当前位置: 仪器信息网 > 行业主题 > >

高分析仪

仪器信息网高分析仪专题为您提供2024年最新高分析仪价格报价、厂家品牌的相关信息, 包括高分析仪参数、型号等,不管是国产,还是进口品牌的高分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分析仪相关的耗材配件、试剂标物,还有高分析仪相关的最新资讯、资料,以及高分析仪相关的解决方案。

高分析仪相关的资讯

  • 290万!东北师范大学高分辨X射线薄膜分析仪采购项目
    1.项目编号:ZZ23632HW04310136。2.项目名称:东北师范大学物理学院高分辨X射线薄膜分析仪(进口)设备采购。3. 采购方式:公开招标。4.预算金额:39.7万欧元(人民币限额290万元)。5.采购需求:高分辨X射线薄膜分析仪;数量:1套(详见招标文件“第五章 项目需求”)。6.合同履行期限(供货期):合同签订之日起8个月内完成交付、安装及调试。7.本项目不接受联合体投标。公开招标(进口货物)-东北师范大学物理学院高分辨X射线薄膜分析仪(进口)设备采购11.13.pdf
  • 2125万!南方科技大学电子系高分辨定量阴极荧光分析仪采购项目
    项目编号:AOMC-2022-057(SZDL2022001503)项目名称:电子系高分辨定量阴极荧光分析仪采购预算金额:2125.7000000 万元(人民币)最高限价(如有):2125.7000000 万元(人民币)采购需求:详见原公告合同履行期限:签订合同后 270 天(日历日)内交货本项目( 不接受 )联合体投标。
  • 400万!南京大学大气氧化态有机物高分辨率质谱分析仪采购项目
    项目编号:0667-221JIBEP6050、ZH2022020186项目名称:大气氧化态有机物高分辨率质谱分析仪预算金额:400.0000000 万元(人民币)采购需求:大气氧化态有机物高分辨率质谱分析仪 1套简要技术要求:分辨率可调档数:不小于4档合同履行期限:交货时间:合同签订后180天本项目( 不接受 )联合体投标。
  • 预算655万 中国科学院过程工程研究所采购1台高分辨三维X射线显微分析仪
    p  日前,中国科学院过程工程研究所发布高分辨三维X射线显微分析仪采购项目招标公告,预算655万元采购1台高分辨三维X射线显微分析仪,允许进口。以下为招标公告主要内容:/pp  项目名称:中国科学院过程工程研究所高分辨三维X射线显微分析仪采购项目/pp  项目编号:OITC-G190331180/pp  项目联系方式:/pp  项目联系人:于峰/pp  项目联系电话:010-68290507/pp  采购单位联系方式:/pp  采购单位:中国科学院过程工程研究所/pp  地址:北京市海淀区中关村北二街1号/pp  联系方式:010-82545057/pp  代理机构联系方式:/pp  代理机构:东方国际招标有限责任公司/pp  代理机构联系人:010-68290507/pp  代理机构地址: 北京市海淀区西三环北路甲2号院科技园6号楼13层01室/pp  一、采购项目的名称、数量、简要规格描述或项目基本概况介绍:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/4237e55a-aad9-4fa6-a92d-ec1018642521.jpg" title="采购内容.jpg" alt="采购内容.jpg"//pp  二、投标截止时间:2019年09月27日 09:30/pp  三、开标时间:2019年09月27日 09:30/pp  四、开标地点:/pp  北京市海淀区西三环北路甲2号院科技园6号楼13层第1会议室/pp  附:strongimg src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style="vertical-align: middle margin-right: 2px "//strongstrong style="color: rgb(0, 102, 204) text-decoration: underline font-family: 宋体, SimSun font-size: 18px "span style="font-family: 宋体, SimSun font-size: 18px "a href="https://img1.17img.cn/17img/files/201909/attachment/25ce887b-0d47-4945-ad8d-d72f14975a88.docx" title="采购需求.docx" style="color: rgb(0, 102, 204) text-decoration: underline font-family: 宋体, SimSun font-size: 18px "采购需求.docx/a/span/strong/p
  • 高分文献年年有!盘点使用PR蛋白稳定性分析仪发布的国内外文献
    从应用方向上看,科研/生物医药领域的研究人员借助PR系列蛋白稳定性分析仪的多维度组合模块和功能,可实时同步评估蛋白热稳定性,胶体稳定性,聚集体与粒径等信息,为生物制品、结构生物学、蛋白表征以及Thermal Shift Assay(TSA)等研究提供强大助力,PR提供的组合方法及四种技术模块早已成为CNS必备的高分神器,也是您的理想之选! 👉 点击此处,查看详细文献列表👈 选择PR获取实验所需的多维度参数信息,您将看到其他技术所不能提供的稳定性数据。选择PR让您获得更可靠的、高分辨率的蛋白质稳定性数据,检测出不易被发现的稳定性行为,让您对检测结果充满信心!
  • 日立分析仪器发布新款高分辨率探测器SDD款XRF镀层测厚仪X-Strata920
    2018年6月19日,英国牛津:日立分析仪器公司(日立分析仪器),是日立高新技术公司(TSE:8036)旗下一家从事分析和测量仪器的制造与销售业务的全资子公司。今日,日立分析仪器拓展了XRF镀层测厚仪 X-Strata920 的功能,添置了新型高分辨率探测器和新型样品台配置。 日立分析仪器XRF镀层测厚仪系列在电子和金属表面处理行业已有超过40年镀层分析的成功经验。X-Strata920可确保镀层符合规格要求,并将镀层过量或过少镀层废料造成的浪费减至最少。随着X-Strata功能的扩展,用户可以通过该仪器进行更多工作。 这一款新型X-Strata意味着可选择高分辨率硅漂移探测器(SDD)或正比计数器定制仪器,以优化其性能。此外,它现在拥有四个腔室和基座配置,可处理各种形状和尺寸的样品,包括汽车行业中的复杂几何形状。 对于复杂的镀层结构,SDD可以提供优于正比计数器的优势,因为它更易分析具有类似XRF特征的元素,例如镍和铜。这扩大了可以用于分析的元素范围,包括磷 — 对于化学镀镍分析非常关键,并且可以更精确地测量较薄镀层,例如符合IPC-4552A的纳米范围的金。 日立分析仪器产品业务发展经理Matt KREINER表示:“X-Strata920以及日立分析仪器产品系列的其他XRF仪器因其未来前景、可靠性和易用性而闻名。SDD的加入以及多种配置选择能提高我们客户的分析能力和灵活性,以测量大量零件的复杂镀层。我们保留了高度直观的SmartLink软件,因此任何操作员(无论经验水平如何)都能够快速学会使用仪器并获得准确可靠的结果。我们的镀层产品,包括高级FT150微焦斑镀层测厚仪、手持式XRF光谱仪以及可进行快速便携式分析的CMI系列,40多年来在镀层测量领域一直深受信赖,我们很高兴能够提供这些改进成果。”
  • 高分子表征技术专题——热重分析技术及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!热重分析技术及其在高分子表征中的应用ThermogravimetricAnalysisTechnologyandItsApplicationinPolymerCharacterization作者:谢启源,陈丹丹,丁延伟*作者机构:中国科学技术大学,火灾科学国家重点实验室,合肥,230026 中国科学技术大学,合肥微尺度物质科学国家研究中心,合肥,230026  作者简介:  丁延伟,男,1975年生.博士、中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师.自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国分析测试协会青年学术委员会委员.曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项.编著《热分析基础》《热分析实验方案设计与曲线解析概论》.    摘要  热重分析技术(TGA)是在程序控制温度和设定气氛下表征材料受热过程中的质量随温度或时间变化的高精度研究工具,具有重复性好、灵敏度高和热过程控制精准等优点.近年来,TGA技术在高分子材料领域得到了广泛应用,促进了高分子材料热稳定性、组成分析以及热分解机理等材料细观热响应特性的深入研究.本文分别从热重分析基本原理、仪器校准、实验方案设计、实验操作、热重曲线综合解析以及各环节中易出现的不当操作、异常数据与解决方案等方面进行阐述,并给出了在高分子科学研究领域中的典型应用案例、未来发展趋势及机遇与挑战.在实际的应用中,基于TGA与傅里叶红外光谱(FTIR)、示差扫描量热法(DSC)、气相色谱-质谱联用(GC/MS)等技术的联用分析,将有利于进一步揭示高分子材料在不同气氛和热激励等条件下的详细热响应信息,为性能优异的新型高层分子材料研发与设计、热解机理及燃烧蔓延动力学等领域提供支撑和指导.  AbstractThermogravimetricanalysistechnology(TGA)isanefficientresearchtoolthatcharacterizestheweightofmaterialswithtemperatureortimeunderaprogramcontrolledtemperatureandacertainatmosphere.OneofitsadvantagesisthattheTGAresultscanbewellrepeatedwithhighsensitivity.Inaddition,itsheatingprocessisaccuratelyandflexiblycontrolledaccordingtorealthermalenvironmentofsamples.Inrecentyears,TGAispopularlyusedinthefieldofpolymermaterials,whichpromotesthedetailedanalysesontheirthermalstability,compositionanalysisandthermaldecompositionmechanismetal.ThisreviewwillcovermanyaspectsofTGA,includingbasicprinciples,calibration,schemedesign,curveanalysis,aswellasthosecommonerrorsduringsamplepreparationandexperiments,abnormaldatafiguringandthesolutionforthem.Additionally,thetypicalapplicationcasesofTGAinpolymerscience,aswellastheiropportunityandchallengesinfuture,arealsopresented.IntheapplicationsofTGAtechnology,moreinformationaboutthethermal-responsebehaviorofpolymersunderdifferentatmosphereandheatingconditionscouldberevealedbyTGAcoupledwithFTIR,DSC,GC/MStechnology.Inthiscase,notonlytheweightinformationofsampleduringaspecificheatingcondition,butalsotheendothermicandexothermicbehaviors,releasedgascomponentsatthesametimecanbeanalyzedtogether.Theyarehelpfulfornewpolymerdesign,thermaldecompositionmechanismandflamespreadmodelsdevelopment.   关键词  热重分析技术  曲线解析  热稳定性  热解机理  案例分析  Keywords  Thermogravimetricanalysistechnology  Curveanalysis  Thermalstability  Thermaldecompositionmechanism  Caseanalysis   1热重分析技术简介  1.1热分析技术  作为现代仪器分析方法的一个重要分支,热分析技术在许多领域中得到了广泛应用[1~3].经历一百余年发展,热分析法与色谱法、光谱法、质谱法、波谱法等一起,构成了物质理化性能分析的最常用手段[4].  热分析技术是研究物质随温度变化而发生物理过程与化学反应的一种实验技术[4].该技术的主要理论基础包括:物质的平衡状态热力学、非平衡状态热力学、不可逆过程热力学和动力学等,针对微量样品,通过精确测定其宏观参数,如质量、热量、体积等随温度的变化关系,研究物质随温度变化而发生的物理和化学变化[4].  我国于2008年5月发布国家标准《GB/T6425-2008热分析术语》[5],其中,对热分析技术的定义为:“在程序控制温度(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术.”  国际热分析与量热协会(InternationalConfederationforThermalAnalysisandCalorimetry,ICTAC)根据所测定的物理性质不同,将现有的热分析技术划分为9类17种[6].  1.2热重分析技术的定义  热重分析技术(thermogravimetry,TG)是指在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程[4,5].基于TG法,可对物质进行定性分析、组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域.在实际的材料分析中,TG法也常与其他分析方法联用,进行综合热分析,从而全面、准确地分析材料的各项热性质.  1.3热重分析的数学表达式  根据定义,样品在热重分析过程的质量随温度或时间的变化,可用下式表示:(1)  或(2)  其中,式(1)多用于等温(或包含等温)条件下测得TG实验曲线,而式(2)则多用于非等温条件下的TG实验曲线.  在实际表示中,为突出“测量”过程,常用重量(weight)来代替质量(mass).  1.4微商热重法简介  微商热重曲线(derivativethermogravimetriccurve,DTG曲线)是TG曲线进行一次微商的结果.因此,DTG曲线表征样品质量随温度或时间的变化速率,其峰值即为样品质量减小的最大速率.对于线性升温加热条件下的DTG曲线,其纵坐标单位一般是%/℃,表示温度升高1℃时,样品的相对质量变化.而对于等温实验,DTG曲线纵坐标单位一般是%/s.  微商热重法的数学表达式为:(3)  线性程序控制温度时,也可用下式表式(4)  式中,β为实验中所采用的加热或降温速率,单位℃/min.  如前所述,DTG曲线表征样品质量的变化速率,因此,为进一步分析样品质量变化的加速或减速特性,类似地,可对DTG曲线进行再次微商处理,得到二阶微商热重曲线,即DDTG曲线.目前大多数商品化仪器,DTG曲线可通过仪器自带的微商处理功能直接转换得到.与TG曲线相比,DTG曲线给出的样品质量随温度的变化速度信息,常常更直接反映了样品失重特性.图1给出了XLPE在10℃/min的加热速率下得到的TG曲线和DTG曲线,由图可见,随着温度的升高,XLPE在410~470℃温度区间急剧失重,交联聚乙烯在此温度区间迅速裂解,样品质量减少约95%,DTG曲线失重峰,对应于TG曲线的失重台阶,而由TG曲线,也可见样品受热失重后最终的残余质量.Fig.1TGandDTGcurvesofXLPEwiththeheatingrateof10℃/mininairatmosphere.    1.5热重分析的优缺点  1.5.1优点  热重法针对微量样品进行实验,具有操作简便、可重复性强、精度高、响应灵敏快速等优点.热重法可准确测量物质在不同受热和气氛条件下的质量变化特征.例如:对于升华、汽化、吸附、解吸、吸收和气固反应等质量可能发生变化的物理和化学过程,都可使用热重法进行检测与分析.此外,对于熔融、结晶和玻璃化转变等往往不形成质量变化的热过程,也可通过热重分析与其他热分析方法联用,给出所关注热行为所在温度区间的样品质量不变信息,从而支撑所针对热过程的热流分析.  由于热重法所测结果可重复性强且精度高,基于热失重数据的动力学参数计算与分析,也更具可靠性.此外,热重法仅需微量样品.因此,针对不同的样品牌号、老化样品的不同区域,都可取样进行细致分析,可深入研究各产品间的细微差异,例如:产品在使用一段时间后的材料分相行为等.  1.5.2缺点  在实际应用中,热重法也存在着一定的局限性,主要包括两个方面:样品质量变化信息表征其复杂热行为的单一局限性、微量样品检测结果与工程尺度样品实际热响应性能的一致性.  首先,对于复杂的材料受热响应性能,热重法主要针对样品在整个受热过程中所形成气相产物溢出而导致的质量减少特征,在不同温度区间或不同受热时刻的细致质量减少信息,是热重分析输出的关键数据.由于大多物理和化学过程往往都伴随着质量的变化,因此,样品的质量变化信息能够很大程度上表征各温度/时间区间的反应强度,然而,若需进一步确定其中详细的反应机理等信息,单凭热重数据往往并不完备.因此,可通过将热重技术与其他分析技术联用,综合分析材料的详细热响应行为.  其次,如前所述,针对微量样品,热重分析可实现其测量结果及其后续计算分析的精确性与可靠性等优点.然而,也正因为所检测样品的微量特性,使其测量结果不一定与工程尺度样品实际热响应性能完全一致,甚至由于实际工程中的复杂传热传质耦合过程,使热重分析不宜简单、直接地进行应用.因此,一方面,进行热重分析时,应首先清晰掌握材料的实际工程应用背景,科学系统地制定热重实验方案,并进行多工况数据的综合分析,从而确保热重分析数据与实际工程应用场景的吻合与一致 另一方面,在条件具备时,基于热重分析结果,应进行一定的放大尺度条件下的实验研究,综合不同尺度条件下的测量结果,给出材料真实热响应性能.  2热重分析仪及其工作原理  2.1工作原理  热重分析仪(thermogravimetricanalyzer)是在程序控制温度和一定气氛下,测量试样的质量随温度或时间连续变化关系的仪器.测量时,通常将装有试样的坩埚置于与质量测量装置相连的试样支持器中,在预先设定的程序控制温度和一定气氛下,进行实验测量与数据实时采集.  热重分析仪的质量测量方式主要有2种:变位法和零位法[4].变位法是根据天平横梁倾斜的程度与质量变化成比例的关系,用差动变压器等检测该倾斜度,并自动记录所得到的质量变化信息.零位法是采用差动变压器法、光学法等技术测定天平梁的倾斜度,通过调整安装在天平系统和磁场中线圈的电流,使线圈转动抑制天平横梁的倾斜.由于线圈转动所施加的力与质量变化成比例,该力与线圈中的电流成比例,通过测量电流的变化,即可得到质量变化曲线.  2.2仪器组成与结构形式  热重分析仪主要由仪器主机(程序温度控制系统、炉体、支持器组件、气氛控制系统、样品温度测量系统、质量测量系统等)、仪器辅助设备(自动进样器、压力控制装置、光照、冷却装置等)、仪器控制和数据采集及处理模块组成.图2给出了热重分析仪的结构组成示意图.Fig.2SchematicoftypicalTGequipmentwiththesampleinaheatingfurnace,whosetemperatureiscontrolledwithaprogram.    根据试样与天平刀线之间相对位置的不同,可将热重分析仪分为3类:下皿式、上皿式和水平式,其结构框图分别如图3~图5所示.Fig.3SchematicofTGequipmentwiththecrucibleatlowerpositionoftheverticalheatingfurnace.  Fig.4SchematicofTGequipmentwiththecrucibleathigherpositionoftheverticalheatingfurnace.  Fig.5SchematicofTGequipmentwiththehorizontal.    由图3~图5可见,仪器质量检测单元的天平与常规分析天平不同.该类天平横梁的一端或两端置于气氛控制的加热炉中,可以连续记录试样质量随温度或时间的变化.温度变化通过加热炉进行程序控制,试样周围温度通常用热电偶实时测量.热天平和热电偶所测数据,由仪器内置软件进行记录与处理线.  2.3基于热重分析的联用技术简介  如前所述,热重分析仪自身存在一定局限性,通常可将其与其他分析技术联用,从而对样品热响应行为进行全面分析.常用联用技术如下所述[4].  (1)同时联用技术.是指在程序控温和一定气氛下,对一个试样同时采用2种或多种热分析技术.主要包括:热重-示差扫描量热联用(TG-DSC)和热重-差热联用(TG-DTA),它们通常统称为同步热分析技术,简称STA.  (2)串接联用技术.是指在程序控温和一定气氛下,对一个试样采用2种或多种热分析技术,后一种分析仪器与前一种分析仪器进行串接.常用可串接联用技术包括:红外光谱技术(IR)、质谱技术(MS)、气相色谱技术(GC)等.此外,对于串接联用技术,可采用2种联用模式,连续串接和间歇串接模式.前者模式下,各联用技术均连续采样分析 而后种模式下,最后一级串接仪器进行间歇式采样与分析.  2.4仪器校准与状态评价  2.4.1仪器的校准  为了确保仪器工作正常和数据准确,在热重分析仪正式投入使用之前和使用期间,需分别对仪器的温度和质量测量器件进行校正.由于不同热重分析仪结构类型的差异,其校准方法存在着一定差别.  2.4.2温度校正  温度校正(temperaturecorrection)是用已知转变温度的标准物质确定仪器的测量值(Tm)和真实值(Ttr)之间关系的操作过程.通过温度校正,可得到以下关系式:(5)  其中,ΔTcorr为温度校正值.  通过温度校正,可以消除仪器的温度测量值与真实值之间的差别.例如:当使用熔融温度为156.6℃的金属In进行温度校正时,若所测熔融温度为154.1℃,则(6)  因此,在温度校正时,测量值应增加2.5℃.  进行仪器温度校正后,通常,还应在相同的实验条件下,使用标准物质进行重复实验,验证测量值与真实值之间的偏离程度.  在实际应用中,当温度范围较宽时,通常需要使用具有不同特征温度的系列标准物质,进行多点温度校正.在实际校正时,可在仪器的校正软件中分别输入相应测量值,由仪器软件生成相应的校正曲线.  对于大多商品化热重分析仪,常用的温度校正方法主要包括以下几种:  (1)居里点法.居里点法是在磁场的作用下,将铁磁性标准物质加热到某一温度时,其磁性很快完全消失而引起质量变化的原理来对温度进行校正的方法[7,8].磁性消失时所对应的温度通常称之为铁磁性材料的居里温度(Tc).居里温度只与材料的组分有关.  通常使用具有确定居里温度值的纯金属或合金作为标准物质,该温度校正过程实质上为磁性温度的测量[9].图6为使用几种磁性标准物质进行校准时得到的TG和DTG曲线.此外,通过该方法可以在单次实验中测量多个磁性样品的转变过程.Fig.6TGandDTGcurvesofseveralmagneticmaterialsfortemperaturecalibrationofTGequipmentwiththeheatingrateof10℃/mininN2atmosphere.    (2)吊丝熔断法.吊丝熔断法通过将熔点已知的纯金属细丝固定悬挂在样品支撑系统附近位置,当温度升高至其熔点时,该金属丝发生熔化并从其支撑件滴落[10,11].通过确定在已知温度熔融而引起的表观质量变化对应的温度,从而校准仪器温度.  (3)特征分解温度法.特征分解温度法是通过结构已知物质的初始分解温度来进行仪器温度校正[12].此处所指的初始分解温度为失重速率达到某一预定值之前的试样温度.标准物质应具有以下特性:在温度达到其特征分解值前具有足够的稳定性 特征分解温度具有重现性 不同来源得到的同种标准物质,其初始分解温度差异较小.  当采用热重分析仪与差热分析或示差扫描量热技术进行联用时,也可利用试样在实验过程中随温度变化而引起的熔融、晶型转变等过程产生的特征热效应,对仪器进行温度校正[13~15].例如:通过一些具有可逆“固↔固”转变或“固↔液”转变过程的物质来进行温度校正.  2.4.3质量校正  常用的质量校正方法主要包括2种:静态质量校正和动态质量校正.  (1)静态质量校正法.在某一个设定的温度和气氛下,通过对已知质量为m0的砝码进行称重测量,确定测量值mi与m0之间的差值∆mc,即:(7)  在仪器的软件中分别输入mi与m0的数值,在之后的测量中,软件将自动扣除质量差∆mc.  (2)动态质量校正法.在实验过程中,质量基线可能随温度发生一定的漂移.质量基线是在不加任何样品的条件下得到的,理论上,该质量在不同的温度下应始终保持为0.为了使得到的质量更接近真实值,通常采用扣除空白基线法和用已知质量的砝码进行动态质量校正方法对不同温度下的质量进行整体校正.  在完成以上质量校正后,可用已知分解过程的标准物质,例如:高纯碳酸钙或一水合草酸钙样品,对校正结果进行验证,评价校正结果是否合理.  2.4.4仪器状态评价  仪器在长时间工作过程中,可能出现一些不易被察觉的状态变化,在这种“亚健康”状态下,所测得异常数据一般不易察觉,此时,实验数据的准确性和重复性往往明显较差.由于不同操作人员对仪器状态是否异常的判断标准不同,从而导致采取的措施之间也存在差异,进而对实验结果带来不同程度的影响.  在分别对热重分析仪的温度和质量进行校正之后,还需要按照相应的检定规程或者校准规范等的要求,对校正结果进行评价,以确认仪器的工作状态是否可以满足实验的要求.  1997年,原国家教委于发布了《JJG(教委)014-1996热分析仪检定规程》[16],其中对于新安装、使用中和修理后的热重分析仪(TG)等仪器的检定做了规范.此外,原国家质量监督检验检疫总局分别于2017年和2002年发布了热重分析仪检定规程《JJG1135-2017热重分析仪检定规程》[17]和《JJG936-2002示差扫描热量计检定规程》[18].  3热重分析实验方案设计  3.1实验方案设计的重要性  热重实验方案设计决定着实验成败.如前所述,热重仪具有多种结构形式,在实际应用中应首先根据实验需求,选择结构形式合适的热重仪[19].例如:当需要研究易氧化试样在惰性气氛下的热行为时,应选择具有较好密封性的热重仪.此外,对于一些重量变化不明显的过程,在选择仪器时,应考虑仪器的天平质量测量灵敏度和量程.  在选定合适的热重分析仪后,还需要选择合适的实验条件,主要包括以下几个方面:试样状态(粉末、薄膜、颗粒、块体等)、试样用量、试样容器的材质和形状、实验温度范围及控制方式、实验气氛的种类和流速,以及其他条件,包括湿度控制、光照等.  此外,在实验过程中所用试样的来源、前处理方式、试样容器以及实验所用仪器自身的差异等,也可能对最终的实验结果带来影响.如果忽视这些影响因素,往往很难得到较好的热分析实验结果,甚至可能得到错误的实验结论.  3.2实验方案设计的主要内容  3.2.1热重分析仪的选择  选择合适的热重分析仪是确定热分析实验方案的第一步.在进行实验之前,应根据实验目的和样品信息,选择合适的热重分析仪.这里所指的热重分析仪,不仅仅局限于独立式热重分析仪,还包括与热重分析仪联用的热重-差热分析仪、热重-示差扫描量热仪、热重/红外光谱联用仪、热重/质谱联用仪、热重/气相色谱/质谱联用仪等形式的热分析联用仪.  在实际应用中,对于下皿式、上皿式和水平式等不同结构形式的热重仪,其性能参数(如灵敏度、控温精度等)、气氛气体的流动方式、实验温度范围、温度变化速率范围等存在一定的差异.此外,有时需要根据特殊的实验目的,在真空、高压、还原气氛、强氧化气氛、腐蚀性气氛、蒸汽等特殊条件下进行实验,此时,更应关注所选热重仪是否满足实验要求.  如前所述,在一些应用中,除了需要得到样品在加热过程中的质量信息之外,还需测量其中的热效应、生成气体种类和含量等,此时,则应采用与热重分析仪联用的相关仪器.  关于商品化热重分析仪的选用,经过近几十年的发展,当前,国外主流仪器厂商如德国Netzsch、美国TA、美国PerkinElmer、瑞士MettlerToledo等均生产有适用不同温度范围的热重分析仪和TG-DSC同步热分析仪,各型号仪器的灵敏度与可重复等性能都可满足聚合材料的常规性能测试要求,且大多均可配置自动进样器等辅助配件,提高仪器工作效率.此外,上述仪器厂商所产热重分析仪可与红外光谱仪、气相色谱仪、质谱仪中的一种或者多种进行联用,对逸出气体组分等进行综合测量.各仪器厂商的联用技术与方式存在一定差异,以满足不同的领域需求.不同型号仪器的联用技术也各有优势,应根据实际需求,合理选用.其中,德国Netzsch公司的多级热分析联用仪可实现热重分析仪与红外光谱仪、质谱、气质联用仪的联用,可以分别实现红外光谱仪与质谱、气质联用仪串接式联用和并联式联用的连接形式 瑞士MettlerToledo公司的热重分析/红外光谱/气质联用仪可实现多段气体的采集与分析功能 美国PerkinElmer公司的热重分析/红外光谱/气质联用仪可以通过八通阀的灵活切换,实现在线分析和分离分析等多模式实验测量.  3.2.2实验操作条件的选择  由热重实验得到的曲线受操作条件的影响十分显著,在应用中,应针对影响热重曲线的因素,选择合适的操作条件.主要包括:试样状态、实验气氛、温度控制程序、实验容器或支架、环境特殊实验条件、采集软件参数等.  (1)试样量/试样形状的选择.由于热重分析仪器的种类、结构形式以及实验条件等因素的差异,不同的热分析仪器对试样量或试样形状的要求差别较大.  通常情况下,热重实验的样品用量为坩埚体积的1/3~1/2.对于密度较大的无机样品,试样质量一般为10~20mg 对于在实验过程中不发生熔融的样品,在确保仪器安全的前提下,可适当加大试样量.热分析串接联用的仪器对试样的要求,与该类热分析仪对试样的要求相同.  在实际应用中,大多数热重实验对样品状态没有严格的要求,液态、块状、粉状、晶态、非晶态等形式均可以进行热重实验.实验前,可以不进行专门的处理,直接进行测试.对于较潮湿的样品,一般在实验前需进行干燥处理,以避免因溶剂或吸潮而引起曲线失真.  此外,实验时,所用试样的粒度及形状也可能影响所得热分析曲线的形状.试样粒径的不同,往往引起气体产物扩散变化,导致气体的逸出速率变化,从而引起曲线形状的变化.一般情况下,试样的粒径越小,反应速率越快,对应曲线的起始分解温度和终止分解温度也降低,同时,反应区间变窄,分解反应也越彻底.  (2)实验气氛的选择.在热重实验中可选择的气氛通常为静态(真空、高压、自然气氛)或动态气氛(氧化性气氛、还原性气氛、惰性气氛、反应性气氛),实验时,应根据需要,选择合适的实验气氛和流速.实验气氛的流速一般不宜过大,过大的流速往往导致较轻试样来不及发生完全分解而被气流带离测量体系,从而影响热分析曲线的形状.另一方面,过低的流速也不利于分解产物及时排出,往往使分解温度升高,严重时可能影响反应机理.  在选择实验气氛时,应明确实验气氛在实验过程中的作用,这里给出几种常用选择原则:如果仅是通过气氛使炉内温度保持均匀、及时将实验过程中产生的气体产物带离实验体系,通常选用惰性气氛 如果需要研究试样在特定气氛下的行为时,应选择特定的实验气氛,此时的气氛的作用可以是惰性气氛,也可以是反应性气氛 当需要研究试样在自然气氛下的热行为时,样品室无需通入气氛气体,将流速设为0或者关闭气体开关,此时,若试样发生分解,可能污染检测器 对于相邻的2个过程,可通过改变实验气氛,实现相邻过程的有效分离 对于含有复合材料或含有有机物的混合物,可根据各组分在不同温度范围发生的热分解过程,确定热稳定性不同的组分的含量 当使用反应性气氛时,应充分评估气氛对仪器关键部件的安全性,某些反应性气氛如H2、纯氧等在高温下可能与仪器的关键部件发生反应,对仪器造成不可逆的损害.  (3)温度控制程序的选择.在热重实验中,所采用的温度控制程序主要包括加热、降温、等温以及这些方式的组合等形式,其中,主要包括温度扫描速度和温度范围的确定.  对于温度扫描速率,若采用线性加热或降温过程,采用较快的加热速率,可有效提高仪器的灵敏度,然而可能导致分辨率下降,从而使相邻的过程较难分离.一般情况下,在实际应用中,应综合考虑转变的性质和仪器的灵敏度,综合选择一个合适的温度扫描速率.对于热重实验,最常用的温度扫描速率为10℃/min.  对于温度范围,应根据样品的性质和实验目的,进行合适选择.大多热重实验从室温开始进行,最高温度基于实验中可观察到所关注变化过程进行设定.对于热稳定性较低的物质,最高实验温度以覆盖物质的分解过程即可,不设为仪器可达最高温度.  在进行等温实验时,从开始温度达到设定温度所需的时间越短越好,即热惯性越小越好,以避免所关注的变化在达到设定温度的过程中已经发生.  (4)实验容器或支持器的选择.对于热重分析仪,其测试对象主要呈粉末状,通常用坩埚盛装样品.无论是坩埚还是支架,在实验过程中均不能与试样发生任何反应.  一般来说,用于热重实验的坩埚主要有敞开式和密封式2类.常用坩埚的材质有铝、石墨、金、白金、银、陶瓷和不锈钢等,实验时,应根据样品的状态、性质和测量目的合理地选择坩埚的形状和材质.  对于剧烈分解的样品,在热重实验中,应尽量减少试样用量,且应多使用浅皿坩埚.同时,应增大气氛气体的流速,从而及时带离分解产物.当使用敞口坩埚时,若出现迸溅现象而使试样未完全分解却被带出坩埚的情形,可通过坩埚加盖扎孔的方法解决.即,在盖子中心位置扎一个圆形小孔,以便实验过程中产生的气体及时逸出.与不加盖时的结果相比,由加盖坩埚所得热分析曲线形状往往明显变化,相应特征温度也升高.  在选择坩埚材质时,还应考虑坩埚需承受的最高温度及其惰性特征,例如:铝坩埚的最高使用温度不超过600℃.如需进行更高温度实验,可选用金坩埚或铂坩埚.而分解反应的热重实验一般不用铝坩埚,常用氧化铝、陶瓷、铂、铜、不锈钢等材质.由于铂对棉纤维、聚丙烯腈等物质反应具有催化作用,因此,若样品中含磷、硫和卤素,则不可用铂坩埚.此外,陶瓷类坩埚通常不适用于碱性物质、含氟聚合物及硅化合物的热重实验.  (5)环境特殊实验条件的选择.进行热重实验时,有时还需根据实验目的和样品种类,选择是否需要控制环境湿度、磁场、电场、光照等条件.  在实际应用中,应结合具体的实验目的,判断所使用的热分析仪能否满足实验要求的特殊条件,仪器通常以附件的形式来实现上述的特殊实验条件.  (6)数据采集频率的设置.通常情况下,1数据点/s的采集频率足以准确记录试样质量变化信息.对于一些非常快的变化过程,仪器默认的数据采集频率无法实时记录下该过程中的变化信息,此时,应增大采集频率.而对于耗时较长的等温实验或较低加热速率的实验,则不宜使用1数据点/s的采集频率,应降低数据采集频率.  4热重实验过程  4.1样品准备  理论上,一切非气态的试样都可以直接通过热重实验,测量其质量在一定气氛和程序控制温度下随温度或时间的连续变化过程.待测样品,应根据实验目的,进行合理制样或取样,并标明相应信息.由于热重实验所需样品量极少,应避免样品局部取样和混合不均等问题.此外,由于由不同状态的试样所得热重曲线的差别往往较大,因此,选择合适的试样状态对能否得到合理的实验结果十分关键.一般来说,不同状态的试样需做一些相应的处理才可用于热重实验.  4.2实验测试  在完成样品准备和实验条件选择之后,即可开始进行热重实验测量.整个测量过程主要包括:仪器准备、样品制备、设定实验条件和样品信息、开始实验等过程[4].  4.2.1仪器准备  若实验室供电正常,热重实验仪一般24h开机,当重新开机时,应开起仪器使其至少预热平衡30min.若仪器虽在正常使用中,调整了气氛气体,也应使仪器在调整后气氛条件下,平衡至少30min,以使炉内气体浓度保持一致.  在仪器处于平衡稳定的状态下,正式开始实验前,还应对实验中使用的坩埚进行质量扣除,即,“清零”操作,具体做法如下:  (a)将一个洁净的空坩埚置于样品支架或吊篮上,若热重仪为水平式或上皿式,应在参比支架上放置一个质量相近的同类型坩埚.关上加热炉,使天平所测质量几乎不变,几分钟后,按下面板上或仪器控制软件中的“清零”按钮.完成这一操作后,若显示的质量变化很小,则表明实验中所用的坩埚的空白质量已经扣除,装入试样后,软件显示的质量即为试样绝对质量.  在热重实验过程中,若坩埚需使用扎孔上盖或坩埚内需加稀释剂,则坩埚盖或所加稀释剂质量也应扣除.  (b)打开加热炉,将坩埚取下,用于盛装待测实验样品.对于配置自动进样器的热重仪,可集中对多个空白坩埚依次进行清零操作,软件将对自动进样器中各编号坩埚清零过程中的质量差异进行分别记录,使用时,应避免混淆坩埚顺序.  4.2.2制样  将待实验的试样放入已扣除空白质量坩埚中,试样量一般不应超过坩埚体积的1/3~1/2.对于含能材料等在高温下易剧烈分解或可熔融样品,试样用量能覆盖坩埚底部即可.对于易剧烈分解样品,也可使用较大尺寸坩埚或加入稀释剂的方法,减少试样热分解过程对支架或吊篮的损害.  对于组成不同、结构相近的系列试样,为消除试样量对实验曲线的影响,同一系列实验中,各次试样用量应相近.  将适量试样加入至坩埚后,可用镊子夹住坩埚在桌面上轻敲几次,使试样均匀分布于坩埚底部.对于易挥发、不稳定的液体黏稠试样或易吸潮的粉末试样,应尽快加载和摇匀坩埚内试样,减少试样在空气中的变化.  之后,打开加热炉,用镊子将坩埚置于热重仪的吊篮或支架上,并及时关上加热炉腔体,待试样信息设置完毕和样品质量读数稳定后,即可开始实验.  对于一些较易挥发的液体试样,在天平清零操作后,应提前在控制软件中设定相应信息,从而缩短实验开始前的等待时间.  4.2.3设定试样信息和实验条件等信息  目前的商品化热重仪都配有相应的控制软件和数据分析软件,不同厂家的仪器的软件界面各不相同,但在软件中需输入的试样信息和实验条件等大多相似.在软件中所输入的信息,可在后期的数据分析过程中查看.  在正式实验开始前,控制软件中应输入的信息主要有:  (1)样品信息.包括样品名称、编号、送样人、实验人、批次、文件名等.目前大多数热重仪软件不支持中文输入,建议多用英文字母和数字,尽量避免使用“%、?、/”以及汉字等字符.  当使用自动进样器时,除以上信息外,还应输入坩埚所对应的位置序号.  (2)实验条件信息.主要包括试样质量、温度程序信息、坩埚参数、气氛种类及流速以及数据采集频率等其他信息.  4.2.4运行实验测量  信息输入后,待试样质量稳定,即可按下控制软件中的“开始”按钮开始实验,加热炉即按设定温度控制程序对试样进行加热、降温、等温等操作,数据将自动保存.实验结束后,包括试样参数、实验程序、实验数据等信息将各自单独生成文件,供后续数据分析与处理所用.  由于热重仪天平的灵敏度较高,实验过程中,工作台附近不可出现较大的振动,加热炉出口区域也不应有较大气流波动.  5热重实验曲线解析  5.1曲线解析概述  热重曲线解析是热重实验过程的重要环节,是获得所测式样热响应特性的关键步骤,曲线解析主要包括以下几个步骤[19]:实验数据导入与基本分析、运用作图软件进一步分析、热重曲线描述、热重曲线初步解析、热重曲线综合解析以及实验报告或科研论文撰写.  5.2在仪器分析软件中的基本数据处理  5.2.1仪器分析软件中实验数据的导入  各组热重实验完成后,在仪器附带的数据分析软件中,可导入数据文件并进行数据处理与分析,不同厂商的数据文件的格式可能存在一定的差异,但都可转化输出为Excel等通用软件可读格式文件,以便于后续数据处理与分析.  5.2.2仪器分析软件中的基本作图  为了便于分析,首先可在软件中对测得的热重曲线的纵坐标进行归一化处理,将纵坐标由绝对质量换算为相对质量.对于仅含一个线性加热程序的热重实验,热重曲线常以温度为横坐标.对于温度程序中含有一个或多个等温段的实验,则其横坐标常用时间,此时,在图中也可作出“温度-时间”曲线,以显示各时刻温度.  5.2.3仪器分析软件中的曲线数学处理  在仪器附带的数据分析软件中打开数据文件并进行基本作图之后,也可直接对数据进行换算、求导、积分、平滑等进一步的数学处理.  5.2.4仪器分析软件中确定曲线的特征物理量  热重曲线中质量变化反映了试样性质随温度的变化特性,对于一个变化过程,一般用温度和质量同时描述.常用的特征温度主要包括初始温度(initialtemperature,一般用Ti表示)、外推起始温度(extrapolatedonsettemperature,Tonset)、终止温度(finaltemperature,Tf)、外推终止分解温度(extrapolatedendtemperature,Tendset)、n%分解温度(n%temperature,Tn%)和最快质量变化温度(DTG峰值温度,peaktemperature,Tp),直接使用分析软件,即可在图种标出上述特征温度.  图7给出了热重曲线中各特征温度的位置示意图,具体确定方法如下所述:Fig.7CharacteristictemperaturesinTGcurves(PointA:Initialtemperatureaccordingtoacertainmassloss PointB:Initialtemperatureaccordingtoacertainmasslossrate PointC:Extrapolatedonsettemperature PointD:Extrapolatedendtemperature PointE:Initialtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointF:Endtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointG:Temperatureforthemaximummasslossrate).    (1)以失重数值达到最终失重量的某一百分数时的温度值作为反应起始温度(Ti,图7中A点) 此外,n%反应温度为质量减少n%时的温度,可直接由热重曲线标出(Tn%),常用的n%分解温度主要有0%、1%、5%、10%、15%、20%、25%、50%时的Tn%,其中,0%分解温度特指试样保持质量不变的最高温度.  (2)以质量变化速率达到某一特定数值时的温度作为反应起始温度(Ti,图7中B点).  (3)以反应到达到某一特征点(如:热重曲线斜率最大)时热重曲线的切线与平台延伸线交点所对应的温度作为“外推反应起始温度”(Ti,图7中C点)和“外推反应终止温度”(Tf,图7中D点) 与Ti和Tf相比,Tonset和Tendset受人为主观判断的主影响较小,常用来表示试样的特征分解温度,而Ti和Tf则常用来表示质量变化范围的起止温度.  (4)以反应达到热重曲线上某2个预定点的连线与平台延伸线交点所对应的温度作为反应的起始温度(Ti,图7中E点)和反应终止温度(Tf,图7中F点).  (5)由微商热重曲线中得到的最快质量变化温度也称最大速率温度或微商热重峰值温度(Tp),是指质量变化速率最大的温度(图7中G点),可直接由微商热重曲线的峰值获得,Tp对应是最大质量变化速率,常用(dm/dt)p表示.  在实际应用中,何种方法所确定的初始温度等特征值,往往都存在一定的特殊性和局限性.如图7所示,常用C点外推起始温度或A点预定质量变化百分比(通常为5%)温度来表征物质的热稳定性.  5.2.5专业绘图软件的绘图与处理  当前,大多商品化仪器所附带的数据分析软件都可进行多条曲线的对比分析,也可在软件中直接进行曲线上下移动和线型颜色等编辑.然而,为进行更专业和细致的数据分析与对比,往往将数据转化输出为Text、Excel等通用格式文件,从而采用Origin、Matlab、Tecplot等专业作图软件进行分析,尤其是对多工况、多样品复杂系列实验测量结果的综合分析,即可给出静态的2D和3D图,也可根据实验研究目标,重构特征参数的时空演化动态视频,以满足实验报告、科研论文以及现场交流视频等需要.  5.3热重曲线的解析  5.3.1热重曲线的初步解析  热重曲线的初步解析主要包括如下几点.  (1)结合样品信息解释曲线中发生的变化.曲线中各典型温度区间或时刻所发生变化与样品结构、成分、处理工艺等信息密切相关.  (2)结合实验条件信息解释曲线中发生的变化.实验时采用的实验条件对热重曲线的影响较大,应结合实验所采用温度控制程序、气氛等信息,初步解释热重曲线主要特征形成的主要原因.  5.3.2热重曲线的综合解析  进行材料热响应特性研究时,采用多种实验测试方法进行综合分析,有利于更加客观、全面地揭示其中的本质特性及其影响机制.综合解析主要包括如下几个方面.  (1)通过多种分析技术与热重曲线进行互补与验证分析.例如:通过热重曲线可以得到一定范围内的质量变化信息,对于结构较复杂的物质而言,仅通过热重曲线较难准确获得在实验过程中的结构变化信息.通常利用与热重仪联用的红外光谱、质谱和气相色谱/质联用技术,综合分析在质量减少过程中产生的气体产物信息,从而获得实验过程中样品结构变化特征.  (2)通过外推法对热重曲线进行分析.由于热重曲线大多是在动态温度条件下测得,对应特征量为非热平衡状态的测量值.因此,可进行不同温度扫描速率条件下的系列热重曲线分析,将所得系列特征转变温度对温度变化速率进行数据拟合,并进行0温度变化速率条件下的外推,获得准平衡状态下的特征值.  6在高分子科学中的应用进展  由于可准确地测量物质受热过程中的质量变化及其变化速率,热重法在高分子科学中得到了广泛应用,对于升华、汽化、吸附、解吸、吸收和气固反应等物理和化学过程,都可进行定量检测.近年来,主要应用包括以下几个方面.  6.1聚合物中添加剂的影响  高分子聚合物中添加各类改性物质,是高分子材料设计与性能提升的重要研究方向.聚合物中各添加剂含量的测定,是其性能分析与配方设计的关键环节,根据各物质热稳定性差异,可由TG曲线确定添加剂的含量[20~24].  Dorez等[25]基于TG方法,研究了聚磷酸铵(APP)、磷酸二氢铵(DAP)和磷酸(PA)3种阻燃添加剂分别对聚丁二酸丁二醇酯(PBS)/亚麻纤维(Tfl)复合高分子材料热解性能的影响.图8给出了不同阻燃添加剂条件下的复合高分子聚合物TG曲线和DTG曲线,可见,其热解过程主要分2个阶段.对于不含阻燃添加剂的PBS+Tfl,样品被加热到约370℃时,其TG曲线有一个与亚麻纤维热解对应的肩形失重,而由图8(b)所示的DTG曲线可见,PBS热解主峰在400℃位置.在该复合高分子材料中添加3%质量的APP、DAP和PA后,其热解行为主要呈现2个显著变化.首先,材料的初始热解温度更低,由图8(b)所示的各DTG曲线可见,添加APP、DAP和PA的PBS+Tfl复合高分子材料分别在277、309和259℃出现第一个热解峰,这些热解峰比亚麻热解峰更早.因此,亚麻纤维热稳定性的降低,主要归因于所添加阻燃剂分解产生的磷酸对纤维素的磷酸化作用,该反应改变了纤维素的热解路径,从而有利于亚麻脱水,并形成含碳残留物.此外,PBS+Tfl原复合高分子材料的Res600为7.0%,而添加了APP和PA的材料的Res600为11.7%,可见,阻燃添加剂的加入,使得样品热解后的残留物显著增多.其次,PBS+Tfl原复合高分子材料的DTG峰值温度为400℃,而添加阻燃剂后的DTG峰值温度范围为375~380℃,即,主要热解温度区间降低,主要归因于PBS的热水解反应.Fig.8TG(a)andDTG(b)curvesofPBS+TflandFPBS+Tflwith3wt%variedphosphorousadditives(APP:AmmoniumPolyphosphate DAP:Dihydrogenammoniumphosphate PA:Phosphoricacid)(ReprintedwithpermissionfromRef.‍[25] Copyright(2014)Elsevierpress).    6.2混合物中各组分含量分析  为增强高分子材料的强度、硬度及阻燃等性能,实际使用的高分子聚合物材料中常常包含各类无机和有机组分,TG法也常用于分析确定复合材料和天然高聚物中各组分含量分析[26~28].  Rego等[28]针对9种树木样品,采用热重分析法,基于纤维素、半纤维素、木质素和水分4组分模型,通过高斯方程优化拟合,给出了各树木样品的组成,如表1所示.Table1Lignocellulosicscontents(%mass,drybasis)inthesamplesofpoplargenotypes(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).  图9给出了其中一种木材样品(grimmingegenotype)的曲线拟合结果,如图所示,通过4组分热重曲线的叠加包络曲线,与实验测量的样品热重曲线吻合度高.  Fig.9ExperimentalanddeconvolutedDTGprofileforGrimmingegenotype.Curvesoffourcomponents(water,hemicellulose,celluloseandlignin)andthecombinedoneareshownforcomparisonwiththeexperimentalresults.(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).    图10为氧化石墨烯(GO)和聚丙烯/氧化石墨烯/四氧化三铁(PAA/GO/Fe3O4)纳米复合材料的TG曲线[29].由图可见,对于GO样品而言,由于样品中含氧官能团的分解,TG曲线在250~350℃范围内出现明显了的重量损失.另外,在425~625℃温度范围的质量损失是GO在空气中碳的燃烧引起的.因此,在水溶性的PAA/GO/Fe3O4纳米复合材料的热重曲线中:(1)在50~150℃范围的重量损失是在样品表面物理吸附的残余水引起的 (2)在150~250℃温度范围的重量损失是在合成时加入的有机溶剂和表面活性剂引起的 (3)在350~500℃之间的重量损失是PAA的氧化分解引起的 (4)500~630℃之间的重量损失是GO在空气中碳的燃烧引起的 (5)630℃以上,在实验的温度范围内,质量没有发生明显的变化.Fig.10TGcurvesoftheGO(a)andPAA/GO/Fe3O4(b)nanocomposites(GO:Grapheneoxide PAA:Polyacrylicacid).ForGO,aweightlossfrom250-350℃isascribedtothedecompositionofoxygen-containinggroupsofGO.Theothermasslossfrom425℃to625℃isattributedtotheburningofcarboninGO.ForPAA/GO/Fe3O4,thelossstepover50-150℃mightbeduetothelossofresidualwateradsorbedphysicallyinthesample.Theweightlossaround350-500℃wasduetotheburningofPAA.Theweightlossoverthetemperaturerangeof150-250℃isattributedtotheresidualorganiccompoundsinthesample.(ReprintedwithpermissionfromRef.‍[29] Copyright(2013)TheRoyalsocietyofChemistry).    综合以上分析,由TG曲线可以确定,在PAA/GO/Fe3O4纳米复合材料中PAA:GO:Fe3O4的重量比是1:1:3.基于PAA/GO/Fe3O4纳米复合物的重量和PAA的平均分子量分析,可以估算得到每2个PAA分子连接一个纳米颗粒.  6.3TG-FTIR联用分析案例  Plassauer等[30]针对聚氨酯丙烯酸酯(PUA)和添加了磷酸酯聚氨酯丙烯酸酯(PUA-FR),采用TG-FTIR联用技术,研究了其热解特性.图11中给出了2种样品的TG-DTG曲线,同时,可见,PUA的热解过程主要分为4个阶段,各阶段质量损失分别为4.3%、24.4%、15.9%和52.8%.此外,图12中给出了PUA和PUA-FR在典型温度下的热解产物FTIR吸收光谱.  Fig.11TG(solidlines)andDTGcurves(brokenlines)ofPUAandPUA-FRunderpyrolyticconditionswiththeheatingrateof10℃/mininN2atmosphere.PUA:polyurethaneacrylate PUA-FR:flame-retardantPUAtreatedwithtris(1-chloro-2-propyl)phosphate(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    Fig.12(A)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUAobtainedatdifferentpyrolysistemperatures:(a)200℃,(b)290℃,(c)350℃,(d)470℃ (B)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUA-FRobtainedatdifferentpyrolysistemperatures:(a)290℃ (b)350℃ (c)450℃ (d)510℃(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    综合其热解失重曲线和热解产物吸收光谱图,可见,第一阶段(135~200℃),主要是PUA中PMMA-PHEMA段的初始热解,然而,样品中残留溶剂的蒸发量更大,成为该阶段主要生成物.  在第二阶段(266~310℃),聚丙烯酸酯主链的随机断链更为显著,形成的丙烯酸酯单体是该阶段PMMA-PHEMA段分解的主要产物.  第三阶段(348~385℃),生成了较多的二氧化碳,表明MMA/HEMA单体的分解可能与丙烯酸酯的自由基脱羧有关.对于PUA-FR样品,由于TCPP对聚丙烯酸酯具有中断其释放自由基的作用,因此抑制了该阶段的热解反应,同时由于生成了具有更高热稳定性的含碳产物和聚磷酸盐,并通过酯侧链的脱羧释放出二氧化碳,从而达到阻燃效果.  第四阶段(456~506℃),发生了HDI异氰尿酸盐和少量含羟基部分的快速释放,可见该阶段主要发生氨基甲酸酯键的解离,而从PUA的气体分解产物红外数据,可进一步看出由于氨基甲酸酯键的脱羧和相关尿素的分解,形成了氨基己基异氰尿酸盐.此外,对气体和固体分解产物的红外光谱分析表明,当温度超过400℃时,异氰尿酸盐分解为三聚氰酸和异氰酸.  6.4TG-DSC/MS联用分析案例  Mas等[31]针对二氨基顺丁烯二腈(DAMN),通过TG/DSC-MS联用,研究了DAMN的热解特性,图13给出了氩惰性气氛和20℃/min的升温速率条件下的TG、DSC和MS实验曲线.Fig.13(a)TG,(b)DTGandDSCcurvesand(c)temperature-dependentioniccurrentvariationoftheDAMNattheheatingrateof20℃/mininargonatmosphere.DAMN:Diaminomaleonitrile(ReprintedwithpermissionfromRef.[31] Copyright(2021)Elsevier).    由图13(a)可见,样品受热升温至300℃时,质量损失18%,在温度升高至其熔融转变温度(约180℃)时,DAMN已经开始热解.由图13(b)中的DTG曲线可见,该曲线反映了若干个互有重叠的分解反应,针对DTG曲线的进一步分析表明,其中包含多个DTG峰值的叠加.通过反卷积法,对叠加包络曲线进行分离处理,结果表明,该DTG曲线至少包含2个同步反应.  进一步的耦合峰值反卷积法分析表明,曲线包含3个高斯峰值,其中,如图13(b)可见,前2个峰值较低,而在较高的温度215℃处,有显著更大的另一个峰值.此外,由图13(b)中的DSC曲线可见,在由于材料熔融相变引起的第1个吸热峰位置,存在明显的少量质量损失.  图13(c)给出了DAMN热解反应中的主要气体产物的质谱曲线,其中,由图中所示的m/z=27(HCN+)碎片吸收峰值所在温度可见,脱氢氰酸化反应主要发生于上述热失重曲线的后期,而16(NH2+)、17(NH3+)和18(NH4+)碎片的变化过程,反映的是热过程中的脱氨和脱质子反应.  上述4个碎片的离子电流随温度的变化分布曲线表明,它们在195~225℃温度区间形状相似,并与图13(b)中所示的质量损失速率曲线一致.此外,m/z=28(N2+)和26(CN+)的2个相对低强度质谱曲线,也表明在熔融聚合过程中发生了脱氨和脱氰过程.  6.5热解反应动力学分析  对于大多反应体系,其动力学模型可用式(8)描述.(8)  式中α为体系反应进度或转化率,无量纲 T为温度,K β为升温速率,K/min k(T)为温度对反应速率的影响函数,1/min f(α)为反应进程对反应速率的影响机理函数,无量纲.  转化率α可用式(9)进行计算.(9)  其中m0为样品初始质量,mg m为样品当前质量,mg m∞为结束时样品残余质量,mg.  对于式(8)中的k(T),主要可用2种模型,一是较为通用的阿伦尼乌斯公式[32],如式(10)所示 二是如式(11)所示的H-E模型[33],较不常用.(10)(11)  式中,A为指前因子,1/min E为活化能,J/mol.R为气体常数,J/(molK) C为常数 m为幂指数.  反应进程机理函数f(α)描述了样品反应速率与物质自身含量的关系,不同的反应机理存对应各自的反应进程机理函数形式.其中,最为通用的是n级反应模型,如式(12)所示.(12)  式中,n即为反应级数.  综合整理式(9)、(10)和(12),可得完整的反应动力学模型,如式(13)所示.(13)  可见,上式中主要包含3个动力学参数(A,E,n),它们综合表征了样品热解反应的详细进程,因此,样品热解动力学分析的核心,即为动力学三参数(A,E,n)的求解.在众多求解方法中,常用方法有3类:微分法、积分法和GE算法,其中,前2类为线性分析法,而GE算法为非线性求解法,以下分别介绍.  6.5.1微分法  微分法通常直接针对式(13)进行求解,对于样品仅在单一扫描速率条件下的热重过程进行动力学分析,可称为单扫描速率法.基于n级反应假设,常用的单扫描速率法包含如下3种.  (a)Freeman-Carroll公式[34],通过作图可以由斜率得到活化能,如式(14)所示.(14)  (b)当n=1时,可用Newkirk公式[35],如式(15)所示.(15)  取2个实验点T1和T2,则有:(16)  (c)Achar-Brindley-Sharp公式[36],如式(17)所示(17)  采用不同f(α)函数,由以上线性方程的斜率获得E,由截距求得A.  针对不同扫描速率下测得的多条热重曲线,进行动力学分析的方法称为多重扫描速率法.实际应用中,基于微分形式的多重扫描速率法有以下几种.  (a)Kissinger-Akahira-Sunose公式[37],针对不同升温速率(β)下所测热重曲线峰值对应的温度Tp,可得到式(18),由该线性方程的斜率,可确定E,由截距可确定A.(18)  (b)Friedman公式[38],对于多条不同升温速率β下的热重曲线,选择等转化率α处,有式(19).(19)  由斜率可以求得E,截距为ln[Af(α)].  如果结合n级反应模型假设则可得:(20)  结合不同的α,由式(19)可得确定不同的截距,再基于式(20),由斜率可求得n,由截距可求得A.  此外,还有Vachuska和Vobril法[39]等,在此不再赘述.  6.5.2积分法  积分法则是通过对温度或者时间积分得到g(α)如式(21)所示.(21)  常用的积分法有如下几种.  (a)Horowitz-Metzger公式[40],如式(22)所示.  译(22)(23)  式中,Tr为满足1-α=1/e的参考温度,单位K.θ为当前温度和参考温度的差值,单位K.作lng(α)~θ图,即可由斜率确定活化能.该模型后来进一步修改为Dharwadkar-Karkhanavala公式[41],如式(24)所示.(24)  其中Ti,Tf分别为反应开始和结束的温度,单位K.  (b)Coats-Redfern公式[42],首先,采用Taylor展开取近似,得式(25)(25)  由于RT/E~0,所以,1−2RT/E≈1.式(25)可近似为式(26)(26)  即可基于斜率和截距值,算出E和A.  (c)Flynn-Wall-Ozawa公式[43~45],如式(27)所示.(27)  针对不同的升温速率β下的曲线,在等转化率α处的温度T,作lgβ~1/T图,由斜率可到E.  此外,还有Zsako公式[46]和Satava-Sestak公式[47]等,在此不赘述.  6.5.3非线性动力学求解  随着计算机科学技术的发展,可将动力学三参数的求解转化成一个迭代优化过程,即,将各参数代入反应动力学公式,根据所计算热重曲线和实际热重曲线的误差,调整参数,最终基于误差最小原则,给出最优动力学三参数值.  Tang等[48]针对PVC热解,基于3个平行反应模型,构建动力学计算公式,如式(28)所示.(28)  总的反应转化率则是3个平行反应的叠加,如式(29)所示.(29)  对式(28)中的3个平行反应进行独立求解,其显示差分格式如式(30)所示.(30)  具体计算过程中,可采用当前流行的优化求解方法:遗传算法(GeneticAlgorithm),基于该算法的不断“自然选择-繁殖”迭代,直至达到目标拟合精度.式(31)给出了评价优化参数好坏的误差函数Φ表达.(31)  其中,Φ为模型预测结果和实验值之间的误差 γ为实验和模型预测的反应进度速率(DTG)之间的误差占总误差的权重 α˙exp,i为实验测量的反应速率,1/K α˙cal,i为当前动力学三参数下计算出的反应速率,1/K α˙exp¯¯¯¯¯¯为实验测量的反应速率的均值,1/K αexp,i为实验测量的无量纲反应进度 αcal,i为该动力学3参数下计算出的无量纲反应进度.αexp¯¯¯¯¯¯为实验测量的反应进度均值.M为在特定升温速率下实验数据点的数目.  Tang等[48]基于遗传算法,进行XLPE热重曲线的拟合结果如图14所示,可见,各升温速率下,可算出与热重实验曲线吻合度很高的动力学三参数.Fig.14DTGcurvesforXLPE(Crosslinkedpolyethylene)pyrolysisinatmosphereatdifferentheatingratesandtheoptimaltheoreticalfittingbasedonsingle-scanmethod.TheoptimizationofpyrolysismodelingisbasedontheGA(Geneticalgorithm)method(ReprintedwithpermissionfromRef.[48] Copyright(2018)Elsevier).    7总结与展望  本文综述了热重分析技术在高分子表征领域的主要进展,旨在帮助大家全面掌握TGA技术的实验原理,提高实验操作与数据分析过程的有效性和准确性,进一步推动TGA技术在高分子表征领域的广泛应用.  TGA分析仪将样品精细加热调控技术与高精度质量测量技术联合,从质量变化角度,对高分子材料等受热过程中的物理与化学变化行为进行直接表征.当前,国内外相关仪器厂商的多款TGA分析仪具有的响应灵敏度、测量精度及操作方便性等各项性能已能满足大多高分子性能表征的需要.关于TGA分析仪的未来发展,主要包括如下几点:(1)进一步提高仪器准确度、灵敏度,以及稳定性 (2)不影响灵敏度的前提下,拓宽TGA分析仪的温度范围 (3)超快加热/降温速率的实现 (4)快速等温实验过程中的热惯性的进一步减小 (5)特殊实验过程所需的仪器附件研发,包括高压真空热解腔、温湿度综合控制器等 (6)与TGA分析仪联用仪器的校准方法及标准物质等方面的进一步发展 (7)仪器软件的功能拓展.  此外,关于基于TGA分析的高分子材料应用研究方面,未来机遇与挑战主要包括:(1)基于高分子材料微量样品的高精度热重数据及其计算参数,发展其对于实际工程的应用性模型,即,通过微量样品热分析参数与尺度放大(Scale-up)模型相结合,推动微量样品热分析结果在工程实际的更好应用 (2)在基于TGA分析的材料动力学模型与参数计算,进一步解决其中的动力学补偿效应(kineticcompensationeffect,KCE) (3)TGA分析技术与DSC、FTIR、GC/MS等仪器的无缝联用优化方案设计和联用数据精确、可靠分析.  最后,近年来,在国家对自主优质测试分析仪的大力资助下,具有自主知识产权的国产热重分析仪的研制呈现一些可喜的进展.未来,随着我国科研水平的不断提高,相信在热重分析仪研发方面也能取得更大突破.同时,我国相关仪器厂商也应一步一个脚印、不断提升自主创新能力,才能在日益激烈的热分析市场竞争中处于不败之地.  参考文献  1  SeifiaH,GholamibT,SeificS,GhoreishiaSM,Salavati-NiasaribM.JAnalApplPyrolysis,2020,149:104840.doi:10.1016/j.jaap.2020.104840  2  PeñalverR,Arroyo-ManzanaresN,Lopez-GarcíaI,Hernández-CórdobaM.Chemosphere,2020,242:125170.doi:10.1016/j.chemosphere.2019.125170  3  ChenYongxuan(陈咏萱),ZhouDongshan(周东山),HuWenbing(胡文兵).ActaPolymericaSinica(高分子学报),2021,52(4):423-444  4  DingYanwei(丁延伟).FundamentalsofThermalAnalysis(热分析基础).Hefei(合肥):UniversityofScienceandTechnologyofChinaPress(中国科学技术大学出版社),2020.doi:10.3866/pku.dxhx202012012  5  GB/T6425-2008NomenclatureforThermalAnalysis(热分析术语).NationalStandardsofPeople’sRepublicofChina(中华人民共和国国家标准),2008.doi:10.1016/S1734-1140(13)71006-5  6  IHainesPJ,ThermalMethodsofAnalysis:Principles,ApplicationsandProblems.SpringerScience+BusinessMedia:Dordrecht,1995.Chap1.doi:10.1007/bf02548698  7  NoremSD,O’NeillMJ,GrayAP.ThermochimActa,1970,1:29-38.doi:10.1016/0040-6031(70)85026-2  8  GallagherPK,SchreyF.ThermochimActa,1970,1:465-476.doi:10.1016/0040-6031(70)85017-1  9  OzkanUS,KumthekarMK,KarakasG.JCatal,1997,171:67-76.doi:10.1006/jcat.1997.1793  10  McGhieAR.AnalChem,1983,55:987-988.doi:10.1021/ac00257a047  11  McGhieAR,ChiuJ,FairPG,BlaineRL.ThermochimActa,1983,67:241-250.doi:10.1016/0040-6031(83)80104-x  12  BrownME,BhenguTT,SanyalDK.ThermochimActa,1994,242:141-152.doi:10.1016/0040-6031(94)85016-x  13  GallagherPK,ZhongZ,CharsleyEL,MikhailSA,TodokiM,TanaguchiK,BlaineRL.JThermAnal,1993,40:1423-1430.doi:10.1007/bf02546906  14  WeddleBJ,RobbinsSA,GallagherPK.PureApplChem,1995,67:1843-1847.doi:10.1351/pac199567111843  15  GundlachEM,GallagherPK.JThermAnal,1997,49:1013-1016.doi:10.1007/bf01996788  16  JJG014-1996VerificationRegulationforThermalAnalyzer(热分析仪检定规程).NationalEducationCommissionofPeople’sRepublicofChina(中华人民共和国国家教育委员会),1996.doi:10.1007/978-1-349-24516-1_6  17  JJG1135-2017VerificationRegulationforThermogravimetricAnalyzer(热重分析仪检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2017.doi:10.2753/clg0009-4609390303  18  JJG936-2002VerificationRegulationforDifferentialScanningCalorimeter(示差扫描热量计检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2002.doi:10.1007/BF02856701  19  DingYanwei(丁延伟),ZhengKang(郑康),QianYixiang(钱义祥).IntroductiontoThermalAnalysisExperimentDesignandCurveAnalysis(热分析实验方案设计与曲线解析概论).Beijing(北京):ChemicalIndustryPress(化学工业出版社),2020  20  GibertJP,LopezCuestaJM,BergeretA,CrespyA.PolymDegradStab,2000,67:437-447.doi:10.1016/s0141-3910(99)00142-1  21  SchindlerA,DoedtM,GezginS,MenzelJ,SchmolzerS.JThermAnalCalorim,2017,129:833-842.doi:10.1007/s10973-017-6208-5  22  VogelC,KrugerO,AdamC.JThermAnalCalorim,2016,123:1045-1051.doi:10.1007/s10973-015-5016-z  23  YuanY,MaC,ShiYQ,SongL,HuY,HuWZ,MaterChemPhys,2018,211:42-53.doi:10.1016/j.matchemphys.2018.02.007  24  WangFang(王芳),HaoJianwei(郝建薇),LiZhuoshi(李茁实),ZouHongfei(邹红飞),ActaPolymericaSinica(高分子学报),2016,7:860-870.doi:10.11777/j.issn1000-3304.2016.5329  25  DorezG,TaguetA,FerryL,LopezCuestaJM.PolymDegradStab,2014,102:152-159.doi:10.1016/j.polymdegradstab.2014.01.018  26  HatakeyamaH,JThermAnalCalorim,2014,118:23-30.doi:10.1007/s10973-014-3959-0  27  GerassimidouS,VelisCA,WilliamsPT,KomilisD,WasteManageRes,2020,38(9):942-965.doi:10.1177/0734242x20941085  28  RegoF,DiasAPS,GasguilhoM,RosaFC,RodriguesA.BiomassBioenerg,2019,122:375-380.doi:10.1016/j.biombioe.2019.01.037  29  ZhangWJ,ShiXH,ZhangYX,GuW,LiBY,XianYZ.JMaterChemA,2013,1:1745-1753.doi:10.1039/c2ta00294a  30  PassauerL.ProgOrgCoat,2021,157:106331.doi:10.1016/j.porgcoat.2021.106331  31  MasI,Hortelano,Ruiz-BermejoM,FuenteJL.EurPolymJ,2021,143:110185.doi:10.1016/j.eurpolymj.2020.110185  32  LaidlerKJ.JChemEduc,1984,61(6):494-498.doi:10.1021/ed061p494  33  HarcourtAV.PhilTransR.SocLondA,1913,212:187-204  34  FreemanES.CarrollB.JPhysChem,1958,62(4):394-397.doi:10.1021/j150562a003  35  NewkirkAE.AnalChem,1960,32(12):1558-1563.doi:10.1021/ac60168a006  36  SharpJH,WentworthSA.1969,41(14):2060-2062.doi:10.1021/ac50159a046  37  KissingerHE.AnalChem,1957,29(11):1702-1706.doi:10.1021/ac60131a045  38  FriedmanHL.JPolymSci:PolymSymp,1964,6:183-195.doi:10.1002/polc.5070060121  39  VachuskaJ,VoborilM.ThermochimActa,1971,2(5):379-392.doi:10.1016/0040-6031(71)85014-1  40  HorowitzHH,MetzgerG.AnalyChem,1963,35(10):1464-1468.doi:10.1021/ac60203a013  41  DharwadkarS,KarkhanavalaM.ThermAnal,1980,18(1):185-191.doi:10.1007/bf01909466  42  CoatsAW,RedfernJ.Nature,1964,201(4914):68-69.doi:10.1038/201068a0  43  OzawaT.BullChemSocJpn,1965,38(11):1881-1886.doi:10.1246/bcsj.38.1881  44  FlynnJH,WallLA.JResNatBurStand,1966,70(6):487-523.doi:10.6028/jres.070a.043  45  FlynnJH,WallLA.JPolymSci,PartC:PolymLett,1966,4(5):323-328.doi:10.1002/pol.1966.110040504  46  ZsakoJ.JPhysChem,1968,72(7):2406-2411.doi:10.1021/j100853a022  47  SatavaV.ThermochimActa,1971,2(5):423-428.doi:10.1016/0040-6031(71)85018-9  48  TangXY,XieQY,QiuR,YangY.PolymDegradStab,2018,154:10-26.doi:10.1016/j.polymdegradstab.2018.05.016原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21210&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21210
  • 元素分析仪的几种分析方法
    麒麟公司生产的元素分析仪是分析有机元素的自动化仪器。配备微计算机和微处理机进行条件控制和数据处理,方法简便迅速。 碳、氢、氮分析仪 测定方法有4种: ①示差热导法。又称自积分热导法。样品的燃烧部分采用有机元素定量分析的碳、氢、氮分析方法。在分解样品时通入一定量的氧气助燃,以氦气为载气,将燃烧气体带过燃烧管和还原管,二管内分别装有氧化剂和还原铜,并填充银丝以除去干扰物(如卤素等),最后从还原管流出的气体(除氦气外只有二氧化碳、水和氮气)通入一定体积的容器中混匀后,再由载气带入装有高氯酸镁的吸收管中以除去水分。在吸收管前后各有一热导池检测器,由二者响应信号之差给出水含量。除去水分的气体再通入烧碱石棉吸收管中,由吸收管前后热导池信号之差求出二氧化碳含量。最后一组热导池测量纯氦气与含氮气的载气信号之差,提出氮的含量。 ②反应气相色谱法。这种元素分析仪由燃烧部分与气相色谱仪组成,燃烧装置与上述相似,燃烧气体由氦气载入填充有聚苯乙烯型高分子小球的气相色谱柱,分离为氮、二氧化碳、水3个色谱峰,由积分仪求出各峰面积,从已知碳、氢、氮含量的标准样品中求出此3元素的换算因数,即可得出未知样品的各元素含量。 ③电量法。又称库仑分析法。 ④电导法。后两种方法都只能同时测定碳、氢,其应用不如前两种方法广泛。
  • 热分析钱义祥老先生:热分析仪器(方法)选择的哲理
    p span style="color: rgb(112, 48, 160) "(本文系仪器信息网独家约稿,未经许可,其它媒体不得转载)  /span/pp 应用先进仪器和方法进行科学与技术的基础研究和应用开发。如何选用近代先进仪器和科学方法呢?钱义祥老先生的这篇“热分析仪器(方法)选择的哲理”将有助你选择先进仪器和科学方法。帮助你从多种备选对象中进行挑选与确定,使你学会择优选择。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/25eddf60-8d71-4ed7-b6ac-1205345e0568.jpg" title="" style="width: 450px height: 503px " height="503" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong钱义祥老先生某次出差夜晚其学生拍摄/strong/pp  strong1.1 " 选择" 的哲理/strong/pp  人,不由自己的选择而出生,朦胧地踏上漫长的选择之路。选择伴随科学人的一生,渐进渐行,格物致理(探究事物的原理法则,而总结为理性知识并加以运用)。人是选择的主体,“选择”是一个最易产生共鸣的话题。/pp  从哲学的角度看,选择是反映主体与客体关系的一个范畴,主体与客体在相互作用过程中,主体根据其自身的存在现状、目的需要、价值尺度,对依赖主体活动而存在的事物的多种可能性关系进行分析、比较,抉择。它是主体积极能动、自觉自由的本质力量的一种表现。这种力量存在于人的一切活动过程中,既存在于人的思维过程中,也存在于人的实践行为中。/pp  1.1.1研究方法是一个不断发展的动态过程。/pp  科学研究是一个动态的永无止境的探索过程。研究方法总是以符合研究需要为前提,与科学研究相适应,因此研究方法也是一个不断发展的更新过程。/pp  前人的研究成果,概括地说,无非是资料、研究方法和结论三个方面。我们研究前人的研究成果,主要目的是了解他获得的结论及获得这个结论的方法。科学史的书籍记录了科学家的发现和科学家获得发现的方法。可见研究方法及其选择在科学研究中的重要性。方法的选择要具有合理性、新颖性、独创性、可实现性。为避免选择性偏差,对研究课题和热分析方法了解得越深越多,选择热分析方法就越有依据,就越合理和适用,越能满足科学研究的需要。/pp  1.1.2热分析方法选择的主体是人/pp  选择是一个词语,这个词语主要是指一个人要挑选什么,要做出什么决定,选取什么.这是一个很重要的字眼。“选择”是存在于人的思维和实践行为方式中的积极能动的能力。/pp  热分析方法选择的主体是人,是人的实践行为。人的具体行为方式是由人的选择来确定的。选择决定于主体,并不是说主体可以随意选择。主体的选择不仅受到客观外部条件的制约,也受到主体自身存在状况的限制。/pp  在一定的外部条件下,人的能力是选择的关键。应该培养,发展、完善主体, 提高主体的选择能力。成功的选择,能最大限度地实现目的,满足主体的需要。/pp  热分析方法的选择不仅受到主体自身存在状况的限制,也受到客观外部条件的制约。受仪器的制约和限定的典型事例是微重力下的热分析研究。微重力科学作为一门近代科学,是随着载人航天活动的发展而迅速发展的。微重力的热分析研究有望应用于空间材料科学,其研究障碍乃在于缺乏研究仪器和研究方法。目前商品化的热分析仪器仅适用于在万有引力条件下进行热分析实验,微重力条件下的热分析仪器尚待开发。微重力的热分析研究必定伴生新的研究方法的创立。方法的创立反过来又指导微重力的热分析研究。/pp  选择意味着在多种事物中挑选一种事物或多种事物。热分析方法选择过程中,选择本身也是一种探索,乃是对人的选择能力的一种检验。/pp  选择是一个过程,有可能在弹指一瞬间完成;有时通过“试错”来选择热分析方法和实验方法 某些特例,也有可能永远选择不到一个好的方法来研究你的问题。如热分析动力学研究,要从诸多的热分析动力学方法中选择、修改或建立新的动力学方程并非是件容易的事。实验、选择和修改动力学方程常常耗费几个月或更长的时间。/pp  1.1.3高分子物理近代研究方法/pp  选择正如人要走路,面对多条路,走哪条路?如何走这条路?便是你的选择了。科学研究亦如此。“高分子物理近代研究方法”是一本如何选择科学研究方法进行高分子物理研究的参考资料。/pp  “高分子物理近代研究方法”由高分子物理和近代研究方法二个词复合组成。“高分子物理”的研究内容是高分子的结构、高分子材料的性能和分子运动的统计学 近代研究方法有高分子光谱及波谱分析、X射线分析、高聚物热分析、高聚物显微分析。人们选择近代研究方法研究高分子物理中的诸多问题。选择过程是属于人的行为活动,需要宽厚、交叉的基础知识和精深的专业知识,而且要有丰富的实践活动。由具有高分子物理背景和科学分析仪器背景的复合型人才担当高聚物结构(性能)的表征和研究是最佳的选择。因为他们具有“多种学科在他头脑里汇合”的优势。/pp  strong1.2热分析方法选择/strong/pp  “热分析方法选择”是在第二届江苏省热分析技术应用与进展学术研讨会(2008年—扬州)上提出来的。是几十年的热分析实践中悟出的一个概念,是关于“热分析方法选择”问题的哲学思考。/pp  “热分析方法选择”有二层意思:/pp  第一层意思是:“选择”是一个哲学问题(概念),是一种思维方式。“热分析方法选择”是“选择”的哲学思想在科学研究中的应用实例。/pp  第二层意思是:“选择”是一种行为活动,贯穿于热分析方法选择和实验条件选择的全过程。/pp  1.2.1科学研究与方法的关系:/pp  每一项科学技术研究成果的取得,都是运用一定的研究方法的结果。而每一项重大的科学理论或技术突破,往往伴生新的研究方法的创立。方法的创立来源于实践,反过来又指导科学技术研究实践活动。/pp  科学研究是一个艰苦的探索过程,没有行之有效的方法,就无法达到研究的目的。方法的选择和应用是否适当是决定研究工作是否有成效的一项关键性因素。/pp  方法是指用于完成一个既定目标的具体技术和工具。要方法行之有效,就必须对方法进行有选择的、合理的运用。/pp  方法问题是解决实际问题不可逾越的现实问题,方法的选择很大程度上决定着研究的进展和效果。要针对具体问题,有目的地选择适用的方法。对于方法选择的准则依次是适用,高效简单、完美。在科学研究中选择热分析方法时可参考这个标准。/pp  1.2.2热分析仪器(方法)选择/pp  热分析方法是近代研究方法之一,它在科学研究中有极为广泛的应用。在对热分析方法已基本掌握的基础上,讨论这些方法的优缺点和适用范围, 择优选择。/pp  在科学研究中,“热分析方法选择”突出体现了“选择”的哲学思想的普适性。它包括二个内容:热分析方法(仪器)选择和实验方法(条件)建立。/pp  热分析方法包括 DSC、TG/DTA、TMA、DMA 和热分析+。各种方法有各自的特点和适用范围,同时它们之间又存在密切的联系。不同的热分析仪器(方法)应用在不同的研究领域。科研人员根据研究内容,选择合适的热分析方法,如下图。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/30e9b3e7-7048-4006-ae95-bae75680a739.jpg" title="1.png"//pp  上图表明:热分析应用是按转变、反应与热物性参数进行分类。这种分类/pp  方法具有很强的概括性。可以囊括各个学科领域的所有应用。热分析应用进一/pp  步细分,并选择相应的热分析方法。/pp  物理转变:/pp  涵盖结晶、晶型转变、汽化、升华、吸附、解吸附、吸水、居里点转变、玻璃化、液晶转变、热容转变等。/pp  化学反应:/pp  涵盖分解、氧化、还原、固态反应、燃烧、聚合、树脂固化、橡胶硫化、催化反应等。/pp  物质特性参数:/pp  比定压热容、纯度、膨胀系数、热导率等。/pp  热分析是一种解决问题的实用技术。“热分析怎样来解决你的问题?你的问题怎样用热分析来解决?”,你面临的就是选择热分析仪器(方法)来解决你的问题。选择先于实验,贯穿于科学研究的整个过程。根据研究内容,选择热分析仪器(方法)。选择活动的主体是科研人员,要体现主体的能动性,即体现科研人员的能力和特有的积极能动的自由本质力量。在选择过程中,科研人员对研究内容和热分析仪器(方法)进行分析、比较,然后做出合理有效的选择。针对具体问题,有目的地选择合适的热分析方法。/pp  列举几个实例:/pp  1. 玻璃化转变测量方法的选择/pp  高分子物理中有一个重要的转变—玻璃化转变。研究玻璃化转变有三种热分方法:DSC、TMA、DMA。哪种方法好呢?根据样品的特性,你要做出合理的选择。一般情况下,粉末样品通常选用DSC方法; 树脂固化样品通常选用TMA方法 成型制品通常选用DMA方法。/pp  DSC、TMA、DMA测量玻璃化转变的方法原理及灵敏度不同,如下表:/pp  DSC:检测的物理量是比热容 Cp 比热容变化约30%/pp  TMA:检测的物理量是膨胀系数 α 膨胀系数增加多至300%/pp  DMA:检测的物理量是模量 E 模量变化高达3个数量级/pp  由上表可知:仪器灵敏度DSC TMA DMA。 测量高聚物的玻璃化转变,DSC方法制样方便。但玻璃化转变的信号很微弱时,那么就要改为选用TMA、DMA方法。封装材料使用的环氧树脂,通常选用TMA测定固化产物的玻璃化转变温度Tg和△Tg。/pp  2. 高聚物次级转变的热分析方法选择/pp  为什么要选择DMA方法来研究次级转变呢?/pp  从被选择的客体及其特性说起。被选择的客体是DMA方法和次级转变。/pp  用DSC方法测量高聚物的热性能,能够检测到高聚物的Tg,但检测不到高聚物的次级转变Tβ。因而研究工作就在玻璃化转变层面戛然而止。仅仅测量玻璃化转变满足不了材料力学性能研究的需要。/pp  DMA方法研究高聚物在交变应力作用下的力学状态和热转变。非晶高聚物力学性质随温度变化,它的力学状态是玻璃态、玻璃化转变区、高弹态及黏流态;发生的转变有次级转变、玻璃化转变、流动转变。DMA方法方便地测试到高聚物的次级转变、玻璃化转变、流动转变,因此用DMA方法研究次级转变打破了高聚物研究止步于玻璃化转变的现状。/pp  高聚物发生的次级转变和玻璃化转变都是松弛过程。玻璃化转变是高聚物中链段由冻结到自由运动的可逆转变。次级转变是高聚物中小尺寸运动单元由冻结到自由运动的可逆转变。从材料结构、分子运动角度进行逻辑推理,潜意识感到次级转变和玻璃转变存在一定的关联性。但高分子物理和研究报告中,很少有人提及次级转变和玻璃转变的关联性,故只能淡墨轻描。选择DMA方法测试次级转变、玻璃化转变及其关联性就有它的现实价值。DMA方法测量高分子材料的玻璃化转变和次级转变,获得与材料的结构、分子运动、加工与应用有关的特征参数。因而在评价材料的耐热性与耐寒性、共混高聚物的相容性、树脂-化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。研究高聚物次级转变和玻璃化转变都很重要,都是不容忽视的。选择DMA方法研究高聚物的玻璃化转变、次级转变和Tβ-Tg是一个富有创造性的想象力。/pp  高聚物在玻璃化温度以下,链段运动是冻结的,但更小的运动单元仍然可以发生运动,出现多个次级转变。高聚物次级转变之一是Tβ,它是一个非常有用的参数:它表征材料韧-脆转变,是材料的脆化温度和低温使用的极限温度;Tβ-Tg是高聚物发生物理老化的温度区间;β转变时力学内耗峰tanδ值与材料的冲击强度有对应关系;Tβ-Tg是屈服冷拉的温度区间,是加工工艺的必须控制的参数之一。/pp  DMA是利用分子运动由局部原子振动变为区域的链段运动及更小的运动单元的运动引起高聚物的黏弹性大幅变化的原理测量高聚物的热转变。DMA方法的灵敏度高,它不仅可测定玻璃化转变温度Tg,还可测定次级转变温度Tβ。图中蓝颜色框中的tanδ即为高聚物的次级转变温度Tβ。均相非晶态高聚物的/pp  DMA曲线如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/fe1a822b-e30b-4dce-a087-c79623b71406.jpg" title="2.jpg"//pp style="text-align: center "strong均相非晶态高聚物的DMA曲线/strong/pp  3. 物理老化和化学老化研究的热分析方法选择/pp  高聚物在使用过程中,会发生化学老化、物理老化和光老化。它们发生在不同的温度区间,测定这些特征温度是必须的。/pp  化学老化通常发生在Tg以上,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。/pp  物理老化通常发生在Tβ-Tg之间,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。选择DMA方法测量得到次级转变温度Tβ。/pp  膜的物理老化研究选择调制DSC和TMA、DMA方法。膜的调制DSC曲线和应力-温度曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/1209b375-4e9a-4bcc-b5db-4ec484081cc2.jpg" title="3.jpg"//pp style="text-align: center "strong分子链残留内应力和热焓松弛的MDSC曲线/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bc98072a-f72a-4853-a5b2-1e02ad87eb7d.jpg" title="4.jpg"//pp style="text-align: center "strong  膜的物理老化涂层的应力-温度曲线/strong/pp style="text-align: center "strong  未物理老化涂层A/strong/pp style="text-align: center "strong  物理老化涂层B/strong/pp  涂层温度低于Tg时,发生物理老化。由于物理老化涂层的应力对温度的依赖性,用Tg曲线区域内的极小值表征(图中B线2点处),其幅度的大小与物理老化程度有关。物理老化影响材料的机械、热和电性能。一般来说,弹性模量和硬度随着物理老化而增大,而应力松弛速率变化使玻璃态的膨胀性降低。/pp  光老化选择光化学反应量热仪PDC方法。PDC的结构示意图如下:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/d33624e5-302b-4758-a971-9a1d491bff47.jpg" title="5 (2).jpg"//pp style="text-align: center "  strongPDC的结构示意图 光化学反应量热仪PDC/strong/pp  光化学反应量热仪PDC的原理:是将不同波长、不同照射强度下的紫外光照射在试样上,测量热效应。它既可进行光固化实验,也可以进行高聚物的光老化研究。/pp  4. 选用多种热分析方法,全面表征高聚物的热性能。/pp  为了全面表征高聚物的热性能,“全选”不失为一种很好的选择。就是选择DSC、TG、TMA、DMA方法,全面表征高聚物的热性能。/pp  成功的科学家往往把所需要的各种方法巧妙地结合起来综合运用。这也是常见的方法选择。如热分析与FTIR、GC/MS、MS联用。/pp  5. 绝热材料的热分析方法选择/pp  温石棉是导热性极差的绝热材料。/pp  温石棉中含有Mg(OH)2。Mg (OH)2脱水方程式如下:/pp style="text-align: center "  Mg(OH)2 → MgO + H2O↑-△H/pp  由方程式可知:Mg (OH)2脱水时,它既有重量损失,而且伴有能量吸收。因此Mg(OH)2含量可用TGA方法定量,也可以用DSC方法测定。/pp  由于温石棉导热性差,选用DSC方法,依吸热峰面积定量Mg(OH)2含量,误差较大。而选用TGA方法,TG曲线上显现的失重台阶就是氢氧化镁的脱水量。根据失重台阶计算Mg(OH)sub2/sub的含量,数据准确,重复性好。/pp  6. 标准试验方法/pp  鉴于热分析方法的结果受诸多实验因素的影响,为利于热分析的学术交流/pp  和相互间的数据比较,国际标准化组织就几种主要热分析方法及应用制定了一系列标准和规范。如差示扫描量热法(仪)的标准和规范、热重法的标准、热机械分析的标准、动态力学性能的标准。实验都要按标准和规范执行。如玻璃化温度测定、熔融-结晶过程测量、比热容测定、氧化诱导期测定、结晶动力学测定、分解温度和分解速率测定、分解动力学测定、线性膨胀系数测定、针入度测定、模量、损耗因子、应力-应变曲线等。/pp  研究材料和制造产品时,有相应的国际标准、国家标准、行业标准,产品标准。按标准试验方法进行实验是一种强制性的选择。如封装材料T260/T288/T3O0(Time to Delaminate)热分层时间或称“爆板时间”测定必须按规定的标准方法进行。/pp  借鉴热分析文献综述中提及的热分析方法和实验方法也是一种选择。/pp  开发新的热分析方法和实验方法,适应研究的需要。/pp  7. 改造已有的方法以适应解决实际问题的需要/pp  外加电场、拱形铜片、夹具组合等DMA实验是夹具适应性改造的实例。/pp  外加电场的DMA实验/pp  外加电场:将外加电场加在样品两端,测定试样在外加电场的条件下,实时原位研究纳米复合材料的电刺激--形状记忆效应。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/a874a62b-fbcd-4369-826c-51f93a236e14.jpg" title="6.jpg"//pp style="text-align: center "strong拱形铜片的应变—应力曲线测试/strong/pp  选用压缩夹具。样品嵌在自制的限止长度变化的试样固定器上,整体置放在下探头。上探头临界接触试样的弧形部位,如图所示。/pp  采用应力控制模式,测定应力 —应变曲线。就得到了客户要求的规定形变量下的应力值。它是挠度测定的反过程。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6567bd82-1dbb-4380-9fdf-8ae80e26e752.jpg" title="7.jpg"//pp style="text-align: center "strong夹具组合 —“蹦床夹具”实验/strong/pp  标准夹具组合使用:上夹具用压缩夹具,下夹具用双悬臂夹具。/pp  用下夹具夹持薄膜试样。薄膜试样上固定放置一个直径6mm的氧化锆圆柱体。然后将上夹具(压缩夹具)压在氧化锆圆柱体上。/pp  循环加载/下载应力,进行应力—应变循环实验。/pp  测定试样蹦床落点的力学性能。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/96453279-d8d2-424c-b8af-b3ea6b5d214e.jpg" title="8.jpg"//pp style="text-align: center "strongDMA模拟蹦床实验示图/strong/pp  8. 移植方法/pp  移植方法是当前科学方法发展的重要方面。移植包括科学概念、原理、方/pp  法以及技术手段等,从一个领域移植到另一个领域,或科学方法相互渗透和转移,多种方法形成一个新的方法。移植方法是科学整体化趋势的表现之一。热重/差热分析-固相微萃取-气相色谱-质谱联用系统是移植方法的实例。/pp  固相微萃取(SPME)是一种广泛使用的集萃取、浓缩、解吸、进样于一体的样品前处理新技术。将其移植到“热重/差热分析--气相色谱-质谱联用系统”中,即将固相微萃取(SPME)接入到“热重/差热分析--气相色谱-质谱联用系统”中去,改造成“热重/差热分析-固相微萃取-气相色谱-质谱联用系统。” 实验时划分温度段取样,解决逸出气取样问题,该系统已应用于原儿茶醛热解行为的研究。/pp  1.2.3选择实验条件,建立实验方法/pp  热分析实验结果常常依赖于实验条件,因此根据样品的特点选择实验条件,建立试验方法。strong见下图。/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/55058ec9-039f-4514-a5b4-52594968ae1a.jpg" title="9.jpg"//pp  列举几个实例:/pp  1. 含能材料的热分析方法和试验方法的选择/pp  热性能是含能材料的非常重要的性能之一,热分析能全面地表征含能材料的热性能,它在含能材料研究中得到了广泛的应用。由于含能材料分解过程的复杂性,要遵循“选择先于实验”的原则,切忌拿到一个含能材料的样品,随手称取10mg样品,冒失地进行TG实验或DSC实验。这将可能发生爆炸,损坏仪器和造成人员伤害。/pp  含能材料的热分析实验前,你必须先了解含能材料的分解特性和爆炸特性,谨慎地选择实验条件。试样量是致关重要的,因含能材料分解时放热量大,特别是有强烈自加热的分解过程。为防止峰的扭曲,试样量应尽量少,如0.05-0.3mg。然后谨慎地进行TG实验。如选择DSC方法,实验时要防止试样溢出,污染传感器。含能材料的TG/DTA曲线和DSC曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6ea118da-ce02-4330-ae46-1e021cd8c1c1.jpg" title="10.jpg"//pp style="text-align: center "  strong含能材料的TG/DTA曲线 含能材料的DSC曲线/strong/pp  含能材料的TG/DTA曲线上的失重和放热峰呈歪斜型,是强放热造成的扭曲。样品量减少到0.3mg以下,峰型趋于正常。/pp  2. 聚丙烯玻璃化温度测定/pp  选择是目的性很强的实践行为。按选定的热分析方法和实验条件进行热分析实验,常常是一次或多次“试错”的选择过程。当实验结果达不到主体的要求时,可选择另一种热分析方法或更改实验条件,再次进行实验。多次试错,直至你得到了满足需要的结果。例如选择DSC方法测定聚丙烯玻璃化温度。升温速率选用10℃/min时,弱小的热效应难以被发现,DSC曲线上未见玻璃化转变峰。随着升温速率的提高,仪器灵敏度大大提高, 当升温速率达到150℃/min时,其玻璃化转变过程中的台阶状变化变得明显strong,/strong如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/17f85e3d-9bde-4dce-ba00-bdb474182035.jpg" title="11.png"//pp  3. 选择真空或加压条件解决热分析峰的分离问题/pp  热分析峰的分离问题常常是通过改变实验条件来解决的。例如塑料中增塑剂的挥发和塑料分解,在常压条件下,两种效应可能在相同的温度区间发生。而减压条件下,塑料中添加的增塑剂在塑料分解之前挥发,那么实验就可选择在真空条件下进行。多种热分析仪器可在真空条件下进行实验。/pp  如果在常压下发生两个重叠的化学反应,其中一个反应可能受压力升高的影响比另一个反应大。在这种情况下,可以选择压力DSC将两个反应进行分离。例如有机物的分解温度随惰性气体压力的增大而提高。/pp  4. 选择“强化影响因素”的实验条件/pp  有多种因素影响热分析的测量结果。可以使用简化、纯化、强化实验影响因素的方法,加速现象的进程。当然它与在自然条件下获得的结果是有差别的。可进行科学、合理的补偿和修改。在纯氧条件下进行氧化诱导期测定,是强化实验影响因素的实例之一。/pp  1.2.4热分析方法的取代和重新选择/pp  热分析方法随研究“需要”而“变”。物质热性能研究的深入,促进热分析方法的发展。热分析方法的发展,又促使研究工作顺利进行。/pp  批判性思维是以逻辑思维为基础。以一种批判、分析和评价的方式思考热分析方法的选择。被选择的热分析方法不是凝固不变的,而是随着研究实践出相应的改变或重新选择。/pp  “问题-方法-标准”的思维模式具有普适性。研究不同的问题选择不同的热分析方法,探索问题的本质和规律。对方法规范化的表述可制订为标准。制订的标准也是不断修订。/pp  实例1:选择热分析方法测定药物熔点/pp  热分析方法介入药物熔点测定。选择热分析方法测定药物熔点,取代毛细管法,已成趋势。/pp  在药品检验中,药物的熔点是鉴别药物真伪和衡量质量优劣的重要指标。药物熔点通常是用经典的毛细管法测定,人为视觉误差大,初熔点难以判别。2015中国药典推荐热分析方法取代毛细管法。/pp  选择DSC或DTA方法测量药品熔融的全过程,可提供准确的熔化温度,熔程、熔融焓及多晶型、纯度等信息。对那些熔融伴随分解、熔距较长,用毛细管法测定较困难的样品,选择热分析方法则能取得较理想的结果。选择几种热分析方法如DSC与TGA相结合的方法可给出更准确地判断。/pp  实例2:热分析方法自身在发展,方法选择也在演变。/pp  热重法是热分析技术中发明最早的。常常选择TG研究高聚物的热分解。随着TG技术的发展,新的功能不断出现,研究内容也不断深化。选择的TG方法也随科学研究的深化而演变。/pp  TG方法的演变,促使高聚物热分解的研究不断深化,如下表:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/f1f85a2e-ad5d-413f-abfe-9890dfc34bff.jpg" title="12.jpg"//pp  表中提及了观察系统。观察系统是热分析的新功能,引入图形思维概念。热分/pp  析实验同时得到热分析曲线和形貌图像。对热分析曲线和观察到的形貌图像同/pp  步进行解析,追溯热变化的物理-化学过程。/pp  1.2.5方法选择中的创造性思维和批判性思维/pp  创造性思维是能引发新的和改进解决问题方法的思维方式。创造性思维引发新观念的产生,批判性思维是对所提供的解决问题的方式进行检验,以保证其有效性的思维方式。批判性思维包含了几个核心要素:解读、分析、评价、推理等。在方法选择中,要批判性地思考热分析方法问题。/pp  热分析方法选择过程中,要求创造性思维和批判性思维平衡发展。创造性思/pp  维和批判性思维将推动热分析方法和仪器的发展。/pp  实例1:骤冷PET初始结晶度测定/pp  选择传统DSC测定骤冷PET的初始结晶度。DSC曲线表明:通过熔融焓与结晶焓的焓值之差计算得到初始结晶度,热焓值之差为50.77-36.59=14.18J/g,表明它是部分结晶高聚物。而广角X射线衍射测定的结论:骤冷PET是无定形,与DSC结果相矛盾。这个矛盾逼迫科研人员以一种批判、分析和评价的方式去思考。科研人员凭借辨析和判断能力,判明数据真伪。/pp  温度调制DSC方法的创新思维是对传统DSC方法局限性的批判。温度调制DSC选择了一种特殊的升温方式:在一般线性加热或冷却的基础上,叠加了一个正弦的加热速率,这是创新;以基础升温的慢的升温速率来改善分辨率,并以瞬时快速升温速率提高灵敏度,这是对升温速率影响分辨率与灵敏度规则的遵循。从而使调制DSC将高分辨率与高灵敏度巧妙地结合在一起,实现了在同一个实验中既有高的灵敏度,又有高的分辨率。温度调制DSC既有创造性,创造性中又包括对规则遵循。温度调制DSC是对规则遵循中孕育创造性的范例/pp  创新,就是选择方法,创造新的可能性。温度调制DSC使可逆峰与不可逆峰的分离成为可能。温度调制DSC利用傅里叶变换的叠加法,得到可逆热流和不可逆热流,可逆峰与和不可逆峰被区分开来,从而显著提高微弱转变、多相转变和定量测定结晶度的可信度。选择温度调制DSC ( MTDSC )方法测定骤冷PET的初始结晶度。如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bd043b05-4380-4e3a-8a5a-c8de6e507766.jpg" title="13.jpg"//pp  温度调制DSC曲线显示:骤冷PET初始结晶焓值由冷结晶焓与熔融焓之差得到,其值为134.3-134.6=-0.3 J/g,表明骤冷PET初始结晶度极低,基本上为无定形形态。温度调制DSC的实验结果和广角X射线衍射测定的结果相符合。/pp  实例2:油品氧化诱导期测定/pp  常压下测定油品的氧化诱导期,由于油品蒸(挥)发,导致数据波动。基于高压能延迟挥发。创造性思维引发新观念的产生,高压DSC仪器出现了。人们放弃常压下测定油品的氧化诱导期的方法,而选择高压DSC测定油品的氧化诱导期,并编制了油品的氧化诱导期测定的相关标准。/pp  strong1.3“热分析方法选择”的编辑/strong/pp  全球无数台的热分析仪器每天都在运行,专业人员实时解析由实验得到的热分析曲线,并撰写成成千上万篇的研究报告发表在科学杂志上。这是科学研究中运用热分析方法的成果积累和沉淀。整理、编辑这些对科学有价值的资料,进而建立“热分析方法选择”的数据库和检索系统是人们的期盼。编写“热分析方法选用实例”是一项聚沙成塔的工作,编辑工作只有起点没有终点。/pp  “热分析方法选择”表格可以由实验室(个人)编辑。“热分析方法选择”的数据库和检索系统,必须由图书馆、出版社和专业技术学会编辑。/pp  1.3.1实验室编辑“热分析方法选用”/pp  热分析的专业工作者和科研人员,每天都在选择热分析方法,设计试验方法,进行大量的热分析实验。积累的资料如淙淙的小溪,常流不断,常流常新。经常翻一翻、查一查积攒下的实验资料,从自己的实验实践中,寻找研究内容和热分析方法的对应性,有助于今后热分析方法选择。将你的热分析实践活动用表格记录下来,成为自己编写的“热分析方法选用”的实例,供自己查用。/pp  “热分析方法选用实例”示意如表1:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/8f3c3f0a-65cc-4c71-8dd5-e22d63225641.jpg" title="14.jpg"//pp  每个实验室都可以绘制一张“热分析方法选择”实例的表格。天天填写新的实例,就像每天记日记一样,持之以恒。当表格内储存量足够丰富时,就成了个人的数据库,可把它当作个人的手册查询。当你拿到一个样品或欲进行一项科学研究时,你可以从“热分析方法选择”实例的表格中检索到你所需要的热分析方法和实验条件。/pp  某实验室绘制的“热分析方法选用”实例的表格,如表2示例。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/b92eb8d6-f844-424f-b9cd-fe4b33fa3934.jpg" title="15.jpg"//pp  “热分析方法选择”和“热分析应用”是孪生的文本。“热分析方法选用”和“热分析应用”的内容是互通的。编辑“热分析应用”的表格或文本,与“热分析方法选择”相对应。/pp style="text-align: center "  strong表三 热分析应用的文本格式/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/0c1dab46-ea77-47b9-8e36-0e674fbdabb1.jpg" title="16.jpg"//pp  每个实验室编辑、制作“热分析方法选择”表格,各具特色,绽放选择之美。/pp  1.3.2“热分析方法选择”的检索系统建立/pp  热分析主要学术刊物与著作有热分析杂志、热化学学报、热分析文摘、热分析文献综述及刘振海等人的学术著作和热分析国际会议和国内的热分析专业会议的论文集。在网上和文库可搜索到更多的选择热分析方法进行科学研究的科学论文。按美国科学信息研究所的科学网站统计,每年仅就报道DSC一种技术用于结晶过程的论文就超过1100篇。/pp  以“热分析文献综述”为例。“热分析文献综述”是从二年间发表的几千篇热分析文献中,收录其中的200篇。“热分析综述”涵盖包括热分析方法和校准、热力学、动力学、以及热分析在无机物、聚合物、含能材料药物、生物化学和生物学方面的应用。“热分析文献综述”既阐述了科学研究的内容,也涉及热分析方法的选择。/pp  文献综述和科技论文的基本内容是:谁,研究了什么问题、选择了什么方法、得到了什么结论。将热分析文献综述和科技论文的文体转换为以“研究内容”和“热分析方法选择”为关键词的文本形式,就成为“热分析方法选用”的文本系统,如表四示例。/pp style="text-align: center "  strong表四 研究报告的文本转换/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/e806a669-89d1-4099-9c64-5cb3e577b9c1.jpg" title="17.jpg"//pp  “热分析方法选用”索引分类,可以按材料分类;也可以按物理转变、化学反应、热物性参数测定分类;或者按时间顺序排列。编辑数据库和检索系统的意义是能够满足研究方法选择的需要,根据研究内容,快速地选择到相应的热分析方法。/pp  “热分析方法选择”数据库和检索系统的编辑非个人能力所能担当。应由自然科学资金资助,委托图书馆、档案馆、出版社和热分析专业学会进行。/pp  1.3.3选择云端中“热分析”那朵云/pp  在当今大数据时代里,云端飘浮朵朵云彩,我选择“热分析”那朵。利用云端的热分析资料,对热分析数据进行计算、解析,实现它的科学价值。/pp  耄耋之年仰望科学的天空,浏览“云数据”,好似天真的玩童仰望令人神往的宇宙星空一样,托腮观测无边无界的边际,享受浩瀚之美!/p
  • 根系分析仪可大批量全自动根系分析
    植物根系分析仪是一款用于洗根后的根系系统分析。它的性能稳定、操作简单易学,可以通过对植物根系的颜色分析,得出根系的存活数量,并得到根系的长度、直径、表面积、体积等参数。同时,该仪器还能自动剔除杂质,实时监测、统计、分析结果,避免了因杂质干扰和分析不精造成的误差,保障了结果的高精度。 根系分析仪报价参考→https://www.instrument.com.cn/netshow/SH104395/C363158.htm  植物根系分析仪一方面,它可以分析植物根系的形态,色彩、分级伸展分析及根系的整体结构分布等,便于运用在根系形态和构造研究等领域。另一方面,该仪器的检测过程和操作都很人性化,不会对植物本体造成破坏,保护了生物生态平衡,实现了人与自然的和谐相处。  植物根系分析系统利用高质量图形扫描仪获取高分辨率植物根系彩色图像或黑白图像,该扫描仪在扫描面板下方和上盖中安装有专门的双光源照明系统,并且在扫面板上预留了双光源校准区域。此外,还配备有不同尺寸的专用、高透明度根系放置盘。扫描时,扫面板下的光源和上盖板中的光源同时扫过高透明度根盘中的根系样品,这样可以避免根系扫描时容易产生的阴影和不均匀等现象的影响,有效地保证了获取的图像质量。  本软根系分析软件可以读取TIFF,JPEG标准格式的图像。针对获取的图像,利用插入加密狗解密的软件,对扫描获得的高质量根系图像进行分析。采用非统计学方法测量计算出交叉重叠部分根系长度、直径、面积、体积、根尖等基本的形态学参数。从而满足研究者针对植物根系不同类别和层次的研究。  植物根系分析仪既为农业生产提供了可供参考的科学依据,也指导了根系形态和构造的研究,为实现人与自然的和谐相处贡献了力量。以现代科技的力量搭建了人与自然生物间的沟通桥梁,对于生态环境的保护具有重要意义。  根系分析仪标准配置:  1、植物根系分析系统软件U盘及软件锁1套。  2、光学分辨率4800×9600、A4加长的双光源彩色扫描仪1台。  3、根系成像盘3个。
  • 气相色谱分析仪改进计划成功
    油品分析仪在铁路内燃机上的监测应用己有相当长的历史,早期的油质分析仪只是对新进和运用中润滑油的理化指标做常规分析,非常简单,随着铁路的快速发展,铁路向重载、高速、自动化及率化方面发展,内燃机车的维修成本和停机损失也随之剧烈增加,传统的计划维修方式维修成本高,不能zui大限度发挥机车使用效率,早己不能满足现实需求,铁路系统逐步引进了色谱、光谱、铁谱等先进的油品分析仪器。 为满足客户使用需求,北京得利特科技有限公司在原来气相色谱分析仪的基础上进行改进,使其达到高灵敏度,高精确度,高分辨率,高分析速度,分析方法更加简单。气相色谱分析仪技术参数:开机稳定时间1.5小时显示精度0.1℃控温精度≤±0.3℃基线噪声TCD≤0.1mv FID≤1×10-12A/30min基线漂移TCD≤0.2mv/30min FID≤1×10-11A/30min灵敏度TCD≥1000mvml/mg (苯)检测限FID≤5×10-12g/s柱箱温度室温~200℃检测器(FID)温度室温~300℃甲烷化转化炉温度380℃超温保护任一路温度超限将自动报警并断电检测指标CH4 0.1PPmCO 1PPmCO2 1PPmH2 5PPmC2H2 0.1PPmC2H4 0.1PPmC2H6 0.1PPm外形尺寸620mm×445mm×485mm重量31.8kg升级点:采用一根色谱柱,分离效果好。一次进样,进样量少;全分析所用时间短。数据由色谱工作站自动处理。
  • 浅谈热分析技术与同步热分析仪的应用
    pspan style="color: rgb(0, 176, 240) font-size: 20px "strong浅谈热分析技术/strong/span/pp  热分析(Thermal Analysis),顾名思义,可以解释为以热进行分析的一种方法。/pp  在目前热分析可以达到的温度范围内,从-150℃至1500℃(或2400℃),任何两种物质的所有物理、化学性质是不会完全相同的。因此,热分析的各种曲线具有物质“指纹图”的性质。/pp  通俗来说,热分析是通过测定物质加热或冷却过程中物理性质(目前主要是重量和能量)的变化来研究物质性质及其变化,或者对物质进行分析鉴别的一种技术。/pp  1977年在日本京都召开的国际热分析协会(ICTA)第七次会议上,给热分析下了如下定义:即热分析是在程序控制温度下,测量物质的物理性质与温度的关系的技术。/pp style="text-align: center "数学表达式为:P=f(T)/pp  其中:P代表物质的一种物理量 T为物质温度。/pp  所谓程序控制温度一般是指线性升温或线性降温,当然也包括恒温、循环或非线性升温、降温。也就是把温度看作是时间的函数:T=Φ(t),其中t是时间,则P=f(T或t)。/ppspan style="color: rgb(0, 176, 240) font-size: 20px "strong热分析的起源和发展/strong/span/pp  1899年英国罗伯特-奥斯汀(Roberts-Austen)第一次使用了差示热电偶和参比物,大大提高了测定的灵敏度。正式发明了差热分析(DTA)技术。1915年日本东北大学本多光太郎,在分析天平的基础上研发了“热天平”即热重法(TG),后来法国人也研发了热天平技术。/pp  1964年美国瓦特逊(Watson)和奥尼尔(O’Neill)在DTA技术的基础上发明了差示扫描量热法(DSC),美国PE公司最先生产了差示扫描量热仪,为热分析热量的定量作出了贡献。/pp  1965年英国麦肯才(Mackinzie)和瑞德弗(Redfern)等人发起,在苏格兰亚伯丁召开了第一次国际热分析大会,并成立了国际热分析协会。/ppspan style="font-size: 20px "strongspan style="color: rgb(0, 176, 240) "热分析研究内容、方法及应用/span/strong/span/ppstrong热分析方法/strong/pp style="text-align: left "  通过对物质加热、冷却等反应实验,热分析可得到如下研究内容:br/img src="https://img1.17img.cn/17img/images/201809/uepic/90b4db0f-6c3a-4927-94b6-92d8ef1f996e.jpg" title="热分析研究内容.png" alt="热分析研究内容.png"//pp  应用最广泛的方法是span style="color: rgb(255, 0, 0) "热重法(TGA)/span和span style="color: rgb(255, 0, 0) "差热分析法(DTA)/span,其次是span style="color: rgb(255, 0, 0) "差示扫描量热法(DSC)/span,这三者构成了热分析的三大支柱,占到热分析总应用的span style="color: rgb(255, 0, 0) "75%/span以上。/pp  热分析只能给出试样的重量变化及吸热或放热情况,解释曲线常常是困难的,特别是对多组分试样作的热分析曲线尤其困难。目前,解释曲线最现实的办法就是把热分析与其它仪器串联或间歇联用,常用气相色谱仪、质谱仪、红外光谱仪、X射线衍射仪等对逸出气体和固体残留物进行连续的或间断的,在线的或离线的分析,从而推断出反应机理。/ppstrong热分析仪的应用/strong/ptable border="1" cellspacing="0" cellpadding="0" width="568"tbodytr class="firstRow"td width="568" colspan="5" valign="top" style="border-width: 1px border-style: solid border-color: windowtext padding: 0px 7px "p style="line-height: 125% text-indent: 0em "span style="font-family:宋体"TGA/spanspan style="font-family:宋体"(热重分析仪)span DTA/span(差热分析仪)span DSC/span(示差扫描量热仪)/span/pp style="line-height: 125% text-indent: 0em "span style="font-family:宋体" TMA/DMA/spanspan style="font-family:宋体"(热机械分析仪)span EGA/span(复合分析联用)/span/p/td/trtrtd width="114" valign="top" style="border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-top: none padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"橡胶、高分子/span/pp style="line-height:125%"span style="font-family:宋体"塑料、油墨/span/pp style="line-height:125%"span style="font-family:宋体"纤维、涂料/span/pp style="line-height:125%"span style="font-family:宋体"染料、粘着剂/span/p/tdtd width="114" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"食品/span/pp style="line-height:125%"span style="font-family:宋体"生物体、液晶/span/pp style="line-height:125%"span style="font-family:宋体"油脂、肥皂/span/pp style="line-height:125%"span style="font-family:宋体"洗涤剂/span/p/tdtd width="119" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"医药、香料/span/pp style="line-height:125%"span style="font-family:宋体"化妆品/span/pp style="line-height:125%"span style="font-family:宋体"有机span//span无机药品/span/pp style="line-height:125%"span style="font-family:宋体"病理检测/span/p/tdtd width="108" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"电子材料/span/pp style="line-height:125%"span style="font-family:宋体"木材、造纸/span/pp style="line-height:125%"span style="font-family:宋体"建筑材料/span/pp style="line-height:125%"span style="font-family:宋体"工业废弃物/span/p/tdtd width="114" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"冶金、矿物/span/pp style="line-height:125%"span style="font-family:宋体"玻璃、电池/span/pp style="line-height:125%"span style="font-family:宋体"陶瓷、黏土/span/pp style="line-height:125%"span style="font-family:宋体"纺织、石油/span/p/td/tr/tbody/tablep  热分析具有试样需求量少、方法灵敏、快速,在较短的时间内可获得需要复杂技术或长期研究才能得到的各种信息。/pp  热分析仪已成为我国现阶段部分行业重要的质控分析方法:/pp  ①金行业里铁合金、保护渣检验等生产前期原料控制过程中,热分析已列为控制最终产品质量的重要分析方法之一 /pp  ②在我国申报新药中,热分析已列为控制药品质量的重要分析方法之一 /pp  ③在煤炭/焦碳行业,热分析已成为测定产品品级的重要分析手段 /pp  ④陶瓷行业的主要原料检测仪器。/ppspan style="color: rgb(0, 176, 240) font-size: 20px "strong恒久高温综合热分析仪器简介/strong/span/pp  HCT-4综合热分析仪是北京恒久实验设备有限公司根据国际热分析协会制定的热重分析法与差热分析法为理论标准,结合国际技术发展情况实现全部自主研发、生产,拥有自主知识产权的国内先进的热重法与差热法综合热分析仪器。该仪器具有温度高,恒温时间长,重复性高等特点。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201809/uepic/8fb6f84f-33a3-4142-8486-70c3f1e68ab6.jpg" title="HCT-4综合热分析仪.jpg" alt="HCT-4综合热分析仪.jpg" width="400" height="316" border="0" vspace="0" style="width: 400px height: 316px "/br/strongspan恒久HCT-4综合热分析仪/span/strong/pp  strong差热测量系统:/strong采用哑铃型平板式差热电偶,它检测到的微伏级差热信号送入差热放大器进行放大。差热放大器为直流放大器,它将微伏级的差热信号放大到0-5伏,送入计算机进行测量采样。/pp  strong热重测量系统:采/strong用上皿、不等臂、吊带式天平、光电传感器,带有微分、积分校正的测量放大器,电磁式平衡线圈以及电调零线圈等。当天平因试样质量变化而出现微小倾斜时,光电传感器就产生一个相应极性的信号,送到测重放大器,测重放大器输出0-5伏信号,经过A/D转换,送入计算机进行绘图处理。/pp  strong温度测量系统:/strong测温热电偶输出的热电势,先经过热电偶冷端补偿器,补偿器的热敏电阻装在天平主机内。经过冷端补偿的测温电偶热电势由温度放大器进行放大,送入计算机,计算机将自动计算出此热电势的毫伏值。/pp  HJ热分析工具软件使用微量样品一次采集即可同步得到温度、热重和差热分析曲线,使采集曲线对应性更好,有助于分析辨别物质热效应机理。对TG曲线进行一次微分计算可得到热重微分曲线(DTG曲线),能更清楚地区分相继发生的热重变化反应,精确提供起始反应温度、最大反应速率温度和反应终止温度,方便地为反应动力学计算提供反应速率数据,精确地进行定量分析。/pp  HCT系列热分析仪器应用范围涉及无机物、有机物、高分子化合物、冶金、地质、电器及电子用品、陶瓷、生物及医学、石油化工、轻工、纺织、农林等领域应用于物质的鉴定、热力学研究、动力学研究,结构理化性能关系的研究。广泛应用于科研所、设计院、高等院校等专业实验室、及应用在化工/安全/矿业等生产检测部门。/pp style="text-align: right "strong(供稿:北京恒久)/strong/p
  • 方科新品|根系分析仪参数介绍
    一、 根系分析仪用途:FK-GX02根系分析系统是一套用于洗根后专业根系分析系统,还可以用于根盒培养植物的根系表型分析,可以分析根系长度、直径、面积、体积、根尖记数等,功能强大,操作简单,软件可分析植物根系的形态分析及根系的整体结构分布等,广泛运用于根系形态和构造研究。方科根系分析仪产品链接→https://www.instrument.com.cn/show/C363158.html二、 根系分析仪原理:FK-GX02根系分析系统利用高质量图形扫描仪获取高分辨率植物根系彩色图像或黑白图像,该扫描仪在扫描面板下方和上盖中安装有专门的双光源照明系统,并且在扫面板上预留了双光源校准区域。此外,还配备有不同尺寸的专用、高透明度根系放置盘。扫描时,扫面板下的光源和上盖板中的光源同时扫过高透明度根盘中的根系样品,这样可以避免根系扫描时容易产生的阴影和不均匀等现象的影响,有效地保证了获取的图像质量。本软根系分析软件可以读取TIFF,JPEG标准格式的图像。针对获取的图像,利用插入加密狗解密的软件,对扫描获得的高质量根系图像进行分析。采用非统计学方法测量计算出交叉重叠部分根系长度、直径、面积、体积、根尖等基本的形态学参数。从而满足研究者针对植物根系不同类别和层次的研究。三、根系分析仪技术指标:1、配光学分辨率4800×9600、A4加长的双光源彩色扫描仪。根系反射稿幅面为355.6mm×215.9mm,透扫幅面为320.0mm×203.2mm,最小像素尺寸0.005mm×0.0026 mm。2、可分析测量:(1)根总长;(2)分支频率;(3)根平均直径;(4)根直径中值;(5)最大直径;(6)根总面积;(7)总投影面积;(8)根总体积;(9)根尖计数;(10)分叉计数;(11)交叠计数;(12)根直径等级分布参数;(13)可不等间距地自定义分段直径,自动测量各直径段长度、投影面积、表面积、体积 等,及其分布参数。(14)能进行根系的颜色分析,确定出根系存活数量,输出不同颜色根系的直径、长度、投影面积、表面积、体积。(15)能进行根系的拓扑分析,自动确定根的连接数、关系角等,还能单独地自动分析主根或任意一支侧根的长度、面积、体积等,可单独显示标记根系的任意直径段相应各参数(可不等间距地自定义)。(16)能用盒维数法自动测根系分形维数。可分析根瘤菌体积在根系中的占比,以客观确定根瘤菌体贡献量。(17)大批量的全自动根系分析,对各分析结果图可编辑修正。(18)能做根系生物量分布的大批量自动化估算。(19)向地角分析、水平角分析、主根提取分析特性。(20)各分析图像、分布图、结果数据可保存,并输出至Excel表,可输出分析标记图。(21)仪器有云平台支持,可将分析数据保存到云端随时随地查看。四、根系分析仪图像扑捉系统参数扫描元件: 6线交替微透镜CCD最大幅面: A4接口类型: USB2.0光学分辨率(dpi): 6400x9600dpi最大分辨率12800×12800dpi最小像素尺寸≥0.005mm×0.0026 mm扫描光源白色冷阴极荧光灯CCFL、色彩位数48位扫描范围216×297mm扫描速度反射稿、A4、300dpi:单色11秒,彩色14秒胶片扫描、35mm,2400dpi:正片:47秒,负片:44秒五、根系分析仪标准配置1、植物根系分析系统软件U盘及软件锁1套2、光学分辨率4800×9600、A4加长的双光源彩色扫描仪1台3、根系成像盘3个六、根系分析仪其他1、本产品需使用电脑,推荐选配:品牌电脑(酷睿i5九代以上CPU / 16G内存/ 21.5”彩显/无线网卡,4个以上USB2.0口,运行环境Windows 10完整专业版或旗舰版)。2、可选配A3幅面双光源彩色扫描仪。反射稿扫描幅面305mm × 431.8mm,根系透扫幅面304.8mm × 406.4 mm。
  • 南京大展的同步热分析仪在中南大学完成调试
    同步热分析仪是一款热分析仪器,应用领域广泛,主要包括:陶瓷、玻璃、金属/合金、矿物、催化剂、含能材料、塑料高分子、涂料、医药等等,不仅很多制造型企业采购,还有国内的高校。相比于国外品牌,国产的同步热分析仪,优势在于性价比高,售后服务完善,同时从技术参数对比,也相差不大,因此,受到很多高校的欢迎。  中南大学采购的是南京大展的同步热分析仪,这款同步热分析仪可用于玻璃化转变温度、氧化稳定性、热焓、比热、结晶度和材料的氧化诱导期等热重与差热相关数据,用于不同材料的研究和实验。   同步热分析仪是将DSC和TG结合,一次测试可获得两种曲线,因此,大大节省了实验的时间。同时采用一体化的机型设计,仪器两路气体自动切换;进口的芯片,测量速度快;全新的炉体设计,保温性高。
  • 哈尔滨工业大学采购南京大展的同步热分析仪
    同步热分析仪是一款将热重分析仪与差热分析仪或差示扫描量热仪结为一体的热分析仪器,可以利用同一样品同步得出热重和差热两种信息,具备广泛的应用。尤其在高分子材料领域,本次哈尔滨工业大学的高分子材料与工程系采购了南京大展的同步热分析仪,想要借助同步热分析仪测量高分析材料的热稳定性、热分解反应、熔融与结晶的过程和氧化稳定性等等,从而为新型材料的开发、性能及其使用寿命等方面研究提供数据支持。   经过前期的沟通与对比,哈尔滨工业大学选择了南京大展的同步热分析仪,不仅看重了仪器的品质,同时对于我司的售后服务也感觉到满意。在仪器的调试现场,技术工程师对仪器的使用、参数设置,图谱分析等环节进行一一的培训,让使用人员对仪器更加的熟悉。   这款同步热分析仪测试范围广泛,DSC信号可以得到样品的熔融与结晶过程、结晶度、玻璃化转变、相转变、反应温度与反应热、比热、氧化稳定性、固化、纯度等信息;TGA信号则可以得到样品的热稳定性、热氧稳定性、分解过程、氧化还原过程、吸附与解吸、气化与升华、添加剂与填充剂影响、反应动力学等信息。   随着高校对于科研实验的重视,实验仪器的需求持续的增大,也使得热分析行业的竞争力度增强,为了满足客户的测试需求,除了不断提升仪器品质,同时完善售后服务,保障用户仪器的正常使用。
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 纳米流式颗粒成像分析仪在脂质体中的应用优势
    纳米流式颗粒成像分析仪是一种先进的单颗粒、多参数、高通量的纳米颗粒定量表征技术。这种分析仪特别适用于脂质体的研究,脂质体是由磷脂双层组成的封闭囊泡,被广泛应用于药物递送、基因治疗、生物成像等领域。下面我们将探讨纳米流式颗粒成像分析仪在脂质体研究中的应用优势。  1. 高分辨率的成像  纳米流式颗粒成像分析仪能够提供单个脂质体的高分辨率图像,这对于研究脂质体的形态、大小、分布等特征至关重要。通过获取清晰的图像,研究人员可以获得关于脂质体结构的直观信息,进而优化脂质体制备条件,提高其在药物递送中的效率。  2. 高通量分析  相比于传统的脂质体分析方法,如电子显微镜或激光动态光散射法,纳米流式颗粒成像分析仪能够以更快的速度处理大量样品,实现高通量分析。这对于筛选最优的脂质体配方或评估不同制备条件下的脂质体性能非常有用。  3. 多参数定量分析  纳米流式颗粒成像分析仪能够同时检测多个参数,如颗粒大小、荧光强度、表面标记等,这对于评估脂质体的功能性非常重要。例如,通过标记特定的表面蛋白或抗体,可以研究脂质体的靶向能力 通过检测荧光信号,可以评估脂质体的载药效率。  4. 实时监测  这种分析仪能够实时监测脂质体在不同条件下的变化情况,比如在不同温度或pH值下脂质体的稳定性,这对于理解脂质体的行为及其在体内环境中的适应性至关重要。  5. 操作简便  与复杂的电子显微镜相比,纳米流式颗粒成像分析仪的操作更为简便,不需要特殊的训练即可进行操作。这使得更多的实验室能够利用这项技术进行脂质体的研究。  6. 应用范围广泛  纳米流式颗粒成像分析仪不仅适用于脂质体的研究,还可以应用于病毒颗粒、外泌体等多种纳米级颗粒的分析。这为跨学科的研究提供了强大的工具。  纳米流式颗粒成像分析仪因其独特的高分辨率成像、高通量分析、多参数定量分析能力以及简便的操作方式,在脂质体研究领域展现出了显著的优势。这些优势有助于推动脂质体技术的发展,使其在药物递送、生物成像等方面发挥更大的作用。随着技术的不断进步,我们可以期待这种分析仪在未来脂质体研究中发挥更重要的作用。
  • 日本分析工业株式会社产品被认定为分析仪器物质遗产
    日本分析工业株式会社产品被认定为&ldquo 日本分析仪器及化学机械&rdquo 物质遗产 近日,日本分析设备协会本着&ldquo 弘扬分析测试技术、仪器以及仪器发展史上最重要的成果,传承开拓精神&rdquo 的原则进行了分析仪器及化学机械的物质遗产认定评选,全日本总共有20台不同时代的设备入选。由日本分析工业株式会社在上世纪70年代生产的初代JHP-2型居里点式裂解仪被授予该项殊荣。 在上世纪70年代,裂解仪采用的设计主要是微炉式和热丝式,但是由于其温度稳定性、样品适应性和实验结果重现性的局限性等诸多问题,无法实现实验室之间的实验结果比对,无法满足实验结果可比对性的要求。为了解决这个问题,日本分析工业株式会社另辟蹊径,采用了居里点加热这种物理性的加热方式,将裂解温度的再现性提上到± 0.05%摄氏度,同时还具有样品适应性强的特点。同时由于该设备可以保证在同一设备以及同一机种之间的实验结果可重复性,得到了世界刑侦物证界的认可,并推进了刑侦物证理化实验室之间数据的网络化和共享化。同时,在该设备的帮助下,世界上领先的化工相关企业也实现了不同工厂实验室之间的实验结果的可比对性和网络化。在这种背景下,该设备上市之后成为了市场上裂解气相色谱分析的主流配置。同时得到了世界刑侦物证界的认可,并且该设备在上市10年内的时间内销售量达到了600台之多,这个记录直到其更新换代型号JHP-22型的出现之后才被刷新。 目前,日本分析工业株式会社的居里点式裂解仪已经成为了橡胶、涂料、刑侦物证等行业的行业标准,并且本着为客户提供性能更加稳定、操作更加简便的原则不断推陈创新,先后开发出了目前裂解仪市场上性能最佳的JHP-5型裂解仪和操作最为简便友好的JCI-22型裂解仪。其中JCI-22型便携式居里点裂解仪更是打破了以往裂解仪体积庞大且需要对联用设备进行改装的固有思路,为世界提供了一种全新的便捷裂解手段。相信随着时代的发展和人类对于高分子材料研究的进一步深入,日本分析工业株式会社将会继续秉承&ldquo 更好、更便捷&rdquo 的宗旨为人类未来的高分子研究提供更多优异的实验室解决方案。
  • 普今公司医药化工行业分析仪器专刊
    2009年药典新增分析仪器,特此普今公司开办医药化工分析仪器专刊,重点推荐了重金属检测、TOC分析的解决方案,以及自主研发用于青霉素药品中高分子杂质分析的聚合物测定仪。 本期刊物的主要内容如下: 一、原子吸收分光光度计,应对项目:微量重金属元素定量分析 二、TOC总有机碳分析仪,应对项目:总有机碳分析仪 三、聚合物测定仪,应对项目:青霉素药品中高分子杂质分析 四、岛津色谱工作站Lcsolution Lite & Chromato-Solution Light,应对项目:替代国产色谱工作站,符合GMP规范 五、色谱配件、消耗品优惠信息 详情请来电咨询,欢迎各位用户前来订阅,我们会及时给您邮寄过去! 普今公司真诚为您服务! 联系电话:0512-65684880、65684881、65684882 E-mail:sales@sp4s.com 苏州普今生物科技有限公司 2009-6-15
  • 国家重点研发计划“大视场生物成像分析仪”项目启动
    p  近日,国家重点研发计划“重大科学仪器设备开发”重点专项“大视场生物成像分析仪”项目启动会在中科院南京天文仪器有限公司举行,项目专家组成员、主管部门负责人、项目骨干等20余家单位的近50余人出席了本次会议。/pp  项目责任专家、中科院沈阳科学仪器研制中心有限公司董事长雷震霖代表科技部高技术研究发展中心介绍了国家重点研发计划“重大科学仪器设备开发”重点专项基本情况、项目部署情况,对项目过程管理、组织管理等重要节点进行了解读。他希望项目牵头单位和课题承担单位履行责任、加强管理、把项目各项工作做细做实。/pp  据项目负责人、中科院苏州医工所研究员董文飞介绍,稀有细胞和痕量病原微生物对疾病检测、生殖健康、环境卫生和国家安全等方面有十分重要的影响,“大视场生物成像分析仪”项目基于对稀有细胞快速检测的需求,通过攻克大视场高分辨离轴反射式光学系统设计技术、大面阵高分辨探测器和大面积单层细胞推片技术等三个关键技术,开发新型大视场高分辨生物成像分析仪。/pp  该项目仪器研制技术路线采用模块式结构,包括大视场高分辨光学成像系统、大面阵高分辨探测器、大面积单层细胞推片机、自动识别快速软件、样品前处理、大面阵多光谱光源和运动控制模块等模块,同时开展在稀有细胞快速检测方面的应用示范,为仪器的工程化产业化及大规模应用奠定基础。/pp  中科院南京天文仪器有限公司董事长严庆伟表示,此项目研制的大视场生物成像分析仪将填补国内市场空白,验收三年内预期年产值可达3000万元,极大带动科学仪器系统集成创新,有效提升我国高端生物成像仪器设备行业整体创新水平与自我装备能力。/pp  会上,严庆伟宣布了项目总体组、技术专家组、用户委员会名单,并颁发聘书,表示将做好项目管理和协调工作,确保项目顺利开展并按期完成。/pp  据悉,该项目由中科院南京天文仪器有限公司牵头,联合中科院苏州生物医学工程技术研究所、苏州国科医疗科技发展有限公司、中国人民解放军军事医学科学院微生物流行病研究所、中检国研(北京)科技有限公司、武汉大学、吉林师范大学、广东科鉴检测工程技术有限公司等8家单位共同承担。/pp/p
  • 日立热分析仪 诚招各区代理
    日立高新技术科学现诚招华北、华东、华南区域热分析仪产品代理商,欢迎有兴趣的经销商来电来信洽谈。  日立热分析仪拥有世界顶级的基本性能与丰富的扩展功能,在灵敏度,稳定性,操作性,可视性等方面拥有全球领先技术。  凭借优异的产品性能和技术,日立一直是日本国内热分析仪最主流的品牌,经过四十余年的考验,拥有压倒性的市场占有率和极佳的口碑。用户涵盖从高分子、无机材料到药品、食品等的生产、品控、研发等各个行业。  作为日立高新技术科学旗下知名产品,经过四十余年的生产不断推陈出新,目前有差示扫描量热仪DSC,热重-差热同步热分析仪TG/DTA,热机械分析仪TMA,动态热机械分析仪DMA四类产品。  为加快拓展中国市场,现诚招华北、华东、华南区域代理商,欢迎与我们有共同信念,并有强烈推广意识的公司加入。我们也将提供最完善的产品服务和技术支持。希望我们共同努力,共谋发展。 更多详情,请联系:杨杰 先生日立仪器(上海)有限公司电话:(021)-5027-3533邮件:jie.yang.zt@hitachi-hightech.com-----------------------------------------------------------关于日立高新技术科学日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。作为日立高新技术公司的子公司,以往的精工电子纳米科技有限公司得到了很多客户以及研究机关,学术机关的各位的支持,因此得以开发先进技术,并提供给广大客户能安心使用的仪器。
  • 从BCEIA 2021新品看分析仪器技术与市场
    我国各行业对分析检测技术需求的大幅提升,对分析仪器给予更加广泛的关注和更高的技术要求。同时,机械、信息技术等基础行业的快速发展和物理、化学、光学、生命科学等学科的加速创新,也为分析仪器技术快速发展提供了强有力的支撑。总体上看,分析仪器技术的发展在追求灵敏度、分辨率等性能参数进一步提升的同时,呈现智能化、小型化、在线、专用化等特点。分析仪器市场概况据一份报告显示,2015至2020年,全球科学仪器市场规模保持稳定增长,2020年全球科学仪器市场规模已达650亿美元。作为增长最快的市场之一——中国科学仪器市场,各方数据显示市场仍在稳步增长中。据海关统计数据显示,2020中国大陆进口科学仪器146.43亿美元,同比增长6.48%;出口科学仪器34.77亿美元,同比增长2.90%。据招中标统计数据显示,2020国内分析仪器公开招标采购总金额168.41亿元,同比增长8.35%。针对中国分析仪器制造业,据相关数据显示,从台套数来看,2020年我国实验分析仪器产量约为238.53万台。从销售额来看,2020年我国实验分析仪器行业主营业务收入285.17亿元,利润总额实现了49.7亿元。在分析仪器品类中,“热度”较高的质谱,随着其分析技术和应用逐渐成熟,如今已广泛应用在环境检测、地球科学、材料科学、食品安全、临床检验、药物与毒物、生物医学研究等领域。应用层面可以说是包罗万象、需求也日益增长,庞大的市场吸引越来越多的厂商加入到质谱供应商行列,质谱市场的竞争更加“如火如荼”。据相关数据显示,2020 年全球质谱仪市场规模已超72亿美元,国内质谱仪市场规模达 151 亿元。海关数据显示,2020年,我国质谱仪进口数量为13889台。分析仪器技术发展方向——BCEIA 2021新品从1985年开始,北京分析测试学术报告会暨展览会每两年举办一次,已经连续成功举办了十八届,成为国内外分析仪器厂商新产品、新技术发布重要线下平台,为广大分析测试工作者提供了现场了解、接触新仪器、新技术的机会。日前,第十九届北京分析测试学术报告会暨展览会(简称:BCEIA 2021)于2021年9月27日在北京中国国际展览中心(天竺新馆)隆重开幕。BCEIA 2021共有700余家国内外展商参展,展示了数千台技术领先的分析测试仪器和实验室设备及其先进应用解决方案,各家企业最新产品、应用方案充分表达了各企业对分析仪器技术、应用发展趋势的理解和把握。1、向“高端”发展,更低检出限、更高分辨率仪器厂商在研制新品时仍在努力地继续追求更低的检出限、更高的分辨率。谱育科技EXPEC 7910 ICP-TOF质谱谱育科技EXPEC TRACE 8000化学电离飞行时间质谱中国仪器企业在高端质谱仪器研发和产业化创新方面做出了一系列的突破。谱育科技带来了他们的首款电感耦合等离子体-飞行时间质谱仪(ICP-TOF-MS),将ICP电离特性与飞行时间质谱仪高分辨率、高灵敏、快速扫描等优点相结合,可实现75种元素及质量数范围1~260amu绝大多数同位素的分析。不仅如此,谱育还带来了一款化学电离飞行时间质谱仪,适用于VOCs走航和在线监测。安益谱1978 三重四极杆气质联用系统安益谱深耕质谱技术自主研发多年,2021年其推出了首款气相色谱串联三重四极杆串联质谱仪,系统搭载了轴向线性加速电压高效碰撞池;双涡轮分子泵真空结构,最大载气流速可达10ml/min,支持0.53mm大内径色谱柱;新产品拥有的非共轴双预四极离子导引有效降低中性粒子噪声等特点。2021年上半年,国内外各大质谱仪器公司有15款质谱产品推出。其中,赛默飞推出三款Orbitrap仪器,其中Orbitrap IQ-X Tribrid是超高分辨三合一质谱性能进一步提升。Waters推出全新加强版DESI XS,可协同新型MALDI源,配备在全新的20万分辨率的SELECT SERIES MRT新型四极杆飞行时间质谱产品上,将飞行时间质谱与成像技术推到新的高度。布鲁克瞄准单细胞蛋白质组学领域推出timsTOF SCP,同时也推出最新一代的timsTOF离子淌度质谱系列,进一步提升其高通量和高灵敏度的特性。2、自动化程度提升,向智能化发展如今,仪器用户对更高效地获得可靠结果的需求越来越迫切,因为实验室检测样品数量大幅增加、仪器操作人员经验还需要时间进行积累。当前在很多实验室中,因为缺乏样品前处理经验、方法建立、优化和仪器维护工具,经常使得样品因不当操作而需要重新测试,这不仅降低了实验室的产出也增加了检测成本。因此,相关仪器厂商在研制新产品的时候,越来越多的会关注或采用自动化技术、人工智能技术、物联网数据处理技术等来避免或减少仪器使用中常见的问题,让分析关注更加简化。宝德仪器BUI-60全自动碘分析仪BUI-60全自动碘分析仪分析水碘符合GB 5750《碘化物》的标准要求、分析尿碘则符合WS/T107.1-2016《尿碘的砷铈催化分光光度测定法》的标准要求。仪器采用三维机械手全自动操作、自动添加试剂,内置石墨消解,非接触式混匀,反应过程使用超级恒温水浴精确控制反应温度,仪器除取样外完全自动化运行,测试结果的准确度满足质控样品测定合格的要求,可实现自动对水碘、尿碘的检测分析。炫一科技M6物联网气相色谱分析仪M6物联网气相色谱分析仪是炫一科技于2021年9月刚刚推出的全新实验室气相色谱系统,具有模块化技术及物联网数据处理平台。吉天仪器AFS-10 间歇泵快速进样原子荧光光度计作为为数不多的具有中国自主知识产权的科学仪器,原子荧光光度计在实际应用中发挥了重要的作用。目前,各大厂商也在仪器的自动化、智能化等方面加大开发力度。吉天仪器在BCEIA上展出了AFS-10 间歇泵快速进样原子荧光光度计。AFS-10具备多种智能及自动化功能,仪器自动清洗、吹扫和系统维护,无人值守设计,可定时自动唤醒并执行预热程序;该款产品的推出着力于解决实际应用中的问题,可以简易快速地测定环境、食品、地矿、化工等样品中的As(砷)、Sb(锑)、Bi(铋)Hg(汞)等元素。海光仪器HGCF-200系列连续流动分析仪2021年9月,海光仪器推出新一代HGCF-200系列连续流动分析仪。该产品采用高度集成化、自动化和智能化设计,试剂与主机一体化设计,解决了管路凌乱、试剂对应繁琐与液位未知等问题。3、走向现场检测,小型化/微型化、车载多数情况下分析仪器的体积都比较大,因为在某些情况下,如果仪器体积变小,可能会影响分辨率等性能参数。如果能够切实减小仪器体积,研制出适合野外现场分析的、可车载、便携的小型分析仪器,避免了样品采集及运输过程中的二次污染,是应对突发事件的好帮手。可以说,随着现场检测对分析仪器的大量需求,便携式和小型化分析仪器已经成为发展趋势。而且,随着纳米材料、芯片、MEMS(微电子机械系统)器件和微流控等技术的出现,使得分析仪器的体积进一步减小,向微型化发展成为了可能。小型质谱(便携、车载)是最近几年快速发展的质谱仪器之一,作为质谱的一个重要领域,小型质谱在军事、反恐安检、公安刑侦、环境、食品安全、医疗诊断,包括航空航天领域上都有广阔的应用,具有巨大的发展前景。清谱科技Cell 系统清谱科技致力于小质谱技术的研发和产业化发展,继miniβ之后,清谱这次带来了更“小”的质谱产品,产品全部重量8.5kg,内含锂电池,可以测量分子量在50-1000之间的化学物质。博赛德走航监测系统HAPLINE多功能便携式气质联用仪博赛德作为全球众多知名前处理分析仪器生产厂商在华的独家代理专注于VOC监测解决方案,近年来其与INFICON公司联合研发走航监测系统,搭载了四极杆质谱技术,可以对烷烃、卤代烃、芳香烃、含氧烃等多种VOCs组分实时分析。4、质量控制,在线仪器市场潜力巨大大型实验室仪器测试费时较长,不能达到过程控制的目的。近十年来,过程/在线分析技术作为实现信息化和智能化基础之一,已发展成为当今科学技术、经济建设和服务民生中的最为活跃的技术之一,并且逐渐在制药、石化、食品、医疗和环保等领域得到广泛而深入的应用,在优化生产、节能减排、提升传统产业及环境保护等方面起到了重要作用,取得了可观的经济效益、社会效益和生态效益。鉴知技术RS2000PAT在线拉曼分析仪在BCEIA 2021上,鉴知技术展出的RS2000PAT在线拉曼分析仪是专门针对在线检测设计,无需进行复杂的取样工作即可实时监测反应体系中各成分的含量变化,以及结晶过程中的晶型转变,可用于化学合成、结晶过程、聚合反应等各类化学体系,帮助用户准确理解反应过程、缩短工艺开发周期和实时监控产品质量。5、应用为导向,专用化、定制化发展世界上不存在完美的仪器,每种仪器技术都会有自己的局限性,但是根据仪器的特点,总会在某一个领域的应用上具有优势。找到这个细分领域,开发合适的应用,就是一个成功的仪器。随着分析技术在各个领域应用研究的不断深入,以及仪器厂商的差异化布局,侧重开发特定应用领域和场景的专用化分析仪器,以满足通用仪器无法覆盖的市场需求,成为了分析仪器的一个主要发展方向。莱伯泰科ICP-MS LabMS 3000莱伯泰科带来了他们的第一款质谱产品ICP-MS LabMS 3000,仪器在整机设计、进样系统材料、锥接口、锥材料以及碰撞反应池、冷热焰模式等方面都做了改进,其稳定的冷热焰切换技术可满足半导体行业的测试需求,该系统的应用领域瞄准半导体和医疗行业。禾信康源 NucMass 2000核酸质谱系统制药和生物技术应用领域在近两年占据了分析仪最大的市场份额,这一趋势预计将在未来很长一段时间内持续下去。作为精准诊疗的高新技术平台,质谱技术在临床中的应用越来越受到关注,其中一些质谱仪器已经获得NMPA认证并取得相关医疗器械证件。此次展会禾信重点带来了第一款核酸质谱仪器,为其大举进攻医疗领域打下基础。安捷伦InfinityLab Bio LC生物液相色谱系统基于安捷伦久经考验的液相色谱技术,面向生物制药市场,2021年安捷伦推出了全新的InfinityLab Bio LC生物液相色谱系统,进行了全系列生物液相产品布局,该系统适用于生物制药及其他高盐和极端 pH 条件下的应用,生物兼容性可确保生物分子的完整性和系统的稳定性。 鉴知技术RS1000TC 中药有害残留快检仪鉴知技术展出的RS1000TC 中药有害残留快检仪,由甘肃省药品检验研究院与北京鉴知技术有限公司共同研发,是国内外首款三合一的中药现场快检设备,集成多种检测技术,对党参、当归、黄芪等药材中多种农药残留、二氧化硫、真菌毒素、重金属进行快速检测和筛查。据介绍,该产品可以在30分钟内快速完成一次检测,成本低廉。并且前处理简单,仅需粉粹样品,无需离心等操作,检测项目满足2020版《中国药典》要求,适用于中药材交易市场、企业以及检测机构,具有简单、快速、便宜、灵敏等特点,满足多样化现场快检需求。经过长期技术沉淀,分析仪器日臻成熟。随着新技术出现及应用需求的不断深入,自动化、智能化、专用化,小型化、微型化,在线,高灵敏度、高准确性等成为分析仪器创新的主要方向。而从市场角度来看,分析仪器市场一直以来竞争激烈,很多品类仪器长期以来被进口品牌垄断。而随着国内技术研发投入增加,国产厂商也逐渐崭露头角,并在某些细分市场中占据领先地位。随着国家以及行业对于国产仪器支持力度不断加大,整个仪器市场对国产呈现明显利好,如何在变化的市场环境中把握机会,找到新的增长点,也是目前摆在各个分析仪厂商面前的问题。
  • 日立全自动氨基酸分析仪测定生物胺
    生物胺(biogenic amine,BA)是一类具有生物活性、含氨基的脂肪族或杂环类低分子化合物,对动植物和微生物活性细胞有重要的生理作用。适量的生物胺有助于人体正常的生理功能,但是过量的生物胺会使人体中毒,其潜在毒性而引发的食品安全问题引起越来越广泛的重视,食品中生物胺的检测也成为评价食品品质的一个重要指标。日立超高速全自动氨基酸分析仪LA8080,采用日立独家的双柱技术使氨基酸的分析进入一个超高速全自动分析的时代。同时,LA8080也可用于生物胺的全自动分析,LA8080自动进行衍生,无需复杂的手动衍生,提供标准分析和快速分析两种分析方法。 PH色谱柱标准分析PH 60mm色谱柱是LA8080的标配色谱柱,可以在30min内分离26种氨基酸,且分离度大于1.2,如果LA8080用户同时有生物胺测定的需求,可以不用增加或者更换任何硬件配置,即可实现生物胺分析。七种生物胺分离度良好PH色谱柱快速分析如果需要更快的分析速度,提高分析速率,也可选择快速分析法,仅需35min即可实现7种生物胺的分离。35min内就可实现七种生物胺的分离分析,并且分离度良好。 日立超高速全自动氨基酸分析仪LA8080,不仅可以实现氨基酸的超高速全自动分析,同时也可以用于生物胺的全自动分析,为用户带来更多的便利和解决方案。
  • 获取复杂样品超高分辨图像及图形的分析统计数据
    现如今对材料进行微观形貌表征时,仅仅看到清晰的形貌是远远不够的,针对有重复结构的材料,如多孔,颗粒等结构的样品,还需对图片中的孔洞或颗粒进行统计与分析,比如统计总数,大小,尺寸等,获得量化结果,辅助研究。硫酸铝矿孔径分布测量当我们对多孔硫酸铝样品进行观察,孔径尺寸大约在10nm左右,由于孔径尺寸非常小,想要清晰的观察到孔的形貌,需要使用超高分辨场发射扫描电镜Regulus8200观察,利用其低加速电压下高分辨率的特点,轻松获取高倍清晰图片。由于图像里的孔与背景亮度对比度的不同,使用Image Pro图像分析软件对感兴趣区域框选,软件可通过信号的强弱分离孔洞并自动测量硫酸矾石的孔径分布(图2)及定量数据。图2中的图表是平均孔径的直方图。当我们分析数据时,可以选取一个孔(图2中的粉红色箭头)时,您可以看到它在直方图中的位置(红色圆圈)。或者在直方图中选择一个条柱(图 3 中的粉红色箭头)时,您可以看到所选条柱包含哪些孔(Brue 字符)。统计数据直方图如图4所示。高容量硬盘驱动器(HDD)中的,磁性颗粒粒度分析高容量硬盘驱动器(HDD)中的磁性颗粒会随着记录密度的提高而变小。然而,较小的磁性颗粒可能会产生较小的矫顽力,因此会妨碍稳定的记录。因此,评估晶粒尺寸和晶粒间距对于实现和保持稳定的HDD性能非常重要。图5(a)显示了配置高容量HDD的磁盘上磁性颗粒的BSE图像。通过使用YAG-BSE探测器拍摄70万倍的高分辨图像,并从中获取颗粒的形状。在对图像上的颗粒进行分析时,首先这些晶粒被识别为感兴趣区域(ROI),使用Image-Pro 10图像处理软件将晶界和背景进行分离,如图6(b)所示。尽管BSE图像因为通道效应导致每一个颗粒对比度和亮度不均匀,但依然可以稳定地对颗粒直径或面积定量分析,因为这些颗粒是通过信号强度提取的,另外还通过其形状和大小提取的。图7(c)是磁性晶粒直径的柱状图。超高分辨冷场扫描电子显微镜Regulus8200和图像分析软件Image-Pro 10的组合可实现HDD的高分辨率成像和定量图像分析,帮助HDD在增强记录密度的研究中。Regulus8200 "Regulus系列"扫描电子显微镜(SEM)被广泛应用于纳米技术,半导体电子行业,生命科学,材料科学等领域的材料结构观察。仅仅具有超高分辨率还远远不够。还要求能在低加速电压下对表面细微结构的观察和高灵敏度的元素分析。发挥高性能,高稳定性,轻松获取高倍清晰图片。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 第九届中国分析仪器学术大会(ACAIC 2024):聚焦下一代分析仪器
    第九届中国分析仪器学术大会(ACAIC 2024)第二轮通知科学仪器的发展是一场马拉松。随着我国在科学仪器设备自主研发方面的持续发力,我国分析仪器正在从“人有我有”向“人优我优”乃至“人无我有”的方向发展。从未来发展趋势看,随着科学研究、技术开发向物质极端尺度推进,分析仪器发挥的作用将更为关键。面对即将到来的下一个“五年计划”,如何以世界一流水平为目标,精准布局下一代分析仪器开发,打好高端分析仪器的国产化攻坚战,显著提升分析仪器国产化替代水平和应用规模,已成为备受各界关注的重要议题。为研究和探讨未来几年分析仪器发展方向及布局建议,集中宣传最新分析仪器及其关键部件高水平研发成果,进一步提升用户对国产仪器和国产关键部件的信心,中国仪器仪表学会分析仪器分会将于2024年11月14-16日在广东省深圳市组织召开第九届中国分析仪器学术大会(ACAIC 2024),热忱欢迎关心我国分析仪器创新进展的科技工作者、科技型企业、科技管理人员、科技投资人等参会,也热烈欢迎分析仪器产业链上下游相关企业或单位参展宣传。一、会议时间2024年11月14-16日 二、会议地点深圳登喜路国际大酒店(广东省深圳市宝安区宝田一路12号)三、会议主题“下一代分析仪器”四、会议日程2024年11月14日, 参会代表注册报到、参展企业布展2024年11月15日,大会开幕式及大会报告2024年11月16日,大会专题论坛2024年11月15-16日,仪器及部件展览;壁报展(含论文/成果/专利等)五、会议规模预计约500-700人,包括科技及工业部门管理人员、高校或科研院所仪器/零部件/关键技术开发人员、仪器及零部件企业代表、资深仪器用户、科技投资人、产业园区负责人、学会/协会专家、专业媒体等。六、注册缴费1、收费标准:会员1800元/人(含中国仪器仪表学会会员库个人会员/团体会员参会代表);非会员2800元/人;学生1000元/人。食宿及交通费用自理。2、提前扫码,注册成为学会会员(注册时,请选择分析仪器分会)。3、缴费方式(1)会议注册费缴纳,可提前线上汇款或现场缴费。 (2)汇款账号如下:户 名: 中国仪器仪表学会账 号: 0200 0043 0901 4464 348开户行: 中国工商银行北京北新桥支行汇款时务必备注:ACAIC2024+汇款单位名称+参会人姓名。若多人一起汇款,请注明全部姓名及人数,如ACAIC2024+XXXX单位+张XX、李XX、王XX(3人)。(3) 开具发票:发票内容统一为“会议费”,发票为“增值税普通发票”。七、住宿预订ACAIC 2024大会住宿酒店:深圳登喜路国际大酒店。协议酒店预留房间数量有限,请尽早与酒店直接联系预定。联系人及手机:刘娟经理 18128818180(微信同号)预定房间时说明:第九届中国分析仪器学术大会,即可享受会议优惠价:500元/间/晚(含早),大床房/双人房同价。八、联系方式1、参会报名注册及赞助:杨老师 18610289871(微信同号);ygx@fxxh.org.cn2、报告组织及媒体合作:刘老师13401022872(微信同号);lyl@fxxh.org.cn3、会员注册及“会员之家”:李老师18611920516(微信同号);lyc@fxxh.org.cn4、会议宣传:秦老师13699208639(微信同号);qlj@fxxh.org.cn附件1:组织架构附件2:日程安排附件3:论文及壁报征集须知中国仪器仪表学会分析仪器分会2024年8月26日点击下载附件:附件1:组织架构.docx附件2:日程安排.docx附件3:论文及壁报征集须知.docx 附件1:组织架构主办单位承办单位大会主席方向理事长 郑海荣院士大会副主席关亚风、刘长宽、曹以刚、丁传凡、付世江、郜 武、胡家祥、鞠熀先、刘成雁、陆 峰、马兰凤、王 静、张新荣、周骏贵、边宝丽、陈彦长、段忆翔、韩 立、韩双来、韩 莹、何世伟、黄云彪、李 红、李 钧、刘虎威、刘召贵、牛 利、石平静、王文青、肖立志、赵 燕、张振方、周 振组委会主任吴爱华组委会副主任罗 茜、程 贺、丁 炯、龚湘君、何世伟、李 磊、李晓天、李 雪、林庆宇、刘轻舟、彭广敦、汪 正、张丽娜、贾 琼组委会委员刘玉兰、李玉琛、秦丽娟、杨冠星、梁侃慧、吴亚慧、朱芷欣、郑传涛、吕金光、高 勋、宋 薇、王嘉宁、黄臻臻、毛 竹、朴明旭、张尹馨、刘 全、刘丽娴、宦惠庭(正在增补中)合作媒体仪器信息网、分析测试百科、化工仪器网、仪器学习网合作杂志《分析测试技术与仪器》附件2:日程安排2024年11月15日全天ACAIC 2024大会开幕式及大会报告时间报告人报告主题08:30-09:30大会开幕式09:30-17:30哈尔滨工业大学谭久彬院士仪器产业体系与国家测量体系中国21世纪议程管理中心 裴志永处长“基础科研条件与重大科学仪器设备研发”重点专项“十四五”实施进展及展望中国仪器仪表学会分析仪器分会 方向理事长分析仪器技术发展趋势及发展建议中国科学技术信息研究所 董诚研究员 从专利、文献及情报视角看全球质谱仪技术布局及建议更多精彩大会报告正在积极邀请中,敬请期待!报告主题包括:&bull 解读分析仪器国家政策和行业发展&bull 宣传分析仪器及其关键部件新成果、新产品&bull 宣传分析仪器应用创新&bull 宣传分析仪器及其关键部件创制人才&bull 宣传促进分析仪器创新的新做法2024年11月16日9:00-12:00分析仪器重大研发成果进展交流及展望论坛组织机构:中国21世纪议程管理中心中国仪器仪表学会分析仪器分会论坛主席:中国21世纪议程管理中心 裴志永处长论坛召集人:中国仪器仪表学会分析仪器分会 吴爱华秘书长时间报告人报告主题09:00-12:00西安交通大学 李志明研究员高分辨辉光放电质谱仪器研制与应用进展宁波永新光学股份有限公司董事长兼总经理兼技术总监 毛磊超高分辨活细胞成像显微镜研究及应用中国科学院精密测量研究院刘朝阳研究员核磁共振仪器系统的研制与工程化开发中国科学院苏州生物医学工程技术研究所 马玉婷研究员高性能流式细胞分选仪研制进展及应用 中国地质科学院地质研究所龙涛研究员高分辨率二次离子质谱仪研制进展中国科学院苏州生物医学工程技术研究所 何益研究员高精度哈特曼-夏克波前传感器研制与推广西北工业大学深圳研究院查钢强教授半导体核辐射探测材料与器件中国工程物理研究院机械制造工艺研究所 李建高级工程师抗振动分子泵关键技术研发及应用北京航空航天大学自动化科学与电气工程学院 石岩教授气动关键基础件与技术在高端仪器设备中的应用2024年11月16日上午9:00-12:00生命科学创新与下一代分析仪器论坛组织机构:中国科学院深圳先进技术研究院论坛主席:中国科学院深圳先进技术研究院 郑海荣院士论坛召集人:中国科学院深圳先进技术研究院 罗茜研究员论坛背景:生命科学的重大创新常以科学仪器和技术方法的突破为先导,这些创新以分子可视化、生物成像,变革性材料、AI智能数据应用和解析为核心,致力于发展在分子、细胞、组织和器官水平,对基因、蛋白质、代谢物、肿瘤异质性、细胞微环境和神经物理场检测、成像与分析的科学仪器。本论坛由中国科学院深圳先进技术研究院组织,将聚焦生命科学研究领域的前沿问题,基于声、光、电、磁的新原理与新方法,深入探讨科学仪器的技术创新与应用革新,特别是下一代生命科学仪器的研发蓝图,拟邀报告主题包括不限于核酸分析、外泌体检测、MRI成像、超声技术、生物传感、显微成像、质谱分析、纳米传感、微纳流控,尤其关注单细胞、单颗粒和单分子分析,活体与原位分析,免疫检测,智能感知和空间多组学的新方法等新技术、部件和仪器。论坛日程正在积极落实中,敬请期待!2024年11月16日上午9:00-12:00探索未来:下一代质谱技术创新与突破论坛组织机构:广东省麦思科学仪器创新研究院宁波大学材料科学与化学工程学院暨南大学环境与气候学院论坛主席:宁波大学材料科学与化学工程学院 丁传凡教授论坛召集人:广东省麦思科学仪器创新研究院 李磊副研究员暨南大学环境与气候学院 李雪副研究员时间报告人报告主题09:00-12:00中国科学院地质与地球物理研究所 李献华院士质谱与空间科学广东省麦思科学仪器创新研究院 李磊副研究员超高分辨质量分析器的现状与发展暨南大学环境与气候学院李雪副研究员待定上海交通大学机械与动力工程学院 齐飞教授质谱技术与燃烧过程研究复旦大学现代物理研究所屠秉晟研究员基于超低温强磁场的超高质量精度离子阱技术中国科学院化学研究所何圣贵研究员化学反应质谱复旦大学人类表型组研究院丁琛教授蛋白质组/蛋白绝对定量质谱技术2024年11月16日09:00-17:30光谱仪及核心元器件技术创新论坛组织机构:中国科学院长春光学精密机械与物理研究所四川大学分析仪器研究中心吉林省分析测试技术学会论坛主席:中国科学院长春光学精密机械与物理研究所 王立军院士上海理工大学光电信息与计算机工程学院 庄松林院士中国科学院长春光学精密机械与物理研究所 梁静秋研究员论坛召集人:中国科学院长春光学精密机械与物理研究所 李晓天研究员四川大学机械工程学院 林庆宇副教授时间报告人报告主题09:00-17:30 上海理工大学庄松林院士致辞吉林大学 赵冰教授半导体SERS基底的研制及应用中国科学院上海技术物理研究所 何志平教授红外显微光谱分析仪器研发及应用探讨西安交通大学 张淳民教授新型成像光谱偏振技术 上海理工大学 张大伟教授光谱仪器分光元件及应用的创新研究 香港理工大学 靳伟教授待定中国科学院烟台海岸带研究所 陈令新研究员基于纸芯片的海洋生态环境快速分析监测技术吉林大学 郑传涛教授待定香港中文大学 任伟教授高灵敏红外激光气体分析仪上海交通大学 陈昌教授微型化拉曼光谱仪的机遇与挑战中国科学院长春精密机械与物理研究所 吉日嘎兰图研究员高性能光栅制造技术及产业化中国科学院西安光学精密机械研究所 冯玉涛研究员高灵敏度拉曼光谱仪及其定量技术研究中国科学院长春精密机械与物理研究所 李博研究员小型光谱仪光学系统设计河北大学质量技术监督学院 李红莲教授基于微流控-LIBS水体在线检测系统及应用研究中国科学院长春精密机械与物理研究所 吕金光研究员基于静态干涉系统的傅里叶变换光谱成像技术研究天津大学 张尹馨副教授结构光照明超分辨显微高光谱成像技术研究西安电子科技大学 刘丽娴副教授谐振型光声光谱气体传感器苏州大学 刘全副研究员高性能闪耀光栅及棱栅设计及研究进展西北大学 张天龙副教授激光诱导击穿光谱结合机器学习的金属材料智能分析及应用江苏海洋大学 黄保坤高级工程师拉曼积分球光谱仪设计及其在ppm量级气液固原位检测中的应用 中国工程物理研究院材料研究所 李海波副研究员面向工况和植入式检测场景的拉曼光谱仪技术浙江工业大学 潘再法副教授纳米荧光探针及单分子免疫检测中国科学院长春精密机械与物理研究所 陶琛助理研究员空间用紫外单光子成像探测器及其在光谱仪研制中的应用西安电子科技大学 宦惠庭副教授 基于光热光谱的非接触式应力强度检测研究中国科学院长春精密机械与物理研究所 王嘉宁副研究员基于腔增强吸收光谱技术的气体传感器2024年11月16日09:00-12:00下一代热分析与量热仪器创新与应用论坛组织机构:中国计量大学计量测试与仪器学院论坛主席:清华大学化学系 尉志武教授论坛召集人:中国计量大学计量测试与仪器学院 丁炯副教授时间报告人报告主题09:00-12:00西北工业大学Pavel Neuzil 教授Advanced Microcalorimetric Analysis using Stationary Droplets and Flow-through Systems中国科学院大连化学物理研究所史全研究员液氦温区绝热量热仪器研制中国科学技术大学 丁延伟教授级高工新形势下我国热分析与量热仪器的发展机遇与挑战厦门海恩迈科技有限公司 于海涛研究员基于变温谐振集成微悬臂梁的热分析仪器技术中国计量大学计量测试与仪器学院 丁炯副教授锂离子电池热安全热管理中的热分析与量热技术中国工程物理研究院化工材料研究所 待定补偿测压多通道等温热分解测试系统北京科技大学能源与环境工程学院 邱琳教授谐波法热物性测量技术2024年11月16日14:00-17:00智能生物传感技术创新论坛组织机构:深圳大学医学部生物医学工程学院论坛主席:深圳大学 张学记院士论坛召集人:深圳大学 刘轻舟副高智能生物传感技术,作为传感技术的尖端形态,借助人工智能、大数据与5G技术的赋能,实现了从被动监测到主动感知的跨越式发展。其从可穿戴设备向可植入技术的演进,不仅展现了技术的柔性化、轻薄化、智能化趋势,更深刻揭示了生物传感与人工智能(AI)融合的强大潜力。本论坛将聚焦于生物传感与人工智能这一交叉领域的最新进展,邀请清华大学李景虹院士、南京大学鞠熀先教授、中山大学牛利教授、南方科学技术大学蒋兴宇教授、北京科技大学李正平教授、中国科学技术大学潘挺睿教授、浙江大学刘清军教授、深圳大学许太林教授等生物、医学、人工智能领域的权威专家参会作报告。报告主题将从临床需求的迫切性、科研探索的新方向及产业应用的广泛性3个维度,深入剖析智能生物传感器的技术革新与未来趋势,旨在搭建跨学科交流平台,促进生物传感、人工智能与纳米生物技术的深度融合。 论坛日程正在积极落实中,敬请期待!2024年11月16日14:00-17:00下一代空间多组学检测技术论坛组织机构:中国科学院广州生物医药与健康院论坛主席:中国科学院广州生物医药与健康研究院副院长 孙飞研究员论坛召集人:中国科学院广州生物医药与健康研究院 彭广敦研究员空间多组学检测技术,是继单细胞测序技术之后的又一个生物技术研究热点,2022年国际顶级学术期刊 Nature 将其评为年度七大颠覆性技术。空间多组学技术通过整合多种组学数据于组织空间分布之中,不仅保留了细胞与组织的精细形态学特征,还实现了前所未有的高通量、高分辨率及多模态信息获取能力。然而,尽管取得显著进展,当前空间多组学技术仍面临诸多挑战,包括技术兼容性、捕获效率、原位综合分析能力的不足,以及高效数据融合分析算法的缺乏。在此背景下,本论坛将汇聚国内外顶尖学者,旨在深入探讨如何通过多学科交叉融合,推动预处理及检测设备的创新发展,同时探索新型数据融合分析策略,以加速空间多组学技术的临床转化进程,共同开启生命科学研究与医疗健康领域的新篇章。目前已邀请的报告专家包括上海交通大学医学院杨朝勇教授、北京大学黄岩谊教授、中国科技大学唐爱辉教授、中科院广州健康院孙飞研究员、深圳理工大学曹罡教授、广州实验室田鲁亦研究员等知名专家学者。论坛日程正在积极落实中,敬请期待!2024年11月16日14:00-17:00半导体材料/器件高质量发展与下一代分析仪器论坛组织机构:中国科学院上海硅酸盐研究所论坛主席:待定论坛召集人:中国科学院上海硅酸盐研究所研究员 汪正研究员时间报告人报告主题14:00-17:00中国科学院半导体研究所赵德刚主任氮化镓半导体激光器材料行业现状及趋势中国科学院上海硅酸盐研究所汪正研究员等离子体质谱应用于高纯半导体材料分析中国科学院上海有机化所王昊阳高级工程师有机半导体材料的体系化质谱分析方法上海集成电路材料研究院性能实验室 王轶滢总监集成电路材料国产化面临的性能检测需求北方工业大学高精尖创新研究院 闫江院长集成电路制造工艺与第三代半导体关键技术上海市计量测试技术研究院集成电路产业中心 李春华主任ICP-MS技术在湿电子化学品检测领域的应用中山大学电子与信息工程学院刘川教授薄膜晶体管测量中的问题与方法初探中国科学院上海硅酸盐研究所李青副研究员离子色谱在电子化学品行业的应用2024年11月16日14:00-17:00下一代材料结构与界面分析技术论坛组织机构:华南理工大学材料科学与工程学院散裂中子源科学中心(高能所东莞研究部) 广州市仪器行业协会论坛主席:华南理工大学材料科学与工程学院 张广照教授论坛召集人:华南理工大学材料科学与工程学院 龚湘君副教授散裂中子源科学中心(高能所东莞研究部) 程贺研究员时间报告人
  • 新品 | 日立分析仪器推出新款DSC系列热分析仪,用于高级材料开发和质量控制
    英国牛津[2021年1月19日]:日立分析仪器公司(Hitachi High-Tech Analytical Science)是日立高新技术公司旗下的全资子公司,主要从事分析和测量仪器的制造与销售,现已推出全新DSC系列(一种用于高级材料开发和产品质量控制的差示扫描量热仪)。作为日立分析仪器高规格热分析系列的最*新产品,新款DSC可为实验室和制造商提供一个进行详尽和彻底DSC分析的新选择。RealView尖*端技术实现分析可视化RealView(选购件)样品装置可在DSC测量期间获取样品视觉信息,实时捕获与DSC直接相关的样品图像。这可帮助识别物理性质变化,而DSC输出中添加的视觉信息使结果解读变得更加容易,尤其是在进行失效分析、异物分析和调查异常结果时亦如此。RealView系统核心的高分辨率摄像机允许在-50ºC极端低温条件下观察样品。RealView系统包括颜色分析(RGB、CMYK和LAB)并可记录样品图片和视频,是使用新款DSC进行研究、教学、故障排除以及受影响区尺寸测量的理想之选。将储存相关结果(注明DSC输出时间和温度),以供日后分析与研究。检测最小热事件在复杂复合材料的开发和制造中,微量添加剂可对性能产生巨大影响,由此对热分析仪识别越来越细微的热事件的能力提出更高要求。新款DSC系列旨在提供当今高级材料热表征所需的最*高性能。新款DSC系列的两种型号均得益于独特的炉膛设计和新开发的传感器,可提供世界一*流的灵敏度和无与伦比的基线重复性。此类新技术可帮助检测和隔离最小热事件(即使是复杂材料中的微量热事件)。用于深度可靠分析的新开发的传感器新款DSC600采用新开发的热电堆型DSC传感器,可为更高级材料开发和失效分析提供最*高的灵敏度和分辨率。此外,新款DSC200型号也针对传感器进行重新设计,在提供高灵敏度和稳定性的同时具有低成本封装。两种型号均采用新型炉膛配置,可提供+/- 5 µW基线重复性。这可确保对痕量材料的可靠和精确检测,提供各种应用领域(包括研发和进出库成品的质量控制)所需的性能。内置安全装置的大容量样品分析除注重性能以外,新款DSC系列还具有许多其他功能,可支持高容量和深入的热分析。自动进样器选购件包括一个独特的四叉样品架,在同时分析多达50件样品时能具有出色的可靠性。此外,还增加创新的安全功能, 用户可以选配具有防夹功能的电动盖,其在加热炉未回落到安全温度前会保持锁定,以防烫伤用户。双重冷却系统可节省时间和成本新款DSC系列所含的双重冷却系统能简化-80ºC温度以下的分析,无需在需要液氮冷却时手动断开电气冷却系统,从而节省用户的时间。内置混合系统允许同时连接两个冷却系统。有三种冷却系统可供选择:空气冷却、电气冷却或液氮冷却。对于那些注重在室温和室温以上温度的条件下进行测量的用户而言,空气冷却系统是理想之选。大多数测量均使用电气冷却系统,这有助于降低成本,同时实现低于室温这一条件。只有在特定测量需要时,例如分析某些橡胶或弹性体的转变,才能选择液氮冷却系统。日立分析仪器产品经理Ashley-Kate McCann表示:“日立设计的新型新款DSC系列可满足研发实验室和质量控制部门在开发新材料方面的需求,并确保聚合物、化学品、陶瓷、金属、石化产品和食品在内的众多材料质量。除全新的传感器和炉膛设计以外,公司还改进了尖*端的RealView样品观察装置。此外,公司还纳入了能直接响应客户要求的新安全功能。这便是为什么我们可以说,在谈及热分析时,日立明显与众不同。”新款DSC600和新款DSC200正在热销中,有需求请联系日立分析仪器。
  • 现代露点分析仪发展简介
    肇始:1954年,随着马歇尔计划的顺利结束,二战期间饱受重创的欧洲的各个行当开始迎来复兴。像作为英国传统的羊毛生意也再度兴旺起来。但马上,羊毛商人们发现因为二战中壮年劳动力的损失造成了人力成本上涨,在挑选羊毛时不得不引入更先进的检测手段。在影响羊毛质量的各个环境参数中,湿度是一个比较关键的指标,直接关系到羊毛的细度、初始模量、断裂伸长率、弹性回复率和压缩回弹性能等等,所以羊毛商们开始寻找一个能够测量湿度的仪器。一个英国皇家空军退伍的前无线电工程师接下了羊毛商的这一任务,莱纳德肖恩(LEONARD SHAW)先生是个类似于发明电灯的爱迪生那样的,集理论和动手能力于一身的通才,与其他着迷于光学魔术和电磁感应的同行的不同,他的目光落到了最基本的电容上,简单的说,每种材料引起电容改变的介电常数不同,他所需要的就是找出一个最合适的材料,最终选定的是氧化铝,作为湿敏元件,氧化铝的反应非常迅速,当水蒸气浓度从10000微克/升降至10微克/升时,t63(量程的百分之63)?小于5秒钟。剩下就是并且解决设备体积的问题。电容类传感器的传统制作方法是是将铝等金属箔当成电极和塑料薄膜重叠后卷绕在一起,体积不会小,还沉。在花了几年功夫,肖恩先生依靠英国当时世界前茅的材料和理论指导,在氧化铝上面蒸镀上了一层很薄的金属以做为电极,省去了电极箔的厚度,缩小电容器单位容量的体积,不但实现了良好的测量性能还获得了小型化的传感器。 肖恩先生在反复试验后他弄出了一款能够稳定测量-60度以上湿度,重量轻,反应速度快的的分析仪,于是大名鼎鼎的肖氏分析仪在1960年开业了。羊毛商一用起来,发现肖氏的露点分析仪不单反应快,还皮实,马上大范围应用起来,为肖氏赢得了最初的用户和良好的口碑。同时随着苏格兰北海油田的开发,石化等其他行业也纷纷用起肖氏的露点仪,发现这款仪表的便携表尽管扔有些笨重(毛重7.5公交,中国女性长时间拎着够呛),受材料限制,肖氏氧化铝传感器的也有些缺陷,比如测-60°以下很吃力,但抛开这些缺点,肖恩先生发明的这款仪表无疑是划时代的作品,里面一些如干燥腔这样实用设计一直应用到了现在。 典型的肖氏分析仪,1960年到现在没怎么变过 干燥腔,可以提高便携露点分析仪的反应速度,合格便携露点的标配在肖氏崛起的同时,一直在英国剑桥大学的卡文迪许实验室工作的湿度的安德鲁密析尔(Andrew Michell)另辟蹊径,绕开了氧化铝电容法传感器的专利屏障,通过烧制等工艺,研究出了厚薄膜法的陶瓷电容法露点分析仪。 这家伙一下子能够测量到+20到-100度的露点了,而且由于是陶瓷材质,相对来说耐高温性能更好,缺点是比起氧化铝来反应速度是龟速… … 密析尔公司从这个技术起家,后来推出了各种工业露点产品,后来更是被跨国巨头PST收购,和掌握高湿度测量的罗卓尼克等公司成为队友,组成了分析仪表行业的一大阵营。除了这俩英国露点分析的两个代表企业,像希仕代(Systech)、阿尔法(ALPHA)等等一大波公司也都在以氧化铝传感器为主,也有做硅传感器的马纳里可(Manalytical)等以小众传感器为核心的公司。除了英国之外,美国是当时露点分析仪发展蕞快的国家,其中冷镜法露点分析仪是他们的强项。在1965年的时候,有一家EG&E(现在是世界五百强珀金埃尔默PERKINELMER)旗下的小公司,美国的爱迪泰克公司发明了冷镜式露点仪,比起靠间接转换得到数据量的电容法,直接测量得出读数的冷镜法无疑更受欢迎。原理很简单啦,大家见过镜子上的露珠吧,冷镜法就是测镜子上露珠的一种方法。一个镜面,配上使用冷凝器(发明的时候和老式冰箱的压缩机差不多)后,被冷却至被测气体的露点温度。当温度降低到样气露点时,镜面会形成冷凝。一个由光电探测器组成的电光回路检测冷凝的形成。镜面反射光强度减少量,作为仪表控制电路的冷却功率的反馈输入,这样镜面就被控制在平衡状态中。蒸发速度与冷凝速度以相同的速率发生。此时温度计测量的镜面温度就等于被测气体的露点温度。 除了爱迪泰克,美国仪表圈里几个巨头比如热电(Thermo Fisher Scientific赛默飞世尔)、阿美泰克、GE(通用电气)、cosaxentaur也都相继开发了冷镜、电容法的相关产品,并且依托美国的整体工业体系实现了对其他国家的碾压,但是大公司有大公司的问题,下面讲几个例子。以cosaxentaur举例,这家以热值仪为主打产品(客户遍及美国各大天然气和石油公司),在1996年的时候,一批出身NASA、格鲁曼等知名科研单位的工程师(很多都是双硕士学位的人才)带动下,开发了自己的深特(xentaur)牌子的氧化铝露点传感器,比起肖氏来涂层更薄,反应更快。 深特搭配了cosaxentau强大的营销体系,和GE所属的巴纳(panametrics)在20世纪末成为美国市场蕞大的两家露点分析仪表公司。但是正如老对手panametrics被GE收购后就沦为三线品牌,后来更转入GE合并后的贝克休斯(Baker Hughes)之下一样,丧失了自主能力。在21世纪初,风光一时的 cosaxentau也被PSI集团收购,成为这个分析行业巨头底下的子公司,而深特作为一个小众品牌在整个集团体系内相当于囊尾的角色,多一个不多少一个不少,自然就造成包括全球售后资源的分配等等问题,进而导致了公司内部人才的流失。这些从深特出来人才,属于冷战末期美国培育出来的科技精英的一份子(打了这么多年怪怎么说也是一身金装了),手底下自然是有两把刷子的,他们成立的菲美特(phymetrix)公司反而摆脱了之前的限制,在原有传感器基础上推陈出新,造出了目前工业领域实用化阶段能够做到的蕞高精度的氧化铝传感器。他们的秘诀就是四个字,更薄,更密。 传感器优化后,分析仪本身的重量也就下来了,菲美特便携表的重量只有肖氏的三分之一左右(2.85KG),比较适合逐渐老龄化且有大量女性职工的中国工业。 所以说大公司有大公司的好,小公司有小公司的优势,特别是科技主导型企业,小公司往往更有冲劲,像专精冷镜露点的瑞士MBW,还有芬兰的维萨拉都可以说是分析仪器厂家里面的小巨人。冷镜讲过了,就不多讲MBW了,给大家说说芬兰,大家知道芬兰靠近北极芬兰人对温度这些攸关小命的指标可是异常关注,随着二战的结束,维萨拉从无线电探空仪做起,很快就点满了大气温度、湿度测量的科技点,发明创造了很多独门武器,在高湿领域吊打无数巨头,像在湿度分析方面,他们在1973就开发出了世界上第一个高分子聚脂薄膜Humicap。采用高分子薄膜被放置于两个导电电极之中的结构。传感器表面被多孔隙的上电极覆盖以防止被污染,且能暴露在冷凝状态中。下电极典型材料为玻璃和陶瓷。 这种传感器好处是测量-60度以上的露点温度快而且准,也比较皮实,在各行各业都有应用。缺点是-60度以下没法用。至于石英晶体震荡,光腔衰荡,五氧化二磷,光纤等等测量原理相对来说用量和适用性限制比较大,就不专门介绍了,毕竟本篇是简史,大家有个这几样蕞大的毛病是“贵”这个概念就行。 博泰克HYGROPHIL HCDT水烃露点分析仪 总之,到了20世纪头十年,国外工业的露点分析仪最能打大概是以下这几家:冷镜式露点仪:爱迪泰克、MBW、密析尔氧化铝电容法:肖氏、深特、菲美特、巴纳陶瓷电容法:密析尔硅电容法:马纳里可光腔衰荡:泰格(TIGER)、米寇(MECCO)、光能高分子薄膜:维萨拉光纤:博泰克五氧化二磷:DUMAT、CMC激光法:DF 国内露点分析仪发展及问题 上世纪五十年代的“156项重点工矿业基本建设项目”是现代中国工业体的骨架,为了配套这些大项目,国内建立了北分、南分、川仪、成都厂等国企分析仪器厂,并完成了一些简单的露点分析仪器的研制。而随着上世纪70年代,合成氨和大量石化、天然气项目的建成,湿度、露点分析仪器的重要性就逼着国内仪表人寻求国外的资源。 早在1974年。由第一机械工业部技术情报所出版,北京分析仪器研究所等单位牵头的《分析仪表》一文中,对欧美日苏等国的分析行业及顶尖分析仪器公司做了分析,并在文章末尾,用一页篇幅提到了湿度计及水份计。 当时国企能够自产热磁氧、热导分析仪等仪表(现在还靠这些产品吃饭… … ),但一些高精尖的仪表如不分光红外分析仪和激光分析仪等,自产缺乏时间、金钱和人才,只能走进口全套技术的路线(日本在1970年代也是这么做的,日本吸收后二次开发很强,像横河和岛津就是青出于蓝了。),并随之建立了北分-麦哈克等合资企业。 相比其他分析仪器,湿度和露点上的分析仪,国内和其他国家在1970/1980年代差别还不是很大。 1979年出版的《痕量水分仪》上提到的国内电解法水分测定仪:我国生产的电解法水分测定仪型号生产厂家USI-21USI-1WS-1WS-2HS74-1北京分析仪器厂成都分析仪器厂兰州化学工业自动化研究所旅顺元件厂沈阳热工仪表厂在1982年,由兵器工业部和中国计量科学研究院研发的数字型冷镜露点仪SH-81就定型了。指标还挺不错:测量范围:+20°C~-80°C露点温度; 精度:≤±1°C;准确度:±1°C(-30°C~-70°C露点温度); 使用环境:0°C~+40°C、相对湿度≤30%;样气流量:400毫升/分(蕞大值不宜超过500毫升/分) 电源:交流220V±20V、50HZ;功耗小孩:300VA; 显示形式:三位数字显示,+-极性,固定小数点,°C;外形尺寸:420(长)×230(高)×210(宽)毫米; 重量:《12.5公斤同年,中国科学院上海冶金研究所研究的WS-Ⅰ型也完成了从氧化铝电容法传感器到仪表电路的一整套设计,并做了各项测试,向市场推出。诸种气体水含量测量结果(露点°C) 气体仪器WS-1型2WS-1型0WS-1型1露点仪高纯氢-分子筛-液氮冷冻-106.5-104.7——-103.0高纯瓶,氮-62.6-60.7——-63.7高纯瓶,氢-50.8-49.5——-49.0普通瓶,氮-28.2-29.8-29.3液氮冷冻纯氢与普氢混合气-74.4-72.3——-71.5高纯瓶,氢-50.8-49.3——高纯瓶,氩(68大气压)————-64.0——高纯瓶,氩(50大气压)————-68.0-69.2——普通瓶,氢——-36.7——-37.0但正如后来国产分析仪表都面临的问题一样,国内的露点分析仪器厂家面对的不仅仅是国外分析仪表厂家的竞争,而是一个工业体系的全方位碾压。 在低端市场,如-60°C以上领域,中国白城兵器实验中心人员写的《湿度测量体制历史和现状分析及建议》一文中就写到:“实验证明,氯化锂湿度传感器完全可以在低温条件下使用,以替代毛发湿度表。这就形成了新的湿度测量体制,0℃以上用电测通风干湿表,0℃以下用氯化锂湿度传感器。在总参气象局的支持下,长春仪器研究所利用这些电测温湿传感器研制成功了温湿遥测仪和机场自动观测系统并进行了设计定型试验,这2种自动观测的研究成功,使军队首先实现了地面气象观测的自动化和遥测化。后来的发展出人意料,芬兰的湿敏电容传感器逐步进入了中国气象局和军队的自动气象观测系统,原来形成的湿度测量体制被打破。” 国产直接出局,这就是维萨拉进入中国市场后迅速占领市场,80年代仪表市场进口品牌攻城略地的一个缩影。 像在天然气领域,华北石油管理局勘测设计院1986年时发表的文章,就指出:“… … 为确保上述要求,我们除在输气首站的轻油回收装置中严格控制脱水温度外,还在首都与门站设置了天然气水露点分析仪,在线连续检测外输天然气的露点。当天然气露点高于规定值时,仪器可自动报警,提醒操作人员及时调节有关参数。电容式水露点分析仪从英国肖氏公司引进… … ”。 可见1986年北京天然气管道就用肖氏了,从那时起国内能源行业进口仪表就占比巨大、上世纪80年代到90年代,大量的外资气体厂如AP、林德,石化如壳牌、美孚等进入国内,它们的工厂往往都是在国外选型,带来的仪表全部是进口品牌,根本没有国产仪表的空间。 利润丰厚的气体和石化领域做不了,国产做做低端也遇到了问题,问题,蕞突出的有四个:没人才,配不起鞍,良品率过低,简配过度。 很多厂子认为露点传感器没啥难度,道理书上都有,但是后来发现不行。首先国内仪表研发人员从根上就少,其次一个仪表研发人员起码要在行业里待十年左右才能独当一面,放到分析行业要求就更多了,流体、电路、机加、编程、工艺流程都要懂,要求极高。 剩下的少部分继续玩仪表的,也在21世纪中国的环保监测行业崛起后,转向红外分析和激光分析等赚钱的领域,只有屈指可数的院校、军工相关研究所和单位还有露点传感器的研发人才。 而添置设备的巨额资金,也是仪表厂商无法承受的,很少有厂商会购买冷镜露点仪、湿度发生器等设备。核心传感器需要的大量试错实验也打消了很多厂商的自研勇气。 同时自产传感器的良品率比较低,相比之下,国外品牌通过巨大的销售量(维萨拉的传感器是以万计的)抹平了制造中成本,而国内企业最大的几家湿度传感器制造商能有上千个销量已经不容易了。同时国外企业的积累经验多,品控比起国内好很多,起码很少发生货到现场一上电不能用的,售后成本比国内好很多。国内很多湿度传感器生产测试过了,现场一用就出问题,很容易导致口碑崩盘。 最后一个简配问题,实际上是国产仪表技术上落后,导致只有靠降低商业费用和产品质量、人工待遇和进口仪表竞争的通病,只不过露点分析仪器行业特别突出,加上很多用户不想掏钱,造成一直用低配仪表,没有各种补偿,更显得国内仪表不如进口的好了。 这四个问题直接导致了国产露点分析仪无法和进口同类产品竞争,尤其是像维萨拉、密析尔、GE等都在国内设立了露点传感器校准中心,缩短售后流程后就更是严重了。 当然,其实国产的露点分析仪事业也没到满盘皆输的地步。 首先,虽然自我造血能力差,但国内有着巨大市场(像国内气体行业大概是世界气体行业的百分之十几,要配很多很多露点分析仪),自然有懂行的介入,像光腔衰荡分析仪的领军人物,国家千人计划的特聘专家阎文斌博士就回国成立了内蒙古光能科技仪器有限公司,一下子让国内像光腔衰荡分析仪从无到有,直接进入世界*流水平。 第二,国内分析仪表毕竟有不弱的底子,除了欧美日外,基本处于第二梯度,靠必须用国产仪表的军工和航天等产业支持,这些年还是制造出了性能虽然和国外还是有差距,但相当一批可靠的仪表,(主要是冷镜分析仪,比如海军航空工程学院的YH98和约克仪器的DPT-8000)。随着市场的扩大和自身技术的进步,相信原本只见于军工科研单位的这些仪表会进入一般工业市场。 第三,借着国内大力发展环保监测行业的东风,聚光、雪迪龙、先河等公司崛起带动了整个分析仪器行业的人才流动、技术革新和资金积累(。直观体现在湿度和露点分析仪上,就是终于有企业肯砸真金白银弄个CNAS实验室(南京埃森、约克仪器成都分公司)了,起码能够保证自己校准自己的传感器,不像其他国内同行要是传感器坏了一般只能靠经验判断,弄不好就只能弄不明白了。 南京埃森实验室图,转载于南京埃森官网 约克仪器实验室图,转载于约克仪器官网 第四,国外对手也不是没有他们自己的问题,像热电、GE等巨头,分析仪表在他们集团公司内只是很小的部门,更别说露点传感器了,加上他们习惯在产品成熟后砍研发靠专利权过日子,导致产品几十年都不带换代的,很多上世纪七八十年代成熟的产品现在还在销售,跟一直在进步的国产仪表比起来差距越来越小(材料学上的短板克服后会更小)。市场占有率大的如肖氏、深特,因为没有自己国内的售后维修体系,只能依靠代理商,当代理商自己没有实验室的时候,售后就是个问题。还有个仿冒品的问题,像肖氏露点分析仪,从上世纪进入中国之后就没怎么变过外型,废旧外壳很多,有不少利欲熏心的商人就自己买传感器和壳子自己组装,导致市场上充斥大量假货,山寨水平还很高,从外形看简直以假乱真,直到用起来才会发现不对劲。并且因为最近贸易战的影响,外国品牌都在涨价,有的一年涨幅在35%左右,削弱了外国品牌的竞争力,也是国内品牌的一个好消息。 林林总总写了这么多,想必大家在阅读过程中都有这样那样的思考,作者就不越俎代庖做总结了。只有一个愿望,希望在不远的将来,看到仪表商TOP20这张图表上,有中国企业的一席之地。 注:在没有特别说明的情况下,上述结果是指公历年度。部分数据是根据2018年平均汇率换算得出的。a.公司对2019年3月31日结束的财政年度的估计。b.仅在该部门的仪器销售结果。 c.截至2018年10月31日止财政年度。d.截至2018年9月30日止财政年度。e.根据公司展望进行估算。来源:C&EN,公司数据
  • 天瑞仪器合金专用分析仪广州展会大放异彩
    6月23&mdash 25日,天瑞仪器参加广州琶洲展览馆举行的&ldquo 2011广州铜工业国际展览会&rdquo 。现场展出三款合金领域专用分析仪:P530手持式X荧光合金分析仪、EDX 3600H合金分析仪、EDX 2000H合金分析仪。 本次展会观众主要来自:钢铁冶炼、有色金属、贵金属检测等行业。别致的展台设计、精密的专业仪器吸引了众多用户咨询。 P530凭借其便携、轻巧的外形以及精准、快速的检测效果得到了客户的青睐。它是天瑞EDX-Pocket手持式系列中专用于合金成分分析的仪器,主要用于钢铁冶炼、有色金属、废旧金属材料回收、锅炉容器制造等行业。它可以检测硫(S)到铀(U)之间的所有元素。 EDX 3600H可满足对合金中微量轻元素的检测要求,采用全球领先的合金分析技术及智能真空系统,并结合低能光管配合真空测试,有效降低干扰,大大提高对Al、Si、P等轻元素的检测效果。 EDX 2000H采用下照式检测,可满足各种形状样品的测试需求,多种准直器和滤光片的电动切换,使得各种测试方式能灵活应用。高分辨率探测器和新一代的高压电源、X光管等核心部件的引入,有效提高检测的准确性和效率。展会现场P530手持式X荧光合金分析仪EDX 2000H合金分析仪 EDX3600H合金分析仪 了解天瑞仪器:www.skyray-instrument.com
  • 超越环保采购南京大展综合热分析仪
    什么是综合热分析仪?综合热分析仪又称之为同步热分析仪,它是一款可以同步测量热重与差热信号的仪器,广泛应用在塑胶高分子、涂料、医药、食品、金属和化工等行业。超越环保是一家从事环保行业,其采购的这款DZ-STA200高温同步热分析仪,可以进行高温测试,温度可升至1200℃,能够快速分解材料,并且对其数据进行分析。  DZ-STA200综合热分析仪具备哪些优势呢?  1.炉体加热采用贵金属合金丝双排绕制,减少干扰,更耐高温。  2.采用陶瓷杆作为连接杆,具有耐高温,抗氧化,耐腐蚀等优点。  3.供电,循环散热部分和主机分开,减少热量和振动对微热天平的影响。  4.采用上开盖式结构,操作方便,并且可根据客户需求,进行炉体更换。  5.主机采用隔热装置隔绝加热炉体对机箱及微热天平的热影响。  在仪器的调试现场,技术人员对其DZ-STA200综合热分析仪进行了安装和调试工作,并且进行了实际的测试实验,对其操作人员进行仪器实验和图谱分析培训工作。针对实验中,仪器使用问题进行解答,保证让其操作人员充分了解仪器。
  • 清华大学拟2100万采购7套分析仪器设备
    11月24日,清华大学在中国政府采购网连续发布多份招标公告,拟以2101万人民币采购7套分析仪器设备,包含超高分辨率共聚焦显微镜、高分辨气质联用仪、蛋白稳定性多参数检测仪、光片显微镜、全自动磁性细胞分选系统、多功能离子电离源系统等。  详情如下:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制