当前位置: 仪器信息网 > 行业主题 > >

装配式热电偶

仪器信息网装配式热电偶专题为您提供2024年最新装配式热电偶价格报价、厂家品牌的相关信息, 包括装配式热电偶参数、型号等,不管是国产,还是进口品牌的装配式热电偶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合装配式热电偶相关的耗材配件、试剂标物,还有装配式热电偶相关的最新资讯、资料,以及装配式热电偶相关的解决方案。

装配式热电偶相关的资讯

  • 耐高温高压腐蚀的蓝宝石热电偶保护管替代刚玉热电偶保护管和陶瓷热电偶保护套管
    孚光精仪公司欧洲工厂采用全球专利一次成型技术的高纯度蓝宝石热电偶保护管成功下线,一期工程年产能力达到50万米,并被德国热电偶制造商批量订购,成为替代刚玉和陶瓷的热电偶保护套管新型材料。蓝宝石热电偶保护管和蓝宝石热电偶保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石热电偶保护管和蓝宝石热电偶保护套管相比于刚玉热电偶保护管和陶瓷热电偶保护管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域,是替代刚玉热电偶保护管的理想热电偶保护套管。详情浏览:http://www.f-opt.cn/lanbaoshi/lanbaoshiguan.html蓝宝石热电偶保护管已经取代了无法抵御金属扩散的热电偶陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石热电偶保护管和蓝宝石热电偶保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等蓝宝石热电偶由外部密封刚玉保护套管和内部热电偶毛细管组成,又称为蓝宝石热电偶。由于蓝宝石套管,蓝宝石保护套管具有良好的光学透明性和单晶材料的非多孔性,这种蓝宝石套管,蓝宝石保护套管热电偶具有良好的耐高温性,并具有屏蔽环境温度对热电偶影响的能力。蓝宝石套管,蓝宝石保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石套管,蓝宝石保护套管保护套管相比于刚玉陶瓷管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域。蓝宝石套管,蓝宝石保护套管已经取代了无法抵御金属扩散的陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石套管,蓝宝石保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等
  • 常见的温湿度传感器有哪些?
    过去的温湿度传感器都比较简单,而随着技术的成熟,科技的进步,如今温湿度传感器发展也是越来越好。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。 温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。 市场上的温湿度传感器一般是测量温度量和相对湿度量。结合目前市场上的传感器类型,即使是温湿度传感器,这一类型的传感器,还会分为很多种类,有很多的类型。当然它们的应用领域也是千差万别的。下面具体来看下湿度传感器的种类都有哪些?温湿度传感器按监测方法分有接触式和非接触式两种接触式: 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。非接触式: 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。温湿度传感器也分分体式和一体式两种,上面介绍了一体式,下面介绍分体式。分体式又温度传感器和湿度传感器组成。温度传感器通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。1:铂热电阻温度传感器铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。主要应用了需要温度误差小的行业或者是精密仪器仪表。2:热电偶温度传感器热电偶是温度测量中常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。通过电势的变化来得出相应的温度变化。热电偶是简单和通用的温度传感器,但热电偶并不适合高精度的的测量和应用。3:热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度高的温度传感器。热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。热敏电阻在两条线上测量的是温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。湿度传感器的湿敏元件分为电阻式和电容式 两种。湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和形形色色的电子式传感器法。
  • 仪器信息网美国之行:访赛默飞世尔科技色谱、质谱装配工厂
    2011年3月11日,Pittcon 2011在美国亚特兰大召开,仪器信息网编辑参加了此次展会并在期间先后走访了5家美国著名仪器制造商:麦克仪器公司、AB SCIEX公司、沃特世公司、戴安公司和赛默飞世尔科技公司。   这5家仪器厂商都具有至少几十年的相关仪器制造经验,并且都很早就进入了中国市场。此次我们参观的生产工厂和应用中心均是每个仪器厂商重点保护的“核心区域”,在征得各厂商相关负责人的同意后,现将仪器信息网编辑的采访见闻展现给国内用户,以飨读者。   美国圣何赛2011年3月21日上午,仪器信息网编辑如约来到了位于美国硅谷的赛默飞世尔科技(Thermo Fisher)色谱、质谱工厂进行参观访问。   赛默飞世尔科技媒体沟通负责人Stephanie Kubina女士,策略与市场部经理黄莹莹博士、科学仪器部蛋白质组市场总监Andreas FR Huhmer先生、生命科学质谱部副总裁Iain Mylchreest先生等与我们进行了深入的沟通和交流,详细耐心地回答我们提出的一些问题。   赛默飞世尔科技可以称作仪器领域的航空母舰,目前已经至少进行了超过250起并购,经过整合目前拥有Thermo Scientific 和 Fisher Scientific 两个首要品牌。赛默飞世尔科技2010年销售额接近 110 亿美元,在全球拥有37000名员工,在中国约有1500名员工,也许只有赛默飞世尔科技自己才知道在全球有多少工厂,我们此次参观拜访的是位于美国硅谷的赛默飞世尔科技色谱和有机质谱装配工厂。   一、与赛默飞世尔科技质谱专家探讨质谱技术发展趋势 赛默飞世尔科技科学仪器部蛋白质组市场总监Andreas FR Huhmer先生(左),媒体沟通负责人Stephanie Kubina女士(中)与我们进行交流   据Andreas FR Huhmer先生介绍,赛默飞世尔科技Orbitrap技术的发明是质谱领域的一次革命性突破,它带来的最大好处就是可以让用户获得接近FT-MS分辨率的同时,只需付出普通质谱所需要的维护费用。赛默飞世尔科技将这一技术进一步提升,将LTQ的高速度和高灵敏度与Orbitrap精确质量鉴定能力、高分辨能力(100000)很好地结合在一起,完全可以满足低丰度蛋白质测定要求,支持所有同位素标记的和非标记的(label-free)蛋白定量方法。Andreas FR Huhmer先生还与我们探讨了他对于Q-TOF以及便携式质谱的一些看法。 赛默飞世尔科技生命科学质谱部副总裁Iain Mylchreest先生(左),媒体沟通负责人Stephanie Kubina女士(中)与我们进行交流   Iain Mylchreest先生在谈话中提到一个非常重要的概念就是“Workflow”。Workflow是以客户的应用为终极目标,开发完整的样品处理、样品分析、数据处理和管理的工作流程,建立研究领域样品分析的SOP,使得客户端的分析工作大大简化,从而提高工作效率。   蛋白组学研究是生命科学中的一个重要领域,赛默飞世尔科技目前可提供的Workflow有蛋白质表达谱、翻译后修饰、生物标志物发现、目标蛋白定量,每个Workflow包括了从样品前处理、样品制备、仪器分析、数据处理的所需的消耗品、仪器、软件和方法,因而复杂的蛋白质分析得以实现高通量和高质量。   在制药领域,赛默飞世尔科技同样可以提供在药物发现和临床试验阶段完整的Workflow。   二、参观赛默飞世尔液相色谱、三重四极杆、LTQ Obitrap装配车间,零配件从世界各地采购   我们此次主要参观了赛默飞世尔科技这个工厂的三个部分:液相色谱区域、三重四极杆质谱区域和LTQ Obitrap区域。每种产品都有一个系统集成区域和产品测试区域。 通往工厂走廊的墙壁上绘制了赛默飞世尔科技的发展简史,最早可以追溯到1910年 专利证书挂满了整个墙壁   (1) 色谱装配区 赛默飞世尔科技的HPLC系统集成区域,这里的零配件从世界各地采购,据介绍有相当一部分零配件来自中国 HPLC系统集成区很重要的一部分就是泵组装区域   赛默飞世尔科技今年在液相色谱泵性能方面进行了很大的提升,Accela 1250的液相泵最高操作压力可达1250 bar,最高流速可达2mL/min,而延迟体积只有70μL。传感器不会由于接触流动相而产生响应波动。压力反馈控制技术确保Accela 液相泵在没有脉冲阻尼器的情况下也能提供精确的梯度。 HPLC系统成品测试区域   这个工厂所有的单元按照地上各种颜色的划线进行整齐摆放,严格注意细节才能保证质量。   (2)质谱装配区 数十台LTQ Velos双压线性离子阱质谱系统正在进行最后的测试   这种测试非常严格,各种指标测试完毕通常要2个月。双压线性离子阱质谱系统是赛默飞世尔2009年推出的新产品,该产品的推出弥补了单压离子阱的不足,高压单元能够将离子捕获能力提高90%,将碎裂时间缩短到原来的1/3 而低压单元能够将扫描速度提高2倍,同时提高质谱分辨率至0.1 μ FWHM,可以与超高压液相色谱兼容,并同时快速分析大量低丰度含量成份。 正在进行测试的LTQ Orbitrap Velos   这是一台组合质谱,将LTQ的高速度和高灵敏度与Orbitrap精确质量鉴定能力、高分辨能力很好地结合在一起,LTQ Orbitrap Velos是赛默飞世尔独有的产品。 4套LC与一台MS组成一套系统   这个是很有意思的一套系统,可以把4套LC连接到一台MS上组成一套系统。我们之前在AB SCIEX、Waters都看到了一台质谱服务于多台色谱,看来这将成为一种技术趋势。 物流仓库   这是一个非常先进物流仓库,货架上装备有电脑控制的自动传送带上,可以自动分检和传输。   这个区域摆放的是完成测试准备交付用户的质谱仪器   编者后记   赛默飞世尔科技的发展速度惊人,其通过收购和兼并迅速获得相关领域的核心技术和市场的方式堪称是业内典范,而质谱领域又是其重中之重。目前,赛默飞世尔科技在有机质谱领域布局了三大系列产品:离子阱、三重四极杆质谱和Orbitrap,另外还有由这三个系列延伸出的组合产品,如LTQ Orbitrap Velos等。赛默飞世尔科技收购戴安的程序正在进行中,如果成功将大大加强其在液相色谱领域的竞争力,对这一领域的格局将产生重要影响。   撰稿编辑:刘向东
  • 创元公司代理的日本ADVANCE-RIKO公司热电特性评价装置ZEM-3近期在新奥集团再次中标
    创元公司代理的日本advance-riko公司热电特性评价装置zem-3近期在新奥集团再次中标创元公司代理的日本advance-riko公司热电特性评价装置zem-3近期在新奥集团再次中标,日本advance-riko公司是世界著名材料物性试验装置生产厂家之一。该公司是世界上首次推出这类设备的公司。所得数据非常可靠。自进入中国以来深受热电领域广大用户喜爱。清华大学和中国科学院硅酸盐研究所,武汉大学等多次导入该装置。该装置主要原理和技术参数见如下彩页。欢迎来电垂询! 电阻率/温差电动势测试系统 型号:zem-3 描述热力发电是一种通过热电效应材料产生电力的方法,由j.t.seebeck德国物理学家在1821年发现的。面对当前的全球由二氧化碳排放以及化学材料消耗而导致的温室效应,热电转变器件引起了注意,因为可以有效利用余热。为了迎合这种急迫的需求,advance riko公司为这些材料和器件开发了特性评估装置 特点●一台仪器可以用来同步测量温差电动势和电阻率。●仪器允许测量6到22mm长的棱柱或圆柱型试样。●试样支架采用独特的接触式平衡机构,保证测量的高重现性●v-i标绘测量能够用来判断引线是否紧密的接触了试样。●系统能够自动检查两个探针是否和试样达到了欧姆级接触,而且能够发现并找出最佳电流用来测定电阻率而不受热传递的影响。●测量由计算机控制,能够实现在等温差的一组温度值下自动测量,并消除有害电动势和接触电阻。●测量原始数据以text文档格式保存。 测量原理 棱柱形或圆柱形试样以垂直方式放置在加热炉的上下底座上,当试样被加热后,保持在一个指定的温度时,由底座的加热器再来加热以提供一个温度梯度,热电系数的测量是通过由挤压在试样侧面的热电偶测量上下温度t1和t2,随后测量同组两根热电偶丝的热电动势de。电阻率由dc四线法测得,一个恒定的电流i流过试样的两端,通过对两根导线之间热电动势值做减法,以测量和判定在同组热电偶丝之间的电压跌落dv。 参数规格 ●温度范围 -80℃(到100℃(l规格)50℃(到800℃(m8格)50(到1000℃(m10规格) ●温度设定范围 测温步数和温度采样测量步数:最大125步 ●测量方法 温差电动势:静态直流法 电阻率:四电极法 ●气氛 低压氦气 ●样品尺寸 2-4mm正方形或直径2-4mm,长6-22mm(最大) ●导线间距 4,6,8mm ●电源供应 200vac,单相,40a(m8,m10规格) 100vac,单相,20a(l规格,m8和m10规格) ●冷却水需求 自来水,水压大于1.5kgf/cm2流量大于7l/min p规格si80ge20烧结块体测试样例
  • 陕西师范大学导入日本ADVANCE-RIKO公司热电特性评价装置ZEM-3已验收完毕
    陕西师范大学导入日本ADVANCE-RIKO公司热电特性评价装置ZEM-3已验收完毕 陕西师范大学导入创元公司代理的日本ADVANCE-RIKO公司热电特性评价装置ZEM-3,已在该大学安装验收完毕。日本ADVANCE-RIKO公司是世界著名材料物性试验装置生产厂家之一。该公司是世界上首次推出这类设备的公司。数据可靠性能稳定。自进入中国以来深受热电领域广大用户喜爱。清华大学和中国科学院硅酸盐研究所等多次导入该装置。该装置主要原理和技术参数见如下彩页。欢迎来电垂询! 电阻率/温差电动势测试系统 型号:zem-3 描述热力发电是一种通过热电效应材料产生电力的方法,由j.t.seebeck德国物理学家在1821年发现的。面对当前的全球由二氧化碳排放以及化学材料消耗而导致的温室效应,热电转变器件引起了注意,因为可以有效利用余热。为了迎合这种急迫的需求,advance riko公司为这些材料和器件开发了特性评估装置 特点●一台仪器可以用来同步测量温差电动势和电阻率。●仪器允许测量6到22mm长的棱柱或圆柱型试样。●试样支架采用独特的接触式平衡机构,保证测量的高重现性●v-i标绘测量能够用来判断引线是否紧密的接触了试样。●系统能够自动检查两个探针是否和试样达到了欧姆级接触,而且能够发现并找出最佳电流用来测定电阻率而不受热传递的影响。●测量由计算机控制,能够实现在等温差的一组温度值下自动测量,并消除有害电动势和接触电阻。●测量原始数据以text文档格式保存。 测量原理 棱柱形或圆柱形试样以垂直方式放置在加热炉的上下底座上,当试样被加热后,保持在一个指定的温度时,由底座的加热器再来加热以提供一个温度梯度,热电系数的测量是通过由挤压在试样侧面的热电偶测量上下温度t1和t2,随后测量同组两根热电偶丝的热电动势de。电阻率由dc四线法测得,一个恒定的电流i流过试样的两端,通过对两根导线之间热电动势值做减法,以测量和判定在同组热电偶丝之间的电压跌落dv。 参数规格●温度范围 -80℃(到100℃(l规格)50℃(到800℃(m8格)50(到1000℃(m10规格)●温度设定范围 测温步数和温度采样测量步数:最大125步●测量方法 温差电动势:静态直流法 电阻率:四电极法●气氛 低压氦气●样品尺寸 2-4mm正方形或直径2-4mm,长6-22mm(最大)●导线间距 4,6,8mm●电源供应 200vac,单相,40a(m8,m10规格) 100vac,单相,20a(l规格,m8和m10规格)●冷却水需求 自来水,水压大于1.5kgf/cm2流量大于7l/min p规格si80ge20烧结块体测试样例
  • 关于印发重庆市材料工业高质量发展“十四五”规划的通知
    重庆市材料工业高质量发展“十四五”规划我市材料工业包含冶金、建材及其新材料产业,是实体经济的根基,是全市经济稳增长的压舱石。为推动材料工业高质量发展,依据《成渝地区双城经济圈建设规划纲要》《“十四五”原材料工业发展规划》《重庆市国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要》《重庆市制造业高质量发展“十四五”规划(2021—2025年)》等文件,特制定本规划。一、现状及形势(一)取得的成效。综合质效跃上新台阶。2020年全市规模以上材料工业企业超过1100家,总产值达到3233亿元,培育百亿级企业4家,新材料占材料工业总产值比重比“十二五”末提升21.8个百分点。产业结构调整迈出新步伐。“十三五”期间,化解钢铁产能816万吨、电解铝18.5万吨、水泥420万吨,烧结砖10亿标砖,钢铁、电解铝、水泥、平板玻璃产能利用率达到80%以上。创新驱动激发新动能。创建6家国家级企业技术中心,2家市级制造业创新中心,成立重庆市轻量化材料产业联盟,建成3家智能工厂和27个数字化车间,3家企业获评5G+工业互联网先导应用和创新示范智能工厂,4种产品获评国家制造业单项冠军产品。绿色发展引领新趋势。在西南地区率先开展水泥行业错峰生产,水泥、墙材行业协同处置利废逾千万吨,减排二氧化碳300余万吨,建成绿色工厂19家、节水型企业22家。(二)面临的形势。“十四五”时期,我市材料工业高质量发展机遇和挑战并存。从机遇看,国内超大市场规模优势进一步发挥,新型城镇化、乡村振兴、农业现代化加快推进,我市作为国家中心城市和西部地区唯一的直辖市,加速引领周边地区新兴领域和消费升级对高端材料的需求,为材料工业持续健康发展提供了广阔空间;依托“一带一路”和长江经济带,构建起西部陆海新通道、中欧班列、渝甬通道等国际贸易大通道,为材料工业要素集聚和产品输出提供了便利条件;成渝地区双城经济圈发展战略的实施,将有效促进国内两大制造业基地生产要素资源合理流动、高效聚集、优化配置,为材料工业强化产业链韧性提供了基础支撑;新发展格局加快构建,新一轮科技革命和产业变革加速演进,为材料工业转型升级锻造新优势提供了强劲动力。从挑战看,国际政治经济形势日益复杂多变,新冠肺炎疫情影响深远,对产业链供应链稳定提出了更高的要求 “双碳”以及“能耗双控”目标下,绿色低碳发展任务更加紧迫;行业创新能力体系建设有待加强,新旧动能转化亟待加快,高端产品供给仍显不足;空间布局仍需完善,要素成本提升预期加强,重点产业链补链强链挑战依旧艰巨。总体来看,“十四五”时期是我市材料工业跨关口、培优势、上台阶的战略决胜期,面对新形势、新要求,要保持战略定力,增强底线思维,紧紧抓住战略契机,积极应对挑战,加强统筹谋划,推进材料工业高质量发展。二、总体要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大、十九届历次全会和二十大精神,全面落实习近平总书记对重庆提出的营造良好政治生态,坚持“两点”定位、“两地”“两高”目标,发挥“三个作用”和推动成渝地区双城经济圈建设等重要指示要求,立足新发展阶段,完整、准确、全面贯彻新发展理念,积极融入新发展格局,以推动高质量发展为主题,以深化供给侧结构性改革为主线,以改革创新为根本动力,着眼提升产业基础高级化、产业链现代化、供给高端化、发展绿色化、智造数字化,统筹传统材料和新材料发展,深化补短板、锻长板、固底板,促进绿色低碳转型,加速信息技术赋能,为我市建设国家重要先进制造业中心提供有力的材料支撑。(二)基本原则。坚持创新驱动。强化企业创新主体地位,构建以企业为主体的产学研用联合创新平台,加大原始创新、集成创新、引进消化吸收再创新和协同创新力度,着力突破一批核心关键技术和共性技术,持续推动数字化转型,促进产业向智能、高效、服务方向转变。坚持市场主导。充分发挥市场在资源配置中的决定性作用,强化企业主体地位,更好发挥政府作用,以经济社会发展及支柱产业、新兴产业需求为导向,因地制宜构建具有本地特色的材料工业体系。坚持生态优先。以长江经济带绿色发展为引领,绿色制造为重点,鼓励研发绿色低碳新材料;以节能减排为抓手,提升资源能源利用效率和清洁生产水平,强化产品全生命周期和全产业链绿色发展。坚持集群发展。依托领军企业和“链主”企业完善产业生态链,着力固根基、扬优势、补短板、强弱项,建设国家重要轻合金、玻璃纤维和复合材料以及具有较强影响力的先进钢铁、绿色建材产业基地,培育一批具有核心竞争力和带动力强、特色鲜明、优势互补的新材料产业。坚持开放引领。加大新材料招商力度,加强国际国内的交流与合作,积极承接中东部地区产业转移,通过引资、引智、重组等方式,提升研发、制造、应用和服务水平,构建共享共赢的开放型产业体系。(三)发展目标。做大做强三大特色新材料产业,培育壮大三大前沿新材料产业,做优做精两大先进基础材料产业,重点围绕轻合金、先进钢铁、装配式建筑三条产业链补链强链延链,推动产业基础高级化、产业链现代化,着力构建现代产业体系。到2025年,全市材料工业总产值和增加值增速保持合理水平,新材料产业规模持续扩大,企业效益稳步提升,产业布局更加合理,创新能力明显增强,绿色低碳发展水平显著提高,产业基础再造取得成效,高质量发展格局初步形成。专栏1 “十四五”主要发展目标指标类别指标名称2020年现状2025年预期目标绝对值年均增速总量结构规模以上(下同)总产值(亿元)3323.7850008.5%新材料产业产值(亿元)925.15200016.7%增加值(亿元)909.9150010.5%综合质效全员劳动生产率(万元/人)56.7766%营业收入利润率(%)6.77/创新能力研发投入(亿元)53.48610%企业中建有研发机构的企业占比(%)23.25016.6%企业牵头的高端创新平台(个)27/两化融合数字化车间(个)27102/智能化工厂(个)313/绿色发展绿色工厂(个)1940/节水型企业(家)2237/企业培育百亿级领军、“链主”企业(家)36/“小巨人”企业(家)1020/三、重点方向(一)做大做强三大特色新材料产业。1.先进有色合金。围绕打造轻合金产业链,重点发展铝合金、镁合金、钛合金等产业,做大做强铜产业,有序发展再生有色金属等绿色循环经济产业,打造1800亿级先进有色合金产业集群,其中轻合金产业链超过1500亿元。专栏2 先进有色合金重点板块铝合金:引导氧化铝、电解铝绿色低碳发展,稳步发展再生铝,构建与后端铝加工制造能力相适应的原材料本地供应保障体系。铝加工重点发展航空航天用铝、新能源汽车用铝、轨道交通用铝、船舶用铝,支持发展电子电器用铝、新型包装用铝、建筑用铝、装饰装修用铝、全铝家具等高附加值铝合金精深加工产品。镁合金:重点开发面向新基建、电子信息、汽车、电动工具、油气开采等领域应用的型材、板带材、压铸件等。鼓励拓展应用领域,加快开发高性能铸造镁合金及变形镁合金、耐蚀镁合金等产品。支持综合利用项目和先进节能环保工艺技术改造。钛合金:鼓励发展钛合金棒、线、板、带材,加快钛合金生产企业现有产能释放和后续产线建设。积极引进精深加工配套企业,延长钛合金产业链。铜产业:做强做大高端铜管,积极发展精密铜带、箔、丝材,新能源汽车及高效电机专用电磁线,支持发展低松比铜粉、复合铜粉、包覆铜粉等铜基粉末材料。鼓励上游原材料供应、仓储和下游铜材加工、检测、应用企业集中布局。2.高性能纤维和复合材料。聚焦汽车、航空航天、装备制造等领域轻量化需求,以玻璃纤维及复合材料、金属基复合材料为主攻方向,探索发展其他高性能纤维和复合材料,建设250亿级高性能纤维和复合材料产业集群。专栏3 高性能纤维和复合材料重点板块玻璃纤维及复合材料:重点发展超细、高强高模、耐碱、低介电、高硅氧、可降解、异形截面等高性能玻璃纤维及制品,支持发展低介电玻璃纤维电子布、微纤维玻璃棉高效绝热及过滤材料、微纤维棉衍生品等。金属基复合材料:重点发展铝镁复合板、铝铜复合板材、钢钛复合材料等,加强铝(镁、钛、铜)等金属基复合材料、金属—陶瓷复合材料等新型复合材料开发。其他高性能纤维和复合材料:重点培育玄武岩纤维、碳纤维、陶瓷纤维、石英纤维等其他高性能纤维及增强复合材料。3.新能源材料。把握新能源产业快速发展机遇,以光伏材料、风电材料和储能材料为主攻方向,培育200亿级新能源材料产业。专栏4 新能源材料重点板块光伏材料:重点发展光伏玻璃、边框、支架等,培育发展宽幅、超薄光伏玻璃,以及太阳能光伏组件。风电材料:着力培育风电纱研发生产基地,延伸发展风电叶片;积极引育基体、芯材、涂层材料和金属材料等风电材料。储能材料:重点发展高能量密度锂电池材料及其前驱体,石墨、石墨烯、硅碳等负极材料,高性能隔膜,金属箔及复合箔等电化学储能材料产业体系。探索发展磁储能用高性能高温超导材料,相变储能材料,金属液流电池材料,氢能制造、存储、运输用新材料等。(二)培育壮大三大前沿新材料。1.气凝胶。以硅基气凝胶为重点,加快推动气凝胶产品设计及应用,聚力开拓下游应用领域,完善上下游产业链,打造全国气凝胶产业之都。专栏5 气凝胶重点板块硅基气凝胶材料:重点发展高质量、规模化、稳定化、低成本的气凝胶颗粒、绝热毡、隔热板、涂料、纤维等产品。新型气凝胶材料:针对超高温绝热、废水吸附治理、大气污染物过滤、电极材料、催化、生物医药等应用领域,探索发展铝、钛、锆基等新型氧化物气凝胶,聚丙烯纤维气凝胶等有机气凝胶,碳气凝胶、石墨烯气凝胶等碳基气凝胶。气凝胶产品设计及应用:加快推动气凝胶在深冷绝热领域的产品设计开发,扩大在工业保温、建筑节能、高端装备、纺织服装领域的应用规模;研发在污染物治理、有机物过滤、超级电容器等非绝热保温应用领域产品。2.石墨烯。围绕石墨烯材料的低成本规模化制备开发,提高石墨烯产品质量稳定性和一致性。加快在电子信息、新能源、复合材料、健康环保等领域的应用,开发具有吸附、过滤、净化等功能的石墨烯环保产品和系统,培育发展电化学、超级电容、燃料电池等领域用石墨烯。突破石墨烯产业前沿技术和共性关键技术,研发单层石墨烯、微片衍生物、高导热功能材料、电磁屏蔽材料、传感器材料、改性涂料、医用敷料、抗菌复合材料等,推动石墨烯上下游产业集聚。3.未来材料。积极引育纳米材料,拓展纳米材料在光电、新能源、医药等领域应用范围。加强智能材料、仿生材料、液态金属、高熵合金和新型超导材料等领域探索。面向空天、深海、深地等国家重大工程需求,加强极端环境所需特种材料研发,形成一批创新成果。(三)做优做精两大先进基础材料。1.先进钢铁材料。面向全市经济社会建设需要和下游产业升级需求,以高品质绿色建筑用钢、汽车用钢、优特钢、高端不锈钢等为主攻方向,做强1300亿级先进钢铁材料产业链。专栏6 先进钢铁材料重点板块高品质建筑用钢:重点发展耐候钢、大尺寸型钢、海工钢、高强结构用钢,加快建筑结构用高强度抗震钢筋、高延性冷轧带肋钢筋等产品开发,支持热镀锌无铬钝化板、无铬彩涂板等应用。汽车用钢:加快推动超高强钢和热成型钢研发及产业化,支持发展汽车用棒、线材,加快节能与新能源汽车用钢、先进轨道交通装备用钢等产品开发应用。优特钢:重点发展耐高温钢、耐蚀钢、钝化或耐指纹膜钢、轴承钢、高性能工模具钢、高性能电工钢、非晶合金、高温合金等,鼓励短流程生产优特钢,培育发展高品质铁基合金粉末、半导体用钢等。高端不锈钢:重点发展装饰管、不锈钢流体焊管和无缝管,培育发展高端精密不锈钢板、带、丝、线材等。2.绿色建材。以发展节能环保、安全耐久的绿色建材为目标,以高技术含量、高附加值产品为主攻方向,重点完善装配式建筑产业链,做优做精玻璃、陶瓷和新型墙材产业,打造1500亿级绿色建材产业集群,其中装配式建筑产业链达到1000亿元。专栏7 绿色建材重点板块装配式建筑:水泥产业重点发展低熟料水泥、利废水泥等绿色水泥,做优做强高标号优质水泥,机场跑道、高速铁路等工程专用水泥和低热、低碱、膨胀等特种水泥。支持拓展水泥制品应用领域和范围,积极发展预拌砂浆、高性能混凝土、功能化混凝土等下游产品。砂石产业布局一批千万吨级大型机制砂石生产保障基地,提高供应保障能力,不断提升优质和专用产品应用比例。装配式建筑产业重点发展梁、柱、板、墙、阳台、楼梯等预制混凝土部件,集成式厨房、卫生间等部品,以及钢筋灌浆套筒、预埋锚件、临时支撑系统等配件。玻璃:重点发展在线Low-E(低辐射镀膜)玻璃、高端汽车玻璃、高档建筑玻璃、装饰玻璃、热致调光玻璃等玻璃深加工产品。积极发展与汽车、电子信息、智能家电等先进制造业产业集群配套的航空玻璃、机车玻璃、电子玻璃、微晶玻璃等特种玻璃。陶瓷:提升发展轻质高强陶瓷、薄型陶瓷、高端装饰装修陶瓷砖、发泡陶瓷、地暖陶瓷、岩板等绿色化、功能化、高端化的建筑陶瓷产品。大力发展节水和轻量化、智能化卫生陶瓷及整体卫浴产品。支持发展以压电陶瓷材料、热电陶瓷材料、铁电陶瓷材料、介电陶瓷材料、超导电陶瓷材料为代表的电子陶瓷材料,以高导热陶瓷材料、耐热陶瓷材料、隔热陶瓷材料为代表的热功能陶瓷材料。新型墙材:重点研发生产导热系数小、性能优良的高效节能保温砌块。支持利用煤矸石、建筑固废、页岩资源等,发展烧结页岩空心砌块、轻质高强节能隔墙板材、高档清水装饰砖、生态透水砖等新型墙体材料。四、主要任务(一)健全产业创新体系。加快研发机构培育,支持建立企业技术中心、工程技术中心、工业和信息化重点实验室等,争取设立区域性研发总部、组建法人化独立研发公司,鼓励有条件的企业牵头建设制造业创新中心。推动创新平台加快制定本领域技术路线图,健全成果转化、专利许可转让等机制,提升共性技术转移扩散能力。加强关键核心技术攻关和应用研究,以“卡脖子”的战略性新兴材料为重点,探索“揭榜挂帅”“赛马机制”等方式,支持材料生产、应用企业联合科研单位开展协同攻关。鼓励创新资源聚合,支持新材料领域应用示范、测试评价以及产业联盟等平台建设。探索建设一批面向社会开放的共性技术资源库、行业数据资源库、通用模型库等共享数据库。加快完善计量校准、标准普及、检验检测与认证认可咨询、质量诊断与改进提升、品牌培育等产业创新服务体系。专栏8 创新发展重点任务企业技术中心:在轻合金、功能材料、高性能纤维和复合材料、优特钢、装配式建筑、玻璃、陶瓷等领域持续培育壮大一批技术创新中心,提升重点产业链创新能力和创新水平。制造业创新中心:以关键共性技术协同开发、转移转化和产业化应用为主要任务,在高性能纤维和复合材料、轻合金、气凝胶、石墨烯、先进钢铁等重点领域建设一批市级制造业创新中心,争创国家级制造业创新中心。应用示范平台:围绕新材料技术应用创新,建立和完善气凝胶、石墨烯、新能源材料、轻合金、功能材料、新型建筑材料等领域搭建新材料应用示范平台,加快材料研制、生产、验证及应用进程。(二)培育壮大产业链群。深入落实“链长制”,围绕轻合金、先进钢铁、装配式建筑等重点产业链,支持领军企业、“链主”企业积极向重点产业链中与现有主营业务关联度较高环节延伸布局,补齐产业链短板。加强创新链、供应链、价值链与产业链招商协同,依托生产制造类项目同步引进企业研发设计、营销结算中心等生产性服务类项目。推动领军企业、“链主”企业加强供应商管理库存、协同式供应链库存管理和供应链运输管理,建立供应链风险等级预警机制,做好应急预案。围绕产业链部署创新链,探索领军企业、“链主”企业提需求及认可采购、上下游企业揭榜参与的协作模式,推动领军企业、“链主”和中小企业补链成群。支持企业通过中欧班列(成渝)、西部陆海新通道、长江黄金水道等通道建设,加速有序优化产业链、供应链配置。专栏9 产业链培育重点任务轻合金产业链:培育产业链领军和“链主”企业,支持企业通过强创新、拓市场、抓重组等方式快速做大做强。加快推动高端铝加工、钛合金精深加工、特铝新材、镁合金等产业链补短板项目建设,不断推进轻合金产业链上游提质、下游延伸。先进钢铁材料产业链:依托领军和“链主”企业,加快推进提质增效、智能热轧、特冶航材、高端金属材料等产业链补短板项目建设,着力补齐优特钢、不锈钢短板。深化战略合作,吸引各类钢铁相关产业布局完善产业链上下游关键环节。装配式建筑产业链:培育壮大领军和“链主”企业,推进一批绿色智能装配式建筑基地等产业链补短板项目建设,支持定标准、强创新、拓市场、抓重组等方式做大做强。(三)促进产业融合发展。加快新一代信息技术和材料工业融合,促进5G、工业互联网、大数据、人工智能等技术在全产业链的集成应用。鼓励智能生产设备、智能检测与装配设备、智慧物流与仓储装备等智能制造装备在材料工业的普及,推动企业信息系统与生产设备的互联互通,支持建设数字化车间和智能工厂。促进工业设计与材料工业深度融合,连接材料产品需求和供给、艺术和技术,丰富产品品种、提高产品附加值, margin-top:10px "(四)抓好示范引领。聚焦国民经济、国防安全重点领域,针对新材料供需衔接、产用合作等短板,探索搭建新材料生产应用示范平台,重点突破关键领域新材料共性应用技术,引导制定产品标准与设计规范,促进新材料标准及下游应用设计规范衔接配套,推动形成新材料产业化应用示范。认真落实重点新材料首批次应用保险补偿机制试点工作,突破材料应用的初期市场瓶颈,激活和释放下游行业对新材料产品的有效需求。鼓励在创新驱动、智能制造、绿色低碳、补短板等领域建设示范项目。加快对节能低碳、安全性好、性价比高的绿色建材的推广应用,支持企业参与绿色建材下乡活动。(五)加强要素保障。多措并举抓好煤、电、水、气、运等生产要素协调,稳住关键产品供应,保障园区建设、项目用地和用工需求。促进金融服务重点向人工智能、大数据、工业软件、5G通信、工业互联网等与材料工业融合创新应用项目和“专精特新”企业倾斜,扩大直接融资渠道,缓解融资难问题,降低融资成本。鼓励资源型企业“走出去”,提高材料工业发展和经济社会发展必需的矿产品原材料保障水平。落实创新领军人才等相关政策,大力引进材料工业海外高层次人才及团队,加大专业技术人才、经营管理人才和技能人才的培养力度,提高产业技术队伍整体素质,完善面向材料工业的人才服务体系。(六)加大宣传引导。充分利用各种媒体,采取多种方式,加强对我市材料工业高质量发展宣传报道,消除对钢铁、有色、建材等行业在市场准入时“一刀切”列入“两高一资”行业的误区,切实增强行业自信,引导产城共融发展,全面打造市场化法治化国际化一流营商环境,为材料工业高质量发展营造良好的舆论氛围和有利外部环境。充分发挥行业协会、专业机构作用,加强规划宣贯落实。
  • 天氏欧森新品亮相
    2022年5月3日至6日,第34届质量保证控制国际交易会(The 34th Control international trade fair)取得了巨大成功。在因疫情中断两年后,600多家参展商终于在德国斯图加特再次体验QA创新的技术,包括视觉技术、图像处理和传感器技术,以及测量和测试技术等。创新的解决方案和高效、尖端的质量保证技术让来宾们大开眼界。Tinus Olsen(天氏欧森)携其明星产品万能材料试验机ST系列及熔融指数仪MP1200亮相会场,除此之外,多项尖端科技对质量控制领域的补充也让来宾叹为观止。 亮点一 Vector引伸计 (单长度及多长度测量) Vector引伸计能够 辅助进行拉伸、压缩、剪切、以及弯曲试验中的应变试验,其具有非接触式的数字化设计,支持自动化过程的标距标记。根据材料不同,有多种标记选择:点、环、线、斑,包括材料表面跟踪。可提供模拟和或串行数字格式的输出数据。 与其他光学引伸计相比,它的反应更快,开机即可测量,并可与测试软件集成。适合于金属、合金、复合材料、低应变塑料等。多长度测量型Vector Multiple 200:横向1.5-120mm标距范围,基于140mm FOV纵向10-150mm标距范围,基于200mm FOV0.5µm分辨率(1.9685039e-5in),ISO 9513 Class 0.5和ASTM E83 Class B1单长度测量Vector Single 500:纵向10-500mm标距范围,基于500mm FOV 1µm分辨率(3.93701e-5in),ISO 9513 Class 0.5和ASTM E83 Class B1单长度测量Vector Single 200:纵向10-150mm标距范围,基于200mm FOV 0.5µm分辨率(1.9685039e-5in),ISO 9513级0.5和ASTM E83 Class B1更多机型将陆续面世。亮点二350°C环境箱Tinius Olsen的环境箱适合大部分双立柱或四立柱的材料试验机。新款在-100-350℃的温度范围内进行物性测试。4kW高功率配备Horizon软件确保全温度范围的控制及分析。●可移动的顶部和底部箱室壁组件,在箱体进出测试区域时,不会影响试样的夹具配置和拉杆。 ●可选配增强箱体温度控制,采用双热电偶测量和反馈系统。 ●兼容接触式和非接触式的引伸计。 ●可编程控制器,使用Horizon软件自动管理。 ●内部照明另有更多温度范围的环境箱:室温至350摄氏度室温至600摄氏度-150至350摄氏度-150至600摄氏度亮点三配合环境箱使用的30KN楔形夹具及50KN楔形夹具绞盘手动自锁紧楔形夹具。楔形作用在整个拉伸测试过程中提供持续的夹持压力。 同一时期,Tinius Olsen的仪器也出现在巴黎JEC World展。JEC World是国际性复合材料及应用的专业展会,聚集了全球各地与复合材料有关的制造研发、应用扩展等相关展商,致力于促进复合材料行业及其应用市场的发展。
  • 北京市国资委印发《市管企业碳达峰行动方案》
    日前,北京市人民政府国有资产监督管理委员会发布了关于印发《市管企业碳达峰行动方案》的通知,目标提到,"十四五"期间,市管企业产业结构和能源结构调整优化取得明显进展,重点行业能源利用效率显著提升,绿色低碳技术创新和推广应用取得积极进展,力争打造一批绿色低碳发展标杆企业。到2025年,市管企业可再生能源消费比重达到15%以上,万元收入能耗较2020年下降14%,万元收入二氧化碳排放下降确保完成政府下达目标,"高精尖"产业营业收入比重达到三分之一,为实现碳达峰奠定坚实基础。"十五五"期间,市管企业全面绿色低碳转型取得显著成效,产业结构和能源结构调整取得重大进展,重点行业企业能源利用效率达到国内或世界一流企业先进水平,绿色低碳技术取得重大突破,绿色低碳产业规模与比重明显提升。到2030年,市管企业可再生能源消费比重达到25%左右,二氧化碳排放量整体达到峰值并实现稳中有降,确保完成政府下达指标,如期实现2030年前碳达峰目标。市管企业碳达峰行动方案  为全面贯彻落实党中央、国务院关于碳达峰碳中和的决策部署和《北京市碳达峰实施方案》有关要求,完整、准确、全面贯彻新发展理念,指导市管企业建立绿色低碳循环发展经济体系,为北京全面实现碳达峰碳中和目标贡献国企力量,结合市管企业实际,制定本行动方案。  一、总体要求  (一)指导思想  以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大精神,深入贯彻习近平生态文明思想和习近平总书记对北京重要讲话精神,立足新发展阶段,贯彻新发展理念,融入新发展格局,坚持首善标准,坚持责任担当,坚持系统观念,处理好发展和减排、整体和局部、中长期目标和短期目标的关系,将碳达峰碳中和纳入市属国资国企发展全局,以推动高质量发展为主题,以科技创新为动力,着力布局优化和结构调整,深化供给侧结构性改革,大力推动能源结构调整,促进国有经济绿色低碳发展,切实提升市管企业核心竞争力,为首都全面实现碳达峰做出积极贡献。  (二)基本原则  --坚持系统谋划、统筹推进。坚持以首都发展为统领,突出全市"一盘棋"工作要求,加强统筹协调,明确总体目标和实施路径,健全激励约束机制,压实企业主体责任,加快构建有利于碳达峰碳中和的国有经济布局和结构。鼓励有条件的市管企业率先达峰。  --坚持节约优先、源头减碳。坚持把节约能源资源放在首位,贯穿到企业生产经营全过程和各环节,持续提升能源利用效率,推进能源资源循环利用,降低单位产出能源资源消耗和碳排放,从源头减少二氧化碳排放。带头执行企业绿色采购指南,全面推行绿色低碳办公,倡导绿色低碳生活方式和消费模式。  --坚持创新驱动、科技支撑。充分发挥市管企业创新主体作用,强化科技创新和制度创新,构建市场导向的绿色技术创新体系,选择若干底层技术开展攻关,筛选若干产品提出技术指标揭榜挂帅,设计若干集成场景作为孵化平台,培育绿色低碳新产业新业态,促进发展动能转换。  --坚持立足实际、稳妥有序。立足首都超大型城市特点和企业实际,坚持底线思维先立后破,近期打基础强能力,远期求突破出成果,稳步构建低碳、近零碳国有经济体系。加强风险研判和应对,着力化解各类风险隐患,确保安全降碳。  二、主要目标  "十四五"期间,市管企业产业结构和能源结构调整优化取得明显进展,重点行业能源利用效率显著提升,绿色低碳技术创新和推广应用取得积极进展,力争打造一批绿色低碳发展标杆企业。到2025年,市管企业可再生能源消费比重达到15%以上,万元收入能耗较2020年下降14%,万元收入二氧化碳排放下降确保完成政府下达目标,"高精尖"产业营业收入比重达到三分之一,为实现碳达峰奠定坚实基础。  "十五五"期间,市管企业全面绿色低碳转型取得显著成效,产业结构和能源结构调整取得重大进展,重点行业企业能源利用效率达到国内或世界一流企业先进水平,绿色低碳技术取得重大突破,绿色低碳产业规模与比重明显提升。到2030年,市管企业可再生能源消费比重达到25%左右,二氧化碳排放量整体达到峰值并实现稳中有降,确保完成政府下达指标,如期实现2030年前碳达峰目标。  三、推动国有经济绿色低碳转型  (三)强化绿色低碳发展规划  引领将碳达峰碳中和目标要求全面融入市管企业中长期发展规划。加强与各级各类规划的衔接协调,确保企业落实碳达峰碳中和的主要目标、发展方向、重大项目与各方面部署要求协调一致。市管企业根据自身情况制定科学有效、切实可行的碳达峰行动方案,明确碳达峰时间表、路线图、施工图,与所处行业领域和属地政府的目标任务做好衔接。  (四)优化国有资本绿色低碳布局  服务国家绿色发展战略,将绿色低碳发展理念完整、准确、全面贯彻到国资国企改革发展全过程和各领域,构建有利于支撑实现碳达峰碳中和的国有经济布局和结构。优化国有资本增量投向,充分发挥投资引导作用,推动国有资本向绿色低碳和前瞻性战略性新兴产业集中。调整国有资本存量结构,对于不符合绿色、节能、低碳标准的资产和企业,加快战略性重组、专业化整合和清理处置。(五)严格绿色发展标准约束按照"既有项目减碳发展、新增项目绿色发展"的原则,坚决遏制高耗能、高污染项目投资,做好新建项目低碳建设能力评估管控,充分挖掘节能潜力,推广应用低碳技术,坚持高能效、低污染、低排放的绿色低碳发展方向。有条件的企业可探索制定节能低碳、单位产品能耗限额等企业标准。严格执行北京市新增产业的禁止和限制目录,持续推进不符合首都功能定位的一般制造业调整退出。  四、助力首都重点领域低碳发展  (六)加快发展新能源智能汽车产业  坚持新能源和智能网联的发展方向,加快产品和服务结构调整,重塑汽车产业特色优势和规模优势。扩充ARCFOX和BEIJING品牌纯电动乘用车产品,商用车完成全系新能源产品从油改电平台向全新平台过渡。加快动力系统电气化进程,加快混合动力产品投放,推进高效发动机搭载应用。推动平台化固态动力电池系统和电池快速加热技术落地,落子北汽电驱动4.0,构建分布式驱动控制技术。研发完成氢燃料重型商用车全新平台,积极培育燃料电池汽车产业链,开展瓶组式运氢集装箱、液氢储氢系统、固定式液氢储罐等关键技术研发。  (七)深入推进城市供热系统转型替代  坚持可再生能源供热优先原则,加快在京供热系统能源低碳转型替代,全面布局新能源和可再生能源供热,有序开展地热、再生水及余热资源供暖制冷。完善中心城区市政热网建设,加快区域热网与中心城区市政热网管线连接,提升城市热网互联互通。推进供热系统智能化和节能化改造,增加分时分区控制系统,推广供热分户计量和末端智能化控制,逐步实现按需供热和精准供热。  (八)着力推动绿色低碳交通体系建设  加快建设圈层式、一体化轨道交通网络,扎实推进"四网融合",打造面向乘客全出行链智慧轨道交通体系。调整车辆结构,持续淘汰燃油公交车,"十四五"时期市管企业所属公交车(山区线路及应急保障车辆除外)、巡游出租车(社会保障除外)新增轻型环卫车(无替代车型除外)全面实现新能源化,办理货车通行证的4.5吨以下物流配送车辆(不含危险品运输车辆、冷链运输车辆)基本使用新能源汽车,积极布局城市公路充换电和加氢网络。改善货运结构,推动大宗货物和中长距离货物运输"公转铁",实现铁路运输与城市配送有效对接。加快推动公务用车新能源化进程,按照公务用车更新计划,优先采购新能源车辆,形成示范效应。"十四五"时期市管企业新增和置换公务用车基本实现电动化。  (九)提升建筑领域绿色低碳发展水平  加快推进以全周期低碳化为导向的绿色转型,打造绿色设计-绿色施工-绿色运维-绿色回收一体化产业链。大力推广精准装配式建筑,市管企业投资建设的新建公共建筑、保障性住房和房地产开发项目应优先按照标准采用装配式建筑。试点示范超低能耗建筑、近零能耗建筑、零碳建筑。持续扩大装配式部件产能,提升产品品质和集成程度,向"轻型化""集约化""制品化"发展,加强低碳混凝土、沥青混凝土等绿色建材产品研发应用,加快金隅建筑垃圾处理和砂浆资源综合利用产业园等先进部件生产基地建设。因地制宜推广太阳能光伏、光热和热泵技术应用,新建建筑安装太阳能系统,新建公共机构建筑、新建厂房屋顶光伏覆盖率力争达到50%。到2025年,市管企业新建居住建筑执行绿色建筑二星级及以上标准。  (十)加快自有物业和产业园区低碳循环改造  以企业办公大楼、酒店商超等公共建筑为重点,开展能效评估,率先推动符合条件的既有建筑绿色低碳化改造。"十四五"时期,市管企业率先实施可再生能源替代行动,研究编制可再生能源替代行动方案,实现所属建筑、基础设施分布式光伏发电等可再生能源应用尽用。以提升资源产出率和循环利用率为目标,按照建设项目规划使用性质正面和负面清单要求,推动产业园区低碳循环发展,加快新首钢高端产业综合服务区低碳建设,实施北京电控飞宇双碳智慧园区等改造升级,促进公共设施共建共享、能源梯级利用、资源循环利用,打造低碳循环型园区试点示范。到2030年,省级以上重点产业园区全部实施循环化改造。  (十一)严格控制非二氧化碳温室气体排放  加强对甲烷、六氟化硫、氧化亚氮、全氟碳化物等非二氧化碳温室气体的排放控制,积极推动燃气泄漏、生活垃圾处理过程中的甲烷排放控制和污水处理设施甲烷收集利用。加快建设排水集团污泥高级厌氧消化耦合沼气热电联产工程,加大再生水热能利用规模,减少温室气体排放。大力发展绿色低碳循环农业,合理控制农药、化肥、地膜使用强度,加强农作物秸秆综合利用和畜禽粪污资源化利用,减少农业领域甲烷和氧化亚氮排放。  五、构建绿色低碳循环产业体系  (十二)推动传统产业转型升级  坚持高端、高效、高辐射的发展方向,优化调整产业结构,推动传统产业绿色低碳转型。全面建设绿色制造体系,加快推进煤电、钢铁、有色金属、建材等工业行业低碳工艺革新,提高工业电气化水平,促进绿色电力消费,提高能源资源利用效率。持续推进电子材料、电子整机产品、汽车等制造行业绿色低碳工艺创新应用,显著降低制造能耗。全面推行绿色建造工艺和绿色低碳建材,推动建材减量化、循环化利用,推进超低能耗、低碳建筑规模化发展。调整优化运输结构,推动交通领域电气化、智能化,推广节能和新能源载运工具及配套设施设备。加快商贸流通、信息服务等服务业绿色低碳转型,加快绿色数据中心建设。  (十三)积极培育绿色发展新动能  围绕碳达峰碳中和激发的产业需求,抢占绿色低碳发展先机,持续推进绿色制造体系和绿色供应链体系建设,大力发展新能源、新材料、新能源汽车、氢能、储能等战略性新兴产业,积极培育龙头企业。进一步做强做优绿色环保产业,加快污水处理厂智慧低碳转型,大力发展固废处置产业,高标准建设金隅智慧都市静脉产业园,高标准运营阿苏卫、鲁家山垃圾焚烧发电厂等项目,打造引领京内、示范全国的生物质能源发电产业集群。通过项目合作、产业共建、场景建设等市场化方式,引领各类市场主体绿色低碳发展,构建绿色低碳供应链体系。培育绿色低碳产业咨询和智能化技术服务新业态,为低碳发展提供全方位技术服务。  (十四)以数字化转型促进低碳化发展  推进"上云用数赋智",促进大数据、人工智能、5G、物联网、北斗等新一代信息技术与传统产业深度融合。大力发展智能制造,推动生产装备和产线数字化改造,建设燕东微电子智能工厂等一批工业数字化转型项目。推动城市基础设施智能化改造,积极打造智慧管网、智慧热网,建设京能智慧电厂、北控智慧供能云平台等一批数字化运营平台。助力打造数字生活方式,积极培育网络体验、智能零售等新商业模式,以数字化手段赋能社区管理,打造智慧社区,加快建设首旅集团首客首享线上服务平台、一轻控股全供应链信息化交易平台、保障房中心租赁住房一体化运营服务平台等一批新型数字化商业和生活服务平台。  六、构建清洁低碳安全高效的能源体系  (十五)持续提升能源利用效率  坚持节约优先的能源发展战略,严格控制能耗强度和碳排放强度,合理控制碳排放总量,探索增强能耗总量控制弹性,向碳排放总量和碳排放强度双控转变。大力推动节能减排,建立资源循环型产业体系,全面提高资源能源利用效率。深挖工程节能潜力,通过能量系统优化、供热系统改造、余热余压利用等技术运用,推进重点用能设备节能增效,有条件的企业率先开展办公建筑、厂房园区节能改造。强化能源精细化智能化管控,健全能源管理体系,创新合同能源管理模式,推动金盏国际合作服务区、丽泽金融商务区等智慧综合能源项目建设。  (十六)严格控制化石能源供应消费规模  加快推进化石能源清洁高效利用,推进终端能源消费电气化,实现化石能源消费总量逐步下降。严格合理控制煤炭消费增长,开展京外煤电机组灵活性改造,积极推进煤电联营、热电联营、"煤电+风电/光伏"协同,拓展"煤电+"应用。水泥、化工等重点用煤行业减煤限煤,有序推进煤炭替代和煤炭清洁利用。优化天然气市域输配管网布局,优先保障民生用气,在有条件的区域实施城市供暖气改电,推动天然气与多种能源融合发展。深入开展燃气电厂热电解耦研究,探索京内燃气电厂天然气和电力协同调峰。合理控制油气消费,实施机动车"油换电",推进传统燃油清洁化替代。  (十七)积极发展非化石能源  优化非化石能源布局,不断提升非化石能源业务占比。坚持集中式、分布式并举,推动光伏、地热及热泵应用,适度发展风电,因地制宜发展生物质能。在符合条件的既有产业园区、办公楼宇、工业厂房、地铁车辆段、公交场站等合理布局分布式光伏发电系统,具备条件的自来水厂、再生水厂开展光伏发电系统改造。加快市域外可再生能源基地布局,推进大同绿电基地、锡林郭勒盟绿电基地、岱海电厂风光火储氢一体化等项目建设,提高绿电进京比例。开展能源互联网试点示范建设,大力促进分布式发电就地并网使用。深入研究余热、蓄能以及热泵技术的耦合应用,构建多能耦合、协同高效的新型供能方式,加快推动怀来抽水蓄能电站建设。到2025年,市管企业可再生能源发电装机比重达到50%以上。  七、大力推动绿色低碳技术创新  (十八)加强绿色低碳技术布局  攻关充分发挥市管企业创新主体作用,围绕碳达峰碳中和重大战略需求,加快绿色低碳重大科技攻关,力争在低碳零碳负碳技术装备研发方面取得突破。聚焦新能源利用、智慧能源互联网、氢能、储能、动力电池、建筑零碳技术、低成本二氧化碳捕集利用与封存等重点领域开展技术攻关,尽快实现技术突破和产业化示范应用,努力打造新能源新技术创新策源地和发展高地。  (十九)强化绿色低碳技术成果应用  加快碳达峰碳中和新技术、新工艺、新装备应用,有效支撑碳达峰碳中和目标实现。加快研究实施绿色低碳技术重大创新成果考核奖励,激励市管企业绿色低碳首台(套)装备应用。加速推动绿色低碳技术成果转化,加快建设金隅北水碳捕集及封存技术示范线、天海工业塑料内胆纤维全缠绕复合VI型氢气瓶产线项目,推广首钢朗泽气体发酵制饲料蛋白和乙醇技术、排水集团厌氧氨氧化污水生物脱氮技术等应用,带动相关技术在产业链上下游企业推广应用。  (二十)深度推进绿色低碳领域开放合作  深化同中央企业、中关村企业、高校和科研院所等合作,在绿色低碳技术领域建立体系化、任务型创新联合体,积极承担国家绿色低碳重大科技项目,参与能源领域国家实验室建设,深入开展科研合作和技术交流。持续广泛开放应用场景,围绕创新链、产业链,落实攻坚任务"揭榜挂帅"机制,在智慧低碳能源供应、智能制造、低碳交通、低碳建筑等领域推出更多前沿颠覆性技术应用场景,促进新技术、新成果、新产品推广应用。  (二十一)推动碳达峰碳中和先行示范  充分发挥市管企业示范带动作用,积极开展绿色低碳先行示范,培育一批绿色低碳示范企业。到2025年,新建北人智能装备科技有限公司、北京金隅砂浆有限公司等一批绿色工厂,打造北汽集团零碳工厂、北京首钢冷轧薄板有限公司灯塔工厂、高安屯近零碳再生水厂等低碳示范企业。助推京津冀区域低碳转型和城市副中心国家绿色发展示范区建设,高标准建设张家口-北京可再生能源清洁供热示范工程,加快城市副中心政务服务大厅地源热泵系统工程、北京城市规划设计研究院业务综合楼零碳建筑示范工程等项目建设。八、持续完善碳减排管理保障机制  八、市管企业碳达峰行动方案  (二十二)提升碳排放管理能力  加快建立完善碳排放管理机制,建立健全碳排放统计、监测、报告、披露等体系,加强二氧化碳排放统计核算能力建设,在适当场景推进二氧化碳在线监测系统示范应用推广,提升信息化实测水平。建立健全碳足迹评估体系,强化产品全生命周期碳排放精细化管理。重点排放单位建立碳排放管理制度,充分挖掘节能潜力,推广应用低碳技术,主动公开碳排放信息。  (二十三)提升碳交易管理能力  加快建立完善碳交易管理机制,有条件的企业设立专业碳交易管理机构或部门,建立企业碳交易管理信息系统,强化碳排放数据管理、碳市场分析、碳配额管理、排放报告编制、碳交易运作等工作。积极参加全国和区域碳排放权交易,严格执行碳排放权交易有关管理规定,按要求开展排放权交易及配额清缴。北京绿色交易所持续深化全国CCER交易中心和北京市碳排放权交易市场建设,打造全国一流、国际先进的综合性绿板市场,助力北京建设具有国际影响力的绿色金融定价中心和信息服务中心。  (二十四)提升绿色金融支撑能力  服务北京全球绿色金融和可持续金融中心建设,积极发展绿色金融,有序推进绿色低碳金融产品和服务开发,拓展绿色信贷、债券、基金、期货等金融产品创新实践,加大对绿色产业和低碳技术的金融支持。推动绿色金融第三方服务,探索建立环境、社会和公司治理(ESG)数据平台,积极开展企业绿色发展评价,推动绿色金融信息规范披露共享。  九、切实加强组织实施  (二十五)加强组织领导  市国资委成立碳达峰碳中和工作领导小组,全面统筹推进市管企业碳达峰碳中和工作。市管企业建立相应领导机构,企业主要负责同志是第一责任人,其他有关负责同志在职责范围内承担相应责任。明确碳达峰碳中和工作的责任部门,细化职责分工,形成结构合理、制度完善、分工明确的管理体系。  (二十六)加强激励约束市管企业  根据企业碳达峰行动方案的工作目标和具体任务,加大资金投入,建立完善碳达峰目标分解和监督考核机制,为实现碳达峰提供坚实保障。市国资委加大对企业碳达峰碳中和领域创新项目的国有资本经营预算支持,将企业碳达峰碳中和工作纳入企业负责人经营业绩考核。  (二十七)加强宣传引导  积极营造绿色低碳发展的良好氛围,及时总结提炼并推广促进碳减排的先进做法和成功经验,宣传碳达峰碳中和的典型案例,讲好企业故事,彰显国企形象。具备条件的市管企业应积极开展碳信息披露或将碳减排纳入年度社会责任报告,主动接受社会监督。
  • Hexagon协助空客A380挑战超大尺寸的装配任务
    面临的问题: 位于图卢兹的Jean-Luc Lagardère工厂主要负责A380 的最后装配。作为空中客车最新的装配线,包括了几个部分。第一个单元负责飞机主体承重部分的装配,第二个单元对装配的飞机进行测试,并进行动力系统的安装。第三个单元负责进行露天试验并准备飞机的第一次飞行。 第一个单元的第40 个工位负责的是飞机的最终装配(包括飞机截面和机翼)。为完成这项任务,不同的部件相互间进行适配比较。需要对工件几何量执行严格的要求。A380 的装配项目始于1998 年,克服了诸多新的挑战:每个截面的超大尺寸、整个飞机本身的外形、双层机身以及诸如此类的难题。另外A340 的工装需要继续使用。这些工装需要按照很高的精度进行调整,需要进行周期检查,这样才能保证不同的飞机截面能够按照要求进行定位。 新的装配基本思路是直接测量飞机,就是检测每个飞机截面相互间的关系,而不是利用工装作为参考系统,完全避免了混合误差的问题。第二项任务是为装配复杂曲面寻找适合的方法(如整体机身和双层飞机的轮廓)。 ----------------------------------------------------------------------------------海克斯康的解决方案: 基于激光的进行装配的方法被管理层确定用于A380 项目。过去,与Leica 工业测量系统激光跟踪仪相结合的一系列项目在空中客车法国工厂(南特的RCT,位于Meaulte 的Erebus,在St. Nazaire的装配15/21 工序,图卢兹A320 项目的截面测量),还包括德国不来梅、英国的Broughton 和Filton。 选择了四台Leica 激光跟踪仪:两台用于机身、两台用于机翼。所有四台激光跟踪仪通过统一的坐标 系相互关联。这种安排保证了激光跟踪仪相互间的统一和交互替换。 专门开发的控制和测量软件,具有简化的人机界面,实现与Leica 工业测量系统的EmScon 软件的接口,在软件开发阶段,Leica 工业测量系统公司与空中客车密切合作。来自Leica 工业测量系统的帮 助确保了软件间的相互兼容,并确保了使用正确的功能。 持久的提升并确保为飞机截面定位提供可靠、高品质的命令,使得整个工作周期减少- 这是空中客车公司技术人员的主要关注点,无论是现在还是将来。这种提升,包括了优化飞机部件间定位的算法。基于Leica 激光跟踪仪的功能与可靠性,利用激光测量实现飞机装配成为一项成熟的技术,能够在空中客车组织内的其他项目中使用。在图卢兹工厂的测量方法开发后,被使用在另外一个军方的A400M项目,同时很可能还会用在即将到来的A350 项目! --------------------------------------------------------------------------------------------------------------------------------- 关于用户: 空中客车A380 是有史以来最现代、最大规模并且功能最强的民用航空系统。其第一次的露面是在2000 年的12 月,被命名为“21 世纪的旗舰”。该飞机是在与航空公司、机场和航空运输管理部门紧密合作的基础上开发的。 A380 采用了当今最先进的技术,包括材料技术、系统和工业流程,并坚持采用最严格的国际标准制造。空中客车位于欧洲各地:法国、德国、英国和西班牙的公司参与了A380 飞机的设计与制造。
  • 欧米合作 | 西湖欧米与赛默飞世尔科技签订联合实验室
    西湖欧米与赛默飞世尔科技(以下简称赛默飞)于近期,在杭州签署了联合实验室合作备忘录。双方宣布将在“临床蛋白质组在转化医学中的应用领域”设立联合实验室并开展系列合作。 西湖欧米与赛默飞签署的备忘录共同关注到人类重大疾病(如肿瘤)对人们的健康造成的威胁。在癌症领域,比如甲状腺癌,用传统方法判断其良恶性的准确度有限。西湖欧米联合创始人郭天南博士表示,“这次合作有助于我们共同探索有临床应用潜力的新的诊断方法和治疗靶点。”西湖欧米将AI深度学习与临床医疗大数据整合,助力癌症等人类重大疾病的精确分型、预测和治疗。现阶段,西湖欧米已通过临床队列的临床样本检测生物体内蛋白质表达水平,在甲状腺结节等疾病的诊疗方面已取得较大进展。 对于这次联合实验室的建立,赛默飞也非常期待,并表示这次的合作也是基于赛默飞质谱分析平台和西湖欧米完善的组学分析技术,希望两方能强强联合,加速推动组学技术辅助诊断智能化进程,提供更好、更具特色的辅助诊疗方案,来满足全球临床需求,实现肿瘤等重大疾病准确诊断。 未来,两家公司将在杭州西湖大学科技园进行线下挂牌仪式。 赛默飞致力于以优质的产品与服务帮助客户加速生命科学领域的研究,解决在分析领域所遇到的问题和挑战,促进医疗诊断发展,提高实验室生产力。 西湖欧米作为一家创新型的生物科技公司,致力于不断优化基于质谱的微量生物样本蛋白质组分析技术,开发AI赋能的、基于组学大数据的临床辅助诊断新方法和新药开发,助力医疗。
  • 国家锂电测试测量标准全面革新 波及ICP-OES等大批仪器
    近日,为进一步加强锂离子电池行业管理,推动行业转型升级和技术进步,工业和信息化部电子信息司组织修订了《锂离子电池行业规范条件(2021年本)》(征求意见稿)和《锂离子电池行业规范公告管理办法(2021年本)》(征求意见稿),同时发布了7条锂电池相关的电子行业标准。锂电池相关的电子行业标准制修订序号标准编号标准名称标准主要内容公示截止期1. SJ/T 11792-2021锂离子电池电极材料导电性测试方法本文件描述了锂离子电池电极活性物质电子导电性的测试方法。2021年12月19日2. SJ/T 11793-2021锂离子电池电极材料电化学性能测试方法本文件规定了锂离子电池用电极活性物质的比容量、比能量、充放电效率、中值电压、平均电压、放电平台容量比、循环容量保持率、循环寿命、倍率性能等电化学性能的测试方法。2021年12月19日3. SJ/T 11794-2021锂离子电池正极材料游离锂的测试方法本文件规定了锂离子电池正极材料中游离锂含量的测定方法。2021年12月19日4. SJ/T 11795-2021锂离子电池电极材料中磁性异物含量测试方法本标准规定了锂离子电池电极材料中磁性异物含量的测试方法,包括术语和定义、测试方法提要、仪器和器具、试剂、环境要求、前处理、仪器分析、结果计算、精密度和报告。本标准适用于锂离子电池正极和负极粉体材料及其浆料,以及粘结剂、导电剂等辅料中磁性异物含量在10μg/kg~5000μg/kg之间的检测。本标准不适用于磷酸铁锂材料中磁性异物含量的检测。2021年12月19日5. SJ/T 11796-2021电子烟用锂离子电池和电池组通用规范本文件规定了电子烟用锂离子电池及电池组的术语和定义、标识、性能、安全等要求,描述了对应的试验方法。本文件适用于电子烟用锂离子电池和电池组。本文件对于电子打火机及类似产品使用的锂离子电池和电池组可参考使用。2021年12月19日6. SJ/T 11797-2021锂金属蓄电池及电池组总规范该标准适用于锂金属蓄电池和电池组。该标准规定了锂金属蓄电池及电池组的性能要求和安全要求,性能要求内容包括术语定义、外观及尺寸要求、电性能、试验方法、标志、包装、运输和储存等;安全要求规定了电池和电池组在包括正常使用、可预见的误操作和故障条件下的电安全、环境安全要求等。2021年12月19日7. SJ/T 11798-2021锂离子电池和电池组生产安全要求本文件规定了锂离子电池和电池组生产企业在建筑、设施、选材、设计、工序及管理的安全要求。本文件适用于锂离子电池或电池组制造企业的生产安全评估。设置有锂离子电池或电池组生产线的其他企业可参照执行本文件。22021年12月19日《锂离子电池行业规范条件(2021年本)》(征求意见稿)中提到,企业研发经费需不低于当年企业主营业务收入的3%,同时:1.锂离子电池企业应具有电极涂覆后均匀性的监测能力,电极涂覆厚度和长度的测量精度分别不低于2μm和1mm;应具有电极烘干工艺技术,含水量控制精度不低于10ppm。2.锂离子电池企业应具有注液过程中温湿度和洁净度等环境条件控制能力;应具有电池装配后的内部短路高压测试(HI-POT)在线检测能力。3.锂离子电池组企业应具有单体电池开路电压、内阻等一致性评估能力,测量精度分别不低于1mV和1mΩ;应具有电池组保护板功能在线检测能力。此外还对电池和电池组、正极材料、负极材料、隔膜、电解液等产品性能提出了要求:(一)电池和电池组1.消费型电池能量密度≥260Wh/kg,电池组能量密度≥200Wh/kg,聚合物电池体积能量密度≥600Wh/L。循环寿命≥600次且容量保持率≥80%。2.动力型电池分为能量型和功率型,其中能量型电池能量密度≥180Wh/kg,电池组能量密度≥120Wh/kg;功率型电池功率密度≥700W/kg,电池组功率密度≥500W/kg。循环寿命≥1000次且容量保持率≥80%。3.储能型电池能量密度≥145Wh/kg,电池组能量密度≥110Wh/kg。循环寿命≥5000次且容量保持率≥80%。(二)正极材料磷酸铁锂比容量≥150Ah/kg;三元材料比容量≥175Ah/kg;钴酸锂比容量≥170Ah/kg;锰酸锂比容量≥115Ah/kg;其他正极材料性能指标可参照上述要求。(三)负极材料碳(石墨)比容量≥335Ah/kg 无定形碳比容量≥250Ah/kg 硅碳比容量≥420Ah/kg 其他负极材料性能指标可参照上述要求。(四)隔膜1.干法单向拉伸:纵向拉伸强度≥110MPa,横向拉伸强度≥10MPa,穿刺强度≥0.133N/μm。2.干法双向拉伸:纵向拉伸强度≥100MPa,横向拉伸强度≥25MPa,穿刺强度≥0.133N/μm。3.湿法双向拉伸:纵向拉伸强度≥100MPa,横向拉伸强度≥60MPa,穿刺强度≥0.204N/μm。(五)电解液水含量≤20ppm,氟化氢含量≤50ppm,金属杂质单项含量≤1ppm。上文中提到的消费型锂离子电池主要包括但不限于应用于手机、相机、平板电脑、笔记本电脑等消费电子产品的锂离子电池。动力型锂离子电池主要包括但不限于应用于电动汽车、电动自行车、无人机、电动船舶、电动工具等动力装置的锂离子电池。储能型锂离子电池主要包括但不限于应用于新能源储能、通信储能、工商业储能等储能领域的锂离子电池。《锂离子电池行业规范条件(2021年本)》(征求意见稿)中提到了长度测量仪器、水分测定仪、温湿度测量监测记录、充放电测试仪器、拉伸试验机等仪器的测试测量规范。《SJ/T 11792-2021 锂离子电池电极材料导电性测试方法》等7条锂电池相关的电子行业标准则涉及电导率测试仪、电池性能测试仪、自动电位滴定仪、电感耦合等离子体发射光谱仪(ICP-OES)、热电偶温度测量仪、红外温度测量仪、(电压、电流、温度、时间、容量、质量)测量仪器等,以及可燃气体、粉尘浓度或氧气浓度报警装置、(加热、涂布、充放电、试验)设施等仪器的测试测量要求。锂电池相关的电子行业标准涉及的仪器品类标准名称涉及仪器《SJ/T 11792-2021 锂离子电池电极材料导电性测试方法》电导率测试仪《SJ/T 11793-2021 锂离子电池电极材料电化学性能测试方法》电池性能测试仪《SJ/T 11794-2021 锂离子电池正极材料游离锂的测试方法》自动电位滴定仪《SJ/T 11795-2021 锂离子电池电极材料中磁性异物含量测试方法》电感耦合等离子体发射光谱仪(ICP-OES)《SJ/T 11796-2021 电子烟用锂离子电池和电池组通用规范》热电偶温度测量仪、红外温度测量仪、电池性能测试仪《SJ/T 11797-2021 锂金属蓄电池及电池组总规范》电压、电流、温度、时间、容量、质量测量仪器等《SJ/T 11798-2021 锂离子电池和电池组生产安全要求》可燃气体、粉尘浓度或氧气浓度报警装置等,加热、涂布、充放电、实验设施等锂离子行业规范和行业标准的制修订规范了锂离子行业的测试测量标准,在未来一段时间内或将引发新一轮仪器采购潮;仪器厂商也应及时关注锂离子行业规范和标准的制修订,及时对仪器研制和宣传策略进行调整,以便于加速占领锂离子电池测试相关仪器市场。
  • 百实创发布百实创热电耦合系统INSTEMS-TE新品
    INSTEMS系列为用户提供了7种原位TEM实验平台。其中包含三种单外场施加平台,三种双外场耦合平台和一种三外场耦合平台。三种单外场产品为INSTEMS-M(力学加载)、INSTEMS-E(电学加载)和INSTEMS-T(热场加载);三种双外场耦合产品为INSTEMS-ME(力电耦合)、INSTEMS-TE(热电耦合)和INSTEMS-MT(力热耦合);一种三外场耦合产品为INSTEMS-MET(力热电耦合)。产品介绍:INSTEMS-TE可以实现多种模式的电学施加和高精度的电学测量。在此基础上,通过选择单一热源或相互独立的双热源模式,可实现均匀热场或梯度热场的施加。这一独特优势使该产品不仅满足传统热学和电学领域,也满足热电领域的研究需求。突出优势:1、多种力学加载模式拉伸/压缩/压痕/弯曲/冲击/蠕变/疲劳自动/手动/循环加载牛顿级驱动器( 100 mN) pm级驱动控制2、多种力学加载模式拉伸/压缩/压痕/弯曲/冲击/蠕变/疲劳自动/手动/循环加载牛顿级驱动器( 100 mN) pm级驱动控制3、双轴倾转α 轴倾转最高至±20° β 轴倾转最高至±10°4、稳定的原子尺度成像极限样品漂移<50 pm/s空间分辨率≤0.1 nm技术指标:加热范围 RT up to 800 ℃加热准确性≥98% 加热速率10000 °C/s最大电压± 30 V 电流测量范围1 pA-1 A空间分辨率≤0.1 nmEDS兼容性√应用领域:热电材料半导体相变存储电池可靠性失效分析介电材料… … 创新点:极限区域加热,热损极小,样品升温响应快,并可实现高温加热至1150℃ 百实创热电耦合系统INSTEMS-TE
  • 昊量与Green TEG签订代理协议
    昊量光电与瑞士GreenTEG签订代理协议 2015年3月,昊量光电和瑞士GreenTEG公司正式签订代理协议。负责GreenTEG公司激光功率探头在中国大陆、香港及澳门的销售及支持工作,为客户提供最完善的服务和技术支持。 瑞士GreenTEG为全球客户提供多种激光功率监控方案。GreenTEG激光功率探头(OEM功率计)采用的是由苏黎世联邦学院开发的热电式激光功率传导技术,响应时间能达到最快的0.2S。广泛地应用于医用激光设备和工业激光系统,激光源功率监控系统,功率计以及大学和科研机构中。涵盖了激光美容、激光打标、激光切割、激光钻孔、激光焊接、3D打印等行业。GreenTEG激光功率探头(OEM功率计)适用于激光源、可调谐激光器、CO2激光器等设备。GreenTEG激光功率探头(OEM功率计)最新推出的芯片式功率探头和装配式激光功率探头。大大地减小了体积和成本。GreenTEG激光功率探头(OEM功率计)以超快的响应速度,超紧凑的芯片式功率探头设计方案,无与伦比的价格赢得了客户的一致好评。 在长期的合作过程中,昊量光电凭借着专业的技术实力和全面周到的服务赢得了广泛的客户好评和信任,也获得了GreenTEG公司的高度认可和信赖。双方签署中国地区代理协议,正是双方相互信任,进一步建立更紧密合作关系意愿的体现。我们坚信,基于GreenTEG和昊量光电的紧密合作关系,我们将为客户提供更加优质的服务和技术支持,满足并不断超越客户的期望。 关于瑞士GreenTEG公司 瑞士Green TEG公司专注于开发,制造并销售各种激光功率探头/功率计解决方案。 GreenTEG的热电激光功率探头根据客户的需求而集成在多种多样的系统之中,从而活跃在众多的市场中,例如激光,建筑技术,医疗技术,汽车,加工工业和研发机构等。 瑞士GreenTEG公司通过新一代的热电激光检测技术,为客户提供各种快速而准确的功率检测解决方案。将瑞士GreenTEG公司激光功率探头/功率计集成到客户的激光系统中,将使您实现准确的监测系统关键指数从而系统稳定可靠的运行。 瑞士GreenTEG公司激光功率探头的主要优势包括: ?GreenTEG激光功率探头是目前市场上响应速度最快的热电型(热堆型/热释电型)激光功率计探头 ?GreenTEG将热电探测器集成(包括电气集成和热集成)于多种应用的专业技术 ?GreenTEG为OEM客户定制开发的传感器和系统 光学/激光测量设备 激光功率计/能量计微型OEM高速热电功率探头(PCB封装)高速热电功率探头芯片工业集成用 高速热电功率探头OEM型高速热电功率探头(未含热沉)OEM型高速热电功率探头(PCB封装) ?
  • 大型飞机装配中的高精度测量技术研究进展
    新一代飞机向着大型、重载、长寿等方向发展,对其装配质量、精度等提出更高的要求。装配中几何尺寸、物理损伤等的高精度测量是调控飞机装配工艺、保证装配指标的基础和关键,对飞机服役性能有着重要的影响。本文围绕新一代飞机结构尺寸大幅增加、承力结构复材化发展下的需求,论述了大型飞机装配中高精度测量技术的研究进展,具体从大空间点位高精度测量方法、大型结构外形高精度测量方法、复合材料结构装配缺陷高精度检测技术等方面对国内外理论研究和技术应用进行了梳理和总结,并指明相关技术的未来发展趋势和前景。1 飞机装配那些事儿 飞机装配是飞机制造的关键环节,装配过程中涉及的学科范围广、技术标准要求高,属于典型的高端装备制造技术。飞机装配是将各种零、组、部件按照规定的技术条件和质量要求进行配合与连接,并进行检验与试验的工艺过程,装配的质量直接决定了飞机产品的外形精度、制造质量和服役性能等。 新一代飞机向着大型、重载、长寿等方向发展,其制造也向着高精度、低成本、柔性化、智能化等方向转变,对装配的精度、效率与质量均提出了更高的要求。此外,以纤维增强型复合材料为代表的轻质高强材料也逐渐由次承力结构升级为主承力结构。对此,开展大型飞机的大空间高精度测量、复合材料损伤的高精度检测方向的研究,是新一代飞机高效、高质装配的强有力支撑。图1高精度测量技术在飞机装配现场的应用2 飞机装配大空间测量场高精度测量方法 传统大空间测量场多使用单台或者单种测量设备进行构建,为满足大尺寸部件的高精度测量需求,组合式测量系统应运而生。通过组合多个测量设备或不同测量系统,往往可以达到一个较好的效果。 由于大空间测量场的特点,需要对其进行坐标配准,即将测量点坐标转换到全局坐标系下,并将数据进行融合。坐标配准、环境等因素往往会影响测量场的精度,所以还需要对测量场进行不确定度评估,并对误差进行补偿。因此,测量场配置优化、坐标系配准和不确定性评估等三个方面的内容是影响大空间测量场测量精度和效率的关键技术。图2 组合式大尺寸测量3 飞机大部件装配外形数字化高精度测量方法 飞机装配是保证飞机外形精度的重要环节,提高飞机部件装配外形检测水平对于提升飞机制造质量具有重要意义。飞机装配部件外形尺寸大、曲面形状复杂、型面测量数据量大,传统单一测量设备测量精度和效率之间的矛盾突出。随着近年来数字化测量技术的不断发展,其广泛应用于飞机大部件装配外形测量过程中,尤其在飞机大尺寸外形轮廓检测、飞机蒙皮对缝间隙、阶差检测以及铆钉平齐度检测等应用中展现出较大优势,这归功于其测量精度和效率的提高以及测量范围的扩大。在测量过程中会产生大量的点云数据,对大规模点云数据进行有效的优化处理对后续测量模型建立的准确度以及相关测量数值的精度十分重要。本章将具体针对数字化测量技术在飞机外形轮廓及蒙皮表面质量检测过程中的应用以及大规模点云数据的处理方法展开介绍。3.1 飞机大尺寸外形轮廓高精度检测航空产品中的大部件装配曲面外形准确度决定着飞机的气动/隐身性能,采用合理的方式对飞机大部件装配外形进行检测尤为重要。飞机曲面外形具有尺寸大、形状复杂、测量数据量大的特点,通常采用数字化测量方法实现大部件外形的高精度测量。早期数字化测量多采用接触式测量方法,以三坐标测量机为代表,常应用于整体叶片型面、中间整流罩的检测过程中。接触式测量具有测量精度高的优点,但缺点是效率低、易划伤目标表面且无法实现自动化测量。激光扫描法、结构光法、激光雷达法、摄影测量法等非接触式测量方法的出现提升了测量范围和测量效率,而且可开发性和自动化程度高的特点使它们在飞机大部件外形自动化测量方面展现出优势。表1列举了几种数字化测量系统并对其主要参数及优缺点进行了分析对比。表 1. 外形数字化测量系统对比但随着测量要求的进一步提高,单一设备无法兼顾测量精度和测量效率的矛盾愈发明显,近年来许多学者通过构建数字化组合测量系统,使设备性能互补,从而提高测量精度与效率。将关节臂测量仪、激光跟踪仪以及摄影测量组合,在飞机内襟翼上翼面外形精度测量上进行应用与验证,在保证外形测量精度的同时进一步提高了测量效率。此外,结合结构光重建和摄影测量技术也可实现高精度、高效率、非接触的大尺寸飞机结构外形的三维重建,精度可达到亚毫米量级(0.16 mm以下)。如图6所示。图 3 基于后方摄像机视觉定位的全局三维重建原理图为了进一步提升飞机大部件曲面外形的测量精度,需要对数字化测量系统进行站位规划与测量轨迹规划。测量仪器的站位规划是数字化测量的前提,站位的合理性直接影响着测量效率和精度。早期测量站位主要由操作者的经验决定,往往需要反复调整才能满足测量要求,测量效率低,难以满足现代飞机高效的测量需求。针对激光雷达测量飞机大部件外形测量需求,采用基于区域生长算法的站位规划方法得到初始站位,之后引入测量不确定度对其进行优化,该方法相比于经验法和聚类算法更具可行性和有效性。而对于飞机大型蒙皮柔性测量系统,效率优化的扫描站位规划被提出,提升了扫描效率和完整性。此外,规划轨迹可以使测量设备在满足测量条件的情况下充分发挥性能,最大程度上降低系统误差,提高扫描数据的精确度,从而提升测量精度与测量效率。对于包含激光跟踪仪和工业机器人的自动化扫描系统中的测量轨迹规划问题,首先在CATIA中按照结构特征类别进行轨迹的初始规划,之后对测量误差进行分析,建立系统误差预测模型并通过粒子群算法对测量轨迹做进一步优化,可达到快速找到满足扫描约束的同时系统误差最小的姿态的目的,从而提高曲面扫描的测量精度。为了提升结构光的检测精度,一种以改进贪心算法为基础的覆盖路径规划方法被提出,降低了视点数目,提升了结构光检测精度,从而提升了曲面外形测量精度,如图4所示。图 4 测量不确定度对比图。(a)文献方法;(b)目标采样法3.2 飞机部件外形表面质量高精度检测高精度数字化测量技术也广泛应用于飞机外形表面质量检测过程中,包括蒙皮对缝检测以及铆钉平齐度检测等。飞机蒙皮主要通过铆钉固定在机翼骨架外围,其作用是维持飞机的气动外形,必须承担一定的局部气动力,装配时要保证蒙皮对缝的间隙及阶差在允许范围内。此外,蒙皮表面铆钉平齐度对飞机的隐身性能及气动性能也有着比较重要的影响,随着新一代战机对隐身性能及气动外形的要求越来越高,相应地对飞机蒙皮铆接质量提出了更高要求。传统的蒙皮对缝检测采用塞尺测量,对人工操作要求高、效率低、误差较大,且不能有效采集和处理测量数据。随着数字化测量技术的不断发展,为了提高缝隙测量的精度和效率,国内外学者以线结构光视觉测量和激光扫描为代表的非接触测量方法应用于对缝检测中,如图8所示,相关的数字化检测设备,包括美国Origin Technologies公司的Laser Gauge系列产品、德国8Tree公司的Gap Check相关产品等均采用非接触测量方法快速测量蒙皮阶差和间隙。线结构光视觉传感器可以实现对蒙皮对缝阶差与间隙的尺寸测量,阶差和间隙的重复测量精度分别达到了0.04 mm和0.05 mm以下。针对二维激光对缝检测多次测量重复精度不高的问题,基于三维激光扫描的蒙皮对缝检测方法被提出,其间隙和阶差测量精度可分别达到0.04 mm和0.02 mm。此外,有学者利用机器视觉的方法,提出了一种基于改进优化算法的飞机蒙皮对缝视觉测量方法,达到精确测量蒙皮对缝间隙的目的,测量精度达到了0.02 mm以下。图 5 基于线结构光的阶差与间隙测量模型对于铆钉齐平度的检测,传统的检测靠人工抽检来实现,即采用传统卡尺或指针式三脚千分表手动检测,测量误差大且有较大局限性。非接触式数字化测量技术在铆钉平齐度检测方面同样展现出优势,构建双目多线结构光测量系统对铆钉齐平度进行测量,可实现对蒙皮表面铆钉头部凸台或凹坑特征的精准测量,精度可达到0.03 mm以下,但该系统无法同时测量多个铆钉。而基于3D激光扫描仪的图像采集系统,利用深度学习算法分析处理采集到的图像,可以同时检测多个结果,效率高,重复检测精度达到0.015 mm,精度相比人工抽检提高较大。此外,针对铆钉逐一检测任务量大且检测可靠度低的不足,基于面结构光的铆钉平齐度检测方法先提出了一种图像噪声轮廓分割方法,之后基于图像-点云映射策略实现了快速且稳定的分割铆钉点云,铆钉平齐度测量偏差达到了0.006 mm以下。如图6所示。图 6 铆钉标准件及平齐度测量结果。(a)标准件;(b)测量结果随着近年来数字化测量技术的不断发展,其广泛应用于飞机大部件装配外形测量过程中,尤其在飞机大尺寸外形轮廓检测、飞机蒙皮对缝间隙、阶差检测以及铆钉平齐度检测等应用中展现出较大优势,这归功于其测量精度和效率的提高以及测量范围的扩大。在测量过程中会产生大量的点云数据,对大规模点云数据进行有效的优化处理对后续测量模型建立的准确度以及相关测量数值的精度十分重要。4 面向复合材料装配缺陷的高精度检测技术 航空复合材料具有重量轻、比刚度大等优点,既能减轻飞机重量,也提高了飞机的整体互换性,方便维护,在飞机制造领域得到了广泛的应用。但此类复合材料由于装配时的应力变化会产生脱粘、分层、夹杂等装配缺陷,对产品的安全使用及长时间服役造成严重威胁,因此需要对复合材料装配过程中产生的缺陷进行高精度检测。 针对不断装机应用的各种新的航空复合材料、新的复合材料成型工艺、新的复合材料结构和新的检测与缺陷评估要求,从检测方法分类上,主要体现在:激光检测、超声检测、X射线检测和太赫兹检测技术等。近几年,随着众多学者对信号处理、图像处理和三维信号重构等技术的研究,使得检测精度和缺陷数据后处理能力逐步提升,面向复合材料装配缺陷高精度检测方法及技术逐步趋于智能化、自动化、可视化。图4 复合材料缺陷三维可视化[1]5 飞机装配测量为我国飞机制造保驾护航 大尺寸高精度测量技术已经成为但广泛应用中的核心关键技术尚处在积累阶段,需要不断的应用验证。数字化测量系统正朝着便携、网络、高效、精密方向发展,飞机装配大尺寸高精度测量技术也已从单一技术走向多传感器技术的融合。 对于飞机装配大空间测量场高精度测量,传统方法多基于单台或单种测量设备,导致精度及效率不足,通过测量场配置优化、坐标系优化、精度评估与补偿等技术来提升测量场的构建效率及精度是当前及未来的提升方向。而对于飞机大部件装配外形数字化高精度测量,飞机部件装配外形尺寸大、曲面形状复杂,型面测量数据量大,单一设备测量精度和效率之间矛盾突出。通过优化测量轨迹、提高视觉检测精度、大规模点云数据融合等技术手段充分发挥各测量设备的优点,来保证飞机大尺寸外形轮廓和飞机外形表面质量检测应用过程中的效率及精度。 因此,组合式数字化测量系统及多技术的融合研究是未来发展和提升的重要方向。在保持高检测精度的前提下,智能化、可视化、自动化的无损检测是未来的发展方向。 在数字化工厂和智能制造的背景下,根据目前大型飞机装配中的高精度测量技术及系统的特点,未来应立足于具体型号及实际应用场景,深入开展高精度测量技术及系统的应用和研究,并形成相应技术体系,充分发挥数字化高精度测量技术的优势。未来,多数字化测量系统协同工作,大空间数字化测量场构建,部件装配外形数字化及装配缺陷检测,这对提高我国飞机制造的水平和核心竞争力具有十分重要的意义。参考文献:[1] Qin L, Zhang S, Song Y, et al. 3D ultrasonic imaging based on synthetic aperture focusing technique and space-dependent threshold for detecting submillimetre flaws in strongly scattering metallic materials[J]. NDT & E International. 2021, 124: 102523.原文下载:张开富, 史越, 骆彬, 童长鑫, 潘婷, 乔木. 大型飞机装配中的高精度测量技术研究进展.pdf通讯作者介绍 张开富,西北工业大学教授、博士生导师,教育部“长江学者”特聘教授、冯如航空科技精英奖获得者,飞行器高性能装配工业和信息化部重点实验室负责人,兼任中国图学学常务理事、中国机械工程学会生产工程分会技术委员会委员。长期从事航空航天制造领域先进装配与连接、结构损伤及疲劳等研究工作,主持国家自然科学基金、国家重点研发计划、重大型号攻关计划等项目近20项,发表高水平学术论文70余篇、授权中国发明专利27件,主持制定航空行业标准2项,以第一完成人获国家科学技术进步二等奖、陕西省自然科学奖一等奖、陕西省科学技术一等奖各1项。课题组介绍 西北工业大学航空宇航装配团队依托于工业和信息化部重点实验室、西北工业大学航空宇航科学与技术学科(A+学科、双一流学科),获批陕西省科技创新团队、国防科技创新团队,长期从事航空航天领域装配建模与优化、先进装配与连接工艺、复材结构设计制造、智能测试技术与工艺等方向研究。团队拥有正高级职称人员6人(其中国家级人才3人)、副高级职称人员6人,硕博士研究生80余人。近年来,团队承担国家级科研项目30余项,授权国家发明专利50余项,在Composite Science and Technology、IEEE Transactions on Robotics、Additive Manufacturing、Composites Part B、航空学报、复合材料学报、机械工程学报等期刊发表学术论文百余篇,参与制定行业标准/型号研制规范10余项,研究成果在运20、C919、ARJ21等我国航空航天重大型号得到持续工程应用,先后获国家科学技术进步二等奖1项、省部级一等奖2项、其他省部级奖励5项。
  • 工业内窥镜——飞船装配检测的左膀右臂
    工业内窥镜早在10年前就被我国科学家应用在航天器总装工作中,并起到了重要的作用。航天任务中任何一个微小的失误,都能造成致命的事故以及不可挽回的损失。 由于航天器的密封结构、设备密集程度高、盲区多、空间狭小等特点,航天器的装配及安全检测是存在极大难度的,在经过科学家们多方的尝试后,选用了工业内窥镜无损检测新技术的手段,在当下高效地解决了航天器装配的问题。 在航天飞船的检测中,飞船的舱内空间小、结构复杂,需要解决的问题有很多,如以下三点: 飞船中多余物的查找和去除在装配飞船的过程中,总会有遗留在飞船内的多余物,比如螺丝钉、胶布、电缆碎片等,而这些遗留物又通常在非常狭小而手臂等无法到达的地方,如果通过奥林巴斯工业内窥镜进行检测,能清楚地看到杂质,并可以通过窥镜导管内置的机械手将杂物抓取出来。 飞船装配中的测量任何的机械装备都需要有一定的标准,飞船的也不例外,它的标准与我们所知的空间不同,标准更加严格,任何的装配都要做到精确再精确。在操作盲区的装配中,人眼无法进行测量位置安装,需要通过工业内窥镜来进行间隙测量,以确定安装的位置以及调整垫片的厚度。 飞船的故障查看功能飞船在正式发射前会经过无数遍的测试,在未使用内窥镜检测之前,每次飞船发生测试故障时,飞船的设计师不能进舱只能依靠工作人员的描述来进行诊断,信息在阐述中存在误差。而在引工业内窥镜之后,这种情况就会得到改善,诸如奥林巴斯工业内窥镜拥有图像共享功能,它通过连接无线网络,将所检测到的图像共享在电脑、手机或者平板上,可以进行多方观察,这不仅能让设计师及早时间清楚看到飞船舱内的情况做出准确的判断,同时也减少了工作人员频繁进出舱的危险性。 奥林巴斯 IPLEX NX系列工业内窥镜 除此以外,工业内窥镜还能做到很多人难以做到的事情,能检查舱内一些监控设备的状态和设计。还有它的3D测量技术,能清晰知道所探测到的缺陷等具体的位置和距离,同时还能对内窥探头进行远程控制,这对于飞船的检测较为合适。 工业内窥镜,能够在航天器的装配检测中起到的作用远不止以上提到的,它不仅可以校正了插头的状态,找出了舱内的冗余物,更是能够帮助飞船完成装配间隙的测量等各种复杂问题,真正成为飞船装配检测的左膀右臂。 而随着技术的发展,工业内窥镜也不断升级,它的3D测量及建模技术,以及在亮度、图像、便捷、智能等功能上也更强大,致力给未来更加先进的航天器带来强有力的无损检测设备。 更多细节您可以访问以下网页,联系我们了解:www.olympus-ims.com.cn/contact-us 您也可以拨打我们的电话:400-969-0456
  • 贺汇凯科技与豫北转向器签订装配生产线项目合同
    2013年10月29日,长春机械院长春汇凯科技有限公司与豫北转向系统股份有限公司就转向器精密装配生产线项目达成技术协议并签订合同。 此次豫北转向系统股份有限公司招标的齿轮齿条机械转向器总成装配生产线,是豫北转向器历次招标装配线中技术要求最高的装配线,装配生产的转向器产品专供美国福特汽车公司。该线可谓&ldquo 三高装配线&rdquo 即:装配生产效率高,防误措施全面;检测及控制水平高,并带有产品装配可追溯系统;装配精度及产品一致性水平高,这些措施将充分保证装配产品质量。可以说整条生产线技术难度大,接近国际先进水平。 在此次投标项目预研过程中,长春机械院汇凯科技课题项目组积极展开密集的产品调研和项目技术方案论证。针对该项目招标要求,最终设计出的装配生产线除满足招标方的技术要求外,整条生产线还具有适应性强、柔性好、易变换产品、生产节能、工作可靠等特点。 在招标过程中,长春机械院项目团队以优异的产品特性,精湛的技术实力,完善的设计方案,吸引了豫北转向系统股份有限公司招标专家组的青睐,力排其他竞争团队,以绝对优势胜出。 此次项目中标及完成,标志着长春机械院研制的装配线技术水平已经达到国内汽车零部件制造装配行业的先进水平。 注:豫北转向系统股份有限公司隶属中国航空工业集团公司,在汽车转向器设计研发和制造领域有近30年历史,40余项专利技术,公司主打产品动力转向器在技术上处于国内领先水平。
  • 利用气泡作为微型机器人实现零件的操纵和装配
    工业机器人已被广泛应用于制造和组装,但是在微观尺度上,大多数组装技术只能将微模块简单的排列在一起,很难将其装配在一起形成一个不易分散的实体。近日,中国科学院沈阳自动化研究所刘连庆研究员领导的微纳米机器人课题组利用激光产生和控制的气泡作为微型机器人,将不同形状和功能的微小零件装配在一起。这些微小零件是通过PμSL 3D打印技术(摩方精密,nanoArch S130)制备而成。在这项研究中,表面气泡充当芯片上的微型机器人。这些微型机器人可以移动、固定、抬起和放下微型零件,并将它们集成在一起,形成紧密连接的实体。以燕尾形零件的装配过程为例(图1),气泡机器人首先将带有榫舌的微型零件抬起,而后另一个移动微气泡机器人将带有卯眼的微型零件移动至指定的位置,原先的微气泡在激光关闭后缓慢消失从而使得榫舌结构插入卯眼中。用此方法装配的微型零件可以作为一个整体运动而不会分离。类似地,将不同类型的零件整体组装可以得到不同的结构,例如齿轮、蛇形链条和车辆,然后由气泡微型机器人驱动它们以执行不同形式的运动。这种组装技术既简单又有效,有望在微操作、模块化组装和组织工程中发挥重要作用。该工作以“Integrated Assembly and Flexible Movement of Microparts Using Multifunctional Bubble Microrobots”为题发表在ACS Applied Materials & Interfaces上。https://doi.org/10.1021/acsami.0c17518 图1. 装配过程和实验系统示意图。A) 燕尾形零件的装配过程。B) 系统的示意图。 当激光照射在非晶硅表面时,由于光热效应,在固液界面处会产生一个气泡,并可在激光的控制下进行移动。当气泡产生在微模块的底部时,气泡可将微模块抬起。本研究利用气泡产生过程快而溶解过程慢的特点,先控制一个气泡将微零件抬起,然后利用第二个气泡移动另一个微零件。当第一个气泡缓慢消失时,第一个零件缓慢落下,两个微零件能够装配在一起。利用气泡对微零件的三维操作能力,将二维组装变为三维装配。利用不同形状的微零件,可以得到齿轮(图2)、链条(图3)和小车(图4)等不同的结构,这些结构在气泡的驱动下可以进行多种灵活的运动。图2. 齿轮结构的装配过程及运动 图3. 链条结构的装配过程及运动图4. 小车结构的装配过程及运动 总而言之,该研究利用微小气泡作为机器人,对微零件进行抬起、移动、固定等操作,并利用气泡机器人的三维操作能力,将多个零件装配成整体,提供了一种新的微尺度操作和装配技术。(以上相关介绍内容由中科院沈阳自动化所微纳米机器人课题组代利国博士提供)上述研究工作涉及的PμSL微尺度3D打印技术由摩方精密提供,因此摩方公司就这一创新型成果对中科院沈阳自动化所微纳米机器人课题组进行了更进一步的补充访谈,以下为部分内容:1、BMF:请问利用气泡作为微型机器人来操纵微型零件有哪些优势?潜在的应用有哪些?代博士:气泡作为微型机器人,可以对单个的零件进行多种形式的操作,特别是可以控制微模块的三维姿态,这是其相比于其他微纳操作技术的优势。其可以用于操作细胞、颗粒和微模块等,在生物医学、组织工程等领域都有应用前景。2、BMF:请问在这次研究中,为什么采用微尺度3D打印的制备方式?代博士:我们设计的零件包含各式各样的微米尺度接头,比如燕尾形的榫舌和卯眼等,其中最小细节尺寸30μm,并且这些结构有尺寸配合的要求。摩方公司的3D打印技术可以很好的满足我们的要求,尺寸和形状都可以按照设计进行灵活加工,误差也在可控范围内。此外,面投影光刻3D打印技术可以批量化快速制作零件,有助于实验的顺利完成。官网:https://www.bmftec.cn/links/10
  • 圣诞树安全吗?科学仪器测试有结果
    圣诞树上的灯饰有的是小米灯泡,长期点亮灯饰会照成灯泡表面升温,升温过高的话可能引起圣诞树自燃。  圣诞树在塑化剂方面目前并无标准监管,这次检测参照儿童玩具标准专家认为PVC塑料当中的增塑剂在国外是限用物质,很多“三无”厂商或在监管真空地带的产品上使用  本周末将迎来圣诞节,但从本月初街头、商场就开始充满浓浓的圣诞气息。商家在店门口必摆一棵圣诞树来烘托气氛,很多家庭也会抱一棵回家。美则美矣,这些圣诞树和圣诞装饰真的安全吗?放在家中角落,是否会带来安全隐患?12月16日,南都鉴定走进广东检验检疫技术中心玩具婴童用品实验室,对圣诞树的锐利尖端和阻燃性、圣诞灯泡的温升、以及圣诞饰品的增塑剂、重金属、阻燃剂等项目做了检测。  当时,鉴定君还对现场检测过程做了网络直播。现在,公布检测结果的时候到了。鉴定君抽检的5款圣诞树,均测出塑化剂“超标”,最高一款样品“超标”12倍。对此,广东检验检疫技术中心玩具婴童用品实验室物理检测部部长李骏奇说,这次所有的测试结果均只针对采购的样品本身,不能代表目前圣诞树市场的现状。另外,因为圣诞树及配套饰品属于节日及庆典装饰品,在塑化剂方面目前并无标准监管,这次检测大都使用玩具标准进行评判,“但玩具标准适用于14岁以下儿童使用的玩具,是要求相当高的标准。”  鉴定由头  家里有小孩该不该买棵圣诞树  圣诞将至,超市或网站上,开始亮出各种圣诞树,商家们都不想错过这块“市场蛋糕”。但头一次想给家里挑棵圣诞树的广州市民王女士犹豫了,家里有孩子,那些五花八门的圣诞树真的安全吗?如果圣诞树接触明火,可能发生不好的事情。国内有媒体试验显示,刚点燃1.5米高的某棵圣诞树,火势蔓延非常迅速,而且火势非常猛。不到一分钟,整棵圣诞树只剩下一个支架。除了圣诞树本身,一些配套的装饰物也不甚安全。几年前,深圳检验检疫局发现,圣诞树饰品配套的灯串不仅安全标识不清,且在原材料使用和装配工艺上均不如直接出口的灯饰产品。  与圣诞树等圣诞装饰品配套的节日灯串,多以缠绕、镶嵌等形式与圣诞装饰品组合,对产品的散热产生一定影响。同时,圣诞装饰品多以塑胶制品为主,如塑胶制品燃点较低,容易因过热而引起燃烧,因此这类产品应较一般的节日灯串产品和圣诞装饰品要求更高的安全和防火性能。2014年,国家质检总局从市场采集了40批次灯串样品,检测结果让人大跌眼镜。其中,33批次防触电保护项目不合格,14批次耐热和耐火试验不符合要求,此外,15批属于“三无”产品。  部分圣诞树无标识属“三无产品”  临近圣诞,多家超市在门口的明显区域摆放出了大大小小的圣诞树,价格从几块钱到上百元不等。彩球、星星、泡沫雪花、灯串̷有的圣诞树还配上了各种装饰物,路过的孩子忍不住看上几眼、玩上几下。仔细一闻,一些圣诞树有刺鼻的味道。用手一摸,一些装饰物上的闪粉就粘在了手上,难以擦掉。一些圣诞树包装非常简单,直接用透明塑料袋装着售卖。除了袋子上方标有“圣诞快乐”之类的语句,并无产品名称、生产厂家、质量合格证等相关标识,完全是“三无产品”。  鉴定君在一家文具店购买的小型圣诞树也是如此,不具备任何标识,前来购买的顾客也并不过问。对于圣诞树的产地,店家也说不出个所以然。有些圣诞树自带灯串,有的则需要另行购买。不同的灯串价格不一,材质也不太相同。插头位置也比较柔软,与插座匹配度并不高。在网络上搜索圣诞树,出来的产品数不胜数。价格从几块到2万不等,相差悬殊,卖得最火爆的款式月销几万。配件越多,价格也越高,有的产品写着“含99个挂件”。多数圣诞树,均对产品的安全性只字不提。  鉴定实录  圣诞树安全吗我们测给你看  为了亲测圣诞树的安全性,鉴定君通过广州批发市场、文具店、超市以及网购等渠道购买了5款圣诞树。实验分物理性能、燃烧性能和化学性能三部分:物理性能主要测试圣诞树是否会因含有锋利部件而伤害人 燃烧性能主要测试产品是否含有易燃的部件 而化学部分则检测树叶和装饰物是否含有害物质。  时间:12月16日上午  地点:广东检验检疫技术中心玩具婴童用品实验室  样品:5款人造圣诞树  工具:锐利尖端测试仪、锐利边缘测试仪、石蜡蜡烛、热电偶测试仪、气相色谱质谱联用仪等  物理测试:锐利尖端和锐利边缘测试、阻燃性测试、灯泡温升测试,检验是否刺伤、烫伤皮肤等  化学测试:圣诞树增塑剂含量、圣诞挂饰重金属含量、苯类物质含量 圣诞装饰灯串阻燃剂含量,检验是否有相关有害物质  说明:由于目前国内尚未有适用的国家标准,这些实验参照新版的玩具安全国家标准GB6675和其他玩具标准来进行  物理测试  塑料缠绕铁丝佯装树枝  样品不会伤害儿童皮肤  圣诞树真的是树吗?你想太多啦,真正的圣诞树本该是松树或柏树。但鉴于成本、方便保存等问题,大部分圣诞树看似树枝的材料都是用PV C材料做成,简单理解,就是塑料。塑料缠绕铁丝,就佯装树枝了。试验中,广东检验检疫技术中心玩具婴童用品实验室测试工程师骆均衡,掰断一小段“松枝”进行锐利尖端测试。  首先,实验员调校好“锐利尖端测试仪”,然后把松枝末端“戳入”仪器的小孔中。如果测试仪红灯亮起,代表尖端锐利度可能刺穿人体皮肤,就得进一步进行评估,看是否存在不合理的伤害危险。本次实验中,骆均衡对5个样品圣诞树枝逐个取样测试,结果5款样品的树枝,都没有成功触亮红灯,“样品树枝尖端鉴定为安全”。随后,骆均衡进行锐利边缘测试。他在锐利边缘测试仪的芯轴上,贴上一层PT FE测试胶带。据称这是一种模仿人体皮肤的软胶,呈半透明的皮肤色。骆均衡现场解释,锐利边缘测试仪默认设置为6牛顿的压力。如果在这种压力下,样本的锐利边缘能造成胶带超过50%的长度被完全划破,则就有划破儿童幼嫩皮肤的危险了。试验证明,5款样品的锐利边缘尖锐度质量过关,对儿童皮肤的潜在伤害尚在安全范围。  参考美国标准整体燃烧测试  接触火源持续5秒圣诞树未燃烧  放在家中的圣诞树,接触火源后会不会轻易就燃烧起来?以往的媒体实验确实存在这一风险。骆均衡表示,质量过关的塑料产品,应该具有合格的阻燃性能。试验中,工程师首先对3棵小型圣诞树本体,进行了参考美国标准的整体燃烧测试。他点燃一根直径1英寸的小蜡烛,把火焰高度按照标准要求调节好,接触样本树枝并持续了5秒钟。结果发现,3棵小圣诞树样品并未发生燃烧,阻燃性杠杠的。随后,骆均衡又对2棵大型圣诞树进行局部取样抽检,他模拟现实的场景,用火焰直接接触样品1秒钟,结果同样是未能点燃。结果表明,5棵样品圣诞树的阻燃性均为合格。  灯泡开久会升温太高?  8小时测试显示没问题  在圣诞树的装饰里,一串串的小彩灯通常也是必不可少的角色。通电以后,缠绕在圣诞树上的小彩灯串,发出五颜六色的亮光。有些家庭甚至会整宿地亮着灯来营造节日气氛。然而,长久开灯,灯泡会不会太热,一碰就会灼伤?骆均衡也对小彩灯灯泡的温升情况做了测试。目前市面上出售的主要是两种小彩灯串装饰,一种采用的是L E D灯,另一种则是传统的小米灯泡,由于LE D采用的是冷光源,对减少发热,控制温升有较好的作用。因此本次试验只对样品5圣诞树配套的小米灯泡串做了温升测试。  试验开始,骆均衡首先为样品5的配套灯串通了电,发出亮光后,他随机抽取了8个亮着的小灯泡进行测试。温升测试用到了“热电偶测试仪”,测试仪一端的热电偶接触着小米灯泡的玻璃表面,另一头连接电脑,通过电脑屏幕,就可以实时获取温度变化情况了。经过8小时的温度监控,结果显示,在开始的几小时里,各个小灯泡的温度均处于不断飙升的状态,然而当温度达到一定值时,温升幅度就开始“放慢脚步”,8小时后,最高的灯泡玻璃温度达到56摄氏度。骆均衡说,根据G B19865国家电玩具安全标准中的温升要求,可以触及到的玻璃材质部件的温升不能超过50K。当时室内温度为23摄氏度,如果灯泡测试结果最终超过73摄氏度,则不符合国家标准。因此,目前检测的53摄氏度仍在国家标准限定范围内,样品5的配套灯串温升没有超标。  化学测试  “松枝”:圣诞树样品全部含有塑化剂  既然圣诞树的主要材质是塑料,不免让人联想到塑化剂的危害。塑化剂普遍应用于玩具、食品包装材料等产品中,常见的是一种称为邻苯二甲酸酯类的化合物。邻苯二甲酸酯类在塑料中老实呆着的时候,和人类是和平共处的,它可以增加塑料制品中的柔软性、耐寒性、增进光稳定性。广东检验检疫技术中心玩具婴童用品实验室化学测试部工程师周懿琦说,如果通过孩子啃咬吞食后,塑化剂会从塑料中“逃逸”出来,在体内积累,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,会危害儿童的健康安全,会危害儿童的肝脏和肾脏,也可引起儿童性早熟,“影响孩子生殖系统发育。”  实验员将松枝剪下来,剪到1克,加入有机溶剂,将塑化剂萃取出来,并使用气相色谱质谱联用仪进行检测。检测结果不乐观。在送检的5款样品中,均测出较高含量的D E H P(即邻苯二甲酸二异辛酯)。鉴定君了解,圣诞树这一类节日装饰品的塑化剂目前并无标准监管。如果参照儿童玩具安全限量的标准(注:D EH P和D BP、BBP这3种邻苯二甲酸酯塑化剂的含量之和,不超过1000毫克/千克则不超标),测试的5款样品均测出了D EH P超标。最高的D EH P含量,更是达到了13100毫克/千克,超标了12倍。  制成雪花:样品未检出常见致癌挥发物  和塑化剂检测方法类似的,还有苯类物质。不少圣诞树的装饰中,都有一些泡沫,制成雪花等。如果你买到的圣诞树有刺激性气味,那可能是泡沫中的苯类物质在作祟。周懿琦说,苯类物质超标在涂料中比较常见,这些物质可能存在致癌风险。实验员将第5款样品的泡沫剪成小块,取1~2克,加入有机溶剂,将苯类物质萃取出来,并使用气相色谱质谱联用仪进行检测。结果显示,第5款样品不含常见的致癌挥发物苯类物质,风险不大。  装饰品闪粉:送检样品重金属风险不大  圣诞树上的其他装饰,如五角星,往往会涂抹上一层闪粉,看起来亮眼,但用手一摸,闪粉就留在了手上。这些闪粉入口,则会担忧重金属的污染。周懿琦说,如果重金属从闪粉中迁移出来,积累在人体里,不容易排出,将对儿童神经系统发育等产生影响。因第5款样品有多个带闪粉的装饰物,从这个样品上抽取了两个装饰物,每个样本刮取0 .2克闪粉,按照儿童玩具安全限量的标准,模拟样品与胃酸混合的过程,通过电感耦合等离子体发射光谱仪进行检测。结果显示,未检出铅、汞等8类可迁移的重金属,“送检样品重金属的潜在风险不大。”  灯串:阻燃剂超标0.2倍  阻燃剂为何物?事实上,阻燃剂广泛用于塑料中,是用来防止起火的物质。防火本是好意,但如果含量超标了常会得不偿失。周懿琦介绍,溴化阻燃剂也是一种常见污染物,持久性强,易在人体内积聚。会干扰人体的内分泌、免疫和神经系统,造成儿童过度活跃、学习困难,并导致成人精子质量下降和不孕不育等。溴化阻燃剂在焚化时,甚至释放致癌物。但灯串本身的材料,是否添加了过量的阻燃剂?是否符合国家电子电气产品限用物质限量要求?实验员也对此做了验证。  试验选了第5款样品的灯串电线皮的透明软胶、黑色软胶,开关盒中的白色塑料和黑色塑料进行测试,分别剪成3 3毫米大小的颗粒,加入有机溶剂萃取。根据G B 26572国家电子电气产品限用物质限量要求,两类溴化阻燃剂的含量均不得超过1000毫克/千克。结果显示,第5款样品的开关盒的黑色塑料中,多溴二苯醚之和为1200毫克/千克,这意味着,第5款样品的阻燃剂超标了20%,“含有较高的禁用有害物质,应尽量选购合格的产品。”周懿琦解释。  鉴定者说  燃烧测试有主观性  圣诞树放置需远离火源  广东检验检疫技术中心玩具婴童用品实验室物理检测部部长李骏奇说,这次所有的测试结果均只针对采购的样品。也就是说,这并不能代表目前圣诞树市场的现状。李骏奇说,这次检测大都使用玩具标准进行评判,但玩具标准适用于14岁以下儿童使用的玩具,是要求相当高的标准。圣诞树及配套装饰品属于节日及庆典装饰品,不在其范围内。而且根据其使用方式 比如比较少与儿童发生亲密接触,接触时间短,安全要求应比玩具低。  此外,在进行大型圣诞树阻燃性能测试时,对两棵大型圣诞树样品采用了用火焰直接接触样品1秒钟的测试方式,结果显示并未发生燃烧,符合国家玩具标准。但由于这个试验是按照测试标准中设定了特定条件,例如是用小型火源,火苗接触时间也较短的方法进行的,并不完全能代表现实中的圣诞树引发火灾的潜在危险性。所以,在家中选择圣诞树放置的位置时,还是应该要注意尽量远离火源和易燃物体。另外,周懿琦说,PV C塑料中当中的增塑剂,在国外是限用物质,很多厂商用其他更环保的增塑剂进行生产。但是越环保,成本越高,很多“三无”厂商,可能在监管真空地带的产品上使用。  鉴定补充  选购安全圣诞树专家给三点建议  李骏奇建议消费者,最好从规范的渠道,购买圣诞树和装饰品。购买前可以通过以下三方面的检查,来尽量避免不安全的产品。一看。看产品的标识,有没有产品名称、厂家名称和地址、质量合格证、材料说明等。避免购买“三无”产品。二闻。不要购买有刺激性气味的圣诞树和圣诞饰品。三查。在选购圣诞树时,要检查树枝末端和边缘的锐利度,不要购买出现铁丝裸露在外的圣诞树产品,避免尖端和锐利边缘划伤家中幼儿稚嫩的皮肤。  另外,买回家后,选择适当的位置来放置,注意尽量远离火源和易燃物体 不要在圣诞树上悬挂、缠绕过多过密的灯串。提醒家里的小孩,不要弯折树枝,不要拿着蜡烛等火源走到树旁,不要玩弄灯串、不要接触灯串的插头。尤其要告诫不到三岁的小孩子,不能攀摘树上的装饰品,因为这些装饰品被撕扯弄下的小零件一旦被误吞到嘴里,就很可能造成哽塞窒息危险。
  • 中国制造,中国质量——赛默飞色谱质谱业务本土化生产
    长期以来,伴随着国家科技创新利好政策以及“十四五”规划的重大机遇,赛默飞以自主科研实力、本土创新技术、中国制造及中国定制产品和解决方案助力本土科学服务领域发展。  其中,赛默飞中国色谱质谱业务正快速扩张在中国的生产制造能力,继续推进国产化进程。截止2022年,赛默飞色谱质谱业务的国产仪器大家族已经扩大到10余个产品,包括液相色谱仪Vanquish™ Core和Vanquish Flex UHPLC 、气相色谱仪Trace 1600、单四极杆气相色谱质谱联用仪ISQ 7610 、三重四极杆气相色谱质谱联用仪TSQ 9610(同步实现了国产化)、离子色谱仪ICS-600、Dionex™ ICS-6000 HPIC高压离子色谱系统(旗舰产品)、原子吸收光谱仪 iCE 3000、电感耦合等离子体光谱仪iCAP PRO 以及电感耦合等离子体质谱仪iCAP RQ,三重四极杆液相质谱联用仪TSQ Altis Plus,加速溶剂萃取浓缩仪EXTREVA™ASE™(中国自行设计、研发、生产)。这些国产仪器已经在食品、环境、工业、制药与生物制药等垂直市场全面开花,赢得业界客户赞誉。  以液相色谱仪为例,一年多前,赛默飞开始在苏州工厂生产高效液相色谱 (HPLC) 仪器/模块。源于首次本土化的成功,赛默飞在中国的生产基地增加了更多的液相色谱投资。2021年4月,赛默飞苏州工厂再次增设HPLC装配产线。HPLC产品线由德国工厂转移到中国,据赛默飞苏州工厂的人介绍,以往类似的项目,通常需要1年半的时间。而且按照惯例,我们应该去德国工厂接受现场培训,德国工程师也会到中国现场指导。由于项目初期正值疫情爆发,都没能成行。“当时看来,这次的项目是一个不可能完成的任务。”  因为疫情,物料进海关的物流方案要推翻重来 德国工程师无法到现场,最终只能通过远程视频指进行导 然而,无论是中国工程师还是德国工程师,对于非现场教学都没有任何经验。时间紧,任务重!但是,即使期间经历了1个月的疫情干扰,赛默飞苏州工厂还是仅用9个月就实现了高质量交付,完美体现了中国速度,中国质量!  赛默飞中国人是如何交出了这一份满意的答卷的呢?在产线组装测试过程中,发生过哪些令人印象深刻的小故事呢?  为“消灭”0.1%误差而战  工厂每年都会制定年度改进项目,目的是为了不断提高成品率、提升质量。“一次有一个指标一直不能达标,我们做了各种检查,意料之外地发现,竟然是由于德国工厂和中国苏州两地的海拔不同造成的。”一位工程师讲述到,“苏州属于平原地区,德国工厂所在区域海拔要高于苏州,这导致了两地空气浮力有细微差异,进而影响到最终0.1%的微小分析误差。而这0.1%可能对于结果来说不会有本质影响,但是源于对中国质量的承诺,我们还是会寻找问题根源,逐步优化,直至最终解决。”  据了解,在赛默飞苏州工厂,每年这样大大小小的改进项目有很多个,并且,工厂积极鼓励产线上的员工提建议,因为他们更加贴近生产第一线,熟知各种质量提升小细节以及生产安全隐患等。积跬步以至千里  赛默飞对质量控制的严谨,体现在每一个细节上。比如,一个一次成型模具,其生产过程中有需要工人进行“压”的动作。压一下、按一下,感觉是一个非常简单的动作而已,但是,关于如何正确地“压”,德国工程师特别开视频远程进行了示范。每个人的力气不一样,德国员工与中国员工的体型也存在差异,那么如何衡量压得好不好,到不到位呢?“这一点不用担心,在那个模具上有一个明确高度的刻度线,你只有压到线才算合格,而不是你压了就可以。”工程师介绍到。  这样的细节很多,例如,组装用到的螺丝,哪怕是相同口径的螺丝,用在不同的位置上,都规定了不同扭具。检测室的温度,工厂严格要求在一小时内的波动不能超过一度。这已经可以说是一种“苛求”了,但正是这一步步,才走出了中国质量之路。   后记  一个仪器中有成千上万的零部件,赛默飞的仪器走向全球时,也带着这些零部件供应商达到“中国制造”水准,走向世界。它们除了赛默飞,未来还可以供应其他厂商,这必然带来中国整个产业链价值的提升。
  • 赛默飞世尔推出全新NITON手持式XRF分析仪
    ——新一代结合 GOLDDTM 技术的赛默飞世尔 NITON XL3t 系列分析仪 BILLERICA, Mass.(2008年11月10日)—— 作为世界科学服务领域的领导者,赛默飞世尔科技股份有限公司今日推出结合几何优化大面积电子漂移探测器技术的赛默飞世尔科技 NITON Xl3t 系列分析仪。新一代结合 GOLDDTM 技术的赛默飞世尔 NITON XL3t 系列分析仪提供了更为快速的检测速度和大幅度提升的检测效果。突破性的 GOLDD 技术使得其在轻金属领域的检测(包括总体检测灵敏度和检测时间)都得到了改善,它比常规意义上的 Si-PIN 探测器检测速度快了10倍以上,并且在精确度上,比普通小型硅电子漂移探测器精确达3倍。赛默飞世尔科技是世界上生产手持式X射线荧光分析仪的领导者。 赛默飞世尔科技此款检测设备能够优于常规Si-PIN和SDD探测器,主要是因为其结合了荣获R&D 100大奖的Niton XL3t 分析仪配备的50kV,2-watt X射线管,以及近乎完美的几何设计和独有的信息处理软硬设备,这就是 GOLDD 技术,使其在快速分析和最小检测限均取得了卓越的表现。另外,这项创新使得其可以在没有加氦气和真空净化的条件下完成对部分轻金属(镁、铝、硅、磷、硫)的检测。 赛默飞世尔科技的NITON分析仪研发部总裁Bob Wopperer先生这样说道:“结合GOLDD技术的Niton XL3t 分析仪使得手持式X射线荧光分析仪真正达到了实验室级别的效果。更何况它易于操作,分析快速、精准并且可以在没有氦气和真空的条件下检测轻金属元素,无论是用于金属合金分析,矿物勘探,土壤成分分析,还是玩具、电子产品和消费品中违禁物质的检测,它都是最理想的多重检测设备。” Wopperer先生继续说道,“举例来讲,Niton XL3t GOLDD 分析仪是专业用于废弃金属回收的理想设备,它可以更方便的完成对铝,钛等重金属元素,以及青铜合金的筛选,对于不稳定以及微量元素也同样可以达到卓越的检测效果。在矿物勘探领域,这款仪器的最低检测限更是为地质学家分析异常物质和地球表面不常见的物质而量身定做,这在手持式仪器领域是开创先河之举。 关于Niton XL3t 系列分析仪 结合GOLDD技术的Niton XL3t 系列分析仪配置了80MHz数据信号处理和最先进的嵌入式双重数据处理系统,用于完成计算、数据处理、现场影像处理和通讯,同时具备多种标准特性和选装配置。 标准Niton 数据转换软件(NDT),是一整套的数据管理装备,便于用户: 定制设备 设制用户权限 生成定制报告 打印有公司品牌标志的个性化分析证书 通过电脑和PDA装置实行远程监控和全自动操作 内置USB和蓝牙通讯设备,可以直接向用户的电脑或网络存储设备传输数据,免除了使用PDA式XRF分析仪时繁琐的数据同步过程。NDT文件格式可以很好地保存并保护每一条样品检测结果,确保数据不会被有意或无意地修改。 另外,通过使用内置的彩屏CCD相机和选配的3毫米小点瞄准装置,用户可以定位样品的检测区域,然后将检测区域的图像和数据同时储存。Niton XL3t 系列提供了仅有的完全内置式、密闭的彩色触摸显示屏,便于在任何角度,在常规或强光条件下观察样品检测结果。同时,Niton分析仪采用了第三代锂电池,比现有的任何一款XRF分析仪具有更长的使用寿命。 Niton XL3t 系列一直适用于各种配置,并有一套适用于各种分析需求的选配部件和配件。 想要咨询更多的信息,或者安排现场的演示,请联系您当地的NITON分析仪代理商,或者拨打赛默飞世尔科技Niton分析仪直线电话 800 8751578(美国免费电话), 021-6440 0705(中国代表处热线电话)。 您也可以访问我们的网站 http://www.thermo.com/niton(美国),http://www.nitonchina.com (中国代表处) Thermo Scientific作为赛默飞世尔科技旗下子公司,是服务科学领域的世界领导者。 关于赛默飞世尔科技 赛默飞世尔科技(Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,服务客户超过350,000家。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific向客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲获取更多信息,请访问公司网站: www.thermo.com.cn(中文),www.thermo.com (英文)。
  • 赛默飞世尔推出全新NITON手持式XRF分析仪
    ——新一代结合 GOLDDTM 技术的赛默飞世尔 NITON XL3t 系列分析仪 BILLERICA, Mass.(2008年11月10日)—— 作为世界科学服务领域的领导者,赛默飞世尔科技股份有限公司今日推出结合几何优化大面积电子漂移探测器技术的赛默飞世尔科技 NITON Xl3t 系列分析仪。新一代结合 GOLDDTM 技术的赛默飞世尔 NITON XL3t 系列分析仪提供了更为快速的检测速度和大幅度提升的检测效果。突破性的 GOLDD 技术使得其在轻金属领域的检测(包括总体检测灵敏度和检测时间)都得到了改善,它比常规意义上的 Si-PIN 探测器检测速度快了10倍以上,并且在精确度上,比普通小型硅电子漂移探测器精确达3倍。赛默飞世尔科技是世界上生产手持式X射线荧光分析仪的领导者。 赛默飞世尔科技此款检测设备能够优于常规Si-PIN和SDD探测器,主要是因为其结合了荣获R&D 100大奖的Niton XL3t 分析仪配备的50kV,2-watt X射线管,以及近乎完美的几何设计和独有的信息处理软硬设备,这就是 GOLDD 技术,使其在快速分析和最小检测限均取得了卓越的表现。另外,这项创新使得其可以在没有加氦气和真空净化的条件下完成对部分轻金属(镁、铝、硅、磷、硫)的检测。 赛默飞世尔科技的NITON分析仪研发部总裁Bob Wopperer先生这样说道:“结合GOLDD技术的Niton XL3t 分析仪使得手持式X射线荧光分析仪真正达到了实验室级别的效果。更何况它易于操作,分析快速、精准并且可以在没有氦气和真空的条件下检测轻金属元素,无论是用于金属合金分析,矿物勘探,土壤成分分析,还是玩具、电子产品和消费品中违禁物质的检测,它都是最理想的多重检测设备。” Wopperer先生继续说道,“举例来讲,Niton XL3t GOLDD 分析仪是专业用于废弃金属回收的理想设备,它可以更方便的完成对铝,钛等重金属元素,以及青铜合金的筛选,对于不稳定以及微量元素也同样可以达到卓越的检测效果。在矿物勘探领域,这款仪器的最低检测限更是为地质学家分析异常物质和地球表面不常见的物质而量身定做,这在手持式仪器领域是开创先河之举。 关于Niton XL3t 系列分析仪 结合GOLDD技术的Niton XL3t 系列分析仪配置了80MHz数据信号处理和最先进的嵌入式双重数据处理系统,用于完成计算、数据处理、现场影像处理和通讯,同时具备多种标准特性和选装配置。 标准Niton 数据转换软件(NDT),是一整套的数据管理装备,便于用户: 定制设备 设制用户权限 生成定制报告 打印有公司品牌标志的个性化分析证书 通过电脑和PDA装置实行远程监控和全自动操作 内置USB和蓝牙通讯设备,可以直接向用户的电脑或网络存储设备传输数据,免除了使用PDA式XRF分析仪时繁琐的数据同步过程。NDT文件格式可以很好地保存并保护每一条样品检测结果,确保数据不会被有意或无意地修改。 另外,通过使用内置的彩屏CCD相机和选配的3毫米小点瞄准装置,用户可以定位样品的检测区域,然后将检测区域的图像和数据同时储存。Niton XL3t 系列提供了仅有的完全内置式、密闭的彩色触摸显示屏,便于在任何角度,在常规或强光条件下观察样品检测结果。同时,Niton分析仪采用了第三代锂电池,比现有的任何一款XRF分析仪具有更长的使用寿命。 Niton XL3t 系列一直适用于各种配置,并有一套适用于各种分析需求的选配部件和配件。 想要咨询更多的信息,或者安排现场的演示,请联系您当地的NITON分析仪代理商,或者拨打赛默飞世尔科技Niton分析仪直线电话 800 8751578(美国免费电话), 021-6440 0705(中国代表处热线电话)。 您也可以访问我们的网站 http://www.thermo.com/niton(美国),http://www.nitonchina.com (中国代表处) Thermo Scientific作为赛默飞世尔科技旗下子公司,是服务科学领域的世界领导者。 关于赛默飞世尔科技 赛默飞世尔科技(Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,服务客户超过350,000家。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific向客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲获取更多信息,请访问公司网站: www.thermo.com.cn(中文),www.thermo.com (英文)。
  • 英国Our Future Health项目获Illumina、罗氏、赛默飞1亿英镑资助
    近日,英国“Our Future Health”项目宣布获得了来自多个行业合作伙伴的1亿英镑资助,包括Alnylam、Amgen、阿斯利康、葛兰素史克(GSK)、Illumina、Janssen research & Development以及强生、默沙东(MSD)、Regeneron遗传学中心、罗氏(Roche)和赛默飞(Thermo Fisher Scientific)。Our Future Health项目试图纳入500万名参与者,希望对国家人口的健康状况有一个广泛的认识,同时开发新的预防和治疗疾病和健康状况的方法,包括癌症、老年痴呆症、心脏病、关节炎、糖尿病和中风等。目前,该项目已经启动了其试验阶段,通过与英国国家医疗服务体系(NHS)血液、移植以及英国国立卫生研究院(NIHR)生物资源的合作招募了3000名志愿者。Our Future Health项目主席John Bell教授在表示:“慢性疾病的社会、医疗和经济负担日益加重,解决这一问题需要生命科学部门和卫生系统之间的强有力合作。在COVID-19大流行期间,随着疫苗、诊断工具和治疗方法以前所未有的速度和规模迅速开发和部署到NHS,我们已经看到了通力合作的威力。”英国政府资助的投资部门,UK Research and Innovation提供了最初的7900万英镑来资助该项目,并获得了NHSX AI实验室的资金,专门用于支持多基因风险评分的生成,并向参与的志愿者提供反馈。“Our Future Health计划旨在利用合作的力量。来自行业、慈善机构的支持,以及政府的资助,意味着我们正在将“Our Future Health”建设成一个世界领先的健康研究项目。希望这将为NHS的一种大胆的新方法奠定基础,该方法专注于疾病的早期发现和预防。期待更多参与者参加这个令人兴奋的项目。”Bell教授表示。该项目的一个主要重点是开发在症状出现之前识别癌症和心脏病等疾病的新方法。根据Our Future Health项目介绍,在英国只有55%的癌症被诊断为第一阶段或第二阶段,有超过550万人患有未确诊的高血压。“在世界各地,数百万人在晚年生活中健康状况不佳。Our Future Health项目旨在解决这个问题,并通过创建英国有史以来最大的健康研究项目来预防、检测和治疗疾病,帮助人们过上更健康、更长寿的生活,”Our Future Health项目首席执行官Andrew Roddam博士提道。“通过建立一个真正反映英国人口状况的世界领先的健康研究资源,可以更详细地了解是什么让一些人更容易出现某些健康问题,从而在未来开发出更有效的检测和治疗方法。”在试验研究阶段,Our Future Health项目计划在3000名志愿者中测试其操作和程序,以确保整体系统运行良好。如果一切顺利,该项目将于2022年第一季度向公众开放。目前,通过NHS献血中心招募的志愿者已经完成了在线健康调查问卷,并在知情的情况下同意将他们的医疗记录信息以及捐赠的血液样本与Our Future Health项目联系起来。同时,该项目还询问志愿者,未来是否可以联系他们进行额外的研究,或者给他们机会接受个性化的健康反馈。
  • 赛默飞发布测定面粉中偶氮甲酰胺含量的解决方案
    2014年4月10日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布HPLC 法测定面粉中偶氮甲酰胺含量的解决方案。该方法与其他方法相比,操作简便易行,重现性与线性均能达到要求。 偶氮甲酰胺(ADA)作为食品添加剂在面粉及其制品中广泛使用,其主要目的是用来增加面筋,改善面团流变学特性和机械加工性能、借以增加面粉质量。ADA在180℃~ 220℃温度下,半小时左右即可生成氨基脲,一种与硝基呋喃类代谢产物一致的化合物。因此,建立一种测定面粉中ADA 含量的方法,从源头控制ADA 加入量,对加强卫生监督,保障人们的身体健康具有重要的现实意义。 赛默飞使用Thermo Scientific Dionex UltiMate 3000 DGLC 双三元液相色谱系统,第一时间建立了面粉中偶氮甲酰胺含量的检测方案,采用氨基柱分离,紫外检测器分析,取得了较好的分析结果,适用于该类样品的快速检测。 下载应用文章请点击:http://www.thermo.com.cn/Resources/201404/913551843.pdf 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 强强联合|欧波同携手赛默飞世尔科技赋能中国制造
    2021欧波同&赛默飞“欧波同电镜产线全面升级”Corporate culture 2021年第一季度,欧波同集团顺利完成旗下电子显微镜产品升级与全国营销网络业务布局,与美国赛默飞世尔科技(Thermo Fisher Scientific)公司达成战略合作协议,全面负责赛默飞电镜(原FEI)全系列产品(含TEM透射电镜、FIB双束电镜)在中国工业领域市场的销售与技术服务业务,双方未来将在分析检测技术领域开展深度合作。 随着全球科技竞争加剧,中国科技自主创新正如火如荼,工业分析领域对于分析设备及检测技术的要求与日俱增,电子显微镜作为材料分析实验室不可或缺的重要仪器,同样面对着来自各行业精益求精的产品升级需求。作为同行业不同方向的创新引领者,欧波同和赛默飞在技术创新、经营理念、服务模式等方面存在诸多共识,这也是双方本次顺利牵手的基础。 自成立以来,欧波同始终致力于为中国材料分析领域客户提供定制化全场景式智能实验室系统解决方案,立足科研一线,积累了丰富的客户资源与服务经验,拥有独特的RSP营销服务体系和稳固的市场基础,高端市场占有率高达60%,曾屡次获得“科学仪器行业最具影响力经销商”称号。近年来,欧波同通过组建研发团队、建立材料分析研究中心等创新转型计划的实施,成功打造国内优质的实验室解决方案服务品牌,成为引领行业的专业典范。与赛默飞电镜业务(原FEI)完成签约授权后,欧波同电镜产线正式升级,包含扫描电镜SEM、透射电子显微镜TEM、聚焦离子束显微镜FIB,分析检测服务将实现从微纳米级向亚纳米级的拓展、分析维度将实现从二维到三维的升级。 赛默飞是科学服务领域的世界领导者,为全球纳米技术团体提供了世界级的显微镜学解决方案。赛默飞电镜业务部是电子显微镜和微区分析解决方案的创新者和供应商,尤其是在工业领域,赛默飞扫描电镜、透射电镜以及FIB都可以发挥巨大的作用,为工业企业提供高分辨纳米级测试和分析。与欧波同达成合作之后,赛默飞将在欧波同独特的RSP营销体系支持下,借助欧波同顶流营销团队与庞大客户资源,充分发挥赛默飞电镜在电子束领域的技术优势,为客户提供更全面的定制化技术服务,挖掘客户增量价值。 此次强强联合,是双方优势资源的整合升级,更是双方合作由化学分析领域到物理测试领域的拓展。合作达成后,将为全中国工业领域客户创新纳米分析科技、提升检测分析科研实力、赋能中国智造等方面提供支持,构建多赢格局,探索未来在电镜应用与解决方案方向上的更多可能,帮助中国制造在世界级的竞争中取得成功。 为科研助力,为发展赋能。欧波同为迎接多元智能、绿色创新带来的市场挑战,率先做好战略部署,注重产线建设,升级技术服务,坚持创新理念,赋能全球合作伙伴,以期助力中国制造旗舰,乘风破浪而行,实现科技筑梦。
  • 【瑞士步琦】冻干工艺精准操控,Lyovapor™ L-300实现全自动终点判定
    冻干工艺精准操控Lyovapor&trade L-300实现全自动终点判定冻干应用”1简介冷冻干燥是一个独立的过程,在这个过程中实时分析样品是比较困难的,特别是检测其残余水分含量。工艺优化,特别是获得干燥和稳定产品所需的工艺时间,通常依赖于反复试验的方法。在本文中,使用了不同过程分析技术的组合来确定实验室冷冻干燥机(Lyovapor&trade L-300)中甘露醇溶液一次和二次干燥的终点。在加热隔板上使用西林瓶,通过对样品参数的原位测量间接跟踪干燥过程,可以在运行的冷冻干燥循环中即时调整过程时间。它有助于根据产品所需的残余水分含量更快地优化参数。此外,这些分析技术为监测过程的再现性提供了必要的工具。2实验设备Lyovapor&trade L-300 Pro, BÜ CHI Labortechnik AG电容和皮拉尼压力计,Pt 1000 热电偶冷冻干燥瓶,标称体积 10.0 mL, Schott AGLyo 三角橡胶塞,Wheaton陶瓷板磁力搅拌器硼硅玻璃烧杯和量筒分析天平(精度±0.1 mg)实验室 -50°C 冷冻柜3试剂和耗材甘露醇 97,0 - 102,0 Ph. Eur. , USP, VWR Chemicals (25311.366) 去离子水4实验流程4.1 实验部分制备 100mg /mL 甘露醇去离子水溶液。使用容量分配移液管将甘露醇溶液装入120个冷冻干燥瓶(每瓶 5.0 mL)。在每个小瓶上放置一个三脚橡胶塞,以便在冷冻干燥过程中去除水蒸气。一个 Pt 1000 热电偶被放置在两个制备的冷冻干燥小瓶的“中心底部”。在室温下,将这些小瓶放在两个铝制框架的冷冻干燥隔板上(每个架子 60 个小瓶)。在每个隔板上,一个装有热电偶的小瓶被直接放置在隔板的中心。热电偶连接到各自的隔板上。隔板插入到 Lyovapor&trade L-300 的金属支架上。一个空的冷冻干燥隔板被放置在上层,西林瓶包括隔板,以确保两个样品隔板接收到同样的热量。将包含隔板和样品瓶的支架转移到 -50°C 的冷冻室预冻 24 小时。4.2 方法编程冷冻干燥按照表1设定的隔板温度、真空度和时间运行。表1. 详细的 Lyovapor&trade L-300 冷冻干燥工艺用于 50 mg/mL 甘露醇溶液的西林瓶冷冻干燥步骤_1234阶段加载初级干燥次级干燥持续时间_4h12h1h20min6h隔板温度℃-4020204040加热梯度℃/min_0.2500.250压力 mbar_0.10.10.10.1初级干燥采用温差试验、压差试验(比较压力测量)和升压试验三种自动终点试验。表2.初级干燥阶段终点确定的设置温差试验压差试验升压试验极限:1.0℃极限:0.05mbar极限:0.06mbar试验时长:30min试验时长:30min试验时长:30s*开始时间:12h*开始时间:12h**开始时间:11h55min__重复时长:60min**是否继续:是**是否继续:是**是否继续:是是否通知:是是否通知:是是否通知:是* 开始时间的值表示在初级干燥的程序阶段结束之前的测试开始。** 如果所有测试都成功,将自动启动第二阶段,并继续进行干燥过程。其中,温度和压差测试直接从初级干燥阶段的第 2 步开始(见表2)。升压测试的压力极限设置为 0.060 mbar,测试时间为 30 秒。第一次升压试验在初级干燥第 2 步进行 5 分钟后进行,每 60 分钟重复一次。表3. 次级干燥阶段终点确定设置温差试验压差试验极限:1.5℃极限:0.05mbar试验时长:30min试验时长:30min*开始时间:6h*开始时间:6h**是否继续:是**是否继续:是是否通知:是是否通知:是*时间,从干燥阶段结束开始。**如果所有测试都成功,将自动启动下一阶段(封塞、保持),并进行干燥过程。其中,在温差和压差测试中,测试时间设置为 30 分钟,从步骤 4 开始直接开始测试。5实验结果5.1 温差试验图1 和 图2 为小瓶甘露醇样品冷冻干燥的温度和压力曲线。在图1中显示了两个隔板上样品温度。热电偶测得初级干燥主要部分的产物温度在 -7℃ 左右。随着水分含量和升华速率的降低,产品温度升高,在初级干燥结束时达到隔板温度。经过16.0小时的干燥时间,达到了温差试验的标准。▲ 图1. 隔板(红色),样品 Pt 1000(蓝色,蓝绿色)和 Lyovapor&trade L-300 冰冷凝器(粉红色)的温度测量。相应的,在设定冷凝器压力为 0.100 mbar 时,电容式压力计测得的干燥室内实际压力平均值为 0.150 mbar,如 图2 所示。在冰升华过程中,由依赖气体的皮拉尼压力计获得的压力值比电容压力计测量的压力值大约1.6倍。随着冰含量和升华速率的降低,皮拉尼压力计的压力值接近电容压力计的测量值。▲ 图2. 外部电容(绿色)压力计和皮拉尼(红色)压力表以及内部压力计(黄色)测量的压力。▲ 图3. 电容式(绿色)压力计与皮拉尼式(红色)压力计的计算压差如 图2 所示。图3 显示了从两个外部压力表(皮拉尼压力计减去电容压力计)的值计算得出的数值差异。在大约15.5小时的干燥时间后,达到了压差测试的标准。升压试验结果如图1和图2所示。在皮拉尼和电容式压力计的曲线(图2)中可以看出,尽管中间阀关闭,干燥室内的压力上升是由于水蒸气的持续升华造成的。在冰升华过程中,最初的高压上升值在初级干燥结束时大幅下降(棕色尖峰)。初级干燥 16.3 小时后达到升压试验标准。相应的,从设定的隔板温度曲线可以看出图1中升压试验的时间点。每次进行升压试验时,架子的加热在试验期间自动暂停。由于最后一次初级干燥终点测试在 16.3 小时后成功,因此与最初设定的初级干燥时间相比,样品干燥状态的自动检测将初级干燥阶段延长了 0.3 小时(见 表1)。随着升压试验的完成,所有设定终点试验均顺利完成,冻干循环自动进入次级干燥阶段。这种原位跟踪防止了在所有冰升华之前过早过渡到二次干燥阶段。所有三种测试对终点的估计时间大致相似,约为 15.5 至 16.3 小时。在次级干燥阶段,从产品中去除未冻水导致皮拉尼计记录的压力值在干燥时间约 18 小时(红色曲线)增加,如 图2 所示。除水后,总干燥时间 22.5 小时,压力曲线接近电容式压力计测量值,满足压差试验标准。23.1 小时后,隔板温度曲线与样品温度曲线符合,温差试验也成功完成(见 图1)。最后,在冷冻干燥过程结束时,干燥循环自动进入保持阶段。在应用西林瓶冷冻干燥工艺中获得了具有可接受视觉外观的干粉。▲ 图4. 装有甘露醇的最终冻干瓶6实验结论本申请说明探讨了过程分析技术(PAT)在冷冻干燥过程中的适用性,重点是监测干燥室压力和样品温度,以评估样品的干燥状态。研究表明,这些过程分析技术与压差、压升和温度测试的自动端点确定设置相结合,可以在不中断样品水分含量分析过程的情况下估计实际干燥时间。通过防止过早过渡到下一个干燥阶段,如次级干燥或保持,提出的方法提高了工艺效率。这些端点测试的集成有助于干燥过程的精确控制和可靠性,从而获得所需的产品属性,如最佳干燥度和视觉外观。研究结果确定了在Lyovapor&trade L-300冷冻干燥机中使用单独或联合终点测试来准确确定终点的有效性。7参考文献本文档是与 TH Kö ln 的 Heiko Schiffter 教授合作创建。
  • 一个小技巧,轻松实现三根弯管的装配关系三维检测
    技术讲堂——秀磊谈扫描随着高精度三维扫描技术的应用深入,其不仅仅可以检测单个工件的全尺寸信息,也可以进行一些装配关系的检测,例如大型上下模具的装配是否契合,阀门和水泵的装配是否密封等。这种两个工件之间简单的装配关系,用三维检测较为简单。本期,李老师要为大家介绍的是三个工件之间的装配关系检测,其中最关键的操作是确定好三个工件之间的相对空间位置。技术讲师——李秀磊先临三维工业级扫描仪应用工程师资深3D数字化应用专家,深耕3D数字化多年,在三维数字化及工业检测领域拥有丰富行业经验。第6期-THE SIXTH-三根弯管装配关系的三维检测汽车弯管的三维检测,是高精度3D视觉检测非常普遍的应用之一,这次,我们需要在这个基础上进行难度的提升,需要检测三条弯管的装配关系,包括接口处的位置度与形面偏差以及三根弯管之间的空间距离。01三维检测样件这是需要检测的其中一根弯管,这些弯管单独的全尺寸三维检测非常方便,三维扫描,导入软件检测,弯曲的弧度等是否符合要求一目了然。但是要进行三根弯管的装配检测时,遇到了问题,若使用夹具,将会遮挡部分的数据信息,特别是接口处;若不采用夹具,则不能确定三根弯管的空间位置,无法进行三维检测。“如何实现既可以获取每条弯管接口处的三维数据,又可以实现相互之间的空间位置的确定?这是完成这一检测任务的关键,李老师给出了一个灵活的处理方式。02三维检测流程1.首先将弯管固定在夹具上,对于弯管和夹具进行三维扫描,来获取弯管的模拟装配位置,但是由于夹具与弯管有接触,弯管的三维数据不全,特别是接口处。图中红色标注部分即为被夹具遮挡的弯管位置2.将弯管从夹具上取下来,获取完整的接口处弯管三维数据。3.将弯管的三维完整数据与弯管在夹具上的数据进行对齐,获得弯管在模拟装配下的完整数据。4.检测弯管的相对位置以及角度等是否能够匹配。03扫描设备此次采用FreeScan UE激光手持三维扫描仪,其具有计量级精度(0.02mm)且重复精度稳定,保证检测结果;同时,具有广泛的材质适应性,汽车弯管无需喷粉,直接三维扫描。通过这种灵活的处理方法,拓宽了三维扫描的应用范围,不仅可以检测单根弯管的生产尺寸是否符合要求,还可以检测多根弯管之间的装配关系;同时,由于可以准确模拟装配时的场景,使得弯管的生产质量更加符合实际需求,提高生产效率。随着高精度3D视觉检测技术的不断深入,其将提供更多应用可能性,助力生产质检进入更加高效高质的新阶段。往期推荐【技术讲堂】干货速递,三维扫描中喷粉的那些事儿【技术讲堂】小体积工件表面难以贴点,如何获取高精度三维数据?【技术讲堂】干货速递,三维扫描的贴点技巧有哪些?【技术讲堂】55mm黑色骨钉,如何获取高精度三维数据?【技术讲堂】零件最薄处仅1mm的管道泵铝叶轮,该如何三维扫描?
  • 关于举办“2024年高端装备装配数字化计量与测量技术交流会”的通知
    关于举办“2024年高端装备装配数字化计量与测量技术交流会”的通知各单位:为推进高端装备装配数字化计量与测量技术发展,提升高端装备智能制造质量,促进国家创新驱动发展战略的实施,中国航空工业集团公司北京长城计量测试技术研究所定于2024年9月组织召开“高端装备装配数字化计量与测量技术交流会”。会议面向航空、航天、核能、船舶、兵器、高铁等高端装备制造行业,以几何量数字化计量与测试技术为导向,通过探讨数字化制造过程中涉及的精密零部件智能检测、大型零部件的数字化装配测量、大型试验设施的数字化校准等相关技术,推动数字化计量技术的发展,促进行业内相关技术人员的交流与合作。现将有关事项通知如下:01 组织机构主办单位:中国航空工业集团公司北京长城计量测试技术研究所协办单位:《计测技术》学刊 仪器信息网02 时间和地点会议时间:2024年9月11日至9月14日会议地点:新疆伊犁伊宁03 会议主要内容会议主要就近年来在国内外高端装备制造领域中的复杂零部件高效测量方法与校准技术、外观智能检测方法与技术、大部件装配所涉及的柔性装配测量方法与校准技术、数字化计量及计量仪器技术展开交流,采用主题报告和专题报告的形式。主题报告以计量院所的知名专家和重点高校的知名教授为主,介绍当前智能制造过程测量、数字化计量、几何量极值参数测量、智能识别等技术研究进展。专题报告以各航空航天主机厂所、计量院所、中科院等为主,介绍航空、航天、兵器、船舶、核能、高铁等高端装备领域的精密集成数字化装配测量与校准中所存在的问题及解决方案,包括零部件的外观智能检测技术、多测量系统协同校准技术、机器人及动态跟踪测量系统的校准技术、大尺寸柔性测量与校准技术。在专家的引领下通过共同交流、互通有无、分享成果,实现“计量与制造融合、推进高端制造业发展”的目标。04 注意事项为确保会议顺利进行,请有意参加的单位于9月2日之前安排报名,以便安排食宿。05 会议安排1、报到时间:2024年9月11日2、会议时间:2024年9月12日~9月14日3、报到地点:伊犁骏锦酒店 酒店地址:新疆伊犁州伊宁市南岸新区伊河大道9号 总台电话:0999-78988884、乘车路线:⑴.伊宁火车站:乘坐11路往新月亮弯建材市场方向,乘坐9站,在逸翠湾站下车,转乘302路乘坐16站,在二道桥站下车步行419米即到(出租车费用约30元);⑵.伊宁机场:乘坐19路凯旋城线开发区停车场方向,乘坐19站,在广东路路口站下车,步行230米,转乘伊宁302路,往伊犁河游乐园方向乘坐7站,在二道桥站下车步行419米即到(出租车费用约25元)。06 会议费用1、会议费:9月2日前报名汇款的人员2500元/人;9月2日后报名汇款的人员2800元/人;缴费方式为汇款,具体汇款信息如下:单位名称中国航空工业集团公司北京长城计量测试技术研究所开户银行工行海淀西区支行帐 号0200 0045 0900 3500 979备 注汇款请标注“装配计量交流会”2、会议期间食宿统一安排、费用自理,酒店账户信息如下:单位名称新疆宏睿嘉敏酒店管理有限公司开户银行新疆银行股份有限公司伊犁分行帐 号0806 2000 0000 068507 会议报名报名请扫下方二维码报名咨询电话:010-62457116,13691190990本次会议由北京华君伟业会议服务有限公司协办
  • 贺中国首届转向器装配线技术交流会在长春机械院汇凯科技召开
    5月20日,“2014转向器装配线中高端产品技术交流会”在长春机械院汇凯科技圆满召开,来自蒂森克虏伯、TRW、阜新德尔、一汽光洋、大连瑞谷科技、大连创新、荆州恒隆、浙江金道、长丰等10多家行业重点企业的30多位行业专家、工程技术人员齐聚一堂,共同探讨转向器装配技术的发展方向。 本次交流会采用专题讲座+分组讨论的方式,与会嘉宾围绕转向器装配技术发展及应用等相关问题进行了深入讨论,提出了很多实际问题,为转配线产品技术发展,指明了方向。 会上,汇凯科技技术人员针对汇凯科技转向器装配线产品的性能、技术特点、产品创新方向及应用领域等方面进行了深入的讲解,并结合产品视频,介绍了汇凯科技转向器装配线的实际工况。 会议期间与会嘉宾还参观了汇凯科技产业化基地和转向器装配线生产调试现场,对汇凯科技的发展速度、产业规模、技术水平等方面都给予了很高的评价,参会嘉宾还就设备技术指标、产品性能等与技术人员进行了详细的交流。 此次会议在与会嘉宾的阵阵好评声中圆满结束,这是一次技术交流的盛会。 今后汇凯科技将会组织更多更好的装配线方面的交流会议,邀请更多装配线方面的专家与一线技术人员参与交流会议,一同探讨装配线中高端产品的发展和技术问题及解决方案,助力中国汽车装备产业持续发展。关注:【长春机械院】微信号:cimachtest
  • 热分析仪核心部件原理简介
    p   常规的热分析仪器主要有热重分析仪(TGA),差热分析仪(DTA),差示扫描量热仪(DSC),热机械分析仪(TMA)和动态热机械分析仪(DMA)。 /p p   热分析仪器测量各种各样的物理量需要靠其核心部件来实现。这些部件有电子天平、热电偶传感器、位移传感器等。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 电子天平 /strong /span /p p   电子天平是热重分析仪(TGA)和同步热分析仪(STA)的核心部件,是测量试样质量的关键。 /p p   电子天平采用了现代电子控制技术,利用电磁力平衡原理实现称重。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b44413c9-13e5-46ab-a916-78c021d42f3e.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   天平的秤盘通过支架连杆与线圈连接,线圈置于磁场内,当向秤盘中加入试样或被测试样发生质量变化时,天平梁发生倾斜,用光学方法测定天平梁的倾斜度,光传感器产生信号以调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。在称量范围内时,磁场中若有电流通过,线圈将产生一个电磁力F,可用下式表示: /p p style=" text-align: center " F=KBLI /p p   其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力的力矩大小相等、方向相反而达到平衡。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。 /p p   无论采用何种控制方式和电路结构,其称量依据都是电磁力平衡原理。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热电偶传感器 /strong /span /p p   热电偶传感器是所有热分析仪器均会用到的部件,用于测定不同部位(试样、炉体)的温度。 /p p   热电偶传感器是工业中使用最为普遍的接触式测温装置。这是因为热电偶具有性能稳定、测温范围大、信号可以远距离传输等特点,并且结构简单、使用方便。热电偶能够将热能直接转换为电信号,并且输出直流电压信号,使得显示、记录和传输都很容易。 /p p   热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect),即热电效应。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 /p p   热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关 若热电偶冷端的温度保持一定,热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,当导体A和B的两个连接点之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 位移传感器 /strong /span /p p   位移传感器是热膨胀仪(DIL)、热机械分析仪(TMA)和动态热机械分析仪(DMA)中会用到的核心部件。通过测定直接放置于试样上或覆盖于试样的石英片上的探头的移动,来测定试样的尺寸变化。 /p p   LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p
  • 差热分析(DTA)技术在材料研究中的应用
    差热分析(DTA)已成为一种流行的热分析技术,通常用于测量材料的温度,进而用于测量材料的吸热相变和放热相变。这项技术已在制药、有机化工、无机材料、食品、水泥、矿物学和考古学领域得到广泛应用。差热分析(DTA)过程原则上,差热分析是一种类似于差示扫描量热(DSC)的技术,在差热分析中作为研究对象的材料经历了各种热循环(加热和冷却循环),并使用惰性参考材料确定研究材料和参考材料之间的温差。在整个加热循环中,研究材料和参考材料都保持在相同的温度,以确保测试环境一致。差热分析(DTA)中的元件差热分析通常在熔炉中进行,尤其是在现代熔炉中,因为这是在周围环境中获得均匀温度的最有效方法。温度本身是用两个热电偶记录的,这两个热电偶是专门(和通用)类型的温度传感器,传感器使用金属线形成热接点和冷接点。热接点测量材料的温度,而冷接点提供了将分析温度与之比较的参考。这是每个热电偶内部用来确定材料温度的过程。在这种情况下,参考温度不是DTA分析的参考温度,而是每个热电偶装置内的参考温度。因此,需要有两个热电偶,一个热电偶测量样品的温度,另一个测量参考温度。除了热电偶和熔炉外,还使用电压表测量热电偶之间的电压(这是它们确定温度的方式),以及通常用作材料支撑的坩埚(尤其是在分析小的样品时)。在熔炉内部,也使用氩气或氦气等惰性气体,因为它们不会与样品或参考材料发生反应,这确保了测量过程中没有干扰。在大多数情况下,防止污染物影响分析结果是非常重要的。现代DTA方法中使用的大多数熔炉也可以提供-150°C至2400°C的温度环境。此外,可以使用许多不同的坩埚,这两个因素的组合可以对各种材料进行分析,这就是为什么差热分析能够跨越很多不同的工业部门的原因。分析是将样品和参考材料对称放置在熔炉中进行。然后,这两种材料在程序控温下经过加热和冷却的过程,在每个循环中,这两种温度尽可能保持恒定(在合理误差范围内)。由于熔炉加热,数据记录通常会有轻微延迟(延迟的长度通常取决于材料的热容)。差热分析(DTA)图谱在分析过程中,将温差相对时间的曲线绘制在图表上。在某些情况下,也可以绘制温差相对于温度的曲线。从这(以及曲线如何显示)可以确定材料的吸热和放热转变温度,更多的信息还包括材料的玻璃化转变温度、材料的结晶温度、材料的熔化温度和材料的升华温度。这些通常都能推断出来,因为相对于参考材料的温度变化可以确定材料是吸收热量(吸热)还是释放热量(放热)。热电偶的存在也有助于轻松识别是否发生了相变,因为当发生相变时,连接到参考热电偶上的电压表将轻微跳变。这是由于材料相变产生的潜热导致惰性气体温度略微升高(进而影响参考热电偶的电压)。除了传统的温度相变外,当两个惰性样品对热循环的响应不同时,还可以使用差热分析来测量它们。在这些特定情况下,DTA还可用于识别任何不基于焓变的相变。这些通常通过DTA图上曲线的间断来识别。结论虽然差热分析被正式定义为一种确定样品和参考材料之间温差的方法,但在实践中,它可以告诉用户材料在很多不同温度下的相特性。差热分析获得的信息量对很多行业都有很大的好处,因此被广泛使用。本文作者:Liam Critchley,Liam Critchley是一名作家和记者,专攻化学和纳米技术,拥有化学和纳米技术硕士学位和化学工程硕士学位。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制