当前位置: 仪器信息网 > 行业主题 > >

投影仪显微镜

仪器信息网投影仪显微镜专题为您提供2024年最新投影仪显微镜价格报价、厂家品牌的相关信息, 包括投影仪显微镜参数、型号等,不管是国产,还是进口品牌的投影仪显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合投影仪显微镜相关的耗材配件、试剂标物,还有投影仪显微镜相关的最新资讯、资料,以及投影仪显微镜相关的解决方案。

投影仪显微镜相关的资讯

  • 江文公司推出各类品牌工具显微镜,投影机升级改造业务
    以专业的硬件,软件技术团队,改造各种品牌的进口,国产工具显微镜,投影机. 升级改造内容: 1)通过独创的硬件,软件,使工具显微镜,投影机能测量复杂的图形,尺寸如下: 圆直径,圆周长,圆心距离,齿轮,凸轮,弧长,角度,双矩形、焊核双垂线、线心间距、偏差测定、中点间距、中点边距、线路间距、芯片位置偏、模具错位、SOPCF外形尺寸实用的内嵌式统计功能 .并可以根据用户需要定制测量功能. 2)大大提高数据处理的效率: 内嵌统计功能计算已测量参数的标准统计数据:最大值、最小值、平均值、极差、方差、标准差、离散系数等。 测量数据打印输出RS232C界面数据导出 通过RS232C标准界面和数据通讯处理软件CQCData,可以将测量结果上传到PC机,导入EXCEL表中,进行后续统计分析。 强大的数据统计 自动计算已测量参数的标准统计数据:最大值、最小值、平均值、极差、方差、标准差、离散系数等;同时处理多个管制项目。 智能化的数据报告输出 采用智能化选择性数据输出技术,实现“待测工件→测量参数→专用报告→品管统计”数据流自动化。
  • 进出口均价相差400倍——2019年轮廓投影仪海关数据盘点
    p    strong 仪器信息网讯 /strong 测量投影仪又称为光学投影检量仪或光学投影比较仪,为利用光学投射的原理,将被测工件之轮廓或表机投影至观察幕上,作测量或比对的一种测量仪器,可以高效地检测各种形状复杂工件的轮廓和表面形状。仪器信息网通过汇总2019年商品编码90314910的海关进出口数据,对2019年1月至11月轮廓投影仪的进出口贸易情况进行了简要盘点。 /p p   统计周期内,轮廓投影仪进口数量1591台,进口总额约1.77亿元(币种单位:人民币元RMB,以下同) 出口数量约11.79万台,出口总额约3400万元。从数量上看,我国轮廓投影仪出口数量要远远高于进口 从金额上看,呈现出反差,说明出口主要集中在轮廓投影仪中低端仪器市场;从均价上看,单台进口均价约是出口的400倍。 /p p   从数量上看,月度进口数量基本保持在100-200台 从金额上看,月进口总额基本保持在1000万-2000万区间。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 300px " src=" https://img1.17img.cn/17img/images/202001/uepic/26742f9c-4405-49ae-821d-f60643533be5.jpg" title=" 2019年月度进口数量.png" alt=" 2019年月度进口数量.png" width=" 500" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年月度进口数量 单位:台 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 316px " src=" https://img1.17img.cn/17img/images/202001/uepic/a61bcc6c-f823-47cd-a065-2c0f63c894d3.jpg" title=" 2019年月度进口总额.png" alt=" 2019年月度进口总额.png" width=" 500" height=" 316" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年月度进口总额 单位:元 /p p   日本进口数量遥遥领先,进口数量占总进口数量59.2%,进口金额占总进口金额的69.43% 德国排第二,进口数量占总进口数量的24.7%,进口金额占总进口金额的15.27%。日本和德国占据了80%以上的轮廓投影仪进口市场份额。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 316px " src=" https://img1.17img.cn/17img/images/202001/uepic/cc3d4406-b80c-4860-bd7e-b87583e0e279.jpg" title=" 2019年各国进口数量.png" alt=" 2019年各国进口数量.png" width=" 500" height=" 316" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年各国进口数量 单位:台 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 315px " src=" https://img1.17img.cn/17img/images/202001/uepic/5ac76254-fd90-45e4-b113-6e3a785789aa.jpg" title=" 2019年各国进口总额.png" alt=" 2019年各国进口总额.png" width=" 500" height=" 315" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年各国进口总额 单位:元 /p p span    /span 2019年8月单月出口量8万余台,数量高居月第一,然而当月出口总额倒数第二,说明出口仪器主要是集中于中低端仪器。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 318px " src=" https://img1.17img.cn/17img/images/202001/uepic/711aed5f-bb3d-4f05-ba85-2a1702898b73.jpg" title=" 2019年月度出口数量.png" alt=" 2019年月度出口数量.png" width=" 500" height=" 318" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年月度出口数量 单位:台 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 300px " src=" https://img1.17img.cn/17img/images/202001/uepic/f97c73f6-1e03-4fa8-afea-a1210266cbce.jpg" title=" 2019年月度出口总额.png" alt=" 2019年月度出口总额.png" width=" 500" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年月度出口数量 单位:元 /p p   从数量上看,最大的贸易出口国是日本,其次为马来西亚,分别占比34.7%、32.18% 从出口金额上看,美国排第一位,其次为台澎金马关税区、香港等。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 309px " src=" https://img1.17img.cn/17img/images/202001/uepic/24e00b9c-3472-468b-b0d3-d0d4d03864f6.jpg" title=" 2019年各国出口数量.png" alt=" 2019年各国出口数量.png" width=" 500" height=" 309" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年各国出口数量(前20) 单位:台 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 303px " src=" https://img1.17img.cn/17img/images/202001/uepic/d9a2c205-1896-49e8-b639-e1671c27e664.jpg" title=" 2019年各国出口总额.png" alt=" 2019年各国出口总额.png" width=" 500" height=" 303" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年各国出口总额(前30) 单位:元 /p p style=" text-align: center " 主要进出口企业 /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" border-collapse:collapse " data-sort=" sortDisabled" align=" center" colgroup col width=" 72" style=" width:72px" / col width=" 273" style=" width:273px" / col width=" 166" style=" width:167px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 1" align=" center" valign=" middle" width=" 14" 主要出口企业 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 企业名称 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" width=" 14" 年出口规模 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 欧姆龙(上海)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 重庆火星人科技有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 深圳市中康信实业有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 拜里斯科技(深圳)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 高屋希克斯电子(上海)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 精量电子(成都)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 冲电气实业(深圳)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 500万~ 1000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 上海田岛工具有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 500万~ 1000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 科世达(上海)管理有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 500万~ 1000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 美艾利尔(上海)诊断产品有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 500万~ 1000万美元 /td /tr tr height=" 18" style=" height:18px" td height=" 18" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 1" align=" center" valign=" middle" width=" 14" 主要进口企业 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 企业名称 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" width=" 14" 年进口规模 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 苏州紫翔电子科技有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 5000万~ 1亿美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 中芯北方集成电路制造(北京)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 5000万~ 1亿美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 北京亦庄嘉里大通物流有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 161" 5000万~ 1亿美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 乐金显示(中国)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 5000万 ~ 1亿美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 基恩士(中国)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 5000万~ 1亿美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 冲电气实业(深圳)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 福州京东方光电科技有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 深圳市华星光电技术有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 鄂尔多斯市源盛光电有限责任公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 南京中电熊猫平板显示科技有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr /tbody /table p   从以上分析,可以看出,目前我国轮廓投影仪的进口市场相对稳定,进口仪器主要为中高端仪器 我国轮廓投影仪出口数量远远高于进口,但总体出口总额仅为进口的六分之一,说明出口中低端产品数量较多。 /p p br/ /p
  • 1美元折纸显微镜可彻底变革疾病诊断
    斯坦福大学一位工程师研制出一款DIY显微镜,Foldscope,由A4折叠而成。这种纸质显微镜成本极为低廉(不到1美元),但放大率为2100倍,能够用于诊断多种疟疾菌株及其它疾病。由于目前诊断需要价值高昂体型庞大的光学显微镜,Foldscope将使全球医学界,尤其是贫穷国家的医疗水平产生变革。   过去的200多年间,光学显微镜的构成以及功能都没有太大的改变。显微镜的形状极易辨认,设计也一成不变,永远都是目镜、物镜、盛放样本的平台以及光源。整个结构沉重、庞大,价值高昂。   斯坦福大学工程师Manu Prakash意识到,显微镜其实可以是十分简单的设备,可以剔除繁杂的结构而不至于影响显微镜的功能。   Foldscope由硬纸板折成,有简单的球面透镜、LED以及扣式电池。Foldscope能够在三分钟内装配完毕,总重量不超过10克,所有成本相加在1美元左右。摔落在地还是不小心踩上去都不会影响它的正常工作。   Foldscope还能用作投影仪。根据所需的不同放大率,可装配多种不同的透镜。
  • 了不起!这款显微镜在机加工件测量中表现得“恰如其分”!
    不知道大家有没有听过一个童话故事《金凤花姑娘和三只熊》?故事中,金凤花姑娘试着喝几碗粥,发现一碗太烫,一碗太凉,最后一碗刚刚好。这个故事告诉我们,适合的才是最好的。一谈到STM7测量显微镜时,让人不由得想起这则故事,因为这款显微镜在多项精密测量应用中表现得“恰如其分”。 STM7测量显微镜专为高通量、高精度3D测量而设计,非常适用于检查机加工金属部件的公差等。测量设备种类繁多,从简单的手持工具到大型的精巧装置。 那么,为何选择STM7呢? 这就是开头提及金凤花姑娘故事的原因了。对于在机加工件的生产和质量控制中的多项测量应用而言,STM7测量显微镜实现了易用性与高质量结果的正确平衡。 不妨看看其他替代品的表现。比如卡尺和千分尺等手持式工具。这些工具简单易用,无需培训,但需接触样品,而且对于复杂部件往往让人“手忙脚乱”。此外,不同操作员的测量结果也是大相径庭。 再比如坐标测量机、轮廓投影仪或光学比测器等高级测量工具。这些工具视野大,可以进行复杂的测量工作,但要么在测试实验室中太占空间,要么成本过高。有些还需要大量的培训。平衡正确的显微镜 STM7测量显微镜对各方面因素的平衡拿捏得恰到好处。其亚微米分辨率和3轴测量支持全方向操作,无需重新放置样品。性能远超仅具备同轴度、周向、角度等功能的产品系列。在STM7显微镜下放一颗螺钉螺钉的测量结果 通过将这些先进功能与快速、简单的操作相结合,STM7非常适合机加工部件的高通量测量。无需先拍照;只需定义起点并移动平台即可进行快速、准确的测量。当然,它可兼作普通的光学显微镜,较之其他测量设备,这是一大优势。 高精度测量与紧凑型设备的快速、直观操作相结合,使STM7成为部件测量的金凤花姑娘:贴合多种应用。
  • 日光显微镜为何能独领风骚近百年
    在科学技术发展的历史上,出现过许多风靡一时、但如今只存在于博物馆的科学仪器,日光显微镜就是一例。现代显微镜大多使用人造光作光源,“日光”与“显微镜”的组合确实已经过时。但其实日光显微镜作为一种独特的光学仪器,其使用方式和实际效果远远超出现代人的想象——它从18世纪中期开始,独领风骚近百年,自有其独特之处。顾名思义,日光显微镜是以太阳光作为光源的显微镜,但它实际上可看作显微镜和投影仪的结合。日光显微镜有一块方形的木板 ,一边置反光镜,另一边固定一支镜筒,玻片安装在镜筒末端。日光显微镜必须在黑暗的房间里使用,操作者将它固定在窗户上,反光镜在室外,在室内调整反光镜的角度,阳光可反射进入镜筒,并通过镜筒内的聚光镜和凸透镜,将标本的图像放大,投射到墙上的屏幕供人观看。日光显微镜于18世纪40年代问世,发明者是德国的医生、解剖学家和物理学家约翰纳撒尼尔利伯库恩,除了研制日光显微镜,他最广为人知的工作还包括肠道研究——大肠黏膜中广泛分布的利氏肠腺窝(Crypts of lieberkuhn)就是以他的名字命名的。利伯库恩在1739年左右发明了日光显微镜,不过据说当时该装置还没有镜子,在它进入英国后,伦敦著名的光学仪器工匠约翰卡夫为它添加了镜子。倡导用显微镜开展科学研究的英国博物学家亨利贝克随后发表了关于日光显微镜使用的论文。日光显微镜开始在英国流行起来。亨利贝克明确指出“当使用这种显微镜时,房间必须尽可能黑暗,因为房间的黑暗和阳光的亮度决定了图像的清晰度和完美度”。可以说,借助自然的阳光和黑暗的房间,日光显微镜创造了一个场景,在此场景中,微观世界的物体从镜片之下被释放出来,它们的图像进入宏观世界——观众可以不直接通过显微镜,就能观看它们的样貌,欣赏它们的活动。1694年,荷兰数学和物理学教授尼古拉斯哈特索克发明了螺旋筒型显微镜,这种仪器便于携带到现场,易于使用,并且可以大规模生产。1702年,英国眼镜和仪器制造商詹姆斯威尔逊简化和推广了这种显微镜。大多数螺旋筒型显微镜由一个宽螺纹圆柱体组成,可以拧入或拧出镜筒,以便在固定于铜板之间的载玻片上聚焦。哈佛大学就收藏了一台用螺旋筒型显微镜改造的日光显微镜,其设计者爱德华布罗姆菲尔德是毕业于哈佛大学的一位发明家和艺术家。这台日光显微镜可能是美国殖民地时期制造的第一台显微镜,其制作拼接图纸现保存在哈佛医学院。日光显微镜及其技术在18世纪下半叶引起了特别关注,据印刷品描述和现存日光显微镜的数量可以推测其在当时非常流行。伦敦精密光学仪器制造商爱德华奈恩出售仪器所附的传单中有句话:“在所有类型的显微镜中,日光显微镜可以被认为是最有娱乐性的。”由此可窥见日光显微镜为何受欢迎。在18世纪一些自然哲学著作中,日光显微镜被认为是哲学仪器,与普通显微镜和望远镜处于同一类别。而到了19世纪,人们已经开始把日光显微镜当成玩具,专业的研究者甚至对日光显微镜持鄙视的态度,英国显微镜学家戈林曾这样评价日光显微镜:普通日光显微镜的图像可以被认为是一个单纯的影子,只适合于娱乐妇女和儿童……它最多只能给我们提供一个跳蚤的影子,或者一个像鹅或驴子一样大的虱子……无聊的庸人总是会对这种镜片感到满意,因为他们不知道显微镜除了能将物体的体积放大之外,还能做什么。在19世纪,光学仪器逐渐进入家庭生活和公共展览,成为非常受欢迎的一种娱乐仪器。伦敦的科学仪器制造商菲利普卡彭特1808年开始在伯明翰生产眼镜和显微镜,此后他积极投身万花筒和改良型幻影灯的研发和销售中,均取得了不俗的成绩,其研发的产品非常受消费大众的喜爱。1826年,卡彭特在伦敦威斯敏斯特摄政街24号开设了一家商店,策划了一个名为“微观世界”的展览,成为当地颇受欢迎的景点。这个展览最初就使用日光显微镜吸引顾客前来观看,观众们坐在提前准备的座位上,观看放大的图像。展览从早上11点持续到晚上8点,天黑后,卡彭特以燃烧可燃气体作为光源,后来在阴天时也如此操作,从而使图像更加明亮。可以说,在卡彭特这位19世纪的科学仪器制造商看来,科学和娱乐并没有明确的界限,他抓住了大众日益增长的娱乐需求,成功地将这种上个世纪中期的光学仪器转化成一种流行的新奇事物。如今我们去电影院看电影,其实也可以看作是这种科学+娱乐活动的延续。
  • 显微镜制造技术迈向国际水平 重点专项支持永新光学谋求国产替代
    p   一个实验室、五台成套设备、七位科技部专家,一件推动我国显微镜产业技术革新的事件在宁波永新光学悄然上演。9月14日,国家重点研发计划重点专项“高分辨荧光显微成像仪研究及产业化”项目顺利通过中期验收,并达到“超额完成”的等级要求。对此,《证券日报》记者专程来到永新光学,采访了该项目负责人、永新光学总经理毛磊。 /p p style=" text-align: center "   重大生命科学仪器国产化取得突破 /p p   显微镜自诞生以来跨越了400多年的发展,一直在生命科学领域扮演着重要角色,高分辨荧光显微镜更是生命科学研究及临床医学诊断等领域的重要工具。然而我国精密仪器领域的技术水平与国外相比还有很大差距,“在光学仪器行业,我们的进口远大于出口,不管是医院还是实验室,使用的高端检测仪器将近80%是进口的”毛磊感慨。 /p p   根据相关统计,2015年至2017年我国显微镜年均出口量在220万台至300万台之间,年均进口5万台左右,出口数量远高于进口数量,但出口金额远低于进口金额,在世界高端显微镜市场,我国显微镜制造企业产品占比小于1%。 /p p   2016年,永新光学牵头,联合了浙江大学、上海理工大学、复旦大学中山医院、南京医科大学等单位,以关键核心技术和部件的自主研发为突破口,共同研究开发的“高分辨荧光显微成像仪研究及产业化”项目,获得了国家重点研发计划支持。 /p p   该项目从高端通用科学仪器的战略需要出发,针对单分子荧光探测、荧光漂白后恢复、光切片成像、高精度扫描控制、复眼照明、高端显微物镜等关键部件、软件开发、高端显微物镜总体设计及工程化、产业化等问题,开展了技术攻关,毛磊介绍,“我们研究的产品指标对照2014年获诺贝尔奖的超分辨率荧光显微镜,这意味着我们离国际最高水平越来越近了,但作为一家上市公司,我们下一步要做的就是将它商品化”。 /p p   据相关统计数据,2016年全球高端光学显微镜一类产品市场共有超过30亿美元,中国市场规模大约在16亿元人民币,年增长率超过30%,具有很大的市场空间。值得一提的是,项目进行到中期,已有近800万元的销售,NIB900、NE900系列研究级显微镜已实现批量生产。 /p p   “上市之后,许多世界知名品牌客户表示愿意与我们扩大合作。通过上市,企业公信力加强,能够取得更多国际知名企业的深度信任,我们的策略是达到世界最高水平100%的性能、以70%的价格,逐步实现国产化高端替代,公司上市募投的光学显微镜扩产项目也是基于这些考虑。” /p p   此外,毛磊还向《证券日报》记者透露,“我们在2015年承担主导制定的ISO9345显微镜国际标准在今年7月24日被允许直接进入发行阶段,今年年底应该就可以正式出版了”。这也是中国人首次在显微镜和内窥镜领域主导国际标准。 /p p style=" text-align: center "   光学元组件规模不断扩大 /p p   永新光学1998 年切入光学元件组件业务,承担了“嫦娥二号”、“嫦娥三号”的部分光学镜头生产。 /p p   随着光电技术的逐渐发展,衍生出光电产品越来越多,包括望远镜、显微镜、投影机、条码扫描仪等,行业规模巨大,带动了整个光电产业的发展,从而也拉动了光学元件组件行业的增长。 /p p   近年来公司光学元件组件产品销售规模也不断扩大,2016年、2017年、2018年上半年光学元件组件系列产品业务收入分别占总营收的50.40%、55.56%、55.13%。产品包括条码扫描仪镜头、平面光学元件和专业成像光学部组件,主要应用于条码扫描仪、车载镜头、高端相机、运动光学和投影仪等。 /p p   公司以产品品质为基础,得到了国内外客户的广泛认可,是新美亚、日本尼康、徕卡相机、徕卡显微系统、德国蔡司、美国捷普等众多国际知名企业的供应商。“目前市场上大部分的条码扫描仪镜头都是我们做的,徕卡相机公司有近40%的光学零部件外采来自永新”,毛磊对此表示很有信心。 /p p   随着经营规模的扩大,公司目前的产能利用率也逐渐接近饱和,2018年上半年,公司条码扫描仪镜头、平面光学元件、专业成像光学部组件产能利用率分别高达103.85%、99.43%、108.92%。 /p p   目前公司位于高新区的上市募投项目所对应的厂房与设施,已于2018年8月份顺利结顶。新厂区建设基于先进的信息化技术,同时参考德国日本同类标杆企业的设计,目前在进行结构主体验收,预计2019年10月份将投入使用。 /p p br/ /p
  • 哈尔滨医科大学173.98万元采购高压灭菌器,离心机,金属浴,培养箱,立体显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 哈尔滨医科大学基础遗传实验室建设设备采购竞争性磋商公告 黑龙江省-哈尔滨市-南岗区 状态:公告 更新时间: 2022-10-25 招标文件: 附件1 哈尔滨医科大学基础遗传实验室建设设备采购竞争性磋商公告 项目概况 基础遗传实验室建设设备采购采购项目的潜在供应商应在公告期内凭用户名和密码,登录黑龙江省政府采购管理平台(http://hljcg.hlj.gov.cn/),选择“交易执行-应标-项目投标”,在“未参与项目”列表中选择需要参与的项目,确认参与后即可获取采购文件,并于 2022年11月09日 09时00分 (北京时间)前提交响应文件。 一、项目基本情况 项目编号:[230001]HBGC[CS]20220034 项目名称:基础遗传实验室建设设备采购 采购方式:竞争性磋商 预算金额:1,739,800.00元 采购需求: 合同包1(基础遗传实验室建设设备): 合同包预算金额:1,739,800.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 其他仪器仪表 双色红外激光成像系统(仪) 1(台) 详见采购文件 430,000.00 - 1-2 其他仪器仪表 热循环仪 2(台) 详见采购文件 156,000.00 - 1-3 显微镜 立体显微镜 1(台) 详见采购文件 82,500.00 - 1-4 其他仪器仪表 移液器 150(个) 详见采购文件 285,000.00 - 1-5 其他仪器仪表 废液抽吸系统 4(台) 详见采购文件 26,000.00 - 1-6 其他仪器仪表 三气培养箱 1(台) 详见采购文件 89,600.00 - 1-7 其他仪器仪表 混匀仪 6(台) 详见采购文件 6,000.00 -1-8 其他仪器仪表 多功能水平电泳槽 4(个) 详见采购文件 12,800.00 - 1-9 其他仪器仪表 水平电泳槽 6(个) 详见采购文件 15,600.00 - 1-10 其他仪器仪表 微型垂直电泳槽 12(个) 详见采购文件 105,600.00 - 1-11 其他仪器仪表 转移电泳槽 12(个) 详见采购文件 198,000.00 - 1-12 消毒灭菌设备及器具立式压力蒸汽灭菌器 1(个) 详见采购文件 54,000.00 - 1-13 离心机 微孔板离心机 3(台) 详见采购文件 17,400.00 - 1-14 其他仪器仪表 烘片机 2(个) 详见采购文件 18,600.00 - 1-15 其他仪器仪表 紫外透射切胶台 1(个) 详见采购文件 4,900.00 - 1-16 其他仪器仪表 迷你双垂直电泳槽 1(个) 详见采购文件 7,000.00 - 1-17 其他仪器仪表 移液器 50(个) 详见采购文件 35,000.00 - 1-18 其他仪器仪表 水浴锅 1(个) 详见采购文件 1,100.00 - 1-19 离心机 低速台式冷冻离心机 1(台) 详见采购文件 22,700.00 - 1-20 其他仪器仪表 翘板摇床 3(个) 详见采购文件 9,600.00 - 1-21 其他电源设备 电泳仪电源 1(台) 详见采购文件 6,900.00 - 1-22 显微镜 倒置显微镜 1(个) 详见采购文件 25,000.00 - 1-23 离心机 瞬时离心机 6(台) 详见采购文件 4,200.00 - 1-24 其他仪器仪表恒温金属浴 1(个) 详见采购文件 5,700.00 - 1-25 便携式计算机 笔记本电脑 2(台) 详见采购文件 28,000.00 - 1-26 投影仪 投影仪 1(台) 详见采购文件 22,000.00 - 1-27 平板式微型计算机 平板型笔记本电脑 1(台) 详见采购文件 16,500.00 - 1-28 激光打印机 彩色激光打印机 1(台) 详见采购文件 4,900.00 - 1-29 激光打印机 黑白激光高速打印机 2(台) 详见采购文件 6,600.00 - 1-30 扫描仪 扫描仪 1(台) 详见采购文件 5,100.00 - 1-31 复印机 复印机 1(台) 详见采购文件 37,500.00 - 本合同包不接受联合体投标 合同履行期限:自合同签订之日起90个日历日 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求: 无。 3.本项目的特定资格要求: 合同包1(基础遗传实验室建设设备)特定资格要求如下: (1)1、拟参加本项目供应商所报价产品如果为医疗设备需满足:如为所报设备的制造商,则须提供有效期内的《医疗器械生产许可证》及设备的《医疗器械注册证》;如为代理商或经销商,所报设备属于第一类医疗器械产品,应提供《第一类医疗器械备案凭证》及《第一类医疗器械备案信息表》,所报设备属于医疗器械第二类管理产品的,则须提供有效期内的《二类医疗器械的经营备案凭证》及设备的《医疗器械注册证》;所报设备属于医疗器械第三类管理的产品,则须提供有效期内的《医疗器械经营许可证》及设备的《医疗器械注册证》。 2、拟参加本项目的投标人所投进口产品须具有合法来源证明文件。 三、获取采购文件 时间: 2022年10月26日 至 2022年11月01日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外) 地点:公告期内凭用户名和密码,登录黑龙江省政府采购管理平台(http://hljcg.hlj.gov.cn/),选择“交易执行-应标-项目投标”,在“未参与项目”列表中选择需要参与的项目,确认参与后即可 方式:在线获取 售价: 免费获取 四、响应文件提交 截止时间: 2022年11月09日 09时00分00秒 (北京时间) 地点:将电子响应文件递交至“黑龙江省政府采购管理平台”。本项目采用“远程开标”模式进行开标,供应商无需到达开标现场。 五、开启 时间: 2022年11月09日 09时00分00秒 (北京时间) 地点: 线上提交 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 如果供应商没有黑龙江省政府采购网账号需要提前注册,没有电子签章CA的需要提前办理,CA用于制作标书时盖章、加密和开标时解密(CA办理流程及驱动下载参考黑龙江省政府采购网(http://hljcg.hlj.gov.cn)办事指南-CA办理流程)具体操作步骤,供应商在黑龙江省政府采购网(http://hljcg.hlj.gov.cn)下载政府采购供应商操作手册。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:哈尔滨医科大学 地 址:黑龙江省哈尔滨市南岗区保健路157号 联系方式:86658773 2.采购代理机构信息 名 称:黑龙江省海标工程咨询管理有限公司 地 址:哈尔滨市香坊区华山路10号万达商务1号楼三楼 联系方式:0451-82651747 3.项目联系方式 项目联系人:黑龙江省海标工程咨询管理有限公司电 话:0451-82651747 黑龙江省海标工程咨询管理有限公司 2022年10月25日 相关附件: 基础遗传实验室建设设备采购磋商文件(2022102501).pdf × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:高压灭菌器,离心机,金属浴,培养箱,立体显微镜 开标时间:2022-11-09 09:00 预算金额:173.98万元 采购单位:哈尔滨医科大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:黑龙江省海标工程咨询管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 哈尔滨医科大学基础遗传实验室建设设备采购竞争性磋商公告 黑龙江省-哈尔滨市-南岗区 状态:公告 更新时间: 2022-10-25 招标文件: 附件1 哈尔滨医科大学基础遗传实验室建设设备采购竞争性磋商公告 项目概况 基础遗传实验室建设设备采购采购项目的潜在供应商应在公告期内凭用户名和密码,登录黑龙江省政府采购管理平台(http://hljcg.hlj.gov.cn/),选择“交易执行-应标-项目投标”,在“未参与项目”列表中选择需要参与的项目,确认参与后即可获取采购文件,并于 2022年11月09日 09时00分 (北京时间)前提交响应文件。 一、项目基本情况 项目编号:[230001]HBGC[CS]20220034 项目名称:基础遗传实验室建设设备采购 采购方式:竞争性磋商 预算金额:1,739,800.00元 采购需求: 合同包1(基础遗传实验室建设设备): 合同包预算金额:1,739,800.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 其他仪器仪表 双色红外激光成像系统(仪) 1(台) 详见采购文件 430,000.00 - 1-2 其他仪器仪表 热循环仪 2(台) 详见采购文件 156,000.00 - 1-3 显微镜 立体显微镜 1(台) 详见采购文件 82,500.00 - 1-4 其他仪器仪表 移液器 150(个) 详见采购文件 285,000.00 - 1-5 其他仪器仪表 废液抽吸系统 4(台) 详见采购文件 26,000.00 - 1-6 其他仪器仪表 三气培养箱 1(台) 详见采购文件 89,600.00 - 1-7 其他仪器仪表 混匀仪 6(台) 详见采购文件 6,000.00 - 1-8 其他仪器仪表 多功能水平电泳槽 4(个) 详见采购文件 12,800.00 - 1-9 其他仪器仪表 水平电泳槽 6(个) 详见采购文件 15,600.00 - 1-10 其他仪器仪表 微型垂直电泳槽 12(个) 详见采购文件 105,600.00 -1-11 其他仪器仪表 转移电泳槽 12(个) 详见采购文件 198,000.00 - 1-12 消毒灭菌设备及器具 立式压力蒸汽灭菌器 1(个) 详见采购文件 54,000.00 - 1-13 离心机 微孔板离心机 3(台) 详见采购文件 17,400.00 - 1-14 其他仪器仪表 烘片机 2(个) 详见采购文件 18,600.00 - 1-15 其他仪器仪表 紫外透射切胶台 1(个) 详见采购文件 4,900.00 - 1-16 其他仪器仪表 迷你双垂直电泳槽 1(个) 详见采购文件 7,000.00- 1-17 其他仪器仪表 移液器 50(个) 详见采购文件 35,000.00 - 1-18 其他仪器仪表 水浴锅 1(个) 详见采购文件 1,100.00 - 1-19 离心机 低速台式冷冻离心机 1(台) 详见采购文件 22,700.00 - 1-20 其他仪器仪表 翘板摇床 3(个) 详见采购文件 9,600.00 - 1-21 其他电源设备 电泳仪电源 1(台) 详见采购文件 6,900.00 - 1-22 显微镜 倒置显微镜 1(个) 详见采购文件 25,000.00 - 1-23 离心机 瞬时离心机 6(台) 详见采购文件 4,200.00 - 1-24 其他仪器仪表 恒温金属浴 1(个) 详见采购文件 5,700.00 -1-25 便携式计算机 笔记本电脑 2(台) 详见采购文件 28,000.00 - 1-26 投影仪 投影仪 1(台) 详见采购文件 22,000.00 - 1-27 平板式微型计算机 平板型笔记本电脑 1(台) 详见采购文件 16,500.00 - 1-28 激光打印机 彩色激光打印机 1(台) 详见采购文件 4,900.00 - 1-29 激光打印机 黑白激光高速打印机 2(台) 详见采购文件 6,600.00 - 1-30 扫描仪 扫描仪 1(台) 详见采购文件 5,100.00 - 1-31 复印机 复印机 1(台) 详见采购文件 37,500.00 - 本合同包不接受联合体投标 合同履行期限:自合同签订之日起90个日历日二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求: 无。 3.本项目的特定资格要求: 合同包1(基础遗传实验室建设设备)特定资格要求如下: (1)1、拟参加本项目供应商所报价产品如果为医疗设备需满足:如为所报设备的制造商,则须提供有效期内的《医疗器械生产许可证》及设备的《医疗器械注册证》;如为代理商或经销商,所报设备属于第一类医疗器械产品,应提供《第一类医疗器械备案凭证》及《第一类医疗器械备案信息表》,所报设备属于医疗器械第二类管理产品的,则须提供有效期内的《二类医疗器械的经营备案凭证》及设备的《医疗器械注册证》;所报设备属于医疗器械第三类管理的产品,则须提供有效期内的《医疗器械经营许可证》及设备的《医疗器械注册证》。 2、拟参加本项目的投标人所投进口产品须具有合法来源证明文件。 三、获取采购文件 时间: 2022年10月26日 至 2022年11月01日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外) 地点:公告期内凭用户名和密码,登录黑龙江省政府采购管理平台(http://hljcg.hlj.gov.cn/),选择“交易执行-应标-项目投标”,在“未参与项目”列表中选择需要参与的项目,确认参与后即可 方式:在线获取 售价: 免费获取 四、响应文件提交 截止时间: 2022年11月09日 09时00分00秒 (北京时间) 地点:将电子响应文件递交至“黑龙江省政府采购管理平台”。本项目采用“远程开标”模式进行开标,供应商无需到达开标现场。 五、开启 时间: 2022年11月09日 09时00分00秒 (北京时间) 地点: 线上提交 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 如果供应商没有黑龙江省政府采购网账号需要提前注册,没有电子签章CA的需要提前办理,CA用于制作标书时盖章、加密和开标时解密(CA办理流程及驱动下载参考黑龙江省政府采购网(http://hljcg.hlj.gov.cn)办事指南-CA办理流程)具体操作步骤,供应商在黑龙江省政府采购网(http://hljcg.hlj.gov.cn)下载政府采购供应商操作手册。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:哈尔滨医科大学 地 址:黑龙江省哈尔滨市南岗区保健路157号 联系方式:86658773 2.采购代理机构信息 名 称:黑龙江省海标工程咨询管理有限公司 地 址:哈尔滨市香坊区华山路10号万达商务1号楼三楼 联系方式:0451-82651747 3.项目联系方式 项目联系人:黑龙江省海标工程咨询管理有限公司 电 话:0451-82651747黑龙江省海标工程咨询管理有限公司 2022年10月25日 相关附件: 基础遗传实验室建设设备采购磋商文件(2022102501).pdf
  • 杜灵杰团队组装一两层楼高“显微镜”发现引力子的“投影”
    在南京大学的实验室内,杜灵杰教授和他的科研团队首次观察到引力子在凝聚态物质中的“投影””,这一发现被发表于国际学术期刊《自然》杂志上。杜灵杰介绍,引力子和引力波对应,后者已经被实验所证实,而引力子尚未被直接观察到。“引力子是广义相对论与量子力学理论相结合的产物,如果能证实这种神秘粒子存在,可能有助于实现两大理论的统一,这对当代物理学而言意义重大。”他告诉记者,近年来,有理论预言,凝聚态物质中可能存在一种“分数量子霍尔效应引力子”,由于它的行为规律与引力子类似,被形象地称作引力子的“投影”。5年前,杜灵杰团队在分数量子霍尔效应中发现一种新的集体激发现象。理论物理学界认为,这可能是分数量子霍尔效应引力子存在的证据,并提出了实验方案。“但当时国内外没有符合实验要求的测量设备。因为这个实验对设备的要求极高,而且看上去自相矛盾。”论文共同第一作者、南京大学博士生梁杰辉告诉记者,一方面,实验需要极低温和强磁场——温度仅比绝对零度高约0.05摄氏度,磁场强度要达到地球平均磁场的10万倍以上,虽然这两个条件可以通过特殊的制冷机实现,但另一方面,为了开展光学测量,制冷机上必须安装透光窗户,这又很容易导致实验温度上升,机器振动也会影响光学测量的精度。对于该实验测量,无论是从实验技术,还是从基础物理创新角度,都意味着是0到1的突破。杜灵杰带领团队,花费数年时间,通过精妙的设计将看似矛盾的测量要求一一实现,在南京大学自主设计、集成组装了一台根植于He3-He4稀释制冷技术的极低温强磁场共振非弹性偏振光散射系统(图a)。这一特殊的“望远镜”有两层楼高,可以在零下273.1度下捕捉到最低达10GHz的微弱激发并判断其自旋。测试表明,这一技术的相关测量参数达到国际领先水平,为引力子激发的测量奠定了实验基础。依靠这一利器,实验团队在砷化镓半导体量子阱中成功观测到分数量子霍尔效应引力子,取得重要突破。团队通过共振非弹性光散射测量到了最低能量长波集体激发,并通过改变入射和散射光的自旋,观察到该激发具有自旋2的特性并且是手性的(图b)。并且测量到的极小激发峰宽符合动量守恒下引力子激发的长波特性(图c),而测到的能量在m/n分数态正比于Ec/n(Ec为库伦能),符合其能量特性(图d)。这些结果从自旋,动量和能量角度充分提供了引力子激发的实验证据。图:(a)极低温强磁场共振非弹性偏振光散射测量平台。(b)引力子激发的手性自旋2特性。(c)引力子激发峰峰宽揭示其长波特性。(d) 引力子激发能量符合其能量特性。这一极具挑战性研究成果的发表,意味着南京大学杜灵杰教授团队在这一前沿领域迈出了重要一步。该工作在南京大学完成,南京大学为论文的第一单位。南京大学物理学院杜灵杰教授为通讯作者,负责该实验项目。南京大学博士生梁杰辉和哥伦比亚大学博士生刘子煜为共同第一作者。普林斯顿大学为该工作提供了高质量的样品。该工作得到了南京大学物理学院、固体微结构物理国家重点实验室、人工微结构科学与技术协同创新中心的大力支持,以及国家海外高层次人才青年项目、国家自然科学基金委、科技部科技创新2030、江苏省双创人才以及南京大学人才启动项目等经费的支持。参考资料:我国科学家在世界上首次观察到引力子的“投影”.新华网Nature发表南京大学杜灵杰团队最新成果:实验上首次发现引力子激发.中国日报网
  • 用于高分辨率制造的低成本显微投影光刻系统
    集成光信号分配、处理和传感网络需要小型化基本光学元件,如波导、分光器、光栅和光开关。为了实现这一目标,需要能够实现高分辨率制造的方法。弯曲元件(如弯管和环形谐振器)的制造尤其具有挑战性,因为它们需要更高的分辨率和更低的侧壁粗糙度。此外,必须采用精确控制绝对结构尺寸的制造技术。已经开发了几种用于亚波长高分辨率制造的技术,如直接激光写入、多光子光刻、电子束光刻、离子束光刻和多米诺光刻。然而,这些技术成本高、复杂且耗时。纳米压印光刻是一种新兴的复制技术,非常适合高分辨率和高效制造。然而,它需要高质量的母版,通常使用电子束光刻来生产。新发表在《光:先进制造》的一篇论文中,来自汉诺威莱布尼兹大学的科学家Lei Zheng博士等人开发了一种低成本、用户友好的制造技术,称为基于紫外发光二极管的显微投影光刻(MPP),用于在几秒钟内快速高分辨率制造光学元件。这种方法在紫外光照射下将光掩模上的结构图案转移到涂有光致抗蚀剂的基板上。a.采用基于UV-LED的显微镜投影光刻系统的草图。b.工艺链示意图,包括从结构设计到最终投影光刻的步骤。c.使用MPP制造的高分辨率光栅。d.通过MPP实现的低于200nm的特征尺寸。上部和下部所示的线条分别使用昂贵的物镜和经济物镜制造。MPP系统基于标准光学和光机械元件。使用波长为365nm的极低成本UV-LED作为光源,而不是汞灯或激光。研究人员开发了一种前处理工艺,以获得MPP所需的结构图案化铬掩模。它包括结构设计、在透明箔上印刷以及将图案转移到铬光掩模上。他们还建立了一个光刻装置来制备光掩模。通过该装置和随后的湿法蚀刻工艺,可以将印刷在透明箔上的结构图案转移到铬光掩模上。MPP系统可以制造特征尺寸低至85纳米的高分辨率光学元件。这与更昂贵和更复杂的制造方法(如多光子和电子束光刻)的分辨率相当。MPP可用于制造微流体设备、生物传感器和其他光学设备。研究人员开发的这种制造方法在光刻领域取得了重大进展,可用于光学元件的快速和高分辨率结构化。它特别适合于快速原型设计和低成本制造重要的应用。例如,它可以用于开发用于生物医学研究的新型光学设备,或为消费电子产品应用原型化新型MEMS设备。
  • 《星球大战:原力觉醒》在洛杉矶著名影院首映,新式投影仪效果震撼
    p 美国加利福尼亚州的洛杉矶市传来消息,万众瞩目的《星球大战:原力觉醒》于2016年1月26日在著名的古色古香的Arclight Cinerama Dome影院首映,影院启用了新一代3D激光投影系统来呈现《星战》的壮观场面,效果震撼。在新投影系统联袂《星战》首秀的背后,正是英国豪迈的 a href=" http://www.halma.cn/product/fiberguide" 定制光纤品牌——飞博盖徳工业有限公司 /a 发挥了至关重要的作用:这一双探头激光投影系统采用了飞博盖徳的多模光纤组件进行光能传输。 /p p br/ /p p style=" TEXT-ALIGN: center" img alt=" 好莱坞的Arclight Cinerama Dome影院" src=" http://www.halma.cn/sites/default/files/field/image/201601290101.jpg" / br/ 位于洛杉矶好莱坞的Arclight Cinerama Dome影院的外观(上图)和内部(下图),因其历史底蕴而闻名美国。 /p p br/ /p p 新一代的激光投影系统亮度极高,3D条件下可达到27 nits,2D条件下可达到48 nits,其产生的亮度效果是大多数剧院中所采用系统产生亮度的两倍,画面更明亮,观赏效果更佳。然而,更高的亮度意味着其需要更高效可靠的光能传输与之相匹配。为了满足这一大功率光能传输系统的质量要求,飞博盖徳( a href=" http://www.fiberguide.com.cn" fiberguide.com.cn /a )专门为电影院的3D激光投影系统定制设计了一套多模光纤组件系统。 /p p br/ /p p style=" TEXT-ALIGN: center" img alt=" 飞博盖徳的光纤组件" src=" http://www.halma.cn/sites/default/files/field/image/201601290102.jpg" / br/ 飞博盖徳定制的多模光纤组件系统中用到的光纤。 /p p br/ /p p Arclight Cinerama Dome影院首次安装这一双探头3D激光投影系统就用于《星球大战》的新片首映,足见影院方面对飞博盖德的品牌和其他配套组件的信任。迄今为止,Arclight Cinerama Dome是全美国仅有的三家以新一代3D激光投影系统为卖点的电影院之一。 /p p br/ /p p style=" TEXT-ALIGN: center" img alt=" 星球大战之原力觉醒" src=" http://www.halma.cn/sites/default/files/field/image/201601290103.jpg" / br/ 《星球大战:原力觉醒》影片一瞥。 /p p br/ /p p 欲了解飞博盖德更多产品及服务信息,请拨打飞博盖德免费电话021-60167698,或发送电子邮件至china.info@fiberguide.com,或访问www.fiberguide.com.cn。国外业务请拨打免费电话877-490-7803,或发送电子邮件至info@fiberguide.com,或访问www.fiberguide.com。 /p p strong br/ /strong /p p strong 关于飞博盖德和英国豪迈: /strong br/ 美国飞博盖德工业有限公司(Fiberguide)生产多种工业标准的和按需定制的高传输光纤和超精密光阵列。公司经过美国食品和药品管理局登记注册,被确定为合同制造商和定制设备制造商。飞博盖德的光纤工厂位于美国新泽西州的斯特林(Stirling),同时在爱达荷州的卡德维尔(Caldwell)也有制造/装配厂。 /p p br/ /p p 飞博盖德是英国豪迈(Halma)的子公司,隶属于豪迈的环境与分析事业部。1894年创立的英国豪迈如今是全球安全、医疗、环保产业的投资集团,伦敦证券交易所的上市公司,富时指数的成分股。集团在全球有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有代表处,并在多地建立了工厂和生产基地。 /p
  • 宽场显微镜最甜CP
    双十一刚过,肯定有不少小伙伴剁手了吧。双十一不只是电商的购物狂欢节,还是令人心痛的单身日。小编作为单身狗着实羡慕那甜美的爱情。所以我只能化悲愤为力量全身心的投入到工作中去。作为仪器工作者本以为显微镜就是我最好的伙伴,后来发现我还是太年轻了,在这个讲究CP感的时代里,我着实被宽场显微镜里最甜的CP秀了满满一脸。作为报复的手段,我要把他们的故事讲给大家听,宽场显微镜最甜CP-景深扩展与反卷积,接下来我就好好扒一扒它们的前世今生。首先有请我们的男主角闪亮登场。景深扩展又称Z-Stacking,在说他的故事前,我们需要明白什么是景深。当镜头对着处于焦面物体拍摄时,被拍摄物体与其前后的景物有一段清晰的范围,这个范围我们将其称为“景深”。为了让大家更好的理解,我在这里给大家举个例子。图源:网络,侵删就像图中一样,我们在观察与拍照过程中,有时仅可以看清楚花瓣,有时花瓣根茎叶都可以看清楚,这就是因为景深大小不同所致,大景深看清的物体多如左图,小景深看清的物体少如右图,那为什会产生这样的区别呢?一个镜头只有一个焦平面。处于焦平面上的物体经过物镜会在目镜或相机芯片上形成一个点,非焦平面上的点会形成一个模糊圆,这个圆术语叫做弥散圆(circle of confusion),怎么去理解这段话呢?如图所示,黑色线条为焦平面,焦平面上的点经过物镜,在相机芯片或视网膜上形成一个小圆点,两条绿色的线分别是非焦平面,非焦平面点经过目镜会形成一个圆圈,这个圆圈就是弥散圆(circle of confusion)。如果我们远离这张图片,那会发生什么呢?我们中间的这个小点就看不到了,上下的两个圆斑会越来越小,一直小到和这个点一样大的时候,我们这时候就认为它不是斑,而是点了。如果弥散圆小到人眼或芯片无法鉴别看起来就是一个点,那这个弥散圆称为容许弥散圆,可产生容许弥散圆的平面之间的距离称为景深。我们再简单一点,显微镜的景深就是当前镜头,可以看清楚样品的厚度。对于观察者来说,同视野下能看清楚样品的厚度越厚越好,越厚就证明镜头的景深越大。在显微观察中是否可以无限制追求大景深呢?答案是否定的。因为景深与物镜的NA值负相关,而NA值与物镜的分辨率及放大倍数正相关。关系如下图所示:图源:网络,侵删如何在高倍镜下获得大景深的图像呢?这就轮到我们的男主出场了—景深扩展。在宽场显微镜中,增大显微图像景深的通常做法是对样品进行不同厚度位置的扫描,并采集程序列图像,以一定的规则进行融合,通过计算重建一幅大景深图像。图源:网络,侵删目前显微镜实现景深扩展的基础是什么?硬件基础:显微镜景深扩展分为手动景深扩展与自动景深扩展。对应的硬件基础分别为手动准焦螺旋(手动Z轴)与电动准焦螺旋(电动Z轴)。软件基础:Z轴控制与图像处理。如果想把我们男主角的魅力发挥到极致,电动Z轴必不可少。因为与手动景深扩展相比电动的优势有:1、一致性更高 2、步进精度更高 3、可重复性更好 4、操作更为简便。从上文的介绍中大家明白了景深扩展优化了显微镜在竖直方向的成像效果,那与他在一起的反卷积的功能也就呼之欲出了:优化宽场显微镜水平方向的成像效果。接下来有请我们的女主角登场,同样的,在讲她的故事之前,我们要明白宽场显微镜存在分辨率的极限。图源:网络,侵删从分辨率的公式中可以看出分辨率与NA值正相关。还记得上文中提到的景深与其负相关吗?所以说从家庭背景的角度上景深扩展与反卷积就开始彼此纠缠了。书归正文,通过分辨率公式我们可以得出分辨率的极限是200nm,为了纪念公式的提出者—德国的光学物理学家恩斯特阿贝,人们把这个极限值称为阿贝极限。人们为了突破分辨率极限诞生了以共聚焦显微镜为代表的超高分辨率显微镜。它们通过改变照明结构来突破宽场显微镜的分辨率极限,以获取更加清晰的观察结果。今天我们讨论的是宽场显微中的最甜CP,共聚焦显微镜改变了光路结构不在今天的讨论范围内。那除了硬件改变来提高分辨率,可不可以不改变宽场显微镜的光路结构,通过软件来实现分辨率的突破呢?答案是有的,那就是我们的女主角反卷积。图源:网络,侵删我们先看上面的图,如图所示理想的镜头成像时,一个对焦平面上的物点会投影为一个像点,但事实上理想的镜头是不存在的,镜头总是存在一些缺陷会导致一个物点会投影为很多点,一个点经过镜头后成的像由点扩散函数PSF(Point Spread Function)来描述。是不是听起来有些懵?简单给大家做个比喻,有美女或帅哥站在你的面前,理论上你可以清楚地看到他的容貌,但实际过程中你和美女帅哥之间多了一块毛玻璃,这块毛玻璃就是扩散函数,那能不能把这块毛玻璃打碎呢?可以的,这就需要用我们的女主角反卷积了。图源:网络,侵删如图所示,我们会有一个很自然的想法就是,如果我们有实际镜头的成像,另外还知道了镜头的PSF,即我们知道了上式的b和c,是否可以得到更加理想的成像x呢?这个过程称为去卷积Deconvolution。经过上面的介绍,相信大家就会明白为什么我会把景深扩展与反卷积称为宽场显微镜最甜CP了吧。男主角景深扩展充满活力地在Z轴方向上下翻飞,优化显微镜竖直方向的成像效果。女主角反卷积稳重包容在水平方向突破自我。这里我还要提一点特别重要的,很多小伙伴认为反卷积作为一种算法没有硬件的改变是不是随意搭配任何机型都可以实现。其实不然,每一个公司的每一个型号上的每一颗物镜都只有唯一的反卷积公式。最后总结一下,想必大家应该明白我为什么去写这篇文章了。在显微观察过程中存在很多不同的功能,我选择跟成像质量最相关的功能拿出来跟大家说一下,就是希望小伙伴们在学习与工作中更好的去使用显微镜。口说无凭眼见为真嘛,大家可以用自己实验室的显微镜试一下这对CP的魅力,这两个功能虽然在市面上很常见,但是能集二者与一身的显微镜并不多,怎么解决呢?欢迎大家来试用我们的ECHO显微镜吧。Revolve Generation 2正倒置荧光显微镜Revolution正倒置一体智能显微成像系统
  • 太原市中心医院279.36万元采购Zeta电位仪,生物显微镜,自动电位滴定,气体流量计
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 太原市中心医院高质量发展“人人享有肾病管家”区域肾脏病管理网络体系建设项目便携式彩色多普勒超声诊断仪、能量代谢车等医疗设备公开招标采购的采购公告山西省-太原市-小店区 状态:公告 更新时间: 2023-09-28 招标文件: 附件1 一、项目基本情况项目编号:1401992023AGK00987 项目名称:太原市中心医院高质量发展“人人享有肾病管家”区域肾脏病管理网络体系建设项目便携式彩色多普勒超声诊断仪、能量代谢车等医疗设备公开招标采购 资金来源: 财政资金预算金额:2,793,600元最高限价:2,793,600元采购需求:共一包,具体以第四部分采购需求为准。采购清单 序号 名称 数量 预算单价(元) 金额小计(元) 对应的中小企业划分标准所属行业 1 便携式彩色多普勒超声诊断仪 1台 900,000 900,000 工业 2 能量代谢车 1台 690,000 690,000 工业 3 相差显微镜 1台 550,000 550,000 工业 4 血气分析仪 1台 150,000 150,000 工业 5 台式高速恒温离心机 1台 112,800 112,800 工业 6 超低温冷冻储存箱 2台 95,000 190,000 工业 7 尿液分析仪 1台 55,000 55,000 工业 8 生物显微镜 1台 53,000 53,000 工业 9 自动电位滴定仪 1台 92,800 92,800 工业 总价(元) 2,793,600 产品描述 序号 名称 参数要求 1 便携式彩色多普勒超声诊断仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、设备用途: 用于神经阻滞可视化引导,心肺功能监测及血流动力学评估应用,以及介入操作的可视化引导,血管通路搭建,诊断和治疗引导等2、主要技术及系统概述:2.1 ≥15英寸高分辨率LED 显示器,可视角度≥170度 (左/右),主机重量≤4kg(含电池)2.2 触控面板操作,防泼溅、防尘、防异物 2.3 ≥12英寸触摸操作屏,按键支持自定义设置,包括移动、增加、删除,支持手写及带橡胶手套操作2.4 可自定义物理按键≥3个2.5 低平的物理按键,完全密封边缘2.6 电源接头为磁吸式2.7 机器内置超声教学助手,可用于神经阻滞的练习、操作,同时也可用于腹部、心脏及小器官的教学指导2.8 成像模式2.8.1 二维灰阶模式2.8.2 组织谐波成像技术2.8.3 穿刺针显影增强技术2.8.4 彩色多普勒模式2.8.5 能量多普勒模式2.8.6 脉冲多普勒模式(PW)2.8.7 连续多普勒模式(CW)2.9 穿刺针显影增强技术,提供最佳角度提示信息,实时自动及半自动追踪角度,支持凸阵探头、线阵探头并支持双幅对比显示 2.9.1 支持凸阵探头、线阵探头2.9.2 提供最佳角度提示信息2.9.3 支持双幅对比显示2.10 B模式成像2.10.1 组织谐波成像模式2.10.2 组织特异性成像2.10.3 多角度空间复合成像技术,支持≥2条偏转线,多级可调,支持线阵和凸阵探头2.10.4 斑点噪声抑制成像2.10.5 回波增强技术,提高心脏图像质量2.10.6 增强局部分辨率2.11 彩色多普勒成像(包括彩色、能量、方向能量多普勒模式)2.11.1 高分辨率血流成像2.11.2 双实时同屏对比显示2.11.3 自动调节取样框的角度及位置2.12 频谱多普勒成像2.12.1 脉冲多普勒、高脉冲重复频率2.12.2 连续多普勒2.13 探头2.13.1 凸阵探头,频率范围1.5MHz-6.0MHz2.13.2 线阵探头,频率范围6.0MHz-23.0MHz2.13.3 相控阵探头,频率范围:1.5MHz-4.5MHz3、技术参数及要求3.1二维灰阶模式3.1.1 扫描频率:电子凸阵:超声频率 1.5MHz-6.0MHz,支持扩展成像;电子相控阵:超声频率1.5MHz-4.5MHz,扫描角度≥90°;电子线阵:超声频率6.0MHz-23.0MHz3.1.2 最大显示深度:≥40cm3.1.3 TGC: ≥8段,LGC: ≥8段(非拨杆调节)3.1.4 动态范围: 30dB-350dB,可视可调3.1.5 增益调节: B/M/D分别独立可调,≥1003.1.6 伪彩图谱: ≥8种3.2彩色多普勒成像3.2.1 包括速度、速度方差、能量、方向能量显示等3.2.2 显示方式:B/C、B/C/M、B/POWER、B/C/PW3.2.3 取样框偏转: ≥±30度 (线阵探头),取样框可根据探头血流方向自动调节3.2.4 支持B/C 同宽3.3频谱多普勒模式3.3.1 显示控制:反转、零移位、B刷新、D扩展、B/D扩展等3.3.2 PW最大速度: ≥7m/s3.3.3 最小速度: ≤5mm/s3.3.4 取样容积: 0.5mm-20mm 3.3.5 偏转角度: ≥±30度 (线阵探头)3.3.6 快速角度校正3.4测量分析和报告3.4.1 常规测量软件包3.4.2 多普勒测量(自动或手动包络测量,自动计算测量参数)3.4.3 神经专用测量软件包3.4.4 心脏功能专用测量软件包3.4.5 急重诊应用测量软件包3.5连通性和外部数据管理3.5.1 具备DICOM基础功能,可通过网络将图像传输到DICOM服务器3.5.2 ≥4个USB 3.0端口3.5.3 以太网端口,内置无线网卡,借助网络,可在机器上一键将动态或静态图像传输至移动应用端群组内;超声设备上具备可自行设置的隐私数据脱敏传输开关,用户可选择传输图像是否包含病人信息3.5.4 HDMI、S-Video视频输出接口3.6电源供应3.6.1 系统通过电池或交流电源运行3.6.2 可充电锂电池,连续使用时间≥90分钟3.7配备专用台车3.8免费与医院信息系统联网,实现患者数据传输。 2 能量代谢车 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、货物用途:临床需要营养治疗的患者的营养评估2、技术参数要求:2.1 测量原理:呼气法或间接测热法等;2.2 测试方式:开放式测量;2.3 数据更新显示方式:每口气;2.4 分析计算参数:每分钟摄氧量(VO2,mL/min)、每分钟产生二氧化碳量(VCO2,mL/min)、呼吸商、静息能量消耗量、三大主要营养物质(糖类、脂类和蛋白质)的消耗量和氧化供能比例;2.5 数据解析:代谢速度评价、代谢底物评价、测量状态分析、营养素均衡供给建议;2.6 具有RMR快速测量功能,根据稳定状态自动结束测量;2.7 测试过程稳定程度分析:具有自动识别稳定状态的功能,无需人工识别;2.8 操作流程:具有一键标定功能;2.9 测量精度:流速测量范围应为20LPM-100LPM,相对误差应≤3%;氧气浓度测量范围19.00%-21.00%,测量误差应≤±0.03%,响应时间应≤400ms;二氧化碳浓度测量范围0-5.50%,测量误差应≤±0.03%,响应时间应≤400ms;2.10 传感器:使用氧化锆氧气传感器或流速传感器等;2.11 数据储存:至少10000条测量记录,可用USB导出数据;2.12 显示屏:≥12英寸薄膜液晶显示屏; 2.13 外部接口: USB从接口1个,LAN接口(10T)1个,蓝牙接口1个、无线接口1个; 2.14 测试时间:≤20分钟即可完成测试; 2.15 兼容打印机:激光/喷墨打印机;2.16 免费与医院信息系统联网,实现患者数据传输。 3 相差显微镜 1、货物用途:用于形态学检查及相关等诊断,并拍摄清晰的图片,形成一体化的图文报告。2、高级研究级正置相差显微镜技术要求:2.1 光学系统:无限远光学系统。2.2 管径焦距:180≤管镜焦距<200mm,螺纹RMS标准。2.3 齐焦距离:必须为国际标准≤45mm。2.4 调焦:低位固定载物台通过物镜转盘聚焦,聚焦行程15mm,带聚焦粗调限位器,粗调旋钮扭矩可调,微调旋钮最小调节精度1微米。2.5 与显微镜同一品牌超宽视野三目观察镜筒:可上下调节移动倾角,可调节三目铰链式镜筒,视场数≥26。屈光度可调。铰链式观察筒可以根据不同观察者进行瞳距调节且不改变屈光度,可升级前后拉伸上下升降观察筒。2.6 照明装置:长寿命透射光柯勒照明器,光量预调开关,转换物镜倍率的同时,光亮可以自动调节到预设光强,无需随着倍率的变化而手动调节照明强度。转换物镜倍率时不需要再调节光强度。2.7 与显微镜同一品牌高级半复消色差FN26.5 相差物镜:10X、40X、100X2.8 载物台:具低位置同轴驱动选钮的陶瓷覆盖层载物台。2.9 与显微镜同一品牌目镜:10X宽视野目镜,视野数为≥26.5;2.10 物镜转换器:五孔编码物镜转盘2.11 与显微镜同一品牌聚光镜:孔数≥7孔 ,N.A≥1.1与不同放大率的相差物镜内的相板相匹配。转盘前端朝向使用者一面有标示窗(孔),转盘上的不同部位有0、1、2、3和4或0、10、20、40和100字样。3、应用范围:用于临床检验,在相差显微镜下对于尿液标本做形态学检查及相关等诊断,并拍摄清晰的图片,形成一体化的图文报告;图像输入部分:视窗平台,配备1600万或以上高像素彩色数码成像装置,最大分辨率1500万或以上高速传输口,色彩还原和拍摄功能。支持动态压缩录像和定时间隔自动采集,同时可以对采集下来的图片进行相应的编辑,如色彩、裁剪、尺寸调整、组合、平衡、清晰、柔化、及各种图片、文字标记等,可与各种型号电脑和显微镜相匹配;信息输入:基本信息录入,如患者详细信息、送检相关信息、标本相关信息等登记;病例统计功能:数据检索功能、统计、查询功能,可以根据已填的病人资料进行查询,也可以进行复合条件查询,同一条件内的分段查询,如按年龄段进行查询统计,可按任意条件组合查询,并打印统计结果;也可进行多病种查询统计,并可自定义万能查询设计;常用词库/模板:具备专家系统词库/模板,提供尿液红细胞位相检查分级分类词库,包括所有常用词汇,并编辑对应的部位和内容的模板;无需使用汉字输入方法,即可在专家系统的帮助下,迅速完成诊断报告;其中的专家词库和常用模板可以根据具体需要随时进行修改和补充。开放式图文报告格式:报告格式任意调整,可通过简单的鼠标拖拉,设计任意多种报告格式,并根据选择的报告格式自动生成彩色图文一体化的报告,支持图文报告批量打印功能,可选择某天或某段时间内的报告统一打印;工作界面及流程:支持工作流程编辑及工作界面调整,可以根据自己的操作习惯编辑工作流程及工作界面;权限设置及网络连接:支持权限设置;支持各诊断室电脑互连,支持病例、数据库等的资源共享,支持各诊断工作站病例资料的互相访问;支持后续升级连接LIS/HIS及PACS系统;数据备份和数据库维护功能:数据备份和数据库维护功能,可设定数据自动备份,进行备份和数据刻录操作,同时刻录后的病例离线查询和统计;图像处理与测量分析功能:支持多种专业尿液红细胞位相形态学图像分析及测量功能。教学及示教功能:支持教学示教、读片以及幻灯片制作功能,支持连接投影仪、液晶电视并可播放实时动态影像,也可以将采集到的图片制作成幻灯片,利用电脑多媒体功能进行病理资料的阅读示教和学术交流;4、免费与医院信息系统联网,实现患者数据传输。 4 血气分析仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》技术参数及要求1.1一体化电极及离子电极,室温存储。1.2试剂规格从最小25测/包到2000测/包多规格可选,上机有效期≥40天;1.3室温存储乳酸/血糖一体化电极,常温运输,上机有效期≥30天1.4全彩色液晶触摸屏≥8寸,支持中文病人信息输入1.5测量参数 : PH,PCO2,PO2,K,Na,Cl,Ca,Hct,Lac和Glu。1.6最大计算项目:pH(TC)、PCO2(TC)、PO2(TC)、HCO3、SBC、BE、BEecf、TCO2、sO2%、P50、AG、A-aDO2、Rl、TCa、nCa,THb(c)等测量项目和计算项目等≥40项1.7支持动静脉结合进样方式,输出ScvO2、PCO2(gap)等参数1.8内置不间断电源,断电后满足30分钟以上的工作时间1.9同时支持注射器、毛细管、安瓿瓶、试管等容器测量1.10样本量:全参数样品量≤170uL样品1.11具有远程诊断功能HL7协议的LAN口网络连接1.12分析时间全项目测试进样后≤90s'1.13免费与医院信息系统联网,实现患者数据传输。 5 台式高速恒温离心机 1、货物技术指标要求:1.1 微电脑控制、LCD液晶显示1.2 采用交流变频电机驱动。1.3 ≥10种升、降速率选择,≥10种自定义工作模式选择,可自由编程、调用1.4 转速/离心力互设、同步显示1.5 两种计时模式可选:运行开始计时和到达设定转速开始计时1.6 门盖采用双锁杆设计,磁感应门锁,电动开门1.7 运行中可随时更改参数,无需停机1.8 风冷排风设计1.9 自动识别转子1.10 转头使用记忆功能,转头达到使用寿命后机器汇报警提示1.11 主机最高转速:≥18000rpm1.12 配置:角转子带生物安全罩1.13 转速精度:≤±10rpm1.14 定时范围:1min-99:59:59(hh:mm:ss)1.15 噪音:≤55dB 6 超低温冷冻储存箱 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、技术要求及配置: 1.1 样式:立式 。1.2 有效容积:≥530L。1.3 温度控制:高精度微电脑温度控制系统,适用范围在-40℃至--86℃范围内,控温精度0.1℃。1.4显示:≥7寸高性能LCD电容触摸屏,显示精度0.1℃,动态实时显示箱内温度、系统设定温度、环境温度、报警状态、时间等参数信息,且可连接蓝牙与WiFi,具备样本存取管理,温度数据查看及数据曲线,设置与留言板功能。1.5具备状态运行指示。1.6 安全存储:≥10种声光报警系统(高低温报警、传感器故障报警、高环温报警、开门报警、电压异常、断电报警、冷凝器脏报警、电池电量低报警、系统故障等)。1.7开机延时和停机间隔保护功能;屏幕锁定和密码保护功能。1.8压缩机,整机稳定运行功率≤500W。冷凝器散热风机可根据压缩机运行状态智能开停。1.9 25℃环温时,单日耗电量≤8KW.h/24h。 1.10 箱内温度均匀性要求,25℃环境,设定-80℃测试,整机≥20点测试,最高温度与最低温度的差小于10℃。1.11 25℃环温时,空载降温到-80℃时间≤5.1h。 1.12多重门锁设计:机械锁(配2把钥匙)+外挂锁(可挂2把)1.13有多种登录权限设置1.14 保温材料:真空绝热材料,保温板厚度≥20mm,箱体发泡层≥130mm。2个发泡压紧内门,双层发泡保温外门,外门4道密封,内门两道门封,整机6道门封。 1.15低噪音,稳定运行噪音≤52分贝。1.16 25℃环温,空载稳定运行断电回温至-50℃时间≥270min。1.17 箱体材料:钢板。 1.18 内胆材料:镀锌板喷涂。1.19 大面积翅片式冷凝器。 1.20 自动加热门体平衡孔设计,短时间内连续多次开门。 1.21 2个及以上温度测试孔。 1.22 标配USB模块,可记录箱内实际温度、故障报警等数据。1.23 标配蓄电池,断电状态可持续为温度报警、USB端口供电。 7 尿液分析仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、货物技术指标要求:1.1 仪器类别 :1.1.1 测试速度 ≥300个测试/小时1.1.2 测试方法 终点法、动力学法、两点法1.1.3 试剂模式 试剂全开放模式,兼容进口和国产试剂1.1.4 同时测定项目 ≥40个(单试剂),≥20个(双试剂)1.1.5 同时测定样本 ≥40个1.1.6 最小反应体积 150μL1.1.7 携带污染率 ≤0.005%1.1.8 耗水量 ≤6.5升/小时1.1.9 最长反应时间 15分钟(单试剂);12分钟(双试剂)1.1.10 最大反应体积 500μL1.1.11 测试原理 比色法、透射比浊法1.1.12 检测模式 普通模式(单、双试剂),高速模式(单试剂)1.1.13 测试顺序 急诊优先、任意插入,连续测定式、随机任选式,按样本顺序测定1.1.14 稀释功能 检测底物过剩和钩状效应,全自动稀释重测1.2样本/试剂/搅拌杆单元:1.2.1 样本量 2-50μL,0.1μL递增1.2.2 样本盘 圆盘式,≥40个样本位1.2.3 样本/试剂针 样本针和试剂针共针,具备液面检测、立体防撞、随量跟踪功能,试剂余量实时检测功能1.2.4 样本管 兼容多种规格(13mm×100mm,13mm×75mm,12mm×100mm,12mm×75mm)一次性采血管、尿管、微量杯、塑料试管等1.2.5 试剂量 R1:150μL-450μL,R2:10-300μL,1μL递增1.2.6 试剂盘 圆盘式,内外圈共不少于40个试剂位,半导体致冷水循环散热,24小时4℃-12℃不间断冷藏1.2.7 试剂瓶 兼容主流试剂瓶规格1.2.8 搅拌杆 独立1根搅拌杆,加入样本或第二试剂后立即搅拌1.3光学系统:1.3.1 光源 卤钨灯,12V20W,液体水循环制冷,≥2000小时1.3.2 分光方式 1.3.3 波长范围 340nm-670nm, 8波长1.3.4 分辨率0.0001Abs1.3.5 线性范围 0Abs-3.5Abs1.3.6 吸光度准确性 0.5A: <±0.02Abs 1.3.7 OA: <±0.05Abs1.3.8 杂散光≥4.5(以吸光度表示)1.3.9 吸光度稳定性 <0.01Abs1.3.10 吸光度重复性 <1.5%1.3.11 波长准确度<±2nm1.3.12 检测器光电二极管探测器阵列 8 生物显微镜 1、货物主要技术指标:1.1 光学系统:无限远光学矫正系统,齐焦距离必须为国际标准45mm。1.2 载物台:钢丝传动,无齿条结构1.3 调焦机构:有粗调限位,可以进行张力调节,避免标本或物镜的损伤。1.4 聚光镜:带有孔径光阑的聚光镜1.5 照明系统:≥20000小时寿命LED光源1.6 观察筒:双目观察筒,瞳距调整范围50mm-75mm,倾斜角度30°,带屈光度调节,360°可旋转,铰链式,眼点高度≥420mm,视场数≥201.7 目镜:10X,带眼罩,视场数≥201.8 物镜转盘:与显微镜机身固定的内旋式4孔物镜转盘,便于放置标本等操作。1.9 物镜:平场消色差物镜4X、10X、40X、100X 1.10 双目观察筒、目镜、物镜都具备防霉处理功能1.11 光学元件均为环保无铅玻璃 9 自动电位滴定仪 1、技术指标要求:1.1 滴定装置 容量滴定单元 1.2滴定分析重复性≤0.2%1.3滴定容量允许误差 10mL滴定管:±0.025mL;20mL滴定管:±0.035mL;滴定管分辨率 1/140001.4测量装置 1.4.1 电位滴定模块 1.4.2 测量范围(-1800.0-1800.0)mV,(0.00-14.00)pH1.4.3 分辨率 0.1mV,0.01pH1.4.4 基本误差pH:±0.01pHmV:±0.05%FS1.4.5 稳定性 ±0.3mV/3h1.4.6 温度补偿 测量范围(-5.0℃-105.0℃)1.4.7 分辨率≤0.1℃1.4.8 基本误差 ±0.3℃1.5电源 AC(220±22)V;频率(50±1)Hz 注:1.所有招标内容除特别标注为“进口产品”外,均采购国产产品,即非“通过中国海关报关验放进入中国境内且产自关境外的产品”,投标货物及服务各项技术标准应当符合国家强制性标准。2.招标内容标注为“进口产品”的,满足需求的国产产品和进口产品按照公平竞争原则实施采购。合同履行期限:签订合同之日起30日历天内完成。本项目不接受联合体投标。二、投标人资格要求:=105695" width="160" 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:Zeta电位仪,生物显微镜,自动电位滴定,气体流量计 开标时间:2023-10-19 09:00 预算金额:279.36万元 采购单位:太原市中心医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:太原市公共资源交易中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 太原市中心医院高质量发展“人人享有肾病管家”区域肾脏病管理网络体系建设项目便携式彩色多普勒超声诊断仪、能量代谢车等医疗设备公开招标采购的采购公告 山西省-太原市-小店区 状态:公告 更新时间: 2023-09-28 招标文件: 附件1 一、项目基本情况项目编号:1401992023AGK00987 项目名称:太原市中心医院高质量发展“人人享有肾病管家”区域肾脏病管理网
  • 电镜博物馆|1959年刊:“神奇的电子显微镜”
    温故知新,从历史刊物文章中学习早期电镜产品技术历程,以下内容摘自《Popular Electronics》1959年11月刊(Vol. 11, No. 5),文章题目“The Amazing Electron Microscope”,作者Morris M. Rubin。(由“RF Cafe”网收录)光学显微镜的分辨率受到光波长的限制。天文学家William Dawes首先提出了一种量化的方法,这种方法基于视觉上分辨距离较近的恒星的能力。被称为道斯极限,4.56/D弧秒的值是由经验确定的(D是仪器的孔径,单位是英寸)。任何具有完美光学系统的光学系统的放大倍数的理论上限在2000左右。正如这篇1959年《Popular Electronics》上这篇文章所描述,电子显微镜通过发射一束半径远小于可见光波长的电子,并测量其反射,从而消除了这种分辨极限。图像必然是“假色”,因为我们无法感知到电子束所显示的表面的真实波长/颜色。《Popular Electronics》1959年11月刊封面与目录整理译文如下,以飨读者。“惊人的电子显微镜作者:Morris M. Rubin在光学显微镜分辨率达到极限后很久,电子显微镜的分辨率还在继续提高……高达 20万倍。从第一位伟大的显微镜设计师安东列文虎克(Antony van leeuwenhoek)时代起,科学家们就将显微镜作为他们的主要工具之一。年复一年,随着光学玻璃制造技术的改进,新的更好的显微镜使科学家能够看到越来越微小的物体。随后,大约在1890年,光学显微镜分辨率的提升似乎已经走到了尽头。超过大约 2000 倍的放大倍数,即使是最精细、设计最完美的显微镜也只能看到一个模糊的斑点。光本身的基本特征阻碍了更强大显微镜的发展。与声音类似,光以可测量长度的波传播。例如,在可见光谱的中,波的长度约为 6/250000 英寸。为了让光波区分物体上的两个点,两点之间的距离必须是光波长度的三分之一,即6/ 250000英寸以上,小于约半波长的物体无法被光学显微镜清晰放大,无论其透镜多么完美。科学家们推断,既然根本的瓶颈是“普通”光的波长相对较长造成,那么如果有可能使用某种波长较短的光,就可以实现更有效的放大。于是,人们探索了这种可能性,并利用紫外光(其波长约为可见光的三分之一),设计出可以放大到5000倍的显微镜,放大倍数达到可见光显微镜极限的两倍多。此时,光学显微镜达到了其设计能力的天花板。如果科学家想要更大的放大倍数,他们必须找到一种新的方法。电子的“营救”电子显微镜的理论在20世纪20 年代提出。实验表明,当电子受到高压场加速时,它们会获得可测量的特征波长。电压越高,电子速度越大,表观波长越短。此外,已经证明电子可以被磁场弯曲或折射,类似光可以被光学透镜弯曲和折射。因此,光学显微镜的分辨率极限,就可以通过使用更短波长电子流替代光,从而获得更高放大倍数,这似乎是合乎逻辑的。有了这样的重要概念,科学家们开始着手设计电子显微镜。到20世纪30年代后期,实验型的电镜已经在欧洲、加拿大和美国投入使用。随后,在1940年,RCA公司推出美国第一台商用电子显微镜。虽然按照目前的标准,这些最初的电镜产品设计还比较落后,但相比有史以来最好的光学显微镜则要优越的多。甚至紫外线显微镜的放大倍数也仅限于 5000 倍,而这些早期的电子显微镜却能够放大 10万 倍。今天的模型放大倍数超过 20万倍——足以看到人类头发直径百万分之一的物体——并且通过照相技术进一步放大图像,可以将直径放大至100万倍以上。电子取代光。与光学显微镜的原理类似,电子显微镜使用一系列镜头逐步放大样品。但是,虽然光学显微镜使用玻璃透镜来弯曲光线,而电子显微镜的“透镜”是线圈——类似于电视机的偏转线圈——可以弯曲和偏转电子流。电子显微镜与普通光学显微镜的比较。基本原理是一样的,但是电子显微镜使用线圈来磁偏转和聚焦电子束,而不是用玻璃透镜来弯曲和折射光线。电子枪发射的电子通过聚光透镜,聚光透镜将电子束集中在样品上。由于样本被制样切成部分透明的薄片,在任何一点上,电子通过它的数量都随标本的密度而变化。这样就产生了一种不同电子密度变化的图案。虽然这种图案肉眼是看不见的,但可以通过在标本下方放置荧光屏来显示。然而,在实际操作中,电子通过物镜,这是进行放大的第一步。就在它们到达投影镜头之前,一个“展开”的密度图案就形成了,中心区域随后被投影镜头进一步放大。放大的标本可以直接在荧光屏(其外观和工作方式类似于电视屏幕)上查看,或者可以通过特殊相机拍摄图像(通常内置于电子显微镜中)。放大所得照片可以进一步放大样品。关于价格。除了光学系统,电子显微镜还必须有超稳定的高压电源和高效率的真空系统。这种复杂性导致了当今电子显微镜的高昂价格——从 12000 美元到40000 美元不等,具体取决于所需的放大倍率、品牌等。以上展示了两种最广泛使用的电子显微镜。左边是RCA EMU-3,可以放大20万倍。右边是Norelco EM100B,放大到90000倍。Norelco(荷兰飞利浦)和 RCA(美国无线电公司)是这些装置的最大生产商。德国和日本的制造商也活跃在该领域。俄罗斯人也参与其中,生产了一种电子显微镜,该显微镜似乎是 1940 年 RCA 模型的改编版。首台RCA电子显微镜的共同发明者,James Hillier博士,左边显示的是RCA的EMB模型,在1940年上市。局限性。尽管电子显微镜可能有用,但它仍然有其局限性。由于高压电子对生物体是致命的,电子显微镜不能用于观察活的细菌、病毒等。另外,电子束不能穿透超过 1/25000 英寸,所以电子显微镜不能用于观察更厚的物体——例如苍蝇的翅膀。后一个问题的解决方案是开发特殊设备,这些设备可以切割出足够薄以允许电子通过的待观察物体的切片。这种“切片机”如何处理较软的材料我们很容易想到,但我们如何切下一层 1/25000 英寸厚的钢?这个问题的答案非常简单。钢材表面的“复制品”是在柔软的材料上制成的,例如蜡。复制品很容易切片,当它安装在非常薄的透明膜上时,它会取代显微镜中的原始物体。重要性。现在全国各地的实验室都在使用大约一千台电子显微镜。它们是寻找疾病(尤其是癌症)原因的研究中的宝贵工具,同时,它们在解决各种工业问题方面也很有用。例如,可以通过仔细检查电子显微镜照片来判断橡胶轮胎的磨损质量,从而无需进行漫长而繁琐的路试。最近在纽约举行的苏联展览上展出的一个1959年的俄罗斯电镜但是,电子显微镜最令人兴奋的应用是在细胞研究中。细胞通过蛋白质合成过程生长、滋养和再生。在电子显微镜的帮助下,科学家们第一次能够看到这些过程——这才是真正的“生命的秘密”。人类是一种永不满足的好奇生物。电子显微镜是满足人类求知欲和理解力的最有效手段之一。你能认出这些图片吗?所有这些都是在电子显微镜的帮助下拍摄的(答案在页面底部)。答案1. (a) 总放大倍数 160,000X;飞利浦电子公司提供2. (c) 总放大倍数 425,000X;由法兰西学院和 RCA 提供3. (c) 总放大倍数 112,000X;由麻省理工学院 CE Hall 博士提供4. (d);总放大倍数 68,000X;由 Esso Research & Engrg 公司提供5. (c) 总放大倍数 14,680X;由陶氏化学公司和 RCA 提供”
  • 日本学者开发机器人显微镜“OSaCaBeN”
    日本大阪大学和日本东北大学2016年5月18日宣布,开发出了可高速自动追踪移动观察对象,能向特定神经细胞照射特定波长的光对其施加刺激的机器人显微镜“OSaCaBeN”。并且,研究人员还利用OSaCaBeN发现,行动中的秀丽隐杆线虫(C.elegans)的多个多巴胺细胞的性质是不同的。  OSaCaBeN(Optogenetic Stimulation Associated with Calcium imaging for Behaving Nematode)能够以0.02秒为单位自动追踪在水平面上自由移动的生物,利用荧光测定多个神经活动。另外,还可利用投影映射技术(Projection Mapping),以“瞄准射击”方式刺激多个神经活动。通过事先调整照明装置和照射区域的对应关系,能够以10μ m以下的控制分辨率来区别运动生物的相邻神经细胞实施照射。  自动追踪采用了HAWK VISION的视觉跟踪载物台,投影映射采用的是ASKA COMPANY开发的多点独立光刺激装置MiLSS。  研究小组此次用OSaCaBeN计测了秀丽隐杆线虫头部3处及尾部1处的多巴胺细胞,发现只有头部背侧1处(CEPD)的多巴胺细胞对饵料有强烈的持续反应。利用投影映射技术只瞄准射击该细胞时,便可引起与线虫向饵料层移动时相同的行动变化。  近年来的研究逐步发现,多巴胺细胞根据神经活动的特点被划分为多个群组。利用OSaCaBeN,有望查明多巴胺被划分为多个功能性群组的机制。另外,OSaCaBeN还可用于秀丽隐杆线虫以外的小动物,有助于从多种角度查明脑部活动与行动之间的关系。“OSaCaBeN”的示意图(左)、秀丽隐杆线虫的多巴胺细胞的活动向饵料层内移动时,头部背侧的CEPD细胞活动最大(右)
  • 迅捷高效!全新增强现实显微镜系统SZX-AR1问世
    在医疗器械和电子等行业中,产品结构复杂种类繁多,且低产量生产,难以实现自动化,大量的装配和检查工作是通过体式显微镜手动操作完成。产线工作面临着效率低下,以及对人体造成损伤的风险。而AR技术的出现,似乎为以上的痛点,提供了非常好的解决思路。正因如此,我们的AR1模块,应运而生。AR1模块与我们的SZX系列体式显微镜配合使用,将后者转变为增强现实工具,从而提高基于显微镜的制造任务和培训的速度和效率。改变工作方式 AR1显微镜系统使您能够将文本和数字图像投影到显微镜的视野中,使组装人员可以轻松地遵循指示、阅读笔记,甚至观看视频,而无需将眼睛从目镜移开。AR1模块与奥林巴斯SZX系列体式显微镜配合使用,将其转化为增强现实工具,提高基于显微镜的制造任务的速度和效率,并培训新员工。更快、更高效的组装过程传统的制造过程中,工人需要反复将目光从目镜移开去检查装配说明,或在开始工作前记住这些说明,这两种方法都效率低下,可能会导致错误。有了AR功能,就可以将装配说明、指导手册、图像、十字线、量表或注释投影到显微镜的视野中,可以帮助工人降低工作的错误,并使他们更舒适地工作,这样工人就可以专注于自己的任务,而不必反复看向别处,提高了工作效率。如果在制造过程中出现问题,装配人员可使用Microsoft Teams等第三方协作软件,与场外经理或工程师分享目镜中的实时视图,从而获得相应指导,及时解决问题。让新员工快速成长在传统的培训工作流程中,现场培训师会指导新员工组装过程的每个步骤,并展示正确组装后的组件外观。受训者必须将目光从目镜移开,看看培训师在说什么,然后在显微镜下操作练习。使用AR1系统后,受训者可以在眼睛不离开目镜的情况下接受培训,从而保持注意力集中,使得培训更高效,更灵活。如果培训师需要前往不同的地点,这会增加培训过程的时间和成本。有了AR1系统,培训师可以远程开展工作,而无需出差。这样更高效,省去了差旅费用,使其更具成本效益。因为指令可直接投影到显微镜视野中的样品上,制造商也可选择使用录制好的视频来培训新员工,无需聘请现场培训师。与客户现有体式显微镜无缝配合全新SZX-AR1增强现实系统可轻松加装到现有的SZX系列体式显微镜上,从而简化复杂的基于显微镜的制造任务以及装配人员的培训。我们还为体式显微镜提供多种人体工程学组件,让您在工作时保持舒适。符合人体工学的倾斜式三目镜筒和眼点调节器使用户能够调整显微镜,以便在工作时保持舒适、自然的姿势。
  • 我国成功研制高端超分辨光学显微镜
    p   12月26日,由中国科学院苏州生物医学工程技术研究所(简称“苏州医工所”)承担的国家重大科研装备研制项目“超分辨显微光学核心部件及系统研制”通过验收,标志着我国具备了高端超分辨光学显微镜的研制能力。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f803a627-1300-4f36-923e-c53c4d3ad202.jpg" title=" 1123909972_15458328762871n_副本.jpg" alt=" 1123909972_15458328762871n_副本.jpg" / /p p style=" text-align: center " strong 科研人员在用自主研制的激光扫描共聚焦显微镜观察细胞结构。 /strong /p p strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/603787a6-59a2-4609-bb37-a8c293834c42.jpg" title=" 1123909972_15458328763351n_副本.jpg" alt=" 1123909972_15458328763351n_副本.jpg" / /p p style=" text-align: center " strong 科研人员在用自主研制的双光子-STED显微镜观察亚细胞结构。 /strong /p p   在当今生物学和基础医学研究中,高/超分辨光学显微镜发挥着至关重要的作用,10-100nm尺度的超分辨显微光学成像是取得原创性研究成果的重要手段。我国对光学显微镜特别是高端光学显微镜的需求极其旺盛,但基本依赖于进口,这严重制约了我国生物学和基础医学等相关前沿领域的创新。 /p p   历时五年攻关,苏州医工所科研人员全面突破大数值孔径物镜、特种光源、新型纳米荧光增强试剂、系统集成与检测等关键技术,已经申请90余项国家发明专利,其中获得授权30余项 研制出激光扫描共聚焦显微镜、双光子显微镜、受激发射损耗(STED)超分辨显微镜、双光子-STED显微镜等高端光学显微镜整机 建成了高端显微光学加工、装调、检测以及显微镜整机技术集成工程化平台,培养出一支具备研制复杂精密高端光学显微镜能力的研发团队,为我国高端光学显微镜的发展提供了系统解决方案。 /p p   苏州医工所研制的超分辨显微镜或核心部件已在国内外多家研究机构使用并已取得部分成果。如:中科院动物所利用高端光学显微镜观察发育生物学中的基本现象,研究潜在调控机制。中科院药物所应用高端光学显微镜观察药物胞内靶向定位和输送,加速创新性新药研发。美国斯坦福大学、日本东京大学、陆军军医大学脑科学研究中心等专业实验室利用双光子显微成像技术进行了信息识别、行为控制等脑科学核心问题的研究以及动物在体成像实验,获得了高分辨实时神经元活动成像数据。 /p p   目前,显微镜和关键部件已有部分成果实现销售,例如:双光子显微镜已销往德国、以色列、美国等多家国外研究机构。北京大学、中科院神经科学研究所等国内科研机构也使用了该设备。具有自主知识产权的特种LED光源体系具备了国际竞争力,支撑了包括新一代投影、光医疗仪器以及远程照明等新兴产业的快速发展。共聚焦显微镜也已完成工程化,拟进行产业化生产和销售。 /p p   该项目的成功实施,极大改善了我国高端光学显微镜基本依赖进口的状况,对满足我国生物医学等前沿基础研究的定制化需求、提升创新能力,以及推动我国光学显微镜行业转型升级具有重要的战略意义。下一步,苏州医工所将结合研究所工程化及成果转化创新模式,实现科技成果在研发平台、工程化平台、产业化平台、市场平台的高效对接,通过系列化、组合化的产品布局,对显微镜系统和核心部件进行工程化、产业化。 /p
  • 一文看懂透射电子显微镜TEM
    p   透射电子显微镜(Transmission Electron Microscope, 简称TEM),是一种把经加速和聚集的电子束透射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度等相关,因此可以形成明暗不同的影像,影像在放大、聚焦后在成像器件(如荧光屏,胶片以及感光耦合组件)上显示出来的显微镜。 /p p   strong  1 背景知识 /strong /p p   在光学显微镜下无法看清小于0.2微米的细微结构,这些结构称为亚显微结构或超细结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM分辨力可达0.2纳米。 /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e4bcd2dc67574096b089e3a428a72210_th.jpeg" height=" 316" width=" 521" / /p /center p style=" text-align: center " strong 电子束与样品之间的相互作用图 /strong /p p & nbsp & nbsp & nbsp 来源:《Characterization Techniques of Nanomaterials》[书] /p p   透射的电子束包含有电子强度、相位以及周期性的信息,这些信息将被用于成像。 /p p    strong 2 TEM系统组件 /strong /p p   TEM系统由以下几部分组成: /p p   电子枪:发射电子。由阴极,栅极和阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速和加压的作用。 /p p   聚光镜:将电子束聚集得到平行光源。 /p p   样品杆:装载需观察的样品。 /p p   物镜:聚焦成像,一次放大。 /p p   中间镜:二次放大,并控制成像模式(图像模式或者电子衍射模式)。 /p p   投影镜:三次放大。 /p p   荧光屏:将电子信号转化为可见光,供操作者观察。 /p p   CCD相机:电荷耦合元件,将光学影像转化为数字信号。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/077c0e70dca94509a9990ee4bf72b7c8_th.jpeg" height=" 359" width=" 358" / /center p style=" text-align: center " strong 透射电镜基本构造示意图 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 3 原 理 /strong /p p   透射电镜和光学显微镜的各透镜及光路图基本一致,都是光源经过聚光镜会聚之后照到样品,光束透过样品后进入物镜,由物镜会聚成像,之后物镜所成的一次放大像在光镜中再由物镜二次放大后进入观察者的眼睛,而在电镜中则是由中间镜和投影镜再进行两次接力放大后最终在荧光屏上形成投影供观察者观察。电镜物镜成像光路图也和光学凸透镜放大光路图一致。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e9d4e63ae7de44bdb90ac7b937a15169_th.jpeg" height=" 333" width=" 422" / /center p style=" text-align: center " strong 电镜和光镜光路图及电镜物镜成像原理 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 4 样品制备 /strong /p p   由于透射电子显微镜收集透射过样品的电子束的信息,因而样品必须要足够薄,使电子束透过。 /p p   试样分类:复型样品,超显微颗粒样品,材料薄膜样品等。 /p p   制样设备:真空镀膜仪,超声清洗仪,切片机,磨片机,电解双喷仪,离子薄化仪,超薄切片机等。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/57ee42cd8391437292cd04cc7bd24694_th.jpeg" height=" 296" width=" 406" / /center p style=" text-align: center " strong 超细颗粒制备方法示意图 /strong /p p & nbsp & nbsp & nbsp 来源:公开资料 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ddf2c80dbe34a069bc51a3595a55160_th.jpeg" height=" 325" width=" 404" / br/ strong 材料薄膜制备过程示意图 /strong /center p   来源:公开资料 /p p   strong  5 图像类别 /strong /p p    strong (1)明暗场衬度图像 /strong /p p   明场成像(Bright field image):在物镜的背焦面上,让透射束通过物镜光阑而把衍射束挡掉得到图像衬度的方法。 /p p   暗场成像(Dark field image):将入射束方向倾斜2θ角度,使衍射束通过物镜光阑而把透射束挡掉得到图像衬度的方法。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/c458ccf5fa5c4ffa9cb948e2d28b76b0.png" height=" 306" width=" 237" / br/ strong 明暗场光路示意图 /strong /center center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/701e2e4343ea4409b3afdd92e1717804.jpeg" height=" 318" width=" 294" / br/ strong 硅内部位错明暗场图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (2)高分辨TEM(HRTEM)图像 /strong /p p   HRTEM可以获得晶格条纹像(反映晶面间距信息) 结构像及单个原子像(反映晶体结构中原子或原子团配置情况)等分辨率更高的图像信息。但是要求样品厚度小于1纳米。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/264c1d9b2f454ea9b8aa548033200a33.png" height=" 312" width=" 213" / /center p style=" text-align: center " strong HRTEM光路示意图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/d53de1201a4e41948d4d095401c3dc3b.jpeg" height=" 234" width=" 321" / br/ strong 硅纳米线的HRTEM图像 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (3)电子衍射图像 /strong /p p   选区衍射(Selected area diffraction, SAD): 微米级微小区域结构特征。 /p p   会聚束衍射(Convergent beam electron diffraction, CBED): 纳米级微小区域结构特征。 /p p   微束衍射(Microbeam electron diffraction, MED): 纳米级微小区域结构特征。 br/ /p p    /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/f6fc1e403ef74234af93d4f9979429cd.png" height=" 296" width=" 227" / /p p strong 电子衍射光路示意图 /strong /p /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/b0631c33d4b44f10bf9bdb0f908830c5.png" height=" 174" width=" 173" / /center p style=" text-align: center " strong 单晶氧化锌电子衍射图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ac3b6fb7b03421096ee3af0790b9acb.png" height=" 174" width=" 175" / /center p style=" text-align: center " strong strong 无定形氮化硅电子衍射图 /strong /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/02f2f6c3980a4450a36bc7bbc36f10e5.png" height=" 174" width=" 170" / br/ strong 锆镍铜合金电子衍射图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong 6 设备厂家 /strong /p p   世界上能生产透射电镜的厂家不多,主要是欧美日的大型电子公司,比如德国的蔡司(Zeiss),美国的FEI公司,日本的日立(Hitachi)等。 /p p    strong 7 疑难解答 /strong /p p    strong TEM和SEM的区别: /strong /p p   当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、背散射电子、俄歇电子、特征X射线、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。扫描电镜收集二次电子和背散射电子的信息,透射电镜收集透射电子的信息。 /p p   SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法特定剖面呈现出来,从而转化为可观察的表面 TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,一般为10到100纳米内,甚至更薄。 /p p    strong 简要说明多晶(纳米晶体),单晶及非晶衍射花样的特征及形成原理: /strong /p p   单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网格的格点上。 /p p   多晶面的衍射花样为各衍射圆锥与垂直入射束方向的荧光屏或者照相底片的相交线,为一系列同心圆环。每一族衍射晶面对应的倒易点分布集合而成一半径为1/d的倒易球面,与Ewald球的相贯线为圆环,因此样品各晶粒{hkl}晶面族晶面的衍射线轨迹形成以入射电子束为轴,2θ为半锥角的衍射圆锥,不同晶面族衍射圆锥2θ不同,但各衍射圆锥共顶、共轴。 /p p   非晶的衍射花样为一个圆斑。 /p p   strong  什么是衍射衬度?它与质厚衬度有什么区别? /strong /p p   晶体试样在进行电镜观察时,由于各处晶体取向不同和(或)晶体结构不同,满足布拉格条件的程度不同,使得对应试样下表面处有不同的衍射效果,从而在下表面形成一个随位置而异的衍射振幅分布,这样形成的衬度称为衍射衬度。质厚衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,适用于对复型膜试样电子图象做出解释。 /p p    strong 8 参考书籍 /strong /p p   《电子衍射图在晶体学中的应用》 郭可信,叶恒强,吴玉琨著 /p p   《电子衍射分析方法》 黄孝瑛著 /p p   《透射电子显微学进展》 叶恒强,王元明主编 /p p   《高空间分辨分析电子显微学》 朱静,叶恒强,王仁卉等编著 /p p   《材料评价的分析电子显微方法》 (日)进藤大辅,及川哲夫合著,刘安生译。 /p p   来源:中国科学院科普文章《透射电子显微镜基本知识介绍》 /p
  • 【清洁度显微镜微百科】产品和检测设备与时俱进
    # 始于航天,行于汽车清洁度最早的历史应用于航空航天工业,也可以用符号Sa表示。60年代初美国汽车工程师( SAE )和美国宇航工业协会( SAE )开始使用统一的清洁度标准,从而全面地应用于航空和汽车行业。机电仪表产品的清洁度是一项非常重要的质量指标。清洁度表示零件或产品在清洗后在其表面上残留的污物的量。一般来说,污物的量包括种类、形状、尺寸、数量、重量等衡量指标;具体用何种指标取决于不同污物对产品质量的影响程度和清洁度控制精度的要求。(摘自:百度百科)而汽车行业中关于清洁部件的要求,最早则由罗伯特博世公司(Robert Bosch)在1996年为了提高柴油汽车发动机共轨喷射系统的生产质量而提出的,他们在生产流程中发现小喷嘴很容易被系统中残留的污染颗粒堵塞,因此提出了生产中清洁部件的质量规范,由此诞生了零部件清洁度测试标准。此后,在汽车系统中很多可靠性问题都被归因于微粒子污染,即零部件清洁度不足。(摘自网络)产品与要求一同进化随着汽车工业的的大规模发展,汽车类产品的制造技术日益复杂,为了保障汽车的行驶安全,因此需要更高水平的污染控制能力。(当然,不仅是汽车、航空航天、重型机械和电气工程行业,技术产品日益复杂,因此对生产条件和生产部件的清洁要求也日益提高。)技术设备和部件表面上残留的污物可能会导致设备性能不可靠和/或很差;在制造过程中,设备上残留的颗粒会造成停工、延误交货时间、浪费材料和能源以及退货等问题。技术清洁度检测应用包括对ABS系统、柴油喷射器、制动卡钳、液压系统、管道、PCB、互连系统和较大重型机械部件的清洁情况进行检测。清洁度检测过程技术清洁度检测是一个包含了一系列准备步骤和检测步骤的较为复杂的过程,此文将对技术清洁度的检测过程进行概括介绍。检测之前对部件的准备工作分为如下步骤:部件清洗准备阶段始于从生产线上取下一个部件样本并进行清洗(在提取步骤之前)。提取在放置于无尘室的提取柜中去除被测部件上的颗粒。可以通过冲洗、喷洗、晃动冲洗或超声波清洗的方法去除颗粒。过滤对提取液进行过滤,并在滤膜上收集提取的颗粒(过滤材料包括纤维素、聚酯、玻璃纤维和尼龙网布)。烘干并称重滤膜被烘干,并准备接受进一步分析。滤膜烘干后,会留下所有杂质,然后,使用分析天平对其称重检测过程包括以下步骤:图像采集和载物台的移动烘干的滤膜被放置在电动显微镜的载物台上,以采集检测所需的图像。颗粒的探测观察滤膜的图像,以找到表现为明亮背景中黑色区域的颗粒。粒径的测量根据不同参数对所探测到的颗粒进行测量,这些参数包括:最大卡尺直径(与颗粒投影相切的两条平行线之间的距离)和等效圆直径。粒径的分类对颗粒进行了测量之后,将颗粒分成不同的粒径级别组。两个主要粒径等级为差值(由最小和最大粒径定义)和累积(仅由最小粒径定义)。颗粒计数外推法在滤膜中定义一个区域进行扫查,并探测其中的颗粒。这些区域可以是滤膜尺寸(整个滤膜区域)、流经区域(颗粒所覆盖的滤膜区域)、最大扫查区域(检测所能扫查的最大区域),以及检查区域(由用户定义的实际扫查区域)。颗粒计数归一化由外推法获得的颗粒计数被归一为某种比较值,从而可以对多次测量获得的结果进行比较。归一化方法包括清洗区域(归一为1000平方厘米区域的颗粒计数)、清洗体积(归一为100立方厘米区域的颗粒计数)、清洗样件(归一为单一样件的颗粒计数),以及过滤流体(归一为1毫升或100毫升过滤流体的颗粒计数)。污染水平的计算这种分类水平不是由粒径决定的,而是由(大多数国际标准)所定义污染级别中的颗粒总体数量决定的。清洁度代码的定义某些标准将测量数据的表现方式简化为简要的说明。这种清洁度代码根据标准而定义,并由粒径的级别和污染水平构成。最大审核值进行核查以获得最大审核值是一个可选步骤。如果需要获得一个最大审核值,则会在检测配置中确定,也可能会确定一个颗粒绝对数量值或者一个最大清洁度代码。反光颗粒和非反光颗粒的区分金属颗粒和非金属颗粒之间的区别是通过确定颗粒是否反光而完成的(这种区分极其重要,因为金属颗粒会造成比非金属颗粒大得多的伤害)。纤维鉴别在滤膜上探测到的纤维通常与滤膜上发现的其他颗粒来自于不同的地方(例如:纤维可能来自工作服或者抹布)。因此需要根据评估清洁度所使用的标准,识别、分析或忽略纤维。结果的复核在复核结果的过程中可能会执行以下操作:删除被错认为颗粒的项目;将靠得很近并被错认为是单个大颗粒的多个颗粒分开;将靠得很近并被错认为是不同颗粒的一个颗粒的组成部分融合在一起;修正错误的颗粒标签(例如:金属或非金属)。报告的创建技术清洁度检测报告可以包括某些颗粒采集参数的说明、颗粒分类表、颗粒区域覆盖的详细信息,以及最大颗粒的图像。CIX清洁度显微镜:为技术清洁度检测而设计技术清洁度检测向检测人员提出了一系列挑战,其中包括在检测过程中核查检测结果,同时观察反光和非反光颗粒,每天检测多个样本,基于不同的标准修正并重新计算结果,以及制作合规性报告分享结果。OLYMPUS CIX系列清洁度显微镜,特别为技术清洁度检测而设计,不仅可以迎接上述挑战,而且使用方便,可以使用户在非常舒适的条件下完成检测。OLYMPUS CIX系列清洁度显微镜的高端光学部件,硬件和软件的无缝整合,以及无需维护的可靠设计,确保了图像条件的再现性,并使清洁度检测成为一项可以轻松完成的日常任务。
  • 热议中国电镜技术进展!ACAIC 2023 “电子显微镜创新论坛”成功召开
    仪器信息网讯 2023年11月29-30日,第八届中国分析仪器学术大会(ACAIC 2023)在浙江杭州成功举办。本届大会由中国仪器仪表学会分析仪器分会主办,吸引了全国500余位科技管理人员、专家学者和和仪器企业相关人员齐聚杭州,并组织了11个分论坛,聚焦分析仪器、生命科学仪器、电镜、半导体,以及核心零部件、临床诊断等主题。论坛现场从仪器技术难度来看,电子显微镜处于仪器行业的金字塔尖,2017年其细分领域冷冻电镜的三位科学家共同获得了诺贝尔奖。当前,国内电子显微镜研制及应用现状如何,有哪些新的突破和进展?国内冷冻电镜平台建设和管理有哪些创新之处?围绕这些问题,11月30日下午,由北京大学冷冻电镜平台组织的“电子显微镜创新论坛”成功召开。北京大学冷冻电镜平台副主任/高级工程师 郭振玺 主持会议本次会议由北京大学冷冻电镜平台副主任/高级工程师郭振玺主持,邀请了9位致力于电子显微学技术研究的科研院所和企业代表分享报告。报告人:浙江大学教授 张跃飞报告题目:纳米分辨可视化原位显微结构与性能一体化测试仪器开发与应用调控微观组织结构是先进性能优化的主要手段,长期以来材料微观结构与性能关系研究主要依靠离位表征,缺乏材料加工或服役条件下微观结构演变和与之相应的性能调控的全时空纳米分辨可视化过程信息。纳米分辨可视化原位扫描电镜的开发,实现了从纳米到宏观尺度可视化研究材料在高温受力条件下微观结构演变与力学性能间定量化关系,是优化材料制备工艺、质量检测、服役寿命评估、安全性评价重要科学手段。报告介绍了纳米分辨可视原位仪器最新进展、原位表征方法发展及其在合金研究中应用的最新成果。报告人:北京大学冷冻电镜平台副主任/高级工程师 郭振玺报告题目:冷冻电镜平台建设管理及自主创新经验交流大科学平台是支撑基础研究和科技创新的公共平台。北京大学冷冻电镜平台是学校公共平台建设重点项目,于2015年下半年论证建设,2017年开始运行。平台致力于打造国际一流的高端科研平台,为全校生命科学及相关学科提供全面的冷冻电镜技术服务,促进学科深度交叉融合,助力学校双一流建设。报告结合了郭振玺多年的工作经验,介绍了前沿冷冻电镜平台的规划建设,承担的重大建设任务,冷冻电子断层成像技术(Cryo-ET)流程等。报告人:莱腾仕精密机电(上海)有限公司中国区销售经理 靳路山报告题目:荷兰NTS集团-助力扫描电镜(SEM)高端制造和装配扫描电镜 (SEM) 是国之重器,也是精密仪器高端制造的典型代表设备,涉及到光学,电子光学,超高精密加工制造,超高精度机械装配等跨专业,跨领域专业知识。据介绍,NTS集团作为荷兰-埃因霍温高端制造工业的典型企业,历经80年的悠久历史,长期为国际巨头如ASML、赛默飞等企业提供超高精密零部件,超高精密运动模组,也着重助力中国本土扫描电镜迈向高端化,智能化,模组化。报告人:浙江工业大学副教授 李永合报告题目:先进扫描电子显微方法功能化进展扫描电子显微镜长期以来在材料介观尺度表面形貌、成分、结构表征方面具有举足轻重的作用。然而随着对材料研究的深入,对扫描电镜的技术方法的要求也日益苛刻。扫描电镜透射化可以实现扫描电镜的透射成像功能(STEM-in-SEM)来获得体相二维投影信息,SEM-FIB重构进一步实现材料形貌的三维重构可视化,超低温冷冻平台科研实现电子束敏感材料无损制备,同时原位技术装置引入又可以实现材料外场下的动态形貌结构演变观察,这些最新方法极大地丰富和发展了现代先进扫描电子显微学。基于此,报告着重介绍了发展的STEM-in-SEM方法和SEM-FIB三维重构在弱衬度材料表征应用,以及循环条件下,全固态电池失效行为的原位研究等工作。报告人:中国科学院上海药物研究所上海市高峰电镜中心执行主任 袁青宁报告题目:不同型号Titan Krios冷冻透射电子显微镜性能探索随着2017年诺贝尔化学奖授予冷冻电镜领域3位科学家,冷冻电镜逐步的进入大众的视野。冷冻电镜的出现也填补了电子显微技术解析电子束敏感样品这一领域的空白。随着近几年冷冻电镜相关的硬件和软件的发展,冷冻电镜也逐步出现不同的选择,性能也褒贬不一。目前市场上的冷冻电镜主要分为热场和冷场,相机主要分为Gatan的K3和赛默飞的Falcon4i。袁青宁通过研究不同型号Titan Krios冷冻透射电子显微镜性能发现,Stage shift和AFIS数据收集方式对于数据质量影响不大;即使可以后期校准,coma会影响数据的质量;Selectris X+Falcon4i可以和Biocontinuum+K3相机平分秋色;Selectris中slit的稳定性好于Biocontinuum。报告人:国仪量子(合肥) 技术有限公司高级应用工程师 刘怡童报告题目:国仪量子电镜技术最新进展及应用报告介绍了国仪量子电镜的最新产品和技术进展,包括国产聚焦离子束电子束双束电镜和超高分辨扫描电镜。结合国仪可搭载的不同探测器,刘怡童介绍了在不同行业积累的应用案例,并表示国仪是一家可实现高度研发,生产制造可控的国产电镜厂商,国产电镜进入全新时代。报告人:浙江大学工程师 郭建胜报告题目:体电子显微成像技术在生物样品超微结构分析中的应用体电子显微成像技术(volume electron microscopy)可以在大三维空间中对样品进行纳米分辨率三维结构分析,获取样品内部结构的三维模型和各结构之间的位置关系、体积比例等信息,更加全面的反映样品超微结构与功能的关系。该技术已在神经生物学中成功解析了神经元的链接方式,目前正在快速的向细胞生物学、临床医学、植物学等多个学科发展。报告人:常州隆斯克普电子科技有限公司总经理 刘晓斌报告题目:电镜制样新进展样品制备对电镜成像效果至关重要。常州隆斯克普研发的电镜样品冷冻升华断裂综合实验仓,为样品提供 10-4Pa 等级的真空保护:样品台中心点位的温度可以在-150°C到+105°C间进行精准调控,实现低温保护和升华;配备预冷断裂刀;并可以选配离子枪溅射镀膜套件,含高功率离子枪和专利四靶材靶材托。此外,还可以根据用户既有设备选配或定制专用样品仓,实现和电镜或其他设备的无缝连接。报告人:南方科技大学技术主管/高级工程师 马晓旻报告题目:南方科技大学冷冻电镜中心建设与管理马晓旻在报告中总结了南方科技大学冷冻电镜中心大型仪器设备的状况、大型仪器设备平台开放共享管理系统及运行模式。从管理框架、开放共享等方面,探讨了南方科技大学冷冻电镜中心的管理及运行机制,并介绍了这方面的建设效果。电子显微镜是人类探知微观世界最有力的工具之一,它能够提供比光学显微镜更高分辨率的图像,从而让我们能够更深入地了解微观世界。本次“电子显微镜创新论坛”的召开将促进电子显微学技术交流及相关仪器产业发展、探索国产电镜相关仪器在前沿研究中的应用前景,激发创新思维,促进合作共赢,为电子显微学注入新的动力。
  • 蔡司推出应用于Xradia 3D X射线显微镜的高级智能化重构技术
    德国耶拿, 2020年8月3日蔡司最新发布的高级重构工具箱(Advanced Reconstruction Toolbox),适用于行业先进的蔡司Xradia 3D X射线显微镜和计算机断层扫描系统。借助该工具箱,蔡司还宣布上线两个模块:用于迭代重构的OptiRecon升级版,以及用于显微镜的首个商业化深度学习重构技术DeepRecon。蔡司高级重构工具箱适用于Xradia 3D X射线平台,不仅能够让客户持续地体验全新的重构技术,还可以提供各种灵活的策略,满足科研人员不断变化的成像需求。这种基于AI的工具箱融合并优化了传统“滤波反投影(Feldkamp-Davis-Kress,FDK)”算法的先进重构技术,可有效减少投影次数,扫描时间可缩短达10倍(具体取决于模块和材料)。这些技术优化了数据采集和分析过程,从而加快您决策效率。智能化图像重构的发展进步将3D X射线技术扩展到生产制造、工艺过程和质量控制应用。同时,蔡司OptiRecon和DeepRecon模块不仅可以保证稳定的图像质量,还可以针对诸多应用的需求而大幅提升图像质量。这些新功能解决了一直以来图像质量与样品通量之间权衡取舍的难题。蔡司OptiRecon能够帮助科研人员对许多类型的样品进行出色的内部层析成像或高通量分析,同时提高衬度噪声比。蔡司DeepRecon还能够将重复工作流程的各类样品分析效率提升一个数量级,使得3D X射线显微镜成为了用于生产制造、工艺过程和质量控制的可靠解决方案。韩国东新大学J.H. Shim教授博士(前电子行业首席研究员)在谈到典型的科研应用时表示:“只有蔡司才能在如此短的扫描时间内以较少的投影次数实现聚合物隔膜的可视化。对工业电池客户而言,OptiRecon和DeepRecon堪称颇具吸引力的应用。”蔡司X射线显微镜(加利福尼亚州普莱森顿)负责人Daniel Sims表示:“这些先进的工具能够帮助工业界和学术界的客户丰富研究内容,加快研究效率,扩展其购置的蔡司Xradia显微镜的功能,从而最终获得更高的投资回报。”蔡司高级重构工具箱以及可选配的OptiRecon和DeepRecon模块可直接用于对现有的蔡司Xradia Versa和Context显微镜进行升级,进一步强化当前系统的功能,此外也可对新的蔡司Xradia X射线显微镜进行升级。编者注:3D视频图像及相应的图像投影示例可用于多种技术,包括电子、材料科学、能源材料、建筑材料、采矿业、地球科学、石油和天然气、半导体、汽车、工业制造以及增材制造。关于蔡司蔡司是全球光学和光电领域的先锋。蔡司致力于开发、生产和行销测量技术、显微镜、医疗技术、眼镜片、相机与摄影镜头、望远镜和半导体制造设备。凭借其解决方案,蔡司不断推动光学事业的发展,并促进了技术进步。公司共有四大业务部门:工业质量与研究、医疗技术、视力保健/消费光学和半导体制造技术。蔡司集团在40多个国家/地区拥有30多座工厂、50多个销售与服务机构以及约25个研发机构。 全球约27,000名员工在2016/2017财年创造了约53亿欧元的业绩。公司于1846年在耶拿成立,总部位于德国奥伯科亨。卡尔蔡司股份公司是负责蔡司集团战略管理的控股公司。公司由Carl Zeiss Stiftung(卡尔蔡司基金会)全资所有。 蔡司研究显微镜解决方案蔡司研究显微镜解决方案是光学、电子、X射线和离子显微镜系统的一站式制造商,并提供相关显微镜的解决方案。产品组合包括生命科学和材料研究以及工业,教育和临床实践有关的产品和服务。该部门的总部设立在耶拿。其他生产和开发基地位于奥伯科亨,哥廷根和慕尼黑,以及英国剑桥、美国马萨诸塞州皮博迪和美国加利福尼亚州普莱森顿。蔡司研究显微镜解决方案属于工业质量和研究部门。部门约6300名员工在2016/2017财年创造了总额达15亿欧元的业绩。更多产品相关性息蔡司Xradia 610 & 620 Versa
  • 专为国际合作而设计的高精密3D显微镜,核心因素是......
    现如今,全球跨国际性的合作已很常见,而有效促进合作更便利的工具就显得尤为重要。为此,Octonus开发了3DDM,这是一款高度精确且灵活的3D数字显微镜,能够让身处不同位置的团队成员在虚拟会议室中同时查看3D物体。而且3DDM还提供各种图像增强选项,使查看者可以使用单个系统快速查看更详细和完整的物体图片。Octonus凭借超过20年生产工业图像处理和分析系统的经验,已为许多项目提供硬件和软件。该公司是重构半透明物体内部结构的光学方法开发以及2-50毫米尺寸物体的精确3D模型开发方面的先驱者。3DDM的含义及工作原理Octonus 3DDM是以Leica Microsystems 的(Wetzlar,德国)M205a立体显微镜为基础。3DDM由一个标准的Leica平台和以下附件组成:一个安装在电动精密滑台上的物体支架,一个定制的LED照明系统以及一对FLIR Grasshopper3 相机。FLIR Grasshopper3相机FLIR Grasshopper® 3 相机系列将新的CCD和CMOS技术与Point Grey的专利技术相结合,实现了高性能、高质量的成像。其中Grasshopper® 3 GigE相机系列主要使用Sony CCD传感器和Sony Pregius IMX174传感器。为了创建图像,操作者在3DDM的物体支架上安装了一个样本。操作者可以使用鼠标、键盘或3D操纵杆等标准设备在相机的视野下旋转样本。同时,根据相机和系统的光学孔径调整聚焦驱动装置,从而捕获清晰的3D视频图像。随着被照明的样本在物体支架上旋转,两个FLIR Grasshopper GS3- U3-23S6C-C彩色相机会捕获实时的高质量视频流。PC以压缩视频格式将相机捕获的数据存储为3D视频流或3D/2D图像。它还在图像或视频序列的基础上存储每帧的完整数据集(光学孔径、光照系统和支架的所有数字设置),这使处理实时或录制数据成为可能。在PC上运行的图像分析软件以高十微米的精度测量物体特性。合并的2D/3D模式允许在3D空间中和沿穿透物体的投影面进行测量。3DDM的物体照明和数字增强选项凭借显微镜的多功能LED光源,可通过多种方式照明样本。光源可以同轴提供可见的近红外或紫外照明,到样品的背面,或到侧面,具体取决于其编程。暗视野照明是一种非常适用于捕获天然活体生物样本图片序列的技术,可增强所收集图片的对比度。3DDM还提供各种数字增强选项,使操作者能够捕获细节。这些选项的示例包括:★ 高动态范围成像 (HDRI) 可在原本曝光不佳的区域增强正确捕获的图像细节;★ 12位色调映射在标准显示器上支持精确的HDR图像显示;★ 扩展景深 (EDF) 技术用显示整个聚焦物体的单张照片的分析替代照片序列的分析;★ 自动提高图片分辨率和视野的图像切换算法。3DDM的更多功能虚拟会议室3DDM使用3D电视和立体眼镜来创建虚拟会议室,从而促进全球团队合作。演讲者可以添加经过标注的图像,或通过使用鼠标光标、切换图像、放大和缩小、更改FPS或者添加和删除图层来将同事的注意力引导到重要的细节上。还可以通过3D模型、测量工具和增强现实等计算机生成的输入,对现实世界的元素进行补充。定制3DDM为客户和开发人员提供C++ SDK(软件开发工具包)。该SDK可用于控制系统的光照、光学单元和支架,它还允许对现有图像处理算法进行扩展或添加。后续步骤在不久的将来,Octonus将通过把其相机从2.3 MP 升级到5-12 MP,提高3DDM所捕获的3D视频图像的分辨率。Octonus开发的3DDM中最核心的要素就是FLIR Grasshopper相机它让图像细节捕获的更加清晰让全球各地的团队合作更加紧密
  • “国产设备+基础模型” 中国科学家团队让显微镜秒变高清相机
    4月13日,记者从复旦大学获悉,该校计算机科学技术学院教授颜波带领的团队的研究成果发布在科学期刊《自然-方法》(Nature Methods)上。他们发明的跨任务、多维度图像增强基础AI模型(UniFMIR),实现了对现有荧光显微成像极限的突破。何为荧光显微镜?这类显微镜利用部分物质受紫外线照射后可发荧光的特性,以及通过染色让本不具有该特性的物质发出荧光,可以观察细胞内物质的吸收、运输、化学物质的分布及定位等。在分辨率方面,它远超普通光学显微镜0.2微米极限,到达观测分子的纳米尺度,是生命科学领域不可或缺的研究工具。自2006年横空出世,荧光显微镜已帮助全球科学家研制出了对帕金森氏症、阿尔茨海默氏症和亨廷顿氏症等神经退行性疾病更有针对性的治疗方法。尽管荧光显微镜的观测分辨率已达到纳米尺度,但科学家们并不满足于此。由于显微镜光学硬件和生物样本光敏感性(在荧光照射下,生物活性降低)带来的挑战,过去几年中,生命科学和计算机领域的科学家们开始携手探索用AI的路径来增强图像质量的办法。然而,成像模式多样、降质类型复杂、增强过程迥异等一系列问题,使得这一任务极具挑战性,于是,大多数科学家选择“每次解决一个问题”,聚焦于研制针对单一需求的“专有”AI模型。来自复旦大学的这支团队,以“一站式集成”为目标,直接构建了首个“统一”的荧光显微镜图像增强AI基础模型(UniFMIR),大幅提升在“图像超分辨率重构、各向同性重构、3D去噪、图像投影和过程重建”五大任务方向上的性能。据悉,这一显微镜可以帮助科学家们能更清晰地观察到活细胞内部的微小结构和复杂过程,加速全球生命科学、医学研究、疾病诊断相关领域的科学发现和医疗创新;同时,在半导体制造、新材料研发等领域,该成果可以用来提升观察和分析材料微观结构的质量,从而优化制造工艺和提高产品质量。同时,这一研发成果,也标志着我国在关键科学仪器领域“国产设备+基础模型”的组合能有效减少对进口设备的依赖,也为全球科研领域的进步贡献了中国智慧和力量。
  • 共聚焦和光片显微镜将继续成为光学显微技术基石——牛津仪器ANDOR谈高端光镜
    光学显微镜已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,为了满足蓬勃发展的生命科学领域不断产生的新的需求,光学显微镜在成像速度、成像深度、克服光毒性等许多方面也不断发展出新的技术。仪器信息网特别关注高端光学显微镜的技术发展和在生命科学领域的应用进展,并广泛向国内外高端光学显微镜企业约稿(投稿邮箱:lizk@instrument.com.cn),帮助广大用户了解相关技术与应用进展。本篇为牛津仪器ANDOR供稿,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,在生命科学等领域被广泛应用;2009年,联合推出sCMOS相机,被广泛应用于生命科学、材料科学、物理科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功;近日,ANDOR又推出了BC43台式共聚焦显微镜新产品,操作简便可帮助用户提高工作效率。跟随本文,全面了解这家成立32年的公司,其“一步一个脚印”的发展历程、他们对当前光学显微镜技术和应用现状的解读以及技术未来发展趋势的展望。仪器信息网:请回顾一下贵公司光学显微镜技术的发展历程。1989年的一个下午,爱尔兰岛东北部的贝尔法斯特女王大学物理系的Donal Denvir发现当时任何一款相机都无法满足实验检测的需求,他下定决心开始研制一台全真空密封的相机来支持自己的研究应用。新研制的相机经过Andor创始团队不断精心改进,成功应用于各种成像与光谱研究。Andor对显微镜技术的重大贡献是2002年推出了第一台EMCCD(电子倍增电荷耦合器件)相机iXon,这种超灵敏的相机带来了新的契机,能够检测在显微镜下观察的样品中的单分子荧光信号。2005年,ANDOR推出的Revolution活细胞成像系统,iXon与转盘技术的强大组合,大大改善了转盘共聚焦在高对比度活细胞显微成像中的效用,以及对活体样品进行三维成像的能力,赢得了行业用户的广泛关注。2012年,ANDOR将EMCCD现有帧率提升3倍,显著提高了产品性能,并帮助研究人员更多地了解生物样本的快速动态事件。2009年,ANDOR推出sCMOS相机Neo, 此后sCMOS成为使用最广泛的科学相机技术,并且广泛应用于显微镜领域。sCMOS提供了比之前更高的分辨率和更快的帧速率,因此促进了对细胞,特别是细胞内动态和细节的更深入了解。 这种sCMOS技术与EMCCD技术相辅相成,同一台显微镜下可以兼顾灵敏度或者分辨率和速度。同年,ANDOR在显微系列产品组合中增加了两个光刺激模块Mosaic和MicroPoint。Mosaic基于DMD方法,可以在亚细胞或更高分辨率下实现多个照明区域的精确定义。这个工具被用来对显微镜下观察的样品进行光活化、转换或漂白。 这些方法是进行亚细胞实验和了解蛋白质、亚细胞分隔和细胞器的时空行为的有力方法,或者在更大的范围内跟踪大群体中的单个细胞。 该技术发明之前,显微镜只是一种被动观察的工具,但现在可以在显微镜下主动研究细胞和系统生物学。 最近有研究显示,Mosaic与光遗传学相结合,可以成为一种特别有用的工具,这种方法可以促进信号和其他通路的特定光控制。 MicroPoint具有类似的优势,但可用于:(a) 炎症、伤口和愈合与发育的消融研究;(b) DNA损伤,创造DNA断裂的模型,这是细胞可能成为癌症的早期触发因素。这个模型被用来理解DNA修复如何在治疗中发挥作用。2010年,ANDOR收购了Bitplane,将高端三维图像可视化和分析软件Imaris纳入显微产品组合。 Imaris提供广泛的工具来分析一些研究领域的三维图像数据,包括细胞和发育生物学、神经科学、癌症研究和组织分析。2016年,ANDOR推出 Dragonfly,这是为研究人员提供的完整的显微成像解决方案。荣获行业大奖的Dragonfly 500通过转盘设计的改进(详见下文),并结合(a)TIRF(全内反射荧光显微镜),这是一种专门用于细胞膜成像的强大技术(如受体周转和囊泡对接);(b)基于激光的宽视场显微镜,用于微弱光的荧光成像;(c)用于超分辨率成像的光学器件(包含3D成像)。 Dragonfly使研究人员有能力在一台显微镜上对细胞进行比以往更详细的研究。Dragonfly在以下几个方面对现有的转盘技术进行了重大改进:(1)引入Borealis专利照明技术,在基于微透镜的转盘共聚焦显微镜中提供交叉视野照明。这使研究人员在更准确的图像分析、更高质量的大面积和样品拼接的蒙太奇成像中受益。(2)更好的信噪比,实现更高的对比度成像:使用价格较低的低功率激光器,或为dSTORM和DNA-PAINT超分辨率成像或基于图像的单细胞原位转录组学等技术提供更多功率。(3)更稳定的照明源,维护费用低。• 实时样品体积渲染,用户能够快速了解他们的实验进展,并对修改方案做出早期决定和结论。• 更低的仪器本底噪音使研究者能检测到更弱的荧光信号,观察到更细致的生物学现象。• 独特的转盘设计,在保持高速采集速度的同时,可以对样品进行更深入的成像(从数百微米到毫米尺度)。这也意味着转盘技术可以对大型固定样品进行成像,因此为组织成像以及斑马鱼和果蝇等大型模式生物的成像提供了一个高产的解决方案。2017年,ANDOR推出了SRRF-Stream+ ,这是一种超分辨率技术,可以轻松地添加到现有的相机中,或与Dragonfly等显微成像解决方案一起使用。这项技术打破了光学显微镜系统的自然分辨率限制,从200纳米下降到50纳米。现在,研究人员可以观察到他们以前看不到的结构,可以从图像中了解更多信息。 此外,SRRF-Stream+ 无需专门的光学设备或方法来执行,并且可以与几种不同的成像技术一起使用,因此,它可以为更多研究团体所用。2021年,岁末当下,ANDOR推出了BC43台式共聚焦显微镜。一个完整的转盘共聚焦解决方案被整合在如此一个不透光的小设备里。BC43操作非常直观和简单,即便是显微镜新手也能轻松掌握。BC43可以放在普通的实验台上,成为高效实验室工作流程的一部分。简单的操作流程和较少的维护需求使这款设备能够给用户带来非常高的工作效率。此外,BC43内含Dragonfly中的Borealis照明和一些新技术包括内置的一个新激光引擎以实现更小的占地面积。仪器信息网:当前贵公司主推的产品和技术有哪些。贵公司在高端光学显微镜方面有哪些独具优势的技术?我们公司目前推广和之前描述的显微成像产品是• 用于显微镜的灵敏科学相机EMCCD 和 sCMOS• Dragonfly系统• BC43台式转盘共聚焦显微镜• 激光耦合器• 用于显微镜的光刺激设备Mosaic和MicroPoint• 显微镜用的光谱仪和显微制冷机• 三维可视化分析软件Imaris• 超分辨技术SRRF-Stream+ (技术优势参考上述内容)仪器信息网:贵公司高端光学显微镜在生命科学研究中有哪些应用?目前Andor的转盘共聚焦显微镜灵敏度高、成像速度快、分辨率好,可进行3D+动态立体信息探索,在细胞生物学、发育生物学、肿瘤生物学、疾病与免疫学、微生物学、神经生物学、生物物理学等不同领域均表现卓越。细胞生物学家们借助Dragonfly探究细胞内精细的亚细胞结构如线粒体成像、细胞膜动态、细胞周期与分裂、微管动力学、胞内运输、囊泡运动。同时,作为研究发育和厚组织的利器,Dragonfly可以观测受精卵及早期胚胎发育、肢体形成、模式生物如(果蝇、线虫、斑马鱼)的完整生物体成像、类器官发育分化、血管及血流变化;在神经生物学和植物学等方向,借助高速特点可以进行单分子和钙成像,对于透明脑、体外培养的活组织及切片,三维成像和活体培养极为关键;肿瘤或疾病免疫方向的固定的大组织切片、石蜡切片、透明化组织、病原宿主的互作、受体循环与定位等;以及蛋白互作、单分子运动、内吞外排、膨胀显微镜、空间转录组多维成像等。仪器信息网:从整个行业的角度,对于目前的高端光学显微技术,您比较看好哪些?还有哪些问题亟待解决?未来光学显微镜的技术发展趋势如何?我们相信,任何有利于更快、更深、高对比度成像的技术都是可以看到需求继续增长的关键领域。 因此,共聚焦和光片显微镜将继续成为受欢迎的显微技术基石。我们将看到越来越多的研究会引入光操纵,从而更好地了解细胞内信号通路,以及细胞群体间(如神经细胞)如何相互沟通。Andor有几十年丰富的基础生物学研究,现在正是将这些知识转化为未来临床和社会经济相关问题解决方案的基础,包括植物生物学和动物生物学。这需要进行重大调整,将细胞层面的基础研究纳入多细胞、器官和整个生物体的范畴。未来显微镜在光学能力和提高生产力方面都需要扩大规模。为了支持对样品进行更深入的成像,特别是自从透明化组织的技术出现后,存在着补偿由于折射率不匹配而产生的光学畸变的挑战,以及其他来自样品的光学限制。这方面的潜在解决方案之一是使用自适应光学技术。目前有一些想法已经发表,但还有很多东西需要开发,并使之成为一个光学上高效和紧凑的解决方案,以获得良好的商业解决方案。此外,显微镜需要从 "专家 "技术转变为科学界更广泛、普适的技术。它可以为特定主题(如癌症)完整研究的一部分提供强大的支持。我们看到,对于越来越多的研究人员而言显微镜的使用是其工作流程和发表论文的关键环节。基于对此理解,我们历时达五年之久设计了一键成像的台式共聚焦BC43,将3D+成像融入到普通实验室的日常工作,减除了复杂操作和仪器放置的种种烦扰和顾虑。我们认为应该对图像采集和分析协同结合有所期待,分析可以用来帮助复杂的显微实验的自动化,使显微镜操作步骤实时适应正在研究的样品中发生的情况。通过Dragonfly及BC43结合Fusion和Imaris可以实现从样品图像采集到分析的无缝衔接,这种捕捉-分析相结合的工作流程将促进易用性,使更多的研究人员能够运用高级的显微成像方法。未来如果对一些典型的生物医药应用案例的参数进行提取优化,结合人机交互和机器学习的先进算法,帮助研究者进行实时获取批量数据特征,在观测过程中及时优化调整。疫情以来,越来越多的研究工作者采用线上办公形式,此外,设备过度占用日常科研本就繁忙用户或管理员的时间,亟需各种长时程高频使用的设备包括显微成像及分析趋向于在线自动化远程监测、控制。智能化的人机交互及不同端口多界面控制、物联网设备的稳定运转及报告反馈的联网尤为重要。利用AR、VR及远程全息投影等方式,也可针对设备使用、培训、考核进行更多方案的优化。Dragonfly作为某些平台中心和课题组的成像利器,常年全日无休稳定运转,也给了我们信心未来可以在无人值守及远程控制上进一步探索。如今,随着采集大量图像数据能力的提高,所有研究机构和公司,都面临的一个至关重要的问题:采集的数据在进行转移、存储和分析方面均存在瓶颈,耗费过多的金钱、时间、人力成本。此外,确保分析软件包能加载导入数据并进行有效地分析是一个需要持续关注的问题,需要开发团队对大数据有深层的理解并不懈改善算法和架构。对于大数据分析而言,存储和算力的高要求,不断优化系统配置可能难以覆盖爆炸式的增长,业内伙伴和用户的共同努力,有望能建立云端强大的数据转移、存储、分析体系,以分配更适合终端需求的相应资源,安全、高效、灵活的解决不同需求。在此过程中,如何更好的促进共享、保护隐私值得关注和讨论。仪器信息网:从整个行业的角度,您如何评价目前高端光学显微镜的应用情况?应用过程中还有哪些亟待解决的问题?未来光学显微镜应用将会如何发展?基于对学术设计及对概念验证的大力投入,高端光学显微技术目前发展迅速,挑战在于如何将其精炼成易于商业化的、强大易用的解决方案,从而有助于探索一系列的科学问题和不同应用。这些解决方案的范围包括现有技术的持续进步,如用于体外实验用到的共聚焦和光片,也有越来越多的人需要使用当下这些技术和其他尚未建立的光学技术,以进一步提升对体内或在体实验模型的成像,后者是药物发现和其他疾病治疗转化医学领域的重要环节,需要实验设计和成像设备选型上在NIRⅠ、Ⅱ区的标记、照明、检测上有更多适配。应用方面,先进的科学研究机构、CRO公司和医学院基于平台和服务商的稳定支持,能够基于现有技术对系统进行改造,可以支撑更复杂的需求,如微流控装置或一些电磁场刺激及重力场变化。未来我们相信,更多涉及人类幸福健康的行业团队包括生命科学、医学、化学、材料学、半导体、农业、太空科学将利用光镜发现、验证自己的理论,并结合先进的技术如精细力学控制、3D打印等对目标物进行观测、改造。仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距?国产光学显微镜在中低端显微镜市场占领份额较多,如江西凤凰、麦克奥迪、永新光学等品牌,或作为高端品牌的元器件代工厂,厚积薄发,未来一定为国内光镜行业的发展奠定基础。目前主流的高端光镜主要依赖进口,欧美日品牌进入市场较早,占市场主导,国内高端显微镜目前在蓬勃发展,很多高等研究机构如清北、中科院生物物理所、苏州医工所、西安交大等和初创企业(多集中在粤港澳和江浙地区)都在进行研究及转化的突破创新,组建的成像系统多处于实验室技术打磨阶段或迈入市场不久,fMOST、LBS、 HiS-SIM已经开始被市场逐步接受,但其零部件还是进口为主,国产替代之路尚需长期努力和紧密合作。Andor也期望和国内外业内伙伴有更多合作,不论是元器件模块、显微成像系统、数据分析软件都可以多方协作,作为整体解决方案应对市场需求。对于商业化的显微镜而言,稳定、易用的高性能体验及使用场景的匹配是整个行业要不断精益求精的重要方向,自然会有市场越来越多的认可。仪器信息网:您认为,未来几年高端光学显微镜的热点市场需求有哪些?在未来几年,我们认为对高端光学显微镜的最热需求将集中在多维活细胞高速动态成像、超分辨成像、类器官研究、大型组织成像(透明化组织、活体组织体外培养)、单细胞原位空间转录组学领域、动物活体深层成像。基于应用的定制化显微成像系统开发将为学术研究、产业、商业提供绝佳的资源并富有成效进行循环利用。这些需求基于多维时空动态成像,联合先进的流式分析分选、高内涵、质谱成像和单细胞及转录组测序技术对物质代谢、基因和蛋白等的时空表达变化图谱进行同步解析,能够给研究工作带来前所未有的海量信息,透过更多跨领域合作和大数据共享分析,打破认知边界和信息壁垒,服务生命健康。不论是高端光学显微成像或其他高精度检测设备都需要合适的高速高灵敏度的CCD/sCMOS检测器,牛津仪器Andor作为科学相机厂家,已经在生命科学、物理科学的深耕多年,未来一定能够帮助更多的客户及合作伙伴们在光学显微及其他先进成像应用提供高质量的产品和全方位的服务。
  • SZX-AR1增强现实体式显微镜系统在医疗器械行业中的应用
    随着经济的发展、人口的增长、社会老龄化程度的提高,以及人们保健意识的不断增强,全球医疗器械市场需求持续快速增长,医疗器械行业成为当今世界发展最快最活跃的行业之一。同时,众多医疗器械制造商的产线上,大量体式显微镜应用于医疗设备的组装和检查。医疗设备关乎人的生命安全,医疗器械制造行业面临着日趋严格的质量管理体系,有好多复杂制造任务需要在体式显微镜下手动完成。SZX-AR1增强现实显微镜的优势方便远程协作产线上用体式显微镜组装医疗设备,有必要进行现场检查,以便在出现问题时确定原因。如果引入了SZX-AR1显微镜,当制造过程中出现问题,装配人员就可以使用Microsoft Teams等第三方协作软件,与场外经理或工程师分享目镜中的实时视图,从而获得相应指导,及时解决问题。专注于操作医疗设备产品种类多且组装要求非常严格,装配人员需要不时地查看显示器上的操作指导,但当视线从显微镜移动到显示器时,施加在零件上的力就会发生变化,可能导致装配错误。如果有了SZX-AR1显微镜,操作指导就可以直接投影到显微镜视野中,装配人员只需专注工作而无需移动视线,尽可能规避操作失误。共享视野,易于培训还有,对医疗器械制造商来说,装配人员的培训是一项费力费时的大工程。传统模式下,培训师通过显示器对学员讲解操作说明,学员再去显微镜下进行操作。因为培训师在教学时不能直接检查学员的工作,而等学员完成后,培训师还需要到显微镜下观察产品,并针对存在的问题进行再培训。若使用SZX-AR1显微镜,培训师与学员就可以共享显微镜视野,使用注释功能直接在视野内给出说明。此外,有了培训视频,可以投影到显微镜视野中,学员就可以在没有培训师的情况下自学和练习。SZX-AR1增强现实显微镜系统的出现,对基于显微镜的复杂制造任务来说,提高工作效率,降低成本十分重要。其受益的不仅是医疗器械制造商,更是广大的电子行业客户群。对于大量使用体式显微镜的产线设计,引入SZX-AR1显微镜,会更好的对产线上的装配和检查工作带来有益的帮助。
  • 【新品发布】Planelight发布极速大视野光片显微镜QLS-Scope
    近日,Quantum Design中国作为西班牙Planelight公司的战略合作伙伴正式引进了基于新一代扫描光片技术的速多角度3D光片荧光显微镜QLS-Scope。它同时兼备了良好的分辨率和大视野,并且将扫描速度大幅度提升,让原本需要几天的采集工作缩短到数小时。众所周知,激光片层显微镜采用有的片层激光扫描技术,能够单次仅激发几个微米到几百纳米层面的荧光信息,从而能够大幅度提高厚样品中荧光信号的信噪比,使得其成像质量在100微米以上样品时显著高于其它成像手段。并且由于片层激光单次只激发窄的厚度,因此光毒性也低于双光子、共聚焦等手段。但是早期的光片系统却很难在分辨率和大视野两者上取得良好的平衡。以高斯光片技术为基础的设备能够适应较大的样本,但是其分辨率却难以令人满意。而像贝塞尔、晶格等光片技术虽然其分辨率较高,但是其单次仅能扫描很小的区域,对于大型样本要投入大量时间去采集,效率十分低下。而新型的扫描高斯光片技术在保持了高斯光片大样品、大视野成像优势的同时,能够将光片的厚度调制的更窄,使得其Z轴分辨率远高于目前的固定高斯技术,从而使得大样本和高分辨率两个特点能够在这种技术上同时实现。传统固定高斯(光片厚度4 μm)图中的卵巢模糊不清,血管的Z轴分辨率差。采集时间高达2小时。新型扫描高斯(光片厚度1 μm)图中卵巢轮廓清晰,血管细节良好,具备更高的细节信息。采集时间仅10分钟。 除了激光片层产生的技术优势外,QLS-Scope还将光学投影层析(OPT)技术引入,通过特的连续多角度投影光学层析(SPOT)技术能够对以往难以处理的的瑕疵和阴影对样品的影响显著降低,获得更好的分辨率和重构细节。连续多角度投影光学层析(SPOT)重构技术,通过360度无死角照明,让样品光照更均匀,细节更良好。目前QLS-Scope样机已经在Quantum Design中国样机实验室中安装完毕,欢迎各位老师联系试用。
  • 世界电镜九十年之荷兰电子显微镜早期发展历史(上)
    本文作者:Woutera van Iterson,荷兰阿姆斯特丹大学阿姆斯特丹生物中心、分子生物学研究所、分子细胞学部,摘译原文发布于1996年。一、荷兰电子显微镜的起源1939年,代尔夫特只是一个有着著名历史的小镇。1584年,被称作“荷兰国父”的沉默者威廉正是在这里被暗杀。而在代尔夫特的Nieuwe Kerk依旧可以找到奥兰治王室成员的墓穴。微生物学的创始人Antoni van Leeuwenhoek也在代尔夫特通过自制的玻璃透镜研究他的“小动物”。如果不是因为代尔夫特理工大学以及它的创新产业,代尔夫特在二战前留给人们的总体印象只是一座古老的城镇。在这本回忆录中,代尔夫特产业中一个特别的部分,即荷兰的精神象征法布里克(简称“酵母工厂”)扮演了一个重要的角色。首先,在代尔夫特理工大学的技术环境中,酵母工厂为国家最重要的微生物研究传统的发展做出了巨大贡献。1885年,酵母工厂的总经理J.C.van Marken邀请M.J.Beyerinck加入工厂。Beyerinck于1895年成为微生物学教授,并被称为微生物学之父。1921年,A.J.Kluyver(微生物学家之父)接替了Beyerinck的工作。Kluyver将他的教授任期与酵母厂的咨询工作结合了起来。这些是如何与电子显微镜联系起来的?答案就是酵母细胞。1939年夏天,代尔夫特理工大学有一名工科学生,名叫Jan B. Le Poole。Jan B. Le Poole(图1)向他的物理学教授H.B.Dorgelo提出了一个大胆的请求,即为他自己的工程专业制造一台电子显微镜。因缘际会之下,这时的时机恰好成熟。图1 J. B. Le Poole博士,荷兰电子显微镜的创始人,荷兰电子显微镜学会的首任会长彼时,Dorgelo、F.G.Waller(酵母工厂总经理)和A.J.Kluyver于1939年7月6日访问完柏林的西门子公司刚刚返回。而Kluyver很熟悉最近出版的微生物照片和电子显微镜提供的相对高放大倍数的照片。问题是,是否有可能用这样一种仪器来确定酵母细胞是否配备了一个带有染色体的真正的浓缩细胞核,或者它是否类似于细菌,是否可以在核物质和细胞质之间作出明确的区分?考虑到这个问题的实际意义,Waller、Kluyver与Dorgelo讨论后,此三人决定前往透射电子显微镜及其理论背景的圣地:战前的德国。早在1939年,西门子就根据von Borries和Ruska的设计,成功售出了第一台商业化的电子显微镜。它的放大倍数高达4万倍,分辨率比光学显微镜高得多,其价格约为80000荷兰盾(笔者注:按2022年5月汇率1荷兰盾约合3.37元人民币)。然而,该电镜与其提供的可能效果有一定出入。此外,在柏林,他们确实在电镜“高”放大率下观察到了酵母细胞,但那不过是一个“丑陋”的黑点,而在光学显微镜下,一个整齐的生物体,在细胞壁内具有原生质、液泡和各种其他结构,只有细胞核是暗黑的。一般说来,当时这种生物研究工具是否有用颇具争议。在整个细胞都聚焦的情况下,人们能否分辨出重要的细节?此外,电子一直被认为是粒子,直到1924年,人们通过德布罗意的工作才意识到,电子也会像波一样传播。然而,这并没有改变这样一个事实,即微粒肯定会轰击,继而破坏有机材料。最重要的是,生命的本质在于细胞中高百分比的水,而细胞在仪器的真空条件下会发生脱水。当电子显微镜的发明变得更广为人知时,在某些生物学圈内能听到这样的说法:“电子显微镜只是收集了一些人工制品。”毕竟,瑞士的Frey Wyssling和其他人已经用间接方法充分分析了细胞的总体结构。关于生物膜的结构性质,重要的论文也几乎达到了分子水平。电子显微镜真的能给20世纪30年代这一重要的知识宝库增添什么吗?这些反对意见促成了代尔夫特理工大学未来年轻科学家的冒险,也成就了他们的幸运。鉴于所有不确定性,年轻的Jan Le Poole渴望成为一名先锋,后来证明他很幸运。Jan Le Poole建立了一台两级电子显微镜,1941年可以拍摄第一张电子显微照片。然而,40k V的加速电压被证明是非常局限的。因此,Jan Le Poole决定与飞利浦物理实验室合作建造一台150k V电子显微镜。在埃因霍温的飞利浦,A.C.van Dorsten开发了一个非常稳定的150k V的部件,同时Le Poole在H.J.de Heer的协助下正在代尔夫特研究电子光学系统。在1944年春天的代尔夫特,全新的150k V电子显微镜被研制成功。二、荷兰电子显微镜的早期组织人们很快认识到,开发电子显微镜并研究其在生物学和其他学科中的应用需要成立一个组织和专项资金。1941年,TPD(Technisch Physische Dienst)由应用科学研究组织(TNO)和代尔夫特大学合作成立。1943年11月1日,一个专门的电子显微镜研究所作成立,隶属于TPD,不过其预算独立。该研究所得到了代尔夫特酵母工厂、飞利浦、Van Houten、Algemene Kunstzijde Unie(AKZO)、喜力啤酒厂和TPD等工业的资助。后来,荷兰联合利华和荷兰皇家壳牌公司也提供了每年不少于3000荷兰盾的资助。该研究所由一个咨询委员会监督,技术和日常管理由Le Poole负责,而Dorgelo和Kluyver负责科学监督。三、代尔夫特的电镜我们来自Le Poole的小组,在荷兰从战争的苦难中解放出来之前,我们只能孤立地工作,因此几乎没有意识到电镜的设计包含了许多令人兴奋的创新。其中一项创新是在40倍放大的物镜和160倍放大的投影镜头之间增加了两个镜头。其中一个额外的镜头有一个小孔,可以使放大倍数在6400倍到80,000倍间连续变化。放大到6400倍时,电流通过所谓的衍射透镜(另一个更大孔径)。使用该衍射透镜,可以从小至3μm的样品选定区域获得衍射图案。并可以在电子图像和电子衍射间来回切换,这在代尔夫特已被发现可以用于粘土矿物的测定。选区衍射的原理先前已被H.Boersch发现,但当时Le Poole还不知道。引入中间透镜的另一个优点是电镜镜筒的高度减小,从样品到最终图像的总距离达到60cm。此外,LePoole引入了一种特殊的对焦装置,尤其在高倍率下,当荧光屏上的强度较低时,可进行精确聚焦。入射电子束通过聚光镜和样品中两组平行板间的横向电场,以50Hz的频率振动。当物镜没有完全聚焦时,这种振动会使图像模糊。这有助于聚焦,并大大提高了代尔夫特研究所拍摄电镜照片的质量。从那以后,这种“摇摆”的磁型版本成为飞利浦所有透射电镜的特征。早期电镜中的图像场非常大(直径18cm),并投射到锥形烧瓶的底部,并转至荧光屏(图2)。通过在屏幕上方束流横截面足够小的位置引入35毫米胶片,可以在随后的照片放大中覆盖整个图像。发射电压在50-120kV之间变化,对于生物样品,电压越高,电子束的穿透力往往越强。图2. 150 kV电子显微镜,像场投射到沉积在锥形玻璃烧瓶底部的荧光材料上代尔夫特还研制了静电电子显微镜,该电镜于1951年由W.A.leRutte完成,在固定放大倍数下具有8nm的分辨率。1952年,Le Rutte发表了一篇关于他对静电电子光学贡献的论文,但由于当时电磁式电子显微镜的技术优势,这项工作被迫中断。另一个有趣的发展始于1943年中期。早在1942年,由于酵母细胞体积过大,Le Poole就提议建造一个发射电压1 MeV的电镜,以提高电子对样品的穿透力。建造这种电镜,必须克服种种问题,因此最终决定在飞利浦研究实验室建造400 kV的显微镜。Le Poole设计了这个电镜的电子透镜系统,而飞利浦的Van Dorsten负责设计高压设备,Oosterkamp负责发射枪,Verhoeff负责装配。1947年,这台电镜安装在代尔夫特研究所。四.代尔夫特电镜的早期工作不仅是电子显微镜的研究,代尔夫特对于电镜应用的开展也比较早。在准备研制基础型150 kV电子显微镜的这些年里,旧的两级型电镜在用于检验Le Poole的新想法的同时,还用于科学研究。在这项工作的成功,很大程度上归功于Harrie de Heer引进了出色的拍摄技术。生物学家A.Quispel于1942年10月开始在A.J.Kluyver教授的带领下担任研究助理。他做的第一件事是在单孔样本架上准备足够的“Geisselthallack”支撑膜。Quispel的任务是研究该电镜在生物学研究中的作用,尤其是研究酵母核中的染色体。为了做到这一点,Quispel开发了一种“染色”酵母核的方法,即与其他细胞相比提高对比度。这种选择性染色需要重金属,因此,他改变了Feulgen的方法,使用银及镧盐。然而,酵母没有揭示其染色体核的秘密,染色体核仍然处于漆黑一片的状态。Quispel接着尝试用蛋白水解酶使细胞质对电子束更透明。1943年9月,Quispel离开代尔夫特时,这项工作移交给了我,最初也得到了J. M. van Brakel的协助。然而,事实证明,对太大的酵母细胞进行研究还为时过早。当时我们深受战争的压迫,但我们年轻,对这项工作充满热情。我们急切地研究了酵母细胞、噬细胞菌、疗养院医生用的结核菌、各种其他细菌以及土壤样品中的粘土矿物、颜料、金属和在35mm胶片上拍摄的各种其他物品。五、战争快结束时的情况1944年,150 kV电子显微镜及其所有改进装置投入使用,但仅使用了几个星期。随着1944—1945年饥荒的来临,国家的形势变得非常危急。盟军已经解放了荷兰的南部,但是盟军在大河附近被拦截。在那个冬天,在河流以北的我们食物配给量减少到每周800卡路里。大家在解决温饱与绝望中挣扎。没有电,客运列车也没有运行,我们只有木制轮胎的自行车用于运输。为了保全电镜的透镜等核心部件,大家不得不做好随时拆除电镜的准备。值得一提的是,飞利浦电镜高压发电机中的冷却油无意间为大家解决了一些生存难题,这些冷却油被分配给研究所的工人作为燃料,大家在家里用它来照明等。我们也积极参与地下活动,试图抵抗危险的压迫环境。曾经,德军试图逮捕所有18至40岁的男性在德国从事强迫劳动,大家不得不躲起来试图逃避。六.解放以后在加拿大军队解放的动乱平息下来之后,代尔夫特电镜被重新组装起来。但此时,自己也开始怀疑,在与世隔绝的环境下使用代尔夫特电镜开展相关研究,是否对促进电子显微学的发展具有意义。来自盟军国家参观者的反应给我们的印象是, Le Poole电镜或将是一种意义重大的仪器设备,但我们不能依赖这种仅有的“大家的印象”,何况,在埃因霍温的飞利浦根本不准备开始在商业基础上生产电子显微镜,因为该公司主要对销售数千台以上的产品感兴趣。有没有办法提高同事们的希望?答案是有的。首先,我写了一篇关于美国在电子显微镜领域活动的综述。之所以能够做到这一点,是因为1944年9月荷兰南部解放后不久,荷兰国家矿业图书馆(DSM)就有了专门的美国科学期刊。虽然很明显,美国科学家的工作是广泛的和令人印象深刻的,但这篇综述让代尔夫特的物理学家相信,他们的成就并没有白费。此外,我还与我的父亲讨论了他们的担忧。父亲既是一名科学家,也是荷兰国家矿业公司董事会成员,能够理解新仪器的重要性以及飞利浦的工业观点。飞利浦的总裁Anton Philips博士刚刚从英国回来,他在那里度过了战争的岁月。我陪父亲去了埃因霍温,在那里我们在总裁家里吃了午饭。Philips先生仔细地听着,因为他还没有听说过代尔夫特电子显微镜的构造,以及他的公司已经如此密切地参与其中。1946年1月,Jan Le Poole有机会访问英国,并参加了英国电子显微镜集团的一次会议。在那里,他最后的一丝怀疑消失了:代尔夫特电镜确实是一种创新。他在英国遇到了Van Dorsten,他们讨论了对商用飞利浦电子显微镜的要求。1946年1月,飞利浦董事会似乎改变了观点,开始准备推动电子显微镜样机的开发,商业生产电镜有了基础。该电镜在某种程度上可以在X射线设备业务部开发,但样机是在飞利浦物理实验室(后称为飞利浦研究实验室)制造的。后来,一个特殊的电子显微镜部门成为科学和工业下医疗系统集团(一个主要的工业业务集团)的一部分。回想起来,这是早期所有努力的真正结果。1946年,飞利浦公司制造的电镜原样机在牛津的一次大会上展出,虽然当时这台“顽固”的电镜现场未能展示有用的电镜图片,但同样受到了人们的赞赏。(大会结束后,有人发现一个孔盘在运输过程中滑出了立柱,从而阻挡了电子束。)下一步,飞利浦决定建立一系列的四台电子显微镜原型机,其中一部分零件将在莱顿大学 Kamerlingh Onnes实验室的仪器制造商学院进行制造。飞利浦EM100的最终设计于1947年完成。一个独特的早期特征是荧光屏在透射中观察并倾斜到水平方向,如图3所示。在所有随后的飞利浦电镜中,这种结构被放弃,因为垂直柱比倾斜柱在机械上更稳定。图3 飞利浦EM100七、战后时期代尔夫特研究所的工作人员逐渐增加:有4名物理学家、1名生物学家、1名工程师、2名仪器制造师和4名技术人员。从1946年起, Le Poole得到了J. Kramer的协助,J. Kramer在过去的36年中一直是Le Poole的得力助手。1946年,物理学家的首要任务是校正电镜的像散,提高高电压稳定性,以及进一步发展一种更强的物镜,即在不需要进一步稳定透镜电流和高电压的情况下充分降低色差。包括其他工作在内,这项工作为飞利浦简化电子显微镜的设计提供了背景。除了电子显微镜的发展外,仪器的使用也变得越来越重要。后者包括微生物学方面的研究和为研究所以外的客户所做的工作。三台电子显微镜确实不是一件奢侈的事,但当时只有一台,并且为了仪器研制,有时不得不将这台电镜拆开。电子显微镜的质量体现在制备好试样的显微图片的质量上。当时,样品制备技术也正处于开创性的阶段。即使是主要用于生物标本的90kV,这些样品要么太脆弱,缺乏图像对比度,要么像酵母细胞一样太厚。在拍摄来自Lisse花球研究实验室的植物汁液样品时,缺乏对比度尤其令人不安,因为在这些样品中必须识别病毒棒。通常,我拍摄这些病毒时甚至都无法观察它们。在马里兰州贝塞斯达的国立卫生研究院的RalphW.G.Wyckoff博士来访后,我们对阴影投射技术有了很大的了解。这实际上为带有长鞭毛的细菌的电子显微照片(图4)和许多其他样本增加了一个新的维度。1947年,我有幸在贝塞斯达的国立卫生研究院获得奖学金并前往美国工作。那年12月,在费城的EMSA大会上,我提出了一篇题为《代尔夫特电子显微镜在生物学中的一些应用》的论文。在解释了代尔夫特显微镜的原理之后,投影了各种鞭毛细菌的显微照片,随后是为L.Algerica制作的叶绿体显微照片以及为Utrecht大学的L.H.Bretschneider制作的公牛精子显微照片。其中一张精子照片的特殊之处是用一种铁糖复合物喂养细胞,这是Bretschneider早期成功地尝试,目的是提高细胞代谢最活跃部位的对比度。由于我去了美国,A.L.Houwink博士于1947年接替了我在代尔夫特的工作,他继续进行细菌鞭毛和一些原生动物的研究。图4. 梅氏弧菌,视野7微米当时在制备技术方面遇到的问题很大。TNO金属研究所的 J. A. Nieuwenhuis在1944年发展了复制技术,该技术被Dalitz和Schuchmann(1952年)以及Beekhuis和Schuchmann(1952年)发表。1947年,高电压电镜从埃因霍温带到了代尔夫特,巨大的酵母细胞研究仍然令人失望。在高电压下,未经制备的酵母细胞以及真菌孢子,没有揭示重要的细节。此外,在这台高电压电镜样机准备就绪时,对这种仪器的需求已经消退。光束穿透的问题已经被一种新策略的发展所规避:薄片技术。因此,高电压电子显微镜的发展在1950年停止,但在1960年国际上对高电压电子显微镜的兴趣恢复后,以一种新颖的设计重新焕发生机。L.H.Bretschneider(1949年)在Utrecht大学为他在代尔夫特的电子显微镜工作进行了这种薄片技术的实验。他和他的同事P. F. Elbers穿着厚重的外套,在4°C的温度下,用剑桥1890年产的摇式切片机将切片嵌入石蜡和硬蜡混合物中。1954年,这项技术在对蛔虫肠道细胞的研究中得到了进一步发展,其中在剑桥1952年产的显微镜摇式切片机上进行了冷切片。在同一研究所,Elbers构建了一种单通道旋转切片机,配有用于甲基丙烯酸酯嵌入的热扩展装置,并专注于电子染色的使用。不久之后,H.B.Haanstra(1955年)在飞利浦研究实验室成功地制造了一台简单的切片机,并于1958年获得了专利。1949年7月,在代尔夫特举行的国际电子显微镜大会对荷兰所有电子显微镜学家来说都是一个巨大的鼓舞,在大会上,我们有机会展示我们的最佳成果,并与国外的同行结识。八、20世纪50年代初:荷兰涌现更多电镜当飞利浦公司开始商业化交付电子显微镜时,代尔夫特对电子显微镜研究的垄断宣告结束。1949年完成的第一个EM100,被送往哥本哈根的Statens血清研究所进行试验。在荷兰,每所州立大学都有自己的电镜,还有一些特殊的研究所也是如此,如利瑟的花球培养实验室、荷兰皇家贝壳实验室、Sikkens(一家油漆和清漆工厂),当然还有飞利浦研究实验室。当然,正是代尔夫特的工作引起了大学和研究所的兴趣。然而,也有各种各样的失望,由于大多数大学对于电镜进行有序研究的要求还没有准备好,严重低估了电镜使用的实际意义,因此出现了各种令人失望的情况。在格罗宁根大学(University of Groningen),E.H.Wiebenga教授为自己的研究做了充分准备,在美国Cecil Hall为其传授过蛋白质晶体(edestin and exalsin) 的制备;在英国,Wiebenga熟悉蛋白质的X射线衍射技术。1950年11月,他在学校拍摄出了第一张电子显微图片。然而,1951年10月,一名攻读博士学位的学生接手了Wiebenga关于种子球蛋白的工作,发现新安装的电镜无法使用。第一批电镜提供的分辨率约为5nm,不足以完成这类工作,他不得不使用X射线衍射技术。1952年前后,G.Boom对几种晶体材料表面结构的研究和E.F.J.van Bruggen对蛋白质变性的研究得到了新的物镜和更合适的制备技术(如负染法)的支持。这标志着格罗宁根大学在蛋白质结构化学方面卓有成效的研究工作的开始。由于朱莉安娜女王的到访,瓦赫宁根农业大学有幸成为1951年首批安装EM100的学校之一。趁着飞利浦技术人员还在的情况下,非常聪明的女王及时喊道:“我什么都没看到!” 在最初的挫折之后,Christina van der Scheer 的工作在 S. Henstra 的协助下,主要关注病毒颗粒的研究现在的工作人员很少意识到刚开始时遇到的困难。在阿姆斯特丹大学(University of Amsterdam),EM100于1951年1月交付,安装在一个地下室的自行车存放区,天花板低得足以磕头,没有通风。由于我们没有专项基金,电镜胶片必须用我的厨房用具来冲洗。尽管如此,在1953年,我还是在罗马举行的第十届微生物学大会上发表了一篇关于细菌鞭毛的特邀论文。1959年,我获得了科学博士学位,著有专著《不同视角下的Gallionella ferruginea》。早在1952年,在莱顿大学,之前提到的、和仪器制造学院合作制造的四台电子显微镜样机之一(不是Philips EM100)安装在医学院的解剖学大楼。九、回顾过去回想起来,一开始,生物学的主要困难之一似乎是光学显微镜所见与电子显微镜所见之间的差距。这需要很多年的时间来弥补这一差距,而这只有在光学显微镜专家开始使用电子显微镜专家开发的制备程序时才能实现。 此外,长期以来,电子显微镜学家对于他的物理学家朋友和传统生物学家来说,都是个陌生人。在电子显微镜照片上看到的东西在很长一段时间里都是纯描述性的形态学,那时分子解释过于投机。生物化学已经成为将超微结构研究引入分子生物学领域的主要支持之一。第一批商业生产的电镜可能不足以满足所有电子显微镜学家的所有期望,但这也是对以后生产越来越优秀电镜的一种鼓舞。拓展阅读:捷克斯洛伐克电镜发展史系列世界电镜九十年之怀念捷克斯洛伐克电子显微镜先驱——Delong、Drahoš和Zobač世界电镜九十年之捷克斯洛伐克早期电子显微镜发展史
  • 深圳湾实验室生物影像平台:转盘共聚焦显微镜应用及管理心得(上)
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享” ,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇为深圳湾实验室生物影像平台助理工程师黄诗娴供稿。本文详述了转盘共聚焦显微镜的技术原理和优势、历史沿革、功能和主要应用。点击图片了解更多技术1987年,BIO-RAD公司推出了第一台商业化的共聚焦显微镜。随着激光器技术等各类技术的快速发展,共聚焦显微成像技术更加成熟完备,开始广泛应用于生命科学、材料科学等各个方面。传统的激光点扫描共聚焦显微镜使用逐点扫描,虽然隔绝了非焦平面的杂散光信号,提高了成像分辨率及信噪比,但是成像速度较慢。其光电倍增管检测器PMT的光电转换效率也比较低,需要较强的激发光。为了解决快速变化过程的共聚焦检测问题,实现活细胞长时间成像,发展了转盘共聚焦显微镜(Spinning-disk Confocal Microscopy,SDCM),解决了传统激光点扫描共聚焦显微镜成像速度相对较慢以及光毒性较高的问题。转盘共聚焦显微镜历史沿革和技术优势转盘共聚焦显微镜的概念最早是在1968年由Petrán提出的,在20世纪90年代由日本Yokogawa Electric公司发明了其核心技术:双转盘专利技术。双转盘装置包含了两个同轴排列的转盘,上转盘是带有微透镜阵列的转盘,下转盘是放置在物镜像平面上的带有约20000个阿基米德螺旋状针孔的Nipkow转盘,针孔及微透镜的位置是一一对应的,两个转盘的间距为微透镜的焦距。显微镜工作时,入射光经过微透镜阵列聚焦到Nipkow转盘针孔上,经针孔隔除杂散光后照射在样本上,无需移动载物台或使用扫描振镜,双转盘可进行多点同步扫描,旋转双转盘即可实现对样本的完整扫描,大大提高了采集速度。使用微透镜阵列聚焦激发光,照明光的透射率从使用单Nipkow转盘的4%-6%增加到40%-60%,进一步降低激发光的强度,即使是荧光蛋白表达量非常低的活细胞也可以轻松成像。Yokogawa Electric公司设计了转盘式显微镜目前最先进的共聚焦扫描单元(Confocal Scanner Unit ,CSU)(图1),其CSU-X1转盘最高旋转速度为每分钟10000转,理论上最大帧率高达每秒2000帧。较慢的CSU-W1转盘转速也有4000转,成像速度最大可达200帧/秒,非常适用于快速变化过程检测。图1:Yokogawa转盘共聚焦扫描单元结构示意图(图片来源:Carl Zeiss Microscopy Online Campus)转盘共聚焦显微镜的主要优势之一是使用面阵相机进行成像。激光点扫描共聚焦系统的PMT检测器的量子效率较低,通常为30%-40%,而SDCM使用EMCCD或背照式sCMOS等相机作为探测器,可以具有更高的量子效率,从而降低激发光功率,大大降低了对样品的光漂白和光损伤。为了让相机尽可能多地收集光子,获取高质量图像,应选择高灵敏度的相机。EMCCD相机低噪声、高灵敏,曾经是转盘共聚焦显微系统的第一选择。而如今背照式sCMOS的量子效率可高达95%,且具有与EMCCD相当的灵敏度,其被使用率开始逐渐高于EMCCD相机。此外,背照式sCMOS具有低噪声、高帧率、高动态范围、高分辨率、大靶面的特点,而且功耗更低、集成度更高,成本更低。因此,在未来的发展中,背照式sCMOS有望成为更加主流的图像传感器,应用于各类显微成像技术中。总而言之,转盘共聚焦显微镜因为双转盘技术和高量子效率相机的组合,可以高速运行并且具有非常高的信噪比。转盘共聚焦显微镜主要功能及应用转盘共聚焦显微镜因其成像速度快,层切能力好等特点,常用于多通道荧光成像、拼图及三维成像,如多荧光通道全脑片成像,斑马鱼、透明化小鼠等大组织厚样本三维拼图成像等。转盘共聚焦显微镜可以配置单相机或多相机,配置多个激光器及对应的滤光片组,快速成像多个荧光标记的样本。通过移动电动载物台实现多视野拼图成像,为避免出现拼痕,需做好仪器放大倍数校正、阴影校正及光照均匀度校正等,同时配置合适的拼图软件模块,得到所需大图。通过上下移动物镜或者压电陶瓷载物台实现Z stack三维扫描,结合三维重构软件模块,得到所需三维图像或最大投影图等。因转盘共聚焦显微镜成像采集速度快及光毒性低等优点,非常适合于活细胞成像及活细胞长时程成像,检测信号快速变化过程及信号长时间变化过程,满足细胞动力学、发育生物学等多方面的研究需求。活细胞成像需在显微镜上配置细胞培养装置,提供适宜的培养环境。配置使激光器照明和相机成像达成微秒级别同步的实时控制器,以降低光漂白和光毒性,使细胞在复杂的试验中保持健康的状态。仪器在进行XYT、XYZT成像,甚至是结合多视野、拼图、超分辨的时间序列成像时,需要配置超稳定的锁焦系统使样本始终处于聚焦状态,如Olympus的Z轴漂移补偿系统IX3-ZDC2,Nikon的完美聚焦系统PFS等。进行多视野的时间序列成像时,需要配置高精度的电动载物台,或确保载物台位移精度在可接受范围内。当载物台位移精度较低时,移动到每个成像视野会有较明显的位置偏差,导致成像结果视频中观察的样本出现肉眼可见的抖动现象,高倍镜成像时会更加明显,影响数据查看及成像分析。同时结合相应的分析软件,获得所需活细胞及时间序列的成像分析结果。高内涵细胞成像与分析系统大多使用转盘共聚焦显微成像技术。高内涵细胞成像与分析系统需同时具备自动化高速显微成像功能及自动化图像定量分析功能,可对多个样品快速成像,并从图片中提取大量的数据信息。转盘共聚焦显微成像技术既可以快速地获取多孔板大量的图像数据,并且相较于宽场荧光显微镜而言具有更高的图像分辨率及信噪比,可以提供全自动、高速和高分辨率成像筛选的多种解决方案,能满足药物发现和高通量生物学中多种需求。此外,使用转盘共聚焦显微成像技术还能进行z轴扫描获取三维图像,例如对类器官、组织或3D肿瘤球等三维样本成像,从而进一步分析更多的生理学相关问题。转盘共聚焦显微镜上可以添加各类功能扩展模块,例如超分辨成像模块和光刺激模块等。可以在转盘共聚焦显微镜上添加超分辨成像模块,如Olympus的超分辨技术OSR,是对共聚焦荧光显微镜截止频率附近逐渐减弱的高频信号,进行空间放大的空间频率滤波器,称为OSR滤波器。SpinSR10的SoRa转盘中,在50um针孔盘下添加了微透镜阵列,进一步缩小光斑,提升3~6倍的照明亮度。其可对细胞内深达100微米的区域进行成像,使用常规荧光染料即可在120 nm的分辨率下,采集到各种活细胞样品亚细胞结构的超分辨率图像。还可以在转盘共聚焦显微镜上添加光刺激或光操作实验模块,可进行荧光漂白后恢复FRAP、荧光漂白后缺失FLIP、荧光漂白后定位FLAP、光活化与光转换PA&PC等实验。下一篇作者将根据深圳湾实验室生物影像平台管理经验介绍生物影像平台设备管理心得及未来可提升空间,敬请期待!作者简介黄诗娴,深圳湾实验室生物影像平台助理工程师,南方医科大学生物医学工程硕士,主要负责管理激光共聚焦显微镜、活细胞成像系统、玻片扫描系统等显微成像设备,负责相关设备的管理维护、培训考核、开放共享、成像技术开发等工作。会议预告:12月20-22日生物显微技术大会火热报名中点击图片报名报名链接:https://www.instrument.com.cn/webinar/meetings/swxw2023/
  • 世界电镜九十年之捷克斯洛伐克早期电子显微镜发展史
    本文作者为前捷克斯洛伐克科学院科学仪器研究所Armin Delong,摘译原文发布于2021年。捷克斯洛伐克电子显微镜的起源捷克斯洛伐克有1500万居民,属于中欧相对较小的国家。这里的每个居民平均大约拥有0.36公顷土地、0.32公顷木材、0.15辆汽车和不超过0.000034台电子显微镜。也就是说,3万人共享一台电子显微镜。大约90%使用的电子显微镜是国产的。这说明,除原子能发电厂、机车和汽车外,电子显微镜也在捷克斯洛伐克商业化生产。从1950年的两级透射电子显微镜到1977年使用场发射阴极的超高真空扫描电子显微镜,30年间这里已搭建了多达1800个不同类型的电子显微镜。大部分电子显微镜出口到了社会主义国家。捷克斯洛伐克属于少数几个对电子显微镜技术的发展作出贡献的国家。因此,国内外很多不同的科学和工业领域实验室能配备商业化生产的电子显微镜,这对于研究有机和无机性质的显微结构提供了新的可能。本文的作者发现,在国外遇到陌生同事是非常愉快的,他们十分确信地告诉他,多亏了他所在地区生产的电子显微镜,帮助他们进入了电子显微镜学家的大家庭,在第一次看到微观的奇妙世界时,他们经历了令人难忘的时刻(作者本人多年前也经历相同的时刻)。捷克斯洛伐克电子显微镜的起源,要追溯到比德国、英国、美国和其他一些国家距离现在更近的时期,因此值得写的东西似乎并不多。直到1949年,第一台电子显微镜才开始设计,这时距离西门子成功搭建第一台商用电子显微镜已经过了10年,RCA也已经生产了数百台仪器。捷克斯洛伐克第一台电子显微镜的搭建时间可以追溯到二战后,当时捷克和斯洛伐克恢复了自由,整个社会的创造力都得到了极大地激发。似乎没有什么是不可能的或无法实现的!1939年,理工大学和其他大学被纳粹强行关闭,后来又再次开放。这些大学的报告厅和实验室吸引来许多热衷于科学的年轻人。纳粹的占领给研究人员带来了灾难性的后果。很多教授没能活着看到战争的结束。新的讲座不得不指定新人来准备,科学和研究工作需要重新立项,实验室也被迫重新建立。这些都花了些时间。在这方面,应该提一下布尔诺理工大学理论和实验电工技术研究所最早的活动。第二次世界大战后,Aleš Bláha教授成为该研究所的所长。战前Bláha教授曾在法国的一所理工大学担任讲师,不久他就认识到,电子时代正在来临。Bláha教授起初从事高压线的研究,但他很快就开始思考设计一种连续真空示波器,用来测量网络中的瞬态电压。当他在SKODA Works工作期间,在他的指导下设计出几个型号。最后一种可以追溯到1938年,如图1所示。 Bláha教授的电子光学装置设计工作被第二次世界大战中断,被迫在战后才能继续。图1 Bláha教授1938年设计的连续抽真空示波器由于研究生很少,Bláha教授从学生中挑选了所有的参与者。因为Bláha教授不可能认识所有听他讲课的学生,所以他通过考试进行筛选。当有人问我是否愿意在研究所的实验室工作时,我很高兴地同意了。这些看起来像是短暂的兴趣,但也说明了当时的科研气氛。我们白天参加研讨会和实验室课程,并一直在实验室工作到深夜。因为研究工作非常耗时,我们中的部分人甚至延毕一年。我们通过这种方式建造了著名的三脚架(图2),它使我们能够重复Ruska的实验。之后我们就没有遇到什么阻碍,可以开始设计一个真正的显微镜。图2 1947年的双透镜实验电子光学工作台当时,捷克斯洛伐克已经有几台电子显微镜在运行。战后进口到捷克斯洛伐克的第一批电子显微镜是两台RCA EMU2,这两台仪器都是在联合国救济和恢复管理局(UNRRA)的帮助下获得的。其中一个送给了布拉格查尔斯大学医学院的Wolf教授,另一个送给了布尔诺马萨雷克大学医学院的Hercik教授。Wyckoff教授亲自参与了这台显微镜的安装。后来,法国CSF公司、瑞士Trub-Tauber公司和瑞典Siegbahn Schonander公司提供了电子显微镜,但当时第一台捷克斯洛伐克电子显微镜的研究工作已经在进行。图3 捷克斯洛伐克制造的第一台电子显微镜我们从M.vonArdenne教授的书《Elektronen-Ubermikroskopie》中收获的知识给我们带来了愉快的阅读体验。一步一步地解决研发中遇到的问题像是一次探险,最终在1950年我们的电子显微镜的发光屏上出现了第一张图像。该装置已经具备标准电子显微镜的所有条件:热阴极、聚光透镜、物镜和投影透镜(图3)。在某种程度上,我们使用的是RCA EMU2A电子显微镜(当时最容易接触也是最先进的设备)作为模型。捷克斯洛伐克第一台电子显微镜的搭建在理论和实验电工技术研究所搭建第一台电子显微镜时有一种独特的科研气氛,这有几个原因。1949年,电子显微镜被认为是一种复杂的设备,需要很多特殊材料和部件及秘密技术。在战后的捷克斯洛伐克,这似乎是个不能解决的问题,不能解决的任务必须交给学生和新毕业生,他们一般不知道什么是无法解决的。青年学生缺乏经验,只有着冲劲和勇气,但在Bláha教授的明智领导下,他们能独立思考关键方法和具体细节,最终他们的努力没有白费。第一台捷克斯洛伐克电子显微镜的研究团队由我们的成员组成:三名学生(A.Delong,23岁、V.Drahos,23岁和L.Zobač,22岁)和一名设计师(J.Specialny,26岁)。他们不仅制作了我们设计的所有作品,还用他们的建议和经验帮助我们。电子显微镜的生产似乎没有遇到任何大的困难。我们成功地获得了必要的材料。毕竟,当时的要求不是很严格:软铁、黄铜、铜和铝。由Poldi-Armco钢制成的物镜极靴经过仔细地研磨,使得即便是第一张图像也显示出非常低的像散。因为合适的发光材料很难找到,发光屏出现了一定的问题。因此,我们使用了X射线设备透射屏幕的荧光粉,但它并不完全适合。后来我们使用了EMU 2A电子显微镜附件的荧光粉。真空系统使用了现有的商业化部件。Fysma公司生产的扩散泵速度约为每秒数十升,使用石蜡作为泵送介质,设计者是布拉格查尔斯大学的Dolejšek教授。捷克斯洛伐克也生产旋转油泵。因此,有必要设计真空管路并增加真空计,这些都是由另一组学生开发的,他们关心的是实现和测量高真空的问题。电源的建设,尤其是加速电压源的建设,是一个更为严重的问题。捷克斯洛伐克是X射线诊断设备的传统生产国。因此,50k V加速电压的第一个电源是由我们可以使用的材料和部件制造的。但该电源不够稳定,尽管使用了相对较大的滤波电容器,但直流高压的过滤也不够充分。过滤不足导致的色差在切断电源后消失,但前提是滤波电容器能够为电子枪供电。当时迫切需要一种类似于RCA显微镜中使用的那种、新的高频加速电压源。电容器生产商为我们提供了必要的高压电容器,X射线管生产商为我们提供了整流真空二极管。一台为高频电源供电的高频发电机使用最初为满足德国军队需求而生产的功率管制造。事实上,德国军队留下了许多可以利用的材料和电子部件——这只是一个微不足道的好处,如果没有战争,这是不必要的。通过这种方式,我们使用与产生加速电压相同的功率管,成功地设计了一种电子稳流器。1949年,电子显微镜准备好进行测试。第一张照片拍出来了后很快就发现,分辨率受到物镜的轴向像散的限制。因此,我们尝试使用Hillier的校正方法,在物镜的极靴之间使用八个软铁螺钉。然而,这种方法非常费力,所以我们决定使用物镜下面的四个线圈组成的消像散器,这些线圈必须机械旋转以调整校正场的正确方向。这种电子显微镜成为一种生产模型,其中25台是为满足捷克斯洛伐克一些研究实验室的需要而生产的(Delong和Drahos,1951年)。捷克斯洛伐克的台式透射电子显微镜台式电子显微镜的搭建属于捷克斯洛伐克电子显微镜发展的成功成就。早在1951年,建立台式电子显微镜的想法就起源于理论和实验电工学研究所的主席。然而,这项工作启动于两年后的1953年。其目的是利用不需要专门处理的可用材料,制造尽可能简单结构的电子显微镜,这种显微镜对生产的要求不会太高。另一方面,它为用户提供最大的操作可能性。台式显微镜的设计者获得了搭建两级电子显微镜的经验(基于RCA EMU 2A)。因此,他们能够设计出安全性更高的部件。一小队年轻的工程师和技术人员在1954年完成了一个原型。其截面如图4所示,总体视图如图5所示。图4 BS 242台式电子显微镜的总体视图图4中横截面表明,与最初的目标相比,台式电子显微镜具有相对较高的配置。照明系统仅由一个使用Steigerwald(1949)设计的“远距聚焦”的电子枪组成;因此,它提供给研究对象相对较窄的电流密度范围和光圈照明角。图5 BS 242台式电子显微镜的总体图成像系统由四个磁性透镜(物镜、中间透镜、衍射透镜和投影透镜)组成,不仅允许较宽的放大范围,而且允许选区衍射。真空系统由位于柱后的旋转油泵和玻璃扩散油泵组成,仅通过空气对流冷却。在扩散泵上方安装了一个简单的阀门系统。只有在更换照相材料(35毫米胶片)时,显微镜才会进入空气。样品的更换通过杆式气闸操作。因此,物镜配有平坦的上极靴,以便于将物体放置在离物镜足够远的位置。杆式气闸由两部分组成。样品支架的部件被插入x-y工作台,使得样品在垂直于光轴的方向上移动。另一部分与第一部分拧在一起时,能在棒插入真空中时保护样品。拧开之后,样品室就密封了。这个简单的原理被证明很成功,并且多年来一直在使用。杆式气锁的构造也采用了同样的原理,这有助于将物体自动降低到上极靴的孔中。轴向像散由位于真空外部的四个线圈组成的像散器补偿。因此,它们很容易在没有任何真空馈通的情况下转动。三透镜投影系统由插入磁路的机械中心极靴组成。电子光学系统由三个可从外部居中的光阑组成:限制照明面积的光阑、物镜光阑和用于选区衍射的光阑。图像观察室和胶片照相机室通过车削和铣削制成。显微镜的镜柱安装在一个台子上,台子两侧配有操作元件——用于试样位移和聚焦。为了实现电子加速,设计了60k V油绝缘高频电源。它的大小正好可以放在台式的镜柱旁边。最初用于激励透镜线圈的蓄能器,很快被桌下旋转泵上的电子稳定器取代(Delong & Drahoš,1955)。显微镜的分辨率最初是25Å,后来甚至达到15Å。它的操作非常简单,后来很多用户通过真空干燥胶片解决了35mm胶片作照相材料的缺陷。超过800台显微镜已经生产并出口到20个国家。近15年后,显微镜的生产才停止。在此期间,显微镜的任何部分均未发生实质性变化。如果我们将该设备与现代透射电子显微镜进行比较,在分辨率和应用的多功能性方面会有很大的差异,此外,在复杂性、易操作性和价格方面也存在很大差异。这类设备完全失去了意义吗?如果一个设备的参数已经超出了很多倍,那么它又有什么用呢?除了这些问题,我又想到了许多其他的问题。让我们想想我们为了进步而轻易放弃的一些东西。这种设备的特性之一是结构简单,因此操作简便。它放在桌面上,方便拆卸。一名受过普通技术培训的操作员就能够进行安装和拆卸,他可以很容易地去了解所有部件的功能。显然,这对教学非常重要。安装和拆卸设备不会出现问题。现代电子显微镜不存在这种可能。但是,该装置包含透射电子显微镜的所有重要操作模式:电子光学成像,其分辨率比最佳光学显微镜的分辨率高两个数量级。它很容易证明物镜光阑对对比度的影响,从而说明亮场和暗场模式下的对比度和成像原理。衍射透镜可以在晶格处证实电子衍射,并且使用选区光阑甚至可以让衍射图像对应研究对象的部分光学图像。很明显,这种简单的设备不能接近光学显微镜的特性,在没有任何维护的情况下,光学显微镜能可靠地工作多年,这无疑是它的优点。现代透射电子显微镜设计的初衷就是为了达到理论分辨率。没有维护,就不可能将这样复杂的设备保持在最佳性能水平。也许值得考虑的是,如何利用目前的技术进步来设计一种从完全不同的角度进行优化的装置,以最小的努力可靠地实现有保证的分辨率。扫描电子显微镜正好最符合所有这些考虑,尤其是在简化版中,只需要对研究对象进行简单的制备处理。然而,当使用扫描电子显微镜时,研究对象的成像信息并不令人满意。TEM领域缺少一个简单的装置——与简化的SEM相对应。问题是,在不影响设计原则(结构简单、操作简单、价格低廉)的情况下,将两种设备结合在一起的可能性有多大。关于台式电子显微镜还有一个更有趣的方面:简单廉价的生产和低价格。如果要达到极限性能,复杂的TEM是关乎材料、技术和生产的非常复杂的装置。如果我们接受比极限分辨率低几倍的分辨率,要求也相应减少。台式电子显微镜的材料成本和生产时间非常低,因此只能卖几千美元。精密加工主要集中在极靴的生产上,其它包括简单真空系统零件的生产并不是那么困难。供电装置的构建也不复杂。我们使用了短期、特别是长期整体稳定性要求相对较低的可用标准原材料。在整个生产过程中,没有遇到严重问题,由于材料缺陷而无法使用的零件数量极少。20世纪50年代初,台式电子显微镜的构建证实非常成功。当时生产的其他电子显微镜的极限分辨率并没有好到让大多数应用对这类显微镜失去兴趣。情况似乎恰恰相反。这种结构简单、操作方便、价格低廉的设备满足了许多生物实验室的要求。当时经常研究的表面复型也可能适合用该设备研究。使用相对简单表示,显微镜适合反射显微镜,甚至是热发射电子显微镜(Delong等人,1956,1957)。一个有趣的问题是,是否有可能回到构建一个简单设备的想法上来,该设备将应用于电子显微镜无法介入的很多研究领域,因为我们必须承认现代精密设备的价格非常高。捷克斯洛伐克电子显微镜的生产捷克斯洛伐克第一台电子显微镜的开发得到工业界的资金支持,目的是引进工业生产。因此,在20世纪50年代初进行了准备工作,开始生产电子显微镜和其他设备,以满足捷克斯洛伐克研究和开发工作的需要。工业企业Scientific Workshop在布尔诺成立了,并根据第一台捷克斯洛伐克电子显微镜开发期间汇编的文件制造了25台透射电子显微镜。Scientific Workshop很快成为 Tesla Brno公司的一部分,该公司于1957年开始生产台式电子显微镜。生产数量最多时,每年生产超过100台仪器。随后,由于对透射电子显微镜的需求增加,生产量开始减少。那时,性能更高的透射电子显微镜正进入市场。然而,除了更完善和更复杂的设备外,台式电子显微镜一直到20世纪70年代初才问世。尝试把显微镜放在一个特殊的桌子上并重建它的一些功能部件的想法失败了。这些原因导致了价格上涨和兴趣的降低。这个设备的繁荣时代不可逆转地过去了。在15年时间里生产了827台这种类型的电子显微镜,这可以被认为是一个无可争议的成功,这一点得到了许多奖项的证实,其中包括1958年布鲁塞尔世界展览会的金牌,但最重要的是得到了许多用户的赞赏。毫无疑问,国家企业Tesla Brno的台式电子显微镜生产对更先进的电子显微镜的生产具有积极的影响。尽管自1954年以来,生产的激励和文件来自在捷克斯洛伐克科学院(一个将不同方向的研究机构联系起来的机构,如苏联科学院或法国中央研究院)的作者领导下的一个团队,但在Tesla Brno,一个由经验丰富的工人、工程师、设计师和工匠组成的团队渐渐形成。电子显微镜的生产也对其他科学仪器(NMR谱仪)开始生产以及Tesla Brno的主要生产项目——电子测量仪器的质量产生了重大影响。在Tesla Brno的实验室中,搭建了两种他们自己设计的电子显微镜。表1列出了捷克斯洛伐克的电子显微镜生产概况。表1捷克斯洛伐克的电子显微镜生产类型生产仪器的数量a研发已开始已结束TEM BS1952195325理论与实验电工学研究所TEM BS 242(台式)19571973827捷克斯洛伐克科学院TEM BS 413(高分辨率)19641973358捷克斯洛伐克科学院TEM BS 500(540)1973–399Tesla BrnoSEM BS 3001976–142Tesla BrnoSEM BS 3501977–18捷克斯洛伐克科学院a共计1769台总结捷克斯洛伐克的科学工作者在二战结束后才开始熟悉电子显微镜。这不仅仅是一个被动的邂逅。该设备给人留下的难忘印象开启了人们梦寐以求地研究亚微观世界的可能性,这进一步鼓舞了世界上更多的人参与进一步发展这一本世纪最伟大的设备。尽管这只是一个微小的贡献,但它扩大了电子显微镜家族,而且不仅是在捷克斯洛伐克。捷克斯洛伐克也像世界其他国家一样,电子显微镜使来自不同科学和技术领域的显微镜学家和睦相处。早在1952年,在Hercík教授的倡议下,捷克斯洛伐克显微学家的第一次大会就召开了。1959年在斯莫莱尼茨组织了一次大会,来自世界多国的许多知名专家参加了这次大会。1964年在布拉格举行了第三届欧洲区域电子显微镜大会,这是是捷克斯洛伐克努力改善东西部在电子显微镜领域联系的高潮,许多著名的东西方科学工作者参加了这次大会。这次大会成为社会主义国家的显微镜学家参与电子显微镜发展的里程碑,电子显微镜的发展一直为和平服务。世界电镜九十年之怀念捷克斯洛伐克电子显微镜先驱——Delong、Drahoš和Zobač
  • 300万!莆田学院采购激光共聚焦显微镜
    一、项目基本情况 项目编号:[350300]YDCG[GK]2022004 项目名称:莆田学院基础医学院激光共聚焦显微镜采购项目货物类采购项目 采购方式:公开招标 预算金额:3000000元 包1: 采购包预算金额:3000000元 采购包最高限价:2900000元 投标保证金:30000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02100309-激光仪器激光共聚焦1(台)是1激光器部分1.1激光器:采用单模保偏光纤,能量动态范围 ≥10000:1;- 固态激光器405nm:额定功率≥15mW,出光纤口功率≥5mW; - 固态激光器488nm:额定功率≥25mW,出光纤口功率≥10mW;- 固态激光器561nm:额定功率≥25mW,出光纤口功率≥10mW; - 固态激光器640nm:额定功率≥15mW,出光纤口功率≥5mW; 1.2软件可以直接调节所有激光器开关以及强度,并具有实验中未使用自动进入关闭状态(Switch off)功能。 2扫描模块2.1扫描器与显微镜一体化,一体化像差及色差校正。所有扫描器组件都直接耦合,无光纤连接。2.2▲共聚焦针孔采用复消色差校正,适合短波长(如 405 nm)激光成像,自动对齐;调节范围0.0到>10AU(Airy Unit)。 2.3检测器数量:荧光检测器≥3个,透射光检测器1个, 2.4荧光检测器类型: 荧光检测器全部为光谱型检测器,检测范围调节精度≤1nm;高灵敏度GaAsP检测器≥1个,QE≥45%。2.5★ 主分光镜:采用10°小角度入射技术,提供更高的激光压制效率,OD值≥6。2.6★利用可变次级二色分光镜(VSD)灵活地向所选通道内进行光谱分光,分光精度≤1.5nm。2.7▲采用X、Y独立的检流计(Galvo)双扫描镜,具有超快线扫及帧飞回技术。2.8扫描头绝对线性扫描运动,回转时间短,>85%的帧时间(frame time)有效地用于图像采样。2.9★可以进行360°任意旋转实时扫描成像。2.10▲扫描光学变倍:最小变倍扫描系数≤ 0.45x,且变倍连续可调,调节精度0.1x。2.11最大扫描分辨率≥6000 x 6000。2.12在非共振扫描模式下,逐行扫描可同时满足以下扫描速度指标:≥8幅/秒(512x512像素)、≥60幅/秒(512x64像素)、≥220幅/秒(512x16像素)。 2.13一次实验中单次扫描可以实现三个荧光检测通道同时成像,如果一次实验设置分次扫描,分次扫描次数≥10。 2.14光谱扫描(Lambda成像):两个检测器平行扫描完成光谱成像,扫描过程无荧光信号损失;光谱分辨率≤1.5nm;可根据结果做线性光谱拆分,去除自发荧光及荧光串扰。2.15扫描成像视场数≥20mm。2.16一个可用于明场和DIC的透射光检测通道。2.17具有实时电子组件(real-time electronics):控制显微镜、激光器、扫描模块和其他附件;通过实时电路进行数据采集和同步管理:过量采样读取逻辑电路,用以获得最佳灵敏度;数据在实时电路与用户计算机之间通过LVDS进行交换,在采集图像的同时可进行数据在线分析。3超高分辨率部分3.1★超高分辨率检测器:采用由不少于30个GaAsP(磷酸砷化镓)-PMT组成的高灵敏度面阵列探测器, 而非常规的GaAsP或HyD系列探测器。3.2▲在确保荧光收集效率的情况下(针孔≥2.5AU),超高分辨成像可同时实现如下效果:分辨率XY方向上≤125nm,Z方向≤360nm;同时相较传统共聚焦提升4-8x灵敏度或信噪比。3.3在确保荧光收集效率的情况下(针孔≥2.5AU),超高分辨率成像速度:不低于4幅/秒(512x512像素,16位)。 3.4超高分辨率多通道成像:可以灵活选择荧光收集波段,调节精度1nm。3.5超高分辨率成像可使用激光器波段:405nm, 488nm,561nm 和640nm。3.6荧光样品制备:无需选择特定的荧光标记物,常规的激光共聚焦样品都可以进行超高分辨率成像。3.7超高分辨率成像深度:同一样品具有与共聚焦相同的超高分辨率成像深度。4显微镜主机4.1研究型全自动倒置显微镜,高效率V型光路。4.2★齐焦距离:≤45mm国际标准齐焦距离4.3▲显微镜内置电动调焦驱动马达,最小步进≤15nm。 4.4▲全电动扫描台,扫描台面积≥320mm x 140mm,行程≥130 mm x 100 mm,精度≤ 0.1 μm,最大速度≥50mm/s,具有独立的控制器及操控手柄。4.5显微镜透射光源: LED光源,寿命>60000小时。4.6荧光附件:复消色差荧光光路,六位电动滤色镜转盘,电动光闸,含UV、B、G激发滤色镜组件和长寿命荧光光源。4.7全套微分干涉部件(DIC),有与不同数值孔径的物镜一一对应的棱镜。4.8多功能长工作距离电动聚光镜,数值孔径≥0.55。4.9目镜一对:10X,视场数≥23。 4.106孔位电动物镜转盘,具有自动识别功能。4.11★物镜:10x干镜,数值孔径≥0.45;20x干镜,数值孔径≥0.8;40x干镜,数值孔径≥0.95 ;63x油镜,数值孔径≥1.4;工作距离≥190 μm4.12通过TFT电子触控屏系统控制显微镜并显示工作状态,TFT触摸屏可以远离显微镜机身实现远程控制。4.13配有专业共聚焦显微镜系统防震装置。 5软件部分及图像工作站5.1智能化光路设置:通过选择样品的染料标记,提供3种光路配置模式,一键自动设置所有的光路。5.2REUSE功能。再次调用存储在每张图像里的所有的拍照参数来重现实验及进行精确对比。5.3多维获取图像:Z轴序列扫描、时间序列扫描、多点扫描等。5.4▲三维图像处理:3D和4D图像渲染,有四种渲染方式(阴影、表面、透明及最大强度投影)并可进行不同渲染方式的结合(如透明结合表面渲染);可实现三维空间的距离和角度测量;自定义式的3D和4D视频制作与导出。5.5▲交互式漂白,在进行图像采集的同时(包括连续扫描和时间序列实验),通过鼠标点击对任意区域进行漂白。适用于主动光活化实验、光转化实验或者快速光漂白实验等。5.6Z轴深度补偿功能,自动补偿由于样品深度增加造成的信号衰减。5.7具有图形化的感兴趣区域荧光强度平均值分析,实时或在扫描完成后显示和计算离子浓度。5.8裁剪功能,灵活地选择扫描区域。5.9光谱扫描及拆分功能,可以去除自发荧光,及荧光串扰。5.10图像分析功能:具备直方图分析和任意线的序列测量,长度、角度、面积、强度等的测量;定量的共定位分析;可根据要求编辑测量程序,对自定义的类和子类进行图像分割、计数和面积、强度等的测量,并将结果以表格、列表和散点图/直方图形式显示;可进行批量图像分析。5.11图像与视频导入/导出:适用于所有常见的文件格式(如:JPEG, BMP, TIFF, BigTIFF, PNG, WDP, SUR, AVI, WMF, MOV, OME-TIF, ZVI)。5.12反卷积功能:提供3种反卷积方式用于图像处理,提高图像的信噪比、对比度和分辨率。5.13图像工作站一套:经共聚焦厂家验证其匹配性。5.14 硬件配置不低于以下要求: Intel? Xeon Gold 4核处理器,主频≥3.6 GHz; >512 G SSD高速硬盘以及2个4TB SATA 7200 rpm硬盘,≧64GB内存,DVD刻录机,30英寸液晶显示器,分辨率不低于2560 × 1600; Windows 7 Ultimate x64操作系统。6活细胞培养系统6.1可控制温度、CO2浓度以及湿度。6.2细胞培养在独立空间内,培养皿底部可加热,上部也可同时加热;多孔板培养时顶部和底部均可被加热。6.3▲控温系统可同时控制至少4个独立的通道温度设定,温度控制范围:室温至60℃,精度≤0.1℃。6.4▲可进行CO2浓度控制,范围:0至8%,调节精度为≤0.1%,内置精度≤0.1%6.5湿度控制,加湿装置同时也可控温保湿。活细胞培养系统可完全由共聚焦软件一体化控制,并在软件及显微镜显示器上可以直接显示、调节。3000000工业 合同履行期限: 按招标文件要求 本采购包:不接受联合体投标二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.本项目的特定资格要求: 包1 (1)明细:招标文件规定的其他资格证明文件(若有) 描述:1、(强制类节能产品证明材料,若有,应在此处填写); 2、(按照政府采购法实施条例第17条除第“(一)-(四)”款外的其他条款规定填写投标人应提交的材料,如:采购人提出特定条件的证明材料、为落实政府采购政策需满足要求的证明材料(强制类)等,若有,应在此处填写)。 ※1上述材料中若有与“具备履行合同所必需设备和专业技术能力专项证明材料”有关的规定及内容在本表b1项下填写,不在此处填写。 ※2投标人应按照招标文件第七章规定提供。 (2)明细:具备履行合同所必需设备和专业技术能力专项证明材料(若有) 描述:1、招标文件要求投标人提供“具备履行合同所必需的设备和专业技术能力专项证明材料”的,投标人应按照招标文件规定在此项下提供相应证明材料复印件。 2、投标人提供的相应证明材料复印件均应符合:内容完整、清晰、整洁,并由投标人加盖其单位公章。(如项目接受联合体投标,对联合体应提出相关资格要求;如属于特定行业项目,供应商应当具备特定行业法定准入要求。) 三、采购项目需要落实的政府采购政策 进口产品,适用于(合同包1)。节能产品,适用于(合同包1),按照财库〔2019〕19号《关于印发节能产品政府采购品目清单的通知》执行。环境标志产品,适用于(合同包1),按照财库〔2019〕18号《关于印发环境标志产品政府采购品目清单的通知》执行。信息安全产品,适用于(合同包1)。小型、微型企业,适用于(合同包1)。监狱企业,适用于(合同包1)。促进残疾人就业 ,适用于(合同包1)。信用记录,适用于(合同包1),按照下列规定执行:(1)投标人应在(填写招标文件要求的截止时点)前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“投标人提供的查询结果”),投标人提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图)。(2)查询结果的审查:①由资格审查小组通过上述网站查询并打印投标人信用记录(以下简称:“资格审查小组的查询结果”)。②投标人提供的查询结果与资格审查小组的查询结果不一致的,以资格审查小组的查询结果为准。③因上述网站原因导致资格审查小组无法查询投标人信用记录的(资格审查小组应将通过上述网站查询投标人信用记录时的原始页面打印后随采购文件一并存档),以投标人提供的查询结果为准。④查询结果存在投标人应被拒绝参与政府采购活动相关信息的,其资格审查不合格。四、获取招标文件 时间:2022-10-18 15:10至2022-11-07 23:59:59(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至11:59:59,下午12:00:00至23:59:59(北京时间,法定节假日除外) 地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。 方式:在线获取 售价:免费五、提交投标文件截止时间、开标时间和地点 2022-11-08 08:30(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日) 地点:福建省莆田市城厢区莆田市公共资源交易中心三楼开标室六、公告期限 自本公告发布之日起5个工作日。七、其他补充事宜 /八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:莆田学院 地 址:莆田市城厢区学园路兴安新村36号 联系方式:18450050730 2.采购代理机构信息(如有) 名 称:福建省亿达工程咨询有限公司 地  址:三明市梅列区徐碧街道乾龙新村16幢8层 联系方式:13950740195 3.项目联系方式 项目联系人:何凤保 电   话:13950740195 网址:zfcg.czt.fujian.gov.cn 开户名:福建省亿达工程咨询有限公司 福建省亿达工程咨询有限公司 2022-10-18
  • 大连化物所预算869万元采购1台高分辨三维重构X射线显微镜
    近日,中国科学院大连化学物理研究所公开招标,预算869万元采购1台高分辨三维重构X射线显微镜。招标项目详情如下:项目编号:OITC-G240270123项目名称:中国科学院大连化学物理研究所高分辨三维重构X射线显微镜采购项目预算金额:869万元(人民币)最高限价(如有):869万元(人民币)采购需求:高分辨三维重构X射线显微镜 1 台/套 (允许进口产品)技术要求:1 分辨率及成像架构 ★1.1 最高空间分辨率:最佳三维空间分辨率≤0.5μm1.2 当 X 射线源距样品旋转轴 50mm 时的最佳空间分辨率≤1.0μm 1.3 最小可实现的体素(最大放大倍率下样品的体素大小)≤ 40 nm ★1.4 系统必须采用几何+光学两级放大的架构,以满足我单位对大样品进行局部高分辨率的成像需求。2 三维组织表征、重构及成像2.1 无损伤地对样品进行三维组织表征,可获得样品的三维组织形貌及不同角度、不同位置的虚拟二维切片组织形貌信息。不需制样或只需简单制备,不需真空观察环境,不会引入人为缺陷。 ★2.2 利用吸收衬度原理和相位传播衬度原理,可以对包括高原子序数和低原子序数在内的各种材料都能获得高衬度图像。 2.3 2000 张2k×2k投影重构图像数据(重构972 张Slice 图像)时间≤2.2分钟。2.4 支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据2.5 具备定位放大扫描功能2.6 具备样品移动自适应矫正、温度移动矫正、图像比对位移参照矫正等功能2.7 具备吸收衬度成像和基于边缘折射传播的相位衬度成像功能2.8 应具备硬件+软件的自动防撞机制, 可通过可见光扫描快速获取样品形状和实际轮廓,根据样品形状和轮廓,自动对源、探测器位置进行限位,以保证硬件和样品安全 。3 光源与滤波片★3.1 高能量微聚焦闭管透射式X射线源3.2 最高电压≥160kV,最低电压≤30kV,电压在最低和最高之间连续可调3.3 最大功率不小于25W3.4 Z轴可移动范围不小于190 mm 3.5 X射线泄露≤1μSv/hr(距离设备外壳25mm以上处)★3.6 带有单过滤波片支架,12个适用于不同能量段扫描的滤波片4 探测器4.1 能够实现二级放大的16 bit噪声抑制闪烁体耦合探测器, 探测器能够实现2048×2048以上的像素成像和三维重构★4.2 包含0.4X物镜探测器,实现2048×2048像素成像和三维重构4.3 包含高对比度,低分辨率的4X物镜探测器4.4 包含高对比度、高分辨率的20X物镜探测器4.5 探测器可移动范围不小于280mm★4.6 包含高分辨率40X物镜探测器5 样品台及样品室★5.1 全电脑控制高精度4轴马达样品台,具备超高的样品移动精度★5.2样品台X轴运动范围50mm;Y轴运动范围100mm;Z轴运动范围50mm 5.3 样品台旋转运动范围:360度旋转5.4 样品台最大承重范围:25kg5.5 样品台可承受样品尺寸范围:300mm★5.6 为了防止X 射线辐射泄漏、保护仪器操作人员,设备须采用全封闭式铅房设计,不能留有观察玻璃窗。样品室内配备可见光相机,确保操作人员无需通过观察玻璃窗即可监控和操作样品。5.7 配置原位台接口,可后期升级原位台。5.8 系统应具备智能防撞系统,可根据样品尺寸设定源和样品的范围,保障在实际成像过程中不会发生样品和源、探测器的碰撞损坏设备或样品。6 仪器控制与数据采集、重构、可视化及分析系统6.1 全数字化仪器控制,计算机控制工作站★6.2 具备三维数据采集及控制软件, 并提供1次免费升级服务。6.3 支持原始数据查看,图像标准特征显示(如亮度、对比度、放大等)、注释、测量6.4 可以进行基本图像测量,如图像计算、滤波等6.5具备快速三维数据重构软件6.6 具备三维数据可视化软件,展示三维重构结果,包括虚拟断层,着色、渲染、透视等,并实现基本分析功能和注释(3D Viewer)★6.7 专业的三维数据分析软件(一套):可进行高级三维重构后视图展示与三维高级数据处理与分析包括定量分析与统计分布、切片配准与图像滤波、三维图像数据分割与特征提取、多模态融合与分析、三维模型生成与导出,几何特征计算等(如可以实现三维数据处理,对样品三维数据结果进行相分割,孔隙率计算,裂纹及孔的尺寸统计与空间分布)并且可与其它三维软件兼容, 厂家自带软件全部功能开放7 三维X射线显微镜控制主机(须内附三维X射线显微镜控制单元)Microsoft Windows10操作系统、符合或优于Dual Eight Core CPU 、 CUDA-enabled 3D GPU,12TB(3×4 TB)硬盘容量、32GB内存、RAID-5可刻录式光驱、24寸液晶显示器;额外再配置一台数据处理工作站,要求不低于以下配置:Microsoft Windows 10及以上正版操作系统、双10核CPU、Nvidia RTX A6000GPU、6TB硬盘容量、512GB内存、RAID-5可刻录式光驱、24寸显示屏。8 样品座及标样8.1 配备对中和分辨率测试标样1套,配备针钳式样品座、夹钳式样品座、夹持式样品座、高铝基座样品座、高精度针钳式样品座。9 可拓展功能★9.1 可与双束系统、场发射电镜的数据相关关联,可将CT所获得的数据文件格式如CZI, ZVI, TIFF, MRC等格式的二维图像和TXM 3D X-ray volumes体量数据,导入到电镜或者双束系统的软件中,实现亚微米级到纳米级的数据关联以及数据处理。10 其他硬件10.1 人体工学操作台,大移动范围、高精度花岗岩工作台,四门式防辐射安全屏蔽罩,配备辐射安全连锁装置和“X-ray on”指示器 潜在投标人需于2024年06月11日至2024年06月18日,上午9:00至11:00,下午13:00至17:00(北京时间,法定节假日除外),登录东方招标平台www.oitccas.com注册并购买招标文件,并于2024年07月02日09点30分(北京时间)提交投标文件。联系方式:1. 采购人信息名称:中国科学院大连化学物理研究所地址:辽宁省大连市中山路457号联系方式:王老师,0411-843797072. 采购代理机构信息名称:东方国际招标有限责任公司地址:北京市海淀区丹棱街1号互联网金融中心20层联系方式:窦志超、王琪 010-682905233. 项目联系方式项目联系人:窦志超、王琪电话:010-68290523附件:采购需求.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制