当前位置: 仪器信息网 > 行业主题 > >

离子成像分析

仪器信息网离子成像分析专题为您提供2024年最新离子成像分析价格报价、厂家品牌的相关信息, 包括离子成像分析参数、型号等,不管是国产,还是进口品牌的离子成像分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合离子成像分析相关的耗材配件、试剂标物,还有离子成像分析相关的最新资讯、资料,以及离子成像分析相关的解决方案。

离子成像分析相关的资讯

  • 为质谱成像分析而生!这种新型离子基板的有啥不一样?
    质谱分析是通过对待测样品进行电子束、激光等方法照射,使待测样品的原子、分子发生离子化,通过测定质荷比,对待测样品中包含原子、分子的种类、数量、分子结构等进行精密分析的方法。 回顾质谱分析技术的发展历史,不难看到,新的离子化法不断创造着质谱发展的新趋势,让横跨100多年的质谱技术研究,一直充满着活力。具有跨时代意义的离子化方法的诞生,也与质谱分析飞跃性的进步,甚至是业界的繁荣息息相关。 例如基质辅助激光解吸电离法(Matrix-Assisted Laser Desorption/Ionization,即MALDI)自上世界80年代末问世以来,将质谱应用提升了一个新台阶,成为目前生物质谱领域研究必不可少的工具,也是当下的一个热门关注点。质谱分析结构示意MALDI法是将能吸收激光能量的低分子有机化合物(下称Matrix)与待测样品混合,通过激光照射,对待测样品进行离子化的方法。在质量分析的同时,可实现对待测样品的成分、分布状态进行图像化的质谱成像。 不过想利用MALDI法进行质谱成像,在与Matrix(有机化合物)的调和、涂布、干燥的前处理的阶段,大概要耗时30分钟,且需要将Matrix在待测样品上均匀涂布。前处理显得十分费时费力。 滨松在5月推出了新研的离子化辅助基板DIUTHAME(Desorption Ionization Using Through Hole Alumina Membrane,是的它的名字hin长̷叫它“丢森”好了~)。这个小东西是利用200nm左右多孔氧化铝(贯穿的、细小的孔呈规则状打开的氧化铝)开发的,面向质谱成像分析的离子化辅助基板。其最大的特点,就是能够大幅缩减质谱成像分析时,待测样品进行离子化所需的前处理时间(仅需3分钟左右),且操作简单。 将待测样品加载到DIUTHAME上,利用毛细血管现象(在细管内侧,液体从管子中上升的现象),使待测样品的分子上升到表面,通过激光照射使其离子化而不破坏分子结构,实现在不使用Matrix的情况下,进行质谱成像分析。MALDI法使用DIUTHAME进行离子化 DIUTHAME是由滨松与日本光产业创成大学院大学的内藤康秀副教授共同研制的。一经面世,就收到了较大关注,并常常被用于和MALDI以及SALDI法的比较。那到底是出于什么样的原因开发了这个产品?除了大大缩短前处理时间外, 相对于MALDI法DIUTHAME在质谱成像分析中还有哪些优势?为何说DIUTHAME是质谱成像分析离子化的新方法?内藤副教授从开发者的角度,为我们进行了解读。 内藤康秀副教授问:DIUTHAME在质谱成像分析中还有哪些优势?解决了MALDI法中的什么问题? 在开发DIUTHAME前,我一直致力于质谱成像分析分辨率的提高。虽然希望通过提高设备分辨率来实现高分辨率的目标,但这个方法也是有极限的。 为什么这么说呢?因为在质谱成像分析中,以往普遍采用的离子化方法为“基质辅助激光解吸电离法(Matrix-Assisted Laser Desorption/Ionization,即MALDI)”。而无论怎么提高设备的空间分辨率,分辨率都无法超过Matrix结晶的尺寸。若要实现质谱成像分析的高分辨率,必须要摆脱对使用Matirx的离子化方法的依赖。而DIUTHAME的诞生,就打破了这一点的限制。 DIUTHAME的开发一开始就是以质谱成像分析为目标应用,它并不需要与Matrix的调和、涂布、干燥的前处理。在提高操作便利性(3分钟左右可完成前处理)的同时,其高质量的数据,有望取得良好的重现性。 另外,使用MALDI法进行离子化时,也会出现因待测样品成分的性质原因,而难以与Matrix共同结晶的情况;以及待测样品中包含盐、添加剂等杂质的浓度过高时,阻碍Matrix结晶的情况。在这样的情况中,使用DIUTHAME则不会有这样的困扰,能够获得很好的效果。 DIUTHAME还可对工业材料、兴奋剂禁药等MALDI法无法测定的小分子进行高精度的测量。 问:明明和SALDI的原理类似, 为何说DIUTHAME是一种新的方法? 目前有一种叫表面辅助激光解吸电离(SALDI)的离子化方法,它与DIUTHAME作用原理相同,市场上也有多类SALDI基板的商品。但是,目前市场上的SALDI基板并没有通孔的结构,在质谱成像分析中并不适用。在此意义上,使用DIUTHAME可以说是不同于SALDI的新型离子化办法。 将在DIUTHAME的哪些性能上进行继续开发? 多数的生物分子是通过质子化来生成离子的,针对这些待测样品,DIUTHAME的灵敏度并不如MALDI法。这是因为,MALDI中的Matrix可以给样品分子提供质子,而DIUTHAME却没有该项作用。 想拥有更广泛的应用,这个小家伙就必须具备更高的灵敏度。因此,我们也会对它的性能进行持续的开发。此外,DIUTHAME的工作原理之谜仍未完全解开,而在继续研究摸索的同时,我们也希望能够不断地提高它的灵敏度。滨松致力于光电技术探索60余年,在质谱探测器的研究也已有40余年的历史,可为质谱应提供MCP、EM、离子化光源等产品。除了DIUTHAME,2018年滨松还推出了一系列应用于质谱的新品,并在2018年ASMS中有所展示(包括在研品),如可解决小质谱低真空问题的三级结构的GEN3 MCP、适用于TOF-MS的MCP+AD、适用于Q-MS\IT-MS的管道型EM等等。滨松希望通过探测技术的原始创新,从最底层技术出发,稳定而坚实地推动最终质谱应用的发展。
  • 生物分析研究必备神器:XelPleX全自动表面等离子体共振成像仪
    从事生物研究的科研工作者们,你们在实验中是否遇到过类似的疑惑?用于分析研究的工具还是一台陈旧的已然跟不上时代发展的“老人机”。实验中,检测筛选、出结果时间长不说,还提高了试剂成本;只能检测小范围的样品溶液不说,每年维护还需要不少费用;手动不环保不说,还不稳定......horiba 科学仪器事业部近来推出新品:xelplex全自动表面等离子体共振成像仪(生物大分子相互作用仪)是一款免标记、多通道生物分析和研究的理想工具。它与传统的spri表面等离子体共振成像仪相比,该系统自动化程度高,设计精巧,可实时监测数百个相互作用并获得动力学参数;适用于实时物理化学相互作用研究和动力学研究;高度自动化的表面等离子体共振成像系统,适用于多种应用要求。另外,高精度温度控制系统和自动脱气装置确保低背景噪音和低信号漂移,可便捷地获取在不同温度下的分子相互作用及反应的亲和力和动力学数据。 如此多的优点,作为生物学科研者,你们还用为实验效率不高,实验结果受外界影响严重,而担忧吗?不仅如此,下面还有更多优异的功能,可以直接秒杀实验过程中遇到的种种难题~1阵列式检测,同一芯片可同时获得多达400种相互作用创新的阵列式芯片设计,同一芯片可同时分析超过400组相互作用,与传统的通道-技术相比,所需时间缩短百倍,并节约试剂和人力成本,特别适用于快速筛选。2无标记,实时生物分子相互作用分析与成像基于spr技术、新型的生物传感技术,实时跟踪分子间结合和解离的过程,每秒可采集芯片表面5幅图像,提供完整动力学信息。成像技术,提供时空分布信息,直观判断相互作用是否发生;辅助解释动力学数据。3适应复杂样品优流体系统设计,全芯片表面检测,可直接注入复杂样品,不易堵塞,并耐受有机溶剂,拓展传统spr应用范围,适用蛋白质、dna、多糖、细胞、血清和培养基等多种粘稠样品以及纳米材料溶液。每年节约数万维护费用。 4智能全自动,48h无人看守实验全新超级软件,可以同时监测几百对相互作用,定量及统计分析,便于筛选和排序。5原位质谱联用,无需洗脱和浓缩独特芯片设计-质谱直接联用,无需洗脱和浓缩,同一芯片即可实现spr分析和质谱检测。进而实现动力学分析和物质鉴别。 6引导式软件设计,易于统计分析多功能软件包,全程引导式操作,批量处理数据及快速分类,方便调用实验模板及数据处理模板。7自动化样品回收与循环,环保节能自动化样品回收技术,节约珍贵样品,回收样品可用于交叉验证等实验。独特的样品循环技术,可检测低样品浓度,并维持动态平衡。 以下是xelplex全自动表面等离子体共振成像仪的主要技术参数,可以帮助大家更详尽的了解这款产品。技术参数 检测技术:耦合棱镜的表面等离子体共振成像 通道数:可以同时监测400组相互作用过程 样品体积:120μl-820μl 流速控制范围:1-3000μl/min 流通池温控范围:10-50°c 检测下限:3pg/mm2另外,附上与xelplex相匹配的核心附件,让xelplex展现出优的性能,发挥出大作用。可选附件 spri-cfm连续流动微量点样仪 spri-array快速台式点样仪 spri-biochips™ 生物芯片(cs/co/cse/coe/ctg/ch功能化)
  • 敞开式等离子体辅助激光解吸质谱成像系统的构建和应用
    成果名称 敞开式等离子体辅助激光解吸质谱成像系统的构建和应用 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 &radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产 成果简介: 质谱成像已经成为了质谱领域的研究热点,特别是在生命科学研究领域应用广泛,成为了病理学、生物化学以及制药分析等领域的强有力工具,具有非常广泛的发展前景。鉴于我国在质谱成像领域的研究基础较为薄弱,本项目拟从研究平台的搭建入手,开展等离子体辅助激光解析质谱成像研究。主要研究内容包括:1)利用DART、多波长激光以及三维移动平台搭建质谱成像研究平台,提高分辨率,为实际研究奠定基础。2)开发适用于成像平台的数据处理软件,并逐步改进和优化。3)探讨新型基质在质谱成像系统中的作用,以提高质谱成像检测结果。4)利用搭建的质谱成像研究平台,进行生命科学研究领域中相关样品组织的小分子目标物成像研究。 目前,项目按照计划顺利进行。完成质谱成像平台的搭建和测试工作。将DART、多波长激光以及三维移动平台组合在一起形成了质谱成像技术平台,采用三维移动样品台自动控制样品分析位点, 质谱成像软件将样品位置和质谱数据整合在一起,可以绘出二维图像。并且改进激光仪器,提高激光的分辨率以提高质谱成像的分辨率。 应用前景: 质谱成像已经成为了质谱领域的研究热点,特别是在生命科学研究领域应用广泛,成为了病理学、生物化学以及制药分析等领域的强有力工具,具有非常广泛的发展前景。
  • 中国科大实现界面化学动态过程的原位高分辨成像分析
    中国科学技术大学环境科学与工程系刘贤伟课题组在界面化学过程的原位高分辨成像方面取得进展,相关研究成果以“Dynamic imaging of interfacial electrochemistry on single Ag nanowires by azimuth-modulated plasmonic scattering interferometry”为题近日发表于Nature Communications。污染物的催化转化是水污染控制技术的重要方法,解析环境催化材料在污染物转化过程中活性位点的动态变化,对理解材料的构效关系,解析催化机理,设计并研发新的环境催化材料具有重要意义。尽管目前研究人员对分析纳米材料的活性位点有浓厚的兴趣,但在温和的水溶液环境中,对单个纳米材料界面反应的动态演绎过程研究仍然存在挑战。 图1高分辨表面等离子体散射相干成像示意图   针对上述挑战,研究团队研发了高分辨等离子体散射干涉成像技术,通过调制入射光有效消除了反射光的干扰,实现了具有高空间分辨率和高抗干扰能力的表面等离子体散射干涉成像。以银的表面化学反应为例,研究团队原位追踪了溶液中单根银纳米线的动态电化学转化过程,在空间上刻画了纳米线反应动力学分布,为建立纳米线表面缺陷、重构与反应活性的关系提供了关键证据。该免标记成像分析方法,可以与电子显微镜等技术耦合表征纳米材料的结构和化学组成,为高分辨原位成像分析污染物的催化转化动态过程和解析其构效关系提供了有效的分析方法与技术平台。 图2 单根纳米线表界面动态反应过程的成像分析   该研究工作得到了国家自然科学基金等项目的支持。
  • 岛津成像质谱显微镜应用专题丨小鼠大脑成像分析
    优势● iMScope QT可测量的最大范围超过100万像素,能够进行大面积样本分析,例如在一次检测中对小鼠大脑全切片进行分析。● iMScope QT的分析速度比前一代产品快8倍以上,能够进行快速分析。● iMScope QT具有高质量准确度、分辨率及高空间分辨率,能够进行精确质谱成像分析。 概述质谱成像技术可以通过质谱仪直接检测生物分子和代谢物,同时保留其在样本组织上的位置信息,因此,可以生成不同生物分子基于特定离子信号强度和位置信息的二维质谱图像。iMScope成像质谱显微镜是用于质谱成像分析的整合型仪器,结合了光学显微镜和质谱仪,能够分析物质的结构和分布特征,拓展了药物研发和代谢物研究等领域的范围。通过将MALDI转换成LC和ESI系统,iMScope还可用于LC-MS定性及定量分析。本文将介绍配备Q-TOF质谱仪的新型iMScope QT(图1),并与前一代iMScope TRIO设备进行比较。图1 iMScope QT 小鼠全脑切片分析前一代iMScope TRIO设备的最大可测量范围是250 × 250像素。在iMScope QT中,可测量范围已扩展至1024 × 1024像素,能够以15 μm的空间分辨率分析小鼠全脑切片(约17mm × 9.4 mm)。根据表1条件进行检测,可在m/z 885.557处获得磷脂酰肌醇PI (38:4),并在m/z 888.631处获得硫苷脂(C24:1)的清晰质谱图像(图2)。 此外,由于iMScope QT的最大激光频率为20 kHz,分析速度比iMScope TRIO快8倍以上。结果显示完成图2所示的小鼠全脑切片(702624 pix)质谱成像分析仅需6小时。 表1 分析条件图2 小鼠全脑切片的质谱成像结果(空间分辨率:15 μm) 小鼠小脑的高空间分辨率分析对小鼠小脑附近的区域进行高空间分辨率质谱成像分析,如图2(a)中红色部分所示。根据表1中的分析条件,空间分辨率为5 μm。如图所示,可在m/z 885.557处获得 PI (38:4)、在m/z 888.631处获得硫苷脂(C24:1),检测到更清晰更详细的质谱图像(图3(b)和(d))。 此外,由于iMScope QT的质量准确度和分辨率较高,能够分离和检测PI (38:4)的同位素(m/z 888.573)和硫苷脂(C24 :1)(m/z 888.631),并能提取每种同位素的质谱图像(图3(c)和3(d))。而iMScope TRIO则无法获得以上结果。 图3 小鼠小脑的光学图像和质谱图像(空间分辨率:5 μm) (a) 光学图像(b) PI (38:4)的质谱图像,m/z 885.557(c) PI (38:4)同位素的质谱图像,m/z 888.573(d) 硫苷脂(C24:1)的质谱图像,m/z 888.631 结论与iMScope TRIO相比,iMScope QT的分析范围更广,分析速度更快,可实现更广泛的快速成像分析。此外,随着检测准确度和分辨率的提高,能够对各种目标化合物进行高精确度、高特异性的质谱成像分析。 iMScope QT不仅整合了质谱和形态学分析,而且能够在更广泛的领域实现更快速、更灵敏以及更高的空间分辨率的检测。 本文内容非商业广告,仅供专业人士参考。
  • 自带“可视化功能”的成像技术,让你的分析更有“深度”
    仪器信息网讯 基质辅助激光解吸电离飞行时间质谱成像技术(MALDI-TOF Imaging),作为直观反映组织器官中分子水平化合物的空间分布与变化的可视化方法,目前已在基础与临床医学研究中受到广大科研工作者的关注。   岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope TRIO ),前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI),后端配置离子阱和飞行时间串联质谱仪(IT-TOF)。iMScope TRIO 是光学与成像质谱分析完整融合的独特技术,拥有领先的5μm高空间分辨率,可进行高精度多级质谱结构解析,为未知物的结构解析提供丰富的碎片信息,是具备高端性能的革新性分析系统。   成像质谱分析保留样品组织的位置信息的同时,可以直接使用质谱仪测定生物体分子和代谢物,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息。因此,除了在医学和药学领域中的应用外,近年来在农业、食品安全、中药、环境以及特殊类型样品中也得到了广泛的应用。   岛津公司于2014年推出成像质谱显微镜 iMScope TRIO 以来,在诸多领域发挥其独有的高清晰度成像、光学图像融合、定性定位分析的特长。本文介绍了岛津日本合作实验室大阪大学Shimma教授基于iMScope TRIO 在领域拓展方面开展的部分工作。   1.姜黄素在姜黄干样品中分布的可视化分析:通过观察轴向和径向切片,对姜黄素的分布进行了详细的分析。发现姜黄具有非常规则的内部结构,而姜黄素就被封闭在管状结构中。 轴向切片中姜黄素具有线性分布特征,具有管状结构分布在植物体内的可能性   2.芦笋中抗高血压有效成分Asparaptine的分析:使用iMScope TRIO 对芦笋中的Asparaptine 进行了定位分析。Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDI-MSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 芦笋的尖部、中部、下端和鳞片中的Asparaptine 分析   3.果蝇质谱成像方法建立以及脑部GABA成分的空间分布:首次对果蝇这种特殊样品建立了成像方法,可应用于昆虫体内杀虫剂成分可视化分析。使用上述方法,对果蝇脑部的γ─氨基丁酸(GABA)分布进行可视化,为神经递质的研究提供更可靠的空间分布信息。给药后的果蝇腹部检测出大量吡虫啉成分果蝇脑部GABA成分的分布   4.马毛中药物成分的直接检测:通过负离子模式分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊16.48 mm 位置处观察到较强的药物信号。根据马毛的平均生长速度。可推算出给药时间,大约在24-25天前。由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。 给药后的马毛中DexaSP 分布检测结果   iMScope TRIO 通过叠加不同检测原理的图像进行分析,为成像分析提供了强大的工具,并提高研究水平。   基于此,2020年7月9日,岛津“镜质合璧,还原真实”新品发布会将在仪器信息网举办,届时岛津将携新一代iMScope 成像质谱显微镜产品首次与中国用户见面。   届时尽请关注!
  • Angew成果|离子淌度调制提升空间脂质组分析的结构解析能力
    离子淌度调制提升空间脂质组分析的结构解析能力空间脂质组分析可揭示脂质在生物组织或器官中的含量及空间分布,是基础生物学和疾病研究的重要技术。空间脂质组分析的底层技术一般为质谱成像,其具有免标记、高空间分辨率和高灵敏度等优势,可同时表征大量脂质分子在生物组织中的空间分布。然而,脂质和代谢物的质谱成像主要依赖于质量测定,对分子结构的表征能力不足,常由于脂质和代谢物异构体的存在而导致分析偏差乃至错误。在质谱成像过程中,单个像素点的样品量和分析时间极为有限,对逐个离子串联分析会导致分析时间长和灵敏度降低等问题,因此如何在质谱成像的同时实现分子的结构解析一直是分析科学的挑战。此外,在成像过程中丰度、离子化效率各异的待分析离子同时进入质谱,存在显著离子抑制等问题,给中低丰度离子的检测和结构鉴定造成困难。近日,清华大学精密仪器系的欧阳证、马潇潇教授团队开发了一种多目标脂质结构质谱成像技术,通过离子淌度技术对待分析离子的快速时空聚焦和分离,在不增加质谱成像时间的情况下,显著提升了空间脂质组分析的结构解析能力。该技术采用数据非依赖采集方法,利用离子淌度分离对单像素点的母离子强度进行“调制”,将淌度分离后的母离子不经质量隔离而完全碎裂 (Mobility modulated sequential dissociation, MMSD)。根据母离子及相应子离子组成随淌度时间不断变化的特点,发展了智能谱图解卷积算法,实现40多种脂质的结构解析和20种脂质在组织上的空间可视化,包括磷脂酰胆碱、磷脂酰乙醇胺等。具备结构解析功能的质谱成像可实现传统空间脂质组分析难以实现的脂质异构体结构鉴定和空间可视化。在鼠脑组织中,该技术揭示了多种脂质异构体的差异性乃至互补性空间分布,如 PE O-18:2_20:4、PE O-16:0_22:6 和 PE 16:1_22:4、PE 16:0_22:5等。在对人肝癌的组织切片分析中,该方法揭示了磷脂酰乙醇胺 PE 36:2的一组异构体(PE 18:1_18:1、PE 18:0_18:2)在癌组织和癌旁组织中的特异性分布,并且PE 18:1_18:1集中分布于癌组织,可用于精准划分肿瘤组织边界,表明该技术可在更深层结构维度上揭示脂质癌症生物标志物。这项工作所提出的多目标脂质结构解析及空间成像方法,从原理上同样适用于多肽、代谢物等生物分子的空间可视化及结构解析。结构解析赋能的脂质质谱成像,是空间脂质组学技术发展的题中之义,也是精准脂质组分析和功能脂质组研究必不可少的技术基础。该技术的提出,为空间结构脂质组分析提出了一种解决方案,也有望促进质谱成像实现从质量测定到结构鉴定的研究范式转换。 论文作者:论文第一作者是清华大学博士研究生钱耀,通讯作者是清华大学精密仪器系欧阳证、马潇潇教授。清华大学郭翔宇博士和清华大学长庚医院王韫芳研究员对技术建立和生物医学应用做出了重要贡献。清华大学精仪系、清华大学精密测试技术与仪器国家重点实验室为第一作者单位。本项目得到国家自然科学基金委重点、面上项目及重点研发计划(前沿生物技术)青年科学家项目(2022YFC3401900)资助。 论文链接:https://onlinelibrary.wiley.com/doi/10.1002/anie.202312275
  • 岛津成像质谱显微镜应用专题丨多模式成像分析小鼠心肌梗塞
    简介作为一种成像技术,磁共振成像(MRI)广泛应用于日常临床诊疗中。为了在检查过程中增强对比度,可以使用几种不同的造影剂。由于五个或七个不成对电子具有出色的顺磁性,因此最常使用Fe3+、Mn2+或Gd3+。因游离形态的Gd3+具有毒性,此探针与氨基羧酸一起作为复合物给药。大多数钆造影剂(GBCA)是全身分布的,一些靶向特异性GBCA也正在研究中。图1 Gadofluorine P的结构Gadofluorine P是一种靶向造影剂,对富含胶原蛋白的细胞外基质(ECM)具有高亲和性,ECM在发生心肌梗塞(MI)时分泌。多模式生物成像技术能够可视化靶向造影剂的分布。使用激光剥蚀与电感耦合等离子体质谱(LA-ICP-MS)以高空间分辨率在元素水平上生成定量图像,而基质辅助激光解吸电离质谱(MALDI-MS)用于在分子水平上验证研究结果,提供更多分布信息,例如磷脂或血红素b的分布。材料和方法动物实验此项动物实验在明斯特大学医院临床放射学研究所Moritz Wildgruber教授的研究小组进行。使用诱导心肌梗塞六周的小鼠,注射照影剂Gadofluorine P后进行MRI检查。小鼠被处死后,取出心脏并快速冷冻。用冷冻切片机制备厚度为10μm的切片。标准品制备对于LA-ICP-MS分析,用明胶制备基体匹配标准品,用于外标 校正。明胶(10%w/w)添加9种不同浓度,范围为0至5000 μg/g Gd。另制备了厚度为10μm的标准品切片。样品制备对于MALDI-MS成像分析,将切片放置于氧化铟锡(ITO)涂层的载玻片上。先用升华法涂敷α-氰基-4-羟基肉桂酸(CHCA)至组织表面,然后用500μl水和50μl甲醇混合溶液喷雾于组织表面2.5分钟进行再结晶。分析条件对于LA-ICP-MS分析,使用Tygon管,将ICPMS-2030与激光剥蚀系统LSX-213 G2+(Teledyne CETAC)连接,此系统配有HelEX II池和波长为213nm的Nd-YAG激光。氦气用于剥蚀池的冲洗和传输。ICP-MS 2030配有镍采样锥和截取锥。在碰撞模式下,31P、57Fe、66Zn、158Gd和160Gd的积分时间为100ms条件下进行测量。每种标准品的标准曲线使用了10个浓度水平进行分析,并且同样的条件下分析了样品(表1)。表1 LA-ICP-MS的实验条件MALDI-MS分析使用了配有离子阱-飞行时间(IT-TOF)质谱分析仪iMScope TRIO。选择正离子模式,质量范围为m/z 700到1200。其他实验条件列于表2中。基质使用iMLayer升华20分钟。表2 MALDI-MS的实验条件结果LA-ICP-MS用基体匹配标准品进行的外标法定量分析结果显示,在高达5000μg/g的浓度范围内存在良好的线性关系,相关系数R2为0.997。采用15μm光斑尺寸时,基于158Gd的检测限(LOD)为43ng/g Gd,定量限(LOQ)为140ng/g Gd(根据Boumans[1]算出)。图2 小鼠心脏组织切片的H&E染色图2所示为连续切片的苏木精伊红染色结果,检测出心肌梗塞的区域(以黑线标出)。图3 两个连续切片的显微图像(a.和b.);经LA-ICP-MS测定的Gd定量分布(c.);Gadofluorine P的配体分布(d.);配体结构及理论峰值(青色条)、MALDI-MS测定峰值(黑线)(e.)图3所示为两个连续切片的显微图像(a.和b.)。使用LA-ICP-MS(c.),检测到健康心肌中Gd的均匀分布,平均浓度约为50μg/g。梗塞区的Gd浓度高两倍,约为110μg/g,最高值可达370μg/g。由于静脉注射造影剂的作用,心室中也存在较高浓度的Gd。这些分布可以通过MALDI-MS成像进行验证(d.)。该实验中,只能检测到Gadofluorine P的质子化配体,而不是完整的复合物(e.)。结果显示,主峰m/z 1168.39的质谱成像图与LA-ICP-MS检测的Gd分布具有良好的相关性。在心机梗塞和心室区发现了分子探针的最高强度,而健康心肌则显示出低而均匀的强度。结论 该应用表明,元素选择性(LA-ICP-MS)和分子选择性(MALDI-MS)成像技术的组合是可视化心机梗塞后小鼠心脏组织中靶向钆造影剂分布的有力工具。通过LA-ICP-MS技术实现了高空间分辨率和定量,并通过MALDI-MS在分子水平上验证了其分布。参考文献[1] P.W.J.M.Boumans, Spectrochimica Acta 1991, 46 B, 641-665.文献题目《Gadofluorine P多模式生物成像分析用于小鼠心肌梗塞研究》使用仪器岛津iMScope TRIO作者Rebecca Buchholz1、Fabian Lohofer2、Michael Sperling1,3、Moritz Wildgruber4、Uwe Karst11 明斯特大学无机和分析化学研究所 2 慕尼黑工业大学放射学研究所3 明斯特欧洲物种分析虚拟研究所(EVISA) 4 明斯特大学医院临床放射学研究所声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。本文内容非商业广告,仅供专业人士参考。
  • 金属离子荧光成像研究前景广阔
    p   2015年7月20-24日,“第十七届国际生物无机化学会议”在北京国家会议中心盛大召开。本次会议由中国化学会和国家自然科学基金委员会主办,北京航空航天大学承办,会议以“生物无机化学:交叉和合作”为主题,设立5个分会场和若干卫星会,5个分会场又分别包含二到四个主题。会议规模大,参会人员来自世界不同国家的高等院校、化学或生物及相关领域的科研院所,具有很强的代表性和前瞻性。而面对无机生物化学领域如此众多的前沿研究方向,笔者更关注的是与疾病相关的金属离子的荧光成像技术。 /p p   实际上,金属离子对于机体的很多生命活动都是十分重要和必要的,细胞内金属离子动态平衡一旦失调就可能导致许多疾病,比如神经退行性疾病、癌症和糖尿病等。已经有研究发现,在神经退行性疾病患者的脑组织中有过渡金属离子的过多累积,比如铜、锌和铁离子。因此,如何获取这些金属离子在组织、细胞,甚至是细胞器中的分布和含量信息,对于理解某些疾病以及新的诊断方法的开发就显得尤为重要。 /p p   而荧光成像可通过一种非接触和无损伤的方式,为我们提供一种检测细胞内金属离子的独特方法,这种方法有很高的空间和时间准确性。在细胞生物学领域内,该方法在进一步理解金属离子的生理和病理功能方面具有广阔的应用前景。具体到荧光成像中的一个重要元素——荧光探针而言,它应具备以下几个功能:对于目标金属离子的高选择性、对金属离子浓度原位定量分析的宽的动态范围,以及描述金属离子在细胞内分布的细胞器靶向能力。 /p p   当前对于荧光探针的研究也主要集中在如何提高探针的灵敏度和选择性,扩展可检测金属离子的范围,发展新的检测机理等方面。以上这些趋势从本次会议的相关报告中也可略见端倪。 /p p   加利福尼亚大学伯克利分校的Christopher J. Chang博士当前正在开发一种新的分子成像方法,以用于研究调控大脑活动背后的化学原因。他的报告向听众展示了过渡金属和活性氧、硫、碳等作为新的化学信号来源方面的研究发现,以及它们对于神经回路的影响。此外,据笔者会下了解,该课题组还开发出一种新型铜离子探针—CF3,这种探针在敏感性和亲水性方面均有提高,可以分别用于单光子和双光子成像。据悉,他们已经将这种新探针用于共聚焦或双光子成像扫描,以检测大鼠海马组织和视网膜组织中的铜离子。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" Christopher J,ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/1202c167-b7b7-4f20-8265-42b2ea2e80c7.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong Christopher J. Chang /strong /p p   光活性分子的光解对于追踪细胞功能的复杂性和其动力学过程很有帮助,但目前大多数光解系统依赖于高强度紫外线或可见光来激发光活化过程。但是,短波长的光照射不可避免地会导致细胞损伤,并且组织穿透性较低,这些都限制了短波长光源在体内和体外生物系统研究中的应用。南洋理工大学的邢本刚博士为我们带来了一种解决上述问题的方法,该研究小组将多功能的生物活性官能团与镧系掺杂的纳米粒子结合形成颗粒共轭物。在近红外光(NIR)照射下,经由这些颗粒共轭物转化得到的锐利短发射光波能够有效地活化成像探针或相关载荷分子,因此产生明显的原位成像信号,或是得到针对体外和体内处理活化的有效功能。这种新平台有利于生物医学应用中前药活化的靶向控制,更重要的是可以在疾病早期治疗干预中做到实时成像。& nbsp /p p style=" text-align: center " img width=" 450" height=" 300" title=" 邢本刚ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/0191be12-4399-410f-bb94-3c52178f6398.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong 邢本刚 /strong /p p   当前,不稳定Zn sup 2+ /sup 和硫化氢已被作为可产生光致信号的无机家族新成员。南京大学何卫江博士在报告中介绍了采用不同的策略来开发比例计量型荧光探针,以用于Zn sup 2+ /sup 和硫化氢的定量成像。这种比例计量成像显示出了对于Zn sup 2+ /sup 和硫化氢的诱人的选择性,从而可提供关于上述两种物质的更准确信息,对满足不同研究和促进它们在生物无机化学的发展方面具有十分重要的意义。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" 何卫江ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/07cd7f1d-6be9-4081-b776-ea100ad5de54.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong 何卫江 /strong /p p   印度塔塔基础研究所化学科学系的Ankona Datta博士的报告主要围绕Mn sup 2+ /sup 荧光探针。由于Mn sup 2+ /sup 与已知配体的亲和力比较低,并且Mn sup 2+ /sup 可以顺磁淬灭荧光染料,所以设计选择性Mn sup 2+ /sup 荧光探针依然是一个挑战。该研究小组将五氮大杂环配体(该五氮大杂环配体包含含氧的“手臂”)与一个BODIPY类荧光标签结合,这样一来,荧光染料初始时被淬灭,而一旦与Mn sup 2+ /sup 键合,则可以得到相当不错的荧光信号强度的增强。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" Ankona Datta,ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/c7520441-cf5b-4faf-8079-d67e77ed22e8.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong Ankona Datta /strong /p p   北京大学的张俊龙博士课题组研究兴趣集中在开发发光金属—Salen(螯合席夫碱)配合物,来用作荧光成像试剂。他们的探针选择锌作为金属发光配合物的中心金属,用于活细胞内质网的单分子成像。同时,该课题组也深入细致地研究了金属种类和细胞摄取以及亚细胞分布之间的关系。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" 张俊龙ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/9c1a7337-a597-47af-a204-04dea4215cd6.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong 张俊龙 /strong /p p   为了避免采用时间选通成像技术而导致的自体荧光,来自韩国梨花女子大学Youngmin You博士的研究小组开发了基于环金属铱(Ⅲ)配合物的磷光探针。譬如,他们将金属-螯合-二(2-吡啶甲基)氨基类受体引入到Ir(Ⅲ))复合物来制备Zn(Ⅱ)探针。此外,该研究小组还开发出针对具有氧化还原活性的Cu(Ⅱ)离子和& nbsp Cr(Ⅲ)离子的比例计量型磷光探针,以及可用于氧的光敏化过程和细胞器荧光染色的多功能磷光标签。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" youngmin you, ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/9ca3ec55-6b18-4544-94fe-10d3b7a45593.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong Youngmin You /strong /p p   为了考察不稳定铜离子池在一个生物环境中的性质,佐治亚理工学院Christoph J. Fahrni博士的研究小组开发了一套Cu(Ⅰ)选择性荧光探针和亲和标物。通过对配体结构和荧光标签性质系统的优化(关键步骤),得到了一个具有180倍荧光对比度的Cu(Ⅰ)选择性荧光探针,相应地,其检出限可低至亚ppt范围。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" Christoph J ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/0b255435-b52f-4462-81f5-e6a9e7bffb4a.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong Christoph J. Fahrni /strong /p p  & nbsp & nbsp strong & nbsp 编者按 /strong strong : /strong /p p   可以预见,金属离子探针未来的发展趋势是更多学科将参与进来,同时也需要生物医学应用的驱动,这就要求化学家和生物学家之间能够更加密切的合作。虽然存在挑战,但是为了能完全理解金属离子的功能,获得一个完整生物体内金属离子动态平衡的成像是很有意义的,也是很有趣的。目前,对于精准的细胞器定位,标准的荧光显微镜可达到的空间分辨率仍然是比较低的。然而,近期的超分辨率荧光显微技术的发展,为荧光探针创造了前所未有的新的发展可能。可以预计,在未来数年内,金属离子荧光探针的研究将得到更加快速的发展。 /p p style=" text-align: right " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 编辑:史秀明 /p
  • 中国科大在电催化界面过程成像分析上取得新进展
    近日,中国科大环境科学与工程系在电催化界面动态过程的原位成像分析方面取得进展,研究成果以“Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts”为题发表于Nature Communications上(Nature Communications 2022,13: 7869)。   污染物的电催化转化是水污染控制技术的重要方法。纳米催化剂的表界面是电催化反应发生的场所,因此在微观上理解电催化反应过程,建立纳米催化剂结构与催化转化性能的构效关系是提高催化剂活性的关键。传统电催化研究通过电极电流密度和催化产物,评估催化剂性能,难以在微纳尺寸上原位实时分析单个催化剂的活性分布或反应动态过程。 图1.单个二硫化钼纳米片的充电和催化过程成像分析示意图   针对上述问题,刘贤伟教授课题组博士生赵小娜和周晓丽博士通过表面化学调控,充分发挥了表面等离子体成像技术对电极表面电荷密度高度敏感的特性,原位成像分析了层状二维电催化材料的充电电荷密度分布和电催化界面电荷交换过程。该方法消除了电极表面充放电流的干扰,分别定量了催化剂表面的充电和氧化还原电流分布,结合课题组前期发展的表面等离子激元原位蚀刻技术(Chem, 2021, 7: 1626-1638),发现了二硫化钼催化性能和层数之间的依赖性,建立了催化剂导电性和电催化性能之间的关系。该研究对于设计新型高效污染控制电催化纳米材料具有重要的意义。 图2.单个二硫化钼纳米片随层数变化的电催化过程   该项工作得到了国家自然科学基金的资助,也获得了环境科学与工程系陈洁洁教授课题组在量化计算方面的支持。
  • 基于质谱成像技术对芦笋的可视化分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 摘 要: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 随着近年来人们对功能性食品的关注度越来越高,芦笋被认为是对抗高血压比较有效的一种食物。芦笋中所含的Asparaptine是抗高血压的有效成分,但是目前还没有其在芦笋内的分布信息的相关研究。我们利用基质辅助激光解吸质谱成像(MALDIMSI)技术阐释了Asparaptine 在芦笋内的分布情况。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 230px " src=" https://img1.17img.cn/17img/images/202006/uepic/f446df0a-84bd-404c-a084-cecaa126ce76.jpg" title=" 1.png" alt=" 1.png" width=" 300" height=" 230" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1. 背景介绍 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 已有研究表明芦笋粗提取物有降低血压的功效。长期以来芦笋的降压功效一直被认为是来源于其中所含有的某些含氮化合 span style=" text-indent: 2em " 物,但近些年来,一些研究认为,芦笋的降压功效应该来源于其中的某些含硫化合物而非含氮化合物。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在这种背景下,2015年的一项研究发现了一种由精氨酸和芦笋酸组成的新物质——Asparaptine1)。这项研究提出,Asparaptine的降血压功效来源于其对血管紧张素转化酶(ACE)的抑制作用。Asparaptine的发现使芦笋作为功能性食品更受欢迎,因而对其也需要进行更加详细的研究。作为研究此物质的一种方法,我们尝试阐释芦笋中Asparaptine的定位信息。近些年来,MALDI-MSI作为一种可直接用肉眼观察到各化合物定位信息的方法而备受关注。这种方法可以通过单次分析实现对大量分子信息的成像,并且由于其具有可区分靶向目标和代谢物的能力,目前已经被广泛应用于诸如神经递质可视化2)和药代动力学成像3)的研究中。此外,除了在医药领域,MALDI-MSI技术也已经被应用于食品领域,涉及食品样品的范围非常广泛,从作为日本的主要粮食的大米4),到土豆5)和草莓6)。提供“可视化”信息,比如功能性化合物的分布信息,可以从增加食品附加值的角度来吸引消费者。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 图1展示了MALDI-MSI的标准操作流程。使用冷冻切片机将冷冻样品切成厚度在10 μm至30 μm之间的切片。将冷冻切片放置 span style=" text-indent: 2em " 在导电板上,例如涂有氧化铟锡(ITO)的载玻片。之后将作为辅助电离试剂的基质涂敷于样品表面,然后进行质谱分析。在MALDI-MSI过程中,我们可以确定被测区域和测量点之间的距离,得到每个测量点的质谱和位置信息。通过选择目标分子在每个测量点的质谱中的质荷比,我们可以从每个测量点的强度数值得到目标分子在样品中的分布信息。在本研究中,我们按照上述流程进行实验,以明确Asparaptine的定位信息。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/38b7a373-f224-416d-96f0-1ca09b8eba71.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 图1 MALDI-MSI的实验流程 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2. 实验部分 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.1 样品及样品冷冻方法 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 将芦笋按照尖部、中部和下端切成三份,使用切片机(CM1950)将三部分分别制成20μm厚度的切片。芦笋的侧面有三角形的叶片,称为鳞片,其作用是保护枝杆(图2A)。在这项研究中,对这四个部位均进行了成像。目标成分是之前已经描述过的Asparaptine。在MALD-MSI中,样品的冷冻是影响成像结果的一个重要过程。在本研究中,我们将对液氮冷冻法和真空密封袋冷冻法两种方式进行比较(图2B)。前一种冷冻方法是将芦笋包裹在铝箔中,放入液氮中冷冻。后一种方法是将芦笋放入真空袋中,将袋中抽成真空,然后在-80° C的冰箱中慢慢冷冻。为了比较这两种方法,我们使用甲苯胺蓝染色对组织切片进行检查。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.2 基质喷涂 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们通过喷涂的方式将α-氰基-4-羟基肉桂酸(CHCA)加载于样品表面,基质溶液是10mg/mL的浓度(30%乙腈,10% 2-丙醇,0.1%甲酸)进行配制的。使用喷笔(PS-270)将400 μL基质溶液喷涂于样品切片表面,喷枪的尖端与组织表面之间的距离保持在10 cm。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.3 MSI分析条件 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们使用iMScope TRIO& #8482 (图3)来进行MALDI-MSI分析。配置355nm Nd:YAG激光光源,激光频率1000 Hz,每点激光照射次数100,每个像素点累积次数为1次。激光光斑直径为25μm,强度为47,样品电压和检测器电压分别设为3.5 kV和2.1 kV。采集模式为正离子模式,采集范围m/z 100-350, 并以Asparaptine的质子加和产物m/z 307.09作为前体离子进行二级质谱分析。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 270px " src=" https://img1.17img.cn/17img/images/202006/uepic/35c9f0fd-485f-47e8-8c46-d661f6a0528a.jpg" title=" 3.png" alt=" 3.png" width=" 600" height=" 270" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3. 结果与讨论 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.1 样品冷冻方法比较 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 将通过液氮冷冻和真空密封袋冷冻两种方式进行冷冻的样品切成20 μm 厚的切片,并将切片用甲苯胺蓝染色,然后使用光学显微镜进行检查(图4)。如图4A 中所示,使用真空袋冷冻的样品制备切片有可能不损害样品形态。另一方面,样品经液氮冷冻后,由于在冷冻过程中会产生裂纹,使得样品切片难以保持其形貌。样品冷冻在真空密封袋里,也同样可以保持组织细胞的形态,而用液氮冷冻的组织细胞会被破坏,可观察到很多包含裂缝的部分(图4B)。真空密封袋冷冻的样品之所以能够保持细胞组织形态,其重要原因是高压冷冻法原理发挥了作用7)。通常情况下,当水结成冰时细胞内就会形成冰晶8)。然而,在高压冻结方法中,通过在冻结过程中对样品施加高压(一般在2000 atm 左右),水的熔点会降低,粘度会增加,所以通过这种方法可以抑制导致细胞组织破坏的冰晶的形成。在本实验中,虽然没有施加2000 atm 的压力,但样品可能在外力的作用下,产生了不同于常压下冻结状态的现象。另一方面,在使用液氮冷冻时,样品本身可能会由于水的膨胀而产生了裂纹。同时,由于样品在液体中沸腾,在样品周围形成一层氮气层。一旦这种现象发生,冷冻效率将被极大降低。此外当使用高压冷冻方法时,水以非晶形态冻结的深度是5 到20 μm,而以液态氮冷冻时,这个深度可达5 到200 μm9)。这种现象在诸如芦笋这样的体积较大且含有大量水分的样本中尤为明显。根据上述原理,真空 span style=" text-indent: 2em " 密封袋冷冻是一种又好又简单的方法,它可以在冷冻植物样品时保持样品组织的形态。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/92efb3ee-ebd0-486c-96dc-c20258228867.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/fedec6ff-3915-4260-816d-5f99173c4594.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.2 Asparaptine 定位信息的可视化分析 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本实验中,首先通过成像质谱来进行Asparaptine定位信息的可视化分析。如图5A所示,代表Asparaptine的m/z 307.09的质谱峰被检测到。然后通过在离子阱中的一级质谱筛选出m/z 307.09的碎片,再通过飞行时间质谱分析二级碎片离子信息,从而确认是否m/z 307.09的碎片来源于靶向物质。图5B所示的质谱图是由二级质谱获得的,我们成功检测到来自一级前体离子m/z 307.09的碎片离子m/z 248.05。由于m/z 248.05是Asparaptine结构可以产生的碎片离子,因此m/z 307.09被认为是Asparaptine的质谱峰。因此,采用m/z 248.05碎片离子对Asparaptine进行成像,结果如图6所示。分析结果表明,Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDIMSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/bf3940c1-723a-4252-a89f-9bb061662a51.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/caab745a-1d80-44fb-888a-503a995397e9.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4. 结 论 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本研究中,我们首次使用iMScope TRIO 对芦笋中的Asparaptine 进行了定位分析。我们还发现冷冻法在植物样品分析中具有重要的意义。通过借助MALDI-MSI 这种有力手段,我们可以通过可视化的定位信息来获得全新的发现,甚至对于那些合成机理和功能尚未明晰的物质也是如此。今后,把MALDI-MSI 应用于植物和食品样品将有助于我们明确样品中成分的定位信息,并有望在功能性食品的高效开发、目标物质合成机理的阐释等方面得到更多应用。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5. 参考文献 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1) R. Nakabayashi et al., J. Nat. Prod., 78, 1179 (2015) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2) Enomoto Y. et al., Anal. Sci., 34(9), 1055 (2018) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3) Ohtsu S. et al., Anal. Sci., 34(9), 991 (2018) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4) N. Zaima et al., Rapid Commun. Mass Spectrom., 24, 2723 (2010) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5) S. Taira et al., Int. J. Biotechnol. Wellness Industry, 1, 61 (2012) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 6) Anna C. Crecelius et al., J. Agric. Food Chem., 65, 3359 (2017) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 7) H. Moor, U. Riehle, Proc. 4th Eur. Reg. Conf. Electron Microsc., 33 (1968) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 8) H. Moor, Cryotechniques in Biological Electron Microscopy, 175 (1987) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 9) Y. Ito, Plant Morphology, 25, 35 (2013) /p p br/ /p
  • 定了,Nature说,应重点关注MALDI应用于临床生物组织成像分析
    学术界“大牛”Nature近日发表综述,遴选出2021年值得关注的重点技术,MALDI离子源应用于临床生物组织成像分析入选。这说明质谱成像技术的发展,已越来越接近应用于临床分析的能力要求。而一旦质谱技术达到了这一要求,将面临一个全新的蓝海市场----生物病理/毒理原位分析。为什么要说接近,而不是达到?咱们要看当前临床病理分析的一些需求。小分子,大分子当前,临床病理分析主要依靠免疫组化手段,即使用免疫标记技术,抓取病理组织的标志物,从而进行病理分析。MALDI离子源于2002年获得了诺贝尔化学奖,同时获得该奖项的还有ESI离子源,其获奖的核心原因是这两种离子源为质谱技术应用于生命科学大分子分析提供了手段。但实际上,在其后的发展中,MALDI离子源因为各种原因,在蛋白组学领域被边缘化,其分析大分子的能力主要应用于微生物指纹数据建设,即我们常说的微生物质谱;或者应用于核酸位点分析(SNP),即现在常说的PCR-质谱联用技术。基于MALDI离子源的成像技术的出现,大有请MALDI-TOF MS重回蛋白组学研究领域的趋势。ESI离子源则直接奔向了代谢分析,在蛋白组学领域其亦只能进行大分子的碎片分析,且效率堪忧。虽然MALDI经常被认为可分析M/Z超过几十万的分子,但事实上,限于MALDI-TOF MS在工程化等方面的原因,一般我们所见到的国外企业所谓的高端MALDI-TOF MS,只能较有效地分析M/Z小于20000的分子,再往上,无论是灵敏度还是质量分辨率,都捉襟见肘。而当前病理分析中已经写进共识或指南的标志物集中于大蛋白分子,丰度较低,因此在性能上,当前这些质谱仪无法达标。成像质谱的关键性能成像质谱技术需要在极小的视觉范围(即样本范围)进行快速的成份和含量分析,因而对质谱仪的灵敏度提出了较高要求。举个粟子,当前商品化MALDI质谱仪的最高空间分辨率是10微米,为达到这样的空间分辨能力,实际分析的样本面积甚至更小,所获得的样本量当然也是非常稀少,质谱仪是在非常极端的分析环境下努力地进行样本离子化工作,这对仪器的灵敏度提出了极高的要求。再举个粟子,当前商品化MALDI质谱仪的成像速率,国外企业最高据说达到了50像素/秒(在这项指标上,国内企业还是蛮争光的,咱们后面再说),即每秒要分析50个只有小于10微米面积的样本,这同样对质谱仪的灵敏度提出了严苛的要求。成像质谱仪的几个关键性能,灵敏度、成像空间分辨率和成像速率,这三个参数互为反比,互相制约,而要同时提升这三个参数,核心就在于提升质谱仪的灵敏度。而要真正介入生命科学分析,还要提升分析生物大分子的灵敏度能力。但提升一台质谱仪的灵敏度,何其难也,这是质谱仪技术的世界级难题!MALDI应用于临床组织成像的关键要求如前所述,MALDI成像质谱技术要快速与临床需求对接,就需要能够直接对蛋白大分子进行成像。这就说到了当前质谱成像技术的一大痛点,即质谱仪在分析高质荷比分子时,无论电离效率、灵敏度以及分辨率,都是几何级数的衰减,所以,看!不!到!于是,当前质谱成像技术应用于临床组织分析,主要是在代谢组学圈子里打转,比如下图:图一:胃癌癌变及癌旁组织质谱成像图,由融智生物QuanIMAGE 实现在M/Z=784.9时,发现在癌变组织中有高表达(右),在癌旁组织中,随着离癌变组织距离越远,其表达快速下降(左)。截至目前,组织成像技术应用于癌症组织标志物研究已经兴起(悄悄说一声,质谱成像技术会很快成为论文大户),但如上图一样,限于质谱仪的性能,只能进行代谢分析。虽然论文已经有了不少,但真正能够走入临床,还需要大量的标志物筛找、临床验证等工作,有些遥不可及。有需求,才有研发动力嘛!来看看咱们国产质谱仪的大分子成像能力(不服来战)!图二:大蛋白分子成像能力,由融智生物QuanIMAGE 实现图三:猪肝脏血红蛋白直接成像,由融智生物QuanIMAGE 实现临床分析要讲效率,尤其很多分析是在病人身体打开,取样化验等待手术指导的情况下进行的。质谱成像技术,说白了就是高密度进行大规模的样本分析,即便小到1平方毫米的样本,按10微米空间分辨分析计算,大约也要分析10万个样本,50像素/秒的速率,也需要33分钟。如此效率,如何应用于临床?咱们再来看看国产质谱仪的成像速率能力(不服来战)!截至目前,融智生物的QuanIMAGE系列商品化质谱仪已经实现了在10微米空间分辨率下,大于300像素/秒的成像速率,1平方毫米的样本按10微米空间分辨分析计算,所需时间小于6分钟!图四:胰脏胰岛细胞单激光/单细胞成像,由融智生物QuanIMAGE实现Nature为我们提出了应当关注的技术,但这些技术真正发展起来应用于临床问题的解决,还需要科研人员大量的辛勤工作。在这方面,我们中国企业扎实地做出了不少成绩。通过一系列核心技术,极大地提升了MALDI-TOF MS分析大分子的灵敏度和分辨率(中国分析测试协会2019年验证结果,10fmol信噪比大于200,BSA),因而能够在条件严苛的成像质谱技术中,实现对M/Z大于20000的蛋白分子进行直接成像,能够实现大于300像素/秒的成像速率,为质谱成像技术真正能够走入临床应用,做好了科学仪器端的基础工作。临床病理分析专家,你们感兴趣Nature提出的关注方向吗?
  • 岛津在日推出全新分析装置—成像质量显微镜iMScope
    对以光学显微镜观察到的样品可以直接实施质谱分析 - 应用于疾患相关物质发现与生物体机能阐明 - 成像质量显微镜 iMScope 岛津制作所现已推出融合了光学显微镜与质谱分析仪技术的全新分析检测装置&mdash 成像质量显微镜『iMScope』。『iMScope』采用本公司独有的高聚焦激光光学系统与高精度样品移动系统,能够以5微米以下的领先世界水平的高分辨率下,取得生物体样品的质谱分析图像,观察分子的分布状态。实现了大气压下的质谱分析,可以分析更接近与活体状态的组织。通过重合、解析从光学图像获得的形态信息与从质谱分析图像获得的分子分布状态,期待应用于疾患相关标记物发现、药物动力学观察等领域。 *作为应用基质辅助激光解吸电离(MALDI)法的市售成像质谱分析装置,具有领先世界的高分辨率(据2013年4月本公司调查) 本产品将与自动前处理装置iMLayer共同出展5月14日在韩国举办的生物化学分子生物学会(KSBMB)以及6月10日在北美举办的美国质谱分析学会(ASMS)。 【开发背景】 传统的质谱分析法是将生物体组织样品破碎等后、提取物质得到的混合液体,然后使用液相色谱仪等进行分离,测定目的分子。因此,无法得知某一分子在样品的什么部位高浓度存在或在样品中感兴趣的部位有什么样的分子高浓度存在。研究人员渴望有一种分析装置可以对见到的物质、见到的部位中所含的分子直接实施质谱分析,实现研究人员愿望的装置便是成像质量显微镜『iMScope』。 举例来说,『iMScope』对诸如生物体组织切片这样的平板状样品照射激光,电离所含分子并检测。并且按规定的间隔移动激光,连续检测样品上的离子。通过将激光照射位置信息与其位置上含有的离子量进行二维图像化,可以获知特定分子的分布状态。比如,即使在组织上极小的局部存在作为疾病指标的分子时,也可以将其分布以图像方式检出。并且,通过比较多个样品的结果,诸如组织差异所造成的含有分子或医药品和其代谢物的分布差异等,也可以以图像方式进行测定、比较。 具有光学显微镜并可以在大气压下实施成像质谱分析的全新分析装置iMScope是可以应用于广泛领域的划时代的新解析工具,引起研究人员的高度期待,可以在各个领域最为尖端的研究开发中发挥威力,比如,特定癌干细胞中高浓度存在的分子,并将此分子作为标记物的癌早期诊断法的开发;阐明医药品代谢、聚集过程的药物动力学观察;解明食品中有助于增进健康的有效成分的分布;以增加有效成分量为目的的农作物品种改良;电路板、化成品材料的缺陷解析等,不胜枚举。 『iMScope』是将科学技术振兴机构(JST)尖端计测分析技术?仪器开发计划所获成果实施产品化的产物。以浜松医科大学为中心开发了样机后,以岛津制作所为中心开发出来了实用装置。在实用化的过程中,庆应义塾大学也参与了开发工作。基于上述机构的高见充实了必要的功能,使之成为方便使用的产品,最终开发成功了『iMScope』。 【本产品的特长】 1. 高分辨率:实现领先世界水平的5微米高分辨率采用本公司独有技术高聚焦激光光学系统与实现高精度样品位置移动的三维样品台驱动系统,作为成像质谱分析装置,成功获得了5微米以下的领先世界水平的高分辨率的质谱分析图像。即使诸如视网膜等具有10微米左右大小的微细结构的组织,也可以观察其内部的分子分布状态。另外,利用同时推出的自动前处理装置iMLayer,能够以简便的操作准备适于高分辨率成像质谱分析的样品。 2. 采用大气压MALDI,可以直接分析光学显微镜观察到的样品 离子源采用可以在大气压下进行离子化的大气压MALDI,可以直接对观察到的样品进行质谱分析。与真空MALDI法相比,不仅装置是启动时间短、测定时间快,更可以分析挥发性分子或接近活体状态的组织。 使用iMScope专用软件Imaging MS Solution,可以在光学显微镜图像上设置成像质谱分析条件,并且还备有若干已预先设置分析条件的文件,无需进行繁琐的条件设置,能够以观测光学显微镜的感觉进行成像质谱分析。 3. 高速分析:高于传统分析100倍以上的高速成像 iMScope的独有技术,以质谱分析仪保持使用1kHz的高速Nd:YAG激光进行多次激光照射而离子化的离子,一同进行质谱分析,与传统的质谱分析装置相比,实现了100倍以上(本公司内部比较)的高速成像。 例如,对2.5mm见方的样品以10微米分辨率进行成像质谱分析时,使用传统装置约花费10天的时间,但使用iMScope分析,则约3小时便可完成分析。将正常细胞与癌细胞进行比较等时,需要获取2张质谱分析图像,即便如此,iMScope只需约6小时即可完成,即如果在白天调制样品,夜晚进行分析,第二天一早便可获得检测结果,大幅加快了研究开发速度。 ※『iMScope』源自Imaging Mass Scope的新词。 鼠视网膜脂质的分布。仅在10&mu m分辨率的图像上可以识别脂质多重层,也可观察视网膜色素上皮层(10&mu m)。 *分辨率20&mu m、50&mu m、100&mu m的图像是根据分辨率10&mu m的质谱分析图像使用软件模拟制作而成 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 张新荣教授:低温等离子探针在质谱成像中的应用
    清华大学张新荣教授   张新荣教授在报告中提到目前主要用到的成像方法还是光学成像,比如红外成像、拉曼成像、荧光成像等。荧光成像虽然有很高的灵敏度,但是需要加入荧光燃料,对于被测定物质有一定程度的影响。质谱成像具有很好的发展前景。   DESI这种方法装置比较简单,容易实现,一般的实验室都可以负担得起 另外属于一种软电离的方式,所以很有发展前景 但是这种方法有需要甲醇来辅助,很多样品是不允许加入其他的物质的。张新荣教授领导的课题组提出了一种常压质谱成像方法——DBDI低温离子化技术。该方法分辨率高,常压下工作,没有引入溶剂污染,可以用于气体、液体、固体等。   张新荣教授利用DBDI方法在检测爆炸物残留物方面做了很多的研究工作。   DBDI在成像方面对于被测物损害程度是非常小的。张教授介绍了利用该离子源研究了字画、印章等鉴定分析,得到可喜的实验结果,如果有很好的数据库可以很好的区别珍品和赝品。   目前DBDI分辨率可以做到10微米,如果能够做到100纳米分辨率会更高。正常的组织和癌症的组织确实有比较明显的区别的,还有很多的后续工作来完善。
  • 岛津成像质谱显微镜应用专题丨视网膜药物分析
    高分辨率成像质谱应用于大鼠视网膜中氯喹的分布分析 在药物研发过程中,候选化合物的体内药代动力学分析是非常关键的步骤。该分析不仅可以掌握其药效药理,还可以得到和毒性评价有关的信息。通常,使用放射性自显影技术(Autoradiography: ARG)和荧光色素标记细胞的方法进行分析。但是,使用ARG的方法成本高,而且一方面这些方法无法区别原药和代谢物,另一方面标记物质的行为可能与未标记物存在差异。 因此,最近成像质谱分析法,即不进行标记即可对候选化合物进行检测的方法备受瞩目。质谱成像法除了能够在无标记的情况下对各种物质的分布进行分析,还能够使用同一切片同时分析原药及其代谢物,有望在今后的药物研发领域得到应用,取得新的突破。本文为您介绍使用成像质谱显微镜iMScope TRIO对氯喹给药后大鼠视网膜进行检测的示例。 1.大鼠视网膜中氯喹的高空间分辨率成像在本次分析中,对给予抗疟剂药物氯喹的大鼠视网膜进行分析。图1为氯喹的结构式。使用氯喹标准品进行分析,对基质及测定模式进行优化,表1为组织切片的分析条件。图1 氯喹的结构式 表1 分析条件 使用成像质谱显微镜iMScope TRIO进行高空间分辨率成像,发现在约10μm厚的视网膜色素上皮周围有氯喹的分布(图2和图3)。 图2 组织切片上的MS/MS质谱图图3 光学图像和MS/MS质谱图像 在测定氯喹时,如果使用成像质谱分析法常用的MS模式,因受到生物体衍生杂质带来的离子抑制、干扰的影响,无法得到清晰的MS图像(此处数据省略)。在本次分析中,通过iMScope TRIO的MS/MS模式进行测定,提高灵敏度,能够获得10μm的高空间分辨率下的MS/MS图像。 2.大鼠眼球中氯喹的高速成像在药代动力学研究过程中,为了阐明药物分子在细胞及器官水平的特征分布区域,分别需要在高空间分辨率及中等空间分辨率获得药物分子的分布信息。本实验使用MS/MS模式测定在中等分辨率(50μm)下测定大鼠眼球整体的氯喹分布情况,分析条件如表2所示。 表2 分析条件图4 组织切片上氯喹的MS/MS产物离子质谱图,激光直径50μm 虽然使用了更大的激光直径,有可能带来存在噪音高、离子抑制等问题,iMScope TRIO依然能够检测得到具有较高信噪比的氯喹特征碎片,并获得清晰的质谱图像。成像质谱实验的采集速度取决于目标检测区域中所包含的点数。iMScope TRIO能够独立更改激光直径及采集间隔等参数,从而能够轻松控制采集速度及图像尺寸,并且不会影响数据质量。 3.基质涂敷方式的比较在氯喹成像质谱分析中,比较了2种不同的MALDI基质涂敷方式。图5显示了有升华法获得的成像结果(基质升华方式的示意图如图6所示)。基质升华有iMLayer升华仪自动完成,而喷雾方式由手动完成。喷雾方式获得成像结果如图7所示。对比两种方式的检测结果,升华法获得了更加清晰尖锐的氯喹分布图像,而喷雾的结果则看起来会有一些扩散,如图7所示。前处理方式的优化依然取决于组织切片的特性以及所使用的基质类型。如示例中的结果,前处理步骤对最终成像结果的图像质量有显著的影响,不仅仅是切片制备的条件同时基质涂敷的过程也很重要。图5 升华法获得的氯喹分布质谱图像图7 喷雾法获得的氯喹分布质谱图像图6 基质升华方式示意图 4.在相同切片上进行MS和MS/MS成像分析成像质谱分析中,在同样位置只能采集一次数据。但是,使用iMScope TRIO可以调整激光直径及采集间隔,因此可以在采集点之间留下未采集区域,从而实现更多次的成像分析。图8显示了使用激光直径为5μm,采集间隔为10μm时,在同一采集区域内进行4次成像分析的方式。 图8 在同一测定区域进行1次MS分析及3次MS/MS分析的数据采集设置方式示例 文献题目《High spatial Resolution Imaging by iMScope TRIO -Imaging of Chloroquine Distribution in Rat Retina-》使用仪器岛津iMScope TRIO 声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。
  • 自带“可视化功能”的成像技术,让你的分析更有“深度”
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 基质辅助激光解吸电离飞行时间质谱成像技术(MALDI-TOF Imaging),作为直观反映组织器官中分子水平化合物的空间分布与变化的可视化方法,目前已在基础与临床医学研究中受到广大科研工作者的关注。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope i TRIO& nbsp /i ),前端是 strong 搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI) /strong , strong 后端配置离子阱和飞行时间串联质谱仪(IT-TOF)。 /strong iMScope i TRIO& nbsp /i 是光学与成像质谱分析完整融合的独特技术,拥有领先的5μm高空间分辨率,可进行高精度多级质谱结构解析,为未知物的结构解析提供丰富的碎片信息,是具备高端性能的革新性分析系统。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 成像质谱分析保留样品组织的位置信息的同时,可以直接使用质谱仪测定生物体分子和代谢物,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息。因此,除了在医学和药学领域中的应用外,近年来在农业、食品安全、中药、环境以及特殊类型样品中也得到了广泛的应用。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 岛津公司 strong 于2014年推出成像质谱显微镜 iMScope i TRIO& nbsp /i 以来,在诸多领域发挥其独有的高清晰度成像、光学图像融合、定性定位分析的特长 /strong 。本文介绍了岛津日本合作实验室 strong 大阪大学Shimma教授基于iMScope i TRIO& nbsp /i 在领域拓展方面开展的部分工作 /strong 。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1.姜黄素在姜黄干样品中分布的可视化分析:通过观察轴向和径向切片,对姜黄素的分布进行了详细的分析。发现姜黄具有非常规则的内部结构,而姜黄素就被封闭在管状结构中。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 229px " src=" https://img1.17img.cn/17img/images/202006/uepic/8836d4b4-9fea-4393-b991-a4ed888b4e16.jpg" title=" 1.png" alt=" 1.png" width=" 600" height=" 229" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 轴向切片中姜黄素具有线性分布特征,具有管状结构分布在植物体内的可能性 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " br/ /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.芦笋中抗高血压有效成分Asparaptine的分析:使用iMScope i TRIO /i 对芦笋中的Asparaptine 进行了定位分析。Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDI-MSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 388px " src=" https://img1.17img.cn/17img/images/202006/uepic/ef44e6ca-ea8c-42a4-9efa-fa1f77260e78.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 388" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong 芦笋的尖部、中部、下端和鳞片中的Asparaptine 分析 /strong /p p style=" text-indent: 2em line-height: 1.75em " strong br/ /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 3.果蝇质谱成像方法建立以及脑部GABA成分的空间分布:首次对果蝇这种特殊样品建立了成像方法,可应用于昆虫体内杀虫剂成分可视化分析。使用上述方法,对果蝇脑部的γ─氨基丁酸(GABA)分布进行可视化,为神经递质的研究提供更可靠的空间分布信息。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 218px " src=" https://img1.17img.cn/17img/images/202006/uepic/59dd0c6e-d0c9-42b9-8093-e5992653b81d.jpg" title=" 3.png" alt=" 3.png" width=" 600" height=" 218" border=" 0" vspace=" 0" / & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong 给药后的果蝇腹部检测出大量吡虫啉成分 /strong & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/202006/uepic/7de7f4fa-d0e3-435c-9432-fcba56308d4c.jpg" title=" 4.png" alt=" 4.png" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp & nbsp strong 果蝇脑部GABA成分的分布 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " br/ /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 4.马毛中药物成分的直接检测:通过负离子模式分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊16.48 mm 位置处观察到较强的药物信号。根据马毛的平均生长速度。可推算出给药时间,大约在24-25天前。由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。 /span br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/010bad1f-4e37-4900-b7b8-284a581772bf.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong 给药后的马毛中DexaSP 分布检测结果 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " iMScope i TRIO& nbsp /i 通过叠加不同检测原理的图像进行分析,为成像分析提供了强大的工具,并提高研究水平。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基于此,2020年7月9日, strong span style=" color: rgb(0, 112, 192) " 岛津 /span /strong span style=" color: rgb(0, 112, 192) " span style=" color: rgb(227, 108, 9) " strong “镜质合璧,还原真实” /strong /span strong 新品发布会 /strong /span 将在仪器信息网举办,届时岛津将携 strong 新一代iMScope 成像质谱显微镜产品首次与中国用户见面 /strong 。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 届时尽请关注! /strong /p p br/ /p
  • 通过高分辨成像质谱分析大鼠视网膜中氯喹的分布
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在药物研发过程中,候选化合物的体内药代动力学分析是非常关键的步骤。该分析不仅可以掌握其药效药理,还可以得到和毒性评价有关的信息。通常,使用放射性自显影技术(Autoradiography: ARG)和荧光色素标记细胞的方法进行分析。但是,使用ARG的方法成本高,而且一方面这些方法无法区别原药和代谢物,另一方面标记物质的行为可能与未标记物存在差异。因此,最近成像质谱分析法,不进行标记即可对候选化合物进行检测的方法备受瞩目。质谱成像法除了能够在无标记的情况下对各种物质的分布进行分析,还能够使用同一切片同时分析原药及其代谢物,有望在今后的药物研发领域得到应用,取得新的突破。本文介绍使用成像质谱显微镜iMScope i TRIO /i 对氯喹给药后大鼠视网膜进行检测的示例。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c4265e4a-c078-4017-93d2-68a9d4eafbd5.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " 图1 氯喹的结构式 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 大鼠视网膜中氯喹的高空间分辨率成像 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本次分析中,对给予抗疟剂药物氯喹的大鼠视网膜进行分析。图1为氯喹的结构式。使用氯喹标准品进行分析,对基质及测定模式进行优化,表1为组织切片的分析条件。使用成像质谱显微镜iMScope i TRIO /i 进行高空间分辨率成像,发现在约10 μm厚的视网膜色素上皮周围有氯喹的分布(图2和图3)。在测定氯喹时,如果使用成像质谱分析法常用的MS模式,因受到生物体衍生杂质带来的离子抑制、干扰的影响,无法得到清晰的MS图像(此处数据省略)。在本次分析中,通过iMScope i TRIO /i 的MS/MS模式进行测定,提高灵敏度,能够获得10 μm的高空间分辨率下的MS/MS图像。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b1a9ec68-3837-45b5-a422-9f98ed4422b0.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8fad9a5c-304b-4f86-b070-8ec12bb1a38d.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " 图2 组织切片上的MS/MS质谱图 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4ba84009-2ef8-4ef5-92af-f47ac86ebdb9.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " 图3 光学图像和MS/MS质谱图像 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 大鼠眼球中氯喹的高速成像 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在药代动力学研究过程中,为了阐明药物分子在细胞及器官水平的特征分布区域,分别需要在高空间分辨率及中等空间分辨率获得药物分子的分布信息。本实验使用MS/MS span style=" text-indent: 2em " 模式测定在中等分辨率(50 μm)下测定大鼠眼球整体的氯喹分布情况,分析条件如表2 所示。虽然使用了更大的激光直径,有可能带来存在噪音高、离子抑制等问题,iMScope /span i style=" text-indent: 2em " TRIO /i span style=" text-indent: 2em " 依然能够检测得到具有较高信噪比的氯喹特征碎片,并获得清晰的质谱图像。成像质谱实验的采集 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 速度取决于目标检测区域中所包含的点数。iMScope i TRIO /i 能够独立更改激光直径及采集间隔等参数,从而能够轻松控制采集速度及图像尺寸,并且不会影响数据质量。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/12e37b19-cce0-4e12-a91f-8af4b67f0802.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 基质涂敷方式的比较 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在氯喹成像质谱分析中,比较了2 种不同的MALDI 基质涂敷方式。 图5 显示了由升华法获得的成像结果(基质升华方式的示意图如图6 所示)。基质升华由iMLayer 升华仪自动完成,而喷雾方式由手动完成。喷雾方式获得成像结果如图7 所示。对比两种方式的检测结果,升华法获得了更加清晰尖锐的氯喹分布图像,而喷雾的结果则看起来会有一些扩散,如图7 所示。前处理方式的优化依然取决于组织切片的特性以及所使用的基质类型。如示例中的结果,前处理步骤对最终成像结果的图像质量有显著的影响,不仅仅是切片制备的条件,基质涂敷的过程也很重要。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3e80c956-c24a-4b4f-b277-ff7fa0b9a5ad.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图6 基质升华方式示意图 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 在相同切片上进行MS 和MS/MS 成像分析 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 成像质谱分析中,在同样位置只能采集一次数据。但是,使用iMScope i TRIO /i 可以调整激光直径及采集间隔,因此可以在采集点之间留下未采集区域,从而实现更多次的成像分析。图8显示了使用激光直径为5μm,采集间隔为10μm时,在同一采集区域内进行4次成像分析的方式。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7029ec9e-44bf-483d-a071-a1651cfc8ffb.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center " 图4 组织切片上氯喹的MS/MS产物离子质谱图,激光直径50μm /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/b8099d01-93e1-49aa-9926-907aeab7a6d9.jpg" title=" 8.png" / /p p style=" text-align: center " 图5 升华法获得的氯喹分布质谱图像 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/c8b163cf-961b-4c26-8d20-902c68beed0f.jpg" title=" 9.png" / /p p style=" text-align: center " 图7 喷雾法获得的氯喹分布质谱图像 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/d51c038b-8e0c-4efa-8ecf-87c964a43b83.jpg" title=" 10.png" / /p p style=" text-align: center " 图8 在同一测定区域进行1次MS分析及3次MS/MS分析的数据采集设置方式示例 /p p br/ /p
  • 中国科学院徐明:基于光谱和质谱成像的纳米单颗粒原位分析研究
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。徐明 研究员中科院生态环境研究中心人物简介:徐明,中国科学院生态环境研究中心,研究员,博士生导师。主要从事重金属(离子态、颗粒态)的健康效应、分子靶点及分析方法研究。获国家基金委优秀青年科学基金、入选中国科学院青年创新促进会。主持并参与国家自然科学基金、科技部973、科技部重点研发计划、中国科学院战略性先导科技专项B等9项。发表论文72篇,申请和授权国家发明专利3项。本次会议中,中科院生态环境研究中心徐明研究员分享了《贵金属纳米颗粒的体内示踪与原位成像谱学方法研究进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请徐明研究员分享其团队在纳米颗粒原位分析的系列研究成果。1、成果简介纳米材料已被广泛应用于工业、农业、食品、医药等领域。例如,银纳米颗粒作为抗菌剂被用于病原微生物的消杀,金纳米颗粒因其优良的光学性能和生物相容性被用于疾病诊断与治疗等等。一旦进入生物体内,纳米颗粒会经历复杂的转化过程,包括溶解、聚集、解聚等。纳米颗粒的体内转化会改变其物理化学特性,进而对纳米颗粒的功能产生影响。然而,目前针对纳米颗粒体内转化、分布的原位分析表征极具挑战。通常使用电子显微镜对组织或细胞内的纳米颗粒进行检测,该种方式成本高,操作难,不易于推广。其它成像技术,如质谱、红外光谱、拉曼光谱、荧光光谱等,成像分辨率难以达到纳米级别,无法实现单颗粒分析。针对上述难题,为实现生物组织和细胞中纳米颗粒转化与分布的精确分析,徐明研究员研究团队近期开展了基于光谱成像和质谱成像的纳米单颗粒原位分析研究。成果一:细胞内金纳米颗粒聚集行为的单颗粒成像分析为观测金纳米颗粒(AuNPs)的细胞内聚集行为,我们基于高光谱暗场显微镜(EHDFM)开发了一种单颗粒成像分析新方法。利用局域表面等离子共振现象(LSPR)产生的散射光谱信号,可对AuNPs的聚集程度进行定性和定量分析,实现生物介质中和细胞内AuNPs的原位单颗粒分析(图一)。该方法具有很好的特异性与灵敏度,相关研究成果近期已发表于Journal of Physical Chemistry B(https://doi.org/10.1021/acs.jpcb.2c08289)。图一成果二:利用间充质干细胞进行肿瘤靶向递送金纳米颗粒的原位成像分析为观测金纳米颗粒(AuNPs)的体内行为与分布特征,其团队整合了激光溅射电感耦合等离子体质谱(LA-ICP-MS)和高光谱暗场显微镜(EHDFM)技术,可实现生物组织中AuNPs的定性与定量成像分析(图二)。针对纳米颗粒肿瘤靶向效率低的问题,我们比较了间充质干细胞(MSC)介导的AuNPs肿瘤靶向与增强渗透滞留效应(EPR)间的递送效率差异,证实MSC介导的肿瘤靶向递送效率比EPR效应提高了2.4~9.3倍,可将更多AuNPs递送至肿瘤坏死核心。相关研究成果近期已发表于ACS Nano(https://doi.org/10.1021/acsnano.2c07295)。图二成果三:新型核壳结构纳米探针成像分析银纳米颗粒的胃肠道转化为观测纳米颗粒的体内转化过程,我们开发了一种以星形金纳米颗粒为内核,外层包覆银壳的球形核壳结构纳米探针(Au@AgNPs)。在体内,一旦该探针的银壳发生溶解等转化,就伴随着元素和光谱信号的变化,进而可通过LA-ICP-MS和EHDFM进行成像分析(图三)。利用该纳米探针,其团队成功示踪了颗粒银在小鼠胃肠道中的转化与吸收过程,揭示了颗粒银和离子银的体内行为与分布特征的差异。相关研究成果近期已发表于Advanced Functional Materials(https://doi.org/10.1002/adfm.202302366)。图三2、产业化意向上述相关的成果正在申请国家专利,后续将发展更多面向应用的技术方法和成像探针,欢迎相关的科研与产业合作。3、课题组未来研究计划后续研究中,徐明研究员研究团队将重点开发针对生物分子和纳米材料的质谱、光谱成像技术。
  • 细胞分泌物的实时纳米等离子体成像 ——新的纳米等离子体成像系统允许对单细胞分泌物进行时空监测
    • Inara Aguiar来自生物纳米光子系统实验室(BIOS)、EPFL和日内瓦大学的研究人员开发了一种光学成像方法,可以在空间和时间上提供细胞分泌物的四维视图。通过将单个细胞放入纳米结构镀金芯片的微孔中,并在芯片表面诱导一种称为等离子体共振的现象,他们可以在分泌物产生时绘制分泌物的图谱。这项研究发表在《自然生物医学工程》(Nature Biomedical Engineering )杂志上,详细介绍了细胞的功能和交流方式,有助于药物开发和基础研究。芯片上的单个单元。(图片来源:BIOS EPFL)细胞分泌物(即蛋白质、抗体和神经递质)在免疫反应、代谢和细胞之间的交流中起着至关重要的作用。了解细胞分泌物的过程对开发疾病治疗至关重要;然而,现有的方法只能量化分泌物,而不能提供其产生机制的任何细节。BIOS负责人Hatice Altug表示:“我们工作的一个关键方面是,它使我们能够以高通量的方式单独筛选细胞。对许多细胞平均反应的集体测量并不能反映它们的异质性……在生物学中,从免疫反应到癌症细胞,一切都是异质性的。这就是为什么癌症如此难以治疗。”筛选细胞分泌物该方法包括一个1cm2的纳米等离子体芯片,由数百万个小孔和数百个用于单个细胞的腔室组成;该芯片由覆盖有薄聚合物网的纳米结构金基底组成。用细胞培养基填充腔室以在测量过程中保持细胞存活。Saeid Ansaryan说:“我们仪器的美妙之处在于,分布在整个表面的纳米孔将每个点都转化为传感元件。这使我们能够观察释放蛋白质的空间模式,而不考虑细胞的位置。”使用这种新方法,可以评估两个重要的细胞过程,细胞分裂和死亡。此外,还对分泌精细抗体的人类供体B细胞进行了研究。研究小组可以看到两种形式的细胞死亡过程中的细胞分泌,细胞凋亡和坏死。在后者中,内容以不对称的方式释放,产生了图像指纹——这是科学家首次能够在单细胞水平上捕捉到细胞特征。由于测量是在营养丰富的细胞培养基中进行的,因此与其他成像技术一样,它不需要有毒的荧光标记,并且所研究的细胞可以很容易地回收。根据作者的说法,“该系统的多功能性和性能及其与粘附细胞和非粘附细胞的兼容性表明,它可以为全面了解单细胞分泌行为铺平道路,应用范围从基础研究到药物发现和个性化细胞治疗。”原始出版物:Ansaryan, S., Liu, YC., Li, X., et al.: High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat. Biomed. Eng. (2023) DOI: 10.1038/s41551-023-01017-1作者简介Inara AguiarInara是一位拥有无机化学博士学位的科学编辑和作家。在获得计算化学博士后后,她开始在化学、工程、生物工程和生物化学领域担任科学编辑。她一直在几家科学出版商担任技术作家/编辑,最近加入威利分析科学公司,担任自由职业内容创作者。本文来源:Real-time nanoplasmonic imaging of cell secretions——New nanoplasmonic imaging system allows spatiotemporal monitoring of single-cell secretions。Microscopy Light Microscopy ,13 April 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 欧波同锂离子电池显微智能分析解决方案
    锂离子电池因其清洁、能量密度高、循环性能好等优点广泛应用于我们的日常生活中。尤其是近年来, 新能源汽车、储能电站的快速发展, 锂离子电池的用量超乎想象,一台新能源汽车集成了几千个电池,达几百公斤,巨量的电池集中在一起,安全问题就尤为重要。近年来锂电池电动车、汽车和储能电站均发生过燃爆事故,因此,锂电池质量、安全等方面的研究越来越被人们重视,对锂电池的质检技术也提出了更高的要求,这涵盖了正负极材料、隔膜、铜箔、铝箔,甚至外包装材料。 欧波同集团长期从事光镜、电镜领域的微观分析工作,通过和广大客户的交流,我们发现现在客户的微分析存在效率低、人的主观因素影响大、非标准化等问题,为此我们成立了汇鸿科技公司,利用智能化软件实现显微分析的自动化、标准化。 一、锂离子电池材料显微智能分析系统(LIBMAS) 锂离子电池是指以锂离子嵌入化合物为电极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。由于材料加工过程中的缺陷,锂电池在使用或储存过程中仍会出现一定概率的失效[1],例如,多孔电极在充放电过程中发生体积膨胀和收缩,导致颗粒逐渐出现裂纹,这些裂纹沿着原有缺陷萌生和扩展,导致材料出现机械断裂和电极结构解体,造成电极材料粉化。这些材料的失效严重降低了锂电池的使用性能,影响其使用的可靠性和安全性。 图一:汇鸿锂离子电池显微智能分析系统 针对锂电池使用过程中产生的各种失效问题,汇鸿智能科技为客户量身定制了专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、开裂球识别、二次球颗粒分布均匀性判断、截面孔隙统计、隔膜孔隙统计等锂电池材料分析。 1)识别: 通常在制备三元正极材料时,采用共沉淀法[2]使纳米级一次粒子团聚堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。 图二:软件智能区分开裂球和普通球 通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图二。 正极颗粒内部通常是二次球颗粒形成的多晶结构,我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图三。使用LIBMAS对截面孔隙进行识别,快速获得截面孔隙结果。 图三:二次球截面孔隙识别2)团聚体颗粒识别: 正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的,在几个到十几个微米之间的二次球颗粒。以往采用人工统计分析,需要在SEM成像后,手动逐个测量,工作量大,而且存在人为测量的误差;采用汇鸿智能分析软件,则可以一键操作,简化流程,在短时间内快速获得标准化的统计结果,如图四。 图四:一次颗粒团聚形成的二次球颗粒识别 电极材料的颗粒尺寸影响电池的容量、倍率性能和循环性能[3]。小尺寸颗粒可以缩短锂离子固相扩散路径,内部多孔颗粒可以提供更多的锂离子迁移通道。但是粒径过小会导致库仑效率和充填密度低下,影响整体电池的容量。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图五。 图五:软件自动区分团聚颗粒及团聚颗粒截面 3)单晶颗粒识别: 相对于单独的纳米粒子,团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。然而在团聚体反复充放电过程中,电极不断膨胀和收缩,内部颗粒十分容易破碎。相比易产生颗粒粉碎的多晶正极材料,许多研究[4,5]已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿科技LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图六。 图六:单晶颗粒的识别 4)大小二次球识别: 除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图七。图七:大小二次球颗粒分布均匀性识别和统计 5)隔膜孔隙率统计: 锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实[6],隔膜的微孔孔径分布越均匀,电池的电性能越优异。 孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。 图八:隔膜孔隙识别及孔隙率统计 汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图九。 二、锂离子电池异物分析系统(LIBIAS) 目前行业对锂电正极材料中金属及磁性异物的分类主要有以下三个方面:金属及非金属大颗粒、磁性异物、Cu/Zn单质[7]。异物引入的方式有原材料带入和制造过程中产生。为了有效控制锂离子电池正负极材料中非金属/金属/磁性异物的含量,一般会使用专业的设备与软件对初筛后的原材料中异物颗粒进行形貌与成分统计。行业内以往使用光镜或手动测量的方法,然而这些传统检测方式往往在数据结果的准确性、全面性、一致性上有或多或少的不足,给精确检测带来比较大的挑战。目前,锂电池材料中异物颗粒的检测主要面临的问题有:1)异物来源广、溯源难,2)数据量大、费时费力,3)颗粒易团聚、识别难度高。图一:同一颗粒分别在光学显微镜(左)、电子显微镜(右)下的图像及EDS能谱识别颗粒主要成分为Fe 图二:电镜图像下滤膜上所有颗粒分布情况图三:滤膜上的颗粒团聚现象 针对传统软件的不足,欧波同集团旗下的汇鸿科技公司开发了“锂离子电池异物分析系统”(LIBIAS)。这是集准确、高效和易操作功能为一体的全自动清洁度分析系统,可以实现高清BSE图像采集拍摄和图像处理、元素定量测试等功能。包括:1)简易上手的测试程序,2)开放的标准库编辑系统,3)一键生成对应报告图表。 图四:颗粒类型占比饼状图(左),三元统计相图(右) 汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”锂离子电池材料显微智能分析系统(LIBMAS)”和“锂离子电池异物分析系统(LIBIAS)”,将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。 参考文献:[1] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Phys. Sin., 2018, 67(12): 128501. doi: 10.7498/aps.67.20180757.[2] https://doi.org/10.1016/j.powtec.2009.12.002[3] 杨绍斌,梁正. 锂离子电池制造工艺原理与应用[M].[4] https://www.science.org/doi/abs/10.1126/science.abc3167.[5] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2 三元正极材料研究进展[J]. 电池工业, 2017, 21(2): 51-54.[6] 毛继勇,许汉良.锂离子电池用隔膜孔隙率对电池性能的影响[J].广州化工,2018,46( 14) : 78-80.[7] 惠升,詹永丽,黎江.锂电正极材料金属及磁性异物过程控制的研究[J].世界有色金属,2021(17):166-168. 作者:沈宁单位:欧波同个人简介:沈宁,OPTON创新研究中心BD工程师 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责欧波同集团锂电行业应用市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。
  • 约稿|锂离子电池显微智能分析解决方案全解析
    为帮助广大材料领域科研工作者了解前沿表征与检测技术,解决材料表征与检测技术难题,开展相关表征与检测工作,仪器信息网广泛向业内技术专家、仪器厂商约稿,并整理相关学术文章和讲座视频,以期对材料表征技术进行全面的介绍和综述。相关内容将收录至【材料表征与检测技术盘点】专题,并在仪器信息网平台全渠道推送,后续还将把干货整理成册,以供更多人士阅读。征稿活动进行中,欢迎来稿,征稿活动详情点击:【材料表征与检测技术盘点】专题:https://www.instrument.com.cn/zt/CLBZ以下为欧波同集团供稿,以飨读者:欧波同锂离子电池显微智能分析解决方案锂离子电池因其清洁、能量密度高、循环性能好等优点广泛应用于我们的日常生活中。尤其是近年来, 新能源汽车、储能电站的快速发展, 锂离子电池的用量超乎想象,一台新能源汽车集成了几千个电池,达几百公斤,巨量的电池集中在一起,安全问题就尤为重要。近年来锂电池电动车、汽车和储能电站均发生过燃爆事故,因此,锂电池质量、安全等方面的研究越来越被人们重视,对锂电池的质检技术也提出了更高的要求,这涵盖了正负极材料、隔膜、铜箔、铝箔,甚至外包装材料。欧波同集团长期从事光镜、电镜领域的微观分析工作,通过和广大客户的交流,我们发现现在客户的微分析存在效率低、人的主观因素影响大、非标准化等问题,为此我们成立了汇鸿科技公司,利用智能化软件实现显微分析的自动化、标准化。1、 锂离子电池材料显微智能分析系统(LIBMAS)锂离子电池是指以锂离子嵌入化合物为电极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。由于材料加工过程中的缺陷,锂电池在使用或储存过程中仍会出现一定概率的失效[1],例如,多孔电极在充放电过程中发生体积膨胀和收缩,导致颗粒逐渐出现裂纹,这些裂纹沿着原有缺陷萌生和扩展,最终导致材料出现机械断裂和电极结构解体,造成电极材料粉化。这些材料的失效严重降低了锂电池的使用性能,影响其使用的可靠性和安全性。图一:汇鸿锂离子电池显微智能分析系统针对锂电池使用过程中产生的各种失效问题,汇鸿智能科技为客户量身定制了专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、开裂球识别、二次球颗粒分布均匀性判断、截面孔隙统计、隔膜孔隙统计等锂电池材料分析。1) 开裂球识别:通常在制备三元正极材料时,采用共沉淀法[2]使纳米级一次粒子团聚堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图二:软件智能区分开裂球和普通球通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图二。正极颗粒内部通常是二次球颗粒形成的多晶结构,我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图三。使用LIBMAS对截面孔隙进行识别,快速获得截面孔隙结果。图三:二次球截面孔隙识别2)团聚体颗粒识别:正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的,在几个到十几个微米之间的二次球颗粒。以往采用人工统计分析,需要在SEM成像后,手动逐个测量,工作量大,而且存在人为测量的误差;采用汇鸿智能分析软件,则可以一键操作,简化流程,在最短的时间内快速获得标准化的统计结果,如图四。图四:一次颗粒团聚形成的二次球颗粒识别电极材料的颗粒尺寸影响电池的容量、倍率性能和循环性能[3]。小尺寸颗粒可以缩短锂离子固相扩散路径,内部多孔颗粒可以提供更多的锂离子迁移通道。但是粒径过小会导致库仑效率和充填密度低下,影响整体电池的容量。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图五。图五:软件自动区分团聚颗粒及团聚颗粒截面3)单晶颗粒识别:相对于单独的纳米粒子,团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。然而在团聚体反复充放电过程中,电极不断膨胀和收缩,内部颗粒十分容易破碎。相比易产生颗粒粉碎的多晶正极材料,许多研究[4,5]已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿科技LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图六。图六:单晶颗粒的识别4)大小二次球识别:除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图八。图八:大小二次球颗粒分布均匀性识别和统计5)隔膜孔隙率统计:锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实[6],隔膜的微孔孔径分布越均匀,电池的电性能越优异。孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图九:隔膜孔隙识别及孔隙率统计汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图九。二、锂离子电池异物分析系统(LIBIAS)目前行业对锂电正极材料中金属及磁性异物的分类主要有以下三个方面:金属及非金属大颗粒、磁性异物、Cu/Zn单质[7]。异物引入的方式有原材料带入和制造过程中产生。为了有效控制锂离子电池正负极材料中非金属/金属/磁性异物的含量,一般会使用专业的设备与软件对初筛后的原材料中异物颗粒进行形貌与成分统计。行业内以往使用光镜或手动测量的方法,然而这些传统检测方式往往在数据结果的准确性、全面性、一致性上有或多或少的不足,给精确检测带来比较大的挑战。目前,锂电池材料中异物颗粒的检测主要面临的问题有:1)异物来源广、溯源难,2)数据量大、费时费力,3)颗粒易团聚、识别难度高。图一:同一颗粒分别在光学显微镜(左)、电子显微镜(右)下的图像及EDS能谱识别颗粒主要成分为Fe图二:电镜图像下滤膜上所有颗粒分布情况图三:滤膜上的颗粒团聚现象针对传统软件的不足,欧波同集团旗下的汇鸿科技公司开发了“锂离子电池异物分析系统”(LIBIAS)。这是集准确、高效和易操作功能为一体的全自动清洁度分析系统,可以实现高清BSE图像采集拍摄和图像处理、元素定量测试等功能。包括:1)简易上手的测试程序,2)开放的标准库编辑系统,3)一键生成对应报告图表。图四:颗粒类型占比饼状图(左),三元统计相图(右)汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”锂离子电池材料显微智能分析系统(LIBMAS)”和“锂离子电池异物分析系统(LIBIAS)”,将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。参考文献:[1] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Phys. Sin., 2018, 67(12): 128501. DOI: 10.7498/aps.67.20180757.[2] Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method.DOI:10.1016/j.powtec.2009.12.002[3] 杨绍斌,梁正. 锂离子电池制造工艺原理与应用[M].[4] Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode.DOI:10.1126/science.abc3167[5] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2 三元正极材料研究进展[J]. 电池工业, 2017, 21(2): 51-54.[6] 毛继勇,许汉良.锂离子电池用隔膜孔隙率对电池性能的影响[J].广州化工,2018,46(14) : 78-80.[7] 惠升,詹永丽,黎江.锂电正极材料金属及磁性异物过程控制的研究[J].世界有色金属,2021(17):166-168.作者:沈宁单位:欧波同个人简介:沈宁,OPTON创新研究中心BD工程师 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责欧波同集团锂电行业应用市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。
  • 基于质谱成像的大鼠肾上腺组织中衍生化皮质酮的分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 摘 要: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 质谱成像(IMS)需要应用到特殊的样品前处理方法,从而使目标化合物的可视化分析具有高灵敏度和高分辨率。在分析类固醇激素时,基质辅助激光解吸离子化的效率往往较低。此外,类固醇激素也不能用现有的IMS 前处理方法进行分析。本报告描述了一种组织衍生化方法,借助iMScope i TRIO /i 质谱显微镜实现皮质酮的可视化和高灵敏度、高分辨率的IMS 分析。另外,我们还介绍了一种通过离子阱三级质谱鉴定皮质酮结构异构体的技术。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1.研究背景 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 质谱成像(IMS)包括直接对组织表面进行质谱分析以检测被成像的目标物质。IMS 是一种分子成像方法,可以显示成像目标物的位置、类型和数量,且无需进行靶向标记。现有的IMS 样品前处理方法主要是将基质溶液喷涂于组织表面,形成直接诱导电离的基质-晶体层。然而,尽管我们已经知道这种方法有助于并在组织表面大量存在的极性的磷脂的可视化分析,但是对于非磷脂分子的可视化却没什么效果。因此,一些研究者认为IMS 技术只能对磷脂进行可视化分析。然而,IMS 其实同样可用于检测与现有的高灵敏度质谱方法相同的那些目标分子,前提是采用适当的样品前处理方法。实现这种可视化的技术包括两步法基质涂敷和组织衍生化方法。我们描述了一种IMS 分析方法,使用这两种技术成功实现大鼠肾上腺组织上的皮质酮的可视化分析。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1.1 两步法基质涂敷 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 非常精细的基质晶体可以提高基质辅助激光解吸电离(MALDI)得到的谱图的信噪比(S/N)。因此,在组织表面形成非常精细的基质晶体不仅有助于提高IMS 的S/N,同时也有助于提高成像结果的空间分辨率。然而,IMS 分析的组织样品在测试前通常不清洗,其表面包含大量的盐和污染物。在这种类型的表面上涂敷基质会导致形成的基质晶体聚集,从而在某些区域形成非常薄的基质层。晶体层的这种不均匀性影响了图像的成像质量,使所获得的成像数据十分难以解释,因为目标分子浓度的变化可能仅仅是由于晶体层的不均匀性造成的。为了改善这种情况,我们开发了两步法基质涂敷技术(以下称为两步法)(图1)。两步法的第一步是使用iMLayer 系 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 统对基质晶体进行升华,第二步是用基质溶液进行喷涂。使用iMLayer 进行升华会在组织表面产生非常精细的基质晶体。而第二步在基质溶液的喷涂过程中,组织表面的这些细小晶体可以作为基质晶体生长的核心进行外源生长。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/854041eb-dace-41db-92d1-f351db385434.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图 1. 两步法基质涂敷的操作流程 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 用扫描电子显微镜捕获图像如图2 所示,我们比较了两步法和传统的直接喷涂法得到的基质晶体的形态。这两幅图像都以相同的放大倍数显示,两步成像法(图2a)得到的晶体比喷雾法(图2b)得到的晶体要精细得多,间距也更密。众所周知,这种非常精细和间距致密的晶体层的形成会使目标分子(包括药物和生物代谢物等化合物)的质谱峰强度增加数十倍 sup [1,2] /sup 。进行高分辨IMS 分析也需要这样精细的晶体层。当我们想实现高分辨分析(间距≤20μm)时,通过喷涂法会在组织表面形成非常大的基质晶体,这将导致成像结果会直接受这些基质晶体形状的影响和改变 sup [3] /sup 。基于上述情况,两步法被认为是获得高灵敏度、高分辨率结果的一种必不可少的前处理方法。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e2775274-1fb4-47bd-b926-b5f288e97d45.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图2 基质晶体的扫描电镜图 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " (a) 两步升华法 (b) 喷雾法 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1.2 组织衍生化处理 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 衍生化是一种进一步提高灵敏度的前处理方法,近年来备受关注。在进行液相色谱测试时,在溶液中衍生化可提高其检测灵敏度 sup [4] /sup 。在组织切片制备后,将相同的衍生化试剂喷洒在样品上,也可提高IMS 的灵敏度。这种处理方法甚至可以使以前无法检测的分子被检测出来。在本报告中,我们选择一种有效的类固醇检测衍生化试剂吉拉德试剂T 作为衍生化试剂[5],皮质酮([M+H]+: 347.22)与吉拉德试剂T 在室温下快速反应,然后形成衍生化皮质酮([M]+: 460.31)作为检测目标物(图3)。由于三甲胺基团的加入,衍生化的皮质酮表现出更高的离子化效率。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/39921082-faaa-4eae-9f8b-42a3a181427a.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图3. 使用吉拉德试剂T 对皮质酮进行衍生 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.实验方法 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 衍生化试剂:吉拉德试剂T (购于Sigma-Aldrich),浓度10mg /mL,以20%醋酸水溶液制备。样本组织:将冷冻的大鼠肾上腺切片置于ITO 载玻片上(Matsunami Glass 100Ω, span style=" text-indent: 2em " 无镁铝硅酸盐涂层)。基质溶液:α-氰基-4-羟基肉桂酸(α-CHCA,纯度≥98%,购于Sigma-Aldrich),浓度10mg /mL,以30%的乙腈、10%的异丙醇和0.1%的甲酸混合物作为溶剂进行配制。显微镜图像采集:在样品预处理前,用iMScope i TRIO /i 显微镜采集样品的光学图像。衍生化试剂喷涂:使用喷笔(GSICreos Procon BOY)将衍生化试剂喷涂于组织表面。喷涂量大约为60μL /组织切片。在喷涂过程中,在确认表面略有湿润的情况下,我们需要对组织表面反复干燥,当衍生化试剂喷涂完成后,样品在室温下放置90 分钟。基质涂敷:衍生化反应完成后,使用α-CHCA 在250℃条件下升华3分钟,以在组织表面形成一层基质薄膜,然后用喷笔将基质溶液喷到组织表面,喷涂量为100μL /组织切片,喷涂方法与衍生化试剂相同,但是衍生化试剂和基质需要采用独立喷笔。IMS 分析:使用iMScope i TRIO /i 质谱显微镜。IMS 激光光斑直径选择d = 2 即像素大小约为25μm,d = 1 即像素大小10μm。所有IMS 采用二级质谱进行分析。对每个激光光斑直径对应的激光强度和碰撞能量进行优化,以保证产物离子质谱峰强度最大化。通过对溶液中衍生化的皮质酮标准品的分析,确定最佳实验条件。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/f53f3658-d8f1-4846-8eb4-c69f65645f43.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span br/ /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图4 MS/MS 质谱图的比较。(a) 非衍生皮质酮(前体离子: m/z347.22) (b) 衍生后皮质酮(前体离子: m/z 460.31) 上图:标准物质 下图: 肾上腺组织上的皮质酮 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3 实验结果 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.1 标准品与组织样品的皮质酮产物离子谱图 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 比较皮质酮标准品和组织样品的产物离子质谱图如图4 所示。图4a 显示了未衍生化皮质酮的产物离子谱图。标准品谱图通过测试在ITO 玻璃上滴加10 mg/mL 皮质酮标准品获得。质谱图显示了皮质酮的分子离子峰m/z 347.22,以m/z 347.22 为前体离子,其主要产物离子为m/z329.21。该产物离子是皮质酮脱水产生的。对肾上腺组织进行同样的分析,得到的谱图皮质酮信号。这一结果表明,在未进行衍生化的情况下,无法对皮质酮进行有效成像。图4b 展示了使用衍生化皮质酮进行相同分析的结果。衍生化皮质酮的质谱信号为m/z 460.31,可以将之理解为[M]+。选择m/z 460.31 作为前体离子进行二级质谱分析,得到碎片离子m/z 401.24,如图4b 所示,由三甲胺基团发生中性丢失产生。对组织样品进行分析获得高信噪比的产物离子质谱图,与标准品的谱图完全一致。这些结果表明,组织衍生化是检测皮质酮的有效方法。除了在衍生化皮质酮分析中检测到的m/z 401.24 处的质谱峰外,另一个主要峰值出现在m/z 373.25 处,为丢失-CO 基团的皮质酮。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.2 肾上腺组织中皮质酮的成像 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 根据上述实验条件,我们对大鼠肾上腺组织进行衍生化,获得其质谱成像数据。大鼠肾上腺组织的二级质谱成像结果(前体离子m/z 460.31,产物离子m/z 401.24)如图5 所示。肾上腺为分层结构,包括(由内而外)髓质、网状带、束状带、肾小球带和被膜。使用专为iMScope 设计的成像质谱分析软件,将二级质谱成像结果与光学图像相叠加,显示皮质酮在束状带内积累。对包含髓质、网状带和束状带的区域进行高空间分辨率检测,发现髓质中含有少量皮质酮,皮质酮主要在位于分析区域的最外层的束状带中积累。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/84c3d869-d851-4978-b790-2bed2cd4f5f3.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图5 肾上腺组织的MS/MS 成像结果(m/z 460.31,m/z 401.24) /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 上图, 标尺: 400μm, 像素大小: 25μm /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 下图: 标尺: 100μm, 像素大小: 10μm /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.4 在生物组织中应用多级质谱分析 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 除使用大气压MALDI 源实现高分辨IMS 分析外,iMScope i TRIO /i 还可以被用于多级质谱分析。 双羟孕酮(图6b)是类固醇激素皮质酮的结构异构体。能否对结构异构体进行有效区分对于实现皮质酮分布的精确成像十分重要。使用目前的衍生化法,双羟孕酮的二级质谱也为丢失三甲胺产生的碎片,因此现有的方法无法区分皮质酮的不同结构异构体。但是,iMScope i TRIO /i 可以利用离子阱进行三级质谱分析,从而可以间接确定出成像结果中是否存在结构异构体产生,这也是通过对标准品和组织样品的三级质谱分析比较,所获得的结果。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 然而,常规前处理可能无法产生足够强度的质谱峰来进行组织上的三级质谱分析。在本实验中,我们将两步法基质涂敷和组织衍生化方法相结合,成功地进行了组织上的三级质谱分析,获得了足够强度的三级质谱信号。图7 是由二级碎片离子m/z 401.24 得到的三级质谱结果。虽然质谱图中相对噪音较高,但组织样品上的三级质谱图依然具有较高的信噪比,与标准品获得的主要三级碎片一致(图7 底部)。基于这些发现,图5 所示的IMS结果能够比较准确地展示皮质酮的分布。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4 结论 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 本报告介绍了利用两步法基质涂敷和组织衍生化技术的IMS 靶向物质可视化分析技术。我们通过样品前处理方法的发展以及应用仪器的技术创新,实现了IMS 分析灵敏度的提高。我们相信,随着IMS 应用范围的扩大,对更加适合的样品前处理方法的需求也会增加,未来我们将开发多种如此文中所介绍的方法,从而更加深入地挖掘IMS 技术的巨大应用潜力。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 【参考文献】 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " [1] Shimma S, Takashima Y, Hashimoto J, Yonemori K, Tamura K, Hamada A. Alternative two-step matrix /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " application method for imaging mass spectrometry to avoid tissue shrinkage and improve ionization ef.ciency. span style=" text-indent: 2em " J Mass Spectrom. 48, 1285–90, 2013. /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " [2] Shimma S. Characterizations of Two-step Matrix Application Procedures for Imaging Mass Spectrometry. span style=" text-indent: 2em " Mass Spectrum. Lett. 6: 21–25, 2015. /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " [3] Taira S, Sugiura Y , Moritake S, Shimma S, Ichiyanagi Y , Setou M. Nanoparticle-assisted laser /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " desorption/ionization based mass imaging with cellular resolution. Anal. Chem. 88: 4761–6, 2008. /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " [4] Higashi T, Yamauchi A, Shimada K. 2-Hydrazino-1-methylpyridine: a highly sensitive derivatization r /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " eagent for oxoster oids in liquid chromatography–electrospray ionization-mass spectr ometry. J. Chromatogr. B span style=" text-indent: 2em " 2: 214–222, 2005. /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " [5] Cobice DF, Mackay CL, Goodwin RA, McBride A, Langridge-Smith PR, Webster SP, Walker BR, Andr ew /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " R. Mass Spectr ometry Imaging for Dissecting Steroid Intracrinology within Target Tissues. Anal. Chem., 85, span style=" text-indent: 2em " 11576–11584. 2013. /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/bc3e121f-5fd4-4c49-a17c-c362290f17d2.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span br/ /p p br/ /p
  • 李灵军团队自然通讯成果:离子淌度结合双极性离子化质谱成像揭示单细胞脂质特异性
    单细胞分析技术对生物医学研究意义重大,目前在单细胞组学中,基因组学和转录组学技术相对成熟,单细胞转录组学和蛋白组学分析技术近年来获得越来越多的关注和投入。与其他组学相比,单细胞脂质组学分析刚刚起步,面临诸多技术难点。近期,威斯康星大学麦迪逊分校的李灵军教授团队报道了离子淌度(IMS)与双极性离子化质谱成像相结合的单细胞脂质组学方法,实现了单细胞脂质组高通量、原位和双极性成像,揭示了小鼠小脑皮质细胞层特异性脂质分布。该项工作以“Single-cell lipidomics enabled by dual-polarity ionization and ion mobility-mass spectrometry imaging”为题发表在Nature Communications(https://www.nature.com/articles/s41467-023-40512-6),文章第一作者为张华博士。该研究实施了捕集离子淌度分离(TIMS)与双极性电离(dual-polarity ionization)以及质谱成像(MSI)相结合,以实现单细胞(SC)脂质组的高通量原位分析。使用来自单培养和共培养的人胰腺癌 (PANC-1) 和活化的胰腺星状细胞 (PSC) 以及神经母细胞瘤细胞 (SK-N-SH) 的 SC 样本的 MSI 分析来评估该方法的性能 使用 MALDI 捕集离子淌度飞行时间质谱(MALDI-timsTOF-MS) 平台进行分析。研究结果表明, 高分辨率 MALDI-MSI 可为单细胞分析提供良好的重现性和质量准确度。整体来说,该研究建立了单细胞脂质组学分析的新技术,为揭示细胞间及细胞内脂质异质性研究提供了重要工具。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 聚焦离子束技术使电镜分析从二维走向三维——记TESCAN(中国)与上海交大分析测试中心联合实验室揭牌
    p strong 仪器信息网讯& nbsp /strong 人类对于微观世界的认知有着漫长的历史。自300年前第一台显微镜问世以来,人们便开启了探索微观世界的大门。随着科学技术的发展,光学显微镜、透射电子显微镜和扫描电镜逐渐作为工具被人们熟知,并且,应科学发展的需求,各项技术均在不断的创新与发展。如今,作为材料分析的重要工具,电镜技术已广泛应用于材料、化工、医学、生物等多个领域。 br/ /p p   整体而言,电镜技术发展到今天,在技术上获得极大的发展,主要表现在几个方面,来自武汉大学电子显微镜中心主任王建波对此进行了简单介绍:第一,核心技术空间分辨率越来越高,借助辅助的技术手段,已经可以提供多尺度和多维度的信息 第二,计算机技术介入电镜领域,带来速度上的飞跃。正是结合了计算机技术,漂移校正变得简单,数据处理、记录、转移等方面速度变快,大大提高了分析的速率 第三,多种新型探测技术如CMOS等技术的出现,使电镜技术的动态响应范围、分析速度等获得革命性提高 第四,电场、光场、力场等外场技术的联用,可联合表征某些曾经无法定量的样品 第五,计算机模拟技术使得定量结果由模糊变得精确 第六,与其他技术联用,使电镜技术逐步变成一个综合性设备 第七,透射电镜样品的制备工具得以发展。透射电镜、X衍射仪等是强有力的表征工具,需要强大的样品制备工具与其相匹配。 /p p   随着电镜技术对样品制备能力要求的提升,在现在的电镜行业,谈及微纳加工仪器,聚焦离子束(FIB)技术不可不谈。该技术通过能离子轰击材料表面,实现材料的剥离、沉积、注入和改性。目前先进的FIB系统为双束,即离子束和电子束(FIB-SEM)系统,也就是在SEM微观成像实时观察下,用离子束进行微纳加工,具有离子注入、离子溅射、TEM试样制备等多种功能。早在多年前,该技术在市场上已经商品化。 /p p   电镜技术研究正处于一个健康发展时期。就扫描电镜而言,业界人士认为,未来其研究方向主要有三点。首先,原位研究,包括气体、液体、加热和力学等研究方法 其次,电子束旋进和三维重构及全息技术的方法学研究 最后,商业化的多种表征手段集成到一台仪器上,这也是目前电镜行业仪器厂商热衷的方式之一。 /p p   作为聚焦离子束扫描电镜(FIB-SEM)主流供应商之一, TESCAN 和WITec公司在2014年联合推出了显微镜新品RISE Microscopy,即扫描电子显微镜与拉曼光谱仪联用系统,用以对样品进行综合表征:电子显微镜是一个很好的表征样品表面形貌、成分、结构的可视化技术平台,而共焦拉曼成像是表征样品化学和分子组成的成熟光谱方法。目前该技术已经在上海交通大学分析测试中心— TESCAN China联合实验室使用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/66abe88c-76a1-41b2-a6ec-e1a9d798a6bb.jpg" title=" 联合实验室.jpg" / /p p   2017年5月18日,上海交通大学分析测试中心-TESCAN China联合实验室揭牌仪式,上海交通大学分析测试中心主任张兆国(左五)、TESCAN董事会主席兼CEO Jaroslav Klima(右五)共同为联合实验室揭牌,并签署合作协议。 /p p   据TESCAN(中国)市场部经理顾群介绍,目前,上海交大分析测试中心已经配置多台TESCAN公司电镜及FIB系统,包括一台超高分辨扫描电镜-聚焦离子束-飞行时间二次离子质谱联用系统(UHR FE-SEM-FIB-TOF-SIMS)。“这是一个综合平台。电镜主要用来观察待测物质的表面形貌,附加能谱仪分析待测物质除轻元素和痕量元素之外的成分,若配以TOF-SIMS设备,则轻元素及痕量分析的功能就得以完善。”顾群表示,“FIB技术可对指定待测样品位置进行精细切割剥离,被剥离的样品将进入TOF-SIMS进行元素分析,而切割出的新界面将通过EDS和EBSD进行三维成分、结构和取向分析。” /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/ac6246ad-4c57-4be1-9025-9b793a70d717.jpg" title=" 电镜.jpg" / /p p style=" text-align: center " 上海交大分析测试中心的UHR FE-SEM-FIB-TOF-SIMS /p p   “我对FIB技术非常感兴趣,借助FIB技术,电镜观察微观结构可由二维向三维方向发展,并且可以为透射电镜制作超薄样品,尤其是复合材料样品。FIB技术应该说是今后发展的一个主流方向。” 上海交大分析测试中心副研究员何琳如是说。 /p p   “除与TOF联用之外,FIB与拉曼光谱的联用系统也放在了联合实验室。如果将FIB与可配附件全部联用,则可实现对每个微区同时采集成分、结构等精细信息。材料表征结果比较全面。”顾群讲到。但与此同时,顾群还表示,因仪器设备原理差异,目前的技术条件下,某些产品还无法整合。到目前为止,TESCAN的FIB技术可配置的技术还包括阴极荧光等设备。 /p p   据外媒发布的研究报告显示,近些年,行业的快速增长提升了显微镜在印刷、涂料、失效分析和元素检测方面的应用需求,纳米技术领域对先进技术、高分辨率显微镜的需求也不断增长,汽车行业对所用材料深入分析给电镜技术和应用带来机遇,而新兴的生命科学领域对电镜技术的需求也越来越多。综上,电镜技术正面临着多个新兴行业对技术和应用方案开发的机遇和挑战。 /p p   为应对新兴行业用户对解决方案的需求,更好的为用户提供技术支持,2017年5月18日,TESCAN(中国)上海应用中心举行了开幕仪式,正式投入使用。多位来自高校、科研院所、企事业单位的用户参加了本次开幕仪式。据了解,TESCAN(中国)每年定期派遣中国地区售后服务人员前往捷克总部参加技术培训,并且捷克总部也在中国派遣了一名技术工程师,负责为中国客户解决技术和应用问题。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/c93a45b5-c78d-43d2-a527-219fe9033526.jpg" title=" 揭牌.jpg" / /p p style=" text-align: center " TESCAN(中国)上海应用中心揭幕 /p p style=" text-align: center " (左起:TESCAN董事,首席战略官 Kopriva Radomir、TESCAN董事会主席兼CEO Jaroslav Klima、捷克领事馆总领事馆馆长Richard Krpac、TESCAN(中国)总经理冯骏) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/c7bb2821-7128-4912-8e8a-520342b3cc16.jpg" title=" 合影.jpg" / /p p style=" text-align: center " 与会人员合影 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/1dfadb27-527a-4d84-a2a2-a93d7aa4f2fc.jpg" title=" 应用实验室.jpg" / /p p style=" text-align: center " 参观应用中心 /p p   开幕式上,胜科纳米(苏州)有限公司的郑海鹏告诉仪器信息网工作人员:“场发射扫描电镜由于其成像清晰,同时可以对微区进行定点的成分分析和形貌表征,配以某些特殊配件,可以帮助我们更好的开展失效分析和材料分析工作。TESCAN的扫描电镜人机交互体验较好。” /p p br/ /p
  • 【经典文献赏析】微流成像颗粒分析技术(MFI)和光阻法(LO)对比研究
    国家食品药品检定研究院(NIFDC)和烟台大学药学院等科学家在期刊Journal of Pharmaceutical Sciences发表文章:Subvisible Particle Analysis of 17 Monoclonal Antibodies Approved in China Using Flow Imaging and Light Obscuration.文章中,使用光阻法(LO)和微流成像颗粒分析技术(MFI)分析了来自国内批准的17种商业单抗隆抗体药物中,205个样品的亚可见颗粒。每种方法进行了633次测试。在测试中,冻干粉或注射器包装的样品具有显著更高的颗粒浓度,且MFI的颗粒计数通常高于LO计数。通过研究数据表明,LO无法检出蛋白质半透明颗粒的数量是MFI方法高于LO计数的原因。研究背景基于单克隆抗体(mAb)生产工艺的复杂性,因此需要对其关键质量属性(CQA)进行控制和监测,同时为了确保药物产品的安全性和有效性,还需证明CQA在生产过程的一致性。这些CQA包括可见颗粒(VPs)和亚可见(SVPs)颗粒的测量。然而过去并没有对治疗蛋白质产品中的亚可见颗粒(0.1-100μm)的颗粒进行积极的检测。有研究表明,治疗性蛋白质产品中的蛋白质有聚集并形成SVPs的倾向,且这种聚集会引起治疗效果的降低和潜在的免疫原性风险。欧洲药典(EP)2.9.19、美国药典(USP)788和中国药典(ChP)0903等药典专论中对SVPs进行颗粒计数限值。且USP1787建议使用4-100μm粒径范围内的形态测量,这可能有助于理解粒子来源为固有的、内在的/外在的,以降低SVPs带来的风险。光阻法(LO)是USP788规定的主要检测方法,用于量化两个尺寸范围(≥10μm和≥25μm)的SVPs。该技术确定了颗粒的大小和数量,但由于其检测原理,无法区分不同类型的颗粒,例如蛋白质聚集体、硅油液滴等。许多研究表明,LO可能无法检测到半透明的蛋白质聚集体,从而低估了样品中的总颗粒。也有一些报告表明,样品的折射率(RI)会影响LO结果。随着USP787和USP1787的发布,要求在计数/浓度和形态方面表征2-10μm的SVPs。流式成像显微镜(FIM)技术已成为量化与LO技术相同大小范围内的SVPs的替代方法,它可以检测半透明的蛋白质聚集体,即通过使用直接对颗粒进行成像的FIM,还可以获得形态信息。这使得该技术能够将蛋白质聚集体与其他颗粒(如硅油滴、气泡和其他外在和内在的颗粒杂质)区分开来。本文中FIM技术使用的是ProteinSimple的微流成像颗粒分析技术(MFI)。到目前为止,比较这两种技术的研究都使用了标准微珠、蛋白质模拟物或有限数量的治疗性mAb样品。但没有对多批不同的商业治疗性mAb进行并排比较。在本研究中,使用LO和MFI方法分析了17种国家药品监督管理局批准的mAb药物产品。通过分析200多批mAb商业药物产品提供了一个独特的数据集,以检验MFI法和LO方法之间的粒子数计数差异和二者关联。样品准备表1列出了17种生物制药mAb药物产品的清单。对于每种药物产品,最多可获得50个批次。不同批次的相同药物被视为研究中的不同样本。对于药物的不同批次,它们分别标有数字1、2、3等。因此,研究中共有205个样品,如表1所示。每个批次由LO和MFI测试3到9次。总共对205个样本使用两种方法进行了1266次测试(633次使用LO方法,633次使用MFI方法)。研究结果如图所示,对使用MFI和LO测量的205个样品的颗粒计数进行了分析。由于颗粒形成是从较小尺寸到较大尺寸的动态过程,且USP1787要求对2-10μm颗粒进行表征(因为这个尺寸范围可能具有免疫原性)。所以使用MFI和LO检测了≥2μm、≥5μm、≥10μm的颗粒计数,以及2-10μm的颗粒计数。结果显示,在205个样本的633次运行中,22个样本的运行子集显示LO计数高于MFI计数。对于其余样本,MFI方法的计数高于LO方法。从结果中可以看出,来自注射器和冻干样品的样品在所有尺寸范围内的颗粒计数都明显高于瓶中液体。特别是在≥2μm尺寸范围内,根据之前的报告,硅油滴可能是这个尺寸范围内高计数的主要贡献者。2-10μm尺寸范围的计数与≥2μm尺寸范围的计数具有非常相似的趋势。这是因为粒子数的多少由较小的粒子数支配。冻干形式的药品在重构时可能会形成气泡,蛋白质容易吸附到气泡从而形成蛋白质颗粒。根据早期研究,MFI方法优于LO方法的一个优势是MFI比LO方法可以检测到更多的半透明蛋白质聚集体。因此,与LO方法相比,MFI方法通常检测到更多蛋白质溶液中的颗粒(如上图所示)。为了验证MFI方法在检测半透明蛋白质聚集体方面优于LO,首先需要在MFI测试获得的结果中将蛋白质颗粒与其他颗粒分开。这可以通过利用MFI软件对粒子的各种尺寸、形态和图像强度信息等不同范围的参数来区分不同类型的粒子。利用参数的组合充当过滤器以分离样品中的蛋白质和其它颗粒。例如参数AR反映了粒子的圆度,AR=1表示正圆,AR1表示非圆。通常,硅油滴和气泡的AR值接近1,而蛋白质颗粒的AR值较低。蛋白质颗粒图像通常具有相对较小的强度变化(暗度),而硅油滴、气泡和固体材料碎片通常具有明确的暗边缘。硅油滴、气泡或固体材料碎片的颗粒图像的强度变化(整个颗粒的暗度变化)大于蛋白质颗粒的强度变化。粒子图像的暗度变化可以通过参数Intensity STD来反映。因此可以采用AR0.8或AR≥0.8且Intensity STD≤100的过滤器来区分样品中的蛋白质颗粒和其他污染物颗粒,例如硅油滴和固体材料的碎片。为了显示统计显著性,上图使用了三种粒子计数相对较高且MFI计数和LO计数之间差异较大的样本。LO 和MFI检测了单个样品药物Atezolizumab的5个批次。结果显示,两个计数方法在所有运行中都相对一致,MFI的计数略高。对于药物 Daratumumab,如图B所示,在11个批次中,两个计数方法对于大多数运行来说都是一致的,其中一个批次的MFI计数要高得多。通过应用过滤器,可以确定MFI计数高的原因是蛋白质颗粒的计数高。从以上两个例子中可以看出,在同一种药物中,不同批次的颗粒计数MFI和LO方法的结果一般是一致的,MFI计数略高于LO计数。有几个批次具有较高的MFI计数,这是由于高计数的蛋白质颗粒引起的。不同批次的相同药物的蛋白质颗粒计数可能不同。图C显示了来自注射器包装的两个Golimumab样品的计数。6次运行中的蛋白质颗粒计数是一致的,而非蛋白质颗粒的计数在不同批次中是可变的。大量MFI计数高于LO计数,主要原因是蛋白质颗粒计数高。这也证实了早期的研究。对于这种药物,在所有6次运行中,非蛋白质颗粒的趋势和LO的总计数非常吻合。为了确定使用MFI观察到的更高计数是否与半透明蛋白质聚集体的数量有关。因为在示例中,从总MFI计数中分离出的非蛋白质颗粒计数接近LO计数。因此需要比较MFI的总计数与LO的计数以及MFI的计数与LO的非蛋白质部分之间的相关性。首先,将所有270次MFI运行中≥5μm的MFI计数与LO计数作图,相关性较低(图A)。当将MFI计数的非蛋白质颗粒与总LO计数作图时,相关性显著提高(R2从0.781到0.933),这表明蛋白质、半透明颗粒的数量是导致MFI计数高于LO的主要因素。因此证实了MFI在检测蛋白质半透明颗粒方面优于LO。结 论本研究使用LO和FIM方法测量了来自17种商业mAb药物产品的205个样品(批次)中≥2μm、≥5μm、2-10μm、≥10μm的SVPs。结果显示,冻干粉或注射器包装状态的样品显示出明显更高的颗粒浓度,尤其是在≥2μm尺寸范围内的颗粒计数。且MFI粒子计数通常高于LO计数(205个样本中的183个样本)。通过使用AR 0.8 or AR ≥0.8 and Intensity STD ≤100过滤器将样品中的蛋白质颗粒与其它污染物颗粒分离,审查了不同批次相同药物中LO和FIM计数的差异。MFI显示药物中的某些批次具有显著高的颗粒计数,被证实是由大量蛋白质颗粒引起的。同时,与瓶装液体相比,注射器的颗粒计数最多可高出10倍,瓶装液体主要归因于非蛋白质颗粒,主要是硅油液滴。MFI方法计数升高的原因是蛋白质、半透明颗粒而导致。将MFI的总计数与LO的总计数作图,并将MFI计数的非蛋白质部分也与LO的计数作图。结果相关性有很大改善。结果表明,与LO方法相比,蛋白质半透明颗粒的数量是MFI方法计数升高的主要因素。以上表明,虽然LO方法是被广泛接受的微粒分析工具,但它不足以测量生物制药中的所有粒子,证明了MFI等正交工具的必要性。由于MFI的优势,可以开展实验室间验证研究,以测试将MFI技术引入mAb的释放控制和稳定性研究的可能性。因此目前药典对SVPs的要求可以通过MFI等新技术的应用进行优化。获取资料请扫二维码
  • 我国科学家实现单离子超分辨成像
    记者27日从中国科学技术大学获悉,该校郭光灿院士团队在冷原子超分辨成像研究中取得重要进展,该团队李传锋、黄运锋、崔金明等人在离子阱系统中实现单离子超分辨成像。该成果日前发表于《物理评论快报》。  冷原子系统包括离子阱中囚禁的离子和光场中囚禁的原子等,是研究量子物理的理想实验平台,也是量子模拟、量子计算和量子精密测量实验研究的重要物理系统。冷原子系统中的核心实验技术之一是高分辨单粒子成像。近十年来,冷原子系统的显微成像技术飞速发展,涌现出量子气体显微镜、光镊原子阵列、高分辨率囚禁离子成像等先进技术。然而,受限于光学衍射极限,这些技术分辨率只能达到光学波长量级,研究波函数细节相关的量子现象需要光学超分辨成像。此前,国际上对单原子(离子)直接的超分辨成像尚未取得进展。  中国科学技术大学团队借鉴经典成像领域的受激耗尽超分辨成像方法,结合冷原子系统的原子量子态初始化和读取技术,首次在离子阱中实现单个离子的超分辨成像。实验结果表明,该成像方法的空间分辨率可超越衍射极限一个量级以上,利用数值孔径仅为0.1的物镜即可实现175纳米的成像分辨率。为了进一步展示该方法的时间分辨率优势,团队同时实现了50纳秒的时间分辨率和10纳米的单离子定位精度,并清晰地拍摄了囚禁离子在离子阱中的快速简谐震荡,理论上通过相关操作可将空间分辨率提高至10纳米以下。  这一实验技术可扩展到冷原子系统的多体和关联测量。审稿人认为,该工作“填补了此前缺失的精密测量原子位置的重要工具,有潜力对高频运动的单个运动量子实现空间分辨”。
  • ​科研用小动物活体成像系统全国共享资源调查分析
    动物模型对医学的发展意义重大,通过对动物本身的生命现象研究进而推进到人类,探索人类生命的奥秘,更是生命科学研究的支撑条件之一。1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念—应用影像学方法,它使活体动物体内成像成为可能。近年来,随着活体成像技术广泛应用于研究观测特异性细胞、追踪靶细胞、药物和基因治疗最优化等,各类小动物活体成像系统不断涌现,为生命科学研究提供了有力保障。根据技术不同系统主要分为光学成像、 核素成像(PET、SPECT)磁共振成像 (MRI)、CT成像、超声成像、磁粒子成像(MPI),在一定程度上,这些技术大多不存在竞争取代,而是互补共存的关系。其中,光学成像技术在小动物活体成像系统中应用最为广泛。基于此,本文聚焦国内高校和科研院所共享的小动物活体成像系统,对科研用光学成像技术为核心的系统进行统计分析,在一定程度上或可得出国内科研用小动物活体成像系统的使用情况。(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,不完全统计分析仅供读者参考)光学成像技术光学成像主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。小动物活体成像系统通过非常灵敏的光学检测仪器,让研究人员能够直接监控活体生物体内的细胞活动和基因行为,观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。共享小动物活体成像系统集中教育强省统计高校和科研院所在全国仪器共享平台上传的数据,截止2021年6月15日,平台上小动物活体成像系统(光学成像)的总数量为119台,涉及24个省份、直辖市、自治区。其中,北京、江苏、浙江、广东的小动物活体成像系统(光学成像)数量大于10台,仪器资源依然集中分布在高等教育强省,存在资源分布不均的问题。珀金埃尔默最受高校欢迎 从全国共享小动物活体成像系统(光学成像)品牌分布来看,高校和科研院所更青睐进口。珀金埃尔默独占近二分之一的市场,Caliper、carestream healthy、Berthold、Bruker、KODAK占比41.53%,CRI等品牌瓜分剩余八分之一的市场。据悉,2011年,珀金埃尔默收购了专注于生命科学研究、成像和检测服务的Caliper Life Sciences公司,在动物成像领域更进一步。所以,珀金埃尔默相当于占比66.1%,在高校和科研院所更受欢迎。省份品牌分布零散从全国共享小动物活体成像系统(光学成像)数量top7省份的仪器品牌分布来看,珀金埃尔默在北京、江苏、浙江、广东、上海、湖南的高校和科研院所中均有很强的竞争力,在福建的品牌覆盖度低,可能与宣传力度和高校科研方向等因素有关。从北京品牌分布来看,大趋势与全国共享小动物活体成像系统(光学成像)品牌分布相同,珀金埃尔默以绝对优势占据60%,carestream healthy、Bruker、Visualsonics、GE、Princeton Instruments等品牌分布零散,但在高校和科研院所的仪器采购中也存在一定的竞争力。
  • PerkinElmer推出红外成像方法分析大气中PM2.5的成分
    雾霾天气的无疑给人类健康和生活带来很大的影响,大气中污染物的数量及其对人类健康的影响正成为全球所关注的问题。大气中的污染物主要来源于悬浮于大气中的颗粒物(PM),固体和液体小微粒。国际癌症研究机构(IARC)和世界卫生组织(WHO)把空气中的微粒指定为1号致癌物质。由于微粒的吸入,它们有可能导致人类健康问题。微粒越小就越容易进入人的呼吸系统。根据颗粒物的粒径大小可以将它分为不同的种类,比如PM10(粒径小于10μm的颗粒)和PM2.5(粒径小于2.5μm的颗粒)。PM2.5是受人们特别关注的并且一直是许多健康研究的主题,这些健康研究一般与呼吸道疾病和肺癌的增长有关联。PM2.5主要来源于工业燃烧、道路运输(燃料排放物),化石燃料燃烧和小规模的垃圾焚烧。同时也有自然来源,比如火山爆发和海洋飞沫。红外显微成像系统结合了红外对成分的定性定量和成像技术直观测试结果的优势,可以对收集在聚碳酸酯过滤器上的颗粒分布和成分进行剖析。红外成像实验所得到的数据不仅能够定性(颗粒物的组成分析),而且还能够通过校正给出现有组分的定量信息。红外成像测量仅仅需要5分钟,然而离子色谱需要溶剂萃取颗粒物,分析一个样品需要大约20-25分钟。点击下载应用文章
  • 广西大学预算809万元购买1台离子源-高分辨质谱分子成像仪
    8月24日,广西大学公开招标购买1台离子源-高分辨质谱分子成像仪,预算809万元。  项目编号:GXZC2021-G1-003071-KLZB  项目名称:专用仪器设备采购  预算总金额(元):8090000  采购需求:  标项名称:广西大学激光离子源-高分辨质谱分子成像  数量:1  预算金额(元):8090000  简要规格描述或项目基本概况介绍、用途:技术参数  1、离子源  ★1.1 具有ESI和MALDI双离子源  1.2 ESI和MALDI离子源可通过软件全自动切换  ★1.3双激光器,主激光频率:10,000Hz 后电离激光1,000Hz  1.4 MALDI离子源:样品盘采用工业标准的微滴定盘设计,可点384个样品,最多能够放1536个样品  1.5 ESI离子源:离子漏斗传输技术,柔和的离子聚焦和高效离子传输,且不受质量大小的影响  1.6 ESI和MALDI离子源可通过软件全自动切换,时间不超过1分钟  1.7 具备捕获离子淌度谱功能,产生高分辨率离子淌度数据  1.8 具有平行累加连续碎裂功能,几乎达到100%工作周期  1.9 进样口喷针部分电压为零  1.10 玻璃毛细管,起到将大气压与真空系统隔离和产生电压差的目的  2、飞行管  2.1 同轴、快速高灵敏度的检测器系统,飞行中重聚焦离子光学系统,提供高灵敏度  2.2正负离子切换  ★2.3飞行管配有水冷恒温温控装置和智能化温度补偿装置,在MS和MS/MS模式下质量准确度具有长时间的超稳定性。  2.4 采用ADC模拟数字化转换器,确保得到准确的真实同位素分布  2.5 CID离子碎裂功能  2.6四极杆质量过滤器,质量范围20-3000m/z  3、技术指标  ★3.1 具备离子淌度功能,离子淌度分辨率≥150,可计算CCS值  3.2 分辨率:高达 50 Hz 采集速度下不损失分辨率,TOF分辨率≥60,000  3.3 准确度:内标校准:平均误差 ≤ 0.8 ppm 外标校准:平均误差 ≤ 2 ppm  ★3.4 采样频率:  QTOF和TIMS模式:MS和MS/MS均为 50 Hz  PASEF模式:MS/MS 100 Hz  3.5 质量范围:20-20,000 m/z,可由软件自动设定  3.6 灵敏度:1pg/uL利血平,信噪比100: 1  3.7 具备基质成像分析的样品制备、信号采集和数据分析处理功能。  3.8 具备常规和纳升流速的ESI离子源。  3.9 在断电的情况下维持仪器持续运行1小时以上。  设备清单:见招标文件  最高限价(如有):8090000  合同履约期限:自签订合同之日起120历日内整体完成供货安装调试  本标项(否)接受联合体投标  开标时间:2021年09月15日 09:00G1-003071招标公告附件.docx
  • 基质升华重结晶法进行低分子量代谢产物质谱成像分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 自质谱成像技术于二十世纪80年代前半期诞生以来,至今为止不断持续着技术改革,并被广泛运用于以新药研究和代谢产物研究领域为首的众多领域中。如今仍以提升灵敏度和空间分辨率、重现性等为目标,不断进行着技术改良。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 同时,也开发出多种离子化所需的基质,如何从这些基质中选出适用于检测目标化合物的基质成为重点。 span style=" text-indent: 2em " 除基质选择外,其涂布方法也会对分析结果造成很大影响,因此,现有多个应用于检测目标化合物的基质涂布方法正在研究中。大致可分为喷雾法和升华法两种方法,两种涂布方法均有自己的优缺点,现阶段经常会同时使用两种方法。本公司开发了能控制基质膜厚的基质升华涂布装置iMLayer(图1),对涂布方法进行研究。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们针对以往难以重结晶的基质9AA,开发了升华后重结晶的方法,并在此进行报告。此外,还将对小鼠肝脏中低分子量代谢产物的MS成像结果示例进行介绍。 /p p style=" text-align: right text-indent: 2em line-height: 1.75em " ——R.Yamaguchi, E.Matsuo, T.Yamamoto /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 1、不同基质涂布方法对MS成像分析造成的影响 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基质涂布方法对基质的结晶形成和MS成像分析造成的影响如表1所示。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 与升华法相比,通过喷雾法生成的基质的结晶较粗,并可能因样本中所含成分的渗漏导致空间分辨率降低。均匀性较差,基质溶液干燥后结晶时会依赖湿度和温度等周围环境,因此重现性也会变差。另一方面,样本中所含化合物的提取效果较好,可能提高检测灵敏度。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 相比之下,升华法具有结晶较细、难以渗漏、均匀性好、重现性良好的特点,是高空间分辨率成像所不可或缺的方法。但相对的,其样本中成分的提取效果不佳,在灵敏度上可能存在不利的一面。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 实际的测量灵敏度依赖于检测化合物的结构。例如,在分析磷脂质等时,采用升华法便具有足够的灵敏度,诸如胺碘酮等药物可以足够的灵敏度完成MS成像(参考应用文集B61)。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 另一方面,在检测小鼠肝脏等器官中含有的ADP 和ATP 等低分子量代谢产物时,通过升华法进行基质涂布,由于没有任何提取效果,无法得到足够的灵敏度。因此,绝大多数例子都是通过喷雾法涂布9AA来实施MS成像,但其空间分辨率相对较低。于是,我们对将DHB和CHCA上使用的升华后重结晶法涂布9AA所需的条件进行了研究。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0178e2f4-5edd-42fd-ab37-3b27f1e3173b.jpg" title=" 微信截图_20200619165723.png" alt=" 微信截图_20200619165723.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图1 基质升华装置iMLayer /p p style=" text-align: center " 表1 基质涂布方法对结晶形成和MS成像分析造成的影响 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/962223c2-c637-4894-9498-e953c6d6b688.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 2、基质升华后重结晶法 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 对9AA进行升华后重结晶。如图2所示,将含有5%甲醇的滤纸和升华处理后的样本放入相同容器中,于37℃的恒温环境下静置5分钟。此时,滤纸中的5%甲醇蒸发,渗入样本中,在提取样本中化合物的同时会使少许9AA结晶溶解。之后将其真空干燥器内干燥10分钟,使溶解的9AA进行重结晶。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b1b946ad-81b9-4670-bd42-0b2b1b03f739.jpg" title=" 33333333333333.png" alt=" 33333333333333.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 图2 9AA升华后重结晶的方法 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8767d240-e8eb-44fc-8470-cff5822571a1.jpg" title=" 444444444.png" alt=" 444444444.png" / /p p style=" text-align: center " 图3 成像质谱显微镜iMScopeTRIO /p p style=" text-align: center " 表2 iMScope i TRIO /i 测量参数 /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/69636f83-0667-4f8a-a02b-4d1c757bc977.jpg" title=" 55555555555.png" alt=" 55555555555.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 3、使用升华后重结晶法提高MS成像灵敏度 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对9AA升华后重结晶的小鼠肝脏样本,使用成像质谱显微镜iMScope& nbsp i TRIO /i (图3),根据表2的参数进行质谱成像分析。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对比升华法进行基质涂布样本与升华后重结晶样本的分析结果、比较其分析区域的平均质谱图(图4)。仅采用升华法时、能强烈检测到基质9AA的峰(m/z 385.14)(图4▼),基本上检测不到低分子量代谢产物的峰,但通过实施升华后重结晶,使来自低分子量代谢产物的峰强度增加(图4▼等),确认其提升检测灵敏度的效果。此外,其他多个低分子量代谢产物的MS图像,通过升华后重结晶的处理,能够获得更为清晰的MS图像(图5)。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 针对难以重结晶的9AA开发的升华后重结晶方法,充分利用升华法的优势成功实现了无损且高灵敏度的MS成像分析。 /p p span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0bbf3127-6052-4b6a-af7e-a0c6fc57f542.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图4 质谱图(升华法和升华后重结晶法的比较) /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/de208828-8702-40d6-8202-037e64b3f190.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center " 图5 MS图像(升华法和升华后重结晶法的比较) /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制