当前位置: 仪器信息网 > 行业主题 > >

高光谱吸收仪

仪器信息网高光谱吸收仪专题为您提供2024年最新高光谱吸收仪价格报价、厂家品牌的相关信息, 包括高光谱吸收仪参数、型号等,不管是国产,还是进口品牌的高光谱吸收仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高光谱吸收仪相关的耗材配件、试剂标物,还有高光谱吸收仪相关的最新资讯、资料,以及高光谱吸收仪相关的解决方案。

高光谱吸收仪相关的仪器

  • GaiaChem近红外高光谱分析仪整合了近红外成像光谱仪和高分辨率近红外光谱相机,采用推扫成像技术,可同时对大量的样品进行光谱和影像的测 量,也可对不同形状的样品进行光谱和影像的测量,提供待测样品的详细的光谱及影像信息以供研究人员进行化学成分、成分品质等的分析。 GaiaChem近红外高光谱分析仪是一个完整的影像光谱工作站,使用者只需要将待检样品放置在标准的样品台上,通过ChemaDAQ软件进行扫描控制,即可实时的进行光谱和影像信息的获取和保存。 GaiaChem近红外高光谱分析仪提供测试的样品的大小从10mm到100mm,可获得30&mu m-300&mu m的空间分辨率;光谱测量范围为:970nm-2500nm(900nm-1700nm),光谱分辨率可达10nm(6nm)。主要应用领域:◆ 农业科学研究,食品品质分析◆ 生命科学研究,脂肪含量分析◆ 医药科学研究,药品品质分析◆ 物质成分鉴别 主要技术规格参数表 GaiaChem-SWIRGaiaChem-NIR操作模式高速推扫型高光谱仪光谱范围(nm)970-2500900-1700光谱分辨率(nm)106光谱通道数256空间像素数(pixels/line)320空间分辨率(&mu m)30-300扫描范围(mm)10-100最大样品尺寸(mm)100× 100× 40(W× L× T)样品扫描速度100 hyperspectral line images/ s (max), corresponding to -3 mm/s with 30 micron pixel -30 mm/s with 300 micron pixel 样品扫描时间(s, 典型)3-10(@320× 320空间像素,256个光谱通道)光源 SPECIM&rsquo s diffused line illumination unit 数据格式 BIL file format, Evince and ENVI compatible 仪器校正光谱校正在出厂时已完成;反射光谱强度校正在每次样品测量时自动完成(比照仪器内部的标准反射板)应用实例:◆ 药品高光谱分析 通过GaiaChem测量得到的不同原料配比的药片的高光谱影像及光谱信息如下图所示,光谱范围为:1000-2500nm,伪彩表示了不同成分的影像信息,可获得256个通道的光谱信息,空间影像信息覆盖了320*430像素,整个采样时间仅需要6秒。 ◆ 农产品高光谱分析 通过GaiaChem测量得到的种子的高光谱影像及光谱信息如下图所示,光谱范围为:1000-2500nm,整个采样时间仅需要11秒。 由于农产品通常都有一定水分含量,在1000-2500nm范围内光源的热效应会造成水分的丢失,所以在这个范围内进行光谱测量时,测量时间显得尤为重要,必须要在尽可能短的时间内进行。GaiaChem在设计上充分考虑到这个因素的影响,通常一个样品的测试时间为十几秒,甚至几秒钟内即可完成,大大降低了光源烘干效应对样品的影响。 GaiaChem近红外高光谱分析仪信号采集及分析软件 ChemaDAQ软件为GaiaChem近红外高光谱分析仪标准的信号采集软件,可进行高光谱影像及光谱数据的采集和简单处理,数据存储格式可被多种第三方专业的数据分析软件调用,如ENVI和Evince数据分析软件,可进行3D图像分析等。
    留言咨询
  • GaiaSky-mini推扫式机载高光谱成像系统GaiaSky-mini推扫式机载高光谱成像系统是针对小型旋翼无人机开发的高性价比机载高光谱成像系统。采用自有专利的内置扫描系统和增稳系统,成功克服了小型无人机系统搭载推扫式高光谱相机时,由于无人机系统的震动造成的成像质量差的问题。为高光谱成像技术在目标识别、伪装与反伪装军事领域,地面物体与水体遥测、现代精细农业等生态环境监测等领域的广泛应用奠定了基础。 推扫式机载高光谱成像系统技术特点:1、完美适配M600 Pro及S1000+,极低的系统成本与测试成本2、采用悬停拍摄方式,无需高精度惯导系统,图像实时自动拼接3、操作方便,无需专业无人机操控手,可实现单人操作4、图像实时回传,监控拍摄效果5、辅助取景摄像头实现真正的所见即所得6、通过地面站实时观测飞机采样地点并可利用地面站设置逐点采集的航线7、数据预览及矫正功能:辐射度校正、反射率校正、区域校正支持批处理8、实时常用植被指数计算功能:归一化植被指数(NDVI)、比值植被指数(RVI)、增强植被指数(EVI)、大气阻抗植被指数(ARVI)、改进红边比值植被指数(mSR 705)、、Vogelmann 红边指数(VOG)、光化学植被指数(PRI)、结构不敏感色素指数(SIPI)、归一化氮指数(NDNI)、类胡萝卜素反射指数1(CRI1)、类胡萝卜素反射指数2(CRI2)、花青素反射指数1(ARI1)、花青素反射指数2(ARI2)、水波段指数(WBI)、归一化水指数(NDWI)、水分胁迫指数(MSI)、归一化红外指数(NDII)、归一化木质素指数(NDLI)、纤维素吸收指数(CAI)、植被衰减指数(PSRI)、调整土壤亮度的植被指数(SAVI)9、支持自定义实时分析模型输入功能10、数据格式完美兼容Evince、Envi等第三方数据分析软件 左图:Gaiasky-mini-VN 右图New:Gaiasky-mini2-VN 推扫式机载高光谱成像系统技术参数:型号Gaiasky-mini-VNGaiasky-mini2-VN结构相机与控制器分体设计集成一体化设计光谱范围400-1000(nm)400-1000(nm)光谱分辨率(30um)3.5nm3.5nm数值孔径F/2.8F/2.8传感器CCD Sony ICX285CCD Sony ICX674像素间距6.45(um)4.54(um)相机输出14(bit)14(bit)连接方式USB 2.0USB 3.0工作电压12~19V12~19V功率45W45W拍摄方式悬停(内置扫描)悬停(内置扫描)搭载平台旋翼无人机、无人飞艇、无人直升机等可悬停飞行器;推荐:大疆M600 Pro镜头17mm,18.5mm,23mm17mm,18.5mm,23mm横向视角(FOVac,°)29.6@17mm,27.3@18.5mm,22.08@23mm28.7@17mm,26.7@18.5mm,21.5@23mm横向视场158米@17mm,146 米@18.5mm,117米@23mm(飞行高度300米)154米@17mm,142 米@18.5mm,115米@23mm(飞行高度300米)图像分辨率696X700960X1040Bin方式256通道128通道360通道176通道空间分辨率(@17mm, 高度300米)0.23m0.23m0.160.16扫描速度(line images/s)6084125160单幅拍摄速度(秒)12997重量相机(含内置扫描)1.3Kg;控制器:0.65kg1.5kg( 相机及内置控制器)采集器240G SSD240G SSD云台及相机安装空间=330(悬挂高度)*200*260mm=330(悬挂高度)*200*260mm
    留言咨询
  • GaiaSorter “盖亚”高光谱分选仪 GaiaSorter “盖亚”高光谱分选仪的核心部件包括均匀光源、光谱相机、电控移动平台(或传送带)、计算机及控制软件等部分。工作原理是通过光源照射在放置于电控移动平台(或传送带)上的待测物体(样品),样品的反射光通过镜头被光谱相机捕获,得到一维的影像以及光谱信息,随着电控移动平台(或传送带)带动样品连续运行,从而能够得到连续的一维影像以及实时的光谱信息,所有的数据被计算机软件所记录,最终获得一个包含了影像信息和光谱信息的三维数据立方体。通过对数据的分析,可进行针对如果蔬的水分、糖酸度等内、外部信息以及其他类型物品分级、分选所需信息的获取,并通过后续的控制开发,从而实现对物品的全自动化分选。 GaiaSorter“盖亚”高光谱分选仪 “盖亚”高光谱分选仪结构示意图如下:GaiaSorter “盖亚”高光谱分选仪的标准配置针对大小为300mm ( 长)×300 mm ( 宽)×200 mm ( 高) 的物品的测量,光谱范围有400-1000nm,900-1700nm 和1000-2500nm 三个标准光谱波段,并通过选配小型传送带装置,可实现小批量的连续量测。 GaiaSorter“盖亚”高光谱分选仪既可以搭载Image-λ“G”系列高光谱相机,也可搭载GaiaField 系列高光谱相机,相机具体规格参见相关产品规格表。 “盖亚”高光谱分选仪主机基本规格:GaiaSorter“盖亚”高光谱分选仪主机样品空间尺寸(长x宽x高,最大)300mm×300mm×200mm光照空间均匀性≥90%电源输入电压AC 220V ±10%均匀光源额定工作电压DC12V(通过调整电压实现亮度调整)光源额定总功率~200W工作距离可调整范围180mm~600mm样品台扫描行程*400mm注*:样品为薄片时,工作距离调整范围为180mm-600mm;样品高度为200mm时,工作距离调整范围为180mm-400mm。
    留言咨询
  • GaiaArtScanner 国画高光谱分析仪采用台式设计,适合用于古书籍、卷轴画等一类的珍贵书画的高光谱分析,可用于赝本鉴别、珍本修复等工作。
    留言咨询
  • OSCAR 高光谱光吸收计—在线式、点源积分腔原理产品介绍OSCAR 是一款高端的光吸收计(360~720nm),可用来测量水体的吸收,如河水、海水、地下水等。基于著名的点源积分腔吸收计PSICAM(Point Source Integrating Absorption Meter)原理设计,该款吸收计测量得到真实的吸收光谱,无需像市场上的其他仪器一样要通过许多假设条件。OSCAR既适合实验室使用,也适合野外原位测量,内置数据采集功能结合低功耗设计使其能够实现自动测量。 图 OSCAR 高光谱光吸收计工作原理大多数测量技术中,水体吸收会被颗粒物如浮游植物、沉积物、碎屑等的光散射干扰,导致吸收被高估。此外,天然水体的吸收普遍比较低,若不经过前处理,很难测量其吸收。而OSCAR是在一个积分球内测量原始水样,中心光源为漫射石英玻璃制成的一个散射球体,内腔体由漫反射性塑料材料(PTFE)制成,材料厚度为10mm时,反射率可达94~97%。测量时,腔体内充满水样,经小球发出的光被腔体中的水样吸收后到达内壁被无数次反射,最后被高光谱辐照度传感器检测。球体内的光场分布均匀,避免了散射影响和样品处理,并通过相当长的光学路径(高达几米)提高了灵敏度。产品特征&bull 独立高光谱积分腔吸收计(PSICAM),无散射影响&bull 超大光程,可测低吸收水体&bull 用户可自行校准,保证测量准确性&bull 可配置自容式野外测量和实验室测量&bull 不同直径腔体选择(d = 80 mm 或50 mm)&bull 流通池设计&bull 低功耗&bull 测量室采用固体塑料,易于清洁产品应用&bull 水质分析&bull 卫星数据校正&bull 藻类水华监测&bull 生物学&bull 海洋光学数据采集OSCAR 本身不含电池,需要外置电源。OSCAR高光谱吸收计可连接 G2 Interface Box wifi/G2 interface box进行控制和存储数据。具体配置为:OSCAR高光谱吸收计+ G2 Interface Box wifi / G2 interface box + 显示设备(手机或电脑,可以不用)技术参数波长范围360 ~ 720 nm检测器类型256通道,高端微型光谱仪光谱分辨率3.3 nm/pixel光源12 LED测量参数吸收球体直径80 mm或 50 mm浊度校正是数据存储2 GB 内存卡T100响应时间≤ 2 min测量间隔≥ 1 min外壳不锈钢 (1.4571/1.4404) 或 钛合金 (3.7035)尺寸(L x Ø )450 mm x 135 mm(不包括接口)重量不锈钢:6.2 kg钛合金:5.5 kg数字接口以太网 (TCP/IP)RS-232 或 RS-485 (Modbus RTU)功耗≤ 4 W供电12 ~ 24 VDC (± 10 %)系统兼容Modbus RTU耐压SubConn 接口:30 bar积分腔:高于环境压力1 bar, 2 ~ 4 L/min防护级别IP68样品温度2 ~ 40°C环境温度2 ~ 40°C储存温度-20 ~ 80°C
    留言咨询
  • sisuCHEMA高光谱成像分析系统是一套完整的高光谱成像分析工作站,整合了VNIR至SWIR高光谱成像技术、自动扫描技术及高光谱物质分析技术(软件),使用者只需要将放置在样品盘中的待检样品置于推扫台上,即可通过软件进行扫描控制,实时进行光谱二维影像信息的获取和保存,可同时对大量的样品或不同形状的样品进行光谱成像测量分析,包括组成成分/化学组成量化数据及其分布信息等,样品最大为200x300x45mm,对10mm以下样品其分辨率可达30 μm。ü 植物表型组学研究分析ü 蛋白组学研究分析ü 代谢组学研究分析ü 藻类表型研究分析ü 种子品质检测、活力检测ü 植物病理、病原检测ü 中草药检测研究ü 根系分析ü 食品检测分析ü 海洋科学研究ü 环境科学ü 地质与地球科学主要技术指标VNIRNIRSWIR波段范围400-1000nm900-1700nm1000-2500nm光谱分辨率 FWHM2.8nm6nm10nm空间分辨率/行1312像素320像素384像素像素大小38 - 152 μm 30 - 600 μm 24 - 600 μm 视野50-200mm10-200mm10-200mm扫描速度最大100行/秒,对应3mm/s@30 μm像素、30mm/s@300 μm像素扫描时间320x320分辨率@256波段情况下小于7秒照明Specim 线性散射光源数据格式BIL格式,与ENVI兼容校准光谱出厂前已校准,每次扫描分析前自动参照标定生命科学应用案例 Priscila S.R.Aries、Everaldo P. Medeiros等利用近红外sisuCHEMA高光谱成像分析系统(波段范围1000-2500nm),对棉花炭疽病等病原进行了研究,论文发表在2018年J.Spectral Imaging(Near infrared hyperspectral images and pattern recognition techniques used?to identify etiological agents of cotton anthracnose and ramulosis)Maxleene Sandasi等,利用sisuCHEMA高光谱成像分析技术,对不同品种人参进行了定性分析研究,认为是一种简单快速非损伤性鉴定检测技术。论文发表在2016年Molecules(The Application of Vibrational Spectroscopy Techniques in the Qualitative Assessment of Material Traded as Ginseng)Paul J.Williams等利用sisuCHEMA高光谱成像技术,对镰刀霉属生长特性及其品种差异进行了研究,论文发表在2012年Anal Bioanal Chem.上(Near-infrared (NIR) hyperspectral imaging and multivariate image analysis to study growth characteristics and differences between species and strains of members of the genus Fusarium)。 地质地球科学应用案例sisuCHEMA高光谱成像分析技术广泛应用于金属矿产和油气资源勘探研究、环境污染监测分析等。 聚丙烯(PP)、聚乙烯(PE)及聚苯乙烯(PS)光谱特征曲线及海洋污染高光谱成像分类监测(黄色为PS、绿色为PP、蓝色为PE),研究论文:Silvia Serranti etc. Characterization of microplastic litter from oceans by an innovative approach based on hyperspectral imaging. Waste Management, 2018 左图: 不同矿物高光谱特征吸收谱带 右图引自研究论文:Richard J.Murphy etc. Consistency of Measurements of Wavelength Position From Hyperspectral Imagery: Use of the Ferric Iron Crystal Field Absorption at ~900 nm as an Indicator of Mineralogy. Transactions on?Geoscience and Remote Sensing, 2014
    留言咨询
  • FigSpec FS-26便携式近红外成像光谱仪,光谱波段900-1700nm,采用高衍射效率的透射式光栅分光模组与高灵敏度面阵列相机、结合内置扫描成像,自动调焦及辅助摄像头技术,解决了传统高光谱相机需外接推扫成像机构及调焦复杂等难以操作的问题。可与标准C接口的成像镜头或显微镜直接集成,实现光谱影像的快速采集。一、近红外高光谱相机技术特点 ●一键实现曝光、调焦、自动扫描速度匹配、自动采集并保存数据 ●辅助取景摄像头实现对拍摄区域的监控 ●内置电池 ●数据预览及校正功能:辐射度校正、反射率校正、区域校正、镜头校准、均匀性校准 ●镜头可更换 ●多种数据格式完美兼容二、近红外高光谱相机技术参数型号FS-26照明方式被动照明(不含光源)分光方式光栅光谱范围900-1700nm光谱波段254光谱分辨率8nm 狭缝宽度25μm探测器原始像素数320*256传感器靶面尺寸9.6mm*7.68mm成像速度5s探测器InGaAs视场角(FOV)**21.7°(f=25mm)瞬时视场角1.0mrad(f=25mm镜头)扫描范围>30°图像分辨率320*320相机输出位深14位ROI支持单个区域接口GIGE(千兆网)对焦方式手动对焦整机尺寸263*178*120mm* 可定制不同焦距镜头三、近红外高光谱相机应用实例光谱分析,矿物甄别,材料分选,蔬果分析,地质勘探,农业遥感,工业检测,无人机载高光谱成像分析,便携式高光谱成像分析,可见光高光谱成像分析,红外高光谱成像分析,热红外高光谱成像分析,黑色塑料分选,金属制造,色选,气体检测,火焰分析,农业植被类型识别,垃圾回收,水果质量分析,显微高光谱分析,农业高光谱,遥感高光谱,光谱成像分析,植被高光谱,航空高光谱,高光谱异常检测,荧光高光谱分析,显微高光谱成像,地物高光谱分析,室内高光谱分析,刑侦高光谱分析,土壤高光谱分析,环境监测。四、近红外高光谱相机技术支持1.三年质保2.12小时极速售后响应
    留言咨询
  • 产品介绍VIPER G2 可测量360 nm至720 nm波长范围内的高光谱衰减和透射系数。光源采用5个节能LEDs,确保长期的使用寿命和稳定地测量数据。VIPER高光谱衰减仪拥有4个可选光程,不锈钢或钛外壳,适用于不同介质。VIPER 的典型应用包括水质监测,水体色度测量,饮用水质量监测。其测量范围远大于市场上一般仪器,使VIPER G2 可应用于河口海岸等高浊度水体。VIPER采用纳米涂层光学窗口以防止生物污染,必要时可通过软件安装测量额外参数。 图 ViPer G2 高光谱衰减测量仪产品特征无需采样和制备样品实时监测无需试剂纳米涂层光学窗口LED技术产品应用饮用水监测环境监测色度测量质量控制石油化学工业应用食品行业 技术参数光源5 LED 检测器高端微型光谱仪、256通道360 ~ 720 nm、2.2 nm/pixel测量原理衰减法,透射光程10 mm、50 mm、100 mm、150 mm、250 mm参数SAC436Pt-Co色度(APHA/Hazen)(390 nm、455 nm)基于DIN EN ISO 7887-C的色度(410 nm、436 nm、525 nm、620 nm)Cr-Co色度,依照GOST 3351-74(380 nm, 413 nm)测量范围0.01~2.5 AU(吸收单位)测量精度 0.2 %浊度补偿是数据存储~ 2 MBT100响应时间2 min测量间隔≥ 1 min外壳材质不锈钢(1.4571/1.4404)或钛合金(3.7035) 大小(L x ?)495 mm x 48 mm(50 mm光程)重量不锈钢:~ 2.4 kg(50 mm光程)钛:~ 1.3 kg(50 mm光程)数字接口Ethernet(TCP/IP)RS-232 或 RS-485(Modbus RTU)功耗≤ 3 W电源12~24 VDC(± 10 %)校准/维护间隔24个月系统兼容性Modbus RTU最大压力SubConn:30 bar;固定电缆:3 bar;流通池:1 bar,2~4 LPM防水等级IP68采样温度+2~+40 °C环境温度+2~+40 °C保存温度-20~+80 °C流入速度0.1~10 m/s色度测量VIPER 是一种原位测量水体色度的VIS光度计,其高光谱检测可满足各种颜色指标,实现了标准化,安全化,客观化测量。无需采样,制样,可全天自动运行。SAC436(DIN EN ISO 7887-3(2011)) SAC436指的是439nm处的光谱吸收系数,代表了波长为436nm的光穿过厚度为1m的水样时产生的衰减。黄色到棕色水体一般在436nm处衰减最大,所以通常选择此波长测定。测定SAC436时,VIPER会进行浊度补偿,为满足客户需求,可测定全波段(如SAC525、SAC620)处的色度。 Pt-Co 色度(APHA/Hazen)(DIN EN ISO 6271(2005))Pt-Co色度量程为无色(1)到淡黄色(500)。 颜色色度通过标准六氯铂酸盐来定义,并以mg / L Pt为单位。Pt-Co 颜色数值由455nm或390nm处的衰减进行浊度校正。色度VIPER 可以进行高光谱测量所有液体的颜色。这也可以区分被认为是颜色类似但组成不同的混合液体。下图为饮料行业不同饮料的高光谱图。VIPER衰减光谱存储的光谱图也可用于随后的色度计算,不同的颜色数值可同时通过一个光谱图计算得到。
    留言咨询
  • 当我们得到一幅包含了几百个光谱通道图像的高光谱数据立方体后,可能还不是很清楚我们具体要什么,又能挖掘出什么样的信息等。在经过10 多年的产品创新开发等经验积累的基础上,再结合用户、行业等实践应用需要,量身定制了一款数据处理分析软件,能够大程度上满足实际应用需求。从追求的目标是什么,到如何对数据的基本信息进行了解,分析处理的切入点在哪里、需要那些方法、通过那些处理手段又能展现何种信息,而信息又能为后续的研究分析起到什么样的引导作用,通过我们自研的数据分析软件,使用者会找到最终的答案,最后综合所有信息并为其生产生活带来更多效益的一款专业性软件。Hyperscan Pro 是我司自主研发的一款基于高光谱数据分析的专业软件。它采用先进水平的多核运算模式,内嵌丰富的光谱和图像分析算法,同时采用简洁易懂的中文操作界面。有了它,看似复杂的高光谱数据被轻松解读,隐藏在图像内部的光谱特征被迅速提取,物质定性分析、分类识别、混合成分解读、隐藏指纹提取等数据分析处理变得轻松愉快,难题迎刃而解。如高级别的用户还可以自定义数学模型等进行更深层次的学习和数据挖掘。图 Hyperscan 数据分析软件高光谱数据分析软件功能主要有:●影像预处理(拼接、匹配、校正等)●影像查看功能(光谱查看、图像显示、动态预览、ROI选取与导出等)●基本工具功能(波段运算、图像裁剪、图像预处理、掩膜等)●图像处理方法(PCA、ICA、MNF、特征纹理、灰度图像处理等)●模型分析(样本选择方法、异常样本剔除、光谱预处理、数据压缩与特征提取方法、回归分析方法、模式识别方法等)●图像分类方法(监督分类、非监督分类、决策树分类、光谱解混)●帮助图 数据预处理图 非监督分类图 光谱角匹配设置窗口光谱角度越小相似度越高,波形相似度参数越接近于1 相似度越高。还可以设置特征波段范围,只对范围内光谱数据进行匹配运算。每个点的光谱都应该是多种物质光谱混合而成。首先第一步要先选取纯净光谱,选出所有你认为可能的构成光谱。运行后显示对应的纯净光谱占有比例,还有未能解析出来的成分,如果未解析部分过多,说明选择的纯净光谱不足或者不太准确。图 光谱解混高光谱数据分析软件波段运算此功能方便的执行图像中各个波段的加、减、乘、除、三角函数、指数、对数等数学函数计算,以及农业相关的常用植被指数功能:归一化植被指数(NDVI)、比值植被指数(RVI)、增强植被指数(EVI)、大气阻抗植被指数(ARVI)、改进红边比值植被指数(mSR705)、、Vogelmann红边指数(VOG)、光化学植被指数(PRI)、结构不敏感色素指数(SIPI)、 归一化氮指数(NDNI)、类胡萝卜素反射指数1(CRI1)、类胡萝卜素反射指数2(CRI2)、花青素反射指数1(ARI1)、花青素反射指数2(ARI2)、水波段指数(WBI)、归一化水指数(NDWI)、水分胁迫指数(MSI)、归一化红外指数(NDII)、归一化木质素指数(NDLI)、纤维素吸收指数(CAI)、植被衰减指数(PSRI)、调整土壤亮度的植被指数(SAVI) 等等。当所提供的公式无法满足您的计算需求时,软件可自定义公式进行运算。图 EVI增强植被指数图 EDVI归一化植被指数原图、结果图、密度分割图图 调整土壤亮度的植被指数SAVI主成分分析各个主成分及其占所有特征的比例图 由第一主成分及第二主成分组成的散点分析图灰度图二次处理数据经过高光谱算法处理过之后,有时特征不太明显,所以需要一些常用图像增强技术来凸显目标。当前激活窗口为灰度图时,可以使用所有灰度图处理功能。点选某个功能后,可以通过调节箭头所指滑块来调节参数。也可以通过图像还原功能,还原到灰度图才打开时的状态。
    留言咨询
  • iSpecHyper-VM 系列多旋翼无人机高光谱成像系统是莱森光学(LiSen Optics)一款基于小型多旋翼无人机机载高光谱成像系统,该系 统由高光谱成像相机、稳定云台、机载控制与数据采集模块、机载供电模块等部分组成 。 iSpecHyper-VM系列机载无人机高光谱成像系统采用了独有内置或外置扫描系统和增稳系统,成功克服了小型无人机系统搭载推扫式高光谱相机时,由于无人机系统的震动造成的成像质量差的问题,同时具有高光谱分辨率和优异的成像性能。 iSpecHyper-VM 系列机载无人机高光谱成像系统配合定制开发的高性能稳定云台,能够有效降低飞行过程中无人机抖动引起的图像扭曲与模糊。该系统与大疆 M600 pro 无人机完/美适配,同时支持同类 型的多种无人机,iSpecHyper 机载无人机高光谱成像系统广泛应用于农业、林业、水环境等行业领域,系 统支持配件升级及定制化开发,为教育科研、智慧农业、目标识别、军事反伪装等行业高端应用领域提供了 高性价比解决方案。典型应用1. 植被研究、农作物健康、森林树冠研究2.林业科学、环境调查、农业调查 3.水体研究、气候研究、生态研究 4.氮含量测量、叶片叶绿素含量测量 5.土壤分析、生物质研究、海洋监测技术优势特点1.光谱范围 400-1000nm,分辨率优于 3nm2.高性能分光系统、大靶面 CCD 图像传感器,高灵敏度、高像质3.全靶面高成像质量光学设计,点列斑直径小于0.5像元 4.高光谱分辨率,大视场,数据采集效率高目标光谱实时匹配搜索功能 5.悬停拍摄与无人机推扫两种工作模式,无需高精度惯导系统,图像实时自动拼接操作方便6.监控拍摄效果辅助取景摄像头实时可见,无需专业无人机操控手,可实现单人操作图像实时回传7.通过地面站实时观测飞机采样地点并可利用地面站设置逐点采集的航线数据预览及矫正功能 8.辐射度校正、反射率校正、区域校正支持批处理 9.实时常用植被指数计算功能:归一化植被指数(NDVI)、比值植被指数(RV)、增强植被指数(E/I)、 大气阻抗植被指数(ARVI)、改进红边比值植被指数(mSR705)、Vogelmann红边指数(VOG)、 光化学植被指数(PR)、结构不敏感色素指数(SIP)、归一化氮指数(NDNI)、类胡萝卜素反射指数 1(CR11)、类胡萝卜素反射指数2(CRI2)、花青素反射指数1(AR11)、花青素反射指数2(ARI2)、水波段指数(WB1)、归一化水指数(NDW)、水分胁迫指数(MS)、归一化红外指数(ND)、归 一化木质素指数(NDL)、纤维素吸收指数(CAl)、植被衰减指数(PSRI)、调整土壤亮度的10.支持自定义实时分析模型输入功能11.数据格式完美兼容 Evince、Envi、SpecSight 等数据分析软件 数据采集分析软件软件功能1.数据导入:原始数据、光谱定标文件、相对定标文件2.数据分块:轨迹裁切、数据裁切、数据预览、光谱显示、轨迹显示 3.数据纠正:非均匀校正、靶标提取、反射率计算、几何纠正、影像显示 4.航带拼接:自动拼接、拼接线编辑 5. 数据导出:分幅导出、整幅导出 5.采集功能:光谱相机控制,数据采集,自动曝光,自动扫描速度匹配,辅助摄像头功能,支持远程遥控, 支持巡航+惯导采集模式,数据支持 ENVI 等第三方分析软件6.数据预处理功能:反射率校正、区域校正、辐射度校正、光谱及图像数据预览功能等(一年内免费更新)无人机高光谱水体多参数解析流程无人机高光谱水环境检测技术路线图基于高光谱技术的天空地一体化水质监测解决方案,包括无人机载、地面定点和水面水下等多款产品, 并通过定量反演实时监测河道水体的总氮、总磷、叶绿素、氨氮、浊度和高锰酸盐指数(COD)等多个参数。无人机高光谱数据预处理 水质反演快视功能包含解析软件,可实现影像查看、水体提取以及水质参数反演、结果统计及水质参数 制图等功能。影像查看功能可将处理好的高光谱反射率数据导入并查看,点选。水质提取功能首先计算水体 指数,之后进行水体边界提取。水质参数反演可实现叶绿素 a、悬浮物、总氮、总磷、氨氮、化学需氧量等 的水体参数反演。结果统计及水质参数制图功能可对反演参数进行数据输出,并用不同色块显示不同浓度 等级,对大部分指标精度达到 80%以上。 应用案例主要技术指标典型应用领域农林领域应用1.农林灾害监测运用高光谱图像监测农作物遭受病虫害的程度和作物的长势,根据图像的颜色判断病害程度。如下图:利用森林植被覆盖度和土壤的相关指数监测森林火灾的发生和燃烧严重程度,对大面积的森林火灾评 估有重要的经济作用。2.精细农林业数据监测高光谱遥感在农业应用中监测作物的养分供应状况,对于及时了解作物的长势,采取有效的增产措施均 具有积极的意义,主要针对作物养分失调的形态诊断和化学分析适用于有限面积的作物及土壤的诊断和分 析。另外,当作物不止一种时,快速分类识别就非常重要,因为不同作物,肥料种类和用量都不一样,如果 只根据长势图施肥可能导致一些作物施肥过量而另一些施肥不足。无人机高光谱系统相比多光谱系统有更 多谱段和更高光谱分辨率,因而可以在不同波长段获取不同作物的不同响应,进而达到快速有效识别。其识 别率可高达95%。3.植被/农林生态调查植被中的非光合作用组分用传统宽带光谱无法测量,而用高光谱对植被组分中的非光合作用组分进行 测量和分离则较易实现。因此,可以通过高光谱遥感定量分析植冠的化学成分,监测由于大气和环境变化引 起的植物功能的变化。4.植被群落、植被种类的分类与识别;5.冠层结构、状态或活力的评价、冠层水文状态与冠层生物化学性质的估计;6.叶片的基本生物物理化学成分的研究 水质、地质及环境监测领域应用1.水质监测高光谱遥感数据的精细光谱分辨率可用于识别和估算水体中叶绿素、单宁酸和沉淀物的含量。进而监测 藻类生长和推断水产研究中浮游生物的分布和鱼群的位置。2.估算和分析水域中 d 的吸收和散射成分,如叶绿素、浮游生物、不可溶解的有机质、悬浮沉淀物、半淹 没水生植物;3.识别和估算水域中叶绿素、黄色物质及悬浮物的含量并用于水质监测;4.通过对叶绿素的估算,监视浮藻生长、浮游生物的分布位置和鱼群位置,估算浮游生物的生物量和第一 生产力。5.地质勘探/土壤监测 高光谱遥感技术通过对地表矿物质识别用于寻找矿产资源,尤其对热液蚀变矿床的勘探最为有效,并用 于地球化学填图和地质制图。高光谱遥感已经在地质领域扮演了重用角色,依据实测的岩石矿物波谱特征, 对不同岩石类型进行直接识别,达到直接提取岩性的目的。 地物中不同元素在光谱响应中均对应有不同的响应波段。不同矿物在中远红外波段区间的响应会存在不同的差异。因此可以根据不同矿物的化学组分提取矿物的详细信息。6.环境监测 红边位置是绿色植物的光谱曲线在 680nm-760nm 区间反射率增长最快的点,也就是曲线在此区间的 拐点,红边位置向左或者向右移动能够间接反应出植被的长势及健康状况,植被长势好将向右移动,长势差 将向左移动,俗称“蓝移”。7.大气环境评价 大气中的分子和粒子成分在太阳反射光谱中有强烈反应,常规宽波段遥感方法无法识别出由于大气成 分的变化而引起的光谱差异,高光谱由于波段很窄,能够识别出光谱曲线的细微差异。 根据目标光谱与伪装材料光谱特性的不同,利用高光谱技术可以从伪装的物体中自动发现目标,在调查 武器生产方面,超光谱成像光谱仪不但可探测目标的光谱特性、存在状况,甚至可分析其物质成分,根据工 厂产生烟雾的光谱特性,直接识别其物质成分,从而可以判定工厂生产武器的种类,特别是攻击性武器利用 短波红外高光谱成像识别战场环境中伪装网,上图为真彩色原始图像,下图为经过处理的伪装网识别图像。 通过机载高光谱对机场小飞机目标进行探测,在原始影像中提取飞机目标的均值光谱作为探测的目标 光谱,采用目标探测算法,提取机场中非可视的小目标。
    留言咨询
  • UHI水下高光谱成像仪 400-860-5168转2145
    UHI水下高光谱成像仪——水下可见光光谱段370~800nm高光谱成像产品介绍 水下光谱成像系统可以记录每一个图像像素的光谱数据。这些数据是被物体吸收或者反射的光谱数据,可以被用来判断和区分不同物质。不同颜色或者不同物质的物体在图像上具有不同的光谱反应,这可以被理解为“光谱指纹”, 根据这些独特的指纹信息我们就可以判断出物体的特性或者种类,从而能够实现高精度的水下物体的归类化测量,可以用来对水下特定目标物的数量、分布统计以及寻找和探测,如珊瑚、海带和海草、海绵聚合体等。 挪威Ecotone公司生产的UHI(Underwater hyperspectral imaging)水下高光谱成像仪,是一款专门针对水下高光谱成像应用的产品。该技术开创了原来只有在机载平台才有的遥感探测系统的全新水下应用。UHI水下高光谱成像仪现在可以被用于水下进行高光谱的遥感探测,是对海洋环境中的物体、区域和生物进行识别、分类和监测的理想技术。UHI能够获取整个可见光光谱段(370 ~ 800nm可调节)范围内的信息。通过UHI所获得的数据还可以用于探测海底生物群落的生物化学等特征。 UHI系统还可以与最新的ROV系统通过现成的连接器或以太网进行集成应用。也可以独立安装在其它的水下平台上操作运行。随着平台的移动,UHI系统可以框幅拍照方式获取海底及侧面的清晰影像,数据 (光谱立方体、导航数据、视频等),可以随时记录并转换出来。 软件系统随机带有获取和预处理数据的控制软件。所有的高光谱和附属数据均存储在一个结构化的文档中,通过控制软件可以与系统进行通讯,并且提供以下功能:&bull 实时浏览和获取高光谱数据(RGB和光谱)和视频流&bull 调整空间/光谱采样间隔&bull 调整帧频/集成时间与增益&bull 解析, 同步和存储ROV和GPS中的导航数据 产品应用&bull 环境测绘&bull 水下管线探测、管道检查&bull 海底结构检查&bull 海底矿产(锰结核等)、矿物测绘、岩屑测绘&bull 海底植物和微生物分布和种类探测&bull 海洋考古学技术原理水下高光谱成像是如何工作的?UHI是一个指向海底的水下推扫式扫描器,由一个安装有外部照明设备的遥控水下潜水器牵引。当光线从海底反射回来并打到扫描仪上时,反射数据记录在垂直于ROV移动方向的直线上。进一步处理反射率数据,以产生含有位置信息的高光谱影像。利用这些高光谱影像,可以生成不同类型目标对象的光谱库。当用作分类算法的输入时,大面积的海底区域可以被自动分类且目标对象也能被识别。技术参数UHI OV 2000 / 3000 / 6000 技术规格深度等级2000 m3000 或 6000 m成像仪规格成像范围0.2 m ~ 5.0 m0.2 m ~ 5.0 m成像仪帧频0.1 ~ 90 Hz0.1 ~ 90 Hz横向/纵向视场角~ 60 °/ ~ 0.4 °~ 60 °/ ~ 0.4 °相机分辨率1936 空间像素1936 空间像素模数转换器( ADC )12-bit12-bit光谱范围380 ~ 750 nm380 ~ 750 nm光谱分辨率2.2 ~ 5.5 nm2.2 ~ 5.5 nm光谱波段数150 ~ 200 波段150 ~ 200 波段高清视频5MP 视频 2592 x 1944 像素5MP 视频 2592 x 1944 像素焦距范围0.2 m ~ ∞0.2 m ~ ∞接口规格通信EthernetEthernet输入电压12 ~ 72 VDC12 ~ 72 VDC内存1 TB (2 TB 可选)1 TB (2 TB 可选)功耗最大 35 W (典型 20W)最大 35 W (典型 20W)可选配件AHRS(高度和航向参考系统)航向横滚、俯仰、偏航航向横滚、俯仰、偏航用于altimeter或viper的连接器软件参数数据获取与预处理船载自主软件船载自主软件传感器控制和数据监测“Immersion”, 顶部控制软件“Immersion”,顶部控制软件Raw数据文件格式HDF5 格式, ENVI-兼容HDF5 格式, ENVI-兼容机器规格不带坐架重量(空气/水中)9.0 / 4.2 kg11.1 / 6 kg大小(长*直径)338 x 135 mm355 x 135 mm连接器类型Subconn DFCR2013M和MCBH8FSubconn DFCR2013M和MCBH8F外壳材质铝钛
    留言咨询
  • 1、概述根系是植物地下部分为适应陆地生活长期进化而形成的营养器官,具有支撑地上部分的基本作用,不仅在水、矿物质和碳水化合物的吸收、转化和储存中发挥着重要的作用,还能够稳定植物体并与土壤形成物理和化学联系。有研究学者认为,优良根系的品种有利于提高产量稳定性、资源利用效率及对环境胁迫的抵抗力[1],根系也被作为育种目标。根系的形态,例如根长、根系体积、根系直径和根干物质,可以反映根系的健康情况。当植物受到胁迫时,根系会产生一系列生长和发育、形态、生物量以及生理生化代谢变化以适应胁迫条件。因此,更好地了解植物根系和根际过程有助于提高植物生产和可持续土壤管理的资源效率。根系研究的关键在于使植物“隐藏的一半”能被可视化和量化。 传统植物根系的研究方法包括挖掘法、定位法、土钻法等,通过挖根、洗根等操作后对根系进行形态学、生理生化等方面的研究,此类方法不仅破坏性大、耗时长、取样成本高,且存在一定的局限性[2]。近年来,无损成像方法在植物科学中变得越来越流行。传统上局限于RGB成像的高通量应用正在向更宽的光谱范围发展,从而能够对根际成分进行化学成像[3,4],也为地下根系的研究提供了新的途径。为了解决传统根系研究方法所存在的缺陷并方便对根系进行成像,市场上出现了一系列产品,如人工培养基(琼脂、发芽纸、水培等)培养植物幼苗的方法,但该方法植株的生长条件受到人们的质疑;微根窗技术是一种非破坏性、定点直接观察和研究植物根系的方法,是活体根系监测、根系动态生长监测最主要的方法之一。但该方法的缺陷在于窗面及观察深度都比较有限,且在根系生长过程中可能会产生大量细根围绕在玻璃管周围,影响观测的准确性[5-7]。因此,基于根窗技术,填土根箱成像系统应运而生,用于植物根系成像。基于根箱栽培的植物根系表型RGB成像存在一个缺陷,即需要依赖于根与土壤足够的对比度才能进行自动分割。而高光谱成像数据能够克服根与土壤分割困难的问题,能够对根系表型及生化性状成分进行成像分析。根系表型研究方法对比根系研究方法优点缺点代表性仪器挖掘法、土钻法经济成本低破坏性;耗时耗力;WinRhizo洗根图像分析系统微根窗法非破坏性;定点观测窗面尺寸小MS-190超高清微根窗相机系统根箱栽培法-RGB成像非破坏性;可实现高通量分析图像自动分割依赖于根与土壤的对比度PlantScreen高通量植物表型系统根箱栽培法-高光谱成像自动图像分割;可对根系成分进行化学成像经济成本略高RhizoTron植物根系高光谱成像分析系统基于此,易科泰生态技术公司结合近几年来国际先进高光谱成像技术创新应用(易科泰 SpectrAPP 项目)实验研究,开发了一款RhizoTron植物根系高光谱成像分析系统,该系统基于根窗技术,可对RhizoBox根盒培养的植物根系进行原位非损伤表型成像分析,具备多功能高光谱成像分析功能,可对植物根系进行高光谱和自发光荧光成像。能够实现植物根系进行原位表型高光谱成像分析和动态监测。可应用于植株根系成像分析、抗性筛选及遗传育种、病虫害胁迫及干旱研究、土壤结构及养分研究等领域。2、RhizoTron植物根系高光谱成像分析系统2.1 系统介绍RhizoTron植物根系高光谱成像分析系统可对生长于RhizoBox根盒(带根窗)的作物根系进行高光谱成像分析和UV激发生物荧光成像分析(选配),可选配Thermo-RGB成像分析及冠层表型成像分析。RhizoTron植物根系高光谱成像分析系统由主机系统和高光谱成像系统组成,其中主机系统包括系统平台(主机箱)、控制单元、样品托、数据处理服务器等组成;光谱成像系统由光谱成像单元(包括成像传感器、光源、云台等)和自动扫描轴组成。2.2 功能特点1)基于RhizoTron根窗技术的高光谱成像分析技术,配有植物培养模块,由样品托盘、适配器、不同规格尺寸RhizoBox根系观测培养根盒组成,或自己制作培养根盒;可选配多通道智能LED培养台2)标配为60度倾斜自动扫描成像(与植物培养角度一致),同时对RhizoBox根系和幼苗进行高光谱成像分析和RGB成像分析,可选配其它角度如45度、70度和90度(垂直扫描成像)3)可对根系进行UV-MCF紫外光激发生物荧光高光谱成像,以研究分析根系活动及根系与土壤互作关系、荧光假单胞菌等AvrahamAlonyandRaphaelLinker,2013);或选配根系Thermo-RGB成像分析4)可选配顶部冠层RGB成像分析、红外热成像分析、高光谱成像分析、叶绿素荧光成像分析(可选配适于正常培养盆的样品托)5)可选配iPOT数字化植物培养盆或RhizoBox根系培养盒,持续监测土壤水分温度、重量、植物生长、光合效率、PI(performanceIndex)、茎流等生理生态指标,可自动采集土壤渗漏水并进行土壤营养盐分析6)模块式结构,具备强大的系统扩展功能,系统平台自动万向脚轮,方便移动7)可远程控制(选配)、自动运行数据采集存储等功能2.3 技术指标1)控制单元为嵌入式操作系统,可进行双重控制(触控屏+PC端全中文GUI软件),实现远程操控相机及平台2)自动扫描轴推扫速度与精度:1-40mm/s,移动精度1mm,有效扫描范围:标配100cm3)高光谱成像(标配400-1000nm,可选配900-1700nm)可成像分析植被生理生化指标、健康指数、光合利用效率、植被胁迫、水分、氮素等指数。配备PhenoRoot根系分析软件,如需对地上部分进行同时分析,可选配SpectrAPP分析软件4)标配RGB彩色成像:分辨率2448×2048像素,配备专业植物根系分析软件5)SpectrAPP高光谱成像分析软件:进行光谱融合、ROI选区分析、光谱分析、频率直方图、自动识别不同波段峰值,可分析近百种光谱指数,根据需求定制添加光谱指数,同时能够分析根系表型数据6)PhenoRoot根系分析软件,可分析根长、根系最大宽度、凸包面积、根系总长、根系面积(生物量)、根系剖面分析(根系密度)等7)Thermo-RGB成像融合分析(选配),包括Thermo-RGB融合分析软件,红外热成像分辨率:640×512像素;测量温度范围:-25℃-150℃;光谱范围:7.5-13.5μm8)多通道智能LED培养台,RGBW四通道智能调整LED光源,0-100%可调,可模拟昼夜节律、不同光配方等,最大光强300μmol/m2s 9)叶绿素荧光成像单元(选配),专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720×560像素,像素大小8.6×8.3µ m,可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocols,自动测量分析50多个叶绿素荧光参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图10)系统平台规格:标配约145cm×60cm×160cm(长×宽×高)、重量约50kg 3、应用案例3.1 甜菜根系RGB及高光谱成像分析:以甜菜为实验对象进行了实验,对其根系进行RGB成像和高光谱成像(900-1700nm),分别进行了形态分析和生化性状进行分析[8]。1)形态分析:以手动分割作为参考,使用RGB和高光谱图像跟踪甜菜根系的生长、形态和结构,发现基于RGB自动分割并不能很好的区分老根和土壤,跟踪根系总根长误差为6.94%;高光谱成像通过光谱比率获得根系的二值图像进而对根系长度进行分析,误差仅为1.5%。使用紫外灯(UV)与模拟太阳光照射得到的根系可视化图像,发现在明亮背景下UV图像更易识别根系。左:RGB原始图像;中:(A)使用绘图板手动分割根系,(B)顶部分割不良的旧根轴区域,(C)图像底部正确分割的新根轴,(D)基于RGB获得的二值图像;右:基于高光谱获得的二值图像 UV和模拟太阳光根系可视化图像。(A): UV;(B): 模拟太阳光2)生化性状分析:对不同发生位置及成熟度的根系和土壤的平均光谱进行分析,发现三种根系光谱曲线存在显著差异,且1100nm附近新侧根与主根出现吸收峰,而老根并未出现。但老根与土壤反射曲线趋势较一致,在水分吸收区域(1450nm)附近,根系光谱斜率高于土壤。同时,它使用不同含水量土壤校准根盒的平均光谱进行校准,从而绘制根箱上水分分布图。3.2小麦根系RGB及高光谱成像分析以小麦为实验对象,对植株进行扦插处理,扦插后14、28、47、94、101和201天对根箱的上三分之一进行高光谱成像(900-1700nm)和RGB成像,分别进行了形态分析和生化性状进行分析[9]。1)形态分析:使用WinRhizo对根长度进行结构量化,以手动分割作为参考,分别使用高光谱图像和RGB图像对根系可见根长度进行预测,结果表示,基于RGB分割为83.4%,光谱分割为77.0%。但两种分割方法的斜率没有显著差异(P=0.225)。表明两种方法在预测此处使用的基质的可见根长度方面具有相似的性能。2)生化性状分析:基于光谱特征,使用决策树模型对根像素的径级类别进行预测,其训练集为r=0.86,验证集r=048;基于一阶导数差分光谱(1649-1447nm)构建根系腐烂时间指数模型,使用修剪后28天和101天的光谱数据作为验证集,其r2=0.96。 3.3 土壤含水量估测及根腐病识别以甜菜为实验对象对其根系进行高光谱成像(900-1700nm),同时测定与实验相同土壤的根箱中的不同土壤含水量及高光谱成像,以此作为训练集对含水量模型进行训练,对根箱的每个土壤像素的含水量进行预测;以油用萝卜作为实验对象,使用化学计量分析对根系不同时间后腐烂的光谱特征进行识别,通过光谱的时间变化推断根系腐烂情况[10]。3.4不同基因型扁豆霉菌根腐病的RGB和高光谱成像评估以不同基因型扁豆为实验对象,分别进行RGB成像和高光谱成像(550-1700nm),研究高通量表型技术评估霉菌根腐病的严重程度,以快速鉴别耐药基因型。设置对照组和实验组,培养14日后实验组接种黄芽孢杆菌,对照组施以清水。接种14日后使用0-5疾病评分量表对根系进行评分,作为地面参考数据[11]。霉菌根腐病严重程度量图RGB图像:通过提取特征变量对植物生物量研究,发现投影面积与植物生物量有很强的相关性,与地下生物量相关性高达0.9,地上生物量相关性为0.84;对根系病害程度进行预测,发现其R2达到0.67,而通过地上部特征变量进行预测,其R2仅达到0.23。高光谱图像:通过提取感兴趣区的光谱,发现从地上样品的高光谱反射曲线来看,健康和感染的样品光谱反射曲线相差较小,而根系的光谱曲线差异较显著。使用归一化差异光谱指数(NDSI)对根系疾病程度进行预测,其R2达到0.54,使用地上部光谱特征进行预测,其R2仅为0.27。3.5 油菜重金属铅(Pb)含量的高光谱估测以油菜为实验对象,对叶片和根系分别进行高光谱成像,对根系图像进行比值运算(根部:861.96/480.46nm),油菜叶片和根的分割阈值t分别为1.3和1.6,使根系与背景进行图像分割。分别建立支持向量机(SVM)和SAE深度神经网络对样品中的铅(Pb)含量建立模型并预测,发现SAE深度神经网络模型精度较高。在SAE模型的基础上使用迁移学习的方法得到T-SAE模型,并对油菜叶片和根系中的Pb含量进行预测,发现其精度有所提升,油菜叶片达到0.92,根系达0.93。基于此可以发现高光谱成像技术结合深度神经网络能够对油菜植物中的重金属Pb进行定性定量检测[12]。3.6 野生植物幼苗根系高光谱成像分析易科泰EcoTech实验室技术人员以一株野生型元宝槭幼株为样本,采集900-1700nm高光谱数据,并对其进行光谱成像分析及根系形态分析。4、参考文献[1] Kutschera, L. Wurzelatlas mitteleuropä ischer Ackerunkrä uter und Kulturpflanzen. DLG-Verlags-GmbH, Frankfurt am Main (1960).;Kenrick, P., & Strullu-Derrien, C.[2] Dhondt S, Wuyts N, Inzé D. Cell to whole-plant phenotyping: the best is yet to come. TrendsPlant Sci. 2013 18:428–39.[4] Pierret A. Multi-spectral imaging of rhizobox systems: new perspectivesfor the observation and discrimination of rhizosphere components. Plant Soil. 2008 310: 263–8.[3] Vamerali T, Ganis A, Bona S, Mosca G. An approach to minirhizotron root image analysis[J]. Plant and Soil, 1999, 217( 1/2) : 183-193.[4] Johnson M G, Tingey D T, Phillips D L, Storm M J. Advancing fine rootresearch with minirhizotrons [J].Environmental and Experimental Botany, 2001, 45( 3) : 263-289.[5] Gernot B , Mouhannad A , Alireza N , et al. RGB and Spectral Root Imaging for Plant Phenotyping and Physiological Research: Experimental Setupand Imaging Protocols. [J]. Journal of visualized experiments : JoVE, 2017, (126).[6] Gernot B, Alireza N, Thomas A, et al. Hyperspectral imaging: a novel approach for plant root phenotyping.[J]. Plantmethods, 2018, 14(1).[7] Gernot B , Mouhannad A , Alireza N . Root System Phenotying ofSoil-Grown Plants via RGB and Hyperspectral Imaging. [J].Methods in molecularbiology (Clifton, N.J.), 2021, 2264245-268.[8] Advanced Imaging for Quantitative Evaluation of Aphanomyces RootRot Resistance in Lentil[J]. Frontiers in Plant Science, 2019, 10.[9] Nakaji T, Noguchi K, Oguma H. Classification of rhizosphere components using visible–near infrared spectral images. Plant Soil. 2008 310: 245–61.
    留言咨询
  • iSpecHyper-VS1000是莱森光学(LiSen Optics)最新明星产品,一款操作简单、配置灵活便携式高光谱成像系统,主要优势采样了独有高光通量分光设计、信噪比灵敏度高、大靶面探测器、高像质等特点。iSpecHyper-VS1000便携式高光谱成像系统采用了透射光栅内推扫原理,系统集成高性能数据采集与分析处理系统,高速USB3.0接口传输,全靶面高成像质量光学设计 ,物镜接口为标准C-Mount,可根据用户需求更换视场镜头。iSpecHyper-VS1000便携式高光谱成像系统广泛应用于公安刑侦、物证鉴定、精准农林、遥感遥测、 工业检测、 医学医疗、采矿勘探等各领域。技术优势特点1.光谱范围400-1000nm,分辨率优于3nm2.独有高光通量分光成像设计、信噪比灵敏度高3.24mm/35mm镜头电控自动对焦技术、自动曝光、自动成像扫描匹配、激光定位测距4.高帧率,辅助摄像透实时监控,内置锂电池供电无需额外电源5.全靶面高成像质量光学设计,点列斑直径小于0.5像元 6.数据格式支持ENVI等分析软件,支持多区域ROI,镜头可更换软件操作界面 便携式系统方案示例图 实验室系统方案示例图主要技术指标高光谱技术典型应用案例高光谱成像技术在水果分选的应用案例随着我国农产品加工业的发展和农业现代化进程的加快,使得农产品品质检测和分级技术显得更加重要,迫切性日益增加,水果的内部品质表示水果内部的生理、化学和物理性质,高光谱成像系统目前已经开始应用于水果分选,反映水果品质光谱信息主要集中在650-950nm之间,水果的糖分含量是决定光谱品质的重要因素,糖分光谱特征主要在700nm-820nm的吸收以及750nm附近800-900nm的峰值等。高光谱成像系统水果分选利用工业领域的传送带作为高光谱相机的推扫成像机构,高光谱相机利用龙门架结构架设在传送带上方,配合专用线型光源进行照明。系统主要包括高光谱相机及其支架、线型光源、控制模块、相关定位传感器、计算机(运行控制与数据采集软件)等组成。高光谱成像技术在血液氧含量检测的应用案例2015年发表的论文“Hyperspectral optical tomography of intrinsic signals in the rat cortex”一文中,研究人员研究了大鼠大脑皮层的高光谱成像,研究者发现有氧血红蛋白和脱氧血红蛋白分别在529nm和630nm处有敏感变化。鉴于高光谱技术数据算法的灵活多边性,作者开发了一种新的高光谱算法DOT,用于方便快捷的判断血液中结合氧含量。高光谱成像技术在光合作用研究的应用案例2017年发表的“Kleptoplast photosynthesis is nutritionally relevant in the sea slug Elysia viridis”一文中,研究了海蛞蝓的“光合作用”,海蛞蝓以大型藻类为食,并将叶绿体渗入其肾小管细胞中,研究者利用高光谱成像对海蛞蝓体内的叶绿体的丰度、分布和光合作用机制进行了研究,发现黑暗饥饿24天的海蛞蝓体内的叶绿体明显变少,可见,在极其恶劣的环境中,海蛞蝓体内的叶绿体可进行分解,以满足其能量需求。高光谱成像技术在生物医学的应用案例2012年发表的论文“Hyperspectral imaging and spectral-spatial classification for cancer detection”,文中提出高光谱成像是一种用于生物医学应用的新兴技术。本研究提出了一种先进的图像处理和分类方法,用于分析前列腺癌检测的高光谱图像数据。开发了最小二乘支持向量机(LS-SVM)并对其进行了评估以对高光谱数据进行分类,以增强对癌组织的检测。该方法用于检测荷瘤小鼠的前列腺癌。创建空间分辨图像以突出癌症的反射特性与正常组织的反射特性的差异。小鼠的初步结果表明,高光谱成像和分类方法能够可靠地检测动物模型中的前列腺肿瘤。高光谱成像技术可以为癌症的光学诊断提供新工具。Houzhu Dingd等(2015)、Michael S. Chin等(2015)本别以猪和裸鼠作为实验动物,对烧伤分级和恢复进行了高光谱成像研究。左图为根据高光谱成像分析得出的烧伤区域氧饱和分布与血红蛋白分布,T00、T01、T04、T24分别为烧伤0时、1小时、4小时、24小时后;右图上图为裸鼠烧伤皮肤彩色成像,中图为高光谱成像分析的氧合血红蛋白成像,下图为组织切片,高光谱成像可以将烧伤深度进行非损伤、非接触、高通量分级。高光谱成像技术在生物分类的应用案例2013年发表的“Non-Invasive Measurement of Frog Skin Reflectivity in High Spatial Resolution Using a Dual Hyperspectral Approach”一文中,研究者采用了由两个推扫式高光谱成像系统组成的双摄像机设置,其产生400和2500nm之间的反射图像,分析了三种树栖青蛙的光谱反射率。3中树蛙都呈现出肉眼可见的绿色,但物种之间的光谱反射率在700和1100nm之间显着不同,依次可以区分不同种类。 高光谱成像技术在文物考古的应用案例自1974年兵马俑被发现以来,一直为全世界关注,被法国前总统希拉克誉为“世界第八大奇迹”。但是,包括兵马俑在内的这些埋于地下两千多年的珍贵文物,突然暴露在空气中,极易发生变化,其修复和保护工作极为困难。高光谱成像技术通过非接触直接获取兵马俑的图像光谱信息,通过分析兵马俑的图像及光谱信息,可了解兵马俑被病害侵蚀程度以及兵马俑制造的颜料,*后根据分析结果对其进行模拟修复。高光谱成像技术在作物的精细分类和识别的应用案例高光谱数据能区分作物更细微的光谱差异,探测作物在更窄波谱范围内的变化,从而能够准确地对作物进行详细分类与信息提取。目前最流行、应用最广的高光谱作物分类方法有光谱角分类(SAM)、决策树分层分类等。中科院遥感所熊桢基于高光谱影像对常州水稻生长期进行监测,利用混合决策树法对水稻的品种进行了高光谱图像的精细分类,包括6个水稻品种的划分,分类精度达到 94.9%。张兵充分考虑自然界地物分布的一般性规律,针对高光谱遥感海量数据的特征,利用光谱特征优化的专家决策分类方法,用高光谱影像对日本南牧农作物进行精细分类。结果表明,这种分类模式一方面可以提高像元分类精度,另一方面也大大减少了分类结果图像上的误判噪声。高光谱成像技术在谷物检测的应用案例我国是世界上最大的粮食生产国,谷物类包含水稻、小麦、玉米、花生等。通过高光谱成像技术对大米急性检测,检测质量及种类,得到大米高光谱图像,以主成分分析方式,对图像中的数据降维处理,提取垩白度及形状特点,以PCA、BPNN建立谷物识别模型,发现采用BPNN模型效果较为理想,其准确率达到89.91%,而PCA准确率为89.18%,两者相差不大。BPNN和数据融合结合,准确率进一步提高,可达到94.45%。因此,采用高光谱成像技术对谷物进行检测,对大米种类及质量分析具有实用性。高光谱成像技术在森林物种识别的应用案例森林树种类型识别的主要目的是提取森林树种的专题信息,为划分森林类型、绘制林相图和清查森林资源提供基础和依据。目前研究多集中在河湖、盐沼、海岸滩等湿地生境的植被识别及制图,即群落尺度的区分。结合地面调查来提取不同物种典型的特征光谱曲线。数据源采用高光谱成像仪实地测得的数据,通过建立光谱信息模型等方法,实现对主要物种、森林类型或具体树种的识别。有学者借此对植被空间分布制图、植被变化监测进行研究,均取得了与地面数据相当好的一致性。(混合决策树、专家决策树法常用于农作物的精细分类,高光谱更多应用于草原生物量估算、农作物理化信息提取等方面。
    留言咨询
  • 荧光高光谱测试系统GaiaFluo系列基本原理:当物质经特定波长的入射光照射,其分子吸收光能后从基态进入激发态,并且立即退激发并发出出射光,原理如图所示。通常出射光的波长比入射光的波长更长,且多处于可见光波段。 系统使用高灵敏度、高信噪比相机作为探测单元,使用高光谱分辨率的透射式光栅光谱仪,结合消色差成像镜头、内置推扫成像结构、内置调焦结构、内置Shutter 等单元完成采集系统的集成。大功率的氙灯光源(或者激光、LED)作为系统进行荧光信号检测的光体,配合光波导、激发滤光片、匀光棒、反射镜等结构完成样品激发光的传送,样品在激发光的作用下会产生相应的荧光(发射)信号,在高光谱相机前端设计有荧光滤光片,这样荧光信号最终被高光谱相机收集到,通过处理分析建模等处理后可获取需要的荧光光谱和图像。荧光成像技术检测的响应激发光源、波段和荧光发射波段示例 分类检测对象激发波段、波长/nm发射波段、波长/nm叶片烟草叶片355440、520、690、740甜菜叶片340440、520、690、740苹果叶片520、550650向日葵叶片紫外、蓝光610、685、735烟草叶片455505~560、690柑橘叶片紫外、蓝光550、690柑橘叶片紫外、红、绿、蓝光黄、红、远红外烟草叶片470650柑橘叶片365、445、470、530570、610、690、740苹果叶片455618柑橘叶片532680~712、712~750柑橘叶片532680~712、712~750柑橘叶片473小麦叶片337370~800果实苹果紫外(≤340)440、520、690、740苹果蓝光红、远红外葡萄紫外、红、绿蓝绿、红、远红脐橙紫外绿脐橙365530~550苹果337350~820 高光谱相机参数: 荧光高光谱测试系统GaiaFluo系列系统参数:主要部件主要技术指标和功能1暗箱外观尺寸80cmx80cmx100cm样品台尺寸30cmx30cmx40cm2光源反射光源数量:4个;功率:50W/个;光谱范围:350nm~2500nm;对样品可进行反射光谱测试。氙灯光源数量:1个;功率:150W;光谱范围:250nm~2200nm;对样品可进行荧光光谱测试。3附件激发滤光片长波通玻璃彩色滤光片:紫外光,可见光和红外光通过范围;可见光能被用做彩色带通滤光片;长波通滤光片在短波区域的透射率很低(截止带)而在长波区域则有这很高的透射率(通带)。340、370、390、628、697nm等300~1000nm可选发射(荧光) 滤光片荧光带通滤光片:通用荧光波长透射率93%截止率OD6荧光带通滤光片非常适用于荧光成像应用。 其通带具有 93%的透射率,截止带光密度可达OD6,常用于光谱仪,临床化学应用以及生物技术仪器。滤光片基片为熔融石英材料,表面用离子溅射工艺镀加硬膜,采用黑色阳极氧化铝环进行封装。400、455、550、645、720nm等300-1000nm可选光纤(光波导)1.5米长光波导,多模光纤传导方式,匀光棒&反射镜氙灯光源输出的光经过光波导的传递进入激发滤光片后再进入到匀光棒中,使得光源光斑照射区域光照均匀一致,再经过反射镜的反射,照射到样品上。4辅助监控荧光测试时,系统需要完全密闭的暗环境下测试,通过辅助摄像头可以实时监控暗箱内部情况下。软件功能采集控制、友好的参数设置界面、自动曝光、自动调焦、自动速度匹配、手动参数设置、数据预处理、辅助功能、辐射度、均匀性、镜头、反射率、区域校准等; 气体麻醉机专门为小动物(大鼠、小鼠、豚鼠、兔子等动物)手术设计的吸入麻醉机,性能稳定、操作方便,能够快速准确地控制动物的麻醉深度,确保动物的安全,符合动物福利。实验案例:测试芒果样品在添加罗丹明-B 荧光试剂,使用氙灯作为激发光源,390nm 的激发滤光片、550nm 的荧光滤光片,利用高光谱荧光系统获取到的荧光图像、荧光光谱;反射图像、反射光谱。
    留言咨询
  • 显微高光谱成像仪HY-5010-S产品简介HY-50系列显微高光谱成像仪是专门为显微测量应用推出的一体化精密设备。该设备将自动推扫型高光谱与显微镜结合,借助显微镜的光路系统,可以不必推扫样品就能实现对显微视场内样品的成像光谱采集,获得样品精细空间图像的同时得到高光谱信息,在生物医学、材料分析、生命科学及证物分析等多种显微测量应用领域将有极广泛的应用前景。物理模块 功能特性◆HY-50系列配合不同倍率的物镜实现高倍率的观察与高光谱成像;◆支持反射式和透射式两用的显微高光谱成像;◆目镜观察、可见光相机与高光谱同视场,可以清晰的观察测量区域快速完成对焦,并实现可见光照片及高光谱图像的同步采集,所见即所得;◆紧凑式设计,采用内置扫描设计,不必移动显微镜平台就可完成测量,图像无畸变;◆标准显微镜接口和转接器,可与任意三目显微镜连接使用;◆专用全谱段照明光源,投射和反射通用,适应高光谱专业照明要求;◆高空间分辨率和光谱分辨率;◆其它品牌如奥林巴斯、蔡司的生物、荧光、金相显微镜均可进行高光谱相机搭载;技术参数应用案例及领域◆生命医药:细胞分类、癌组织筛查、药品研发、病理研究等 ◆生物学:细菌、细胞分析;◆材料学:材料微观检测、鉴别;◆刑侦行业:痕迹、检;◆电子行业:半导体检测、屏幕检测等
    留言咨询
  • 便携式智能型高光谱成像系统是我司自主研发设计、拥有独立技术知识产权的一款超便携式高光谱成像仪器,系统覆盖可见光到短波红外波段。内置处理器可通过手机、Ipad、笔记本电脑等终端设备的控制,使系统进行实时图像采集扫描、实时校准、实时结果输出,而在获得目标影像信息的基础上,还可以获得数百甚至上千波段的光谱信息,实现目标的 “图谱合一”。系统有着轻便灵活,续航能力出色、智能化、数据分析处理功能齐全、能够实时监控、实时校准、实时输出反演结果等功能。广泛适用于户外和实验室内的应用需求。例如:目标探测与识别、伪装与反伪装等军事领域,地面物体与水体遥测(水质监测)、现代精细农业(植物表型监测)等生态环境监测领域,刑侦、文物保护(真伪鉴别)、生物医学(细胞属性分类鉴别)、塑料垃圾(分类与识别)、烟草烟叶的工业分选(品质优选),化学气体燃烧火焰(成分确定和判别)、地质矿石分析,油气岩层荧光分析、生物医学、材料性能检测等等领域。主要功能● 自动曝光/调焦/采集/校准● 波段数量/范围可自定义设置● 自动暗背景采集(Shutter)● UI流程化软件控制界面● 辅助摄像/监控● 实时反演输出● 支持二次开发● 支持多平台应用● 电池灵活更换● 内置快门● 全自动化采集/校准● 模型结果的实时输出● 触屏控制+远程控制● 支持多种应用方式和场景● 一键式数据处理校准/反演(优势)● 每组数据可独立存储,通过软件实现一键式反射率校准● 可实现单独、批量数据处理的处理● 通过输入相应模型,可实时输出反演结果参数Smart(VIS) Smart(NIR)UI界面便携式智能型高光谱相机应用花生霉变检测花生在生长及贮藏过程中因环境等因素影响极易感染黄曲霉和寄生霉,其次生代谢产物 - 黄曲霉毒素具有强毒性和高致癌、致畸性。对同种的花生颗粒进行检测,并获取不同毒性浓度花生的荧光高光谱图像及光谱信息,为污染黄曲霉素花生的无损在线检测技术研究提供支持。 图 不同毒性浓度花生的荧光高光谱图像图 不同毒性浓度花生的荧光高光谱图像显微高光谱成像系统图 钙钛矿LED显示屏检测 图 病病变细胞检测柑橘黄龙病检测说明 :从图中可知,从外表看,柑橘得了黄龙病和缺氮素,其叶片表现的颜色十分相近,用肉眼难以区分。正常和黄龙病叶片高光谱在 540nm 处吸收峰存在着差异,黄龙病叶片吸光度稍微大些,主要原因可能是黄龙病会阻碍叶片在吸收水分,导致其含水率偏低。经 1 阶导处理后的正常、黄龙病和缺素 3 类叶片在750nm 处正常与黄龙病吸光度明显不同。图 柑橘黄龙病检测
    留言咨询
  • 高光谱高光谱Q20 400-860-5168转2592
    Ultris 20是国际首款基于光场成像技术的高光谱成像仪,具有20MP的超高清CMOS传感器。该设备以快照式成像方式可瞬间高速同步获取450-850nm范围内125个光谱通道高光谱图像。Q20工业版:防护等级IP65,重量1500g,适合地面或实验室移动使用,尤其是工业化应用。
    留言咨询
  • GaiaSky-mini推扫式机载高光谱成像系统GaiaSky-mini推扫式机载高光谱成像系统是针对小型旋翼无人机开发的高性价比机载高光谱成像系统。采用自有专利的内置扫描系统和增稳系统,成功克服了小型无人机系统搭载推扫式高光谱相机时,由于无人机系统的震动造成的成像质量差的问题。为高光谱成像技术在目标识别、伪装与反伪装军事领域,地面物体与水体遥测、现代精细农业等生态环境监测等领域的广泛应用奠定了基础。 推扫式机载高光谱成像系统技术特点:1、完美适配M600 Pro及S1000+,极低的系统成本与测试成本2、采用悬停拍摄方式,无需高精度惯导系统,图像实时自动拼接3、操作方便,无需专业无人机操控手,可实现单人操作4、图像实时回传,监控拍摄效果5、辅助取景摄像头实现真正的所见即所得6、通过地面站实时观测飞机采样地点并可利用地面站设置逐点采集的航线7、数据预览及矫正功能:辐射度校正、反射率校正、区域校正支持批处理8、实时常用植被指数计算功能:归一化植被指数(NDVI)、比值植被指数(RVI)、增强植被指数(EVI)、大气阻抗植被指数(ARVI)、改进红边比值植被指数(mSR 705)、、Vogelmann 红边指数(VOG)、光化学植被指数(PRI)、结构不敏感色素指数(SIPI)、归一化氮指数(NDNI)、类胡萝卜素反射指数1(CRI1)、类胡萝卜素反射指数2(CRI2)、花青素反射指数1(ARI1)、花青素反射指数2(ARI2)、水波段指数(WBI)、归一化水指数(NDWI)、水分胁迫指数(MSI)、归一化红外指数(NDII)、归一化木质素指数(NDLI)、纤维素吸收指数(CAI)、植被衰减指数(PSRI)、调整土壤亮度的植被指数(SAVI)9、支持自定义实时分析模型输入功能10、数据格式完美兼容Evince、Envi等第三方数据分析软件 左图:Gaiasky-mini-VN 右图New:Gaiasky-mini2-VN 推扫式机载高光谱成像系统技术参数:型号Gaiasky-mini-VNGaiasky-mini2-VN结构相机与控制器分体设计集成一体化设计光谱范围400-1000(nm)400-1000(nm)光谱分辨率(30um)3.5nm3.5nm数值孔径F/2.8F/2.8传感器CCD Sony ICX285CCD Sony ICX674像素间距6.45(um)4.54(um)相机输出14(bit)14(bit)连接方式USB 2.0USB 3.0工作电压12~19V12~19V功率45W45W拍摄方式悬停(内置扫描)悬停(内置扫描)搭载平台旋翼无人机、无人飞艇、无人直升机等可悬停飞行器;推荐:大疆M600 Pro镜头17mm,18.5mm,23mm17mm,18.5mm,23mm横向视角(FOVac,°)29.6@17mm,27.3@18.5mm,22.08@23mm28.7@17mm,26.7@18.5mm,21.5@23mm横向视场158米@17mm,146 米@18.5mm,117米@23mm(飞行高度300米)154米@17mm,142 米@18.5mm,115米@23mm(飞行高度300米)图像分辨率696X700960X1040Bin方式256通道128通道360通道176通道空间分辨率(@17mm, 高度300米)0.23m0.23m0.160.16扫描速度(line images/s)6084125160单幅拍摄速度(秒)12997重量相机(含内置扫描)1.3Kg;控制器:0.65kg1.5kg( 相机及内置控制器)采集器240G SSD240G SSD云台及相机安装空间=330(悬挂高度)*200*260mm=330(悬挂高度)*200*260mm
    留言咨询
  • M185是基于高速高光谱显微成像技术的国际领先产品,能够与显微镜无缝对接并瞬间获得整个视场范围内精确的微观样品高光谱图像;其融合了高光谱数据的精确性和快照成像的高速性,工作方式与操作流程类似于常见的显微数码成像。M185采用的独特的画幅式成像技术,采集到的高光谱图像数据具有较高的光谱分辨率;由于其可在1/1000秒内得到整个高光谱立方体,因此可以获得动态光谱图像,如果您对基于高光谱成像技术的高速动力学 、荧光信号或细胞变化检测等领域感兴趣,此款光谱仪能为您的研究工作提供很大帮助。M185通过先进的Snapshot技术建立了时间、空间与光谱分辨率之间的平衡。与传统的推扫式高光谱成像技术不同,其采用无需任何移动部件的画幅式成像技术,可在1/1000秒内获取整个高光谱立方体数据。可与显微镜无缝对接,能够满足基于高光谱成像技术的高速动力学 、荧光信号或细胞变化检测等领域的研究需求,可批量进行光谱输出 、高光谱图像分类等功能。 主要应用细胞检测疾病监测医学成像生物成像矿物丰度化学过程 物种分类病害监测仪器特点可见-近红外画幅式成像高光谱影像显微测量速度达1/1000秒快速测量无运动伪影无缝对接显微镜人性化的数据测量软件技术参数M185 RE 高速高光谱显微成像仪光谱范围450~950nm采样间隔4nm光谱分辨率8nm@532nm光谱通道数125探测器2×100万像素Si CCD数字分辨率12bit测量时间0.1~1000ms通讯接口2×GigE高光谱成像速度15Cubes/s 动态范围[dB]Typ.68光谱输出2500 Spectra/Cube镜头接口C-mount外界环境干燥/非冷凝操作温度-10~50℃重量500g电源DC 12V,8 W产地:德国
    留言咨询
  • GaiaSorter “盖亚”高光谱分选仪 GaiaSorter “盖亚”高光谱分选仪的核心部件包括均匀光源、光谱相机、电控移动平台(或传送带)、计算机及控制软件等部分。工作原理是通过光源照射在放置于电控移动平台(或传送带)上的待测物体(样品),样品的反射光通过镜头被光谱相机捕获,得到一维的影像以及光谱信息,随着电控移动平台(或传送带)带动样品连续运行,从而能够得到连续的一维影像以及实时的光谱信息,所有的数据被计算机软件所记录,最终获得一个包含了影像信息和光谱信息的三维数据立方体。通过对数据的分析,可进行针对如果蔬的水分、糖酸度等内、外部信息以及其他类型物品分级、分选所需信息的获取,并通过后续的控制开发,从而实现对物品的全自动化分选。 GaiaSorter“盖亚”高光谱分选仪 “盖亚”高光谱分选仪结构示意图如下:GaiaSorter “盖亚”高光谱分选仪的标准配置针对大小为300mm ( 长)×300 mm ( 宽)×200 mm ( 高) 的物品的测量,光谱范围有400-1000nm,900-1700nm 和1000-2500nm 三个标准光谱波段,并通过选配小型传送带装置,可实现小批量的连续量测。 GaiaSorter“盖亚”高光谱分选仪既可以搭载Image-λ“G”系列高光谱相机,也可搭载GaiaField 系列高光谱相机,相机具体规格参见相关产品规格表。 “盖亚”高光谱分选仪主机基本规格:GaiaSorter“盖亚”高光谱分选仪主机样品空间尺寸(长x宽x高,最大)300mm×300mm×200mm光照空间均匀性≥90%电源输入电压AC 220V ±10%均匀光源额定工作电压DC12V(通过调整电压实现亮度调整)光源额定总功率~200W工作距离可调整范围180mm~600mm样品台扫描行程*400mm注*:样品为薄片时,工作距离调整范围为180mm-600mm;样品高度为200mm时,工作距离调整范围为180mm-400mm。
    留言咨询
  • 高光谱仪近红外高光谱相机 HY-1230-02高光谱仪近红外高光谱相机 HY-1230-02产品简介HY-12系列可见-近红外高光谱相机,采用自主开发的基于狭缝-棱镜-光栅-棱镜的高光谱成像技术,采用推扫式成像,充分体现了体全息光栅的技术优势,具有高光谱分辨率、高效率、光谱线性度好、谱线弯曲小,使用简单、体积小、重量轻等诸多有点,主要性能指标达到国际同类产品领先水平。 HY-12系列具有多个谱段及不同尺寸分光模组和探测器类型可选,其中波段范围覆盖400-1000nm。 根据研究和应用场景的不同,HY-12系列可自由集成至无人机载高光谱成像系统、实验室、便携式和显微高光谱成像仪仪器等,并提供便捷易用的二次开发支持,解决客户在教育科研、智慧农业、生态环保、智能制造、工业检测等应用领域的深层次感知需求。高光谱仪近红外高光谱相机 HY-1230-02 功能特性◆波段范围覆盖400-1000nm;◆采用棱镜-光栅分光方式,可获得更精准、更高分辨率的光谱数据;◆自研模组可适配多种探测器,具有多谱段、多尺寸、多探测器类型可选;◆ 产品具有体积小、重量轻、光谱特性好、性价比高等优点;◆全靶面高成像质量光学设计,点列斑直径小于0.5像元;◆镜头接口为标准C-Mount,可根据用户需求更换焦距;高光谱仪近红外高光谱相机 HY-1230-02 技术参数 技术参数指标可见/近红外高光谱相机 (VNIR)HY-1230-01HY-1230-02HY-1261-02光谱范围400-1000nm光谱分辨率优于2.8nm优于2.5nm优于2.3nmF数F/2.6F/2.6F/2.4探测器CMOSCCDCCD探测器接口GigE / USB3.0GigEGigE有效像素位深12bits12bits/16bits12bits光谱波段数300260270视场角(FOV)15.6°@f=35mm14.4°@f=35mm21.6°@f=35mm瞬时视场角(IFOV)0.71mrad@f=35mm0.71mrad@f=35mm0.85mrad@f=35mm帧频50fps/128fps68fps80fps重量小于710g小于760g小于810g高光谱仪近红外高光谱相机 HY-1230-02 应用领域
    留言咨询
  • 高光谱高光谱425 shark 400-860-5168转2592
    425全波段高光谱成像系统是一款商用级单探测器成像型高光谱仪,利用单一焦平面阵列探测器(FPA)、单镜头、单分光光路获取400-2500nm全波段范围的高光谱图像,避免了双探测器型双机组合式全光谱成像仪的对准、集成、标定、数据融合及后处理等问题,大大降低了操作难度,使测量工作更简便,数据可靠性更高。425shark作为一款Vis-NIR-SWIR全波段高光谱成像仪,具有高度集成化的一体式设计,可以方便地集成到实验室或地面测量系统中,还可以应用于空间科学、小型载人和无人飞行器、工业过程监控及OEM系统;覆盖可见-短波红外波段的高质量光谱成像,可满足多种任务需求。
    留言咨询
  • 高光谱仪 实验室高光谱成像仪HY-8010-U产品详情 HY-8010-U产品简介HY-80系列实验室高光谱成像仪是一款专门为实验室环境定制的专用设备,能够实现对物质定性、定量、定时、定位信息的精准 检测,是一台“图谱合一”的专业化科研设备。 HY-80系列实验室高光谱成像仪,核心分光模组完全由高谱公司自主研发,支持选配多种型号图像传感器,并搭配超高像素高清相机实现高空间分辨率与高光谱分辨率的完美融合。同时,HY-80系列可选配自研线性光源和定制暗箱,最大程度减少外部环境对样品检测带来的影响,结合独有的时空辐射校正功能,确保获得稳定的标准化高光谱数据。 HY-80系列实验室高光谱成像仪,为物质分选、刑侦文检、食品监测、真伪鉴定等行业高端应用领域提供高精度的光谱建模与分析解决方案。物理模块 功能特性◆大靶面高光谱相机;◆高性价比COMS图像传感器;◆支持选配高性能CCD图像传感器;◆时空辐射强度校正,显著提高辐射标定精度(时间校正+空间校正);◆集成高清相机,提高空间分辨率,海量数据下便于按图索骥;◆自动扫描,完成数据采集与存储;◆ 辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆ 自动积分时间推荐,根据样品反射率推荐曝光时间;◆ 高光谱数据支持Envi等第三方软件;◆均匀光源/线型光源,匹配高光谱相机视场角,为数据采集提供全谱段照明;◆可选专用暗箱,确保获得稳定的标准化高光谱数据;◆辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆自动积分时间推荐,根据样品反射率推荐曝光时间;◆高光谱数据支持Envi等第三方软件;技术参数应用案例及领域◆刑侦文检:证物、印章、签字、涂改、油墨、印制品、证件、指纹等;◆食品应用:果蔬、肉类、谷物、茶叶;◆物质分选:烟草、药品;◆真伪识别:文物鉴定、珠宝识别; 高光谱成像技术具有无损、快速、绿色的优势,可实现金银花和山银花药材质量快速的无损检测与识别。
    留言咨询
  • 新一代无人机载高光谱成像系统,在高光通量、高传递效率的前置光路下能够使具备高采集帧频的 SCMOS探测器输出高信噪比、高空间、高光谱分辨率、高精准度的高光谱数据。满足固定翼类飞行模式实现外置推扫拍摄需求,多种应用模式可实现有限区域和大面积区域的遥感成像。高精准度的惯导、POS、高清相机则又能为数据的拼接、校准、修正提供支持。特有的辅助摄像头构造能够使地面上被测区域的状况,通过无线图传实时的回传到地面。而数据的实时校准和反演结果的实时快速输出并反馈至地面,对于快速确定目标信息 ;为精准农业评估 ;水、溢油、土地沙漠化等环境监测 ;军事伪装识别 ;生态多样性评估等方面应用需求提供完整的解决 方案。 主要特点核心点一:十多年在成像光谱系统开发与技术应用积累的丰富经验。结合近年来在无人机载高光谱成像系统的开发与应用方面有了长足的发展,为科研、行业等提供了全新的解决方案。● 核心点二:从光谱仪设计到系统集成、开发、应用等形成一条完整的产品链。● 自主设计的增稳云台: GaiaSky系列无人机载高光谱成像系统适用于多种类型固定翼类无人机。● 操控方式:通过遥控器进行各项功能的应用,方便、快捷、灵活。● 外观设计:独特的外观设计及操控为系统的品质和多维应用提供良好的平台和稳定性。● 实时监测:特有的监控模块实时提供现场环境状况,形成“所见及所得”。● 软件功能:快速实时校准为用户在线输出反演、分类识别等结果,为行业应用快速做成决策判断。● 数据拼接:高精度、大面积的数据拼接数据充分提升了系统的工作效率和数据的质量。● 负载:可根据实际应用需求选配其他产品。● 大疆M350,纵横CW-15(垂起固定翼),华测BB4(大四旋翼),曜宇(大旋翼),科卫泰(大旋翼),彩虹4固定翼无人机技术参数数据采集软件介绍数据预处理功能:多种数学模型可选,可实时进行数据校准,并同步输出反演结果; 反射率校正、区域校正、辐射度校正、光谱及图像数据预览功能等。数据处理功能:反演结果实时输出:实时常用植被指数计算功能:归一化植被指数(NDVI)、比值植被指数(RVI)、增强植被指数(EVI)、大气阻抗植被指数(ARVI)、改进红边比值植被指数(mSR 705)、、Vogelmann 红边指数(VOG)、光化学植被指数(PRI)、结构不敏感色素指数(SIPI)、归一化氮指数(NDNI)、类胡萝卜素反射指数1(CRI1)、类胡萝卜素反射指数2(CRI2)、花青素反射指数1(ARI1)、花青素反射指数2(ARI2)、水波段指数(WBI)、归一化水指数(NDWI)、水分胁迫指数(MSI)、归一化红外指数(NDII)、归一化木质素指数(NDLI)、纤维素吸收指数(CAI)、植被衰减指数(PSRI)、调整土壤亮度的植被指数(SAVI)等。数据拼接:自主开发的数据拼接软件能够对固定推扫成像拍摄的高光谱数据进行拼接和处理,实现大面积、长航时下的大数据拼接处理。借助POS等部件其拼接精度会更好。 图 采集控制界面航点坐标计算器自主研发的航点坐标计算器,通过修改参数设置,根据采集区域的四个顶点的经纬度坐标,自动一键生成航线,航线规划快捷、简单。根据计算出的航线参数,可以清晰明了的查看飞行参数。 负载型号图 纵横固定翼 CW-15无人机外置推扫模式拍摄数据应用案例介绍农作物快速识别分类当不止一种作物,快速分类识别就非常重要,因为不同作物,肥料种类和用量都不一样,如果只根据长势图施肥可能导致一些作物施肥过量而另一些施肥不足。无人机高光谱系统相比多光谱系统有更多谱段和更高光谱分辨率,因而可以在不同波长段获取不同作物的不同响应,进而达到快速有效识别。其识别率可高达 95%。无人机高光谱图像快速分类(总体识别精确率 :95.6%,Kappa :96.3%)图 分类识别结果图农作物生化参数检测无人机高光谱系统获取影像过程中农户可以选择不同的植被指数来反映作物成长情况和疾病。植被指数如绿色归一化植被指数 (GNDVI)、改进型叶绿素吸收指数 (TCARI)、可见光大气阻抗指数 (VARI) 比值植被指数 (RVI)、土壤调节植被指数 (OSAVI)。农户也可以选择直接反映作物指标,如叶片氮磷钾含量、叶绿素含量、叶面积指数、P 含量、K 含量。用户也可以根据需要自定义植被指数进行实时演示。分类识别地物分类的快速识别分类在遥感中非常重要,不同地物类别在测绘、城市规划、林业等方面应用广泛。无人机高光谱系统相比多光谱系统有更多谱段和更高光谱分辨率,因此可以在不同波长段获取不同地物的不同响应,进而达到快速高精度图像分类识别。同时GaiaSky-mini-VPos 可以更高效率的采集大面积数据。土壤理化参数反演机载高光谱遥感技术可以通过获取土壤和植被的光谱反射特征,进而估算土壤中的水分含量。通过对不同波段的光谱数据进行分析和处理,可以得到土壤水分的空间分布和变化趋势。这对于农业灌溉管理、干旱监测和水资源管理等方面都具有重要意义。
    留言咨询
  • 近红外高光谱相机 高光谱仪HY-1310-02产品简介HY-13系列采用自主开发的基于狭缝-棱镜-光栅-棱镜的高光谱成像技术,采用推扫式成像,充分体现了体全息光栅的技术优势,具有高光谱分辨率、高效率、光谱线性度好、谱线弯曲小,使用简单、体积小、重量轻等诸多有点,主要性能指标达到国际同类产品领先水平。 根据研究和应用场景的不同,HY-13系列可自由集成至无人机载高光谱成像系统、实验室、便携式和显微高光谱成像仪仪器等,并提供便捷易用的二次开发支持,解决客户在教育科研、智慧农业、生态环保、智能制造、工业检测等应用领域的深层次感知需求。近红外高光谱相机 高光谱仪HY-1310-02功能特性◆波段范围覆盖900-1700nm;◆采用棱镜-光栅分光方式,可获得更精准、更高分辨率的光谱数据;◆自研模组可适配多种探测器;◆探测器采用TEC半导体制冷技术,信噪比更高;◆产品具有体积小、重量轻、光谱特性好、性价比高等优点;◆镜头接口为标准C-Mount,可根据用户需求更换焦距;近红外高光谱相机 高光谱仪HY-1310-02技术参数指标近红外高光谱相机(NIR)HY-1310-01HY-1310-02光谱范围900-1700nm900-1700nm光谱分辨率优于4nm优于4nmF数F/2.0F/2.0探测器InGaAs(TE Cooled)InGaAs(TE Cooled)探测器接口GigECameraLink探测器原始分辨率320*256640*512有效像素位深14 bits14bits光谱波段数256512视场角(FOV)15.6°@f=35mm15.6°@f=35mm瞬时视场角(IFOV)0.85mrad@f=35mm0.85mrad@f=35mm帧频100fps/300fps300fps尺寸320mm*100mm*90mm(不含镜头)320mm*100mm*90mm(不含镜头)重量小于3kg小于3kg近红外高光谱相机 高光谱仪HY-1310-02应用案例及领域
    留言咨询
  • 高光谱高光谱U20 水下 400-860-5168转2592
    Ultris 20是国际首款基于光场成像技术的高光谱成像仪,具有20MP的超高清CMOS传感器。该设备以快照式成像方式可瞬间高速同步获取450-850nm范围内125个光谱通道高光谱图像。U20水下版:防护等级IP68,重量1500g,可潜水深10米@10小时,适合严酷环境或水下测量。
    留言咨询
  • Q285 采用画幅式高光谱成像技术,融合了高光谱数据的精确性和快照成像的高速性,能够在1/1000秒内得到整个高光谱立方体,可用于高光谱手段监测快速运动目标,或搭载于车辆、船舶等运动平台上进行高光谱数据测量。工业级的IP65防护标准使其可适用于较为恶劣的环境条件。Q285通过独特的Snapshot技术建立了时间、空间与光谱分辨率之间的平衡。与传统的推扫式成像方式不同,其采用无需任何移动部件的画幅式高光谱成像技术,可快速获得所有光谱通道的高光谱图像数据。IP65防护外壳具有防水、防尘和防震能力,从而保持系统的长期稳定性;所有光谱通道同步成像的特性使其更适合高速移动式测量,数据真实可靠无伪影,可用于野外监测或车载等各种复杂的使用环境。配套软件可批量进行光谱输出、高光谱图像分类、植被指数求取等功能。 Q285具有一体式设计,操作便捷 , 可以在野外或温室内等各种环境下进行快速测量,极为便利地获取高光谱数据,适应多种观测需求。 主要应用遥感应用水体光谱精准农业植物表型食品生产生态科学野外监测车/船搭载考古调查动态成像仪器特色画幅式高速测量 视频级高光谱成像双CCD实时测量坚固耐用(IP65防护)各通道同步测量无伪影快速安装、即插即用 车载等移动式测量 批量输出植被指数 技术参数Q285 QE 动态高速成像光谱仪光谱范围450~950nm采样间隔4nm光谱分辨率8nm@532nm光谱通道125探测器面阵Si CCD探测器规格100万像素×2测量时间0.1~1000ms通讯接口2×GigE高光谱成像速度20Cubes/s数字分辨率14bit光谱输出2500 Spectra/Cube 快门方式全局快门镜头焦距10、16、23、35mm可选接口类型C-mount防护等级IP65工作温度-10~+50℃重量3000g电源 DC 12V,8W产地:德国
    留言咨询
  • 425全波段高光谱成像系统是商用级单探测器成像型高光谱仪,利用单一焦平面阵列探测器 (FPA)、单镜头、单分光光路获取480-2500nm全波段范围的高光谱图像,避免了双探测器型双机组合式全光谱成像仪的对准、集成、标定、数据融合及后处理等问题,大大降低了操作难度,使测量工作更简便,数据可靠性更高。425作为一款Vis-NIR-SWIR全波段高光谱成像仪,具有高度集成化的一体式设计,可以方便地集成到实验室或地面测量系统中,还可以应用于空间科学、小型载人和无人飞行器、工业过程监控及OEM系统;覆盖可见-短波红外波段的高质量光谱成像,可满足多种任务需求。 此款高光谱仪配备高性能Sterling制冷型HgCdTe焦平面阵列(FPA),覆盖480-2500nm全光谱范围,探测器面阵为640*468像素,每像素尺寸15μm,FPA近端集成OSF滤波器,以保持全波段范围都具有高通光性,高光谱仪的通光孔径为F3.3,测量帧速达125Hz/s。425可与无人机航测模块集成(选配),成为完整的高度一体化的机载全波段高光谱成像系统。整套系统集成了高光谱成像仪、数据采集和存储系统、惯性导航INS等组件,总重量小于5Kg。其结构紧凑,可搭载于多种小型有人机及无人机,在环境遥感、精准农业、森林调查、植被评估和管理、以及矿产勘查等领域具有广泛的应用前景。 425采用先进的高量子效率(QE)焦平面阵列(FPA) 技术,具有卓越的传输效率、信噪比、光谱保真度和空间分辨率。内置了高效率的微机控制系统、数据采集及存储系统、精密的基于MEMS的紧耦合GPS/惯性导航系统(INS)。获取的数据可以作为原始数据和/或辐射计校准数据保存,可以显著减少后处理时间和简化工作流程。独特的功能和特性q 通过单一光路及单一探测器,获取全部波段的高光谱数据;也可选择不同的测量波段,只获取实际需要的波段图像;灵活的数据测量计划,可减少内存占用,提高测量速度及作业效率; 上图:波段选择命令窗口 q 四种数据获取模式:连续测量模式、区域测量模式、航线测量模式、启停点测量模式;系统根据高精度的INS数据,自动识别是否开始或停止测量,直接获取任务区域的数据;避免了传统设备因仅能连续测量而带来的大量无效数据,从而提高作业效率,减小数据后处理的难度; q 基于web的GUI,不需要在用户的计算机上安装其他应用程序,可使用任何兼容Java的浏览器,如Internet Explorer或Firefox,即可直接控制和操作设备;q 用户可灵活选择记录完整的高光谱数据或者部分区域的子集,通过选取子集波段记录数据,可以最大化利用存储空间、 延长作业时间、快速传输和处理数据。用户可以手动操作,或者从预编程的、自主的图像/数据采集模式中进行选择;q 可以从美国宇航局EARTHDATA网站下载测量区域的数字高程模型(DEM),预置到425中,以提高后处理正射校正和地理定位的精度。 q 具有嵌入式处理器、预编程指令和控制系统;可基于以太网接口控制API应用程序,实现启动、停止、校准、检查作业状态,并接收导航和高光谱数据。高光谱图像可以记录原始的或经(辐射)校准的数据,可选记录导航数据; q 自动生成IGM文件,包含每个像素的经纬度信息。IGM文件用于飞行后地理定位及图像显示和分析,可由ENVI直接调用。425的测量数据也可以用常见的其他商业软件进行显示和分析。技术参数 425(机载)全波段高光谱成像系统光谱范围480 ~ 2500 nm 光谱分辨率≤8nmFPA检测器640*468像素,高性能MCT探测器,全波段制冷动态范围16-bit整体尺寸9.4 x 18 x 26.7 cm总重量 3.5 Kg / 5Kg(含惯导、采控、1T固态存储)功率消耗30W @ 12 VDC集成INSGPS + Mems IMU (选配)存储空间内置1T固态存储数据选择可选获取全部波段或仅获取特征波段,也可选择子集软件功能基于Web的GUI,兼容多种浏览器,可以远程控制定位功能一体式INS、预设DEM文件、IGM文件工作模式连续测量、区域测量、航线测量及启停点测量四种工作模式;系统根据INS信号自动识别预设测量区域,根据飞机进入和驶出测量区域,自动开始和停止测量应用领域 ※ 遥感科学 ※ 航空航天 ※ 无人机应用 ※ 精准农业 ※ 防灾减灾 ※ 矿物/石油勘探 ※ 环境评价与监控 ※ 地形/植被/城市特征 ※ 工业应用 ※ 森林调查产地:美国
    留言咨询
  • U285是世界第一款水下画幅式成像光谱仪,该设备在5米深的水下正常运行,它是在工业级的光谱仪Q285基础上设计而成,其采用画幅式高光谱成像技术,融合了 高光谱测量的精确性和快照成像的高速性,能够在 1 / 1000秒内得到整个高光谱立方体数据。适合水下生物动态观测。 U285通过独特的Snapshot技术建立了时间、空间与光谱分辨率之间的平衡。与传统的推扫式成像原理不同,其采用无需任何移动部件的画幅式高光谱成像技术,可在1/1000秒内得到整个高光谱图像立方体,因此可用于水下监测快速移动目标。U285配有开源程序接口与应用指令集,可进行二次开发从而满足特定的需求。配套软件可批量进行光谱输出、高光谱图像分类等功能。主要特点n 全球首款水下高光谱成像仪n 可见-近红外画幅式成像n 双CCD结构同步成像n 高速测量无移动伪影n 实时高光谱视频n 快速安装、即插即用 U285 UW水下高速高光谱成像仪 技术参数光谱特性 光谱范围450~950nm采样间隔4nm光谱分辨率8nm@532nm通道数125硬件特性探测器面阵Si CCD 探测器规格100万像素×2测量时间0.1~1000ms通讯接口2×GigE高光谱成像速度20Cubes/s数字分辨率14bit光谱输出2500Spectra/Cube快门方式全局快门防护等级IP68 镜头焦距10、16、23、35mm可选物理特性 外界环境非冷凝操作温度-10~50°C重量4500g 电源DC 12V,8W产地:德国
    留言咨询
  • 高光谱高光谱SOC710M 400-860-5168转2592
    SOC710M高光谱显微成像系统将显微技术与高光谱成像技术相结合,可在获得样品精细空间图像的同时得到高光谱信息,为生物医学、农业育种、植物科学、矿物质研究和高分子材料微结构分析提供了全新的技术手段,具有广阔的应用前景。本系统可用于病理学、细胞遗传学、植物科学、组织学、免疫组织化学、材料学、制药学、矿物分析等方面;在生命科学领域,它还可以广泛应用于染色体识别 、癌症诊断 、皮肤病检查 、细胞功能研究 、蛋白质相互作用研究等许多方面;在材料领域,特别是对发光材料的分析,例如Si基纳米材料的研究; 在石油化工领域,它可以用于分析含油岩心表面的荧光光谱信息和空间信息,研究岩心中的石油运移信息。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制