确定量暴露和影响,由于环境介质中纳米粒子浓度非常低,大多数分析技术并非适合。一直以来,颗粒尺寸采用光散射(DLS)和透射电子显微镜(TEM)测量颗粒尺寸,这些常规技术对测定复杂水体中存在低浓度的胶体形态非常有限。单颗粒ICP-MS可快速有效并提供更多信息的技术。它能够测定颗粒尺寸分布、颗粒数量浓度、溶解金属比例等,检测ppb级(ng/L)浓度纳米颗粒。而且,它能够区分不同元素粒子。Ag,是一种是最常见被用于消费品并释放至环境中的低浓度纳米材料。本工作目的是调查SP-ICP-MS测定和定性环境水体中金属纳米粒子。图1. 地表水中银纳米粒子可能的归宿:(A) 溶解过程导致自由离子释放和更小颗粒;(B) 团聚成更大颗粒,根据团聚尺寸而沉淀离开水体;(C,D) 释放Ag+和纳米银吸附于水中其它固相;(E)形成可溶性复杂产物;(F)同水中其它成分反应导致共沉淀;(G)继续稳定的纳米银。样品地表水采自于加拿大蒙特利尔Rivière des Prairies河,0.2μm滤纸过滤后添加银纳米粒子。水样中纳米银悬浮物加入浓度2.5至33.1μg/L,并缓慢摇匀。在SP-ICP-MS分析前,样品稀释低于0.2μg/L Ag。悬浮银纳米粒子购于Ted Pella公司:柠檬酸包裹(40和80nm直径)和裸露(80nm直径)纳米银悬浮物(产品编号. 84050-40, 84050-80和15710-20SC)。实验实验数据采集使用珀金埃尔默NexION系列ICP-MS和纳米应用Syngistix模块软件,并使用下表的参数。实验结果上图为Syngistix数据采集交互界面,显示了地表水中银纳米离子(裸露纳米银,标称直径60nm,金属总浓度200.8ng/L)信号强度与采集时间关系图。每个纳米颗粒会形成一个脉冲信号,软件将信号的积分强度自动转换成颗粒的粒径信息。整体样品中不同粒径的颗粒信息就会如上图中显示出来,横坐标代表粒径,纵坐标代表相应半径颗粒的含量。以上三图分别为纯水和地表水中,柠檬酸包裹的80nm银颗粒,裸露的80nm银颗粒,和柠檬酸包裹的40nm银颗粒的平均粒径和颗粒状态比例,随时间的变化。所有情况下,纳米粒子的平均颗粒尺寸保持相对稳定。是否包裹,对纳米粒子溶解情况几乎无严重影响,5天均下降了20%左右。相同时间,柠檬酸包裹纳米银中可溶性银比率更高一些。裸露的80nm纳米银,地表水中平均颗粒直径和颗粒百分比高于去离子水。柠檬酸包裹纳米银,二者无明显差别。这可能是由于单独纳米粒子比柠檬酸包裹纳米粒子更易团聚。但总体来说,并未观察到严重地团聚现象。结论采用Syngisitx纳米应用模块研究地表水中银纳米颗粒的行为,无需使用任何手工数据处理过程。该技术允许有效选择性测定颗粒尺寸,团聚和一定时间内溶解低浓度范围。SP-ICP-MS可提供环境水体中低浓度的金属纳米颗粒归宿信息的唯一合适的技术。尽管这项研究只代表在特定情况下河水中纳米银颗粒测定技术的有效性,毫无疑问,也可应用于各种复杂基体中其它类型金属和金属氧化物纳米粒子。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 能“看”到水中颗粒物的“火眼金睛” ——Bettersize C400光学颗粒计数分析仪
    水是生命之源。我们日常看到的纯净水、矿泉水、自来水、井水、河水等各种各样的不同的水。那么,它们是不是真的干净,能不能直接饮用呢?肉眼很难分辨。其实,关于水质检测有严格的标准,其中很重要的一项就是水中不溶性颗粒物的检测。让我们用Bettersize C400来检测一下。右图. BettersizeC400光学颗粒计数器BettersizeC400采用国际先进的光阻与角散射结合技术,配合高灵敏度检测器和高速信号采集与传输系统,可准确的检测出0.5-400μm的颗粒数量和粒度分布。当水从毛细管测量区流过时,如果水中有颗粒,激光会因为颗粒的遮挡和散射产生瞬间变化信号,这个信号的大小与颗粒大小成正比,通过传感器将这些信号收集起来,再用专门的软件处理,就能得到颗粒个数和粒度分布信息。我们用Bettersize C400对某地河水样品进行不溶性颗粒测试,结果如下表和下图所示。从上表和图中可以看到,看起来与瓶装水没有什么差异的河水,每毫升居然有超过3000个不溶性颗粒,这些颗粒有泥沙、金属氧化物、盐类、矿物质、胶体、有机物、微生物等,它们有的对人体有益,有的对人体有害,有的对人体影响不大,但从饮用水安全角度看,即使看上去是清清的河水,也不宜直接饮用。在万不得已时要饮用河水,最好先用净水器去除其中的颗粒物。从上表和图中可以看出,经过过滤后的河水颗粒物去除率超过90%,安全性将大大提升。我们再用Bettersize C400分别对5种常见品牌的纯净水进行不溶性颗粒物含量测试,结果如下:从上表和图可以看出,市面上5种常见品牌的纯净水中,每毫升中所含的不溶性颗粒物很少,而且大于10微米的颗粒物几乎没有,与河水相比简直是天壤之别。可见,常见品牌的纯净水可以放心饮用。但纯净水中缺少微量元素,因此它不能替代最常用的自来水。通过上述试验可知,Bettersize C400光学颗粒计数分析仪能“看”到水中粒径很小、数量又很少的不溶性颗粒物,在水质检测方面将发挥着重要作用。
  • 用单粒子ICP-MS对废水中的银纳米颗粒的分析测量
    “纳米银”是“银纳米颗粒”的简称或俗称,指由银原子组成的颗粒,其粒径通常在1~100nm范围。银材料表面具有抑菌性质早已为人熟知,其机理是位于材料表面的银原子可以被环境中的氧气缓慢氧化,释放出游离的银离子(Ag+),这些银离子通过与细菌壁上巯基结合,阻断细菌的呼吸链,最终杀死附着在材料表面的细菌。由于纳米颗粒的小尺寸效应和表面效应,随着颗粒尺寸的减小,纳米银的表面原子数与其内部原子数的比例急速升高,最终导致其银离子的释放速率显著增高,杀菌效果更加显著。利用纳米银抑菌特性的各种产品,包括纺织品、化妆品、药品等,以及其他工业产品,越来越多的研发并被投入使用。这些纳米银最终将会进入到环境中,对生态环境和生物健康产生影响。快速地检测和表征在各种不同的环境基体下的纳米粒子的技术手段因此显得极为必要,而珀金埃尔默公司的单颗粒ICP-MS技术则可以很好的应对这项挑战。本实验带您了解不同的废水中,单颗粒ICP-MS测定纳米银的能力。样品水样:是从加拿大魁北克省蒙特利尔附近的污水处理厂抽取。废水:是经过污水处理厂最终处理后排放到河里的废水,在二级沉降池后收集。混合溶液:经过生物处理后离开曝气池,到达二级沉降池处理悬浮物和沉积物的废水,从二级曝气池收集。海藻酸盐:一种在废水中可以检测到并由废水中溶解性有机碳组成的ppm级多糖。海藻酸盐溶液被用作于比较废水样品的一个已知的控制和替代物。用去离子水溶解从褐藻提取的海藻酸钠(Sigma-Aldrich, St. Louis, Missouri, USA)配制成浓度为6ppm的海藻酸盐溶液,并震荡一个小时。实验平均粒径为67.8±7.6nm的用PVP包裹的Ag ENPs标准品(用TEM定值,nanoComposix™ Inc., San Diego, California, USA),加入10mL到所有样品中,使浓度为10ppb(5,000,000粒/mL)。样品用去离子水稀释10-1000倍,测试前超声5分钟。所有样品一式三份。使用PerkinElmer NexION® 300D/350D ICP-MS进行分析,采用SP-ICP-MS模式,在Syngistix™ 软件纳米分析模块下进行。实验参数如表1所示。实验结果图1显示了0.1ppb(50,000粒/mL)Ag ENPs标准品的粒径分布,相当于66.1±0.1nm的平均粒径,浓度为52,302±2102粒/mL。对粒径的测试结果和TEM定值的一致性表明海藻酸盐基并不影响测量精度。图1:在6ppm海藻酸盐溶液中的Ag的粒径分布在确定海藻酸盐溶液技术的准确度的基础上,排放废水和混合溶液样品进行下一步的测量。图2和图3显示了废水和混合溶液各自的粒径分布。分析前样品稀释100倍,表2显示了粒径大小和颗粒浓度的测试结果。另外,平均粒径与证书标称值一致,颗粒浓度接近计算值,表明没有废水基体会影响测量结果。这些结果表明,可以准确测量在废水样品中的Ag ENPs。图2:稀释100倍废水中Ag的粒径分布图3:稀释100倍的混合溶液中Ag的粒径分布结论实验证明SP-ICP-MS具有准确测试三种不同类型废水样品中的银纳米粒子的能力。虽然废水基体很复杂,但是它们不会抑制SP-ICP-MS准确测量粒径和纳米粒子浓度的能力。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 项目案例|在线水中颗粒计数器opc-2300在某地表水厂稳定运行
    项目案例|在线水中颗粒计数器在某地表水厂稳定运行在线水中颗粒计数器在某地表水厂的稳定运行,犹如一位勤勉的哨兵,时刻守护着水质的纯净与安全。这款精密的仪器,以其高效的颗粒检测能力和稳定的运行性能,为水厂的水质监测提供了强有力的技术支持。 在这家地表水厂中,在线水中颗粒计数器发挥着至关重要的作用。它运用光阻法原理,能够迅速而准确地检测出水中各种大小的颗粒物的数量和颗粒大小,从而帮助水厂及时掌握水质状况,确保出厂水的安全卫生。 该计数器的稳定运行,得益于其精密的制造工艺和严谨的质量控制。从设计到生产,每一个环节都经过了严格把关,确保产品能够在恶劣的工业环境中长期稳定运行。此外,该计数器还具备自动校准和故障诊断功能,能够在出现问题时及时发出警报,为水厂的维护人员提供便利。 在线水中颗粒计数器的稳定运行,不仅提高了水厂的水质监测效率,还为水厂的节能减排做出了贡献。传统的水质监测方法往往需要耗费大量的人力和物力,而在线颗粒计数器则能够自动完成检测任务,降低了人力成本。同时,由于它能够实时监测水质状况,水厂可以根据实际情况调整处理工艺,减少不必要的能源消耗和污染物排放。 总的来说,在线水中颗粒计数器在某地表水厂的稳定运行,为水厂的水质监测提供了有力保障,同时也推动了水厂的节能减排工作。在未来,随着技术的不断进步和应用领域的不断拓展,相信这款仪器将在更多领域发挥重要作用。
  • 在液体中测颗粒的比表面积?是的,你没有看错!
    日前,仪思奇(北京)科技发展有限公司杨正红总经理在长沙举办的“锂电及多孔材料的粒度和形貌表征技术进展研讨会”上高调介绍了Xigo系列胶体和悬浮液颗粒比表面积分析仪。在液体中测颗粒的比表面积?是的,你没有看错——测定胶体、乳液和悬浮液中颗粒的比表面积! 有什么用途? 浆料体系的颗粒比表面积与颗粒在体系的分散状态有关。比表面积能反映材料的许多性能,例如:涂料的遮盖能力,纳米颗粒的改性和包覆效果,乳液或浆料配方的稳定性,催化剂的活性、药物的疗效以及食物的味道等等。但是,目前的经典方法是气体吸附法测干燥固体的比表面。然而,绝大多数的样品无论是在生产过程中还是最终使用时,却都是分散在液体中,通过制浆过程形成终产品。因此,必须知道样品在悬浮液状态下的比表面信息,而固体样品的比表面积不具有代表性。美国Xigo Nanotools公司为我们提供了革命性的技术手段,使得电池隔膜用陶瓷浆料、锂电池正负极浆料、电子浆料、墨水、石墨烯和碳纳米管浆料以及原料药批次间的质量控制有了快速简便的解决方案,并且结合美国分散技术公司(DT)的声学技术,可为浆料体系和纳米粒子的粒度、表面化学状态或吸脱附状态及微观电学性质的研究,为破解导致不同批次之间差异和配方不稳定的原因提供了强有力的武器。 什么原理?Xigo系列采用专利的核磁共振技术(中国专利号:ZL200780016435.3),探知乳液或悬浮体系中“颗粒”与“溶剂”之间的表面化学、亲和性、浸润性,并在该状态下计算颗粒的比表面积。这一划时代的分析手段可以直接测量悬浮液,无需样品处理,无需稀释,无颗粒形状的限制,测量过程仅需5分钟,对研磨和粉碎过程可基本实现实时监控。因此,该方法对任何大小、任何形状的固体或液体颗粒,特别是高浓体系样品是最理想的选择。由于软件可以自动设定所要优化的测量参数,操作者几乎不经培训即可操作,它将在品质管控和改善、缩短开发时间和工艺配方的筛选等方面提供助力。 仪思奇科技同时宣布,即将引进法国高端技术公司(Cordouan Technologies)的产品进入中国,包括Vasco kin原位时间分辨纳米粒度分析仪和MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪。 Vasco kin 的突出特点就是不接触样品,原位远程测定包装物及反应釜中的粒度分布及随时间的变化,具有极高的分辨率,并且可以和其它分析手段联用。为制药行业的反应监测和药瓶中的蛋白质聚集体纳米阶段的生成监控,甚至监控和研究中药汤剂在加热过程中的粒度变化都提供了有效的技术手段。同时,也是环境科学、功能化油墨,油田化学、锂电材料、催化剂、化妆品和食品等领域的动力学研究工具。 MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪用于水中纳米颗粒的痕量表征,灵敏度高于传统的动态光散射技术一万倍,浓度测定低至ng/L的范围,可对10nm到1000nm之间的颗粒进行计数,为水处理在线监测、超纯水监测、滤膜效率及完整性监测以及过滤工艺、污染检测等提供了前所未有的计数手段。结合法国ZetaCAD流动电位分析仪,MAGELLAN将引领我国膜分析技术跨上新台阶!仪思奇(北京)科技发展有限公司是“产学研商网”一体的仪器技术研发及应用推广的仪器科技创新与服务平台。公司致力于在新能源领域、生物医药、催化基础与应用研究等领域的颗粒特性表征的前沿仪器产品和技术的引进与推广。自2019年6月起,仪思奇(北京)科技发展有限公司正式成为美国XIGO NANOTOOLS公司在中国区的总代理,全权负责该公司全系产品在中国境内的推广销售及售后服务工作。法国高端技术公司(Cordouan Technologies)全新纳米测量仪器的引入,更是填补了国内纳米科学研究技术手段的空白,对仪思奇目前拥有的Occhio图像法粒度粒形和zeta电位分析技术,超声法粒度和zeta电位分析技术是一个完美的补充,使公司能够提供(粒度)从纳米到厘米,(固含量)从极稀到极浓的体系的全方位解决方案,纳米颗粒分析研究将如虎添翼!
  • 普洛帝颗粒计数器积极拥抱电子半导体行业
    普洛帝颗粒计数器在电子半导体行业中发挥着不可或缺的作用,它以其卓越的性能和精准度,正积极拥抱并推动着这一行业的快速发展。这个日新月异的科技时代,电子半导体行业作为支撑现代信息技术的基石,对产品质量和工艺精度的要求日益严格。普洛帝颗粒计数器以其高精度的测量能力,为行业内的生产过程提供了可靠的保障。无论是在芯片制造、封装测试,还是在半导体材料的质量控制中,普洛帝颗粒计数器都能精准地检测并计数微小颗粒,为提升产品质量、降低不良率提供了有力的技术支持。助力超纯水颗粒监测品质提升普洛帝颗粒计数器的优势不仅在于其高精度的测量能力,更在于其广泛的应用范围和强大的适应性。面对不同电子半导体生产环节的多样化需求,普洛帝颗粒计数器能够灵活调整参数,确保在各种环境下都能稳定、准确地完成颗粒计数任务。此外,该设备还具有智能化的操作系统,能够自动记录数据、生成报告,大大提高了工作效率。在电子化学品颗粒监测领域,普洛帝颗粒计数器的应用同样具有重要意义。随着电子化学品行业的快速发展,对产品质量和纯度的要求也在不断提高。普洛帝颗粒计数器能够实时监测电子化学品中的微小颗粒,及时发现并处理潜在的质量问题,为提升产品品质提供了有力保障。在超纯水颗粒监测方面,普洛帝颗粒计数器的表现更是出色。超纯水作为电子半导体生产过程中的关键原料,其质量直接关系到产品的性能和稳定性。普洛帝颗粒计数器能够精确检测超纯水中的微小颗粒,确保生产过程中的水质达到要求,从而降低不良品率,提高生产效率。普洛帝颗粒计数器的积极拥抱电子半导体行业,不仅体现在其技术的不断进步和更新迭代上,更体现在其对行业需求的敏锐洞察和积极响应上。随着电子半导体行业的快速发展,对颗粒计数器的性能要求也在不断提高。普洛帝颗粒计数器紧跟行业步伐,不断提升自身的测量精度和稳定性,以满足行业日益增长的需求。此外,普洛帝颗粒计数器还注重与电子半导体行业的深度合作与交流。通过与行业内企业的紧密合作,普洛帝颗粒计数器不断了解行业发展的最新动态和趋势,从而及时调整和优化自身的产品和技术,以更好地适应和满足行业的发展需求。可以说,普洛帝颗粒计数器在电子半导体行业中发挥着越来越重要的作用。它以其卓越的性能和精准度,为行业的快速发展提供了有力的技术支持和保障。相信在未来的日子里,普洛帝颗粒计数器将继续与电子半导体行业携手共进,共同开创更加美好的未来。
  • 文末有彩蛋 | 单颗粒ICP-MS应用:纳米颗粒的溶解动力学
    20世纪90年代以来,人们对纳米材料正面效应的研究取得了丰硕成果,并形成了大量的实用产品,比如衣物中加入Ag纳米颗粒,可以抑菌;防晒产品中加入TiO2纳米颗粒,可以屏蔽紫外线。这些产品对我们提供便利的同时,也对环境造成了潜在的危害。2004年7月29日美国的《科学此刻》及2004年8月4日《自然》分别介绍了该研究小组的报告,对纳米污染发出预警。报告指出,“游离的纳米颗粒和纳米管可能会穿透细胞,产生毒性”;对于环境来说,“纳米科技可能是柄双刃剑”。通过获得纳米颗粒的环境行为和颗粒大小、溶解率、颗粒团聚以及与样品基体的相互作用的准确数据,可以帮助了解和评价这些新材料可能对环境健康造成危险的情况。常规ICP-MS只能将样品消解后,测试溶解态的离子浓度信息,并不能直接测定这些纳米颗粒的粒径、粒径分布和团聚等更具体的数据。单颗粒ICP-MS技术通过超快速的数据读取时间,可分析每个纳米颗粒产生的电子云,检测ppb级(μg/L)浓度纳米颗粒。本报告研究了银纳米颗粒在不同水体中的溶解动力学。样品银纳米颗粒:直径100纳米,购自NanoXact,NanoComposix,USA。采用聚乙烯吡咯烷酮(PVP)材料封装。水样:离子水(DI,18.3 M-欧姆.厘米),自来水(科罗拉多学院矿业校园,高尔顿.科罗拉多)和自然水(采集点距离河流岸边1米,采集后直接通过0.45微米的滤膜过滤)。样品处理ENP悬浮液通过用水稀释浓度20毫克/升的储备溶液制成,最终浓度50纳克/升。为了匹配观察到的峰强度SP-ICP-MS,采用2%HNO3(光谱级)溶解银标准(高纯度标准 QC-7-M),用于校准和稀释,最终浓度范围为0.1-1微克/升。实验结果首先分析了溶解在去离子水中的银纳米颗粒的单颗粒ICP-MS数据。初始浓度为50ng/L。绿色柱状图表示刚加入纳米颗粒时的测试结果,脉冲信号强度主要分布在400~700范围内,另有少部分在50左右及以下。红色柱状图表示24小时候纳米颗粒的测试结果,脉冲信号主要集中在100~300范围内,50以下还有较强的信号。脉冲信号强度正比于颗粒的粒径,24小时后脉冲强度下降,说明了银纳米颗粒的粒径减小,溶解的银离子信号在脉冲50以下。Syngistix软件可自动将脉冲强度换算成颗粒直径,上图显示了不同水样中,银纳米颗粒随着时间变化的粒径变化。在含氯离子自来水体系下溶解速度比其他两种溶剂都要快,这是由于氯可以作为氧化剂加快粒子溶解在这个系统。而自然水系里粒子的变化很小,这可能由于自然系统固有的复杂性,需要更多研究找到导致粒子稳定性的因素。上图总结了在去离子水,自来水和自然水中,银纳米颗粒的粒径变化趋势。利用瞬时质量的平均粒径,可以计算出粒子的溶解损失。模型化计算粒子的几何表面积(假设球形质量的粒子), 损失质量/表面积(摩尔/ cm2)和时间可以计算得到溶解速率常数。在24小时内,遵循一阶动力学规律。总结溶解电势不同可能是区分粒子溶解过程和离子溶解过程的一个关键因素。这项研究在表明通过SP-ICP-MS定量计算Ag粒子的溶解率是可行的。使用SP-ICP-MS技术,通过原始粒子直径来计算溶解率比通过溶液中Ag离子增加来计算其溶解率更加直接。想要了解更多详情,请扫描二维码下载完整的应用报告。想了解更多关于单细胞单颗粒ICP-MS 应用么?珀金埃尔默将于2020年6月9日 14:00举办“单细胞ICP-MS网络研讨会”, 为您提供一个突破时间地域限制的学习交流的平台。本次研讨会邀请到中国科学院高能物理研究所副研究员王萌博士, PerkinElmer无机产品技术经理,高级工程师高光晔做精彩分享。识别下方二维码或点击阅读原文即可预约直播席位。
  • 自动定位颗粒,一键获取拉曼光谱数据——HORIBA拉曼颗粒分析软件再升级
    在支持 r. j. lee(monroeville, pa)研究颗粒和微量化合物分析,协助tzw: technologiezentrum wasser(karlsruhe,germany)研究水中微塑料的过程中,horiba scientific与他们共同研发获得新版颗粒分析模块,进一步增强 labspec 6 拉曼软件包功能。我们希望获得从形态到成分的全部信息,这个新版颗粒分析较之前的版本有巨大的改进,帮助我们简化了研究过程。tzw和环球水源研究联盟(gwrc)的forian r. storck博士说 作为horiba颗粒分析的合作者和新用户,我们被它强大的功能震撼到了。它不仅能够帮助我们统计微米级的颗粒大小/形状信息,而且通过拉曼数据可同时获得化学组成及结构信息。r. j. lee group的咨询科学家/分析化学专家jason s. lupoi博士评论新版颗粒分析模块和horiba显微拉曼光谱仪的联用,使得化学表征操作更加自动化、简易化。它可以自动定位及鉴别颗粒分子,非常适合对医药材料、微量物证、地质岩石、矿物颗粒及过滤器上污染物等颗粒的分析。 新版颗粒分析模块具有简单清晰的操作界面,引导分析人员对成千上万个微米级别的颗粒,进行自动定位、统计大小/形状、基于大小/形状筛选目标颗粒等操作,并且一键获取颗粒拉曼光谱或整个颗粒的成像,终获取定制化报告(显示颗粒位置、大小、形状及拉曼指纹光谱等信息)。新版颗粒分析模块能够调用labspec 6软件的所有功能。单变量、多变量分析及knowltall数据库可根据每个颗粒的光谱指纹信息对颗粒进行简单便捷的分类。相同化学成分的颗粒以相同的颜色显示,相应的颗粒id可在成像图上进行快速识别和定位。新版颗粒分析模块具备三种拉曼采集方式:采集颗粒中心的拉曼光谱、采集颗粒的平均光谱;对颗粒进行成像,可以满足客户对目标颗粒的不同分析需求。新版颗粒分析模块已全面上市,如有需要,欢迎与我们联系:info-sci.cn@horiba.com。
  • HORIBA|自动定位颗粒,一键获取拉曼光谱数据——HORIBA拉曼颗粒分析软件再升级
    在支持 R. J. Lee(Monroeville, PA)研究颗粒和微量化合物分析,协助TZW: Technologiezentrum Wasser(Karlsruhe,Germany)研究水中微塑料的过程中,HORIBA Scientific与他们共同研发获得新版颗粒分析模块,进一步增强 Labspec 6 拉曼软件包功能。TZW和环球水源研究联盟(GWRC)的Forian R. Storck博士说 R. J. Lee Group的咨询科学家/分析化学专家Jason S. Lupoi博士评论新版颗粒分析模块和HORIBA显微拉曼光谱仪的联用,使得化学表征操作更加自动化、简易化。它可以自动定位及鉴别颗粒分子,非常适合对医药材料、微量物证、地质岩石、矿物颗粒及过滤器上污染物等颗粒的分析。新版颗粒分析模块具有简单清晰的操作界面,引导分析人员对成千上万个微米级别的颗粒,进行自动定位、统计大小/形状、基于大小/形状筛选目标颗粒等操作,并且一键获取颗粒拉曼光谱或整个颗粒的成像,终获取定制化报告(显示颗粒位置、大小、形状及拉曼指纹光谱等信息)。新版颗粒分析模块能够调用LabSpec 6软件的所有功能。单变量、多变量分析及KnowltAll数据库可根据每个颗粒的光谱指纹信息对颗粒进行简单便捷的分类。相同化学成分的颗粒以相同的颜色显示,相应的颗粒ID可在成像图上进行快速识别和定位。新版颗粒分析模块具备三种拉曼采集方式:采集颗粒中心的拉曼光谱、采集颗粒的平均光谱、对颗粒进行成像,可以满足客户对目标颗粒的不同分析需求。新版颗粒分析模块已全面上市,如有需要,欢迎与我们联系:info-sci.cn@horiba.com。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 湿法脱硫产生二次颗粒物的机理与治理方法
    p   湿法脱硫是中国燃煤烟气主要的脱硫方法,中国绝大多数的燃煤电厂,工业燃煤锅炉、采暖热水锅炉、烧结机、玻璃窑使用这种方法脱硫,每年脱除的二氧化硫高达数千万吨,大大减少了大气中的二氧化硫浓度,因而减少了酸雨和在大气中碱性物质与二氧化硫合成的硫酸盐颗粒物。 /p p   但是,近年来,各地逐渐发现,大气中硫酸盐颗粒物在PM2.5中所占的比例显著升高,经常成为非采暖季大气中PM2.5的主要成分,很可能就是采暖季大气污染的罪魁祸首。从逻辑上讲,因为燃煤烟气大规模地脱硫,使得大气中二氧化硫的浓度降低了,在大气中合成的硫酸盐会大大降低。那么大气中这么多的硫酸盐是哪里来的?莫非是什么设备把硫酸盐排到了大气中? /p p   我们在一个燃煤烟气污染治理可行性研究的调查工作中发现,湿法脱硫工艺产生了大量极细的硫酸盐,排放到大气中。而同一时期,很多专业人士也发现了这个问题。某省的一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。 /p p   那么湿法脱硫工艺是如何产生极细的硫酸盐的?我下面试图用科普方式来解释。 /p p   燃煤烟气中的主要大气污染物是颗粒物、二氧化硫和氮氧化物。当然还有一些次要颗粒物,如汞等重金属。一些特殊的燃煤或固体燃料的燃烧过程如烧结机和垃圾焚烧,还会产生其它的污染物,如氟化氢、氯化氢、二恶英等,篇幅所限本文暂不涉及。 /p p   大部分燃煤烟气污染物减排的主要任务就是除尘(去除颗粒物)、脱硫(去除二氧化硫)和脱硝(去除氮氧化物)。 /p p   一般来说,在烟气污染物减排过程中脱硝是第一道工艺,因为除了低温脱硝工艺外,一般的脱硝工艺采用锅炉内(900~1100℃)的高温脱硝方法——非选择性催化还原法(SNCR),或者锅炉外(300~400℃)的中温选择性催化还原法(SCR)。这两种方法都需要加氨水或尿素水作为还原剂。氨逃逸就在此时发生,氨逃逸量与氨喷射和控制技术有关,同时也与要求氮氧化物脱除的排放上限成反比。在技术相同的情况下,要求排放的氮氧化物越少,氨的使用量就越多,逃逸量也就越多。氨逃逸会在湿法脱硫环节惹麻烦。 /p p   脱硝后,就开始进行烟气的换热降温,以回收烟气中的热量。一般先通过省煤器,将锅炉的进水加热,而后再经过空气预热器,将准备进入到锅炉里燃烧煤炭的空气加热,经过这两道节能换热过程后,烟气的温度下降到100℃左右,就开始进入第二道工序,除尘,即去除颗粒物,一般采用静电除尘或袋式除尘工艺。如果设计合理,设备质量合格,一般情况下,静电除尘器可以将烟气中的颗粒物浓度降至5毫克/立方米以下,袋式除尘器甚至可以将烟气中的颗粒物浓度降至1毫克/立方米以下。今天,除尘技术已经非常成熟。 /p p   烟气经过除尘后,就开始了第三道减排工艺,脱硫。湿法脱硫是现在中国普遍采用的脱硫方法。大部分湿法脱硫工艺是使用脱硫塔,把大量的水与石灰石(主要成分为碳酸钙)粉或生石灰粉(生石灰粉的主要成分是氧化钙,与水反应生成后的主要成分是氢氧化钙)混合,形成石灰石或熟石灰碱性乳液,从脱硫塔的上部喷洒,这些液滴向脱硫塔下滴落 在风机的作用下,含有大量二氧化硫的酸性烟气则从下向上流动,碱性乳液中的石灰石或熟石灰及其它少量的碱性元素(如镁、铝、铁和氨等)与二氧化硫的酸性烟气相遇,就生成了石膏(硫酸钙)及其它硫酸盐。由于石膏在水中的溶解率很低,因此,收集落到塔底的乳液,将其中的石膏分离出来,剩下的就是含有大量可溶性硫酸盐的污水,这些硫酸盐包括:硫酸镁、硫酸铁、硫酸铝和和硫酸铵等,需要去除这些硫酸盐后,污水才能排放或重新作为脱硫制备碱性乳液的水使用。 /p p   中间插一段儿:恰恰这些含有硫酸盐的污水的处理现在存在很大的问题。因为这些污水的处理耗资巨大,因此有很多燃煤企业或将这些污水未经处理排放到河流中,或者不经处理重新作为制备脱硫碱性乳液的水使用 前者严重地污染了水体,后者则将这些可溶盐排放到了空中(原因在下面解释)。我曾经去过一家企业考察燃煤锅炉,锅炉的运行人员告诉我们,锅炉污水零排放。一同考察的专家们讽刺到,污水中的污染物都排放到空中了。这个燃煤企业实际的做法是不对湿法脱硫产生的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐倒是全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!这就是经过几年的大规模燃煤烟气处理,大气中的PM2.5没有大幅度下降的原因! /p p   接下来说:并不是所有的乳液都落到了塔底。因为进入到脱硫塔里的烟气温度很高,于是将大量的乳液液滴蒸发。越到脱硫塔的底部,烟气的温度就越高,乳液液滴的蒸发量就越大。不幸的的是,越到底部,乳液液滴中所含的硫酸盐也就越多(如果反复使用未经处理的含有大量硫酸盐的废水,则硫酸盐就更多了),由于乳液液滴的蒸发速度很快,一些微小液滴中的可溶性硫酸盐来不及结晶,液滴就完全蒸发,因此析出极细的硫酸盐固体颗粒,平均粒径很小,大量的颗粒物直径在1微米以下,即所谓的PM1.0。当然乳液中最大量的固体还是硫酸钙(石膏),不过其不溶于水,硫酸钙颗粒的平均粒径比较大。 /p p   这些含有硫酸钙颗粒和可溶盐的盐乳液的蒸发量非常巨大。对应一台100万千瓦的燃煤发电机组,在烟气脱硫塔中这些盐溶液的蒸发量每小时会达到100吨左右。因此,析出的极细颗粒物数量巨大。 /p p   这些极细的颗粒物随着烟气向脱硫塔上部流动,大部分被从上部滴落的液滴再次吸收和吸附(于是这些极细的颗粒物在脱硫塔中被反复地吸收/吸附和析出),但仍有可观的残留颗粒物随着烟气从塔顶排出。需要说明的是,颗粒物的粒径越小,残留的就越多。 /p p   有人会有疑问,从塔顶喷洒的液滴密度很大,难道不能将这些极细颗粒物都洗掉?遗憾的是,不能。早先锅炉的烟气除尘就用过水膜法,即喷射水雾除尘,除尘效果很差。道理很简单,同样的颗粒物重量浓度,颗粒物的粒径越小,颗粒物的数量就越多,从水雾中逃逸的比例就越大。 /p p   烟气出了脱硫塔后,在早先的燃煤烟气处理工艺中,就算完成烟气处理工艺了,烟气经过烟囱排放到大气中,当然,那些在湿法脱硫过程中产生的大量的二次颗粒物——硫酸盐们,也随着烟气排放到大气中。其中石膏颗粒物粒径较大,于是就跌落在距烟囱不远的周围,被称为石膏雨。那些粒径较小的可溶盐,则随风飘向远方,并逐渐沉降,提高了广大地区大气中颗粒物的浓度。烟气中的颗粒物浓度常常达到几百毫克/立方米,比起脱硫前烟气中的颗粒物,增加了好几倍甚至几十倍。所以有人讽刺,湿法脱硫把黑烟(烟尘)和黄烟(二氧化硫)变成了白烟(硫酸盐)。 /p
  • ICPMS-2030:单纳米颗粒分析一探究竟!
    纳米材料,这一看似离我们很遥远的微小粒子,其实已经出现在我们生活中的方方面面。例如具有广泛杀菌功效的纳米银在医疗卫生、医疗器械、纺织、涂料、日用品等方面有着广泛应用。在给我们生活带来便利的同时,纳米科技可能也是一柄双刃剑,对人类健康和环境存在危害的可能。 目前应用较为广泛的纳米材料多为金属、金属氧化物、以及纳米碳材料。大量的使用必将引起环境中的排放量日益增长,可能会对生态和环境造成破坏。 岛津ICPMS-2030能够对样品中的纳米粒子的成分、粒径大小及颗粒浓度进行分析,助您一探究竟! 仪器配置岛津电感耦合等离子体质谱仪ICPMS-2030系列 单纳米颗粒分析原理样品中的悬浮颗粒在进入ICP离子源时是不连续的,中间会有短暂的间隔,因此每个颗粒产生的离子云也是不连续的。当检测器高速采集数据时颗粒则会产生一个个不连续的脉冲信号。颗粒数量越多,则信号数量越多;颗粒越大,对应的信号强度则越高。对所测得的颗粒信号进行计算和统计,既能得到样品中颗粒的粒径信息。图1. 单纳米颗粒分析流程 样品前处理所有的纳米颗粒标品及试样通过超纯水进行稀释,稀释定容后超声分散20 min后马上进ICP-MS于时间分辨模式下采集信号。 样品分析 使用已知浓度的40 nmAuNPs(金纳米粒子)样品引入到ICPMS-2030中测试单颗粒信号。统计单位时间内测得的信号个数,并计算引入到仪器中的粒子总数。建立颗粒数量浓度同信号个数线性关系能够实现对未知样品中颗粒数量的测定。 表1纳米粒子信号-浓度计统计结果对地表水样品进行加标测试,向地表水中加入20 nm,40 nm,80 nm AuNPs分散液以及40、80 nm AuNPs分散液混合后进行ICPMS-2030测试,绘制样品粒径分布图。 图2.地表水样中不同粒径金纳米粒子(AuNPs)ICPMS粒径测试分布 结 论 使用岛津ICPMS-2030分析测定了地表水中金纳米粒子(AuNPs),具有灵敏度高,前处理简便等特点,能够快速得到样品中纳米材料元素构成,颗粒大小以及颗粒浓度等信息,为纳米材料的分析提供了一个新的思路。 撰稿人:刘子辉
  • 【好书推荐】《颗粒表征的光学技术及应用》
    颗粒业内有句行话:万物皆颗粒。鸟瞰各行各业,还真难找得到一个不与颗粒打交道的领域。甚至表面上看起来与颗粒毫无关系的行业,人们其实也一直在与颗粒材料打交道。例如,编程码工使用的键盘是用塑料颗粒材料制成的,显示器的荧光粉本身就是颗粒;再如,音乐作曲者使用的纸张、笔墨也都与颗粒有关。几乎所有材料,从原料到成品,总有一个阶段处于颗粒态。由于颗粒材料的多样性与多分散性,人们甚至将颗粒称为物质的第五态, 颗粒材料的物理特性表征也具有与其他化学分析、物理测量不同的独特性。颗粒与材料品质紧密相关。例如,巧克力的颗粒度需要与味蕾之间的距离吻合,可口可乐中风味液滴的密度必须与水一致,牙膏中碳酸钙的硬度与颗粒度要适当,定时释放肥料颗粒的大小与溶解度有一定的规格等。如何表征颗粒?技术概貌:颗粒表征技术成百上千,仅粒径测量就曾有400多种。现在仍在普遍使用的表征颗粒粒度、数量、表面特性、内部孔径的技术就有十几种。这些技术有着相当广泛的日常应用,例如新材料的研发过程、生产过程的质量控制、或商业贸易上下家的衡量指标等。仅在中国,每年新安装的各类颗粒表征仪器据估计当在数千台甚至上万台。不足:颗粒表征作为对各行各业如此重要的领域,现有的高等教育却很少涉及,甚至专门教授与这些技术有关基础知识的研究生课程也不太多见,集中论述这些技术的中文书籍更是少之又少。现状:这一实践与教育的脱节,造成了很多在工作中涉及颗粒表征的工作者不完备的专业知识体系与错误的应用实践,例如在用动态光散射测量纳米颗粒粒径或用电泳光散射测量颗粒表面电位时,用纯净水进行样品稀释,或者在激光粒度法测量颗粒粒度时,用高压气体分散药物晶体。颗粒材料领域专著出版扫码即可优惠购买为了填补上述空白,为广大颗粒表征技术使用者提供普及版读物,作者精心挑选了当今应用最广的六种颗粒表征技术,从历史起源、物理原理、数学基础、仪器构造、操作要点、数据处理阐释等方面对这些技术做了全面的介绍。这六种方法分别是光学计数法、激光粒度法、光学图像分析法、颗粒跟踪分析法、动态光散射法、电泳光散射法,它们都与光与和颗粒之间的作用有关。对光与和颗粒作用的系统研究始于1936年化学诺贝尔奖获得者彼得• 德拜(数学家大卫• 希尔伯特的学生阿诺尔德• 索末菲的第一位博士生)1908年的博士论文。作为这些技术的铺垫知识与辅助资料,颗粒表征中的样品准备、基本数据统计知识、光散射在颗粒表征中的基本原理、几乎所有其他常用的颗粒表征技术,以及这些技术的标准化现状,也特别另立章节介绍。这是一本别无二版的、系统介绍当代颗粒表征技术的专著。本书可供欲了解与掌握当代颗粒表征技术的教师、本科生、研究生、科学家、技术专家、仪器操作人员阅读与学习参考,为他们提供坚实的颗粒表征理论基础与丰富的实践参考。读者不但可以从中学习这些技术的物理基础以及仪器工作原理,而且通过了解每种技术的实际操作与实用细节,可以在应用过程中避免常犯的错误,不断改进仪器操作的正确性、测量数据的准确性、重复测量的精确性。本书作为进入颗粒表征技术领域的引荐读物,除了汇集了作者经年累积的丰富知识与资料外,还引用了上千篇中外文献。这些跨越两个多世纪(1809—2021)的文献,除了与该技术的最初发明有关的以及里程碑式的重要论文,还有大量与这些技术的最新动态与发展有关的报道,为有志于进一步探索发展颗粒表征技术、成为承前启后新一代的颗粒人提供一些可借鉴的方向与途径。 作者简介本书作者 许人良作者专业背景:在过去半个世纪里,作者许人良在德拜的关门弟子朱鹏年与当代荧光胶体化学大师魏尼克的教诲指导下,除了进行高分子物理与胶体化学的研究,还从搭建全角度动静态光散射仪器为起点,涉足纳秒级相关器、米氏理论的收敛分析、拉普拉斯转换的技术探讨、光导纤维频移器等颗粒表征的多个领域,发明了从电泳光散射测量中剥离布朗运动以得到真实表面电荷分布曲线的方法以及颗粒表征方面的数个专利,填补了颗粒在水中的德拜长度与水化层厚度之间关系的实验验证空白,其中的一些论文几十年来一直在不断地被引用。进入美国首台动态光散射仪器生产公司后,作者曾先后在全球三家主要颗粒表征仪器公司内担任技术、商务、管理的各类主要职务,对多种仪器的设计、试验、投产、应用有第一手感性认识与全方位了解;作者并在过去近30年中,参与制定了多项颗粒表征技术的国际标准、美国国家标准以及中国国家标准,时刻关注着这一领域的最新发展。目录预览第1章 颗粒体系与颗粒表征 / 0011.1 颗粒与颗粒体系 / 0011.2 样品制备 / 0061.3 颗粒测量数据及其统计分析 / 018参考文献 / 032第2章 光散射的理论背景 / 0352.1 光散射现象与技术 / 0352.2 光散射理论要点 / 0392.3 其他光学技术 / 059参考文献 / 069第3章 光学计数法 / 0813.1 引言 / 0813.2 仪器构造 / 0833.3 测量结果与数据分析 / 098参考文献 / 108第4章 激光粒度法 / 1134.1 引言 / 1134.2 仪器 / 1214.3 数据采集与分析 / 1414.4 测量精确度与准确性 / 153参考文献 / 161第5章 光学图像分析法 / 1695.1 引言 / 1695.2 图像获取 / 1715.3 图像分析 / 1815.4 颗粒形状表征 / 1875.5 仪器设置、校准与验证 / 193参考文献 / 196第6章 颗粒跟踪分析法 / 1996.1 引言 / 1996.2 仪器与测量参数 / 2006.3 样品与数据 / 2086.4 颗粒跟踪分析法的其他考虑因素 / 217参考文献 / 219第7章 动态光散射法 / 2217.1 引言 / 2217.2 仪器组成 / 2237.3 数据分析 / 2417.4 测量浓悬浮液 / 263参考文献 / 269第8章 电泳光散射法 / 2818.1 引言 / 2818.2 zeta电位与电泳迁移率 / 2828.3 电泳光散射仪器 / 2898.4 数据分析 / 3068.5 相位分析光散射 / 315参考文献 / 317第9章 颗粒表征的标准化 / 3239.1 文本标准 / 3249.2 标准物质、参考物质与标准样品 / 3329.3 标准化组织 / 345参考文献 / 349第10章 其他颗粒表征技术概述 / 35110.1 电阻法:计数与粒度 / 35110.2 沉降法:粒度 / 35810.3 筛分法:分级与粒度 / 36110.4 色谱方法:分离与粒度 / 36310.5 超声分析 / 36610.6 气体物理吸附:粉体表面积与孔径 / 37010.7 压汞法:孔径分析 / 37410.8 空气渗透法:平均粒度 / 37510.9 毛细管流动孔径分析法:通孔孔径 / 37510.10 气体置换比重测定法:密度 / 37710.11 核磁共振技术 / 37810.12 流动电位测量:zeta电位 / 37910.13 共振质量测量:计数与粒度 / 38010.14 亚微米气溶胶测定:计数与粒度 / 38110.15 颗粒表征技术小结 / 381参考文献 / 382附录1 符号 / 392附录2 Mie理论的球散射函数 / 395附录3 常用液体的物理常数 / 397附录4 常用分散剂 / 402附录5 用于分散一些粉体材料的液体与分散剂 / 404
  • 普洛帝颗粒计数器助力钻采设备腐蚀评价
    在科技飞速发展的今天,普洛帝中国研发中心再次站在了行业的前沿,创新性地推出了一款激光散射与激光诱导击穿光谱双技术融合的综合油液监测监测系统。这款系统的出现,不仅打破了传统油液监测的局限性,更以其独特的双技术结合,为油液分析领域带来了变革。 该系统凭借激光散射技术,能够精准地检测液体中的颗粒数量、大小以及分布情况,从而为我们提供了关于油液清洁度和磨损程度的宝贵信息。而激光诱导击穿光谱技术,则能够深入液体内部,揭示其元素成分的奥秘,进一步帮助我们判断油液的性质和状态。 值得一提的是,这款系统首次在油田采出液中得到了应用。在石油勘探与开发领域,油田采出液的监测对于确保钻采设备的正常运行和维护至关重要。而这款系统的引入,正是为这一领域注入了强大的科技力量。它不仅能够实时监测采出液中的各种参数,还能够为钻采设备的腐蚀评价提供有力的数据支持。 普洛帝颗粒计数器,这位钻采设备腐蚀评价领域的“隐形守护者”,发挥着无可替代的角色。钻采设备,如同探险家手中的指南针,指引着石油、天然气等地下资源的开采之路,其稳定运行直接关系到生产效率和安全。然而,恶劣的工作环境让设备时常面临腐蚀的侵袭,这如同隐形的敌人,悄悄侵蚀着设备的性能,甚至可能引发安全事故。 普洛帝颗粒计数器的出现,犹如科技领域的明灯,为钻采设备腐蚀评价带来了变革。它凭借卓越的技术和精准的检测能力,成为设备腐蚀状况评估的得力助手。它运用先进的激光散射和激光诱导击穿光谱技术,如同拥有千里眼的侦探,精准而迅速地捕捉水中的元素成分、颗粒数量、大小以及分布情况。这些微小的颗粒,如同设备腐蚀的“指纹”,它们的存在与否以及数量、大小等指标,直接映射出设备的腐蚀状况。 与传统的腐蚀检测方法相比,普洛帝颗粒计数器展现出更高的灵敏度和准确性。传统的腐蚀检测方法如同事后诸葛亮,往往需要在设备出现明显腐蚀现象后才能采取行动,而普洛帝颗粒计数器则能够在腐蚀初期就发出警报,为设备的维护和保养提供更早的预警。此外,它还具备高度的自动化,减少人工操作的繁琐和误差,如同高效能的机器人,提升了检测效率和准确性。 普洛帝颗粒计数器的引入,使得钻采设备腐蚀评价变得更加科学和便捷。它不仅提升了设备的运行效率和安全性,更为企业的可持续发展提供了坚实的技术支撑。展望未来,随着科技的飞速进步和创新,普洛帝颗粒计数器有望在更多领域大放异彩,为人类社会的发展贡献更大的力量。 通过普洛帝颗粒计数器的精确测量,工作人员如同拥有了洞察秋毫的慧眼,能够及时发现腐蚀迹象,为采取应对措施赢得了宝贵的时间。同时,该设备还能提供详尽的颗粒数据,如同细心的侦探,帮助分析腐蚀原因,为改进设备设计和制造工艺提供有力支持。此外,普洛帝颗粒计数器的应用还极大地提高了腐蚀评价的准确性和可靠性。传统的腐蚀评价方法往往依赖于人工观察和经验判断,而普洛帝颗粒计数器的出现,使得评价过程更加客观、科学,如同给评价领域注入了一股清泉,使其焕发出新的生机和活力。 总而言之,普洛帝颗粒计数器在钻采设备腐蚀评价中扮演着举足轻重的角色。它不仅提高了评价的准确性和效率,更为保障钻采设备的安全运行提供了有力保障。随着科技的不断发展,相信普洛帝颗粒计数器将在更多领域展现出其强大的应用潜力,如同璀璨的明星,照亮科技发展的未来之路。 随着这款综合油液监测监测系统的广泛应用,我们有理由相信,它将为石油勘探与开发领域带来更加精准、高效的监测解决方案,助力我国石油工业的蓬勃发展。
  • 2014上海颗粒学会年会暨颗粒表征应用技术会举办
    仪器信息网讯 在IPB 2014举办期间,由上海市颗粒学会主办、马尔文仪器公司赞助的&ldquo 2014上海市颗粒学会年会暨颗粒表征应用技术会&rdquo 于2014年10月14日上午在上海国际展览中心召开。本次会议旨在加强颗粒材料领域的学术交流,促进本市颗粒领域的科学研究、技术进步和产品开发应用等方面的发展,方便学术界与产业界的交流和合作。 会议现场 上海理工大学动力工程学院蔡小舒教授主持会议   作为上海颗粒学会理事长,蔡小舒教授就上海市颗粒学会第七届理事会情况向与会人士作了简单介绍。据了解,上海市颗粒学会第七届理事会由19位科研院高校的专家学者及2位颗粒测试仪器公司负责人共同组成,其中9位理事为最新加入的。 上海理工大学周骛博士 报告题目:图像法颗粒多参数在线测量   目前,简单的粒度测量已经不能再满足用户在生产、科研工作中提出的高要求,而伴随着计算机和图像传感器技术近来的快速发展,基于数字图像处理的颗粒测量技术应运而生,并且发展速度非常迅猛。在当天的报告中,周骛博士介绍到,通过对图像获取硬件的研制和图像处理分析算法的研究,单帧单曝光图像法可用于三维颗粒场多参数在线测量,并且多方法多传感器的结合可以为复杂颗粒系统提供更多信息,如图像法颗粒在线测量参数包括颗粒粒度及分布、速度及分布、颗粒浓度和颗粒流量等。 同济大学李建波博士 报告题目:基于磁热效应的纳米药物传输系统的制备及其在肿瘤热化疗中的应用研究   鉴于目前肝癌治疗方法的局限性,我国亟需开发更加安全有效的化疗药物载体系统,以提高化疗效果。李建波博士所在团队研发出的高SAR纳米磁流体,具有超顺磁性、良好胶体稳定性和生物相容性等特点。经过实验验证,这种纳米磁流体可对肿瘤细胞可以起到高效的磁热疗作用,并在优化磁场条件下,可通过诱导凋亡的方式消灭肿瘤细胞保证磁热疗的安全性。在这种基础上,该团队还进行了肿瘤的词热化疗协同增效研究与肿瘤耐药性的磁热化疗逆转研究,均获得了良好的实验成果。 华东理工大学沈建华博士 报告题目:多功能金纳米核壳杂化材料的制备及应用   金纳米粒子具有小的尺寸和高的表面能,结构和性能都不稳定,如果将金纳米与其他材料杂化,不仅能提高Au(金)的特性,还能引入其他材料的特性,例如将Au与Fe3O4杂化后的新型材料,不仅具有Au的催化、生物、光学等性能,同时还拥有Fe3O4的磁分离、核磁显影等优势。在此基础上,沈建华博士所在团队不断尝试研发出的金纳米核壳杂化材料,在催化特性、等离子共振、拉曼增强、生物传感等方面均有着很明显的特色优势。 英国马尔文仪器公司梅洁 报告题目:纳米颗粒跟踪分析技术(NTA)的原理及其应用   梅洁介绍到,鉴于纳米颗粒很小,不能被显微镜直接观测到,如此可以借助入射激光将颗粒照亮,研究人员就能观察到单个粒子并跟踪其布朗运动轨迹,从而基于单个粒子在短时间内快速制出每个粒子的粒径分布图。该技术可以跟踪每一个纳米颗粒的运动轨迹,以此得到整个样品体系的粒径分布信息,同时实时监测样品的运动、聚集过程。其典型应用表现在蛋白质聚集、药物传输、纳米颗粒毒理、病毒和疫苗等研究领域。 华东师范大学卜凡兴 报告题目:微/纳米结构材料的界面法合成及性能研究   金属氧化物微纳米结构材料拥有奇特的功能特性,在生物医学、能源催化及纳米器件等领域有广泛应用。而对特殊结构与形貌的金属氧化物材料制备与性能研究,对胶体与界面化学、结晶学等基础研究领域有重要的研究意义。卜凡兴介绍到,通过实验研究发现,液-液两相界面是一个可以有效合成具有特殊形貌的金属氧化物微纳米结构材料的体系,由此合成的具有特殊形貌的微纳米结构材料往往表现出一些特殊的功能特性。
  • 第八届中英国际颗粒技术论坛 (PTF8) 在大理隆重开幕
    2021年7月10日晚,第八届中英国际颗粒技术论坛(PTF8)在云南大理希尔顿酒店隆重开幕。会议由中国颗粒学会、英国化学工程师协会颗粒技术专委会、中国颗粒学会能源颗粒材料专委会、清华大学、格林威治大学联合主办,中国科学院过程工程研究所(中国)与伯明翰大学(英国)共同承办,北京海岸鸿蒙标准物质技术有限责任公司与中国科学院过程工程研究所公共技术服务中心协办。会议主题为“颗粒技术造福人类,低碳制造塑造未来”,吸引中外颗粒界400余名代表出席。中英国际颗粒技术论坛由中国颗粒学会原理事长李静海院士和英国工程院丁玉龙院士创办的系列会议,自2007年至今已成功举办了7届,为国际学术交流、技术洽谈和智慧碰撞提供了一个高效的平台。开幕式现场开幕式由本届会议主席、清华大学魏飞教授主持,本系列会议发起人、英国工程院院士丁玉龙,中国颗粒学会理事长、中国科学院过程工程研究所党委书记、副所长朱庆山,英国工程院院士、赫瑞-瓦特大学教授Raffaella Ocone相继致辞。 魏飞教授主持开幕式丁玉龙院士致辞 朱庆山理事长致辞 Raffaella Ocone院士致辞开幕式结束后,进入大会报告环节,由中国科学院过程工程研究所葛蔚研究员主持。北京大学胡敏教授与赫瑞-瓦特大学Raffaella Ocon教授作大会特邀报告。 葛蔚研究员主持大会报告 北京大学教授 胡敏报告题目:《雾霾形成中的气溶胶化学》赫瑞-瓦特大学教授Raffaella Ocone报告题目:《从应用到基础-多尺度建模的力量》由于时差的原因,大会报告将于7月11日-12日晚间继续进行,会议日程如下,未莅临现场的同仁可扫描下方二维码,观看同步直播。日期时间报告主题报告人7月11日19:00-19:35用于疫苗构建的生物激发颗粒马光辉(中科院过程工程研究所)19:35-20:10沸石在水中酸碱和双官能反应中的吸附和催化作用Johannes Lercher(慕尼黑工业大学)20:10-20:45快速多极边界元方法模拟摩擦和粘附对颗粒间断裂模式的影响Mike Adams(伯明翰大学)7月12日18:30-19:05粒径对锰基富锂正极材料结构和性能的影响研究夏定国(北京大学)19:05-19:40颗粒表征趋势许人良(麦克仪器)19:40-20:15喷雾干燥颗粒结构Andrew Bayly(利兹大学) 扫码线上参会除大会报告外,本次会议特设置《碳基能源化学与工程》、《能量转换材料与工程》、《电化学和物理储能》、《气溶胶与环境》、《颗粒在医疗保健中的应用》、《纳米材料与技术》、《多尺度和多相流》、《颗粒设计,表征与测量》8个分会场,与会代表将围绕颗粒技术的前瞻性思想、创新性方法、革命性技术、全新解决方案和基础理论展开深入探讨和交流,以期为能源、环境、医疗健康和可持续发展等存在的诸多挑战提供解决方案,创造美好未来。7月10日下午,主办方特别安排了沉浸式颗粒前沿讲习班。中国科学院院士、北京大学材料科学与工程学院院长张锦带来《纳米碳材料——主导未来高科技产业的战略新兴材料》主题报告,中国科学院物理研究所研究员李泓带来《先进电池颗粒》主题报告,清华大学理论化学中心主任李隽带来《实验,理论与计算在现代化学中的相互作用》主题报告。3位资深专家通过精彩分享,为与会人员带来一次思维的交汇和智慧的碰撞。 讲习班现场本届会议还吸引了多家颗粒制备、标物及测试仪器厂商参展,马尔文帕纳科、珠海欧美克、飞纳电镜、上海奥法美嘉、上海岩征实验、天津德尚科技等仪器企业纷纷携重磅产品和最新解决方案亮相。朱庆山理事长为优秀团体会员颁发证书参会代表合影
  • 10万美元赏金!好氧颗粒污泥还能治微塑料污染?
    上个月,美国水研究基金会(WRF)公布了其2022年度Paul L. Busch水业创新奖(下文简称PLB奖)的得主,来自堪萨斯大学的Belinda Sturm教授获此殊荣。PLB奖已设立超过20年,过去两年的PLB奖均由华人获得,包括美国范德堡大学的林士弘教授以及普林斯顿大学任智勇教授。该奖以WRF前主席Paul Busch命名,以纪念他对水处理的卓越贡献,获奖者多为正值当年的水业研究学者。获奖之余,Sturm教授还获得了10万美元的研究奖金。她将用这笔经费评估好氧颗粒污泥如何影响污水中的病原体和微塑料的去除效果。最近几年,欧美水圈出现了越来越多污水厂用低成本完成主流好氧颗粒污泥工艺(AGS)的升级改造。例如小编此前在专栏里介绍的瑞士Glarnerland污水厂的案例,又或者是2020年美国水环境联盟(WEF)的杰出项目奖(Project Excellence Award)的得主科罗拉多的Pueblo城的污水处理厂,该厂据称用不到200万美元打造了一套在传统活性污泥工艺中养出AGS的自控系统。这些案例的产出,是相关研究进展的成果,其中的代表文章是今年1月,著名学术期刊《Science》刊登的题为《Intensifying existing urban wastewater》的文章。作者是大家熟知的TU Delft的Mark van Loosdrecht教授以及西雅图华盛顿大学的Mari Winkler(2015年的PLB奖得主),他们介绍了AGS技术优势、应用现状以及未来对连续流AGS技术的研发设想。其中传达的一个重要信息就是——现有的活性污泥法污水厂无需扩建,或许只需要增设一个选择分离器,就能完成好氧颗粒污泥的原位改造,不仅能提高污水厂的处理能力,还为日后打造水资源回收工厂奠定基础。Belinda Sturm教授则认为,如果能进一步加深对AGS原理的认识,也许我们还能发觉出它在去除病原体和微塑料方面的应用潜力。关于重力的研究Belinda Sturm目前是美国堪萨斯大学土木、环境与建筑工程系的教授,曾担任各种创新研究项目的首席研究员,包括一些 WRF 项目。在她攻读博士学位的时候,就开始研究好氧活性污泥(AGS)。从那以后,她逐渐成为AGS研究的领先者之一。在此,小编强烈推荐大家阅读一下她在2020年做过的报告:她在报告中指出,好氧颗粒污泥工艺的应用进展是五十多年来污水处理研究人员对活性污泥的沉降性能的持续研究的成果。她也在报告中用大字标题指出——活性污泥的致密化是提高污水厂处理能力的关键所在(Densifying Activated Sludge Is Key to Increasing Capacity at WRRFs)。更大的潜力Sturm教授表示:“水质研究的最大成就,是将知识用于实践,并为社会创造更安全的水环境。我很荣幸获得Paul L. Busch奖,这将使我能够与公用事业合作伙伴合作探索新的研究应用。我相信创新需要通过这些合作得以实现,我感谢水研究基金会提供这个平台。”Sturm教授将利用PLB奖的10万美元奖金,开展题为“设计好氧颗粒系统的反应表面以去除污染物和病原体(Engineering the Reactive Surface of Aerobic Granular Systems for Contaminant and Pathogen Removal)”的研究项目,进一步了解 AGS 生物膜的基础特性,从而如何优化病原体和微塑料的去除。她正在与堪萨斯州劳伦斯城和科罗拉多州丹佛市的污水处理厂合作,考察好氧颗粒污泥生物膜中的原生动物(protozoa)对除病原体的效果,以及微塑料在好氧颗粒污泥颗粒的吸附情况。Sturm教授认为,这项研究将有助于进一步加深我们对活性污泥生物膜的基础特性的认识,最终促进污水处理厂的出水水质。正如上边提到的,Sturm教授除了这个研究项目,她还参与着一个更大的项目,就是和美国两家污水处理咨询公司Brown & Caldwell和Black & Veatch,一起研究低溶解氧的生物脱氮除磷系统。这个项目的参与者之一,Black & Veatch的首席工艺工程师Leon Downing最近也在行业某杂志上发表题为《When Density is Desirable》的文章,总结了活性污泥致密化的关键因素。这个研究团队将继续探索低溶解氧条件下的生物脱氮除磷的管理方法,阐明工艺机制,协助水务公司制定决策树,编写设计/运行/建模指南。该项目预计在2024年完成,届时小编会为读者带来项目的最新进展。
  • 贝克曼库尔特颗粒特性分析技术讲座举办
    仪器信息网讯 2012年5月23日,为了给用户提供一个了解颗粒特性分析技术最新动态和交流使用心得的平台,贝克曼库尔特在清华大学环境学院成功举办了“颗粒特性分析技术讲座”,贝克曼库尔特高层携公司相关技术专家出席了会议,为40多位颗粒特性分析工作者作了精彩的讲解;仪器信息网作为特邀媒体应邀参加。 会议现场 贝克曼库尔特分析仪器产品全球市场经理THOMAS ED HORTON先生(左)和分析系统市场专家HANDY YOWWANTO先生(右)出席会议 贝克曼库尔特中国及东南亚区域颗粒特性分析部市场营运经理马怍楠主持会议 贝克曼库尔特颗粒特性分析部技术应用经理MATTHEW RHYNER博士   贝克曼库尔特微粒表征产品系列概述   MATTHEW RHYNER博士首先介绍说:“贝克曼库尔特微粒表征产品涉及Z + MultisizerTM系列库尔特计数器、LSTM系列激光散射粒度分析系统、DelsaNanoTM纳米粒子分析仪、XLA/XLI超速分析离心机和SA3100比表面分析仪等,主要为具有粒度、电荷、浓度和孔隙度等特性相关需求行业和学术界的客户提供解决方案”。随后,MATTHEW RHYNER博士就这五类产品的技术优势应用领域做了系统的阐述。 贝克曼库尔特颗粒特性产品重大里程碑展示   四大颗粒表征方法的技术优势和典型应用   MATTHEW RHYNER博士分别详细介绍了激光衍射法、库尔特法、动态光散射法和zeta电位的测试方法、常见问题、技术优势和典型应用。   (1) 激光衍射法   MATTHEW RHYNER博士讲到:“激光衍射法是一种测量粒度的方法,是世界上最流行的粒度测量技术,可以为用户提供快速和一致的结果,并且在能想象到的几乎每个行业中都有所应用,如药品乳剂、粉末涂料、咖啡、化妆品、调味品、污水等行业领域”。 LS系列激光粒度分析仪   贝克曼库尔特LS系列激光粒度分析系统是基于此原理制造的,该仪器的激光器为先进的高功率光纤连接固体光源,寿命长 可同时采用4个波长(450nm,600 nm,780 nm及900 nm)及背散射测量 干法样品台采用最先进的“龙卷风”系统及设计,“快速气流变换“技术配置无须早期设计之空气压缩机,模拟龙卷风产生机理,产生高度剪切力以达至最佳而非破碎性分散效果。   (2) 库尔特法   MATTHEW RHYNER博士讲到:“库尔特法由库尔特先生于1948年发明,并于1953年10月20日取得专利权,是一种独特的非光学方法,用于对稀释的导电液体中存在的物质进行粒度分析,在过滤效率、干细胞、蛋白质聚集体、体外诊断体液、细胞水肿动力学、海水等领域有着广泛的应用前景。”   贝克曼库尔特生产的Multisizer 3颗粒计数仪正是基于此原理制造的。该仪器适用于分析颗粒、细胞、微生物等 可分析光学技术不能检测之浓度极低样品,如水样品。细菌等 具备精确体积测量泵,可作定量分析,而且不受颗粒形状、颜色及光学特性(折光率与吸光率)的影响,实时提供颗粒计数与粒度分布,分辨率高。 Multisizer 3库尔特颗粒计数仪   (3) 动态光散射法和zeta电位分析法   MATTHEW RHYNER博士讲到:“动态光散射是一种用于估计非常小物体直径的技术,可检测的最小粒子粒度为0.6nm-7μm,在纳米粒子和生物样品分析方面应用广泛,适合分析球形粒子,难于分析圆柱形粒子。”   “zeta电位是一种用于计算粒子在溶液中所带电荷的参数,是根据物体的电泳淌度计算而来,可以对样品进行定性比较、测定等电位点、鉴定涂层的效果或质量。” DelsaNano系列纳米粒度/Zeta电位仪   与上述表征方法相关的贝克曼库尔特的仪器是DelsaNano系列纳米粒度/Zeta电位仪是基于这两种方法制造的。它的主要特点是:该仪器采用了高灵敏度技术,可以测量高浓度样品和极低浓度样品的Zeta电位以及纳米粒度,不需前处理,浓度动态范围达四个数量级。 现场讨论   另外,讲座会还特设了颗粒分析技术问答环节,参会者积极讨论,增强了仪器用户与厂商专家的互动,取得了良好的效果。清华大学环境学院高工郭玉凤女士(上图中间位置),在讲座上积极参与讨论,对整个讲座的用户交流起到了积极的推动作用。 贝克曼库尔特高层与参会用户合影留念   附录:   http://www.instrument.com.cn/netshow/SH100336/   http://www.beckmancoulter.com.cn/
  • 全日程公布!第五届“颗粒研究应用与检测分析”网络会议下周开播
    颗粒,作为微观世界的基石,无处不在且特性纷呈。颗粒学,这一融合数学、物理、化学及生物学基本原理的综合性学科,其研究范畴广泛而深入,涵盖材料、能源、医药、环境、化工、冶金等领域。为探讨颗粒学研究应用及检测分析的前沿技术与发展趋势,分享最新研究成果,推动颗粒学的繁荣发展,自2020年起,仪器信息网携手中国颗粒学会,共同打造并持续举办了“颗粒研究应用与检测分析”网络盛会。2024年7月23-24日,第五届“颗粒研究应用与检测分析”网络会议即将召开。会议特邀20位行业权威专家,聚焦电池材料、多孔材料、超微及纳米颗粒、量子点、医药材料、微塑料等行业热点,分享颗粒材料制备、表征与应用最新成果。欢迎颗粒学领域相关工作者报名参会,共襄盛举!点击图片直达报名页面一、会议日程第五届颗粒研究应用与检测分析网络会议时间报告题目报告人单位及职务7月23日上午 电池材料与颗粒分析表征09:20--09:30致辞王体壮中国颗粒学会 秘书长09:30--10:00聚合物基储能材料的结构调控与电化学性能研究孙振华中国科学院金属研究所 研究员10:00--10:30动力电池核心原材料关键指标及表征方法宋冉冉北京新能源汽车股份有限公司 高级经理10:30--11:00电池材料形貌、表界面表征方法及应用案例吴喜明天目湖先进储能技术研究院 高级工程师11:00--11:30电池材料单颗粒动力学测试方法与材料数据库左安昊清华大学;北京易析普罗科技有限责任公司 博士研究生;CEO11:30--12:00扫描电镜在新能源电池和钙钛矿材料表征中的应用周宏敏中国科学技术大学理化科学实验中心 工程师7月23日下午 多孔材料与颗粒分析表征14:00--14:30多孔颗粒原位工况池表征姚明水中国科学院过程工程研究所 研究员14:30--15:00气体吸附法表征多孔材料孔结构的数据分析合理性探讨刘丽萍大连理工大学 高级工程师15:00-15:30固体核磁界面测量在材料分析中的应用孔学谦上海交通大学转化医学研究院 教授15:30--16:00多孔材料局域结构及主客体相互作用原子尺度结构研究陈晓清华大学 副研究员7月24日上午 超微及纳米颗粒分析表征08:30--09:00纳米颗粒和微纳气泡的粒度、形貌和浓度测量新方法蔡小舒上海理工大学 教授09:00--09:30颗粒表征关键技术新进展李倩HORIBA(中国) 应用工程师09:30--10:00动态光散射测试功能的延伸宁辉丹东百特仪器有限公司 产品总监10:00--10:30单颗粒电感耦合等离子体质谱法检测纳米颗粒国家标准制定及应用研究郭玉婷国家纳米科学中心 高级工程师10:30--11:00应用单颗粒(sp)ICP-MS法对环境样品中的颗粒物进行定量检测董硕飞安捷伦科技(中国)有限公司 工程师11:00--11:30量子点材料及产品特性测试方法开发与标准化刘忍肖国家纳米科学中心 教授级高级工程师7月24日下午 颗粒与健康14:00--14:30吸入制剂递送机理与质量控制侯曙光成都中医药大学药学院 教授14:30--15:00医药材料中的颗粒物性表征测量技术矩阵高原北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 高级工程师15:00--15:30人体微塑料潜在内暴露风险安立会中国环境科学研究院 研究员15:30--16:00微纳塑料分析测试技术进展高峡北京市科学技术研究院分析测试所(北京市理化分析测试中心) 副所长/研究员16:00--16:30基于同步辐射等技术微纳米气泡性质研究张立娟中国科学院上海高等研究院 研究员二、参会方式1. 本次会议免费参会,参会报名请点击https://www.instrument.com.cn/webinar/meetings/particuology2024/长按识别二维码免费报名2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。三、会议联系1. 会议内容仪器信息网牛编辑:13520558237,niuyw@instrument.com.cn2. 会议赞助刘经理,15718850776,liuyw@instrument.com.cn
  • HORIBA收购MANTA :拓展颗粒表征业务 布局制药等市场
    p    strong 仪器信息网讯 /strong 2019年1月28日,株式会社堀场制作所 (HORIBA, Ltd.)宣布,集团旗下美国子公司HORIBA Instruments Incorporated(总部位于美国Irvine 以下称“HORIBA Instruments”)于1月24日,以全部股份收购的形式完成对MANTA Instruments, Inc.(总部位于美国圣地亚哥 以下简称“MANTA”)的收购。 /p p   MANTA的纳米颗粒表征技术因其突破性的多光谱纳米颗粒跟踪技术而享有盛誉,该技术是由加州大学圣地亚哥分校(University of California, San Diego)开发并申请专利的。HORIBA Instruments完成对MANTA的收购后,这家领先的纳米颗粒跟踪分析系统开发商、制造商和供应商将成为HORIBA Instruments的全资子公司。这扩展了HORIBA颗粒表征仪器技术。 /p p   strong  关于收购的原因/目标 /strong /p p   HORIBA开发、制造和销售用于生命科学、半导体制造过程和环境过程的纳米颗粒跟踪分析系统。 /p p   最新型号的MANTA纳米粒子跟踪分析系统ViewSizer& reg 3000,发出一束激光在纳米颗粒布朗运动流体中跟踪它们,通过图像分析,高分辨的评估颗粒大小分布、数量浓度,及10纳米量级粒子的聚集状态。在荧光模式中,还可以测量荧光标记的颗粒。该创新仪器有望满足生命科学和制药研究市场的客户需求,这些领域更需要颗粒数浓度的测量数据。同样,在化妆品、催化剂和半导体领域也有很大客户需求,在这些领域中,纳米区域的测量也是必不可少的。 /p p style=" text-align: center " img src=" http://www.mantainc.com/wp-content/uploads/2017/02/MANTA-Nanoparticle-Tracking-Analysis.gif" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 可视化纳米颗粒表征 /span br/ /p p   这种创新的仪器预计将满足生命科学和药物研究市场的客户需求,这些市场需要颗粒数浓度的数据,以及化妆品、催化剂和半导体市场的客户需求,在这些市场中,纳米区域的测量是必不可少的。MANTA的ViewSizer3000& reg 所属的颗粒表征仪器市场容量预计在2019年将达到20.6亿日元,并且到2022年,市场容量将以8.4%的复合平均增长率(CAGR)继续扩大(根据该公司数据评估)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/5bf4e241-1b9f-4a52-ac75-7112487a34f9.jpg" title=" 0.jpg" alt=" 0.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " ViewSizer& reg 3000 nanoparticle tracking analysis system /span /p p    strong 目标领域及行业应用 /strong /p p   生命科学——蛋白质的聚集/结晶,外泌体,病毒和抗体药物的研究和开发 /p p   农业和林业,水和家用电子产品——具有抗菌和净化性能的精细气泡 /p p   半导体材料——半导体晶圆抛光的生产控制和半导体超纯水的质量控制 /p p   环境——水的质量监测和处理(水中纳米颗粒的数量) /p p   药品,食品和化妆品——制药行业的颗粒浓度控制,超低浓度样品。 /p p   功能纳米材料——催化剂材料和碳纳米管 /p p   催化剂和可充电电池——新材料的研究,开发,改进和质量控制 /p p   strong  整合时间表 /strong /p p   收购过程完成后,MANTA的开发和生产功能将转移到HORIBA Instruments,从而通过利用HORIBA的专有技术开始开发下一代机型。MANTA的图像处理技术结合现有的光学技术,有望在颗粒测量外,为体外诊断,再生医学以及生物制药的研究和开发做出贡献。 HORIBA还计划将这项先进技术应用于半导体领域的CMP(化学机械抛光)浆料和环境领域的水中纳米粒子测量。 /p p   strong  关于MANTA /strong /p p style=" text-align: left " & nbsp & nbsp & nbsp & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/201901/uepic/8a385250-a5e5-4b66-81c2-9819a1e83d18.jpg" title=" 2.jpg" alt=" 2.jpg" style=" width: 163px height: 50px " width=" 163" vspace=" 0" height=" 50" border=" 0" / /p p   公司名称:MANTA Instruments, Inc. /p p   CEO: Rick Cooper /p p   地址:7770 Regents Rd#113-573 San Diego, CA USA /p p   创立时间:2014年9月 /p p   业务部门:纳米颗粒跟踪分析系统的制造和销售 /p p   职工数:6 /p p    strong 关于HORIBA /strong /p p style=" text-align: left " & nbsp & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/201901/uepic/80cad1d9-58d1-43b6-8eac-8a943d112f8c.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   株式会社堀场制作所 (HORIBA, Ltd.)创立于1953年,65年时间,集团实现了长期稳步发展。目前,旗下五大业务部门汽车测试系统、过程& amp 环境、医疗、半导体、科学仪器事业部等都享有各自领域的全球强势产品技术:发动机尾气检测系统全球市场占有80%、烟道排气装置全球市场占有20%、红细胞CRP分析日本国内占有100%、质量流量控制器全球市场占有60%、拉曼光谱仪全球市场占有35%、光栅全球市场占有35%......截至2017年12月31日,全球员工7399人,2017年合并净销售额1953亿日元。 /p
  • 丹东百特研发总监范继来获“中国颗粒学会青年颗粒学”奖
    在日前召开的中国颗粒学会第十届学术年会上,丹东百特仪器有限公司研发总监、研发中心主任范继来获得中国颗粒学会青年颗粒学奖,是本届获奖者中唯一的企业界人士。中国颗粒学会青年颗粒学奖,是郭慕孙院士用所获得的何梁何利基金奖的全部奖金和个人部分积蓄设立“青年颗粒学基金”。中国颗粒学会利用此基金于1997年设立了“中国颗粒学会青年颗粒学奖”,旨在鼓励颗粒学领域做出突出贡献的青年科技工作者。经国家科学奖励办公室正式批准,“中国颗粒学会青年颗粒学奖”是国家承认的社会力量设立的科学技术奖。范继来从事颗粒测试技术研究16年,他和他所带领的团队以特有的执着和科学的方法,在激光粒度测试理论、反演计算、光学系统、颗粒折射率测量、图像颗粒分析技术领域取得了一项又一项成果,取得11项专利,其中激光粒度测试双镜头光学系统、正反傅里叶结合光学系统、颗粒折射率测量技术为世界首创技术,填补国内外颗粒测试技术空白,使中国颗粒测试技术拥有了系统性的自主知识产权,为中国颗粒测试技术赶超世界先进水平做出了突出贡献。在应用技术研究方面,以范继来为首的研发团队做了大量开创性的工作,推出了激光/图像二合一粒度粒形分析系统、智能化粒度测试系统、纳米粒度测试技术、动态图像颗粒分析系统以及光通量补偿技术等几十项技术,使百特颗粒分析仪器的技术性能始终处于国内外领先地位,同时结束了中国高端颗粒测试仪器只能依靠进口的历史。2006年,百特总经理董青云曾获得当年中国颗粒学会青年颗粒学奖,十二年后百特研发总监范继来又获得中国颗粒学会青年颗粒学奖,这不仅是对获奖者个人取得成绩的肯定,更是颗粒测试界对百特长期以来致力于颗粒测试技术研发并取得突出成绩的肯定。丹东百特将不负众望,不辱使命,继续致力于颗粒测试技术研究,致力于高水平颗粒测试仪器制造,为百特实现国际知名粒度仪器品牌的目标而继续努力。
  • 蔡小舒教授:浅谈光散射颗粒在线测量技术
    p style=" text-align: justify text-indent: 2em " strong 编者按: /strong SARI疫情无疑是当前最牵动人心的事件,肆虐的疫情对新冠病毒快速检测、肺部用药、医疗方案等方面的研究提出了越来越高的要求。而“粒度”作为重要的颗粒物理参数对于这些研究也有重要意义。例如,2019-nCoV病毒就属于纳米颗粒,而呼吸道不同位置的用药对粒度也有不同要求。因此在医药领域,颗粒在线测量还有巨大的潜力空间待科学家们挖掘。因此,仪器信息网特约 span style=" color: rgb(0, 176, 240) " strong 上海理工大学蔡小舒教授 /strong /span 为广大网友畅叙颗粒在线测量技术的脉络。虽不能直接为抗疫一线带来助益,但在家隔离的诸位仁人志士若能有缘读到,或将对未来医学等的发展和颗粒检测技术的应用带来更多的思考和契机。 /p p style=" text-align: justify text-indent: 2em " 在今天的文章中,蔡老师重点介绍了光散射在线测量方法(正文如下): /p p style=" text-align: justify text-indent: 2em " 颗粒,包括固体颗粒、液体颗粒(如喷雾液滴、水中的油滴等)和气体颗粒(如液体中的气泡,气体中悬浮的气泡等)在动力、化工、材料、医药、冶金等各行各业中广泛存在。据有文献报道,80%以上的产品与颗粒有关。 /p p style=" text-align: justify text-indent: 0em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/d57d16e5-39e5-4d52-af56-4628425d716d.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png" / /p p style=" text-align: justify text-indent: 2em " 颗粒的粒度是描述颗粒最重要的物理参数,不同的应用对于颗粒粒度的要求是不同的。如在呼吸道疾病治疗中用的鼻喷剂及喷雾剂,就需要控制药物雾滴的大小来达到雾滴沉积到呼吸道具体需要药物治疗部位的目的,这才能保证药液的效果。对于需要肺部用药,药液雾滴粒度应比较很小,才能随吸入的空气流动到达肺部。大一些的药液液滴会沉积在支气管或气管里,达不到肺部用药的目的。而对于喉部或气管的疾病,液滴的粒度就必须比较大,让它们能在喉部或气管里沉积。对于支气管部位的疾病,其雾滴的粒度就要介于2者之间。这就需要对鼻喷剂的喷嘴进行精心设计,以保证雾滴的粒度可以满足治疗不同疾病的需要。 /p p style=" text-align: justify text-indent: 2em " 在工业生产等中,经常遇到需要对颗粒进行在线检测要求,如颗粒的制备、雾化、管道输运等过程中。对颗粒粒度进行在线实时检测,然后将检测结果实时送到控制系统,对生产系统进行调整和控制,不仅可以提高产品质量,还可以提高产品生产效率。如在燃烧过程中,在线实时检测燃料粒度可以提高燃烧效率,降低污染物的产生。磨料生产中在线检测磨料粒度并反馈控制,可以极大提高磨料的质量。这样的例子可以在许许多多的场合找到。 /p p style=" text-align: justify text-indent: 2em " 目前已有许多颗粒粒度测量仪器能对从数纳米到数千微米的颗粒进行测量,但这些仪器基本上是用于实验室分析,并不能用于在线测量。颗粒在线测量的特点是: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 测量环境复杂,条件恶劣,如可能有高温、高压、高湿、工作环境温度变化大、存在振动、颗粒流动速度快、信号发射和接收部分的污染等,还必须考虑测量装置的磨损等; /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 测量要求高,测量时间要短,实时性好,不能因为仪器问题影响生产过程等; /p p style=" text-align: justify text-indent: 2em " 3.& nbsp 测量对象要求不同,如高浓度及浓度变化大、被测材料不同、粒度范围不同、或粒度范围变化大等; /p p style=" text-align: justify text-indent: 2em " 4.& nbsp 希望在线测量仪器结构简单、可靠、抗干扰、易安装、易维护或免维护等。 /p p style=" text-align: justify text-indent: 2em " 5.& nbsp 不仅测量颗粒粒度及分布,还经常希望得到颗粒的浓度,流量、形貌等参数,甚至成分参数。 /p p style=" text-align: justify text-indent: 2em " 在线测量按照取样方式可以分成直接在线测量(in-line)和取样在线测量(on-line)2类。在直接在线测量(in-line)方法中,测量装置不对被测颗粒进行取样,被测颗粒直接流过测量区进行测量。在这类测量方法中,由于不能对被测颗粒的浓度进行调整来满足测量方法的需要,并且用户对颗粒在线测量的要求和测量对象及环境等的不同,仪器的通用性差,必须精心考虑设计测量系统来满足测量的要求。因此,这类在线测量仪器一般都是个性化的仪器,需要根据测量现场要求来设计研制。而对于取样在线测量(on-line)中,由于连续取出的颗粒样品可以根据测量装置对于颗粒浓度的要求进行稀释调整,同时可以对其中的团聚颗粒采取分散措施,大都可以设计生产相对通用的在线测量仪器。 /p p style=" text-align: justify text-indent: 2em " 目前常用的在线颗粒粒度测量仪器的基本测量原理有光散射,超声,图像等。其中光散射大都用于气固或气液颗粒的在线测量,而超声则用于液体中颗粒的在线测量,图像法既可以用于气固、气液颗粒的测量,也可以用于液固、液液颗粒的测量。下面先重点介绍光散射在线测量方法: /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 0, 0) " strong 光散射在线测量方法 /strong /span /p p style=" text-align: justify text-indent: 2em " 光散射的基本原理是当一束激光入射到颗粒时,颗粒会向整个空间散射入射光,如图是激光入射到有颗粒的水中,颗粒向各个方向散射入射激光的照片。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/a6f9425c-dcf9-47c9-b4c9-22f75bfea916.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png" / /p p style=" text-align: justify text-indent: 2em " 根据测量颗粒散射光原理的不同,可以把光散射颗粒在线测量方法分成几类:前向静态光散射法,侧向光散射法,后向光散射法,消光法,光脉动法等。在实际应用中针对不同的测量对象,须采用不同的测量方法。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 前向静态光散射法: /span /strong 这与常用的激光粒度仪的测量原理一样,一束激光从被测颗粒一端入射,在透射端安装接收散射光信号的探测器,对测量得到的散射信号进行分析反演计算,最终得到颗粒的粒度分布和平均粒径等参数。国内外一些颗粒仪器测量公司都有基于该原理的激光在线测量仪。该类仪器的特点是:颗粒粒度测量范围大,可以从亚微米到数百微米,测量速度快,一般采用连续取样方式(on-line)实现连续实时测量。但仪器复杂,安装使用要求高,无法识别颗粒是否团聚,而团聚颗粒会造成较大的测量偏差。为防止环境振动对测量的影响,除在仪器结构上采取措施外,在安装结构上也要采取措施,尽量保证仪器运行时的稳定。为防止被测颗粒对激光器和接收透镜表面的污染,须设置无油无水的压缩空气保护(俗称扫气或气帘)光学元件表面。 /p p style=" text-align: justify text-indent: 2em " 基于该原理的在线激光粒度测量仪器可用于管内粉体颗粒的粒度在线测量和喷雾液滴测量。在在线测量管内粉体粒度时,由于颗粒浓度较高,都配有连续取样系统,将被测颗粒样品连续从管道中取出,经分散和稀释到合适浓度后送到仪器的测量区。下图是安装在现场的激光颗粒粒度在线测量仪以及仪器输出的在线测量结果。根据需要,软件可以输出实时的颗粒粒度分布,以及D50等随时间变化的曲线。为防止取样出来的颗粒发生团聚,影响测量的准确性,在取样系统中应布置使颗粒分散的气流,以尽可能保证进入测量区的颗粒处于分散良好的状态。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/b22b2599-d21f-4f9e-b16e-537e32d204fc.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 消光法: /strong /span 当激光入射到被测颗粒时,部分入射光被颗粒散射,偏离原入射方向,部分被颗粒吸收,其余部分则透射到另一侧。透射光强由于消光作用而衰减,其衰减程度含有被测颗粒的粒度信息和浓度信息。当采用多个不同波长的激光入射,颗粒对不同波长光的散射作用不同,透射光强的衰减也不同。根据多波长消光法的理论模型,由测得的不同波长的透射光强的衰减,可以反演计算得到被测颗粒的粒度和浓度。 /p p style=" text-align: justify text-indent: 2em " 该方法的特点是结构简单,对振动不敏感,但粒度测量范围较小,合适的测量范围是大约0.05微米到5微米左右。对于浓度不高的测量对象,发射和接收可以直接安装在管道2侧。在管道上开设装有石英玻璃的透明测量窗,激光束从1侧从测量窗入射,在另一侧测量窗外布置光接收器件和信号放大电路等。为防止颗粒污染测量窗口,同样需要设置无油无水的压缩空气进行保护。下图是消光法测量原理的示意图和测量装置安装在工业管道上在线测量颗粒粒度和浓度,以及烟道上在线测量烟尘的浓度。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/06be3f94-1969-48f0-a900-3db071faadcd.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " 由于消光法的光路结构简单,可以做成探针形式,用于浓度相对较高的颗粒在线测量。下图是用于汽轮机内湿蒸汽水滴粒度和浓度测量的探针系统。在探针端部的矩形窗口就是测量区。含有细微水滴的蒸汽高速流过该测量区,仪器就可以测得水滴的大小和浓度,进而得到蒸汽的湿度。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/2cf913f6-abe3-41f3-b835-2248a3818d08.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 光脉动法: /strong /span 在消光法测量中,测量光束的直径远大于被测颗粒的粒度,在测量区中颗粒数目巨大,透射光强的变化仅与测量区中的颗粒浓度变化有关,与颗粒粒度无关。但将测量光束减小到与被测颗粒粒度同一数量级时,且测量区长度较小时,透射光强信号会出现随机变化,这种随机变化是由于在测量区内颗粒数目和大小随时间变化造成的。分析这种随机变化的信号,根据光脉动原理,可以得到颗粒的平均粒度和浓度。并可能可以得到颗粒的粒度分布。下图是光脉动法的原理示意图和透射脉动光强信号。 /p p style=" text-align: justify text-indent: 2em " 这种测量方法的最大特点是测量原理简单,易于实现在线测量,粒度测量范围可根据测量对象的大小,通过改变光束直径来调整,可以在10-数千微米之间。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/d69f90e5-d64b-409e-9232-b2c847816b4c.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png" / /p p style=" text-align: justify text-indent: 2em " 根据该原理可以在线测量粉体颗粒的粒度和浓度。如果间隔一定距离布置1对测量光束,对2个随机序列信号用互相关法原理处理,不仅可以得到颗粒的粒度,还可以得到颗粒的速度, span style=" text-indent: 2em " 进而得到颗粒的流量。下图是安装在现场的基于该原理的颗粒粒度在线测量装置。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/a489deae-c7cf-405b-a5f6-765c92c0bdf5.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 消光起伏相关光谱法:& nbsp /strong /span 与消光法和光脉动法不同,在该测量方法中,光束的直径小于被测颗粒的粒径,其透射光强不再是如消光法那样是平稳的,也不是如光脉动法那样是连续的高频脉动信号,而是如下图所示,成不连续的脉动信号。当颗粒通过测量光束时,由于颗粒尺寸大于测量光束的直径,入射激光被完全遮挡住,透射光强为零。当没有颗粒通过测量光束时,透射光强为1。采用消光起伏相关光谱法的模型对测得的时间序列信号进行分析,同样可以得到被测颗粒的粒度分布。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/788dfd6a-64c4-4942-a74b-a23cd1c19bbf.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 后向散射法: /span /strong 对于高浓度悬浮液、乳剂等,光无法透射过被测颗粒,散射光也会被颗粒所吸收或散射,但会产生后向散射。颗粒浓度越高,这种后向散射光的强度也越高,且与颗粒的粒度有关。根据该原理,可以采用后向散射方法进行高浓度液液或液气颗粒体系,如悬乳剂、高浓度微气泡等的在线测量。该测量方法的特点是浓度测量范围大,可以到体积浓度百分之几十,而粒度测量范围较小,从亚微米到数微米。经过标定,还可以测量颗粒的浓度。 /p p style=" text-align: justify text-indent: 2em " 合适的光路设计还可以用于气固颗粒的在线测量,以及测量气、液、固3相流动中的离散相颗粒的粒度和浓度。 /p p style=" text-align: justify text-indent: 2em " 后向散射法测量可以做成结构非常紧凑的光纤探针形式,带尾纤的激光器发出的激光经光纤入射到被测颗粒,其后向散射光被同一根光纤接收,也可以是另一根光纤接收,然后由光纤另一端的光电探测器将后向散射光信号转换成电信号进行反演计算处理,最后得到颗粒的粒度。下图是后向散射测量的原理示意图和后向散射探针。该探针可以插入如悬乳液等高浓度颗粒两相流中进行在线测量。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/40bb4eb7-28dd-4fb5-8750-9533e649894a.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png" / /p p style=" text-align: justify text-indent: 2em " strong style=" text-indent: 2em " 作者简介: /strong br/ /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 300px height: 217px float: left " src=" https://img1.17img.cn/17img/images/202002/uepic/1a4277d5-fe8a-48ce-a42e-05a480160d54.jpg" title=" 蔡小舒.jpg" alt=" 蔡小舒.jpg" width=" 300" height=" 217" border=" 0" vspace=" 0" / 蔡小舒,上海理工大学教授。研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、湍流等,近年来开始涉足生命科学的测量研究。先后承担了国家两机项目、国家自然科学基金重点项目、仪器重大专项项目、面上项目、科技部和上海市项目等纵向项目,国际合作项目以及企业委托项目。 /p p style=" text-indent: 2em text-align: justify " 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span br/ /p p style=" text-align: center text-indent: 0em " strong span style=" text-indent: 2em " 欲知相关仪器可点击进入 /span span style=" text-indent: 2em text-decoration: underline " a href=" https://www.instrument.com.cn/zc/670.html" target=" _self" style=" color: rgb(0, 176, 240) " span style=" text-decoration: underline text-indent: 2em color: rgb(0, 176, 240) " 在线粒度仪 /span /a /span span style=" text-indent: 2em " 专场 /span /strong /p
  • 直击颗粒3D图像
    如果你有兴趣学习如何利用3D颗粒图像数据来改善你的产品或处理过程,那你绝不想错过这次讲座。Microtrac邀请你加入我们11月6日上午10点借由仪器信息网平台举办的免费网络研讨会,这次会议将介绍实现动态图像分析技术来测量粒子大小和形状的好处。 会议主题如下: ?图像分析关键术语?3D技术的历史?专利3 D颗粒大小和形状分析?使用颗粒图像数据来改善你的产品或处理过程  美国麦奇克颗粒图像分析仪PartAn 3D   美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。Microtrac Inc.公司非常注重技术创新,近半个世纪以来,一直领先着激光粒度分析的前沿技术,可靠的产品和强大的应用支持及完善的售后服务,使得其不断超越自我,推陈出新,独领风骚。 DKSH是一家专注于亚洲地区,在市场拓展服务领域处于领先地位的集团。大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 大昌华嘉商业(中国)有限公司 市场部 您可以通过点击下面链接获取详细信息并报名参加本次网络会议,谢谢! 会议链接:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1222 服务咨询电话:4008 210 778 E-mail:ins.cn@dksh.com 欢迎浏览大昌华嘉网站 : http://www.dksh-instrument.cn
  • 发光颗粒照亮未来——颗粒学年度学术盛会分会场侧记
    p    strong 仪器信息网讯 /strong 2020年10月24日,中国颗粒学会第十一届学术年会暨海峡两岸颗粒技术研讨会在福建省厦门市盛大开幕。会议同期举办16个不同主题的分会场 仪器信息网编辑对“第12分会场:发光颗粒照亮未来”(以下简称:发光颗粒分会场)进行了跟踪报道。发光颗粒分会场由江苏省颗粒学会、新型显示材料与器件工信部重点实验室、国家特种超细粉体工程技术研究中心联合主办,会议内容包含了半导体发光颗粒、稀土发光颗粒、碳及有机发光材料、团簇发光颗粒、 发光光谱、发光器件、发光应用及产业化等方面 发光颗粒分会场得到与会观众的高度关注,近200人会场座无虚席。 br/ /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 664px height: 374px " src=" https://img1.17img.cn/17img/images/202010/uepic/cf4075cd-e57e-4a2d-b5f8-cbe3ac197eb3.jpg" title=" 会场.jpg" alt=" 会场.jpg" width=" 664" height=" 374" border=" 0" vspace=" 0" / /p p style=" text-align: center "   发光颗粒分会场现场 /p p   发光颗粒分会场会期为期1天,共安排了8个特邀报告和17个报告。24日下午,分别由中国科学院福建物质结构研究所研究员陈学元、南京理工大学教授曾海波主持。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202010/uepic/ba215537-7e0e-496f-a867-2a1749a76f32.jpg" title=" 陈学元.jpg" alt=" 陈学元.jpg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center "   中国科学院福建物质结构研究所陈学元主持会议 /p p   照明技术的四代是:白炽灯、荧光灯、LED(GaN-LED)、面发光-LED 显示技术的三代是:电子管显示、液晶显示(GaN-LED、LCD)、轻薄柔高清O/QLED。照明、显示技术共用最基本的LED电光源方案,电致白光的功效问题、成本问题是关注的重点。南京理工大学教授曾海波在《量子电光源——基于单层半导体的电致白光探索》报告中指出,作为重要的白光电光源,其未来技术探索方向可能在:横向集成、垂直集成、单层半导体电致白光等方向,以降低电损耗、光损耗等,以实现高效、高亮、高清、节能。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202010/uepic/ce96b43e-6084-4bf2-ae1c-e42b4d2767f1.jpg" title=" 曾海波.jpg" alt=" 曾海波.jpg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center "   南京理工大学教授曾海波作《量子电光源——基于单层半导体的电致白光探索》特邀报告 /p p   浙江大学教授金一政作《Towards High-performance Quantum-dot light-emitting diodes》报告。针对当前红色QLED、绿色QLED、蓝色QLED的T95数据,对于QLED如何满足显示器的技术要求,尤其是提高蓝色QLED的T95(报告中给出当前数据为-50h),金一政进行了量子点激子产生的动力学研究。金一政在报告中分享了自己的观点:(1)基于QD的EL设备的激子动力学观点,认为QD先获得电子,然后再获得空穴 (2)量子点激子产生的关键是其中间态 (3)材料化学和界面化学将提高QLED的性能,以满足行业在显示器方面的要求。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202010/uepic/4fcd8cc4-8a5e-4083-bd0e-7ee0736e2318.jpg" title=" 金一政.jpg" alt=" 金一政.jpg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center "   浙江大学教授金一政作《Towards High-performance Quantum-dot light-emitting diodes》特邀报告 /p p   随着恶性肿瘤成为威胁人类生命的头号杀手,肿瘤精准诊断已成为体外检测的重大需求。掺Ln的发光纳米生物探针具有:低费用、高光稳定性、窄宽带等优点。陈学元《稀土发光纳米生物标记:从基础到生物医学应用》特邀报告从其电子结构和激发态动力学开始,讲到其光学性能调控,并介绍了在均相、异质生物测定中的应用探索。掺Ln的发光纳米生物探针关键在于如何提高PL效率,陈学元认为其主要策略是:共掺杂、尺寸控制、表面及结构等方面。 /p p   厦门大学教授解荣军虽然临时有事未能及时赶到会场,但也安排同事李淑星代作特邀报告《新型氮化物荧光粉的发现》。24日下午,来自北京理工大学的钟海政教授、上海交通大学的李良教授等10位专家分别进行了主题报告交流。 br/ /p p   25日,发光材料分会场将继续进行,4场特邀报告和7场主题报告,将同样令人关注! /p
  • 划重点!这届“颗粒研究应用与检测分析”网络会议有点不一样
    颗粒,作为微观世界的基石,无处不在且特性纷呈。颗粒学则是一门融合数学、物理、化学及生物学基本原理的综合性学科,研究内容广泛而深入,涵盖材料、能源、医药、环境、化工、冶金等领域。随着颗粒学的研究日益深入,颗粒的检测分析技术成为该领域的关键支撑。为促进颗粒学同仁的互融交流,推动颗粒学的繁荣发展,2024年7月23-24日,仪器信息网联合中国颗粒学会将举办第五届“颗粒研究应用与检测分析”网络会议。2024年是仪器信息网与中国颗粒学携手并进的第五个年头,双方合作日益深化。会务组基于往届会议内容与用户反馈,同时广泛吸纳多家主流仪器企业的专业见解,对本届会议内容细致打磨,特别设置了电池材料与颗粒分析表征、多孔材料与颗粒分析表征、超微及纳米颗粒分析表征、颗粒与健康四大专场。点击图片直达会议页面那么,本次会议内容有哪些不一样?接下来为您揭晓!一、以标准化引领颗粒学发展2024年3月1日,国内首项使用单颗粒电感耦合等离子体质谱方法表征纳米颗粒的国家标准开始实施。spICP-MS是一种在非常低的浓度中检测单个纳米颗粒的方法,不需联用设备就可以同时完成纳米颗粒的成分、浓度、粒径、粒度分布和颗粒团聚的检测。本次会议特邀标准牵头单位国家纳米科学中心高级工程师郭玉婷对该标准进行解读,促进spICP-MS方法的推广与应用。此外,国家纳米科学中心的教授级高级工程师刘忍肖也将分享量子点材料及产品特性测试方法开发与标准化。二、颗粒表征方法多样化本届会议汇集了探索颗粒微观形貌结构、物理性能及化学成分的多元技术手段,包括广泛应用的电镜法、动态光散射法(DLS)、激光衍射法、气体吸附法等,以及单颗粒ICP-MS法、光谱学分析、小角X射线衍射、固体核磁测量方法等前沿应用。三、聚焦颗粒学研究应用热点(1)会议聚焦电池正负极材料的关键指标及表征方法,包括粒度、比表面积、水分、磁性异物、元素组成、电化学性能等,以及聚合物基储能材料的结构调控与电化学性能研究。(2)新增多孔材料专场,围绕多孔颗粒的原位工况池表征、以及多孔材料的比表面积、孔体积和孔径分布、界面结构和缺陷分布展开分享。(3)聚焦纳米科技前沿,分享备受关注的纳米颗粒和微纳气泡粒度、形貌和浓度分析方法;探讨当前热门的量子点材料关键特性参数测试分析方法开发。(4)会议还将分享医药材料中的颗粒物性表征测量技术矩阵,包括粒度、比表面积及孔径、Zeta电位、流动性分析方法等;针对社会普遍关注的微塑料问题,探讨其对人体健康的潜在影响,分享显微红外、显微拉曼以及热分解质谱等先进分析技术。四、会议日程7月23日上午 电池材料与颗粒分析表征时间报告题目报告人单位及职务09:00--09:30聚合物基储能材料的结构调控与电化学性能研究孙振华中国科学院金属研究所 研究员09:30--10:00赞助席位10:00--10:30动力电池核心原材料关键指标及表征方法宋冉冉北京新能源汽车股份有限公司 高级经理10:30--11:00赞助席位11:00--11:30电池材料单颗粒动力学测试方法与材料数据库左安昊北京易析普罗科技有限责任公司 CEO11:30--12:00专家报告邀请中待定待定7月23日下午 多孔材料与颗粒分析表征时间报告题目报告人单位及职务14:00--14:30多孔颗粒原位工况池表征姚明水中国科学院过程工程研究所 研究员14:30--15:00赞助席位15:00--15:30气体吸附法表征多孔材料孔结构的数据分析合理性探讨刘丽萍大连理工大学 高级工程师15:30--16:00赞助席位16:00--16:30固体核磁界面测量在材料分析中的应用孔学谦上海交通大学转化医学研究院 教授16:30--17:00待定陈晓清华大学 助理研究员7月24日上午 超微及纳米颗粒分析表征时间报告题目报告人单位及职务08:30--09:00纳米颗粒和微纳气泡的粒度、形貌和浓度测量新方法蔡小舒上海理工大学 教授09:00--09:30颗粒表征关键技术新进展李倩HORIBA(中国) 应用工程师09:30--10:00待定待定丹东百特仪器有限公司10:00--10:30单颗粒电感耦合等离子体质谱法检测纳米颗粒国家标准制定及应用研究郭玉婷国家纳米科学中心 高级工程师10:30--11:00应用单颗粒(sp)ICP-MS法对环境样品中的颗粒物进行定量检测董硕飞安捷伦科技(中国)有限公司 工程师11:00--11:30基于同步辐射等技术微纳米气泡性质研究张立娟中国科学院上海高等研究院 研究员11:30--12:00量子点材料及产品特性测试方法开发与标准化刘忍肖国家纳米科学中心 教授级高级工程师 7月24日下午 颗粒与健康时间报告题目报告人单位及职务14:00--14:30吸入制剂颗粒制备与质量检测候曙光成都中医药大学药学院 教授14:30--15:00赞助席位15:00--15:30医药材料中的颗粒物性表征测量技术矩阵高原北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 高级工程师15:30--16:00人体微塑料潜在内暴露风险安立会中国环境科学研究院 研究员16:00--16:30赞助席位16:30--17:00微纳塑料颗粒的分析测试技术进展高峡北京市科学技术研究院分析测试所(北京市理化分析测试中心) 副所长/研究员五、 参会方式1. 本次会议免费参会,参会报名请点击https://www.instrument.com.cn/webinar/meetings/particuology2024/长按识别二维码免费报名2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、 会议联系1. 会议内容仪器信息网牛编辑:13520558237,niuyw@instrument.com.cn2. 会议赞助刘经理,15718850776,liuyw@instrument.com.cn
  • 中国颗粒学会团体标准新规发布 一项锂电团标通过审查
    p style=" text-indent: 2em " 2018年8月11日下午,中国颗粒学会第十届学术年会——颗粒与标准化论坛成功举办,论坛印发并宣贯了中国颗粒学会已发布的三项标准——学会团体标准管理办法(T/CSP 1-2018)和标准工作程序(T/CSP 2-2018)以及《光散射原理细颗粒物(PM2.5)质量浓度测量仪性能测试方法 T/CSP 3-2018》。论坛还就“颗粒团体标准共同体”的实施规则进行了深入研讨。,并审查通过了《颗粒技术 盐湖卤水 电池级碳酸锂》团体标准。会议由中国颗粒学会团体标准工作委员会主任委员李兆军研究员主持,来自中国颗粒学会、北京粉体技术协会、江苏省颗粒学会、上海市颗粒学会等30余位相关专家出席。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/281b71f4-c9b9-404f-8e98-49b3a0ffcdb3.jpg" title=" 图片1.jpg" / /p p style=" text-align: center text-indent: 0em " & nbsp strong style=" text-align: center text-indent: 0em " 会议现场 /strong /p p style=" text-indent: 0em text-align: center " & nbsp img src=" http://img1.17img.cn/17img/images/201808/insimg/27f976bb-b0af-4474-916e-fcabf937db28.jpg" title=" 图片2.jpg" / /p p style=" text-align: center text-indent: 0em " strong 中国颗粒学会团体标准工作委员会主任委员李兆军研究员致辞 /strong /p p style=" text-indent: 2em " & nbsp 中国颗粒学会是国家标准化管理委员会批准的第二批团体标准试点单位,自2017年成立以来,积极落实国务院《深化标准化工作改革方案》、《国家标准化体系建设发展规划(2016—2020年)》的政策方针,全力落实相关工作,始终把标准质量放在发展的首位,在颗粒学团体标准制定与颗粒学团体标准制定单位的组织等方面取得了不俗成就,制定并发布3项团体标准,今年将发布另外3项标准。2017年11月,中国颗粒学会与北京粉体技术协会、江苏省颗粒学会和上海市颗粒学会签订了合作框架,正式成立了“颗粒团体标准共同体”,对颗粒技术团体标准进行必要的规范、引导、监督,促进我国颗粒学团体标准事业的共同发展。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/6fdf568d-9940-472a-aa79-5f5ea2ce4bc1.jpg" title=" 图片3.jpg" / & nbsp /p p style=" text-align: center text-indent: 0em " strong 中国计量科学研究院张文革研究员宣贯团标 /strong /p p style=" text-indent: 2em " 会上,中国计量科学研究院张文革研究员对团体标准《光散射原理细颗粒物(PM2.5)质量浓度测量仪性能测试方法T/CSP 3-2018》进行了宣贯,该标准为中国颗粒学会团体标准工作委员会下达的2017年团体标准制修订计划之一,由中国计量科学研究院、北京市理化分析测试中心等5家单位联合起草,该团标于2018年2月8日发布实施。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/3659012d-5b81-43f6-9e1a-96c692e10a61.jpg" title=" 图片4.jpg" / & nbsp /p p style=" text-align: center text-indent: 0em " strong 《颗粒技术 盐湖卤水 电池级碳酸锂》团体标准制定单位代表汇报 /strong /p p style=" text-indent: 2em " 在随后的专家审查会上,与会代表就《颗粒技术 盐湖卤水 电池级碳酸锂》团体标准送审稿进行了审查。我国的盐湖锂资源丰富,随着卤水中提取碳酸锂的技术取得重大突破,制定相关团标对锂离子电池产业发展以及合理利用盐湖卤水资源具有极为迫切的重要意义。该规范于2018年初通过中国颗粒学会审批正式立项,7月底完成验证测试工作。 /p p style=" text-indent: 2em " 会上,专家们从技术要求、市场供需、可操作性等方面对标准送审稿进行了综合细致的评审,并给予了建设性的修改意见与建议。经过充分研讨,专家审查组一致同意通过对《颗粒技术 盐湖卤水 电池级碳酸锂》团体标准的审查。据悉该规范在根据专家意见修改完善后,将于近期正式发布。 /p
  • PerkinElmer NexION 350一分钟即可获得纳米颗粒全面信息
    仪器信息网讯 2015年5月20-22日,&ldquo 第六届亚太地区冬季等离子体光谱化学国际会议(The 6th Asia-Pacific Winter Conference on Plasma Spectrochemistry,2015 APWC)&rdquo 在福建厦门召开,300余位国内外专家学者参加了此次会议。   在此次会议交流中,提到较多的是纳米单颗粒研究工作,纳米科技近年来快速发展,随之也带了一些主要的应用领域,例如,由于纳米技术在消费品、工业应用和医疗技术等领域中使用频率越来越大,纳米颗粒也越来越多地渗透到环境中,那么,对于土壤、饮用水和废水中这些纳米颗粒的归溯、转移和传输的评估争辩的越来越重要。   ICP-MS已经被证实是纳米颗粒的无机组成、浓度、尺寸、表面电荷、结构、团聚和尺寸分布等表征的有效手段。而在业内,PerkinElmer是最先推出纳米单颗粒ICP-MS专用分析软件的厂家。作为2015 APWC的白金赞助商,PerkinElmer在会议现场向与会嘉宾展示了等离子体光谱质谱相关仪器以及最新纳米单颗粒的表征和研究成果,成为与会嘉宾和专业媒体的关注焦点。 黄本立院士参观PerkinElmer展位,并与公司技术支持专家进行交流   2014年,PerkinElmer推出了ICP-MS新品NexION 350,据称是瞬时采集速度最快的ICP-MS,其数据采集速度每秒达100000个数据点,较同类产品可高出10倍以上。另外,PerkinElmer同时推出了纳米尺寸分析模块的Syngistix软件,Syngistix也号称是世界上第一款单颗粒ICP-MS专用分析软件。二者结合,从颗粒成分、浓度到尺寸和粒径分布数据都可以在一分钟内单次实验获得,无需后续耗时耗力的数据处理。可将同种元素其离子态的浓度和纳米颗粒的浓度分辨开。 撰稿:刘丰秋
  • FlowCam发布流式颗粒成像分析系统FlowCam® 8000新品
    应用领域:1.生物制药: 蛋白质治疗领域的微小颗粒表征,微胶囊化配方研究和质量控制,药物活性成分(API‘s),填充剂和辅料,干燥和再水化的冻干颗粒2.石油天然气:液压油中污染物的测量, 钻探泥浆表征,压裂支撑剂的质量控制,采出水和回流水中的油滴分析,燃油中有害残留催化剂的分析等3.食品饮料: 微胶囊化,填料塔(填料材料分析)4.化工:油漆涂料,墨水染料,洗涤液等5.环境行业:土壤和藻类分析通过选择20X, 10X, 4X, 2X物镜,实现对粒度范围1μm~1,000μm颗粒进行成像和分析。测量粒度和颗粒形状-对每个颗粒成像后都可以获得30多种形态学测量结果提供卓越的成像质量和基于成像法的测量参数-可以看到快速和准确的,可由定量数据证明的检测测量结果。快速提供具有统计意义的结果-用户可在过程种观察到每分钟数以万计的颗粒自动化的,可建模的,具有统计学意义的 - 基于自动识别统计软件 - 可将不同的颗粒进行分门别类,从而节省时间。对于所有颗粒尺寸1 μm到2 mm(计数)和4 μmto 2 mm (形状)提供精确结果。交叉偏振光源选项可以有效隔离和量化有双折射现象的颗粒。新的自动对焦功能带来便利,并可重现对焦点。FlowCam系列提供自冲洗和清洁功能,并且使管道式进样端口一体化。相机像素:1920x1200 像素,可选彩色或者单色最小样品使用量低至100 μl可选择与ALH(自动液体处理器)配套使用可选择使用荧光发射器与探头:触发条件可选:488nm, 532nm, 633nm波长,2通道荧光探头创新点:通过选择20X, 10X, 4X, 2X物镜,实现对粒度范围1μ m~1,000μ m颗粒进行成像和分析。 测量粒度和颗粒形状-对每个颗粒成像后都可以获得30多种形态学测量结果 提供卓越的成像质量和基于成像法的测量参数-可以看到快速和准确的,可由定量数据证明的检测测量结果。 快速提供具有统计意义的结果-用户可在过程种观察到每分钟数以万计的颗粒 自动化的,可建模的,具有统计学意义的 - 基于自动识别统计软件 - 可将不同的颗粒进行分门别类,从而节省时间。 流式颗粒成像分析系统FlowCam® 8000
  • ST120G不规则颗粒硬度计的原理及技术特点
    ST120G全自动硬度计是按研究所特殊要求研制生产的,不规则的颗粒自动硬度的检测原理为:根据自动成像软件及单片机软件相结合,自动测量出不规则颗粒的面积及硬度。面积的测定采用自动成像原理,成像传感器自动感应上压板向下加压的接触面积,并自动计算接触面积,单片机软件通过判定自动计算出颗粒的硬度值,硬度的单位可以选择Mpa或者Kg/cm3.。试验方法规定研究开发采用现代机械设计理念和微机处理技术进行精心合理设计的一种新型高精度智能型试验仪,采用先进的元器件、配套部件、单片微机,进行合理的构造和多功能设计,配置液晶中文显示,具有标准中包含的各种参数测试、转换、调节、显示、记忆、打印等功能。产品特点1.机电一体化现代设计理念,结构紧凑,外观美观大方,维修方便;2.仪器采用上压板固定式,高精度称重传感器,保证仪器力值数据采集的快速性和准确性;测量精度高。3.采用高速ARM处理器,自动化程度高,数据采集快,全自动测量,智能判断功能,安全可靠具有强大的数据处理功能,可直接得出各项数据的统计结果,并且能自动复位,操作方便,容易调节,性能稳定。4.可显示压力和变形量,实时显示抗压力,变形量等信息;5.采用模块式一体型热敏打印机,打印速度快,换纸方便;6.中英文双语操作菜单(中文-English),并可随时切换;7.可连接计算机软件,具有实时显示抗压曲线功能及数据分析管理、保存、打印等功能
  • Day2之颗粒测试技术多领域应用探讨——第十一届全国颗粒测试学术会议
    p    strong 仪器信息网讯 /strong 2017年11月16日,为期两天的 a href=" http://www.instrument.com.cn/news/20171117/233615.shtml" target=" _self" title=" " style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " strong “第十一届全国颗粒测试学术会议暨2017全国粉体测试技术应用研讨会” /strong /span /a 在广州如期召开。大会由中国颗粒学会颗粒测试专业委员会主办,华南师范大学物理与电信工程学院、珠海真理光学仪器有限公司承办,会议吸引来自全国各地高校院所、检测机构、仪器设备厂商等颗粒测试‘圈’内120余名专家学者参会。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/6820d2cb-3b42-4aaf-807d-a28bbce0c8a4.jpg" title=" 01.jpg" / /p p br/ /p p style=" text-align: center " strong 会议现场 /strong /p p   会议第二天(17日),精彩报告继续上演,共13个学术报告依次进行,依次就颗粒测试技术多领域应用进行探讨,以下为摘录部分精彩内容: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/b9bb6030-76dd-4bc4-a0df-cf0a94fe31b7.jpg" title=" IMG_9497.jpg" / /p p style=" text-align: center " strong 报告人:张红霞(天津大学) /strong /p p style=" text-align: center " strong   报告题目: 基于干涉成像技术的透明椭球粒子测量 /strong /p p   干涉粒子成像(IPI)技术被广泛应用于粒子测量领域,来自于透明球形粒子反射和折射的散射光,在聚焦像面上产生两点像,在离焦像面上产生干涉条纹图,通过测量两点像距离或者干涉条纹频率可以获得粒子的尺寸信息,但对透明椭球形粒子的测量还有待深入研究。张红霞等采用热拉伸法,以标准球形粒子为原料制作椭球粒子,搭建IPI实验系统,采用双CCD同时获取粒子在相互垂直的两种偏振态下的干涉图像,实现球形粒子与椭球形粒子的形态判别及转向判别。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/847db6ee-f89e-4b75-9d6a-70e62b46d9be.jpg" title=" IMG_9506.jpg" / /p p style=" text-align: center "    strong 报告人:刘忍肖(国家纳米科学中心) /strong /p p style=" text-align: center " strong   报告题目:XRF检测石墨烯粉体材料中的主要杂质元素 /strong /p p   石墨烯粉体是我国已具备规模化生产能力的主要石墨烯材料类型,建立准确可靠的物理结构和化学成分分析方法对实现其在多个工业领域的应用至关重要。刘忍肖等发展了一种可对石墨烯粉体材料中所含杂质元素进行快速、无损分析的检测方法。技术内容是基于X射线荧光光谱(XRF)技术对未处理或压片成型的石墨烯材料进行无损、快速检测,信誉ICP-OES、ICP-MS、SEM/EDS等通用测试方法的测试结果进行比对验证,有望成为对石墨烯粉体杂质元素快速、简单、经济、无损、通用的定性半定量分析测试方法。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/59a3cd28-4401-40c5-a79e-74ebbc99c5f3.jpg" title=" IMG_9508.jpg" / /p p style=" text-align: center "    strong 报告人:邱健(华南师范大大学) /strong /p p style=" text-align: center " strong   报告题目:关于动态光散射技术三个问题的研究 /strong /p p   为提高颗粒测量性能及拓展应用领域,邱健就三个方面的技术问题与大家展开探讨:即探测区杂散光对相干因子的影响、表面效应对颗粒布朗运动的影响、颗粒的定向运动方向对测量的影响等。经过实验得出系列结论:相干因子随着相干或者非相干杂散光的比例增大而减小;相干因子要高,就一定要控制杂散光;在一维宽度受限区域内,颗粒粒径的测量值大于实际值;扩散系数变化与受限宽度有近似线性关系等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/2776d10d-de3e-42c3-a5bc-b672c730193e.jpg" title=" IMG_9525.jpg" / /p p style=" text-align: center "    strong 报告人:朱晓阳(国家纳米科学中心) /strong /p p style=" text-align: center " strong   报告题目:原子力显微镜在纳米材料高度测量中的应用 /strong /p p   纳米尺度检测与表征是纳米科技得以发展的必要条件,AFM作为表面分析设备,因其在高度测量中的准确性和高分辨率被广泛应用在纳米材料的研究中。朱晓阳在报告中详细介绍了用AFM测量纳米片层结构和纳米颗粒高度时的测量过程、数据分析及处理过程和高度测量值的不确定度评定办法。该方法可用于以石墨烯为代表的二维纳米片层材料厚度及层数的测量,及纳米颗粒粒径分析。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/edd56e09-949e-4d72-8baf-ba78a6b085b4.jpg" title=" IMG_9545.jpg" / /p p style=" text-align: center "   strong 报告人:申晋(山东理工大学) /strong /p p style=" text-align: center " strong   报告题目:多角度动态光散射测量的粒度分布加权反演 /strong /p p   申晋首先介绍了动态光散射与多角度测量的定义,接着通过自相关函数的加权反演、模拟及实测研究,得出以下结论:DLS测量受噪声和ACF数据的低信息量制约,优化DLS测量系统可降低噪声,MDLS可增加测量数据中的粒度信息;从含噪数据中有效提取粒度信息对MDLS PSD的准确测量具有重要作用;采用基于信息特征加权昂发进行MDLS数据反演能有效提高信息利用,降低噪声影响。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/7192a00a-2d45-4c34-ba8f-706df26ddccf.jpg" title=" IMG_9574.jpg" / /p p style=" text-align: center "    strong 报告人:黄晓群(厦门理工学院) /strong /p p style=" text-align: center " strong   报告题目:基于散射光偏振分析的流动中球形粒子粒径与速度的同步测量 /strong /p p   根据米氏散射理论,单一球形粒子散射光偏振度取决于入射光波长,观测角,粒子直径以及相对折射率。当其他条件确定时,可建立起粒子直径和散射光偏振度的关系,从而通过反演计算得到粒径。黄晓群等采用此散射光偏振分析法对自由扩散于空气中的DEHS粒子进行粒径测量。同时,将实验光路与PIV相结合,基于粒子图像对散射光两线性偏振分量比例进行分析计算,达到同步测量颗粒粒度和速度的目的。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/6ca6e9d1-4416-4dfc-9564-5cc682c7631c.jpg" title=" IMG_9604.jpg" / /p p style=" text-align: center "    strong 报告人:王瑞敏(国家纳米科学中心) /strong /p p style=" text-align: center " strong   报告题目:多尺寸金纳米颗粒混合体系中蛋白质竞争吸附的同时监测 /strong /p p   报告中,王瑞敏介绍到,深入理解纳米颗粒与蛋白质的相互作用是研究纳米材料在生物医药领域应用及其生物安全性的重要基础。纳米颗粒的表面化学、粒径及形状等因素都会影响其与蛋白质的相互作用。发展可以同时分析多尺寸纳米颗粒对蛋白竞争吸附的方法非常重要。其课题组基于DCS技术,对此进行了研究,利用DCS颗粒分析的高分辨率,实现了溶液中六种粒径的金纳米颗粒与牛血清蛋白之间的竞争吸附行为的同时监测。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/dc721eb1-7a5d-4cd6-b51d-ed2ea706a438.jpg" title=" IMG_9624.jpg" / /p p style=" text-align: center "    strong 报告人:徐捷(天津大学) /strong /p p style=" text-align: center " strong   报告题目:颗粒光散射中偏振的研究及应用综述 /strong /p p   偏振是光波一个固有参量,在小颗粒光散射中有着重要应用。报告中,徐捷简介了偏振的定义及描述方法后,对各个领域的偏振散射的研究和应用进行综述。发现偏振多用于纳米级小颗粒粒径的测量,散射光的偏振与颗粒形状、均匀性、朝向和各向异性等具有很大关系。基于光散射的颗粒测量中,虽然各种方法有所侧重,但一般都是综合利用散射光的偏振、强度、相位等参量。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/911374f0-51bc-484a-913c-5dcc4f80b315.jpg" title=" IMG_9632.jpg" / /p p style=" text-align: center "    strong 报告人:孙辉(上海理工大学) /strong /p p style=" text-align: center " strong   报告题目:基于一阶彩虹区域高斯光散射的液滴测量研究 /strong /p p   雾化广泛应用于燃烧、医药、农业、消防、日常生活等领域,实现雾化过程液滴粒度大小及分布、速度、温度、蒸发速率等参数的测量,对雾化过程中气液流动、传热机理的研究极为重要。据孙辉介绍,光学测量法具有无需取样、非接触、快速等优点,而其中的彩虹技术既可以实现液滴颗粒的测量,也可以测量液滴的折射率和温度。采用高斯光束作为光源,既可以较好的定义测量区的大小,又可以得到较高的光能聚集区,因此可以有效避免多个液滴同时出现在测量区的情况、减小颗粒之间复散射的影响,又可以提高信号强度。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/222c7877-4557-482f-b897-1803b9995c46.jpg" title=" IMG_9637.jpg" / /p p style=" text-align: center "    strong 报告人:潘林超(天津大学) /strong /p p style=" text-align: center " strong   报告题目:基于环形样品池的激光粒度测量方法 /strong /p p   潘林超等为了扩展散射角的接受范围,提高激光粒度仪对亚微米颗粒的测量精度和分辨率,提出了一种结构简单的环形样品池方法。该方法理论上可以连续无缝地接收0-180度散射光,且具有测量下限低的优势。同时,基于环形样品池测量方法,搭建了新型激光粒度仪测量装置,并对50/100/200/400nm的标准粒子样品及有它们组合而成的混合样品进行了测量,并与传统样品池的测量结果进行了比对。结果表明,对于亚微米颗粒,环形样品池方法具有测量下限低、测量精度高、分辨率高和可靠性高的特点。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/802155a1-0ed6-4107-b884-fa48270c9372.jpg" title=" IMG_9676.jpg" / /p p style=" text-align: center "    strong 报告人:李庆浩(东南大学) /strong /p p style=" text-align: center " strong   报告题目:基于光场成像的气液两相流中气泡三维测量方法 /strong /p p   李庆浩在报告中提出一种基于光场成像的气液两相流中气泡三维测量方法,解决了传统成像仅能进行二位测量的问题。利用Paytrix光场相机记录气液两相流场的光场信息,结合光场计算成像技术获取两相流场内气泡的全聚焦图像和重聚焦图像序列。对全聚焦图像和重聚焦图像进行处理,可以获得气泡的三维空间分布、尺寸分布及体积含气率等信息。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/9fdac427-ffa1-493d-9621-7ec7159521ce.jpg" title=" IMG_9683.jpg" / /p p style=" text-align: center "    strong 报告人:胡华(天津大学,真理光学) /strong /p p style=" text-align: center " strong   报告题目:激光粒度仪测量上限研究 /strong /p p   基于米氏散射原理的激光粒度仪是颗粒测量领域应用最广泛的仪器,测量上限是仪器的重要指标之一。报告中,胡华等将奇异值分解方法引入到激光粒度仪光能系数矩阵的特性分析中,定义可以反映粒度变化相对相对的光能分布变化的灵敏度参数,给出了一组特定参数下的测量上限,进而推广得到仪器测量上限与仪器物理参数之间的解析表达式,实验结果证明了该表达式的正确性。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/7515e57e-ebf1-4571-b8b4-3fbda8867c81.jpg" title=" IMG_9688.jpg" / /p p style=" text-align: center "    strong 报告人:潘志成(东南大学) /strong /p p style=" text-align: center " strong   报告题目:气液两相流中气泡尺寸分布数字图像测量方法研究 /strong /p p   鼓泡塔是一种常见的气液反应器,鼓泡塔中气泡的大小和浓度对于研究鼓泡塔中传质过程有着重要意义。潘志成等利用高速摄像法和数字图像处理技术实现鼓泡塔中气泡尺寸分布的测量,分析了气泡尺寸分布规律。实验与分析结果表明,该方法能有效获取水中气泡的尺寸分布情况,并且能够分离粘连气泡,在气液两相流中气泡参数在线测量方面具有较好的应用前景。 /p p style=" text-align: center " ------------------------------------------------ /p p & nbsp & nbsp strong 附 /strong : /p p span style=" color: rgb(0, 176, 240) text-decoration: none " strong & nbsp & nbsp & nbsp /strong /span span style=" text-decoration: underline color: rgb(0, 176, 240) " strong a href=" http://www.instrument.com.cn/news/20171117/233615.shtml" target=" _self" title=" " style=" text-decoration: underline color: rgb(0, 176, 240) " Day1之颗粒‘圈’群贤毕至,第十一届全国颗粒测试学术会议广州召开 /a /strong /span /p p span style=" color: rgb(0, 176, 240) text-decoration: none " & nbsp & nbsp /span span style=" color: rgb(0, 176, 240) text-decoration: none " & nbsp /span span style=" text-decoration: underline " strong span style=" text-decoration: underline color: rgb(0, 176, 240) " a href=" http://www.instrument.com.cn/news/20171118/233737.shtml" target=" _self" title=" " style=" color: rgb(0, 176, 240) " 图说,颗粒会精彩8环节速览——第十一届全国颗粒测试学术会议回看 /a /span /strong /span /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制