混合装置

仪器信息网混合装置专题为您提供2024年最新混合装置价格报价、厂家品牌的相关信息, 包括混合装置参数、型号等,不管是国产,还是进口品牌的混合装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合混合装置相关的耗材配件、试剂标物,还有混合装置相关的最新资讯、资料,以及混合装置相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

混合装置相关的厂商

  • 苏州雅云环保科技有限公司位于风景秀丽的阳澄湖畔唯亭古镇。公司致力于纯水现场制取设备、中水回用设备以及废水处理设备的研发、市场推广和销售。主要产品有:全自动软化水设备、全自动RO 反渗透纯水设备、离子交换混合床、高纯水抛光混合床、EDI电除盐系统装置、水质现场监测系统、化学加药系统、一体化废水处理设备以及相关的水处理配件等。涉及行业:太阳能光伏(单晶硅、多晶硅、硅片切割、薄膜太阳能电池等)、电子(微电子、液晶/等离子显示器等)、电力、生物医药、化工、电镀涂装、食品饮料等。
    留言咨询
  • 苏州晟宇气体设备有限公司成立于二十一世纪初,是设计制造制氢设备,制氮设备,气体纯化,混合配气设备.氢气氩气氦气回收净化设备,高纯氢,氩,氮,氧,气体净化纯化设备,氢气站,氮气站,混合配气站,各种气体装置的专业性公司,公司通过质量体系认证. 秉乘以人为本,科技创新的理念,服务于社会及各行各业公司积累了多年的气体设备设计,制造,生产经验,用户使用反馈信息,和大专院校、科研部门技术合作交流,投入大量的人力财力开发用户需要的高科技、高质量产品服务新老用户.公司始终依靠科技进步增强企业实力,不断完善各类气体设备产品的性能 面向机械、电子、化工、玻璃、冶金、食品、石油、电力,科研及大专院校等各行各业,提供如下设备:1.氩气纯化装置 2.氮气纯化装置 3.空气制氮装置 4.氨分解制氢装置 5.氢气净化装置 6.气体纯化装置 7.氢、氩、氦气回收纯化装置 8.空气干燥装置 9.混合配气设备 10.高纯氩气纯化装置,以客户的需求为最终要求  每款产品我们会根据客户所提出的要求为客户量身定制所需产品,凭借实际经验想客户所没想 ,更具人性化的设计,生产出客户满意产品。近年来。微电子行业所使用的混合配气装置获得很大的成功。从单一的二组分配气跃升为全自动化的八组分配气,高纯气体净化装置在山东省乃至全国得到全面推广及应用,以完美的外观和精确的工艺赢得用户的好评。以质量赢得市场。以真诚服务客户。开发研制的全自动氩气纯化设备在新能源特别是在单晶硅,太阳能,色谱仪,光谱仪等电子行业中得到充分扩张。相信您的眼光。您的选择。。苏州晟宇气体设备有限公司 公司一贯坚持“质量第一,用户至上,优质服务,信守合同”的宗旨,凭借着高质量的产品,良好的信誉,优质的服务,产品畅销全国近三十多个省、市、自治区。竭诚与国内外商家双赢合作,共同发展,共创辉煌!    气体公司专用氩气纯化机氮气纯化机是苏州晟宇气体全力打造的高纯气体纯化系列之一,以全新的工艺及外观,高质量的气体纯度体现了精湛的技术含量,相对低廉的价位展示了微利销售的经营理念,服务于广大用户
    留言咨询
  • 江阴市佳科机械制造有限公司科技力量雄厚、工艺先进、设备齐全,是生产茶叶粉碎机,绿茶粉碎机,木薯粉碎机,大豆粉碎机,黄豆粉碎机,麦麸粉碎机,麦苗粉碎机,茶麸粉碎机,茶枯粉碎机,茶粕粉碎机,生姜粉碎机,姜黄粉碎机,姜片粉碎机,干姜粉碎机,黄姜粉碎机,抹茶粉碎机,黑茶粉碎机,红茶粉碎机,白茶粉碎机,三七粉碎机,葛根粉碎机,黄芪粉碎机,黄芩粉碎机,灵芝粉碎机,枸杞粉碎机,大枣粉碎机,石斛粉碎机,枫斗粉碎机,玛卡粉碎机,玛咖粉碎机,针叶粉碎机,大米粉碎机,黑米粉碎机,红米粉碎机,薏米粉碎机,粮食粉碎机,孜然粉碎机,八角粉碎机,茴香粉碎机,陈皮粉碎机,花瓣粉碎机,花苞粉碎机,芝麻粉碎机,杏仁粉碎机,乳香粉碎机,艾叶粉碎机,艾草粉碎机,艾绒粉碎机,岩片粉碎机,蜂胶粉碎机,破壁粉碎机,纤维粉碎机,明胶粉碎机,树胶粉碎机,硫磺粉碎机,树脂粉碎机,药材破碎机,PVC粉碎机,尿素粉碎机,稀土粉碎机,茶籽饼粉碎机,白砂糖粉碎机,生姜片粉碎机,干姜片粉碎机,香辛料粉碎机,卡拉胶粉碎机,催化剂粉碎机,玫瑰花粉碎机,茶泡袋粉碎机,食品添加剂粉碎机,FD果蔬粉粉碎机,可可豆粉碎机,咖啡豆粉碎机,核桃仁粉碎机,中药材粉碎机,五谷杂粮粉碎机,脉冲除尘粉碎机,脱水蔬菜粉碎机,干果蔬菜粉碎机,茶叶颗粒粉碎机,超细磨粉机,超细微粉机,超细打粉机,PS粉碎机,PET粉碎机,TPU粉碎机,EVA粉碎机,聚酯胺粉碎机,聚乙烯醇粉碎机,丁晴橡胶粉碎机,3D打印粉末粉碎机,WF万能粉碎机,WFJ超微粉碎机,CSJ粗碎机,低温液氮粉碎机,WLDH螺带混合机,CH槽型混合机,SHJ锥形混合机,EYH二维混合机,SBH三维混合机,高速混合机,W型混合机,V型混合机,VI强制型混合机,GK干法造粒机,XZL旋转制粒机,YK摇摆颗粒机,FTS旋转筛,ZS筛粉机,螺杆输送机,真空上料机,CT烘箱。 设备畅销全国各地,部分产品已进入美国、加拿大、南斯拉夫、意大利、韩国、西班牙、马来西亚、新加坡、泰国、香港、台湾、印度尼西亚、日本、越南等国家和地区,深受国内外广大用户的信赖和好评。
    留言咨询

混合装置相关的仪器

  • 汇康臭氧混合塔臭氧发生器投加混合装置一、臭氧混合氧化塔工作原理 臭氧混合塔又称氧化塔,臭氧杀菌器是水处理系统中常用的杀菌设备,杀菌的效果不但和水中细菌种类以及数量和臭氧的含量有关,而且和臭氧与水的接触时间与臭氧布气布气头有关,一般来说,臭氧和水接触的时间越长,混合越充分,臭氧杀菌的效果好,布气板气孔越小,臭氧被切割成气泡越小,臭氧与水接触的面积就越大,那么混合的效果就更好,杀菌的效果也就更好。 二、臭氧混合氧化塔优势为了让臭氧和水有充分混合面积和混合时间,这要求我们要有足够的混合空间,一般我们臭氧的混合时间在5-10分钟时间,那么我们就要根据混合时间和流量来设计臭氧混合塔的空间,当臭氧混合塔的空间确定之后,一般为了使臭氧和水成分的对流混合,水上进而臭氧是下进,我们设计进水口和进臭氧的距离在3500mm以上,这样臭氧和水有充分的混合时间和空间,达到杀菌效果。我公司设计臭氧混合塔一般有304材质和316L材质2中不锈钢材质,布气板选用钛板布气也就是臭氧曝气盘,钛板布气布气孔在5-20um孔径,臭氧能被充分的切割成小气泡,提高了臭氧杀菌器的杀菌器效果。
    留言咨询
  • 微观混合过程测定实验装置产品介绍: 反应工程示范装置系列由本公司独立设计,适用于教学研究。除传统手工操作外,可配套计算机和相应软件,实现实验数据实时在线采集、过程自动控制、实验数据远程传送;微观混合过程测定实验装置设备统一外形尺寸:长×宽×高:1500×500×2000,不锈钢框架,带刹车轮;微观混合过程测定实验装置产品功能1、考察微观混合状态对于化学反应体系的影响;2、研究不同操作条件(进料时间、转速、进料位置)对微观混合过程的影响;微观混合过程测定实验装置主要部件三相异步电动机、蠕动泵、变频器、扭矩传感器、转速传感器、搅拌槽(包含搅拌桨、搅拌轴)、挡板、智能仪表、嵌入式一体化彩色触控显示屏。
    留言咨询
  • 属性:类型:实验教学专用装置适用范围:化工原理实验教学、科研小中试表面处理:拉丝处理尺寸:2200mm*580mm*1700mm电压:220v功率:0.25kw颜色:灰白型号:LPK-SSTR品牌:莱帕克可售卖地:全国区域产品关键词多釜串联、停留时间分布、反应工程多釜串联混合性能测定实验装置介绍多釜串联混合性能测定实验装置采用脉冲示踪法测定停留时间分布,电导仪能准确实时检测各反应釜出口示踪剂的浓度,通过计算机软件处理得到停留时间分布曲线。装置由反应釜、水箱、电机、水泵、数字电导仪、转子流量计和电控系统组成。能通过多釜串联模型参数对釜式反应器停留时间分布以及返混程度做分析研究,模型参数N代表反应器的返混程度。 可完成以下知识点教学:1、学习单釜与三釜串联反应器停留时间测定方法;2、理解串联模型参数对釜式反应器停留时间分布以及返混程度的表征;3、了解模型参数N的物理意义;4、理解平推流和全混流两种理想模式; 装置特点:多釜串联混合性能测定实验装置适用于化工类专业,装置总占地面积1.28平方米,高度1.7米,整体采用欧标铝型材框架,高品质铝合金框架带移动脚轮,具有耐用性。设备所有液体管路及气体管路均采用硬质透明可视管路,整套采用快拆式连接方式,耐压≥0.6MPa,壁厚≥2.0mm,引压管等辅助管道采用透明软PVC管,保证设备整体透明度超过80%,让实验现象更加的直观。配套智能学习系统,通过预习视频、3D仿真、在线考评测试等,培养学生自主学习意识,激发学生学习兴趣,减轻教师教学压力。提供6年质保,解决用户的后顾之忧。
    留言咨询

混合装置相关的资讯

  • 中科院高强度稳态磁场混合磁体研制成功
    11月13日下午,中国科学院强磁场科学中心磁体实验大厅一片欢呼,我国自主研制的混合磁体装置调试获得成功,实现了任务目标——40万高斯稳态磁场。  “这台混合磁体装置也正式成为磁场强度在世界排名第二高的稳态强磁场装置,不久还有望冲击45万高斯稳态磁场的世界纪录。”中国科学院合肥物质科学研究院院长兼强磁场中心主任匡光力告诉《中国科学报》记者。  匡光力介绍,混合磁体由外超导磁体和套在其中的水冷磁体组合而成。一个月前,水冷磁体单独调试成功,能够产生30万高斯的稳态磁场 一周前,低温孔径达920毫米的大型高场超导磁体调试成功,能够产生10万高斯的稳态磁场。今天,两个磁体成功合体,共同产生了40万高斯的稳态磁场,终于圆了相关科研人员奋斗了八年的梦想!  强磁场是支持科学前沿探索的一种极端实验条件,磁场越高,科学发现的机遇越多,因此,强磁场装置必然追求更高的磁场。匡光力说:“追求极高的磁场就像攀登珠穆朗玛峰,到达极限之前,需要克服许多困难方能成功。”  混合磁体是国际上产生最高稳态磁场的主要选择,但选择它就意味着选择了一系列重大技术挑战——其水冷磁体必须解决材料和结构的优化选择问题,面临巨大电磁力和严峻的发热问题,差之毫厘,失之千里,且给它供电的数千万瓦级的稳态直流电源本身也是一项重大技术挑战 其超导磁体孔径巨大,导体的材料选择、结构选择和磁体生产工艺以及与之配合的低温冷却技术等都是技术难题,此前国际上已有多个大型高场超导磁体因技术问题而失败,而我国在高场超导磁体技术方面原有基础薄弱。  混合磁体研制难度大不仅体现在上述方面,看似简单的磁体安装稍有偏差即可能导致巨大破坏,两个磁体的磁中心面或磁轴如不能重合,即便相差一毫米,磁体也将面临数吨的相互作用力。一位著名的国际强磁场技术专家此前曾一再感叹:“世界上还没有真正完全研制成功的混合磁体装置。”  刚调试成功的混合磁体装置是中国科学院强磁场科学中心承担的国家“十一五”重大科技基础设施——稳态强磁场实验装置项目所包含的九台磁体装置中产生磁场最高的磁体,也是最后研制成功的磁体,此前研制成功的水冷磁体中有三台创造了单项世界纪录。  这次混合磁体的调试成功标志着强磁场中心承担的稳态强磁场装置项目的主要任务已经完成,它的研制成功是我国强磁场技术发展的重要里程碑。据悉,混合磁体装置将主要用于新型功能材料的量子行为研究。
  • 中山大学在重要工业混合物分离纯化方面取得重要突破
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/0efb0394-27e8-4a6b-b92a-cc01c6e37729.jpg" title="tpxw2017-06-23-10.jpg"//pp style="text-align: center "图. 控制不同柔性客体分子选择性吸附的策略/pp  在国家自然科学基金项目(项目编号:21225105,21290173,21473260)等资助下,中山大学张杰鹏教授、陈小明院士及其他合作者在重要工业混合物分离纯化方面取得进展,相关研究成果于2017年6月16日以“Controlling guest conformation for efficient purification of butadiene”(控制客体分子构象实现丁二烯的高效分离)为题在线发表在Science上。/pp  为了使产品或原料达到足够高的纯度,工业界需要花费大量时间与成本对混合物进行分离。对于分子量相似的碳氢化合物,绝大多数多孔材料选择性吸附极性更大、分子更小和具有配位能力的烯烃。因此,通常需要经过耗能较高的萃取分馏过程将1,3-丁二烯从丁烷、丁烯和异丁烯等其他C4碳氢混合物中分离,目前很难利用多孔材料优先分离得到1,3-丁二烯。该研究团队发现常温常压下将C4碳氢化合物的混合物通过亲水性多孔配位聚合物MAF-23填充的固定床吸附装置后,只有1,3-丁二烯的构象发生转变,且构象转变导致很大的构象弯曲能量损失,从而大大减弱与MAF-23的吸附。该团队利用C4碳氢化合物的柔性差别和构象变化引起的能量损失以及由此导致的与多孔材料的吸附性差别,实现了温和条件下选择性达99.5%的1,3-丁二烯的高效纯化,避免了常规蒸馏和吸附纯化过程中因加热而产生的丁二烯自聚问题,实现了反常且最优的C4碳氢化合物吸附分离顺序。/pp  该团队致力于配位聚合物多孔材料的设计、合成、气体吸附和相关机理研究,近年来取得了系列进展,发展了多种提高二氧化碳捕获效率的策略,实现了常压、烟道气和大气环境中的多个吸附量记录 提出了利用气—固反应机理对多孔框架进行精确修饰的策略,设计合成了兼具拟铜蛋白氧气活化中心和易氧化有机配体的新型多孔配位聚合物MAF-42,可以将材料的吸附选择性改变四个数量级,适于天然气中提纯乙烷和甲烷 提出了“亲水孔道捕获疏水分子”的概念,利用超微孔表面精确排列的氢键受体高效结合极性较低的乙烷分子而非极性较大的乙烯分子,并据此合成了新型多孔配位聚合物MAF-49。常温常压下,将乙烯/乙烷混合物通过MAF-49填充的固定床吸附装置后,乙烷被选择性吸附保留,流出的乙烯纯度很容易超过99.99%。/p
  • Nanoscribe客户成就 |3D打印微流控混合器研发
    研究背景微流控技术广泛应用于不同领域,例如分析化学、微生物分析和即时医疗应用的芯片实验室设备(lab-on-chip)等,来帮助控制微小流体。集成化是微流控设备的关键所在,而小型化的微流体系统不能实现液体的湍流混合,扩散式混合作为主要的混合流程则需要借助很长的微通道来实现。这会占用设备的面积,或者实施耗时的微纳加工技术来制造复杂的混合元件。Nanoscribe微纳加工技术助力微流控混合器研发近日,来自不来梅大学微型传感器、致动器和系统(IMSAS)研究所的科学家们发明了一种全新的微流道混合方式,即通过堆叠彼此交替的液流来减少扩散长度,并提出了微流控混合的新概念:多级互换混合器。科学家们使用Nanoscribe公司的3D打印系统,将自由形式3D微流控混合元件集成到预制的晶圆级二维微流道中。该微型混合器可以处理高达100微升/分钟的高流速样品,适用于药物和纳米颗粒制造,快速化学反应、生物学测量和分析药物等各种不同应用。上图:在预制的二维微流道中3D打印制作壁厚约为2 µm的螺旋状结构三级微流控混合器。图片来自于Martin Oellers, Frieder Lucklum and Michael J. Vellekoop, University of Bremen通过使用Nanoscribe的 Photonic Professional系列打印系统制作的微流控元件完全嵌入进预制的二维微流道系统中,换句话说,科学家们运用3D微纳加工技术将自由形式的3D微流体混合器直接做成微流体芯片。每个微纳混合器都能在30秒内制作完成,从而确保了在一小时内完成加工整个晶圆。这要归功于3D微纳加工技术,可以实现混合器的快速制作,即从电脑模型设计(CAD)到打印样品的一步式操作流程。当双光子聚合原理应用到传统光刻技术互换式混合器是通过Nanoscribe的双光子聚合技术(2PP)结合光刻技术来实现制作的。第一步,使用SU-8光刻胶在硅晶圆上利用光刻技术制作二维微通道系统;第二步,运用双光子聚合技术将3D混合器元件集成到开放式为通道中;打印结束后在显影阶段将残留的未聚合材料冲洗掉,除去通道中所有抗蚀剂残留物;最后,通过将聚二甲基硅氧烷(PDMS)片压在微通道的顶部来密封微流体装置。这种制造方法将3D微纳结构集成到了预制的晶圆级二维微流体通道中,突出了传统光刻和双光子聚合技术的完美兼容性和卓越性能。研究人员能够利用系统的高设计自由度和超高精度的特点,将复杂形状的3D微流体混合器定位到二维微流体通道中。使用Nanoscribe微纳加工技术打印的三阶微流控混合器电镜图。图片来自于MMartin Oellers, Frieder Lucklum and Michael J. Vellekoop, University of Bremen了解更多双光子微纳3D打印技术和产品信息请咨询Nanoscribe中国分公司纳糯三维科技(上海)有限公司Photonic Professional GT2 双光子微纳3D打印设备Quantum X 灰度光刻微纳打印设备

混合装置相关的方案

混合装置相关的资料

混合装置相关的试剂

混合装置相关的论坛

  • 混合气体微间隙模拟放电装置中的真空压力控制解决方案

    混合气体微间隙模拟放电装置中的真空压力控制解决方案

    [size=16px][color=#990000][b]摘要:针对微间隙气体放电特性分析中需要对不同真空压力进行精密控制的要求,本文提出了相应的解决方案。解决方案采用了双路调节技术,由真空计、电控针阀和真空压力控制器组成进气和排气控制回路,可实现真空度1Pa~101kPa全量程范围内优于±1%的控制精度。同时,此解决方案适用于多种气体混合后的真空压力控制,还可进行更高真空度、更高正压压力和增加湿度等环境变量控制的拓展,更广泛适用于各种气体放电特性研究。[/b][/color][/size][align=center][size=16px][color=#990000][b]==========================[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 微间隙气体放电是一种电极距离在微米或纳米量级的放电形式,由于电极距离极小,微间隙放电通常表现出不同于传统规模放电的击穿特性,从而导致低电压击穿的风险。此外,微间隙放电过程中所产生的微等离子体具有高压稳定性、非热平衡、高电子密度、高激发效率等优点,在工业和生活中有着广泛的应用。总之,微间隙气体放电特性的研究引起了的极大关注。[/size][size=16px] 在微间隙气体放电特性研究中,微间隙中气体的种类和真空压力是重要的环境条件。最近有客户对这种微间隙中的气体种类,特别是对真空压力的精密控制提出了明确要求,其目的是研究不同气体和不同真空压力下微间隙的气体放电特性。为此本文提出了微间隙气体压力的精密控制解决方案,以实现微间隙气体放电特性分析过程中的全量程的真空压力高精度自动控制。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案是在原有的微间隙气体放电特性测试设备上增加高精度真空控制系统,以实现在绝对压力1Pa~101kPa范围内的精密控制,全量程真空度控制精度小于±1%。整个装置的结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=微间隙气体放电试验装置及其真空压力控制系统,650,411]https://ng1.17img.cn/bbsfiles/images/2023/09/202309221532063298_6848_3221506_3.jpg!w690x437.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 微间隙气体放电试验装置及其真空压力控制系统[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统主要由气源、混气罐、电控针阀、真空计、真空压力控制器和真空泵组成,其功能和性能指标如下:[/size][size=16px] (1)气源:气源主要由高压气瓶提供,可采用不同气体的气瓶实现气体混合,以实现混合气体环境下的微间隙气体放电性能研究。混合气体中的各种气体比例可以通过相应的气体质量流量控制器进行调节。当然,也可以采用单一气体,如果是气体是空气可采用气泵作为气源。[/size][size=16px] (2)混气罐:提供气体的充分混合,混气罐内的压力要高于一个大气压。[/size][size=16px] (3)电控针阀:解决方案中采用了两个NCNV系列的电控针阀,电控针阀采用步进电机高速调节并具有极好的调节精度和线性度,全开和全闭动作时间小于1秒。一个电控针阀用于调节进气流量,以进行低压高真空范围内的控制;另一个针阀用于调节排气流量,以进行高压低真空范围内的控制。在实际应用中可根据真空腔体尺寸大小选择不同孔径的电控针阀,更大的真空腔体排气时可将排气用电控针阀更换为电控球阀,以提高排气流量和真空度调节控制速度。[/size][size=16px] (4)真空计:解决方案中采用了两个电容真空计,一个真空计的最大量程为10Torr,另一个真空计的最大量程为1000Torr,由此两真空计可覆盖整个真空度范围。选择电容真空计是因为这种真空计具有较高的测量精度和信号的线性输出,在全量程任意真空度点上的测量精度都可以保证小于0.25%。当然,真空计也可以选择全量程型的皮拉尼计,但其测量精度只能达到15%,且信号输出呈现严重的非线性,会严重影响真空度控制精度。[/size][size=16px] (5)真空压力控制器:为了保证全量程范围的真空度控制精度,选择了VPC2021-2型号的双通道真空压力控制器,每个通道与对应的真空计和针阀组成独立的闭环控制回路,其中一个通道用于控制高真空,另一个通道用于控制低真空。此双通道真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,结合电容真空计和电控针阀可实现全真空度范围优于±1%的控制精度。另外,此控制器具有PID自整定功能和自带计算机软件,便于进行过程参数的设置、运行、显示和存储。[/size][size=16px] (6)真空泵:由于需要采用微机械装置进行精密位移调节,真空泵选用干泵以避免对真空腔室内部件的污染。在具体应用中需根据真空腔体的大小和真空度范围选择相应抽速的干泵。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 本文针对微间隙气体放电特性分析中所需的真空压力精密控制要求,提出了全量程真空压力高精度的解决方案,可完全满足客户在微间隙气体放电特性研究中需要。另外,此解决方案还具有很强的可拓展性和适用性,主要有:[/size][size=16px] (1)还可进行多种气体混合气氛条件下的真空度精密控制。[/size][size=16px] (2)除了上述低压真空度范围内的精密控制之外,还可进行量程的扩展,如向高真空和超高真空方向拓展,如向高压一个大气压的正压方向拓展。[/size][size=16px] (3)除了气体气氛环境的精密控制之外,还可增加湿度等环境变量的精密控制。[/size][size=16px] 总之,本解决方案可推广应用到多种环境变量的自动控制中,以满足各种形式和规格的气体放电特性的研究和分析。[/size][align=center][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 【求助】混合气检测

    求Ar+CO2,Ar+H2,N2+H2三种混合气测定所需购买设备色谱仪,检测器,色谱柱,载气,载气预处理装置,及各个混合气的色谱条件(焊接气用混合气,常量分析,Ar:CO2=80%:20%)

  • 【求助】请教混合碳五如何进样?

    13x分子筛填充柱做连续重整装置的混合碳五油族组成,含C3、C4、C5(95%左右)、C6轻组分。样品和进样针在冰箱中冷冻15分钟后进样,进样量0.8微升,结果重复性依然不好。怎么办?大家帮帮我。[em09508]

混合装置相关的耗材

  • 瑞士万通 脱气装置软管连接 - 混合阀,155 mm | 6.1834.100
    脱气装置软管连接 - 混合阀,155 mmTubing connection Degasser - Mixing Valve, 155 mm订货号:6.1834.100淋洗液脱气装置和低压混合阀之间的连接。技术参数长度(mm)155
  • 混合块
    混合块“积木”型模块混合歧管由1个混合槽和3个接口(2个进口和1个出口)组成。本品由具有化学耐受性的塑料制成。几个这样的混合块可以插在一起,从而轻松创造出可提高混合能力的单一装置。订货信息:产品描述部件编号混合块B0507962
  • 工业混合气体
    1、激光混合气 采用99.999%一氧化碳、二氧化碳和99.999%氢气、氮气和氦气等高纯气体,按激光发生器的比例要求配制而成的预混合气体。由于激光混合气中组分气的纯度直接影响激光的性能,特别是气体中氧、水、碳氢化合物等杂质的存在,将导致激光输出功率在镜(面)和电极上的耗损,还会引起 激光发射的不稳定。因此,对激光混合气组分的纯度有着特殊要求,包装混合气的钢瓶,充装前也必须进行干燥处理,防止污染混合气。不同材料所需的辅助激光气体:结构钢用氧气切割时会得到较好的结果。当用氧气作为加工气体时,切割边缘会轻微氧化。对于厚度达4mm的板材,可以用氮气作为加工气体进行高压切割。这种情况下,切割边缘不会被氧化。厚度在10mm以上的板材,对激光器使用特殊极板并且在加 工中给工件表面涂油可以得到较好的效果。不锈钢切割不锈钢需要:使用氧气,在边缘氧化不要紧的情况下;使用氮气以得到无氧化无毛刺的边缘,就不需要再作处 理了。在板材表面涂层油膜会得到更好的穿孔效果,而不降低加工质量。尽管铝有高反射率和热传导性,厚度6mm以下的铝材可以切割,这取决于合金类型和激光 器能力。当用氧切割时,切割表面粗糙而坚硬。用氮气时,切割表面平滑。纯铝因为其高纯非常难切割,只有在系统上安装有 "反射吸收"装置的时候才能切割铝 材。否则反射会毁坏光学组件。钛板材用氩气和氮气作为加工气体来切割。其它参数可以参考镍铬钢。铜和黄铜两种材料都具有高反射率和非常好的热传导性。厚度 1mm以下的黄铜可以用氮气切割;厚度2mm以下的铜可以切割,加工气体必须用氧气。只有在系统上安装有"反射吸收"装置的时候才能切割铜和黄铜。否则反 射会毁坏光学组件。2、焊接用混合气 气体保护焊接,是在手工电弧焊和埋弧自动焊广泛应用的基础上发展起来的一种焊接新工艺。在多年气体保护电弧焊的实践中发现,用混合气体 代替单一纯气体作保护气,可以有效地细化熔滴、减小飞溅、改善成形、控制熔深、防止缺陷和降低气孔生成率,因而,可以显著提高焊件的焊接质量。 目前,工业上常用的焊接保护混合气大致可以分为二元混合气、三元混合气和四元混合气三类。常用的二元混合气有Ar-He、Ar-N2、Ar-H2、Ar-O2、 Ar-CO2、CO2-O2、N2-H2等;常用的三元混合气有Ar-He-CO2、Ar-He-N2、 Ar-He-O2、Ar-O2-CO:等;四元混合气用得比较少,主要由Ar、He、H2、O2、 N2、CO2等配制而成。各类混合气各组分之配比可以在较大范围内变化,主要由焊接工艺、焊接材质、焊丝型号等多种因素综合决定。 一般说来,对焊缝质量要求越高,对配制混合气的各单元气体的纯度要求也越高。在欧美各国,配制混合气用的Ar、H2、N2等气体,纯度为99.999%, He为99.996%,CO2为99.99%,通常水分均被视为有害杂质,要求H2010mg/ m3。3、高压混和气 高压混合气充填压力很高,一般可高达40MPa。主要由氮(N2)、氩(Ar)、氢 (H2)、空气(Air)、甲烷(CH4)等作稀释气的混合气体,其用途是供高压反应研究使用。4、保鲜混和气 保鲜混合气 用于肉类、水果、蔬菜以及粮食保鲜的混合气,品种规格较多:混合气一般由二氧化碳、氮气和氧气等组成。其中二氧化碳对细菌虽无杀菌作用,但 具有抑制丝状菌(霉菌)和嗜好气菌发育的作用;氮气有抗氧和防止细菌发育的作用;氧气能使维生素和脂肪氧化,新鲜的食品和鱼贝类的组织是具有活性的,它不 断消耗氧,在无氧状态下,肌肉色素的肌红蛋白被还原呈暗色,即牛肉、鱼类在没有氧气情况下,就无法起到保鲜作用。保鲜混合气中还可加入少量环氧乙烷,以增 强对细菌的杀伤能力。 保鲜混合气的品种较多,根据不同的保鲜对象,可以选取不同组分和不伺配比的混合气。5、电光源混和气 主要用作白炽灯、特种光源灯(如红外线灯、强烈溢光灯、荧光灯、发光信号、太阳灯、臭氧灯、光化学灯、灭菌灯、紫外线灯、辉光灯、锆弧 光灯、卤素气体照明灯等)和数字显示管的充填气,常见品种依其特征组分划分,可分为稀有气体混合物、卤素化合物混合气、重氢混合气和灯泡氩混合气四种。 为延长灯具寿命,配制电光源混合气用的单元纯气体,其纯度要求一般均应大于99.99%,并应严格控制氧化类杂质组分的含量,通常,水和氧的含量应分别小于2×10-6。在几乎所有电光源混合气中都要用到氦族气体。6、医疗及生物研究混合气 临床医学、卫生防疫、医疗和生物研究等领域需用的混合气体,主要品种有:肺功能研究混合气、临床血液气体分析用混合气、脑循环测定混合气、外科激光混合气、生物气氛混合气以及组织当量混合气等。7、消毒杀菌混和气 广泛用于医疗器具、化妆和文化用品以及包装运输等方面的一类消毒杀菌气体。 该类消毒气体具有渗透杀菌力强、消毒杀菌设备经济、操作简便以及对金属无腐蚀等优点,因此倍受人们的欢迎。其灭菌原理主要是利用烷化作用,使微生 物组织内维持生命不可缺少的物质惰化,最常使用的是以不同比例的环氧乙烷和二氧化碳的混合气,杀菌效果与各组分含量、温度、湿度、时间和压力等因素有关。8、检漏(报警)混和气 用于特殊检漏的混合气,其品种规格较多。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制