当前位置: 仪器信息网 > 行业主题 > >

石墨黑固取仪

仪器信息网石墨黑固取仪专题为您提供2024年最新石墨黑固取仪价格报价、厂家品牌的相关信息, 包括石墨黑固取仪参数、型号等,不管是国产,还是进口品牌的石墨黑固取仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石墨黑固取仪相关的耗材配件、试剂标物,还有石墨黑固取仪相关的最新资讯、资料,以及石墨黑固取仪相关的解决方案。

石墨黑固取仪相关的资讯

  • 新华网:奶粉含反式脂肪酸报道系抹黑打击内地乳业
    近日政府部门对国产及外资品牌奶粉的一系列动作又再引发新争端!记者获悉,近日遭国家发改委反垄断调查的外资奶粉,被指已出手反击,而反击手段即为暗中操作中国香港媒体委托实验室进行奶粉检测,声称中国贝因美[-0.19% 资金 研报]、圣元等颇受欢迎的国产品牌奶粉产品含有反式脂肪成分,并引述专家指“婴儿不宜饮用”。   不过,昨日圣元和贝因美等奶粉厂家均澄清,这一检测结果既符合国家相关标准,又符合国际标准,长期食用对婴幼儿的健康并无影响。有厂家指出,这是外资奶粉的反击手段。   昨晚,新华网发表评论称,香港某报在发改委刚启动洋奶粉反垄断调查之际抛出“反式脂肪酸”的“冷饭”,系“抹黑打击内地乳业”。   食药总局称婴幼儿配方乳粉反式脂肪酸含量符合国标   据报道,检测结果显示贝因美冠军宝贝俱乐部、圣元优博等数款婴儿配方奶粉样本中,每100克奶粉含有0.4克至0.6克反式脂肪(又称反式脂肪酸)。尽管该报道称“该三种奶粉的反式脂肪含量尚未超出内地和国际安全标准”,但也有香港专家表示,香港家长应作出“明智选择”,不要让婴幼儿食用含有反式脂肪酸的奶粉。广东省知名乳业专家王丁棉表示,由于婴儿器官处在发育阶段,过多摄入反式脂肪酸会增加肾功能的压力,导致其他不良症状。   新快报记者昨日分别致电贝因美和圣元相关负责人,他们均表示国家及国际上对于婴幼儿奶粉中反式脂肪酸占总脂肪含量的标准皆限定为不得超过3%,因此奶粉质量完全合格,消费者完全可以安心食用。   昨日,贝因美公司公关部相关负责人向本报记者发来邮件称,贝因美公司产品未添加任何反式脂肪酸,但因奶牛等反刍动物的生理特点因素,其乳中本身就含有反式脂肪酸,婴幼儿配方奶粉以生牛乳及精炼植物油等作为原料生产,由于含有乳脂,产品中会存在少量的反式脂肪酸,且符合国家和国际标准,消费者可以放心购买及食用。   圣元奶粉公司董事长兼CEO张亮还在新浪微博上以调侃口吻回应网友质疑,称“0.4是很好的水平呀!有谁能做到更好?”   王丁棉及其他资深奶粉行业内人士都表示,只要反式脂肪酸含量是在国家标准范围内的奶粉,可以放心食用,在安全性上并不存在问题。   昨日新华社记者从国家食品药品监督管理总局了解到,近几年来,国家食品安全监管部门一直把婴幼儿配方乳粉作为食品安全风险监测和风险排查的重点产品,共监测15007个婴幼儿配方乳粉样品,其中对10187个样品开展了总脂肪酸和反式脂肪酸的监测。   监测结果表明,国产婴幼儿配方乳粉中反式脂肪酸的检测值为0.019g-0.574g/100g,最高含量均不超过总脂肪酸的3%,符合国家和国际相关标准。同时,也对197个进口婴幼儿配方乳粉样品开展了检测,所有样品均含有反式脂肪酸,检测值为0.024g-0.367g/100g。   洋奶粉未检出反式脂肪酸是因不含动物脂肪?   香港某报的报道中还提到,检测结果显示,由美赞臣和惠氏生产的两款奶粉产品(在香港和内地均有出售)不含反式脂肪酸。   对于此事,圣元奶粉公司董事长张亮在微博上指出,“婴儿需要均衡的脂肪结构,动物脂肪和植物脂肪缺一不可,但是,动物脂肪中会存在微量反式脂肪。设计配方奶粉有两条路线,一个是完全脱掉奶油使用植物油,优点是成本低廉不含反脂,但它失去了必须胆固醇 另一个是保留部分奶油追求营养均衡,缺点是含微量反脂(即反式脂肪酸),生产成本高。”张亮称,奶油价格是植物油的5倍。   资深奶粉行业人士分析称,张亮所发微博的言下之意是,美赞臣、惠氏这些外资奶粉使用的是价格低廉的植物油,虽然不含反式脂肪酸但少了必须胆固醇这一营养。   业内人士指出,此次事件很有可能与近期洋奶粉遭反垄断调查,而国产奶粉却受国家扶持加紧并购有关。此次涉事的国产品牌奶粉企业中,也有相关负责人直接指出,“这是外资奶粉反击的手段”。   昨晚,新华网发表评论称,香港某报在发改委刚启动洋奶粉反垄断调查之际,迫不及待地抛出所谓3罐国产奶粉含反式脂肪、2罐进口奶粉不含的文章,就是在中国乳业正处于逐步恢复声誉和消费信心的关键阶段,利用内地公众对婴幼儿奶粉的高度关注和敏感,对反式脂肪不了解,制造非理性恐慌,其抹黑竞争对手,打击我国乳业的恶劣动机,是昭然若揭的。评论呼吁媒体和广大消费者要保持一份清醒和理性,一方面要高度重视食品安全,另一方面对那些抹黑国产奶粉的谣言,也要给予坚决批驳和回击。
  • 美国EE 全自动石墨消解仪 即将惊艳亮相“慕尼黑上海分析生化展”
    美国EE 全自动石墨消解仪 即将惊艳亮相&ldquo 慕尼黑上海分析生化展&rdquo 2010年9月15日,上海浦东新国际博览中心即将迎来两年一次的&ldquo 慕尼黑上海分析生化展&rdquo 。此次分析生化展,德祥科技有限公司非常荣幸的邀请到了环境分析检测及样品前处理领域的行业领军企业-美国Environment Express公司(简称美国EE公司)的技术专家亲临展会现场,为大家带来石墨消解领域的新型产品-全自动无机样品前处理工作站。 美国EE公司是处于*地位的样品前处理仪器及耗材制造商,为遍布世界各地的无机化学实验室提供样品前处理仪器、耗材和标准参考物质等产品,研发生产了一系列广泛应用于无机样品前处理端的设备。 同时,为了满足用户在无机样品前处理设备端不断提出的更高要求,提高样品前处理工作效率,EE公司成功研发出AutoBlock全自动无机样品前处理工作站。该系统可全面解决无机样品前处理过程中的传统难题,全自动化设计可实现自动升温、自动加酸等操作,大大提高了样品消解操作的安全性及工作效率;并可以通过系统控制,同时运行三种消解程序,每个程序可一次性处理18个样品,能够满足实验室多种样品同时处理的需求。 EE全自动石墨消解仪自2009年底登陆中国市场以来,获得了极大的关注及好评,山东省某重点实验室在进行了严格的考察及试用之后于2010年初进行了采购,也揭开了EE Autoblock在中国市场推广的华丽序幕。 此次慕尼黑上海分析生化展,我们将会展出EE autoblock样机以及一系列样品前处理设备,届时将有厂家的技术专家以及德祥的产品支持专员同时在现场为大家进行演示讲解,确保让大家深入认识到全自动石墨消解仪的市场前景及技术优势,深入了解EE各类石墨消解仪的操作方法及技术特点,相信一定会让您体验到样品前处理过程中前所未有的轻松与便捷,也会为您的无机样品前处理实验带来质的飞跃!真诚期待您的光临! EE 全自动石墨消解仪在客户处实拍图: 德祥的展位号:W1 1422 更多产品详情,敬请垂询: 客服热线:4008 822 822 邮箱:info@tegent.com.cn 网址:www.tegent.com.cn
  • 宁夏化学分析测试协会发布《高盐食品中镉的测定 离子印迹固相萃取-石墨炉原子吸收光谱法》等5项团体标准征求意见稿
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《高盐食品中镉的测定 离子印迹固相萃取-石墨炉原子吸收光谱法》等5项团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2023年10月19日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com 序号团标名称1高盐食品中镉的测定 离子印迹固相萃取-石墨炉原子吸收光谱法2高盐食品中镍的测定 离子印迹固相萃取-石墨炉原子吸收光谱法3高盐食品中铅的测定 离子印迹固相萃取-石墨炉原子吸收光谱法4春小麦生育期植株氮、磷、钾元素丰缺诊断与调节施肥技术规程5春小麦生育期植株微量营养元素诊断与调节施肥技术规程 宁夏化学分析测试协会2023年9月19日文本-春小麦生育期植株NPK营养诊断与调节施肥技术规范.pdf文本-春小麦生育期植株营养诊断与调节施肥技术规范.pdf关于5团标征求意见函 -9.19.pdf团标表格7-专家意见表.doc离子印迹石墨炉法测定高盐食品中镉.pdf离子印迹石墨炉法测定高盐食品中镍 20230809.pdf离子印迹石墨炉法测定高盐食品中铅.pdf
  • 爱丁堡稳态瞬态光谱仪助力石墨烯科研大潮
    p   石墨烯是从石墨材料中剥离出来的,由碳原子组成的只有一层原子厚度的二维晶体,是目前人类已知的最薄、最坚硬、导热率最高、电阻率最小的纳米材料。2004年,英国曼彻斯特大学物理学家安德烈· 盖姆和康斯坦丁· 诺沃肖洛夫,成功从石墨中用胶带分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。石墨烯被认为是可以引发现代电子技术和信息技术革命的材料届的一颗璀璨的新星,越来越多的研究聚焦在石墨烯制备和应用上,而先进的检测仪器是研究石墨烯必不可少的武器。 /p p style=" text-align: center " & nbsp img title=" 1.png" src=" http://img1.17img.cn/17img/images/201512/uepic/c2c66ebc-5956-4d7f-8659-cff61e14183f.jpg" / /p p & nbsp & nbsp 爱丁堡仪器仪器公司携其主打产品稳态/瞬态荧光光谱仪加入了这支浩浩荡荡的石墨烯研究大军中,凭借其多年领跑荧光市场的技术优势,助力于石墨烯的科学研究。 /p p   爱丁堡公司目前的稳态瞬态光谱仪系列有FLS980模块化结构搭建荧光光谱仪,一体化、功能丰富的FS5荧光光谱仪,专门用于寿命测试的零时间色散的LifeSpec II和经济适用型的Mini-Tau荧光光谱仪;瞬态吸收测试有基于泵浦-探测光技术的LP980激光闪光光解光谱仪。 /p p   本文将带来使用爱丁堡荧光光谱仪在石墨烯测试中的应用。(以下测试所使用的光谱仪为Edinburgh Instrument & nbsp FLS920/FLS980/LP980) /p p strong 石墨烯纳米复合材料(Graphene-Based Nanocomposites) /strong /p p   石墨烯掺杂纳米复合材料,因其高效俘获、传输光生电子及提高对光能的吸收及污染物的吸附性能,在环境有机污染物治理中表现出十分出色的光催化活性。 /p p   下图是二氧化钛掺杂的石墨烯氧化物在光催化降解亚甲基蓝中的应用。(Zhixing Gan, etal, ACS NANO ,2014, VOL.8, NO.9, 9304–9310) /p p style=" text-align: center " img width=" 500" height=" 143" title=" 2.png" style=" width: 500px height: 143px " src=" http://img1.17img.cn/17img/images/201512/uepic/bfe91a81-b9aa-4d3b-82ce-1ded16052810.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Mechanism of MB degradation over P25-rGO And Emission Spectra /strong br/ /p p   氧化石墨烯作为石墨烯的前体及ZnS的模板,合成了ZnS–GR 纳米复合结构,通过合成机理的研究,可以为以后合成金属硫化物掺杂的石墨烯提供有用的信息(Linhui Yu etal, Nanotechnology 24 (2013) 375601 ) /p p style=" text-align: center " & nbsp img width=" 500" height=" 135" title=" 3.jpg" style=" width: 500px height: 135px " src=" http://img1.17img.cn/17img/images/201512/uepic/6c08130f-132c-488a-ba09-3062d54f8a12.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong The possible mechanism of photocatalytic degradation of MB on ZnS–5%GR-120 nanocomposite /strong /p p   以磺化石墨烯为Pt载体,合成了小粒径的GSO3Pt复合结构, 可以作为有效的催化剂,将产氢反应的效率提高18倍 (Hui-Hui Zhang, Catal. Sci. Technol., 2013, 3, 1815 ) /p p style=" text-align: center " & nbsp img width=" 500" height=" 291" title=" 4.png" style=" width: 500px height: 291px " src=" http://img1.17img.cn/17img/images/201512/uepic/982990d5-8249-4360-a9c1-0b9a333b7377.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong A schematic illustration of photocatalytic H2 evolution from GSO3Pt /strong /p p style=" text-align: center " strong nanocomposites photosensitized by EY /strong br/ /p p strong 石墨烯量子点(Graphene Quantum Dots) /strong /p p   石墨烯量子点(GQDs)是因其受到量子局限效应和边界效应的影响,具备独特的光电磁性质,GQDs从石墨烯二维的结构变成受到三维空间限制的量子点,展现出更多新特性,成为石墨烯家族里的一员,备受研究者青睐。 /p p   下图是双层氢氧化物中形成的单层石墨烯量子点。 (Liqing Song, etal, Chem. Sci., 2015, 6, 484) /p p style=" text-align: center " img width=" 500" height=" 179" title=" 5.png" style=" width: 500px height: 179px " src=" http://img1.17img.cn/17img/images/201512/uepic/6d9e1179-f4f7-4324-ab8c-550795f335e4.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Schematic illustration of the formation of S-GQDs in the confined space of LDH /strong /p p   过渡金属离子可以导致石墨烯量子点光致发光的淬灭,因此GQDs可用于金属离子的传感器。(Hongduan Huang, etal, Talanta 117 (2013) 152–157) /p p style=" text-align: center " img width=" 500" height=" 163" title=" 6.png" style=" width: 500px height: 163px " src=" http://img1.17img.cn/17img/images/201512/uepic/feec013d-7240-4dba-80ed-fb98410b6225.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong uenching and recovering effect of transition metal ions on the photoluminescence of GQDs. /strong br/ /p p strong 石墨烯材料相关机理研究(Mechanism) /strong /p p   目前,也有大量研究工作是针对石墨烯在化学反应及催化反应中所起到的作用, 通过机理研究可以为某一类反应提供指导性建议; /p p   石墨烯量子点上转化发光机理的研究,证明了用氙灯激发石墨烯量子点产生上转换荧光是假象, 用脉冲激光才可以观察到真正的上转换信号 ( Zhixing Gan, etal. Adv. Optical Mater. 2013, 1, 554–558 ) /p p style=" text-align: center " & nbsp & nbsp img width=" 500" height=" 192" title=" 7.png" style=" width: 500px height: 192px " src=" http://img1.17img.cn/17img/images/201512/uepic/ecd04113-8540-49c2-b103-f9872964ad95.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p & nbsp & nbsp strong (a) UCPL spectra obtained from GQDs under excitation of a femtosecond pulsed laser at 800 nm. (b) UCPL integrated intensity as a function of laser power /strong /p p   氧化石墨烯在化学反应中的作用;研究了氧化石墨烯,还原型氧化石墨烯,及功能化的还原型氧化石墨烯随着构型改变对光谱的影响;(Zhixing Gan, etl. Adv. Optical Mater. 2013, 1, 926–932 ) /p p style=" text-align: center " img width=" 500" height=" 400" title=" 8.png" style=" width: 500px height: 400px " src=" http://img1.17img.cn/17img/images/201512/uepic/c80e118d-dbf6-48b8-95ed-f7c5d7a9cb7e.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Schematic illustration of the PL emission mechanism /strong /p p strong span style=" color: rgb(255, 0, 0) " 更多详细应用请见下列文献: /span /strong /p p 1] Zhixing Gan, Xinglong Wu, Ming Meng, Xiaobin Zhu, Lun Yang, and Paul K. Chu, ACS NANO, VOL. 8, NO. 9, 9304–9310, 2014 /p p 2]Hongduan Huang, Lei Liao, Xiao Xu a, Mingjian Zou, Feng Liu, Na Li, Talanta 117, 152–157, 2013 /p p 3] Liqing Song, Jingjing Shi, Jun Lu and Chao Lu, Chem. Sci., 6, 4846, 2015 /p p 4] Linhui Yu, Hong Ruan, Yi Zheng and Danzhen Li, Nanotechnology 24, 375601, 2013. /p p 5] Zhixing Gan, Xinglong Wu, Gengxia Zhou, Jiancang Shen, and Paul K. Chu,Adv.Optical Mater. 1, 554-558 , 2013. /p p 6] Zhixing Gan, Shijie Xiong, Xinglong Wu, Tao Xu, Xiaobin Zhu, Xiao Gan, Junhong Guo, Jiancang Shen, Litao Sun, and & nbsp Paul K. Chu, Adv. Optical Mater. 1, 926-932, 2013. /p p 7] Zhixing Gan, Xinglong Wu and Yanling Hao, CrystEng Comm, 16, 4981-4986, 2014. /p p 8] Hui-Hui Zhang, Ke Feng, Bin Chen, Qing-Yuan Meng, Zhi-Jun Li, Chen-Ho Tung and Li-Zhu Wu, Catal. Sci. Technol., 3, 1815-1821, 2013. /p p style=" white-space: normal " span style=" color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px background-color: rgb(255, 255, 255) " br/ /span /p p style=" white-space: normal " span style=" color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px background-color: rgb(255, 255, 255) " 关于天美: /span br/ /p p style=" padding: 0px color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px margin-top: 0px margin-bottom: 0px white-space: normal background-color: rgb(255, 255, 255) "   天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。 /p p style=" padding: 0px color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px margin-top: 0px margin-bottom: 0px white-space: normal background-color: rgb(255, 255, 255) "   更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn /p p style=" text-align: center " img width=" 500" height=" 313" title=" 微信长按二维码.gif" style=" width: 500px height: 313px " src=" http://img1.17img.cn/17img/images/201512/uepic/85e4ed3b-7c8f-40af-a8c1-d173db17c4be.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p
  • 宁夏化学分析测试协会批准发布《高盐食品中镉的测定 离子印迹固相萃取-石墨炉原子吸收光谱法》等5项团体标准
    各有关单位:根据国家《团体标准管理规定》和《宁夏化学分析测试协会团体标准管理办法》,我协会对《高盐食品中镉的测定 离子印迹固相萃取-石墨炉原子吸收光谱法》等5项团体标准进行了评审,已经通过了专家审查,现予以发布,自2023年12月1日起正式实施,特此公告。 序号标准号标准名称发布日期实施日期1T/NAIA0240-2023《高盐食品中镉的测定 离子印迹固相萃取-石墨炉原子吸收光谱法》2023-11-212023-12-012T/NAIA0241-2023《高盐食品中镍的测定 离子印迹固相萃取-石墨炉原子吸收光谱法》2023-11-212023-12-013T/NAIA0242-2023《高盐食品中铅的测定 离子印迹固相萃取-石墨炉原子吸收光谱法》2023-11-212023-12-014T/NAIA0243-2023《食品加工与检测洁净室(区)沉降菌的测定方法》2023-11-212023-12-015T/NAIA0244-2023《食品加工与检测洁净室(区)浮游菌的测定方法》2023-11-212023-12-01 宁夏化学分析测试协会2023年11月21日2023协会团体标准公告-11.21.pdf
  • 石墨烯节能环保应用研究院正式揭牌成立
    p style=" text-align: justify text-indent: 2em " 2019年10月19日,在2019中国国际石墨烯创新大会同期先行举办的石墨烯节能环保产业应用发展论坛上,石墨烯节能环保应用研究院正式揭牌成立。论坛和仪式由香港大学浙江研究院执行院长、香港大学理学院/工学院教授郭正晓、中环装备总经理助理、中节能(唐山)环保装备股份有限公司董事长黄勇主持,中国石墨烯产业技术创新战略联盟秘书长李义春、中节能环保装备股份有限公司党委书记周宜等领导和专家出席。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/e5529449-e2cf-4e2e-9ca2-db5f6c2ba362.jpg" title=" IMG_4625.JPG" alt=" IMG_4625.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 揭牌后的石墨烯节能环保应用研究院正式成立 /strong /p p style=" text-align: justify text-indent: 2em " 中国节能环保集团有限公司是中国节能环保领域最大的科技型服务型产业集团,2016年与唐山市签署战略合作框架协议,成立中节能(唐山)环保装备股份有限公司,致力于节能环保装备的研生产、销售和服务。本次拟成立的石墨烯节能环保应用研究院由中节能(唐山)环保装备股份有限公司和中国石墨烯产业技术创新战略联盟联合成立,研究院旨在以产业化为目标,围绕节能环保的发展需求,开展石墨烯新材料节能环保应用共性关键技术、产品和装备的研制开发。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 600px " src=" https://img1.17img.cn/17img/images/201910/uepic/9f176d91-c904-4f10-b057-ab0cbacbac2b.jpg" title=" initpintu_副本.jpg" alt=" initpintu_副本.jpg" width=" 600" height=" 600" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 签约及专家受聘仪式 /strong /p p style=" text-align: justify text-indent: 2em " 会议上举行了隆重的揭牌仪式、签约仪式和专家受聘仪式,东京大学教授、新材料与产业技术北京研究院院长古月文志和浙江大学工研院石墨烯应用研究中心主任陈威正式受聘成为中节能石墨烯节能环保应用研究院的首席专家,签约仪式后与会专家进行了学术交流活动。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/5c7570a9-c961-4073-8b7f-59fb9a7e67bb.jpg" title=" IMG_4707.JPG" alt=" IMG_4707.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 古文月志 /strong /p p style=" text-align: justify text-indent: 2em " 纳米表面的活性特别强,纳米材料想做成产品具有重大的安全隐患需要克服,而氧化石墨烯和石墨烯由于纳米毒性非常低,因此应用空间非常广泛。东京大学教授、产业技术北京研究院古文月志做《银/卤化银/石墨烯-高效率光催化剂及环保应用》,其研究团队通过染色办法成功研制了每厘米电阻可高达100欧姆的石墨烯导电丝,且反复洗涤也不会受到影响。利用这一成果,古文月志团队先后研制出了能用10年,“具有拥抱恋人温度”的石墨烯电热毯、以及可实现手机24小时监测心脏的心电图的可穿戴传感器(EGG)。另外氧化石墨烯的制作非常危险,常有爆炸隐患,古文月志团队还在制造氧化石墨烯的过程中取得了改进,将氧化石墨烯做成向蛋糕一样的海绵体,完美解决了这个问题。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/e530b2a6-42ee-455c-aa25-3b63675c25b5.jpg" title=" IMG_4716.JPG" alt=" IMG_4716.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 郭正晓 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/1d181c6f-5992-4480-b6f1-f5953fff648d.jpg" title=" IMG_4721.JPG" alt=" IMG_4721.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong 毕恒昌 /strong /p p style=" text-align: justify text-indent: 2em " 郭正晓教授和东南大学毕恒昌老师也先后做了《graphene-Based Catalysts for Enery Conversion andStorage》报告,和《Graphene-Based Materials for Purification of water and air and its industrialization progress》报告。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 600px " src=" https://img1.17img.cn/17img/images/201910/uepic/cc42f308-fbeb-4c52-97f3-f0df77ea2050.jpg" title=" initpintu_副本随时.jpg" alt=" initpintu_副本随时.jpg" width=" 600" height=" 600" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 学术报告后,参会专家们就氧化石墨烯纤维结合、石墨烯地毯材料附着力、石墨烯氢能源电池、氢能产业化、石墨烯节能净化材料等方面的问题进行了踊跃交流,气氛热烈。湘潭大学郑林义教授接受记者采访时,祝贺了石墨烯节能环保应用研究院的成立,他还兴奋地表示,自己昨天晚上刚从实验室连夜赶来参加会议,这一上午收获颇丰,充分对接了产学研资源,不虚此行。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/61e2147f-d185-47cb-972c-c80ca94f7029.jpg" title=" IMG_4623.JPG" alt=" IMG_4623.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 黄勇 /strong /p p style=" text-align: justify text-indent: 2em " 中节能(唐山)环保装备股份有限公司董事长黄勇总结强调,节能环保行业是一个不能脱离其他行业独立存在的行业,与工业发展,人居环境等方方面面密切相关。节能环保行业同时是也是一个政策导向、行业回报率高的行业,需要新技术的不断涌现和产业化的持续投入与付出,希望通过石墨烯节能环保应用研究院的成立,开展石墨烯在节能环保领域的应用探索,开发一批产业应用核心技术,促进我国节能环保行业更好地发展。 /p
  • 我国石墨烯产业发展的新趋势、新进展、新挑战
    我国石墨烯产业已经发展了十余年,期间在政府部门、生产企业、科研院所、相关高校等通力合作下,产业规模、企业数量均呈现跨越式增长,并在部分领域初步实现产业化应用,产业化进程居全球前列。作为一种前沿新材料,在短时间内取得如此好的成效实属不易。在经历了前期的萌芽期和发展期后,目前国内石墨烯产业发展进入新阶段,尚处于产业化突破前期、不具备大规模工业化生产能力逐渐成为共识,产业发展也面临一些新挑战。我国石墨烯产业发展的新趋势从技术驱动到应用驱动,产业发展迎来新阶段。石墨烯作为技术密集型的前沿新材料,前期产业培育以技术驱动为主,以“从上至下”的产业链发展模式为主,需石墨烯企业自行寻找和开拓市场,不利于产业的快速健康发展。近年来,随着石墨烯制备技术成熟化和产业应用多元化,石墨烯与各领域的融合持续深化,逐步由技术驱动转变为应用驱动。突如其来的新冠疫情,更是激发了石墨烯在医疗健康领域的新应用,开辟了新市场。此外,终端应用企业的参与度也越来越高,如华为、小米纷纷在新机应用石墨烯散热膜。从统筹发展到特色聚焦,区域格局逐步集聚化。随着石墨烯产业发展逐步趋于理性,尤其各地石墨烯制造业创新中心建设稳步推进,更注重特色化发展,有望形成定位清晰、各具特色、协同协调的区域发展格局。如江苏省重点打造以新一代信息技术、航空航天装备、海洋工程和高技术船舶、节能环保、新能源等关键领域需求为导向的石墨烯产业链;浙江省重点发展面向电动汽车、海洋工程、功能复合材料、柔性电子、电子信息等领域应用需求的石墨烯产业链;北京市依托科研优势,重点攻克石墨烯批量化制备及应用的通用技术;广东省则着重发展石墨烯新型显示等产业集群。从简单相加到深度相融,相关产业发展协同化。石墨烯属于技术、人才和资金高度密集型的前沿新材料产业,只有跟下游应用深度融合,完全打开应用市场才能快速发展。石墨烯不仅与纺织鞋服、功能涂料、改性橡胶等传统产业发展关系密切,同时与电子信息、航空航天、新能源、生物医药等战略性新兴产业的发展也紧密相关,形成“共生共融、协同发展”的产业生态。“十四五”期间,我国石墨烯产业将进一步发挥改造提升传统产业、培育新兴产业的功能,与相关产业深度融合发展,加速推动我国石墨烯产业化进程,催生一批高速增长的石墨烯企业。我国石墨烯产业发展的新进展顶层设计持续完善,多层次多维度支持石墨烯产业化。在国家和地方的一系列政策支持下,我国石墨烯产业化进展迅速。国家层面,相继实施《关于加快石墨烯产业创新发展的若干意见》、《“十三五”材料领域科技创新专项规划》和《新材料产业发展指南》等规划,通过创建示范园区和制造业创新中心、搭建公共服务平台、开展首批次应用示范和保险补偿等措施,推动石墨烯迈进产业化初期。地方层面,“十三五”期间,有27个省(自治区、直辖市)出台石墨烯专项政策或将其列为规划发展重点,特别地,北京、山东、江苏、福建等地还成立省级石墨烯产业联盟或领导小组,大力扶持当地石墨烯产业发展。2021年,各地陆续发布“十四五”规划纲要,仍有17个省(自治区、直辖市)将石墨烯列为“十四五”时期重点发展的前沿新材料,产业发展前景依旧向好。企业数量快速增长,涌现出一批优势石墨烯企业。我国石墨烯企业数量呈快速增长态势,近年来,“炒作”热度下降,石墨烯市场趋于冷静,但注册企业数量仍在不断增加,产业规模持续扩大。从全国看,2021年石墨烯相关企业注册量为13279家,同比增长79.25%。截至2022年4月,在我国工商部门注册的经营范围内有石墨烯相关业务的企业数量已达35000多家。从地区看,企业数量排名前五的分别是广东、山东、江苏、浙江和福建等五省,均属东部沿海地区,企业总数占全国总量的50%以上,已形成具有一定规模的石墨烯产业集群,其余地区的石墨烯企业分布相对较为分散。从企业规模看,石墨烯企业以中小微初创企业为主,但也涌现出一批包括贝特瑞、方大炭素、银基烯碳、碳元科技、沃特新材料、常州二维碳素等的石墨烯上市企业,引领石墨烯产业快速发展。上下游合作不断加强,部分领域产业化应用快速推广。随着创新能力持续提高、上下游企业合作不断加强。据知网数据,2021年我国石墨烯相关专利申请数量达11123件,有力推动科研成果向市场应用高效转化。工业领域,石墨烯产业化应用主要集中在增强复合材料、储能、热管理、电子等方面,如厦门捌斗新材的石墨烯改性防腐涂料顺利通过五缘湾大桥防腐改造示范性工程验收;宁波中车新能源推出的大容量石墨烯/活性炭复合电极超级电容器和石墨烯纳米混合型超级电容器已成功应用于城市电车。消费领域,石墨烯产业化应用主要在散热、智能可穿戴、理疗、照明等方面,如烯旺科技开发的大型石墨烯医疗设备“频谱光波治疗房”于2021年12月正式获得二类医疗器械注册审批并已进入医疗单位。高烯科技的单层石墨烯康护纤维是目前全球首个通过IGCC认证的单层氧化石墨烯改性功能纤维,制成的织品自带康护性能。我国石墨烯产业发展面临的新挑战关键技术仍未突破,制约下游大规模应用。通过不断创新研发,我国在大面积单晶石墨烯、多层石墨烯粉体规模制备等方面取得了重大进展,但仍存在基础物性研究不透彻、绿色低成本的规模化生产技术不成熟、“杀手锏”级应用开发不足等技术瓶颈。从生产端看,现阶段国内已建成石墨烯粉体及薄膜材料生产线并基本实现量产,但普遍存在产品尺寸及层数不均匀、质量不稳定等问题,各项性能指标远低于实验室水平,难以满足大规模工业化应用需求。从应用端看,石墨烯粉体主要用作添加剂以增强基体材料的相关性能,与基材间的相容性和均匀分散性是制约其大规模应用一大难点;石墨烯薄膜主要用于柔性显示、电子/光电子领域,也面临大规模均匀制备技术不成熟、工艺复杂和成本高等难题。企业规模总体偏小,石墨烯产业竞争力不足。我国石墨烯生产和应用的主力军是中小型企业,近半数属于小微型初创企业,技术成熟、盈利性好、发展稳定的企业微乎其微,一些上市公司虽通过控股或参股方式参与其中,但并未将石墨烯当作主营业务进行实质投入,缺乏行业龙头引领和带动导致石墨烯产业竞争力不足。一方面,小企业抵抗风险能力整体较弱,在“大浪淘沙”的市场竞争中极易消没,目前存续时间在10年以上的石墨烯企业占比仅为5%。另一方面,小企业研发能力弱、创新动力不足,大部分没有配套设施和专职研发团队,多采用合作或委托的研发模式,主要涉足研发门槛低、对石墨烯品质要求不高、产品附加值低的应用领域,如复合材料、大健康、涂料等,高端前沿应用领域关注不够。高端应用需求日益增长,发展压力逐渐显现。现阶段,我国石墨烯产业发展进入“平台期”,产业链高端化发展迫在眉睫,企业承压不断提高。一方面,石墨烯多被用作“工业味精”,无法真正体现其作为高品质、高性能材料的价值,还没有成熟的、高端的商业化石墨烯产品问世。石墨烯巨大潜质与尚未全面打开的下游应用需求形成强烈反差,高端化才是石墨烯产业的发展重点和方向,对人才、科技和资金等要求也随之提高,无形中增加发展压力。另一方面,石墨烯产业迟迟未实现大规模商业化应用,炒作热情逐渐消退,市场开始趋于理性,相关投资也变得更加谨慎;叠加当前宏观经济下行压力大,国内、国际环境不确定性显著增多,企业生产和进出口均受不同程度的影响,石墨烯企业面临资金短缺、供应链安全等问题。措施建议聚焦重点和前沿领域,突破原创型科技成果。一是统筹协调国家重点实验室、科研机构、高水平研究型大学和科技领军企业等科研力量,立足重大平台和科研团队基础,以重大科技项目为依托,在石墨烯规模化高质量制备和下游高端应用等关键核心技术开展重点攻关。二是聚焦国际研发前沿和我国战略性新兴产业需求,加快石墨烯核心技术、专利和产品在新一代信息技术、航空航天、新能源等重点领域的布局,推动一批重大原创科技成果突破和转化,提高自主创新能力,推动我国石墨烯产业实现从“跟跑”到“领跑”的跨越式转变。注重优质企业培育,提升石墨烯产业核心竞争力。一是针对不同产业链环节和成长阶段的企业,开展分级分类、精准施策,提高重点新材料首批次应用保险补偿等政策在石墨烯领域的实施力度。二是鼓励国有企业、行业龙头企业参与石墨烯产业,开展石墨烯关键技术研发和重点应用示范,培育一批掌握核心技术、具备国际竞争力的领军企业。三是支持中小企业聚焦主业、做精主业,提高细分领域的专业化水平,培育一批石墨烯专精特新“小巨人”和制造业单项冠军企业,不断增强我国石墨烯产业核心竞争力和自主可控力。加强资源整合,打造特色优势石墨烯产业示范基地。一是整合全国石墨烯产业链上下游、产学研用等优势资源,鼓励重点企业联合高校和科研院所,协同推进设施、人才、成果等要素优化配置,针对石墨烯产业核心环节和关键技术开展深度合作,打造一批石墨烯规模化生产和高端化应用示范线。二是整合各地石墨烯产业园区资源,发挥园区示范效应,继续完善园区配套,进一步打造公共服务平台等产业载体,针对高端化应用需求,引导建立一批石墨烯新材料产业应用示范基地,提高石墨烯产业综合竞争力。加强区域联动,促进产业特色化、高端化、差异化发展。一是细化区域内分工,鼓励江苏、浙江、广东、山东、北京等重点地区,充分利用现有产业基础、品牌、市场、资本、人才、研发等资源优势,推动各地石墨烯产业集约集聚集群发展,打造石墨烯特色区域产业链。二是加强区域间合作,发挥国家关于京津冀协同发展、长江经济带、长三角一体化、粤港澳大湾区等一系列重大区域发展战略布局,以产业链和重点项目合作为牵引,推动区域间资源协同共享,构建全国“一盘棋”石墨烯产业发展格局,加快推动石墨烯产业向特色化、高端化、差异化方向发展。
  • 石墨烯鼓有望制造出超高灵敏度传感器
    科技日报讯 荷兰代尔夫特理工大学的科学家发现用石墨烯薄片制成的&ldquo 鼓面&rdquo ,能够在光的作用下发生振动,根据这一原理能够检测到非常微小的位置和力度的变化,未来有望据此用石墨烯制造出具备超高灵敏度的传感器设备和量子计算机内存芯片。相关论文发表在近日出版的《自然· 纳米技术》杂志上。   石墨烯以其独特的机械和电气性能闻名于世,而最近荷兰的科学家们发现,这种神奇材料还具有一种独特功能。由于单层石墨烯只有一个原子厚,质量极低,因此研究人员设想能否用其制造出一面能够感受到微小振动的&ldquo 鼓&rdquo 。这面鼓的鼓面由石墨烯制成,敲击它的鼓槌则是以微波频率发射的光。   领导这项研究的荷兰代尔夫特理工大学的维伯· 辛格博士和他的同事用石墨烯在一个光力学空腔中对这一设想进行了验证。他们发现,在光力学空腔中,他们能够通过观察光干涉现象产生的图案,检测出物体位置及其微小的变化,精度能够达到17飞米(原子直径的一万分之一)。   物理学家组织网近日报道称,实验中的光不仅有利于检测到鼓的位置,同时也能够向鼓面施加压力。来自光的推力非常非常小,但足以推动质量极小的用石墨烯制成的鼓面,让其发生位移。这意味着科学家们可以用光敲击石墨烯制成的鼓。根据这一原理有望制造出具备超高灵敏度的传感器设备。   此外,科学家也可以用它来制造内存,这些微波光子能够将光转化为机械振动,并将其存储长达10毫秒的时间。虽然对人类而言10毫秒极其短暂,但对目前的计算机芯片而言这已经不少了。辛格称,他们的一个远期目标是通过这种二维晶体鼓来研究量子运动。   辛格说,如果敲击一个普通的鼓,鼓面只会发生上下振动。而如果敲击的对象是一个量子鼓,将不仅能够通过敲击让鼓面发生振动,还能使其形成一种量子叠加状态:鼓面将同时既在上面也在下面。这种奇怪的量子运动不仅具有科学相关性,还能够在量子记忆芯片上获得应用。在一台量子计算机中,量子比特同时既可以是0也可以是1,因此其运算速度远远超过目前传统的计算机。石墨烯制成的量子鼓就具备这种能力,它能够在用与普通RAM芯片相同的方式来存储数据的同时,接收和存储量子计算机的量子计算结果。
  • 石墨烯人的奥斯卡——首届国际石墨烯颁奖典礼圆满落幕 大奖花落谁家?
    p & nbsp & nbsp & nbsp & nbsp strong 仪器信息网讯 /strong & nbsp 2020年10月17日晚,2020首届国际石墨烯颁奖典礼(IGA)隆重举行,表彰为石墨烯科研和产业发展做出重要贡献的个人和企业,颁发奖项包括最佳石墨烯产品奖、最佳石墨烯企业奖、石墨烯产业示范奖、石墨烯产业促进奖、终身荣誉奖。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/c6f13eea-6270-4ae7-a13d-e65a3ced0e81.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " strong 颁奖典礼现场 /strong /p p style=" margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 颁奖典礼上,国家新材料专家咨询委员会委员、中国石墨烯产业技术创新战略联盟秘书长李义春做活动介绍并致辞,石墨烯诺贝尔奖获得者、石墨烯发现者Andre Geim教授以录制视频形式致辞,向长期以来关心和支持石墨烯产业发展的全球石墨烯人表示衷心感谢。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/72b6726c-1f8f-497b-a2a4-df7573dd2498.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center " strong 李义春致辞 /strong /p p strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/d90a7bd1-668d-48e7-a02c-66b77bcfc9a2.jpg" title=" 7.jpg" alt=" 7.jpg" / /strong /p p style=" text-align: center " strong Andre Geim视频致辞 /strong /p p & nbsp & nbsp & nbsp & nbsp 首届国际石墨烯国际主席及评审团阵容强大,由来自全球20个国家和地区的,在全球石墨烯行业内具有话语权及影响力的产学界人士组成。根据国际主席团的提名,国际评审团进行投票表决,评选出全球石墨烯行业5大顶尖翘楚。 /p p style=" margin-top: 15px " strong & nbsp & nbsp & nbsp IGA2020最佳石墨烯产品奖:常州富烯科技股份有限公司的石墨烯导热膜产品 /strong /p p style=" margin-top: 10px " & nbsp & nbsp & nbsp IGA国际评审主席李义春先生题颁奖词:不甘平凡,坚守寂寞。在资本炒作的热潮里,富烯科技坚持工匠精神,精心打磨产品,五年磨一剑。将石墨烯从实验室中的完美材料,变为大规模进入百姓手中的高端电子产品,填补了国内外石墨烯高导热性电子应用产业化的空白。从无到有,从劣到优,富烯走出了石墨烯高端电子产品商业化真正意义上的第一步。 /p p style=" line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/5c8c44a4-72a8-4eae-a439-62d15da0b839.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center " span style=" font-size: 14px color: rgb(89, 89, 89) " strong 富烯科技代表领奖 /strong /span /p p style=" margin-top: 15px " strong & nbsp & nbsp & nbsp & nbsp IGA2020最佳石墨烯企业奖:西班牙Graphenea公司 /strong /p p style=" margin-top: 10px " & nbsp & nbsp & nbsp & nbsp IGA国际评审主席Stephan Roche先生题颁奖词:精益求精,工匠精神。Graphenea在晶圆级高质量石墨烯领域上深耕多年,可谓一骑红尘。在定制化石墨烯器件、高性能晶片级石墨烯应用等领域也成果显著,为全球高精尖电子和光电子器件工业开启石墨烯时代奠定了基础。 /p p style=" margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/de2e3ac8-bee5-4452-8468-1c699e6d9498.jpg" title=" IMG_6477.jpg" alt=" IMG_6477.jpg" / /p p style=" margin-top: 15px " strong & nbsp & nbsp & nbsp & nbsp IGA2020石墨烯产业示范奖:华为技术有限公司 /strong /p p style=" margin-top: 10px " & nbsp & nbsp & nbsp & nbsp IGA国际评审主席Rezal Khairi Ahmad先生题颁奖词:脚踏实地,志高存远。华为用实力开辟市场,用魄力创新科技,作为第一个大规模涉足商用石墨烯散热膜领域的大型终端企业,华为敢做第一个吃螃蟹的人。石墨烯散热技术在华为手机上的成功,为石墨烯产业发展方向打开了一扇新的大门。 /p p style=" margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/497cde5a-f433-4af3-836e-7b78ede4d936.jpg" title=" IMG_6478.jpg" alt=" IMG_6478.jpg" / /p p style=" margin-top: 15px " strong & nbsp & nbsp & nbsp & nbsp IGA2020石墨烯产业促进奖:西安丝路石墨烯创新中心 /strong /p p style=" margin-top: 10px " & nbsp & nbsp & nbsp & nbsp IGA国际评审主席冯新亮先生题颁奖词:助力产业,创新驱动。自西安丝路成立以来,坚持以创新服务为根本,立足石墨烯企业需求,开拓石墨烯下游应用市场。两年间,先后成立了八大应用研究院,成功为西安当地引入了40余石墨烯企业及项目,帮助西安高新区完成了石墨烯产业从无到有,从少到多的质变。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/fe10ef93-3495-4785-a657-040c0f9991a4.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " strong span style=" font-size: 14px color: rgb(89, 89, 89) " 西安丝路石墨烯创新中心代表领奖 /span /strong br/ /p p style=" margin-top: 15px " strong & nbsp & nbsp & nbsp & nbsp IGA终身荣誉奖 :Andre Geim教授 /strong /p p style=" margin-top: 10px " & nbsp & nbsp & nbsp & nbsp IGA国际评审主席Dusan Losic先生题颁奖词:从三维到二维,从恶搞到诺奖,安德烈海姆教授真正意义上的开创了石墨烯的时代。不拘泥于国界,不迂腐于市场,他奔波于学术和产业的浪潮中,却只为向世人证明石墨烯对工业的意义。 /p p style=" margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/3d199217-a682-44be-b63e-2c71c49a35db.jpg" title=" IMG_6489.JPG" alt=" IMG_6489.JPG" / /p
  • 仪器情报,科学家发现菱形石墨烯中的谷间相干性与超导性!
    【科学背景】随着低维材料研究的深入,石墨烯,尤其是多层石墨烯结构,因其独特的电子特性和潜在应用,引起了广泛关注。石墨烯作为一种二维材料,展现出许多新奇的物理现象,包括超导性、磁性和独特的电学性质。然而,这些特性背后的物理机制尚未完全理解,特别是在强关联电子系统中,多种基态之间的竞争和相互作用仍然是一个挑战。在石墨烯的相关低能电子物理学中,自旋和谷同位旋空间的近似SU(4)对称性允许存在大量几乎简并能量的破缺对称相,从而导致了多种紧密竞争的基态。在实际实验中,这种简并性可以通过自发破缺或哈密顿量中的弱对称破缺项来解除。这些项可能包括原子尺度的自旋–轨道耦合以及由粒子间相互作用引起的对称性破缺,例如谷间和谷内散射的差异。然而,目前对于这些破缺项的微观参数的强度,无法从第一原理精确确定,因此实验确定基态成为了约束微观哈密顿量的主要方法。为了应对这些挑战,科学家们转向了结构更稳定且可重复性更高的菱形多层石墨烯。与莫尔系统相比,菱形多层石墨烯因其结构稳定性,可以实现精确测量与多体理论之间的具体联系。在这种材料中,实验已经揭示了包括向列相、自旋和轨道磁体以及超导体在内的多种对称破缺态。然而,自旋在这些相中的具体作用,特别是在超导相中的作用,仍未得到充分解释。例如,在六方氮化硼包覆的伯纳尔双层石墨烯中,自旋极化超导态的出现需要一定阈值的平面内磁场,而在零磁场下通过WSe2基底支持的双层石墨烯中,自旋–谷锁定超导性也可被诱导。为了解决这些问题,美国加利福尼亚大学圣芭芭拉分校Andrea F. Young教授团队结合了全局电荷感测和局部磁力测量,重点研究了菱形三层石墨烯中的同位旋铁磁相。通过精确控制总电荷载流子密度和施加的位移场,利用低温晶体管放大器和扫描超导量子干涉设备(SQUID),作者能够分别测量逆压缩率和局部磁场的变化。这些实验手段使我们能够深入探讨在材料掺杂通过零带隙奇异点时,同位旋铁磁相的性质及其背后的物理机制。本研究通过精确的实验测量,揭示了菱形多层石墨烯中同位旋铁磁相和超导相的微观机制,特别是自旋–轨道耦合在这些相中的作用。【科学图文】图1 | 在空穴掺杂的四分之一金属体系中,三层菱方石墨烯的热力学。图2 | 谷间相干性IVC四分之一金属。图3 | 自旋-轨道耦合效应。图4 | 电子掺杂的谷间相干性。【科学启迪】本文揭示了菱形多层石墨烯中的谷间相干性和超导性之间复杂而深刻的关系。研究表明,即使在缺乏声子介导的情况下,谷间相干性的涨落也可能引发电子间的吸引相互作用,从而促进超导性的出现。这一发现不仅拓展了我们对超导性形成机制的理解,还提示了探索新型超导体的潜力,这些超导体不受传统限制,可能在更广泛的温度和掺杂范围内实现。此外,研究中还观察到自旋–轨道耦合在控制石墨烯多层中自旋三重态超导性方面的关键作用,尤其是通过选择Cooper对的自旋方向和禁止特定相的形成。这些发现不仅有助于理解石墨烯及其异质结构中的复杂电子行为,还为设计和制造新型量子材料提供了重要的指导思路。原文详情:Arp, T., Sheekey, O., Zhou, H. et al. Intervalley coherence and intrinsic spin–orbit coupling in rhombohedral trilayer graphene. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02560-7
  • 石墨烯测量与标准论坛暨CSTM石墨烯技术委员会成立仪式成功举办
    2021年10月24日,石墨烯测量与标准论坛暨CSTM石墨烯技术委员会成立仪式于北京石墨烯论坛2021期间在北京稻香湖景酒店成功举办。论坛由北京石墨烯研究院、中国计量科学研究院、深圳中国计量科学研究院技术创新研究院联合组织,60余位全国从事石墨烯标准、计量、检验检测、认证认可工作的专家、学者和领导出席,共同就国家质量技术基础(NQI)对石墨烯产业的支撑和石墨烯NQI技术问题进行了深入交流。北京石墨烯研究院副院长彭海琳致辞深圳中国计量科学研究院技术创新研究院副院长宋振飞致辞中国标准化研究院副院长邱月明致辞论坛先后由北京石墨烯研究院质检中心主任周新与中国计量院新材料计量研究室主任任玲玲主持;北京石墨烯研究院副院长彭海琳、深圳中国计量科学研究院技术创新研究院副院长宋振飞、中国标准化研究院副院长邱月明相继致辞,随后进入报告环节。中国计量院新材料计量研究室主任 任玲玲报告题目:《石墨烯材料计量标准合格评定与产业高质量发展》“计量、标准、合格评定”简称NQI,是未来世界经济可持续发展的三大支柱。任玲玲主任系统介绍了NQI的组成、基本概念以及在材料全生命周期中的着力点,分别从材料基础研究到生产过程、产品不同产业周期举例说明计量、标准对其质量控制和提升的重要性。并重点介绍了NQI在石墨烯领域的重要研究成果及效益;国家市场监管总局成立的两个石墨烯NQI中心的核心任务,及其对石墨烯基础研究、产业发展的带动作用。国家纳米科学中心研究员谢黎明报告题目:《石墨烯标准化研究的现状与挑战》石墨烯具有优异的光学、电学、热线、力学等性能,在高频光电器件、特种光纤、电池、导热膜等领域应用前景广阔。而产业的发展离不开标准支撑,石墨烯的标准制订至关重要。谢黎明研究员在报告中介绍了国内外石墨烯标准研制现状及存在的技术挑战,他指出,国际上ISO、IEC、美国ASTM等机构都在研制石墨烯标准,其中IEC标准最为全面,覆盖术语、测试指南、结构检测、物性测量等,具有较大影响力;我国SAC-TC279标准化委员会也陆续发不了几项石墨烯标准,未形成良好的系统性,我国石墨烯标准研制存在立项少、研制力量不足等短板,同时还存在诸多挑战,如缺乏石墨烯晶畴无损快速检测方法、缺陷浓度定量检测方法等。因此,我国石墨烯标准研制还需要更紧密的产学研合作,应加强顶层设计,有计划的开展系统性石墨烯标准工作。中关村材料试验技术联盟秘书处主任 王蓬报告题目:《CSTM标准与评价体系建设》标准是世界“通用语言”,是经济活动和社会发展的技术支撑。近日,《国家标准化发展纲要》发布,提出优化标准供给结构,提升市场自主制定标准的比重;CSTM以此为基础,致力于以标准和质量评价推动材料产业的高质量发展。CSTM标准体系围绕材料属性、应用领域和通用技术三个维度建立矩阵式的组织架构,真正实现“一材多用一用多选”,“一技多用一用多技”;建设以市场为导向的,具有系统性、先进性、适用性、时效性、多元性、包容性和动态性中国材料试验标准体系。CSTM专业质量评价针对材料全产业链、全生命周期、全流程、全域数据流开展专业性评价,以评价认证为导引,发挥质量要素(标准、检验检测、认证认可等)间协调互动作用,助力材料产品质量提升,材料产业高质量发展。北京石墨烯研究院高级工程师 柳絮报告题目:《石墨烯科研实验室管理的理论研究与实践》开展科研实验室认可,规范科研活动过程,可以有效地保障科研成果的真实性和有效性,推进科研诚信制度建设,提升科研实验室的创新能力。目前北京石墨烯研究院依据相应准则,以“国家市场监管技术创新中心(石墨烯计量与标准技术中心)”和“国家新材料石墨烯产业计量测试中心”为基础,围绕石墨烯标准带制定与标准物质研制,石墨烯测量技术与表征方法研究,石墨烯薄膜、纤维和器件技术研究三个主要研究方向,组织开展石墨烯科研实验室认可工作。中国检验检疫科学研究院首席专家 席广成报告题目:《超细金属负载3D多孔石墨烯表面增加拉曼传感》由于其指纹级的高分辨率和快速、易携带等优点,无损、免标记的表面增强拉曼散射(SERS)技术已经成为了最重要的分析技术之一,被广泛应用于污染物检测、未知风险物筛查、生物组织成像、反应过程机制探查、材料结构表征等重要研究领域。对于SERS技术来说,其性能主要由基底材料决定的,目前研究最深入的SERS基底为贵金属金和银,但金使用成本较高,而银易氧化。石墨烯最近被证明是一种高灵敏的SERS基底材料,席广成团队将超细银颗粒与多孔石墨烯结合起来,利用多孔石墨烯的富集功能和银的表面等离子体共振效应,获得了极高灵敏度的SERS基底;并研制了高性能准金属表面增强拉曼散射传感器,建立了在线高通量表面增强拉曼光谱检测方法。北京石墨烯研究院质检中心主任 周新报告题目:《太赫兹技术在石墨烯表征测量领域的研究进展与展望》太赫兹波是指频率在0.1~10THz范围内的电磁波,该频段是宏观经典理论向微观量子理论的过渡。研究发现,石墨烯的能带结构与其独特性质使其与太赫兹领域有着天然的内在联系。来到北京石墨烯研究院质检中心后,分析化学专业出身的周新主任便开始探索太赫兹技术在石墨烯表征测量领域的应用。他表示,太赫兹提供了方便、快捷、无损的石墨烯电学、磁学参数的测量方法,适用于薄膜材料的批量快速测量;且随着太赫兹技术和CVD法制备石黑烯薄膜的研究进展,该检测技术的研究空间将进一步提升;太赫兹还会在石墨烯薄膜器件在线检测中大显身手。同时,太赫兹检测石墨烯的方法标准化工作亟待同行共同研究;未来会有更多商品化的太赫兹检测石墨烯仪器上市。国家石墨烯产品质量检验检测中心(江苏)高级工程师 刘峥报告题目:《石墨烯产品检测方法介绍》刘峥在报告中简单介绍了市场上常见的各类石墨烯原材料及产品,认为石墨烯产品将向着水净化产品、燃料电池、太阳能电池、芯片电子器件、传感器成像设备、生物医药治疗装置、航空航天材料等应用领域发展;系统介绍了石墨烯原材料和相关产品的检测方法,包括基本物性分析、形貌表征、元素分析、电学性能、热学性能、力学性能和光谱分析;最后探讨了当前石墨烯产品检测标准化工作和产品认证中存在的问题。CSTM/FC00/TC04石墨烯技术委员会成立报告介绍后,举行了CSTM/FC00/TC04石墨烯技术委员会成立仪式,任玲玲宣读相应批复文件。该技术委员会由北京石墨烯研究院发起筹建并承担秘书处单位,北京石墨烯研究院质检中心主任周新被选为主任委员。石墨烯NQI技术中心主任对话会随即,举办国家石墨烯NQI技术中心主任对话会。对话会由国家市场监管总局发展研究中心副主任姚雷主持,邀请了国家市场监管技术创新中心(石墨烯计量与标准技术)、国家石墨烯材料产业计量测试中心(北京)、国家石墨烯材料产业计量测试中心(深圳)、国家石墨烯产品质量检验检测中心(江苏)、国家石墨烯产品质量检验检测中心(广东)、国家石墨烯产品质量检验检测中心(山东)和常州第六元素材料科技股份有限公司等7家单位参加,刘忠范院士作为国家市场监管技术创新中心(石墨烯计量与标准技术)主任全程参与了对话。对话会围绕“发挥NQI作用支撑石墨烯产业规范健康发展”主题进行了探讨,重点围绕石墨烯产业发展现状对NQI的需求,以及NQI支撑石墨烯产业发展存在的问题和解决的思路展开了讨论,对话嘉宾就进一步开展技术和业务协同的必要性和重要性产生了共鸣,通过对话,坚定了石墨烯NQI技术发展的信心,并对持续开展合作与交流达成了共识。论坛现场
  • 国内学者成功研发石墨烯温度流量一体化传感器
    p style=" line-height: 1.75em "   & nbsp 国内科研人员成功研发基于石墨稀材料的大量程、高精度的流量、温度传感器,有望在热力系统进行规模应用。 /p p style=" line-height: 1.75em text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/3e7bf569-3c52-4b91-b4b2-dd53a82c552f.jpg" title=" 20160407151516449.jpg" /    /p p style=" line-height: 1.75em text-align: center " 清华大学 朱宏伟 /p p style=" line-height: 1.75em "   近日,清华大学朱宏伟教授团队和北京华大智宝电子系统有限公司合作开发出石墨烯温度流量一体化传感器件。他们针对热力系统检测用流量、温度传感器的应用需求,通过对石墨烯传感的作用与规律研究,突破石墨烯材料在热量表流量计应用的关键技术,开发热力系统检测用石墨烯流量、温度传感器件,解决了现有传感器表面结垢、功耗高等问题,形成了批量制备能力,有望在热力系统进行规模应用。 /p p style=" line-height: 1.75em "   该团队完成了石墨烯晶片形状、尺寸、表/界面状态对传感性能调制研究,通过基于石墨稀材料的传感工艺结构设计,开发了大量程、高精度的流量、温度传感器。流量传感器元件测量范围达到0.01~6m3/h,测量精度达到0.005m3/h 温度传感器元件测量范围达到0~100℃,测量精度达到0.02℃。 /p p style=" line-height: 1.75em "   在石墨烯流量、温度传感材料基础上,同时开展了两项拓展研究:1)提出了一种实现高灵敏柔性应变传感的新思路,通过石墨烯与超弹超薄高分子材料复合构建了一类基于柔性传感器原型器件,开发了面向可穿戴装备的传感器的制造方法和工艺,在应变、压阻、扭转、挥发性有机物、声波等几个典型传感应用上进行了探索,并可探测脉搏、语音等微弱生理信号,有望应用于移动医疗、可穿戴式设备等领域 2)研究了水在石墨烯层片孔中的扩散特性,开发了一种同位素标记法,揭示了水分子在石墨烯中的扩散系数比微孔滤膜中微米尺寸通道的扩散系数高4~5个数量级,证明了水分子可超快速传输,为基于石墨烯的传质特性研究奠定了基础,并在快速过滤与分离领域展现出广阔的应用前景。 /p p style=" line-height: 1.75em "   相关研发成果已发表SCI收录论文15篇,申请国家发明专利5项,获授权实用新型专利1项。所制备的六种传感器发表在ACSNano、Adv.Funct.Mater.、Small、NanoRes.、Appl.Phys.Lett.、Chem.Commun.等期刊上,并被学术媒体Nanowerk、Graphene-Info和MaterialsViewsWiley做为研究亮点报道,被评价为“…全新的传感机制、石墨烯的高性能应用…”,“石墨烯的机电效应结合其它特性…促进了在高灵敏传感中的应用,…这些传感器的潜在用途包括柔性显示、智能服装、电子皮肤、体外诊断等,在可穿戴健康检测类设备上有较大的应用空间”。 /p p br/ /p
  • 10亿元打造国内首个石墨烯轮胎中心实验室
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 据最新消息报道,双星全球研发中心暨石墨烯轮胎中心实验室奠基仪式今日在青岛西海岸新区举行。该项目充分利用互联网,整合全球研发资源,建立全球开放的高性能轮胎研发、检测、认证平台和全球领先的石墨烯轮胎中心实验室,实现由有效供给到创造需求的目标,标志着双星加速推进市场全球化战略迈入新的里程。 /p p style=" line-height: 1.75em "   双星集团中央研究院院长李勇介绍功能说是“建立全球开放的高性能轮胎研发、检测、认证平台和全球领先的石墨烯轮胎中心实验室”。培养和引进国内外高端轮胎领域专业人才,加强与各大科研院所、高校协同创新,提升研发硬环境和软实力,建立超前研发、专业轮胎研发、模块化设计开发、PLM应用、大数据统计、有限元分析、质量及材料检测分析等平台,实现原材料检测、加工性能分析和成品检测功能 建立国内首个石墨烯轮胎中心实验室,实现高端石墨烯轮胎的超前研发和产业化。 /p p style=" line-height: 1.75em "   据了解,该项目总占地面积约120亩,建筑面积约16万平方米,总投资10亿元。其中,一期全球研发中心项目占地面积25亩,建筑面积4万平方米,计划于2016年年底投入运行。 /p p br/ /p
  • 石墨烯在节能环保领域应用论坛成功召开
    p style=" line-height: 1.5em " strong & nbsp & nbsp & nbsp & nbsp 仪器信息网讯 /strong & nbsp 2020年10月16日,在2020中国国际石墨烯创新大会先行举办石墨烯在节能环保领域应用论坛。东南大学电子科学与工程学院、微电子学院院长孙立涛,湖南大学化学化工学院教授袁荃,景德镇陶瓷大学硕士研究生导师胡学兵等专家学者出席并作精彩报告。 br/ /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 论坛由孙立涛主持,围绕节能环保发展需求,就石墨烯在节能环保领域的共性关键技术及应用研究进展进行讨论,研判石墨烯在节能环保领域的应用前景。 /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 孙立涛作《石墨烯基KN95口罩的防护机理》报告,目前市场上的大多数口罩是通过熔喷布阻隔大颗粒,静电吸附小颗粒,但呼吸的水汽会让静电消失,配戴1-2小时吸附作用就会失效。石墨烯基口罩借助石墨烯的超大比表面积优势,可代替传统静电吸附长时间保持高效吸附率;同时,石墨烯单原子层的厚度对口罩孔隙率影响很小,对呼吸不会造成阻力,目前1公斤石墨烯可以生产约20万只优质防护口罩。 /p p style=" line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/b7348d68-8a38-41c5-9811-3653b3da4dff.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 孙立涛作《石墨烯基KN95口罩的防护机理》报告 /strong /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 袁荃作《大面积高强度石墨烯纳米筛/碳纳米管薄膜在纳滤中的应用研究》报告,当前淡水资源紧缺和水污染严重,全球面临着巨大挑战,通过纳滤淡化海水可缓解这一问题。原子层厚的纳米多孔二维材料具有最小的传输阻力和最大的渗透率,是高性能纳滤膜的理想材料,但实际制备的超薄二维薄膜存在机械强度弱、面积小的问题。袁荃团队将石墨烯纳米筛与碳纳米管结合,制备的大面积、高强度的石墨烯纳米筛/碳纳米管复合薄膜具有高的水渗透率、截盐率,以及优异的机械柔性,可应用在纳滤中实现海水淡化。 /p p style=" line-height: 1.5em margin-top: 15px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/00edcb59-6fdf-4d18-9359-42077ba3a43e.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 袁荃作《大面积高强度石墨烯纳米筛/碳纳米管薄膜在纳滤中的应用研究》报告 /strong /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 胡学兵作《氧化石墨烯/Al sub 2 /sub O sub 3 /sub 膜结构设计及其高效分离性能》报告,其研究团队基于膜结构设计理念,一方面,以氧化石墨烯为制膜原料,在多孔Al sub 2 /sub O sub 3 /sub 支撑体上制备氧化石墨烯/ Al sub 2 /sub O sub 3 /sub 膜,该膜具有较高的水渗透率和截盐率;另一方面,将氧化石墨烯作为改性原料,在Al sub 2 /sub O sub 3 /sub 分离膜孔道内表面上制备氧化石墨烯改性涂层,显著提升了Al sub 2 /sub O sub 3 /sub 膜的分离性能,可应用于含油废水的处理。这两种技术在节能环保领域,尤其是膜分离技术领域具有显著的技术优势和巨大的应用前景。 /p p style=" line-height: 1.5em margin-top: 15px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/4c3bdfd9-4c08-415c-a916-fc1519ff3f2f.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 胡学兵作《氧化石墨烯/Al2O3膜结构设计及其高效分离性能》报告 /strong /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 随后,南通强生石墨烯科技有限公司的马立国作了主题为《石墨烯功能材料研究与应用》的报告,澳大利亚阿德莱德大学Dusan Losic教授、挪威Abalonyx AS公司CEO Rune Wendelbo相继通过视频录制形式分享了精彩报告。Dusan Losic表示,石墨烯因其优异的性能,成为高性能多功能防腐涂料炙手可热的原材料,在工业、建筑、环保等领域具有巨大的应用潜力。 /p
  • 单层石墨烯一维褶皱到扭转角可控的多层石墨烯的转变机理研究获进展
    近年来,转角石墨烯受到国内的关注。转角石墨烯所具有的大周期莫尔晶格(Moiré pattern)及其所带来的能带折叠效应可以诱导出丰富、新奇的电子结构。尤其是在一些特殊的小角度上,电子结构中所出现的平带会衍生出较多不寻常的现象,如超导、强关联、自发铁磁性等。       目前,多数研究采用机械剥离和逐层转移的物理方法对转角石墨烯样品进行制备,而该方法存在条件苛刻、产出率低、界面污染等问题。为发展更加高效的制备技术,科学家通过对化学气相沉积法中衬底的设计,陆续突破了几种类型的转角石墨烯的规模化制备难题。然而,关于多层石墨烯的转角周期的可控制备方面,尚无比较普适的解决办法。       近日,中国科学院深圳先进技术研究院、上海科技大学、中国科学院上海微系统与信息技术研究所、中国人民大学和德国慕尼黑工业大学,寻找到一种石墨烯的折纸方法,可实现高层间周期的转角石墨烯的可控制备。研究发现,铂金表面生长的石墨烯会形成一定的褶皱,褶皱长大后向两旁倒下,并在一些位置撕裂形成一个四重的螺旋位错中心。褶皱倒下时会折叠其一侧的石墨烯,带来与褶皱的“手性”角(也就是褶皱的方向与石墨烯晶向的夹角)具有两倍关系的单层转角。科学家称之为“一维手性到二维转角的转化关系”,并利用折纸模型对该现象进行了形象的演示。该研究进一步探讨了所形成的螺旋位错再生长带来的新奇现象,并发现各层石墨烯会随着再生长形成具有周期性的四层转角结构,其中第1、3层与原始石墨烯的晶向相同,而2、4层的晶向由褶皱手性角所决定。因此研究提出了一种新的周期转角多层石墨烯的制备方法,即通过控制石墨烯褶皱形成的方向,制备具有特殊层间转角周期的多层石墨烯。该方法可用于多种可以形成褶皱的其他二维材料。      相关研究成果以《通过石墨烯螺旋的一维到二维的生长将手性转化为转角》(Conversion of Chirality to Twisting via 1D-to-2D Growth of Graphene Spirals)为题,发表在《自然-材料》(Nature Materials)上。研究工作得到国家自然科学基金、中国科学院和国家重点研发计划等的支持。图1. 石墨烯折纸现象的记录与演示。(a-d)原位ESEM实验所记录的褶皱形成、倒下和再生长的过程;(e-h)相应过程的示意图;(i-l)利用折纸模型演示褶皱的形成、倒下和再生长。图2. 螺旋位错附近的再生长过程。(a-d)原位SEM实验所记录的多个反向螺旋位错附近的再生长过程;(e-h)动力学蒙特卡洛对该过程的模拟演示;(i)原子尺度分辨率STM所表征的石墨烯褶皱“手性”角;(j-l)利用折纸模型演示褶皱倒下时形成的螺旋位错及下层石墨烯出现的转角;(m-t)螺旋位错再生长所带来的四层周期转角结构示意图。图3. 石墨烯螺旋的再生长和合并。(a-f)原位ESEM实验所记录的褶皱出现到最终生长成多层转角石墨烯的全过程;(g)TEM表征下的多层转角石墨烯;(h)原子分辨率的多层转角石墨烯表征图;(i-k)动力学蒙特卡洛对该过程的模拟。      图4. 多层螺旋石墨烯和多层堆垛石墨输运性质的区别。(a)原子力显微镜观察到的螺旋位错中心;(b-d)输运性质检测时的实验设置;(e-g)多层螺旋石墨烯和多层堆垛石墨的电阻和磁阻随温度变化的关系。
  • 明察秋毫丨SPM带您揭秘抗菌黑科技石墨烯的片层厚度表征
    导读近年来,人们越来越关注健康防护类产品,比如,具有抗菌功能的高附加值纺织品等,越来越受到大众的青睐。最近小编在网上购物时发现,一些纺织品(如被子、衣服、口罩、手套等)宣称其面料中添加了石墨烯材料,自带抗菌功能。小编很是疑惑,经过一番查询,发现早在2010年,中国科学院上海应用物理研究所就报道了石墨烯材料的抗菌性能。石墨烯是一种片层的二维纳米粒子,不存在类似于高聚物的分子链,直接制备石墨烯存在一定的难度,因而在实际应用中多以氧化石墨烯为主。在氧化石墨烯的制备和研究中,其物理特性的精确表征技术和方法是关注的重点之一。不同氧化程度的氧化石墨烯的厚度不同,其性能也不同,因此厚度测量是表征氧化石墨烯的首要核心指标。石墨烯小科普石墨烯具有优异的光学、电学、力学特性,在材料学、能源、生物医学等方面具有重要的应用前景,被认为是一种未来革 命性的材料。石墨烯的抗菌机理之一是边缘切割理论,即石墨烯因片层结构而具有锋利的边缘,可对细菌进行物理切割,破坏细菌的细胞膜,降低膜电位或使电解质泄露从而抑制细菌生长。氧化石墨烯作为石墨烯的氧化物,其结构与石墨烯相似,都为单层原子层状结构。将活性含氧基团引入石墨烯上,经过处理后得到经过修饰的石墨烯薄片,这样可以增加活性反应位点,使得氧化石墨烯变得更容易进行表面改性,丰富了功能化的手段,可以有效提高改性氧化石墨烯与溶剂、聚合物的相容性,使其在有机以及无机复合材料领域有着更为广阔的应用。岛津SPM,助您从容应对科研难题目前,国内外对氧化石墨烯的厚度测量手段主要是原子力显微镜,将氧化石墨烯平铺在具有良好平整度的基底表面,借助原子力显微镜测量氧化石墨烯与基底间的高度差来确定氧化石墨烯的厚度。为了使氧化石墨烯的厚度测量方法规范化,国家标准化管理委员会发布了GB/T 40066-2021《纳米技术 氧化石墨烯厚度测量 原子力显微镜法》,这意味着氧化石墨烯厚度的主要测试手段——原子力显微镜开始逐步被标准化工作认可和接受。岛津扫描探针显微镜SPM具有快速响应的高速扫描器、独特的头部滑移结构以及丰富的测量模式,除了普通的形貌扫描,还可拓展电流、电势、磁力以及纳米力学测量等功能。氧化石墨烯厚度表征随机选取样品的两个区域,使用岛津扫描探针显微镜SPM-9700HT的动态模式对氧化石墨烯样品进行表面形貌扫描测试,获取了5 μm x 5 μm的两个区域的样品表面形貌,并在每个区域内随机选取3个样品进行剖面分析(见图1和图2),随机选取的剖面线分别为A-B、C-D和E-F。图1. 区域1内氧化石墨烯的表面形貌(左)和剖面分析(右)图2. 区域2内氧化石墨烯的表面形貌(左)和剖面分析(右)将获取的剖面线中的上、下台阶的各坐标进行线性拟合,得到两条拟合直线和对应的拟合参数:a1, b1, a2, b2。通过公式(1)计算上、下台阶的高度差H,即为上直线和下直线在xT点的距离(样品的厚度)。式中:H——样品厚度值,单位为纳米(nm);xT——两条拟合直线相邻端点中心位置的x坐标;a1, b1——上台阶拟合直线对应的参数值;a2, b2——下台阶拟合直线对应的参数值。注:拟合的两条直线应具有相同的长度和点数,长度不小于14 nm,点数不少于20个点,且这两条直线的b1和b2斜率应小于0.1,否则弃用该轮廓线。将上述形貌图中的选取的剖面线数据导入Origin软件中进行分段线性拟合,获取的上、下台阶拟合直线参数。以区域1中的剖面线A-B为例,上、下台阶拟合直线参数见图3。两个区域内的氧化石墨烯样品的厚度值见表1。图3. 氧化石墨烯样品的剖面线拟合图表1. 剖面线拟合计算的厚度值结语氧化石墨烯作为石墨烯的一类重要衍生物,具有优异的光学、电学、力学以及良好的生物相容性,被广泛应用于材料学、生物医学以及药物传递等诸多领域。岛津SPM可简单、快速地表征氧化石墨烯的表面形貌,并准确获取氧化石墨烯的厚度值,这也体现了岛津SPM具有精确表征纳米级及以下样品厚度的能力。本文内容非商业广告,仅供专业人士参考。
  • 2020' 中国国际石墨烯创新大会通知
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 2020(第七届)中国国际石墨烯创新大会将于2020年10月16-18日在上海大学召开。作为石墨烯行业规模最大的国际盛会,本届大会将聚焦石墨烯国际合作、产学研融合及商业化应用,重点开展100场商务会客室、8场产业化分论坛、6大特色论坛等活动。此外,还将同期举办“2020中国国际石墨烯材料应用博览会”。 /p p style=" line-height: 1.5em margin-top: 25px " & nbsp & nbsp & nbsp & nbsp 为了加强交流合作,促进成果转化、推动石墨烯产业的健康快速发展,本届大会不收取相关门票费用,与会者只需在大会官网注册即可免费参会、观展。届时来自全球30多个国家的200位各领域专家将分享石墨烯前沿技术动态、产业发展趋势。与大会同期举办的“2020中国国际石墨烯材料应用博览会”将邀请全球石墨烯领域200家代表单位参展,众多石墨烯新产品将在博览会的舞台上“争奇斗艳”,为全球石墨烯产业发展注入新动能。 /p p style=" line-height: 1.5em margin-top: 25px " strong 主办单位: /strong /p p style=" line-height: normal " 上海市宝山区人民政府 /p p style=" line-height: normal " 石墨烯产业技术创新战略联盟(CGIA) /p p style=" line-height: normal " 上海大学(Shanghai University) /p p style=" line-height: 1.5em margin-top: 20px " strong 支持单位: /strong /p p style=" line-height: normal " 欧盟石墨烯旗舰计划 /p p style=" line-height: normal " 上海市科学技术委员会 /p p style=" line-height: normal " 上海市经济和信息化委员会 /p p style=" line-height: normal " 上海市石墨烯产业技术功能型平台 /p p style=" line-height: 1.5em margin-top: 20px " strong 承办单位: /strong /p p style=" line-height: normal " 上海际烯石墨烯科技有限公司 /p p style=" line-height: normal " 上海超碳石墨烯产业技术有限公司 /p p style=" line-height: 1.5em margin-top: 20px " strong 协办单位: /strong /p p style=" line-height: normal " 西安丝路石墨烯创新中心 /p p style=" line-height: normal " 北京现代华清材料科技发展中心 /p p style=" line-height: normal " 石墨烯产业技术创新战略联盟投融资服务平台(深圳华清材料科技有限公司) /p p style=" line-height: normal " 青岛华清思涵石墨烯产业研究院有限公司 /p p style=" line-height: normal " 中关村华清石墨烯产业技术创新联盟 /p p style=" line-height: normal " 国际石墨烯产品认证中心IGCC /p p style=" line-height: normal " & #8230 & #8230 /p p style=" line-height: 1.5em margin-top: 10px " strong 会议时间: /strong 2020年10月16日-18日 /p p style=" line-height: 1.5em margin-top: 10px " strong 会议地点: /strong 上海大学(上海市宝山区上大路99号) /p p style=" line-height: 1.5em margin-top: 10px " strong 大会官网: /strong a href=" http://www.grapchina.cn" target=" _self" www.grapchina.cn /a /p p style=" line-height: 1.5em margin-top: 10px " strong 咨询电话: /strong 400-110-3655 /p p style=" line-height: 1.5em margin-top: 10px " strong 电子邮箱: /strong meeting01@c-gia.org /p p strong 会议日程: /strong /p p style=" margin-top: 15px text-align: center " img style=" max-width: 100% max-height: 100% width: 509px height: 1183px " src=" https://img1.17img.cn/17img/images/202010/uepic/a13a0389-2eec-45e6-8969-267c5a6cb214.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 509" height=" 1183" / /p p style=" margin-top: 15px text-align: center " img style=" max-width: 100% max-height: 100% width: 512px height: 1417px " src=" https://img1.17img.cn/17img/images/202010/uepic/7f3e1e90-fb8a-4df8-9c0f-3a1f6a045cfb.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 512" height=" 1417" / /p p style=" margin-top: 15px text-align: center " img style=" max-width: 100% max-height: 100% width: 513px height: 550px " src=" https://img1.17img.cn/17img/images/202010/uepic/23d45950-9097-4c15-b145-5eb1a279a4a8.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 513" height=" 550" / /p
  • 萃取富集-石墨炉原子吸收法测试工业废水中铊含量
    铊及铊化物都具有剧毒,铊对动植物的毒性远大于铅、镉、汞等其他重金属。《GB 31573-2015 无机化学工业污染物排放标准》中规定涉铊的无机化合物工业企业,其车间或生产设施废水排放口的铊总量限值为0.005 mg/L。现行水质中铊含量测定标准《HJ 748-2015 水质铊的测定石墨炉原子吸收分光光度法》中列出了两种测试方法:沉淀富集法和直接法。直接法对于基体复杂的废水样品而言,基体影响大,且灵敏度不足,准确性存疑;沉淀富集法则需要用到溴水(剧毒试剂)、离心机(额外的实验设备)等,对实验室管理体系要求较高,增加了企业的管理成本。珀金埃尔默开发了一种利用铁盐和溴化钾试剂对废水样品中的铊进行萃取富集处理的方法,有效去除碳酸锂生产企业排放废水中的复杂基质,并降低对石墨炉原子吸收光谱仪的灵敏度要求,大大简化了处理过程,节省企业的管理成本,结果准确可靠,是一种高性价比的企业内控检测方法。仪器和试剂本次实验使用的是PerkinElmer™ 900T型火焰-石墨炉一体式原子吸收光谱仪,配置铊元素无极放电灯(Tl-EDL)。样品处理用到的试剂有:硫酸、磷酸、盐酸、铁(III)盐(即硫酸铁或氯化铁)、溴化钾、甲基异丁基酮(MIBK),纯度要求在分析纯以上。前处理精确量取废水样品25mL于烧杯中,加入铁盐试剂,盐酸,混匀后置于150 ℃ 电热板上加热,待无气泡冒出后,提高加热温度使溶液近干。取下稍冷后,加入硫酸(1+4),加热数分钟,用水转移至50mL比色管中,加水定容至35mL,加入溴化钾试剂,摇匀。静置,加入磷酸,加水定容至50mL刻度,摇匀。向比色管中准确加入5 mL甲基异丁酮(MIBK),充分振摇数分钟,待静置分层后,取上层有机相测试。样品分析仪器测试参数石墨炉升温程序标准溶液与样品测试谱图如下图所示,峰型左右对称呈正态分布形状,出峰时间在1秒左右,表明石墨炉温度程序对样品合适。标准溶液和样品溶液Tl测试谱图标准曲线和样品测试结果见下图,萃取富集-石墨炉原子吸收法测试TI的结果与ICP-MS法一致,加标回收符合方法验证要求。通过萃取富集的处理方式,样品中低浓度Tl元素可以浓缩至有机相中,相应的限量指标也从原来0.005 mg /L转变为0.025 mg/L,同时原本干扰大的基体组分也去除干净,大大降低对仪器的灵敏度要求。萃取富集石墨炉法Tl标准曲线AAS和ICPMS测试结果想要了解更多测试细节,欢迎扫码下载应用报告。扫描上方二维码即可下载资料
  • 三大石墨烯产业聚合区集聚效应凸显 多地形成新增长极
    p style=" text-indent: 2em " 近日,在常州举办的2018石墨烯前沿技术高峰论坛上,中国经济信息社发布《2017—2018中国石墨烯发展年度报告》(下称《年报》)。《年报》认为,我国长三角、珠三角、环渤海三大产业聚合区集聚效应凸显,四川、重庆、福建、黑龙江等地形成新的增长极。 /p p style=" text-indent: 2em " 《年报》指出,长三角地区是目前国内石墨烯产业发展最活跃、产业体系最完善、下游应用市场开拓最迅速的地区,已经形成了涵盖石墨烯制备设备生产、原料制备、下游应用、科技服务等全产业链协同发展的产业格局。 /p p style=" text-indent: 2em " 江苏是国内最早进行石墨烯产业化应用的省份,已形成相对完整的石墨烯产业链,产业化进程全国领先。企业数量居全国首位,拥有常州第六元素、二维碳素、江苏同创、新纶科技、中超电缆、南京先丰纳米等一批骨干企业。2017年,江苏石墨烯技术专利申请量为6379件,占全国总量的18%,位居全国第一。其中,常州、无锡等地产业发展领先全国。 /p p style=" text-indent: 2em " 珠三角地区石墨烯应用领域全国领先,企业集中在深圳、广东等地,拥有烯旺科技、鸿纳(东莞)新材料、贝特瑞等先进石墨烯企业。其中,烯旺科技在全球范围内最早将石墨烯科研成果产业化,先后推出石墨烯理疗保健护具、智能发热服等多款发热产品。 /p p style=" text-indent: 2em " 环渤海地区研发实力雄厚,产业发展势头强劲。北京是石墨烯产业智力核心,综合研发实力全国领先。2017年北京石墨烯产业创新中心成立,加强产学研用一体化。近年来,京津冀三地高校科研院所和企业共建唐山石墨烯产业集群,预计2017年,唐山石墨烯产业集群产值可达20亿元,形成京津冀石墨烯产业高地。 /p p style=" text-indent: 2em " 《年报》显示,四川、重庆、福建、广西、黑龙江等地石墨烯产业发展较为迅速,政府从资源保障、政策促进等方面推动产业发展,形成了新增长极。四川、重庆、广西分别在“十三五”相关规划中明确提出石墨烯产业发展目标,福建、黑龙江分别出台石墨烯专项规划,突破石墨烯前沿技术,壮大石墨烯产业。 /p p style=" text-indent: 2em " 《年报》分析认为,未来我国石墨烯产业资源要素将进一步向优势地区集聚,石墨烯热点城市和产业园将不断涌现,各地石墨烯产业有望实现差异化、特色化发展。 /p p style=" text-indent: 2em " 近年来,常州市依托江南石墨烯研究院,以西太湖科技产业园为主要集聚地,推动石墨烯产业化。作为专业信息运营商,中国经济信息社与西太湖科技产业园共建石墨烯高端产业智库,全力助力常州石墨烯产业高地品牌建设。 /p
  • 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 10月21日,石墨烯在纺织产业应用发展论坛在2019中国国际石墨烯创新大会上成功召开,石墨烯高端纺织应用代表专家齐聚一堂,交流了石墨烯纺织新材料的最新科研及产业化发展成果,期间,“石墨烯纺织新材料及产业应用研究院”正式揭牌成立。论坛由西安市政府、中国石墨烯产业技术创新战略联盟主办,西安工程大学和西安丝路石墨烯创新中心联合承办,相关领域专家学者、企业代表200余人参会。 /span br/ /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/1aa721e7-f944-46af-ab4b-ae8fd488a9fd.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (2).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (2).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " strong 会议现场 /strong /span /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 2em " strong img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/2bd33252-6d34-4c25-9e7b-2779caffa905.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立.JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /strong /span /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 2em " strong 贺辛亥主持揭幕仪式 /strong /span /p p style=" text-indent: 2em " 揭牌仪式由西安工程大学材料工程学院执行院长贺辛亥主持,出席的领导和嘉宾有国家新材料产业发展专家咨询委员会委员、中国石墨烯产业技术创新战略联盟秘书长李义春,西安工程大学副校长、纺织学院院长李鹏飞,浙江大学材料学院教授高超,中科院上海微系统所研究员丁古巧,陕西金澧科技有限公司总经理金党波,西安工程大学纺织学院科研副院长王进美,西安工程大学协同创新中心副教授马建华,国家经济技术开发区、浙江长兴国家大学科技园副主任胡斌、青岛加石墨烯科技有限公司李东一、西安丝路石墨烯创新中心副主任王丽萍、西安工程大学材料学院党支部书记张茂林,西安工程大学材料学院科研副院长苏晓磊等。 /p p style=" text-align: justify text-indent: 2em " “石墨烯纺织新材料及产业应用研究院”由西安工程大学与西安丝路石墨烯创新中心联合共建,旨在发挥双方资源优势,共同致力于石墨烯纺织新材料和新技术开发,促进科技成果转化应用,并为企业培养相关领域科技人才,促进石墨烯纺织新材料及产业应用可持续发展。研究院还将构建石墨烯在纺织领域应用推广平台,形成创新链、产业链、资金链的协同发展,为拓展石墨烯在纺织领域的市场应用提供有力支撑。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/2a19f9b1-f638-45f8-9676-c888ad499fae.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (3).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (3).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 李义春致辞 /strong /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/aafa4044-84fc-4dcd-a89a-e4ae45f85c79.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (4).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (4).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 李鹏飞致辞 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align:center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/d2186bf8-0aca-4cd5-9cb6-e3ec8a019f3a.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (5).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (5).JPG" / /p p style=" text-align: center " strong 揭牌仪式 /strong br/ /p p style=" text-align:center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/07bcb6ca-56e8-485f-b984-d3058956205f.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (8).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (8).JPG" / /p p style=" text-indent: 0em text-align: center " strong /strong strong 签约仪式 /strong /p p style=" text-align: justify text-indent: 2em " 会上,李义春秘书长和李鹏飞副校长相继致辞,并共同为“石墨烯纺织新材料及产业应用研究院”揭牌,王丽萍副主任、苏晓磊副院长代表双方单位为共建研究院签约。与会领导嘉宾共同上台见证了这一石墨烯在高端纺织应用领域的重要里程碑时刻,并合影留念。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/59f12475-97fb-4a74-a3df-a92623827635.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (9).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (9).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 浙江大学材料学院教授高超 /strong /p p style=" text-align: justify text-indent: 2em " 揭牌及签约仪式后,在丁古巧研究员的主持下,论坛进入专家报告环节。高超教授首先做《纯石墨烯纤维及石墨烯复合纤维》报告。我国纺织业市场容量超万亿,从业人员2000万,化纤产量占全球70%,每年生产服装高达456亿件,但是中国纺织行业却也存在缺乏知识产权、核心技术和高端品种的不足。高超强调,石墨烯纤维正是促进中国从纤维大国走向纤维强国,为中国制造2025担当硬科技产业革命先导,实现国人的新时代健康小康生活的重要推手。报告中他介绍了自己科研团队的一系列石墨烯复合纤维科研成果,2010年首次研制成功的氧化石墨烯-尼龙6原位聚合复合纤维荣获IGCC颁发的全球首个单层氧化石墨烯及多功能石墨烯复合纤维认证证书;多功能石墨烯复合纤维,具有可添加多功能、耐水洗、无重金属添加、手感纤细顺滑,无皮肤瘙痒等优势,该成果目前已经实现石墨烯与锦纶、涤纶、氨纶等的复合。纯的石墨烯碳纤维一项是美日等发达国家控制、禁运的高端产品,报告中,高超还介绍了由其团队首创的由天然石墨制备碳纤维的新途径。通过对石墨进行化学剥离得到氧化石墨烯,再经过湿法纺织得到石墨烯新型碳纤维。这一中国自主知识产权的成果具有结构功能一体化,微结构设计性强等优势。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/e518ec40-f16f-484e-98fa-39c07d0f2047.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (11).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (11).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 陕西金澧科技有限公司总经理金党波 /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 身穿自研石墨烯西服的金党波总经理做了《石墨烯对未来纺织业的影响》报告。他介绍了金澧科技研发团队、产品及经营状况介绍。他表示,纺织品的可纺性是第一要素,其团队研发产品可在不改变任何行业机械、加工设备的前提现,提高纺丝的纤维强度,并且提升了20% 的弹性。他表示随着石墨烯制备的成本不断下降,石墨烯在穿着舒适性、可纺性、功能性特征等方面的优势将更加凸显。展望未来,他认为石墨烯定会取代正常面料,石墨烯服装终有一天,也将成为服装市场的主导产品。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/a3d66b9b-0e92-4e7b-8919-d2ddf3e4f4f3.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (15).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (15).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /span /p p style=" text-align: center " strong 西安工程大学纺织学院科研副院长王进美 /strong /p p style=" text-align: justify text-indent: 2em " 现如今,生活环境的不断恶化促使了细菌的繁殖和各种传染病的增加。另一方面现代电子科技的高速发展和移动无线技术的日益普及,也催生了第四大公共污染源——电磁辐射。因此研究开发新型抗菌材料和电磁屏蔽材料已成为当今科研领域的热点之一,石墨烯凭借众所周知的优异性能,在相关功能纺织品上的应用日益广泛。王进美教授以此为切入点,带来了《智能调温石墨烯复合功能纺织品开发与性能》报告。其团队用(改进)Hummers法制备了氧化更彻底的氧化石墨烯,采用上浆工艺用氧化石墨烯分散液对棉纱、涤棉纱进行处理,并织造成布,其成品对大肠杆菌、金黄色葡萄球菌等细菌具有优异的抗菌性,并具有出色的电子屏蔽特性。报告中,王进美详细介绍了这一成果的制备加工工艺以及相关的检测方法及指标参数。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/f5f7840c-3892-4688-a64e-bfe5aa0a1ab3.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (14).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (14).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 西安工程大学协同创新中心副教授马建华 /strong /p p style=" text-align: justify text-indent: 2em " 马建华副教授做《石墨烯规模化制备及其在纺织结构传感器领域的应用》报告,《石墨烯规模化制备及其在纺织结构传感器领域的应用》报告,其团通过引入可电离基团、碱性体系中的离子化、机械剪切剥离等方法的有机结合,实现了超高浓度大尺寸氧化石墨烯的制备方法,最大尺寸可达128um。利用这一成果,马建华团队制备了浓度低至20ug/ml的LGO凝胶,并且通过3D打印获得了形状可设计的石墨烯三维结构体。该结构体具有极低的密度、良好的导电性和极高的比强度。在此基础上,其团队继续通过3D打印,结合正弦波的网状结构设计,制备了PDMS/石墨烯柔性传感器。他们成功研制了灵敏度、拉伸应变更高达350%的石墨烯复合导电纤维,并通过针织、机织或者编织实现功能织物的制备,进而通过结构设计实现其在应变传感以及柔性可穿戴领域的应用。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/995c4da7-3d84-47d6-8f87-c8170e4c5a6c.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (13).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (13).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 中科院上海微系统研究所研究员丁古巧 /strong /p p style=" text-align: justify text-indent: 2em " 丁古巧研究员报告的题目是《亚微米尺寸石墨烯定制及其在纤维领域的应用探索》。石墨烯材料的成本是桎梏其应用的敏感原因,石墨烯的制备技术和能力也决定了产业的加速度。报告中,丁古巧首先介绍了其所在的上海烯望材料科技有限公司的石墨烯生产线情况,包括可在常温快速氧化2-4h,只用浓硫酸等3种试剂,并采用Go与浓硫酸压滤分离,提高重复利用率并减少污染排放的氧化还原石墨烯生产线;可生产亚微米尺寸、水性分散、强碱兼容、分散剂兼容的石墨烯产品的的机械剥离生产线;以及生产石墨烯单层率高、可控性高、生产污染性同比氧化还原法大幅降低的电化学生产线。在此基础上,丁古巧团队研发了一系列具有优异特性的石墨烯改性纤维。通过对亚微米石墨烯进行湿法纺丝、熔融纺丝,制备了石墨烯复合纤维,进而研制了一系列拥有抗菌、导电、抑螨、远红外、抗紫外等优良特性的石墨烯改性面料,并继续往下游延伸,成功研制了石墨烯智能点电灸膜。另一方面研制了Gr-PVDF 压电传感,通过水与石墨烯的共同诱导,得到了高压电相含量的PVDF/石墨烯涂布。进而通过结构设计,成功搭建了反应非常灵敏的Gr-PVDF-TPU应变传感装置,该成果已在跆拳道计分、心脏监测等方面进行了应用。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 822px " src=" https://img1.17img.cn/17img/images/201910/uepic/8f804898-7d36-4525-9a14-f5c40d4a8df7.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (12).jpg" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (12).jpg" width=" 600" height=" 822" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 会议研讨剪影 /strong /p p style=" text-align: justify text-indent: 2em " 论坛取得了巨大的成功,期间,报告嘉宾们与参会专家学者进行了大量卓有意义的学术研讨,并与多个石墨烯制备、加工、应用企业达成了产业合作的初步意向,论坛取得了巨大的成功。王丽萍副主任会后表示,主题明确,贴近实际应用和产业化,正是本次论坛乃至整个2019中国国际石墨烯创新大会的创新之一,希望通过这样的模式,在汇聚石墨烯最新学术成果交流碰撞的同时,促进整个石墨烯行业产学研更好的结合与发展。 /p
  • 研究人员开发出生产3D打印氧化石墨烯的新方法
    p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " span style=" font-family: " microsoft=" " color:=" " line-height:=" " 西班牙艾克斯-马赛大学陶瓷与玻璃研究所(ICV)和微电子与纳米科学研究所的研究人员已使用3D打印的氧化石墨烯支架作为轻质混合结构的基础,该结构保留了许多石墨烯的理想特性,包括导电性和水吸附能力。 /span /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " span style=" text-indent: 0em " 研究人员用醇盐前体溶液渗透了氧化石墨烯支架,以生产杂化结构,这些杂化结构显示出潜在的适用性 /span span style=" text-indent: 0em " ,例如污染物去除,水过滤,催化,药物输送以及能量产生和存储。 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family:arial, helvetica, sans-serif" br style=" color: rgb(51, 51, 51) white-space: normal " / /span img src=" https://www.3ddayin.net/uploads/allimg/201214/1-2012140R159223.jpg" alt=" " width=" 620" style=" border: 0px color: rgb(51, 51, 51) font-family: " microsoft=" " lucida=" " sans=" " font-size:=" " white-space:=" " / br style=" color: rgb(51, 51, 51) font-family: " microsoft=" " lucida=" " sans=" " font-size:=" " white-space:=" " / strong span style=" line-height: 2 font-family: arial, helvetica, sans-serif font-size: 14px color: rgb(127, 127, 127) " 用于通过渗透3D rGO支架(a,b),用碱性蒸气胶凝(c)和乙醇洗涤(d)来制造二氧化硅(或SiAl)/ rGO杂化物的合成过程示意图。图片来自《欧洲陶瓷学会杂志》。 /span /strong /p p style=" margin-top: 10px text-indent: 2em " strong span style=" font-family: " microsoft=" " color:=" " line-height:=" " 3D打印石墨烯的局限 /span /strong br style=" color: rgb(51, 51, 51) font-family: " microsoft=" " lucida=" " sans=" " font-size:=" " white-space:=" " / span style=" font-family: " microsoft=" " color:=" " line-height:=" " /span /p p style=" text-indent: 2em line-height: 1.5em margin-top: 10px " span style=" font-family: " microsoft=" " color:=" " line-height:=" " 石墨烯是一种碳的同素异形体,已成为与能源生产和微电子学相关的研究以及生物医学和传感等新技术的开发中的常见元素。对该材料的轻质性能,高电导率和导热率以及机械强度非常期望。尽管许多石墨烯的潜力来自于以单层形式部署该材料,但利用石墨烯进行3D打印仍然面临巨大挑战。 /span /p p style=" text-indent: 2em line-height: 1.5em margin-top: 10px " span style=" font-family: " microsoft=" " color:=" " line-height:=" " 但是,弗吉尼亚理工大学和劳伦斯· 利弗莫尔国家实验室(LLNL)的研究人员在开发出一种高分辨率3D打印方法(涉及将石墨烯分散在凝胶中以制成3D可印刷树脂)之后,采取了进一步措施来利用石墨烯的潜力。 LLNL还与加利福尼亚大学圣克鲁斯分校的团队合作,研究了用于储能设备中基于石墨烯的气凝胶电极的3D打印技术。 /span /p p style=" text-indent: 2em line-height: 1.5em margin-top: 10px " span style=" font-family: " microsoft=" " color:=" " line-height:=" " 石墨烯还被用于创建3D打印的自感应装甲和交通网络的现代化。在其他地方,新研究揭示了与石墨烯表面接触时水的结构如何变化。最近,诺丁汉大学增材制造中心的研究人员在使用石墨烯的电子设备进行3D打印方面取得了突破,开发了基于喷墨的3D打印技术,该技术可以为取代单层石墨烯作为接触材料铺平道路。 2D金属半导体。 /span /p p style=" text-indent: 2em margin-top: 10px text-align: center " img src=" https://www.3ddayin.net/uploads/allimg/201214/1-2012140R3421U.jpg" title=" 研究中制造的格子“桁架”和回旋3D打印石墨烯" alt=" 研究中制造的格子“桁架”和回旋3D打印石墨烯" width=" 620" height=" 508" style=" border: 0px color: rgb(51, 51, 51) font-family: " microsoft=" " lucida=" " sans=" " font-size:=" " white-space:=" " / br style=" color: rgb(51, 51, 51) font-family: " microsoft=" " lucida=" " sans=" " font-size:=" " white-space:=" " / strong span style=" line-height: 2 font-family: arial, helvetica, sans-serif font-size: 14px color: rgb(127, 127, 127) " Virginia Tech / LLNL研究中制造的格子“桁架”和回旋3D打印石墨烯。图片来自Material Horizons /span /strong /p p style=" text-indent: 2em margin-top: 10px " span style=" font-family: " microsoft=" " color:=" " line-height:=" " strong 创建氧化石墨烯-二氧化硅结构 /strong /span /p p style=" text-indent: 2em margin-top: 10px line-height: 1.5em " span style=" font-family: " microsoft=" " color:=" " line-height:=" " 氧化石墨烯被认为是生产具有高孔隙率,导电性,柔性和大表面积的3D连接的轻量结构的可行构建基块。科学家旨在通过将其他材料锚固到3D石墨烯结构上以形成混合材料或复合材料,来解决氧化石墨烯的一些缺点,例如其机械性弱点和易受火焰伤害的缺点。 /span /p p style=" text-indent: 2em margin-top: 10px line-height: 1.5em " span style=" font-family: " microsoft=" " color:=" " line-height:=" " 首先,研究人员使用由氧化石墨烯纳米片制备的水性油墨,3-D Inks LLC的三轴机器人自动铸造系统和RoboCAD软件对3D打印的氧化石墨烯支架进行了3D打印。通过直径为410μm的针将支架打印到由16层均匀分布的杆组成的长方体中,这些杆相对于相邻层成直角放置。然后将结构放入液氮中冷冻10秒钟,然后将其冷冻干燥(冷冻干燥)并在石墨炉中以1200摄氏度进行处理以增强氧化石墨烯的还原作用,从而将其冷冻。 /span /p p style=" text-indent: 2em line-height: 1.5em margin-top: 10px " span style=" font-family: " microsoft=" " color:=" " line-height:=" " 此时,3D打印的氧化石墨烯结构的尺寸为12x12x5mm。下一步涉及通过研究人员所说的溶胶-凝胶途径渗透氧化石墨烯支架,其中涉及低温凝胶与氨蒸气的交联。制备了包含原硅酸四乙酯,乙醇,去离子水和盐酸的两种溶液,分别称为SiO2溶胶(二氧化硅)和SiAl溶胶(二氧化硅-氧化铝)。将氧化石墨烯支架在不透气的容器中半浸入每种溶胶中五分钟,然后将其放置在刚好位于液面上方的静止平台上。将样品在室温下放置24小时,以通过氨催化引起浸渍结构的延长缩合和刚度。然后,用乙醇洗涤支架以除去任何蒸气残余物。 /span /p p style=" text-indent: 2em line-height: 1.5em margin-top: 10px " img src=" https://www.3ddayin.net/uploads/allimg/201214/1-2012140R50a63.jpg" title=" 比较不同材料的扫描电子显微镜(SEM)图像" alt=" 比较不同材料的扫描电子显微镜(SEM)图像" width=" 620" height=" 289" style=" text-align: center text-indent: 2em color: rgb(51, 51, 51) border: 0px " / /p p style=" padding: 0px 0px 10px margin-top: 0px margin-bottom: 0px color: rgb(51, 51, 51) text-align: center " microsoft=" " lucida=" " sans=" " font-size:=" " white-space:=" " text-align:=" " span style=" font-size: 14px color: rgb(127, 127, 127) " strong span style=" font-size: 14px font-family: arial, helvetica, sans-serif line-height: 2 " microsoft=" " 比较不同材料的扫描电子显微镜(SEM)图像。 (a)原始的氧化石墨烯支架,(b-e)氧化石墨烯-二氧化硅结构。图片来自《欧洲陶瓷学会杂志》。 /span /strong /span /p p style=" padding: 0px 0px 10px margin-bottom: 0px color: rgb(51, 51, 51) white-space: normal text-indent: 2em line-height: 1.5em margin-top: 10px " span style=" font-family: " microsoft=" " font-size:=" " line-height:=" " strong 结果和潜在应用 /strong /span br/ span style=" font-family:arial, helvetica, sans-serif" span style=" font-size: 14px " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /span span style=" font-family: " microsoft=" " font-size:=" " line-height:=" " 研究人员发现,与未经处理的氧化石墨烯支架相比,3D打印的氧化石墨烯-二氧化硅结构保持高度多孔性,而其抗压强度提高了250-800%。混合结构也保持“显着的电导率”,但是主要的增强体现在结构的亲水性上。观察到脚手架的超细二氧化硅基覆盖物对结构的润湿特性有重要影响。与未经处理的氧化石墨烯支架相比,该结构变得完全亲水,而其吸水能力提高了十倍。氧化石墨烯-二氧化硅结构的增强性能表明它们可以适合用作吸收剂,污染物去除,气体感应,蓄热或在光催化水分解应用中使用。 /span /p
  • 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来
    p style=" text-align: justify text-indent: 2em " 10月19日,“全球石墨烯秋季大会”——2019& #39 中国国际石墨烯创新大会在陕西宾馆盛大开幕。包括石墨烯诺贝尔奖获得者安德烈· 海姆教授在内的,来自英国、意大利、德国、法国、西班牙、马来西亚、巴西等30个国家及地区的3000余名代表参与了这场全球石墨烯行业盛会。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 600px " src=" https://img1.17img.cn/17img/images/201910/uepic/7e01e448-aabc-490f-b2a1-15d9a07667cf.jpg" title=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (8)1.png" alt=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (8)1.png" width=" 600" height=" 600" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 嘉宾致辞 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/f19c0ea8-9828-474d-996e-11fb56bed24f.jpg" title=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (2).JPG" alt=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (2).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 李义春主持开幕式 /strong /p p style=" text-align: justify text-indent: 2em " 本届大会由西安市人民政府和中国石墨烯产业技术创新战略联盟联合主办,西安市科学技术局、西安高新技术产业开发区管理委员会、西安丝路石墨烯创新中心承办。原国务院参事、国家能源局原局长徐锭明,工信部原材料司副司长邢涛;陕西省委科技工委委员、科技厅副厅长& nbsp 史高领,西安市政协副主席、西安市工商联主席王欢畅,中国产学研合作促进会执行副会长/秘书长 王建华,西安市科技局党组书记、局长李志军,西安市高新区管委会副主任顾海文等领导出席本次大会。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/6a6f522b-4124-42df-938c-6bc12e66bbbe.jpg" title=" IMG_4784.JPG" alt=" IMG_4784.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 会议由中国石墨烯产业技术创新战略联盟秘书长李义春主持,王欢畅主席、邢涛司长、王建华秘书长、Francesco Bonaccorso教授相继开幕致辞。本届大会以“烯连丝路、聚焦应用、共赢未来”为主题,围绕石墨烯战略前沿、石墨烯在新兴产业应用、石墨烯产业化发展、标准与专利、一带一路国际合作等主题将举办20多场各特色种论坛。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/0391bca8-f7de-4a02-a3d5-ef604ba808d6.jpg" title=" IMG_4912.JPG" alt=" IMG_4912.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 同时,大会同期还举办了2019中国国际石墨烯材料应用博览会,并针对石墨烯各产业化应用领域设立100场商务会客室,邀请众多500强企业携 200+石墨烯技术创新需求,与全球石墨烯产业化企业 “零距离”对接石墨烯技术和产品需求。大会将持续3天,西安日报、人民日报、仪器信息网等近百家媒体也相继涌入,对大会盛况进行专业性报道。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/b6a7245b-8d66-4e8a-afd1-875b56535802.jpg" title=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (9).JPG" alt=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (9).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/cabb73bc-0e15-4822-9994-fceb90771a32.jpg" title=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (10).JPG" alt=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (10).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 在大会开幕式上,国际石墨烯产品认证中心(IGCC)西安中心正式揭牌成立。西安市科学技术局局长李志军,国家新材料产业发展专家咨询委员会委员、中国石墨烯产业技术创新战略联盟秘书长李义春,IEC/TC 113标委会秘书长、IGCC技术委员会主席、石墨烯旗舰计划标准负责人Norbert Fabricius,国际石墨烯产品认证中心(IGCC)执行总裁尹立军共同为IGCC西安中心揭牌。与此同时,Norbert Fabricius教授还为新奥石墨烯技术有限公司颁发了IGCC认证证书。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/f82402cd-f2af-4ceb-a913-9530ce0d5f73.jpg" title=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (12).JPG" alt=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (12).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 石墨烯诺奖获得者 Andre Geim /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/8841fd9f-1ce3-4dd2-8dc2-34958b727d54.jpg" title=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (11).JPG" alt=" 2019中国国际石墨烯创新大会西安开幕 超3000代表见证烯望未来 (11).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong 中国科技大学材料科学与工程系教授朱彦武 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/609f9ce5-a008-40e2-aa79-ba864b872985.jpg" title=" IMG_4900.JPG" alt=" IMG_4900.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong Costas Galiotis /strong /p p style=" text-align: justify text-indent: 2em " 在随后的报告环节,石墨烯诺奖获得者、英国曼彻斯特大学Andre Geim教授做《从基础科学的角度看石墨烯、二维材料及其应用》报告; span style=" text-indent: 2em " 希腊FORTH 的Costas Galiotis教授做《石墨烯复合材料的最新研究成果和进展》报告; /span span style=" text-indent: 2em " 中国科技大学材料科学与工程系教授朱彦武作《江苏省石墨烯创新中心及石墨烯产业化进展》; /span span style=" text-indent: 2em " 美国加州大学洛杉矶分校段镶锋教授, /span span style=" text-indent: 2em " 纳米马来西亚公司的副总裁Murni Ali女士、中华联合财产保险股份有限公司总经理助理王振宇先生也相继做了精彩的主题报告,深度解析石墨烯前沿技术,共同探索石墨烯未来发展。 /span /p
  • NSSC 2019召开——顶尖院士专家领衔群议石墨烯/器件纳米技术前沿
    p    strong 仪器信息网讯 /strong 2019年8月5-6日,由天津大学颗粒与纳米系统国际研究中心(TICNN)主办的津京冀纳米科学青年科学家论坛(NSSC 2019)在天津大学如期召开。会议邀请到多名石墨烯、器件相关领域世界顶尖科学家与国内青年科学家,大家齐聚一堂,不分国界,共同探讨石墨烯等二维材料合成、制备以及相关电子学器件的研发、物理机制及纳米技术的前沿科学问题和未来发展方向。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/5b33c1a6-65eb-4d26-a575-5a2d387ea125.jpg" title=" IMG_8727.jpg" alt=" IMG_8727.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 论坛现场 /span /p p   天津大学颗粒与纳米系统国际研究中心的本次论坛活动,得到多位顶尖科学家参加,包括美国佐治亚理工学院董事教授、美国国家工程院院士、中国工程院外籍院士、香港科学院创院院士,被业界广泛誉为“现代半导体封装之父”的汪正平教授 美国佐治亚理工学院董事会教授、石墨烯电子学的开拓者和奠基人Walter A. de Heer教授等。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/edf8c346-2a20-4ef0-9db0-7bdf8ae961a8.jpg" title=" IMG_8655.jpg" alt=" IMG_8655.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 天津大学纳米中心执行主任马雷教授主持会议 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/2038f83e-febb-49a1-b5ac-13afde7180c3.jpg" title=" IMG_8677.jpg" alt=" IMG_8677.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 美国佐治亚理工学院董事教授汪正平 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 演讲题目:Composition Tuned Hybrid Perovskites: From Materials Engineering & amp Device Design for Efficient,Stable Perovskite Solar Cells /span /p p   钙钛矿太阳能电池组成包括钙钛矿结构化合物等。钙钛矿材料如甲基铵卤化铅和全无机铯铅卤化物,生产成本低,制造简单。 /p p   (1)在传统的顺序沉积中,致密的PbI2薄膜可能阻碍MAI溶液在整个PbI2薄膜上的扩散,从而导致钙钛矿和TiO2之间界面中未反应的PbI2残留。为解决PbI2残留问题,汪正平团队开发了一种合成多孔PbI2薄膜的新方法。从PbAc2和MAI的前体开始,摩尔比1:2,在加热条件下释放热不稳定的CH3NH3(CH3COO),从而由于体积收缩而在PbI2膜中产生孔隙。加载MAI溶液后,p-PbI2将改善PbI2向钙钛矿的转化。 /p p   (2)另外,spiro会引起不稳定,也是这种器件结构中最昂贵的材料。研究人员已经做出一些努力来开发新的HTL来代替spiro,它主要分为两类:合成更新的有机材料和开发低成本的无机材料。然而,复杂的合成过程可能阻碍有机材料的大规模生产。另一方面,含有PbS和CuI HTL的PSC存在低效率的问题,并且CuSCN可以与钙钛矿反应。在这方面,汪正平团队提出一种替代的p型材料:NiO。低温溶液处理的NiOx HTL可以显着提高整个器件的稳定性。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/9cece423-7f33-4e23-ac99-6311b8c8bdb0.jpg" title=" IMG_8739.jpg" alt=" IMG_8739.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 天津大学颗粒与纳米系统国际研究中心、美国佐治亚理工学院董事会教授Walter A. de Heer& nbsp /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 演讲题目:Epigraphene for Graphene Based Nanoelectronics /span /p p   外延石墨烯,其研究的主要原因是外延石墨烯有望在一些关键领域(速度、能源效率和器件密度)成功替代硅电子技术。高目标的定位向世界上最先进的技术提出了挑战,显然需要很长的时间才能实现。从一开始,佐治亚理工学院的石墨烯项目(在石墨烯剥离之前的几年)的开拓性工作就专注于这一目标,并取得了系列成功。它是唯一符合可行纳米电子平台最基本要求的石墨烯电子平台:它必须基于单晶衬底,并且工艺必须是可扩展的。这些条件是超高规模集成和再现性所必需的,正如过去70年硅电子产品奇迹般的发展所表明的那样。 /p p   事实上,外延的缺乏最终导致剥落的纳米图案器件是绝缘体,而外延石墨烯纳米结构可以在微米尺度上弹射,即使边缘在结晶学上不完美。报告中,佐治亚理工学院Walter A. de Heer团队,与天津大学颗粒与纳米系统国际研究中心马雷团队合作,在SiC的非极性面上的外延石墨烯的发展,其具有与在碳化硅中蚀刻的沟槽的侧壁上生长的石墨烯纳米带非常类似的边缘状态传输特性。电子传输由单通道边缘状态支配,平均自由程超过15μm,是石墨烯层的约1000倍。观察到涉及边缘态的异常量子霍尔效应。同时,天津大学颗粒与纳米系统国际研究中心的石墨烯小组,在近期已经实现了从碳化硅晶柱到300微米晶体的全套工艺流程。 /p p   非极性外延石墨烯平台允许相互连接的纳米结构按照传统模式形成一维网络。在低温下,法布里 - 珀罗振荡明显,表明在很大距离上的相位相干性可以用于未来互连的相位相干器件。尽管传输的物理性质尚未完全了解,但很明显,这一发现为非传统石墨烯纳米电子技术提供了一条独特而可行的途径。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/36636a53-aa4b-4aa6-a8b5-35827505efd6.jpg" title=" IMG_8817.jpg" alt=" IMG_8817.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 天津大学李小英教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 演讲题目:SU(1,1) nonlinear interferometer and its Application /span /p p   近年来,一种新型的非线性干涉仪(NLI)引起了人们的广泛关注。与传统干涉仪不同,NLI利用光参量放大器进行波的分裂和组合。结果表明,NLIs在许多方面都优于传统干涉仪。特别地,非线性光学过程对波混合的参与允许不同类型的波的相干叠加。这种混合方式是传统干涉仪无法实现的,传统干涉仪的相干组合依赖于线性分束器。李小英介绍NLIs在原子自旋波、光波、声波等各种波中的性质,以及在量子计量、量子信息和量子态工程中的应用。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/00da5e33-3a36-40ae-ac81-f74a784a4b40.jpg" title=" IMG_8842.jpg" alt=" IMG_8842.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 奥地利约翰开普勒大学孙立东副教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 演讲题目:Real Time Monitoring of the Growth of Nano-Structures /span /p p   差示光谱学是一种用于探测表面和界面结构的通用技术。相比传统表面分析技术,这种技术具有表面敏感、非破坏性、不受真空条件的限制等优势。因此,这些方法非常适合于各种环境条件下的地表过程的原位研究。报告中,孙立东讨论了差示光谱学技术在监测和精确控制包括金属团簇、有机薄膜和二维过渡金属双卤代烷在内的纳米结构中的应用。最后,还介绍了荧光显微镜作为实时监测有机薄膜生长的原位探针的新应用。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/88aa35d8-e3e0-4892-a470-84f322f99463.jpg" title=" IMG_8870.jpg" alt=" IMG_8870.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 韩国帕克原子力显微镜副总裁Sang-Joon Cho& nbsp /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 演讲题目:Non-contact AFM with Self-Optimizing and Pinpoint Scan Control for Quantitative Nano-Metrology /span /p p   与光镜、电镜等显微镜相比,原子力显微镜(AFM)测量绝对尺寸时缺乏准确性和重复性、操作参数设置的复杂等限制了其被广泛采用。然而,由于研究和表征创新纳米材料的强烈需求,AFM分析的重要性日益增加。非接触模式AFM,采用前馈算法、Hann函数和双伺服系统,提高了x-y扫描的精度,保持了尖锐的尖端,针对非接触模式的扫描参数,帕克原子力显微镜开发了自优化算法,很大限度地减小了用户技能变化和用户对AFM测量的影响。此外,精确扫描控制可最大限度地减少磁性和电气测量的地形影响,并有助于定量表征纳米材料。Sang-Joon Cho在报告中演示了生物材料的定量纳米力学映射,以及半导体和光伏材料的纳米电子映射。表明,AFM的定量分析为控制材料各方面的发展开辟了新的途径,有助于提高效率、降低失效和成本。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/d412c221-a204-47ae-8121-57a8dfe36db5.jpg" title=" IMG_8936.jpg" alt=" IMG_8936.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 复旦大学包文中教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 演讲题目:Wafer-Scale Devices and Circuits Based on 2D Transition Metal Dichalcogenides /span /p p   广泛研究的TMDs材料,如MoS2和WSe2,由于其二维特性和良好的电子输运特性,可通过大规模的合成方法获得,非常稳定,并具有优越的门控性能,显示了数字和射频电子的光明前景。报告中,包文中首先介绍了大规模控制合成MoS2, MoTe2和PtSe2的各种方法,以及为实际电子应用实现晶片级,均匀和高质量连续薄膜必须克服的主要障碍。并重点讨论了晶圆级TMD薄膜的兼容器件制造工艺,主要是关于场效应晶体管的电接触层和介电层的形成。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/fefcee17-c922-4f24-9a5d-45779b564a82.jpg" title=" IMG_8995.jpg" alt=" IMG_8995.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 日本产业技术综合研究所前副所长Kiyoshi Yokogawa& nbsp /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 演讲题目:Application of SPM for Surface Science /span /p p   由于利用扫描探针显微技术(SPM)在原子尺度上表征表面结构的创新工作,Bennig和Rohrer于1986年获得诺贝尔物理学奖。该方法为纳米技术的建立奠定了基础。Kiyoshi Yokogawa介绍了其实验室利用SPM在表面科学中的应用:1)新碳——利用STM方法在大气中发现了由六边形和五边形组成的热处理富勒烯碳五边形,并发现了碳的新表面相石墨的环状上层结构 2)特高压下金属表面清洁——通过UHV-STM观察到Nb的1x1结构,即干净的表面,只有这样才能制造出干净的表面,因为Nb是非常活跃的氧或氢的金属。在清洁表面后,喷射氢气,观察气体对表面的影响 3) MFM的金属相——应变诱发的马氏体是HE形成的原因,但在电镜下不易识别,因此使用MFM对该相进行观察,发现双晶界处形成了马氏体,从而引起HE。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/8121f556-9a42-479d-94a1-de689ddd3486.jpg" title=" IMG_9020.jpg" alt=" IMG_9020.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 日本丰田工业大学Masamichi Yoshimura教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 演讲题目:Alcohol Assisted Thermal Reduction of Graphene Oxide /span /p p   通过还原氧化石墨烯(GO)制备石墨烯是一个快速发展的研究领域,因为它能够大量生产石墨烯以用于广泛的应用。然而,由于GO的固有缺陷,利用GO制备原始石墨烯类材料仍然有许多挑战。到目前为止,有很多相关克服挑战的研究工作,如在非常高的温度下退火(约1800摄氏度),或在外部碳源存在下还原等。Masamichi Yoshimura介绍了在醇存在下GO(通过改进的Hummers方法合成)的退火导致石墨烯,或更精确地恢复还原的氧化石墨烯(RGO),具有改善的电性质。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/aced3828-3c52-4aab-a352-a1b5c36ccd0e.jpg" title=" IMG_9070.jpg" alt=" IMG_9070.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 南开大学何明教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 演讲题目:High Temperature Superconducting Microwave Devices and Systems /span /p p   高温超导器件和系统具有插入损耗低、噪声低、选择性高等优点,具有较高的灵敏度和抗干扰性能。它们在无线通信、国家安全、医学、材料科学、卫星通信等诸多领域有着广泛的应用。目前,高温超导微波接收机前端子系统已成功应用于深空探测、卫星通信、雷达系统等领域。何明介绍了薄层超导薄膜、高温超导滤波器及其在微波系统中的应用进展。还分享了高温超导微波系统的小型化及单芯片集成技术等。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/192d46de-602e-4594-9c8b-97f09f20c3b4.jpg" title=" IMG_9095.jpg" alt=" IMG_9095.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 云南大学杨鹏教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 演讲题目:Few Layered PtS 2 and its Properties /span /p p   近年来,MoS2和WS2(Group 6)等层状过渡金属二卤代烃(TMDs)的研究取得了很大的进展。然而,对于属于其他TMDs的研究却很少。杨鹏报告中介绍到,采用化学气相沉积法制备了大面积少层析的pt2(Group 10)。然后分别用原子力显微镜(AFM)、拉曼光谱(Raman)、极化拉曼光谱(偏振拉曼光谱)、光致发光(PL)、场效应晶体管(FET)和范德堡(van der Pauw)等方法对这些层数较少的PtS 2进行了表征。结果表明,pt2具有很高的载流子迁移率和温度依赖性拉曼光谱,在先进的光电器件中具有潜在的应用前景。(实验过程,得到天津大学天津纳米颗粒与纳米系统国际研究中心相关表征设备的协助) /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/ac55ffa7-f88d-4c48-a46a-de222078b300.jpg" title=" IMG_9132.jpg" alt=" IMG_9132.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 天津大学孙志祥副教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   演讲题目:Nanoscale Defect Effects in Sr2IrO4 Probed by Low-Temperature Scanning Tunneling Microscopy /span /p p   Sr2IrO4作为莫特绝缘体与铜酸盐的母体化合物具有许多相似之处。有许多预测认为适当掺杂可能会产生高温超导相。然而,缺陷/掺杂诱导绝缘子向金属过渡(IMT)的机理还有待进一步研究。报告中,孙志祥介绍了利用低温扫描隧道显微镜针对Sr2IrO4的相关研究,利用原子分辨表面形貌,识别出不同类型的内在表面缺陷。在隧穿光谱中还观察到电荷转移行为。同时,通过比较其他类似化合物的结果,也讨论了IMT的一般机理。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/450413ff-6b99-4794-9125-a0f08497d060.jpg" title=" IMG_9143.jpg" alt=" IMG_9143.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 首都师范大学王贺 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 演讲题目:Ferromagnetic Tip Induced Unconventional Superconductivity in Weyl Semimetal /span /p p   王贺于2016年在北京大学获得博士学位,随后在天津大学天津纳米颗粒与纳米系统国际研究中心马雷教授团队进行博士后工作,2018年加入首都师范大学。本次报告内容主要介绍了其博士和博士后期间的相关研究内容。外尔半金属表面诱导超导性为研究拓扑超导性提供了一个很有前途的平台,这是目前凝聚态物理研究的一个热点。通过实验发现,在TaAs单晶中,铁磁尖的硬点接触法可以诱导非常规的超导性。铁磁尖诱导超导态的磁输运测量显示出量子振荡,揭示了点接触的拓扑性质,并显示出铁磁与诱导超导态的相容性。进一步证明显示,铁磁尖诱导的超导态隧穿输运的点接触谱可以用拓扑超导机制来解释。考虑到新型超导电性外尔半金属材料在实验中难以实现,研究结果为通过硬点接触法将拓扑半金属材料与铁磁性材料结合起来研究非常规超导电性提供了一条新的途径。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/240b5740-d2ed-4849-9d5a-8f359ac78f66.jpg" title=" IMG_9168.jpg" alt=" IMG_9168.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 帕克原子力显微镜美国分部总裁Keibock Lee& nbsp /span /p p   Keibock Lee简单分享了帕克原子力显微镜公司“Enable nanoscle advances for the betterment of our world”的愿景,公益基金方面,除了Park AFM Scholarships奖学金,还透露即将面向年轻教授推出Startup Professorship Award。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/8bf0a2fc-2d53-49c1-a481-70dc3c2342a2.jpg" title=" 讨论.png" alt=" 讨论.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 会上讨论 /span /p p   继会议首日13个精彩报告后,会议第二日,接着进行了16个主题报告,继续就石墨烯等二维材料合成、制备以及相关电子学器件等纳米科学问题进行了进一步讨论。 /p p   本次会议,由于正值天津大学天津纳米颗粒与纳米系统国际研究中心(以下简称:TICNN)全面运行一周年之际。于是,会议间隙,在马雷老师的讲解下,与会者共同参观了纳米中心,切身体会到纳米中心一年来的建设成果。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 822px " src=" https://img1.17img.cn/17img/images/201908/uepic/44f794aa-c5ff-4ef6-861f-558da1525215.jpg" title=" 参观1.png" alt=" 参观1.png" width=" 600" height=" 822" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 纳米中心参观花絮一 /span /p p   天津纳米颗粒与纳米系统国际研究中心由天津大学于2015年10月批准建立,次年,马雷教授回国全身心投入到中心的建设。2018 年 7 月 22 日,TICNN正式全面运行。与传统研究中心不同,天津大学纳米中心在整个创建过程中,实现了诸多原创性仪器设备的搭建,并形成一系列自主知识产权。中心目标为力求建设成为世界一流的石墨烯电子学、团簇物理学和柔性电子学的国际化研究平台。三个主要研究方向分别为外延石墨烯电子学,团簇物理学,先进功能性碳材料及柔性可穿戴电子学。 /p p   在短短一年时间里,在马雷老师的带领及其团队的共同努力下,纳米中心现已建设成为功能日益完善的国际化研究中心,纳米中心各类大型实验设备的调试安装已经进入尾声,在为校内外科研同行提供了丰富便捷的公共测试服务的同时,实现了设备仪器与技术工艺的全面共享。其次,纳米中心自主设计并建造了 3 套自由团簇研究系统用以深入系统地研究自由团簇的电子结构、高激发态寿命及其内壳层的电子结构...... /p p   更多关于“天津大学天津纳米颗粒与纳米系统国际研究中心”的建立背景、快速发展现状,请点击以下视频全面了解: /p script src=" https://p.bokecc.com/player?vid=854F7B100766EDD09C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 822px " src=" https://img1.17img.cn/17img/images/201908/uepic/c88bf30e-a610-4964-8f9f-7faee747c703.jpg" title=" 参观2.png" alt=" 参观2.png" width=" 600" height=" 822" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 纳米中心参观花絮二 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/39b22286-1a43-4a58-b370-5eaa00fc8ab4.jpg" title=" IMG_8811.jpg" alt=" IMG_8811.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " Coffee Break& nbsp /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/007c9911-d592-48d7-8625-3fb05e07fe4f.jpg" title=" IMG_9190_副本.jpg" alt=" IMG_9190_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 合影留念 /span /p
  • 石墨烯:新材料王者之路有多长?
    p   去年,华为掌门人任正非曾表示,未来10~20年,将迎来石墨烯颠覆硅的时代。随后,有西方媒体报道,西班牙研发出石墨烯电池,充电8分钟可续航1000公里。近年来,石墨烯似乎已成为无所不能的新材料之王。 /p p   中国科学院长春应用化学研究所(以下简称长春应化所)研究员牛利等人近日在石墨烯材料的制备及应用研究方面取得重要进展,该成果获得2015年吉林省自然科学奖一等奖。 /p p   牛利在接受《中国科学报》记者采访时表示:“虽然石墨烯材料具有相当特殊的物理及化学属性,但距离真正的实际应用还有很长的路要走。” /p p    strong 超级材料 /strong /p p   石墨烯存在于自然界,只是难以剥离出单层结构,厚1毫米的石墨大约包含300万层石墨烯。 /p p   2004年,英国曼彻斯特大学的两位科学家安德烈· 盖姆和康斯坦丁· 诺沃肖洛夫从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。 /p p   他们不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。两人也因此获得2010年度诺贝尔物理学奖。 /p p   据牛利介绍,石墨烯是碳原子紧密堆积成单层二维蜂窝状结构的一种碳质新材料,具有极好的电学、力学、热学以及光学性能。 /p p   常温下,石墨烯电阻率比铜或银更低,是世界上电阻率最小的材料。石墨烯因电阻率低、电子迁移的速度快,有望用来发展更薄、导电速度更快的新一代电子元件或晶体管。 /p p   石墨烯既是最薄的材料,也是最韧的材料。曾有实验证实,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克,却可以承受一只一千克的猫。 /p p   另外,石墨烯几乎是完全透明的,只吸收2.3%的光,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 /p p   石墨烯的特殊性能使其迅速成为国际先进材料研发的新热点,引发了国内外科研人员的跟踪研究,牛利团队就是其中之一。 /p p style=" text-align: center " img title=" untitled1.png" src=" http://img1.17img.cn/17img/images/201512/insimg/397ad04f-a6c9-4ae0-b410-480666e616ca.jpg" / /p p style=" text-align: center " 诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带 /p p    strong 性能改良 /strong /p p   这些年,牛利带领长春应化所现代分析技术工程实验室材料电化学课题组,密切关注国际石墨烯材料研发发展的最新趋势,围绕二维石墨烯材料理论设计、制备合成、性质表征以及其在电分析化学领域的应用开展了系列研究工作。 /p p   由于石墨烯片层之间具有强烈的相互作用,使其非常难以剥离。牛利告诉记者:“传统的氧化剥离方法是通过强氧化剂,让石墨烯边缘发生氧化作用,出现片层结构扭曲。这种方法由于使用大量的强氧化剂,如高锰酸钾、浓硫酸等试剂,制备的石墨烯材料结构可控性差,缺陷多,产率也较低。”此外,该方法直接产生的是石墨烯氧化物,还需要进一步的还原处理才能得到最终的石墨烯材料。 /p p   牛利团队利用微波能量辅助,同时辅以有机小分子插层剂,在石墨片层间通过微波逐渐渗透插层剂,使石墨烯片层逐渐剥离。“这项技术方法无需经过石墨烯氧化阶段,不仅可以直接制得高度还原性的石墨烯材料,还可以低成本、大批量制备高品质的石墨烯材料。” /p p   当前,国际上制备石墨烯薄膜多采用昂贵的CVD(化学气相沉积)方法,牛利团队发现,这种方法很难控制薄膜的厚度,特别是难以进行复杂的图案化设计。另外,化学还原剂无论是液态还是气相的,都会导致二次化学试剂的使用。 /p p   “我们采用电化学技术,仅仅通过界面的电子转移过程,就可以控制石墨烯氧化物在界面的电化学还原沉积程度,这种方法技术简单、成本低廉、绿色环保,同时结构厚度、性状可控。”牛利说。 /p p   牛利团队还探索了新型石墨烯及其杂化材料在电极界面修饰、分析传感及其他相关领域的应用。 /p p style=" text-align: center " img style=" width: 499px height: 420px " title=" untitled2.png" src=" http://img1.17img.cn/17img/images/201512/insimg/f7e4c11e-2c48-4aa2-93bd-047c011cbc1e.jpg" width=" 499" height=" 509" / /p p style=" text-align: center " 显微镜下的石墨烯“单晶” /p p    strong 目标驱动 /strong /p p   他们设计制备了石墨烯片层、薄膜和石墨烯杂化材料,并进一步探索了石墨烯及其杂化材料的化学结构特征和反应机理,将石墨烯及其杂化材料应用在传感分析、复合材料以及能源环境领域。 /p p   “作为工业技术,石墨烯要实现产业化,仍有许多未能克服的困难。”牛利指出,尽管国际上已经发布一些研究结果,将石墨烯用于电池电极材料、电容器器件构造、力学增强材料、导热薄膜等应用领域中,但这些领域的研究还有诸多的科学及工程技术问题亟待解决。 /p p   因为石墨烯的制备方式目前在技术上还存在缺陷,通过实验室内研制的石墨烯成本居高不下。曾有研究人员计算出目前的石墨烯价格高达5000元/克,比黄金还贵十几倍。 /p p   围绕化学制备石墨烯材料,低成本、大批量制备高品质石墨烯是个值得关注的技术问题。围绕微电子学及器件领域,科研人员还需要解决如何降低器件材料的制备成本、提高器件结构的均一性,如何将微观操作及纳米构造技术用于石墨烯器件中等问题。 /p p   目前在石墨烯材料的一些应用领域,如储能器件、导热材料、透明薄膜等方面,虽然已经有围绕需求的、具有应用前景的研究工作报道,但由于缺乏明显的直接应用领域及工程技术方法的结合应用,导致研究工作与应用需求还存在一定的距离。 /p p   牛利告诉记者:“将基础研究与工程技术方法有机结合,特别是与应用目标驱动结合,将会使石墨烯材料研究成果更好地投入到实际应用中。” /p
  • 2020中国国际石墨烯创新大会在沪开幕 3000余人共创“烯”未来
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp strong 仪器信息网讯 /strong & nbsp 10月16日下午,2020中国国际石墨烯创新大会在上海大学盛大开幕。开幕式线上线下同步直播,包括石墨烯诺贝尔奖获得者Andre Geim教授、中国工程院院士干勇及中国科学院院士钱逸泰在内的,来自国内外的3000多名石墨烯专家学者及各界人士参与了这场盛会。 br/ /p p style=" line-height: 1.5em margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/2252db89-abad-4583-a869-a4df7ff74e9d.jpg" title=" 1111.jpg" alt=" 1111.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 大会现场 /strong /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 大会由石墨烯产业技术创新战略联盟(CGIA)和上海大学联合主办,上海市石墨烯产业技术功能型平台和中欧合作石墨烯创新中心共同承办。上海市政协副主席李逸平,中共宝山区委书记陈杰,中共宝山区委副书记、代区长高奕奕,宝山区政协主席丁大恒,上海大学党委书记成旦红,上海大学校长刘昌胜等领导出席本次大会。 /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 高奕奕、成旦红分别致开幕辞;石墨烯诺奖获得者、英国曼彻斯特大学Andre Geim教授以远程在线方式出席并致开幕词。受疫情影响,许多国际友人无法亲临现场参会,纷纷通过线上为大会送来祝福。致辞结束后,宝山区副区长陈尧水介绍上海石墨烯产业主承载区上海超能新材料科创园的发展情况。 /p p style=" line-height: 1.5em margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/d3a371d8-e4a0-4794-aa71-deefcdd9c8cd.jpg" title=" 2222.jpg" alt=" 2222.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 高奕奕致辞 /strong /p p style=" line-height: 1.5em margin-top: 10px " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/5e4a7506-3131-4d9b-b78c-4f462db02cc5.jpg" title=" 22.jpg" alt=" 22.jpg" / /strong /p p style=" text-align: center line-height: 1.5em " strong 成旦红致辞 /strong /p p style=" line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/bbd9a3cd-3c7a-4448-84ac-2a2fc233b58a.jpg" title=" 2b56dd7410e7e8b6d1b5462e11b8fd5.jpg" alt=" 2b56dd7410e7e8b6d1b5462e11b8fd5.jpg" / /strong /p p style=" line-height: 1.5em text-align: center " strong Andre Geim远程致辞 /strong /p p style=" line-height: 1.5em margin-top: 10px " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/ddf668a8-de3b-4452-9407-0b6ca6093eba.jpg" title=" 333.jpg" alt=" 333.jpg" / /strong /p p style=" text-align: center line-height: 1.5em " strong 陈尧水介绍上海超能新材料科创园 /strong /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 在大会开幕式上,举行了一系列签约、揭牌与发布仪式,包括上海大学-国际标准咨询中心ISC-国际石墨烯产品认证中心IGCC标准检测认证合作签约仪式,长三角石墨烯企业技术服务平台揭牌仪式,上海超能硬科技梦想实验室揭牌仪式,石墨烯晶圆及成果发布,中欧合作石墨烯创新中心储备项目发布,上海市石墨烯产业技术功能性平台专家委员会主任及首席专家受聘仪式。在本环节中,中科院上海微系统与信息技术研究所研究员于庆凯绘声绘色地介绍了石墨烯晶圆这一成果。 /p p style=" line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/777eeed5-81ea-40ec-a10d-a8a1fa93c63a.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 签约、揭牌与发布仪式 /strong /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 随后的报告环节由中科院宁波材料所研究员刘兆平主持,中国科学技术大学微尺度物质科学国家研究中心院士钱逸泰作《石墨烯及相关碳材料的制备及应用》报告,围绕石墨烯发现前碳材料制备、石墨夹层化合物与石墨烯复合材料的制备进行分享。 /p p style=" text-align: center line-height: 1.5em margin-top: 10px " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/66256b9e-3e38-436b-9054-91a92fe7de1e.jpg" title=" 10.jpg" alt=" 10.jpg" / /strong /p p style=" text-align: center line-height: 1.5em " strong 刘兆平主持报告环节 /strong /p p style=" line-height: 1.5em margin-top: 10px " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/77f6ebad-955d-46ae-bd15-303f9e2188ff.jpg" title=" 11.jpg" alt=" 11.jpg" / /strong /p p style=" text-align: center line-height: 1.5em " strong 钱逸泰作《石墨烯及相关碳材料的制备及应用》报告 /strong /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 中国工程院院士干勇作《新材料产业发展战略》报告,当今世界正面临百年未有之大变局,对我国新材料产业发展提出了更高要求,高端新材料是支撑国家重大战略需求的保障,已成为决定国家竞争力的关键领域和核心技术,报告中分别介绍了高端装备特种合金、高温合金、新型显示及其关键材料、新一代生物医用材料、前沿新材料、先进有色金属、碳材料等重点新材料的详细情况及其未来广阔的应用前景。 /p p style=" line-height: 1.5em margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/c61d1830-ca9b-431a-996d-b3af87ee23b8.jpg" title=" 13.jpg" alt=" 13.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 干勇作《新材料产业发展战略》报告 /strong /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp 上海大学环境与化学工程学院教授吴明红作《石墨烯环境功能材料体系构建及其在环境污染治理中的应用》报告,通过规模化制备高吸附、高选择、高催化性活性的石墨烯材料,为有机复合污染物的治理提供解决方案。 Andre Geim通过视频录制形式分享了精彩报告。浙江大学高分子系教授高超、中华联合财产保险股份有限公司张向宏相继作主题报告,共探石墨烯前沿技术,助力石墨烯产业发展。 /p p style=" line-height: 1.5em margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/f4a9b08b-7e43-4882-b687-64361f4fd0ab.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 吴明红作《石墨烯环境功能材料体系构建及其在环境污染治理中的应用》报告 /strong /p p style=" line-height: 1.5em margin-top: 15px " & nbsp & nbsp & nbsp & nbsp 大会同期还举办了2020中国国际石墨烯材料应用博览会,国家石墨烯产品质量监督检验中心、浙江省石墨烯制造业创新中心、苏州飞时曼精密仪器有限公司等众多企业携带石墨烯新产品、新技术或解决方案隆重亮相。 /p p style=" line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/cc765765-7d59-4bb9-980b-793b16d00f18.jpg" title=" 44.jpg" alt=" 44.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 2020中国国际石墨烯材料应用博览会 /strong /p
  • 仪器情报,科学家首次在扭曲双层石墨烯中取得新发现!
    【科学背景】相关绝缘态是指在周期性超晶格、磁场和各种相互作用的调控下,电子表现出的凝聚态行为。尽管在moire过渡金属二硫化物中已观察到分数值的相关绝缘态,但在扭曲双层石墨烯系统中,特别是在具有三角moire格子的情况下,对几何烦躁效应对电子行为的影响尚未深入研究。此外,如何在实空间建立模型以理解这些复杂现象也是一个未解决的挑战。为了解决这些问题,美国俄亥俄州立大Chun Ning Lau教授团队们进行了广泛的实验和理论研究。他们在不同的扭曲角度下研究了tBLG系统中的相关绝缘态,并发现在大于魔角的扭转角度范围内观察到了强壮的零切尔尼分数相关绝缘态。通过磁场和温度依赖的实验,他们验证了这些态的存在和稳定性。本研究通过建立基于Wannier轨道形状和库仑相互作用的实空间模型,成功解释了这些分数填充下的电子相态。研究表明,Wannier轨道的三叶形状和在不同扭转角度下的几何烦躁效应是导致这些态的关键因素。此外,通过调节掺杂和扭转角度,科学家们展示了可以调控这些态的性质和相变过程。【科学亮点】(1)实验首次观察到在大角度扭曲双层石墨烯(tBLG)中,在1/3填充数下存在高强度的零切尔尼分数相关绝缘态。(2)实验通过分析大于魔角扭转角度的tBLG样品,发现这些零切尔尼分数态在垂直和平行磁场中仍然稳定存在。具体结果如下:&bull 首次观察到在tBLG中的1/3填充下,存在零切尔尼分数相关绝缘态,这些态显著超过了整数填充的态。&bull 实验结果表明,在较小扭转角度的设备中,观察到了符合预测的砖墙电荷有序态。&bull 在施加平行磁场时,观察到分数填充为 ±8/3 的状态表现出铁磁序,而 ±4/3 的状态表现出反铁磁序,并在有限磁场下观察到向自旋对齐态的转变。&bull 在具有更大扭转角度和较强次最近邻相互作用的设备中,观察到了三倍的单元胞重构,与理论预测的armchair相一致。&bull 这些分数态的产生源于Wannier轨道形状和由库仑相互作用引起的几何烦躁,其相通过掺杂和扭转角度可调节。【科学图文】图1: 器件D1的温度相关数据,θ=1.32°。图2:实空间模型。图3:在T=300mK时,器件D1的磁输运。图4:在T=1.5K时,器件D2的磁输运。【科学结论】本文深入探索了大角度扭曲双层石墨烯(tBLG)中的零切尔尼分数相关绝缘态。通过观察和理论模型的结合,揭示了Wannier轨道的特殊几何形状如何与库仑相互作用相结合,导致了这些新型电荷有序态的出现。这种研究不仅拓展了我们对二维材料中几何烦躁效应的理解,还为探索和设计新型量子材料提供了重要思路。从实验角度来看,本研究首次在大于常规魔角的扭转角度下观察到这些分数填充态的显著存在,这为探索不同扭转角度下tBLG的电子结构和相变提供了新的视角。同时,通过施加磁场的实验设计,揭示了这些分数态的磁序行为,为理解其物理本质提供了关键线索。从理论角度来看,本文采用了基于轨道几何烦躁的模型,成功解释了实验观察到的各种现象。这种实空间模型的应用不仅有助于理解和预测tBLG中复杂相互作用的影响,还为未来设计具有特定电子性质的新型二维材料提供了有力的理论指导。总之,本文不仅深化了对tBLG电子结构中几何烦躁效应的理解,还展示了通过调控几何形状和外加场效应来实现对电子态的精细控制的潜力。原文详情:Tian, H., Codecido, E., Mao, D. et al. Dominant 1/3-filling correlated insulator states and orbital geometric frustration in twisted bilayer graphene. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02546-5
  • 三维石墨烯带队“治污者联盟”
    p style=" text-indent: 2em " 科学技术的发展,为解决黑臭水体污染治理的世界性难题提供了新选择。我国科学家研发出一种新材料,将其平铺在黑臭水体表面,太阳光照射两周内,可明显改善水质。今年初,相关成果获得国家自然科学奖二等奖,拥有发明专利50多项,已在上海、安徽、江苏等地成功示范,正成为整治黑臭水体和污染防治的利器。 /p p style=" text-indent: 2em " 这一科研成果,由中科院上海硅酸盐研究所首席研究员、北京大学化学与分子工程学院教授黄富强带领两家科研机构,历经7年攻关获得。其成功研发的新材料,由三维石墨烯管和黑色二氧化钛两种特殊材料混合而成,治污原理是“物理吸附+光化学催化降解”。 /p p style=" text-indent: 2em " 有害有机物是黑臭水体的“元凶”,治理黑臭水体关键是消除这些有机物。自然环境条件下,借助生态的自修复功能,水体中的有害有机物可以自行降解,但污染严重的黑臭水体自修复能力很弱,生态净化周期会比较长。新材料可帮助黑臭水体加快有毒有机物的降解速度,缩短水体净化时间,并重新开启生态环境的自修复净化能力。 /p p style=" text-indent: 2em " 黄富强介绍:“三维石墨烯管负责快速、更多地牢牢‘抓住’各类有害有机物;黑色二氧化钛作为光催化剂,可对高达95%的全太阳光谱进行高效、充分吸收,进而快速地将捕获上来的有毒有机物降解为二氧化碳和水。” /p p style=" text-indent: 2em " 普通的石墨烯是二维的,形似平铺的纸张,而该团队研制的三维石墨烯管犹如立体的“蜂巢”,比表面积和中空体积增大,对有毒有机物的“抓取量”大大增加。 /p p style=" text-indent: 2em " 二氧化钛由于只能吸收仅占总太阳能5%的紫外光,不能吸收可见光和近红外光,降解有机物的效率较低。为改善二氧化钛吸光效率、进而提升有害有机物的降解速度,黄富强团队采用特殊工艺,制备出的黑色二氧化钛实现了高达95%的全太阳光谱吸收。 /p p style=" text-indent: 2em " 中科院院士张洪杰认为,黑色二氧化钛是该成果“核心中的核心”。几年前,美国密苏里大学陈小波教授研发出黑色二氧化钛,将对太阳光的吸收效率从5%提升到30%,引起学术界关注。 /p p style=" text-indent: 2em " 除治理黑臭水体,黄富强团队研究的新材料在处理印染废水、制革废水等工业污水方面也有突出成效。例如,添加1克新材料可吸附1.476克铅离子,简单酸化处理后,重金属离子可回收并被加工成各类高附加值材料。 /p p style=" text-indent: 2em " 在示范应用期间,团队在上海、安徽、江苏等地共铺设新材料光降解网3000多张,覆盖水域总面积近4万平方米。 /p p style=" text-indent: 2em " 在上海天山公园和中山公园,团队将涂覆有新材料的光降解吸附网铺在湖面后,不动水底淤泥,吸附网就能将有机物分解为二氧化碳和水,进而提高水体含氧量,增强水体自净化和生态修复能力。 /p p style=" text-indent: 2em " 上海轻工业环境保护技术研究所检测中心和江苏省环境科学研究院环境工程重点实验室的检测结果显示,治理仅7天后,化学需氧量、氨氮、总磷等代表性指标均从劣五类水改善至五类水以上。 /p p style=" text-indent: 2em " 在安徽省肥东县,团队对定光河污染较严重的中上游河段进行了治理。肥东县环保局水环境管理科主任薛铁成说,定光河是典型的复合污染河道,此次治理后,污水各项指标的去除率达60%以上。 /p p style=" text-indent: 2em " 新材料还具备成本比较优势。黄富强介绍,将新材料与市面主流材料进行实验室对比测试,针对印染废水、制革废水、造纸废水等典型的难降解高浓度有机废水,市面材料20分钟可降解完成,而新材料只需2-3分钟,降解速度大幅提高,但制备成本与市面材料相当。 /p p style=" text-indent: 2em " 陈小波表示:“该团队研发的独特制备方法具有很多技术优势,让大规模低成本生产黑色二氧化钛成为可能,这是一项突破性成果,将有力促进该材料的实际应用和商业化。” /p p style=" text-indent: 2em " 记者了解,目前,这一成果的两大关键材料已走出实验室,实现快速、无污染、低缺陷规模化制备,由团队自主设计、搭建的低成本技术生产线已具备50吨年产能。 /p p br/ /p
  • 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕
    p style=" text-align: justify text-indent: 2em " strong 【仪器信息网讯】 /strong 2019年10月25日,北京石墨烯论坛2019于北京稻香湖景酒店展示中心盛大开幕,包含众多院士、长江学者、杰青在内的全球石墨烯领域顶尖专家学者、企业家及各界人士500人齐聚一堂,共同交流石墨烯前沿技术,分享产业观点,论坛期间还进行了签约仪式。会议由北京石墨烯研究院(BGI)在北京市科学技术委员会的指导下主办,北京分子科学国家研究中心、中关村石墨烯产业联盟、北京先进碳材料产业促进会协办。大会主席为北京石墨烯研究院院长、中国科学院院士、北京化工大学教授刘忠范,执行主席为中国科学院院士、长江特聘教授张锦。北京石墨烯研究院副院长、北京市科委主任助理魏迪主持开幕式,仪器信息网进行了全程报道。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/a671f633-bcf7-48e9-9025-e29646bf4004.jpg" title=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (2).JPG" alt=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (2).JPG" / /p p style=" text-align: center text-indent: 2em " strong 大会现场 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/34dc33a0-d4be-4ec9-bd2b-d1e93ab76f9e.jpg" title=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (18).jpg" alt=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (18).jpg" / /p p style=" text-align: center text-indent: 0em " strong 嘉宾致辞 /strong /p p style=" text-align: justify text-indent: 2em " 北京石墨烯论坛2019是BGI主办的第二届石墨烯尖端论坛,本届论坛旨在加强石墨烯领域国际学术交流与合作,推动石墨烯前沿技术与产业深度对接融合。召集石墨烯产学研领域尖端人才,共襄石墨烯产业发展大计。北京大学校长郝平、北京市科学技术委员会副主任许心超、北京市经信局材料产业处处长李野川、山东省工业和信息化厅副厅长王新生相继致辞,对BIG作为大型开放式研发平台,在石墨烯原始创新和颠覆性技术创新,加快石墨烯领域的技术引领和产业创新等方面作出的突出贡献表示肯定,并希望北京市石墨烯研究院能够再接再厉,继续推动中国石墨烯产业健康、快速发展。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/bc97a555-e706-4700-91ff-855ad5c7b667.jpg" title=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (8).JPG" alt=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (8).JPG" / /p p style=" text-align: center text-indent: 0em " strong 刘忠范院士介绍BGI /strong /p p style=" text-align: justify text-indent: 2em " BGI由北京大学牵头建设,2018年10月25日正式揭牌运行,论坛上,刘忠范院士介绍了北京市石墨烯研究院的发展情况。他表示BGI的定位就是践行工匠精神,通过引领全球的石墨烯原材料及其装备制造、原创性的石墨烯应用产品与核心技术、定制化的技术研发与服务、以及理想的创新创业平台,形成面向未来的石墨烯产业核心竞争力,打造引领世界的石墨烯新材料研发高地和创新创业基地。 /p p style=" text-align: justify text-indent: 2em " 一年以来,BGI在各个方面取得了突飞猛进的发展。研究院现有研发队伍176人,其中杰青/长江学者5人,千人/青千12人,万人计划人才5人,并拥有6名优青、4名北京市海聚人才以及24名独立PI,以及独立的博士后工作站。研究院现有研发大楼两幢,占地面积2万平方米,拥有6个核心研究部、1个装备研发中心、1个质量检测中心、10个高校/院所协同创新中心、10个各种领域联合实验室、20个企业研发代工中心、30个产业基地/区域研发中心,并下辖孵烯资本有限公司。 /p p style=" text-align: justify text-indent: 2em " 在过去的一年,BGI在石墨烯制备装备研发和重要的石墨烯原材料批量化生产方面领域取得重要突破,成功研发了包括A3尺寸静态CVD生长系统、CO2刻蚀原理的超洁净石墨烯薄膜批量生长系统、石墨烯薄膜卷对卷动态生长系统、A3尺寸石墨烯薄膜冷壁生长系统、四英寸和六英寸石墨烯单晶晶圆规模化生长系统、绝缘衬底用石墨烯晶圆直接高温生长系统、超级石墨烯玻璃批量制备系统、石墨烯玻璃纤维卷对卷连续生产系统、烯铝集流体薄膜规模化制备系统、粉体石墨烯微波CVD制备系统等,并实现了相关石墨烯材料的小规模批量化生产。另外,在石墨烯基第三代半导体照明技术、LED器件、烯碳光纤、电光调制器、烯铝集流体、石墨烯玻璃纤维布等石墨烯应用研发领域取得多项突破性成果。 /p p style=" text-align: justify text-indent: 2em " 刘忠范院士强调,机制创新是BGI快速发展的重要保证,特别是BGI打造的“研发代工”新模式,针对特定企业的研发需求,组建专门研发团队,面向市场需求开展定制化的技术研发,与企业开展从基础研究到产业化落地的无缝衔接,克服了科研系统纯数字化评价体系的弊病,有效调动起广大科技工作者的积极性。另外BGI还积极融通全国产学研资源,设立各地联合实验室、协同创新中心、区域发展中心以及产业基地,打造以BGI为核心的国家石墨烯产业网络。 /p p style=" text-align:center" img style=" width: 664px height: 887px " src=" https://img1.17img.cn/17img/images/201910/uepic/79e1c0b5-0862-42d4-9107-80980ed5bcc2.jpg" title=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (15).jpg" width=" 664" height=" 887" border=" 0" vspace=" 0" alt=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (15).jpg" / /p p style=" text-align: center " strong 签约仪式 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 664px height: 664px " src=" https://img1.17img.cn/17img/images/201910/uepic/0c22ef74-4a03-45e5-92f6-49d0f6cd7bb1.jpg" title=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (16).jpg" alt=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (16).jpg" width=" 664" height=" 664" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 揭牌仪式 /strong /p p style=" text-align: justify text-indent: 2em " 随后,大会现场举行了BGI与部分高校、科研机构和企业研发中心成立的联合实验室签约仪式和产学研协同创新中心揭牌仪式。本次公布的BGI最新合作单位有,国家知识产权运营公共服务平台,国家石墨烯产品质量监督检测中心、山东济宁、科特纳米、中科院苏州纳米所、中国石油大学(北京)、苏州大学、长春工业大学、中国航发北京航空材料研究院、中蓝晨光、中国航空制造技术研究院等。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/a7393633-3c63-4a30-8b53-3b019bd73a9b.jpg" title=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 .png" alt=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 .png" / /p p style=" text-align: center text-indent: 0em " strong 专家报告掠影1 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/3cc53a2b-be80-43a7-8631-9a22038a2b14.jpg" title=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (6).jpg" alt=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (6).jpg" / /p p style=" text-align: center text-indent: 0em " strong 专家报告掠影2 /strong /p p style=" text-align: justify text-indent: 2em " 签约和揭牌仪式后,大会进入专家报告环节,本环节由中科院院士范守善、北京科技大学副校长张跃、中国科学院院士张锦共同主持。瑞典皇家工程科学院院士刘建影,中科院院士、国家纳米科学中心主任赵宇亮,剑桥大学教授Andrea& nbsp Ferrari,东华大学材料学院院长朱美芳,北京化工大学教授、长江学者邱介山,中科院金属研究所研究员任文才,韩国蔚山国家科学技术研究所教授丁峰,中科院上海微系统与信息技术研究所研究员狄增峰,中科院院士、中国科技大学校长包信和围绕石墨烯的前沿应用做了精彩的学术报告。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/82c89070-1ff0-44bd-8eef-4f61beade93b.jpg" title=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (17).jpg" alt=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (17).jpg" / /p p style=" text-align: center text-indent: 0em " strong 墙报展及部分参展企业 /strong /p p style=" text-align: justify text-indent: 2em " 本届会议同期也举行了墙报学术展和仪器设备展览活动,吸引了众多石墨烯生产制造及检测企业参展,著名仪器设备制造商,弗尔德、HORIBA、岛津、天津中环等携最新产品及方案参展,报告环节结束后,主办方组织参会专家们进行了参观,双方进行了产学研的交流与对接。并举行了BGI周年庆典晚宴。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/72e78d37-6597-4084-beda-929b63cf5c83.jpg" title=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (9).JPG" alt=" 烯望前沿 共襄产业未来——北京石墨烯论坛2019盛大开幕 (9).JPG" / /p p style=" text-align: center text-indent: 0em " strong 与会嘉宾合影 /strong /p p style=" text-align: justify text-indent: 2em " 据了解,本届北京石墨烯论坛2019一共将持续三天(10月24日-10月26日)。此前在10月24日,已先期举办了专题讲座和北京石墨烯研究院参观活动,10月25日的大会结束后当晚,还举行了BGI周年庆典晚宴。而在10月26日,大会还将举行区域产业发展论坛,就我国石墨烯产业化的发展进程、问题与挑战、发展方向等课题,进行学术研讨,并提出思考与建议。而在论坛同期,还将举办以“放飞烯望,共筑梦想”为主题的创新创业大赛,并进行现场答辩。比赛共设五个奖项,每个奖项1名,获奖项目将会颁发获奖证书,同时授予奖杯。 /p p style=" text-align: justify text-indent: 2em " 其他参会嘉宾还有中科院院士成会明、赵宇亮,中科院上海位系统与信息技术研究所副所长谢晓明,工信部塞迪研究院原材料工业研究所所长肖劲松,浙江宁波材料所研究员刘兆平,中科院重庆绿色智能技术研究院研究院研究员史浩飞,江苏省特检院党委委员孙小伟,常州西太湖科技产业园管委会副主任张铭,北京石墨烯技术研究院院长王旭东,江苏常州第六元素材料科技股份有限公司董事长兼总经理瞿研,宝泰隆新材料股份有限公司董事长焦云,山东利特纳米技术有限公司董事长侯士峰,江苏省特种设备安全监督检验研究院高级工程师杨永强,Sports Republic万众之星运动联盟创始人Vanessa Folksson等。 /p
  • 世界首次!我国科学家实现原子级石墨烯可控折叠
    p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 经过多年的研究攻关,我国科学家在世界上首次实现了原子级精准控制的石墨烯折叠。这是目前世界上最小尺寸的石墨烯折叠,对构筑量子材料和量子器件等具有重要意义,这一成果今天(6日)在国际学术期刊《科学》上发表。 /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 探索新型低维碳纳米材料及其物性是世界前沿的科学问题之一,相关研究曾两次获得诺贝尔奖。目前在单原子层次上精准构筑和调控基于石墨烯的低维碳纳米结构仍存在巨大挑战。中国科学院物理研究所的研究团队首次实现了对石墨烯纳米结构的原子级精准按需定制的可控折叠,构筑出一种新型的准三维石墨烯纳米结构。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 194px " src=" https://img1.17img.cn/17img/images/201909/uepic/6c45d639-a4af-4ecb-8ae2-315a94ab2409.jpg" title=" 11.png" alt=" 11.png" width=" 500" height=" 194" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 125px " src=" https://img1.17img.cn/17img/images/201909/uepic/1ed31027-76c9-4f90-bfe0-2c48012aad5a.jpg" title=" 22.png" alt=" 22.png" width=" 550" height=" 125" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 193px " src=" https://img1.17img.cn/17img/images/201909/uepic/be39c92a-43c7-4e00-831c-778c162810ab.jpg" title=" 33.png" alt=" 33.png" width=" 500" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 据了解,该研究成果是目前世界上最小尺寸的石墨烯可控折叠,高鸿钧院士讲到,经过折叠,这些新型的二维原子晶体材料,有可能由没有超导特性变为有超导特性,由无磁性变为有磁性,利用这些特性变化,可以去构造功能的量子器件,如量子计算等,对未来应用具有重要意义。 /p
  • 美国P.E石墨管在石油、化工、纺织、机电等行业的应用
    美国P.E石墨管是由高纯石墨粉通过特定工艺压制成的石墨制品。原子吸收光谱法是依椐处于气态的被测元素基态原子对该元素的原子共振辐射有强烈的吸收作用而建立的。此方法具有检出限低准确度高,选择性好,分析速度快等优点,其主要适用样品中微量及痕量组分析。它就是石墨炉分析的核心。   美国P.E石墨管的产品特点:  该元件质地硬而脆,膨胀系数小、能耐急冷急热,不易变形,有良好的化学稳定性,抗酸能力较强,与强酸不反应,抗碱能力较差,在高温下能腐蚀分解棒体。碳棒的抗折强度,随着元件温度的升高而变硬度越大。元件的电阻值,通过电阻率真反映,是按部颁标准规定在25微欧。米测定的。元件的表面负荷电流密度与黑碳棒的原料配方和压制密度有密切关系,可以根据需要任意调整。  1、碳化炉可实现自动推舟,自动调节推舟速度。   2、采用红外测温或光学高温计测温,可实现对炉温的自动控制。   3、炉温较高可到2800℃以上,工作温区大,适应范围广。   4、双管碳化炉可实现炉管使用时间长,更换炉管方便。   美国P.E石墨管的应用行业:  化工用石墨炉管,防腐板   氯碱工业,电镀电解行业用石墨阳极板   铸造行业用石墨冷铁块,模具   铝材生产用石墨环,滚筒.条.板,金刚石工具石墨模具、地质钻头烧结模具   生产新能源材料如锂电池材料用石墨盒,石墨匣钵等。   本公司产品广泛应用于冶金,机械、模具、石油、化工、纺织、机电、金刚石工具等各行业。 若想了解更多P.E石墨管产品信息,可点击链接获取:https://www.instrument.com.cn/netshow/SH100408/H1273506.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制